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Generative Adversarial Networks to Synthetically Augment Data for
Deep Learning based Image Segmentation*

Thomas Neff1, Christian Payer1, Darko Štern2,1, Martin Urschler2,1

Abstract— In recent years, deep learning based methods
achieved state-of-the-art performance in many computer vision
tasks. However, these methods are typically supervised, and
require large amounts of annotated data to train. Acquisition of
annotated data can be a costly endeavor, especially for methods
requiring pixel-wise annotations such as image segmentation.
To circumvent these costs and train on smaller datasets,
data augmentation is commonly used to synthetically generate
additional training data. A major downside of standard data
augmentation methods is that they require knowledge of the
underlying task in order to perform well, and introduce addi-
tional hyperparameters into the deep learning setup. With the
goal to alleviate these issues, we evaluate a data augmentation
strategy utilizing Generative Adversarial Networks (GANs).
While GANs have shown potential for image synthesis when
trained on large datasets, their potential given small, annotated
datasets (as is common in e.g. medical image analysis) has not
been analyzed in much detail yet. We want to evaluate if GAN-
based data augmentation using state-of-the-art methods, such as
the Wasserstein GAN with gradient penalty, is a viable strategy
for small datasets. We extensively evaluate our method on two
image segmentation tasks: medical image segmentation of the
left lung of the SCR Lung Database and semantic segmentation
of the Cityscapes dataset. For the medical segmentation task,
we show that our GAN-based augmentation performs as well as
standard data augmentation, and training on purely synthetic
data outperforms previously reported results. For the more
challenging Cityscapes evaluation, we report that our GAN-
based augmentation scheme is competitive with standard data
augmentation methods.

I. INTRODUCTION

Modern machine learning methods currently revolutionize
our daily life. Especially deep learning [9] based methods
consistently show improvements in the state-of-the-art every
year, and for many computer vision tasks they even surpass
human performance [6]. However, what most of these meth-
ods have in common is that they are supervised, therefore
requiring annotated data for training. Furthermore, most
deep learning methods benefit from a large amount of data to
train, often in the range of hundreds of thousands of images.
To circumvent the issue of insufficient annotated training
data, common approaches such as transfer learning [3],
domain adaptation [3] and data augmentation [13] can be
followed. While transfer learning and domain adaptation are
very popular, they are not as easily applicable for tasks where

*This work was supported by the Austrian Science Fund (FWF): P 28078-
N33.

1Thomas Neff, Christian Payer, Darko Štern and Martin Urschler are
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no large public datasets or pre-trained network parameters of
a close domain are available, e.g. in medical image analysis.
For this reason, we focus on data augmentation to deal with
small amounts of data, in particular data augmentation using
images synthesized from a generative model.

While data augmentation is most commonly done by using
simple transformations, more sophisticated approaches for
synthesizing additional training data have been proposed as
well. For example, it has been shown that by rendering
photorealistic, synthetic images and performing a set of
transformations on those rendered images, they can be used
to train an object detector with good performance [14].
Similarly, in the medical domain, it has been shown that by
training a deep neural network on high-quality rendered 3D
images from other computer vision tasks and fine-tuning it
towards medical data, the general network performance can
be improved when data is scarce [12]. This shows that data
augmentation by using a generative model can improve the
training of deep learning methods.

Recently introduced by Goodfellow et al., Generative
Adversarial Networks (GANs) provide an attractive method
of learning a generative model by training a deep neural
network [4]. GANs have demonstrated potential in tasks
such as state-of-the-art image generation [7], or synthetic
data generation [16], [10]. The idea of using GANs in the
context of data augmentation also saw some advancements
in research, for example with the SimGAN [16] architecture.
The main idea of SimGAN is to render synthetic images
with corresponding labels (e.g. images of human eyes with
their corresponding gaze direction) and refine those synthetic
images with a refiner-GAN. This GAN uses the information
from real, unlabeled images of the same domain while
preserving the label information of the rendered images to
generate realistic, refined images, which can further be used
as training data for a supervised deep network. However,
while GANs show impressive results when trained on large
datasets, it is still a topic of active research how GANs
behave when trained on a small amount of data, as most
GAN-related research focuses on large datasets.

For this work, we will focus on data augmentation methods
in the context of image segmentation tasks. As segmentation
is a pixel-wise problem, the acquisition of annotated seg-
mentation masks is even more time consuming, compared to
e.g. classification tasks, as a human annotator has to label
every pixel manually, which makes automated annotation
methods highly desirable. Building upon the architecture
we proposed in 2017 [10], we present a GAN-based data
augmentation strategy incorporating state-of-the-art methods

Proceedings of the OAGM Workshop 2018 DOI: 10.3217/978-3-85125-603-1-07

22



D
ra

ft

of GAN optimization, such as the Wasserstein GAN with
gradient penalty (WGAN-GP) [5]. Our goal is to evaluate the
segmentation performance of GAN-based data augmentation
compared to standard data augmentation methods, especially
in the case of small datasets. We perform experiments on
two segmentation tasks, one from medical imaging, i.e. X-
ray lung segmentation of the SCR Lung Database [17], and
another, more challenging one, from computer vision, i.e.
urban scene understanding of the Cityscapes [2] dataset.
Additionally, we compare the segmentation performance
when training with different ratios of real and generated
data, to further evaluate the impact of GAN samples on the
training process.

II. RELATED WORK

A. Data Augmentation

Data augmentation is the process of generating additional
training data from the available existing data [3]. Typically,
this is done by using annotation-preserving transformations
on the input data, such as randomly rotating, translating
or deforming the image. Through the random nature of
data augmentation, it can be used to potentially generate
an ‘infinite’ amount of training data by augmenting the
already existing data. For medical image analysis, data
augmentation such as elastic deformation has been used
with much success in combination with convolutional neural
networks, as demonstrated by the U-Net [13] architecture for
medical image segmentation. Although data augmentation is
an effective way of dealing with the issue of small amounts
of training data, it is not universally applicable, as prior
knowledge of target domain and task is required to find a
good data augmentation. Furthermore, the parametrization
of data augmentation methods introduces another set of
important hyperparameters, which can have a significant
impact on the error made by the deep learning method.

B. Generative Adversarial Networks

Due to their end-to-end nature, good generated image
quality and compatibility with modern deep learning tech-
niques, GANs are the current state-of-the-art for generative
models. A GAN consists of two subnetworks: the generator
G, and the discriminator D, which play against each other in
a two-player minimax game [4]. The generator synthesizes
data from an input noise vector z ∼ pz. The discriminator
is a standard classification network, which receives real data
x ∼ pR, as well as data from the generator G(z) as input.
The goal of the discriminator is to perfectly classify each
input image as either real or synthetic, while the goal of the
generator is to synthesize images as close as possible to the
real data, which leads to the discriminator misclassifying real
and generated data [4].

As GAN optimization requires finding a Nash Equilib-
rium [4] between the generator and discriminator, GANs
have historically been very unstable to train, which led to a
lot of research focused on improving their training stability
and generated image quality. Especially WGAN-GP [5]
enjoys large popularity, due to being stable across different

datasets and network architectures, as well as producing high
quality images. The main idea behind WGAN is to use the
Wasserstein-1 distance as its optimization criterion, which
intuitively computes the cost of the optimal transport plan
to transform the real data distribution pR to the generator
distribution pG. Further improving on WGAN, WGAN-
GP approximates the Wasserstein-1 by using a soft penalty
on the gradient norm of the discriminator/critic. For this
gradient norm, Gulrajani et al. [5] sample uniformly from
a distribution px̂ that is defined along the lines between
pairs of samples from the real data distribution pR and the
model distribution pG, leading to the following optimization
function:

L = Ex∼pR [D(x)]−Ez∼pz [D(G(z))]︸ ︷︷ ︸
WGAN critic loss

+λ Ex̂∼px̂

[
(||∇x̂D(x̂)||2−1)2

]

︸ ︷︷ ︸
WGAN-GP gradient penalty

,
(1)

where λ describes the gradient penalty coefficient and E
denotes the expectation operator.

III. METHOD AND IMPLEMENTATION

The standard GAN definition only allows for the gener-
ation of images, without respective labels. Therefore, for
the generated data to be used for data augmentation, the
conventional GAN formulation needs to be modified to
also generate corresponding labels. For this modification,
we build upon our previously proposed GAN architecture,
which jointly generates images and their corresponding seg-
mentation masks, for direct use of training data augmenta-
tion [10]. Compared to the standard GAN formulation, this
architectural adaptation is a simple change in the network
architecture, and can therefore be used with any GAN
training scheme, such as WGAN-GP.

The main idea of this architecture is to fuse the image
and segmentation mask to create an image-segmentation
pair. This is done by concatenating both images along the
channel axis. When training the GAN, the generator is now
modified to generate image-segmentation pairs, instead of
just images. The discriminator follows a similar principle,
and now takes image-segmentation pairs as input, and its
goal is to correctly decide if any given image-segmentation
pair is real or synthetic. Therefore, the first convolutional
layer of the discriminator needs to be modified to accept
inputs, where the number of channels is equal to the number
of channels of the image-segmentation pair.

All GANs in our experiments are trained using the
WGAN-GP training scheme and loss function, as we found
this to be the most robust method for training GANs, even
across multiple datasets. For the gradient penalty hyperpa-
rameter, we used the default value suggested by Gulrajani
et al., setting λ = 10. Additionally, compared to [10], we
increase the image resolution in order to test how well the
GAN is able to handle higher resolutions. Our code is based
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ftFig. 1: Evaluation setup containing a pre-trained GAN generator producing image-segmentation pairs and a U-Net style
segmentation network. The dashed lines and boxes illustrate the pre-training part of our setup.

on the code provided by the authors of WGAN-GP [5]1,
using the TensorFlow [1] deep learning framework. For our
evaluations, we use the following evaluation setup. First,
we split the data into one or multiple training, validation,
and test sets. Then, we train GANs for every training set
of this dataset, until the generated image quality does not
further improve. Finally, we take the fully-trained generator
network, and use it directly as an input to a U-Net based [13]
segmentation network. Compared to our previous evalua-
tion [10], where a fixed amount of image-segmentation pairs
was sampled, this on-the-fly generation allows for a much
larger range of images to be sampled from the generator,
better capturing the variation that the generator has learned
from the data. For training the segmentation network, we use
different ratios of real and generated data, and apply either
no additional standard data augmentation, or a combination
of standard data augmentation methods composed of inten-
sity shifts, intensity scaling, random translations, horizontal
flipping and elastic deformations. When mixing real and
generated data, we exclusively use the specific GAN that
was trained on the same real training data set, to keep all
training sets separate. Our evaluation setup is illustrated in
Figure 1.

IV. IMPLEMENTATION DETAILS

Our GAN network architecture is based on DCGAN [11],
only modified to generate image-segmentation pairs instead

1GitHub: Improved Training of Wasserstein GANs, https:
//github.com/igul222/improved_wgan_training, Accessed:
14.03.2018

of just images. For the SCR Lung Database, our U-Net
based segmentation network consists of 3 levels and uses
a constant number of 64 filters for every convolutional layer.
For the Cityscapes dataset, we use a U-Net based network
with 4 levels and a constant number of 256 filters for every
convolutional layer. We use Adam [8] as our optimizer for
all networks, using a learning rate of η = 0.0001 and decay
rates of β1 = 0.5 and β2 = 0.9 for the first and second
moments, respectively. All network weights were initialized
using the He initializer [6]. We use ReLU activations in all
layers, except for the final generator layers, which use tanh
activations. In contrast to our GANs, we do not use Batch
Normalization in our segmentation networks.

For every segmentation network, we train for at least 3000
iterations. During training, we keep track of the minimal
validation loss and its iteration number, as well as the
network parameters at the validation loss minimum. Every
time a new validation loss minimum is found, we train for
at least 3000 more iterations. In practice, this resulted in
a good compromise of network performance and training
time. The final metric for our evaluation is the segmentation
performance of the segmentation network on the unseen
test data. For the evaluation on the test set, and therefore
the final segmentation performance, we upsample the output
of our segmentation networks using bicubic upsampling
to the target resolution. Afterwards, we compute the Dice
coefficient and the Hausdorff distance (for the SCR Lung
Database), as well as the mean Intersection-over-Union
(mIoU) (for the Cityscapes dataset) as our evaluation metrics.
All evaluations were done on an NVIDIA Tesla K80 with
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12GB of GPU memory, although all networks were designed
for an NVIDIA GTX980M with 8GB of GPU memory. For
both evaluations, all input images were intensity-normalized
to a range of [−1,1].

V. EVALUATION

A. Lung Segmentation of the SCR Lung Database

1) Dataset Description: The SCR Lung Database [17] is a
dataset consisting of 247 chest X-ray images, taken from the
JSRT database [15]. Its image resolution is [2048×2048] at a
physical resolution of 0.175 mm per pixel in each dimension,
and it contains groundtruth segmentation masks for 5 objects:
both lungs, the heart and both clavicles. For our evaluation,
we chose the task of segmenting the left lung from the image.

2) Evaluation Setup: All images are downsampled to a
resolution of [256×256] before we use them for training in
order to fit all our networks into GPU memory while still
being able to use a large enough minibatch size for stable
training. We shuffle the dataset randomly and split it into
3 folds, each containing 135 training images, 30 validation
images and 82/83 test images, chosen such that all images
are contained exactly once in the set of test images. For
the final evaluation of the segmentation performance, we
report performance as the average Dice score and Hausdorff
distance over all folds.

As the first step of our evaluation, we train our modified
GAN for each of the 3 folds of training data, resulting in 3
fully-trained GANs. As it is difficult to determine a quantifi-
able stopping criterion for the training of GANs, every GAN
was trained for a fixed number of 10000 iterations, which
took approximately 24 hours per GAN. The raw image-
segmentation pairs from the generator are in the intensity
range of [−1,1]. Therefore, when training our segmentation
network using generated images, we threshold all segmenta-
tion masks at 0 when computing the segmentation loss.

For the main part of our evaluation of the SCR Lung
Database, we train multiple segmentation networks for every
fold, using an exhaustive set of combinations of real and
generated data as well as with and without standard data
augmentation. We evaluated different combinations of stan-
dard data augmentation on one fold of the cross-validation set
to find suitable augmentation parameters for the final com-
parison. To speed up this parameter search, we fixed elastic
deformation at 10 pixels for each control point. The results
for different augmentation methods are shown in Table I, and
the combination of parameters listed in bold are used as our
standard data augmentation method for the final evaluation.
Important to note is that this parameter search was done
on only a single fold of the validation set, therefore those
results are not comparable to our final quantitative results
which are averaged over all folds. Before computing our
final segmentation performance metrics, we extract only the
largest connected component. As the left lung is only a single
connected component in all our images, this reduces false
predictions of the resulting segmentation masks. Training
each segmentation network took approximately 8 hours on
our setup.

TABLE I: Comparison of augmentation parameters for the
SCR Lung Database. For further evaluation, we use the
augmentation parameters listed in bold as our standard data
augmentation.

Augmentation Parameters Validation
Performance

Intensity
shift
around zero
(stddev)

Intensity
scaling
around one
(stddev)

Random
translation
around zero
(stddev)

Elastic
deformation
around zero
(stddev)

Dice
(mean)

- - - - 96.98%
- - - 10 px 97.06%
- - 10 px 10 px 96.85%
- 0.05 - 10 px 97.03%
- 0.05 10 px 10 px 96.77%
0.05 - - 10 px 96.40%
0.05 - 10 px 10 px 96.91%
0.05 0.05 - 10 px 96.63%
0.05 0.05 10 px 10 px 97.12%

3) Results: Example images from our GANs trained on
the SCR Lung Database can be seen in Figure 2. The
final segmentation performance, averaged across all folds,
is shown in Table II. In order to better compare GAN-
based data augmentation and standard data augmentation,
we also present examples of resulting segmentation masks
for two of our networks: the network trained on a mix of
real and generated data without data augmentation (GANs-
based augmentation), and the network trained solely on real
data with standard data augmentation. Some of the best
resulting examples, as well as the example showing the worst
performance are shown in Figure 3.

B. Semantic Segmentation of the Cityscapes Dataset

1) Dataset Description: For our second evaluation,
we chose the task of semantic segmentation using the
Cityscapes [2] dataset. Cityscapes is a challenging dataset for
semantic urban scene understanding, which aims to capture
the complexity of real-world urban scenes. For 30 object
classes divided into 8 groups, pixel-level and instance-level
segmentation masks are provided for every image. The base
resolution of all images is [2048× 1024× 3]. This dataset
consists of 2975 training images and 500 validation images
with finely annotated segmentation masks, with an online
submission system used to evaluate performance on the
test set, for which the groundtruth segmentation masks are
not known. Since this segmentation problem is much more
challenging compared to the lung segmentation problem of
the SCR Lung Database, we decided to only do segmentation
of the 8 object groups (‘categories’) defined in the Cityscapes
dataset, and not on the individual classes.

2) Evaluation Setup: We created our own data split from
the given training and validation sets. We used all 500 images
from the Cityscapes validation set as our test set. For our
internal validation set, we randomly selected 400 images
from the Cityscapes training set. Finally, our training set
consisted of the remaining 2575 images from the Cityscapes
training set. Due to the much larger amount of data compared
to the SCR Lung Database and the time consuming nature
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Fig. 2: Example images from our GAN trained on the SCR Lung Database. Odd columns show generated images, while
even columns show the respective generated segmentation masks.

Image Groundtruth
Prediction
GAN-based
Aug.

Prediction
Standard
Aug.

Difference:
GAN-based
Aug.

Difference:
Standard
Aug.

Fig. 3: Comparison of segmentation masks from fully trained segmentation networks between standard data augmentation
and GAN-based data augmentation for the SCR Lung Database. Rows 1 and 2 show good results, while row 3 shows the
worst performing test example. Columns 3 and 5 show results from our segmentation network trained using GAN-based
augmentation with a mix of real and generated data, while Columns 4 and 6 show the results of our segmentation network
trained using standard data augmentation.

TABLE II: Segmentation performance comparison between training on real data, generated data, and mixed data, using
either no additional data augmentation, or standard data augmentation (see Table I), evaluated on our test set of the SCR
Lung Database. Since the previous work of Neff et al. [10] was not tested on full resolution, the Hausdorff distance was
omitted from these results, as it is not an accurate comparison.

Network
ID

# real
pairs
in minibatch

# generated
pairs
in minibatch

Aug.? Dice
(mean)

Dice
(stddev)

Hausdorff
(mean)

Hausdorff
(stddev)

16-0-Aug 16 0 yes 97.65% 1.65% 1.2057 mm 0.3131 mm
16-0-NoAug 16 0 no 97.42% 1.66% 1.2626 mm 0.3440 mm
8-8-Aug 8 8 yes 97.65% 2.28% 1.1722 mm 0.3313 mm
8-8-NoAug 8 8 no 97.68% 1.47% 1.2106 mm 0.3154 mm
0-16-Aug 0 16 yes 96.55% 1.63% 1.2651 mm 0.3067 mm
0-16-NoAug 0 16 no 96.32% 2.02% 1.3273 mm 0.3434 mm

Neff et al. [10]
16 0 no 96.08% 1.01% - -
≈ 8 ≈ 8 no 95.37% 1.21% - -
0 16 no 91.72% 2.83% - -

26



D
ra

ft

TABLE III: Comparison of augmentation parameters for
the Cityscapes dataset. For further evaluation, we use the
augmentation parameters listed in bold as our standard data
augmentation.

Augmentation Parameters Validation
Performance

Intensity
shift
around zero
(stddev)

Intensity
scaling
around one
(stddev)

Random
translation
around zero
(stddev)

Horizontal
flipping mIoU

0.10 0.10 10 px no 69.89%
0.05 0.05 5 px no 74.21%
- - - no 78.04%
0.05 0.05 - yes 79.50%
- - - yes 80.42%

of our evaluation, we only evaluate on this single fold of
data. For all networks in this evaluation, we downscaled the
resolution of all input images to [256×128×3] to be able to
fit our generator network and our segmentation network into
memory at the same time, while still keeping a sufficiently
large minibatch size for training stability. The Cityscapes
dataset contains a lot of small, thin structures (e.g. objects
such as street lights and traffic signs), that get reduced to just
a few pixels in size when downsampling to such an extent.
This is especially apparent for the ‘Human’ and ‘Object’
categories, which contain the smallest objects in the dataset,
such as pedestrians and street lights.

Before training our segmentation networks, we train our
modified GAN on the Cityscapes dataset for 10000 iterations,
as the image quality did not improve further after that. For
the standard data augmentation, we experimented using a
set of multiple different augmentation methods, and chose
the best one based on the performance on the validation set.
The validation results for different augmentation methods are
shown in Table III, and the combination of parameters listed
in bold are used as our standard data augmentation method
for further training.

We threshold the output segmentation images of the gen-
erator to get discrete segmentation masks.

For our final evaluation of the Cityscapes dataset, we train
our segmentation network on different ratios of real and
generated data, similar to the previous experiment, using
either no augmentation or standard data augmentation. Each
segmentation network took approximately 24 hours to train
until convergence.

3) Results: Our final segmentation performance for all
different evaluation setups of the Cityscapes dataset is shown
in Table IV. Additionally, we show the resulting mIoU for
every category for the four best performing networks in
Figure 4. Since the significant amount of downsampling of
the input images results in small objects vanishing or being
reduced to single-pixel size, and therefore not being useful
for training, we also present mIoU results excluding the
‘Human’ and ‘Object’ categories in Table IV. Similar to our
evaluation of the SCR Lung Database, in Figure 5 we show
an example of a resulting segmentation mask to better com-

TABLE IV: Segmentation performance comparison between
training on real data, generated data, and mixed data, using
either no additional data augmentation, or standard data
augmentation, evaluated on our test set of Cityscapes.

Network
ID

# real
pairs
in minibatch

# generated
pairs
in minibatch

Aug.? mIoU

mIoU
excluding

‘Human’ and
‘Object’

8-0-Aug 8 0 yes 78.59% 88.94%
8-0-NoAug 8 0 no 76.16% 87.67%
4-4-Aug 4 4 yes 75.48% 87.32%
4-4-NoAug 4 4 no 76.30% 87.86%
0-8-Aug 0 8 yes 47.05% 65.35%
0-8-NoAug 0 8 no 46.32% 64.26%

pare GAN-based augmentation to standard augmentation.

VI. DISCUSSION AND CONCLUSION

Our main focus of this work was to perform a comparison
between standard data augmentation and GAN-based data
augmentation. For the first comparison, we chose to perform
medical image segmentation of the SCR Lung Database, as
this allows us to directly compare to previously reported
results. Figure 2 shows that for the SCR Lung Database,
our GAN manages to generate high-quality images with
corresponding segmentation masks that fit the generated
image well. Compared to our previously published GAN
examples of this dataset shown in [10], the generated samples
are of much higher quality and more closely resemble the
training data. We also do not experience mode collapse of
our generated samples compared to these previous results, as
the resulting samples show similar variety to the training set
the generator was trained on. Looking at the segmentation
performance shown in Table II, we can see that the Dice
scores and Hausdorff distances are very close between all
networks, only showing a significant gap for the networks
trained on strictly synthetic data and for our previous results
in [10]. Augmenting with synthetic images from a trained
GAN does not decrease the segmentation performance, and
networks trained with a mix of synthetic and real im-
ages stay competitive with networks trained on strictly real
data, using standard data augmentation. Even though the
difference is small, the best result (Dice score, standard
deviation of Dice) of our evaluation was achieved using our
GAN-based augmentation, i.e. using a network trained on
mixed real and synthetic data. This suggests that GAN-based
augmentation might be a viable augmentation strategy in
the future, especially if GAN research further improves on
the quality and variety of generated images. Furthermore,
it is very interesting to see that our network trained on
purely synthetic data achieves better results compared to the
network trained on real data of our previous work [10]. This
is mostly due to the higher quality of the synthetic images
sampled from our GAN on-the-fly. This shows that our GAN
has managed to learn enough about the underlying training
data distribution to produce valuable images for training
segmentation networks.

Looking at the samples produced from our GAN-
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Fig. 4: mIoU for every category of the Cityscapes dataset. For visual clarity, we omit the worst performing networks and
only report results for the four best networks, identified by their network ID shown in Table IV.

Image Groundtruth

Prediction
GAN-based

Aug.

Prediction
Standard

Aug.

Error
GAN-based

Aug.

Error
Standard

Aug.

Categories:
Void Flat
Construction Object
Nature Sky
Human Vehicle

Fig. 5: Comparison of segmentation masks from fully trained segmentation networks between standard data augmentation
and GAN-based data augmentation for the Cityscapes dataset for the best performing test image.

augmented network and our network trained with standard
augmentation in Figure 3, we can see that the segmenta-
tion quality is also equally good. For some test images,
the network trained with GAN-based data augmentation
produces better segmentation masks, while for others, the
network trained with standard data augmentation achieves
higher quality results. Since the Dice scores and Hausdorff
distances are almost identical, and we cannot determine
significant differences in image quality, it seems that the
lung segmentation problem for this dataset is already very
well modeled by the U-Net. Additional augmentation does
not provide any more benefits, but also does not have a
negative impact on the results either. However, GAN-based
augmentation also does not lead to worse performance in
this case, which was not the case in our evaluation presented
in [10], suggesting that the higher quality GAN images from
WGAN-GP improved the overall augmentation method, and
our GAN managed to better capture the distribution of our
training data.

For the evaluation on the Cityscapes dataset, results are
interesting as well. While our GAN managed to generate
images of reasonable variety, the image quality is not as high,

as the Cityscapes dataset is more complex, and therefore
more difficult to learn for a generative model. Looking at the
quantitative evaluation of the Cityscapes dataset, we found
that the best standard data augmentation for this dataset
and our segmentation network architecture was to just use
horizontal flipping (see Table III). Using other combinations
of intensity shift, intensity scaling, or random translation led
to worse segmentation performance. For some settings, the
segmentation performance was even worse than not using
data augmentation at all. Similarly, we can observe that using
horizontal flipping in combination with our GAN-based
approach (4-4-Aug) leads to worse performance compared
to just using GAN-based augmentation (4-4-NoAug). This
illustrates an important point of data augmentation - the aug-
mentation parameters require careful tuning to fit the dataset,
as unsuitable data augmentation can have a negative effect
by drastically reducing the segmentation performance. From
our final segmentation performance shown in Table IV, we
can see that the network trained on real data, using horizontal
flipping for data augmentation (see Table III), achieved the
best performance compared to all other networks. However,
we can again observe that the network trained using GAN-
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based augmentation without additional standard data aug-
mentation achieves similar performance to the network that
was trained on real data without augmentation. Especially
interesting is that when using GAN-based augmentation
without standard augmentation, the results are better than
some of the results when using standard augmentation shown
in Table III. This illustrates that our GAN has learned a
reasonable representation of our training data, even though
the generated samples are not of high quality.

Compared to the highscore database of the Cityscapes
dataset2, our baseline performance for the category mIoU
is in line with the weaker results on the online database.
This is mostly due to the large amount of downsampling
we perform on the input images, as well as that we do
not use pre-trained networks as all other competing methods
do. Because one of our main goals was to evaluate how
GAN-based data augmentation affected the results of training
segmentation networks, we did not want to additionally pre-
train our networks, as that would introduce another variable
that significantly impacts training behavior of deep networks.

Performing large amounts of downsampling leads to a
lower segmentation performance for small or thin structures,
and borders between regions, as those fine details vanish
when downsampling is applied. This effect can be seen by
comparing the resulting segmentation masks of our networks,
shown in Figure 5. Most of the errors of our results are
in the border regions between classes, as the fine detail
necessary to determine exact borders is lost during downsam-
pling. We also observe the consequence of downsampling
in Figure 4, where we show results for every category.
While our networks consistently show weaker performance
on the ‘Object’ and ‘Human’ categories, the other categories
show good results, given that we only used a standard
U-Net segmentation network architecture with additional
data augmentation methods. Computing the mIoU over all
categories but those two, we achieve much better scores, as
can be seen in Table IV.

To conclude, we performed an extensive evaluation of the
possibilities of using GANs for training data augmentation
in image segmentation tasks. From our current results, we
cannot conclude GAN-based augmentation has a positive or
negative impact, but we believe that if a GAN was able
to fully learn the training data distribution, the additional
synthetic data could be highly useful as a regularizer for deep
networks. Compared to standard data augmentation, GAN-
based augmentation does not require extensive data analysis
to find out optimal augmentation parameters. Especially in
the Cityscapes evaluation, we saw how certain data aug-
mentation parameters can lead to much worse performance,
therefore an augmentation method that is learned from data
would save a lot of effort in fine-tuning deep networks.
The most straight-forward future improvement would be to
increase the resolution and representation power of our GAN,
leading to higher quality synthetic images. We are certain that

2Cityscapes Pixel-Level Semantic Labeling Task Results,
{https://www.cityscapes-dataset.com/benchmarks/
\#pixel-level-results}, Accessed: 14.03.2018

such an improved generative model could be used as a data
augmentation method to improve performance for supervised
deep learning tasks.
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