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Abstract

In this thesis, particle and thermal energy transport in one-dimensional systems are
studied. At first, particle transport through tight-binding and Hubbard chains is con-
sidered. The particle current is initiated by coupling an empty and a filled bath to the
initially half-filled chain. Due to different fillings in the baths, a particle current emerges
and eventually reaches a steady state current. To model the bath spectral function, star
and Wilson chain geometries are applied and compared, especially with respect to the
growth of the von Neumann entanglement entropy throughout the whole system. In
both cases, a linearly growing entanglement entropy is observed.
Furthermore, thermal energy currents through tight-binding and Hubbard chains are
studied. Thermal baths in star geometry, obtained through a thermofield approach and
initialized at different temperatures, are coupled onto the chains in order to induce a
thermal energy current. After a thermalization of the system, the thermal energy current
also reaches a steady state. The dependence of this steady state on the temperatures of
the two baths is studied as well as the convergence towards this steady state. Steady
state currents depending on the temperatures of the left and right bath in the form of
jE = f(TL) − f(TR) are observed. In the case of Hubbard chains, the thermalization
time is longer than the maximum simulation time which is limited by exponentially in-
creasing bond dimensions.
The time evolution of the systems is performed by applying Time-Evolving Block Deci-
mation (TEBD) as well as the one- and two-site Time-Dependent Variational Principle
(TDVP) in the context of Matrix Product States (MPS). It turns out that TDVP needs
somewhat smaller matrix bond dimensions but also an order of magnitude more com-
putation time for accurately capturing steady state energy currents. In a recent paper,
local observables in an Ising chain at high temperature were accurately described after
a local perturbation by applying TDVP time evolution at small bond dimensions. How-
ever, the present thesis finds that for accurately capturing a steady state current, small
bond dimensions on the order of χ = 10 are insufficient. Generally, the exponential
growth of matrix bond dimensions and the linear growth of entanglement, respectively,
limit the maximum simulation time.
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Zusammenfassung

Diese Masterarbeit behandelt den Teilchentransport sowie den Energietransport in eindi-
mensionalen Systemen. Zuerst wird der Teilchentransport in Tight-binding-Ketten sowie
Hubbard-Ketten untersucht. Dieser Teilchenstrom wird durch eine unterschiedliche Be-
setzung der Bäder ausgelöst, die links und rechts an die, im Anfangszustand halbgefüllte,
Kette gekoppelt werden. Durch die unterschiedliche Besetzung der Bäder beginnt ein
Strom zu fließen, der schlussendlich einen Gleichgewichtszustand (Steady State) erreicht.
Die Badspektralfunktionen werden mit Hilfe von Wilson Ketten oder Sterngeometrien
modelliert. Diese beiden Geometrien werden miteinander verglichen, insbesondere im
Hinblick auf das Wachstum der Entropie im ganzen System. In beiden Fällen kann ein
lineares Wachstum der Entropie beobachtet werden.
Weiters wird auch ein Energiestrom in Form eines Wärmestroms durch Tight-binding
und Hubbard-Ketten untersucht. Die hierfür notwendigen thermischen Bäder haben
eine Sterngeometrie und werden mit Hilfe eines Thermofield-Ansatzes mit einer endlichen
Temperatur simuliert und dann links und rechts an die Kette angekoppelt. Durch die un-
terschiedliche Temperatur der beiden thermischen Bäder beginnt dann ein Wärmestrom
zu fließen. Nachdem sich das System thermalisiert, kann auch bei diesem Wärmestrom
ein Steady State Wert erreicht werden. Untersucht wird die Abhängigkeit dieses Wertes
von den Temperaturen der Bäder und auch, wie schnell dieser Steady State erreicht
werden kann. Es stellt sich heraus, dass der Wert des Gleichgewichtsstroms von den
Temperaturen des linken und rechten Bades in der Form jE = f(TL)− f(TR) abhängt.
In Hubbard-Ketten ist die Thermalisierungszeit länger als die maximale Simulationszeit,
weswegen kein Steady State erreicht werden kann. Die Simulationszeit wird durch das
exponentielle Wachstum der maximalen Matrixdimensionen begrenzt.
Die Zeitentwicklung der Systeme wird mit Hilfe des Time-Evolving Block Decimation
(TEBD) Algorithmus bzw. mit dem Ein- und Zweiplatz Time-Dependent Variational
Principle (TDVP) durchgeführt, wobei beide Algorithmen unter Verwendung von Ma-
trixproduktzuständen (MPS) implementiert werden. Es stellt sich heraus, dass der
TDVP Algorithmus mit kleineren Matrixgrößen auskommt, aber auch um eine Größen-
ordnung längere Zeiten für die Berechnung benötigt, um den Steady State Strom genau
simulieren zu können. In einem kürzlich erschienenen Paper konnten lokale Observablen,
in einer Ising-Kette bei hoher Temperatur, nach einer lokalen Störung bei Zeitenwick-
lung mit TDVP bei kleinen Matrixdimensionen korrekt dargestellt werden. Die vor-
liegende Arbeit kommt allerdings zu dem Schluss, dass kleine Matrixdimensionen der
Größenordnung χ = 10 nicht in der Lage sind, einen Steady State Wärmestrom kor-
rekt darzustellen. Generell kann beobachtet werden, dass die Matrixdimensionen bei
der Zeitentwicklung exponentiell anwachsen bzw. die Entropie linear anwächst, was die
maximal mögliche Simulationszeit begrenzt.
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Introduction

1 Introduction

This thesis deals with non-equilibrium particle and energy transport in one-dimensional
systems. Both tight-binding chains as well as Hubbard chains are investigated. These
chains are then coupled to baths in order to induce a current.
Although an exact representation of the system in the Hilbert space would need matrix
bond dimensions of sizes up to dN/2 for a system with N sites and local Hilbert dimen-
sion d, the physics of one-dimensional systems can actually be captured accurately with
matrix bond dimensions orders of magnitude smaller than dN/2. This is possible because
the Singular Value Decomposition (SVD) of the matrices of the Matrix Product States
(MPS) yields quickly decreasing singular values, making it sufficient to keep the matrix
bond dimensions at reasonable sizes which can be simulated numerically.[1] Thus, the
concept of MPS constitutes a powerful tool for the simulation of one-dimensional sys-
tems.
This thesis investigates both particle and thermal energy currents in one-dimensional
systems. In the case of particle current, the current can be induced by an initial differ-
ence in occupation numbers between the two baths which causes the particles to flow
into the emptier parts and finally reach a steady state current. Alternatively, a bias
voltage between the two baths can also be applied to induce a current. In the case of
thermal energy current, the current can be induced by coupling thermal baths at differ-
ent temperatures onto the chain. In the present thesis, the thermal baths were obtained
through the concept of a thermofield approach[2] as an alternative to the commonly
applied method of purification.[1]
Beside particle and energy currents, the von Neumann entanglement entropy is also
studied in this thesis. The entanglement entropy can be obtained easily in the context
of MPS from the singular values and is a measure of the entanglement between two
subsystems of the whole system. In the context of MPS, the entanglement entropy is of
special interest as it is related to the bond dimensions: When the entropy takes its max-
imum value, it is given by Smax = ln (χ) which means that a linearly increasing entropy
causes exponentially growing bond dimensions χ. In the case of quadratic matrices, the
computational cost of an SVD is of order χ3 and therefore, the exponential growth of
bond dimensions constitutes the major limitation of the possible simulation time for the
systems discussed in this thesis.
To perform the time evolution of the systems introduced above, two different time evo-
lution algorithms are used in the context of MPS: The Time-Evolving Block Decimation
(TEBD) algorithm[3] and the Time-Dependent Variational Principle (TDVP)[4]. In the
case of TDVP, a one-site and a two-site algorithm are applied. All three algorithms are
used to simulate thermal energy currents in chains and their ability to accurately capture
the expected steady state currents with respect to different maximum bond dimensions.
TDVP algorithms are expected to need smaller bond dimensions as the algorithm guar-
antees an optimal representation of an arbitrary state for a given bond dimension.

Chapter 2 of this thesis introduces the Heisenberg and the Hubbard model, which were
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Introduction

applied in one dimension. In chapter 3.1, the concept of Matrix Product States is in-
troduced. In chapters 3.2 and 3.3, the concepts of entanglement entropy and DMRG
are discussed in the context of MPS. In chapters 3.4 and 3.5, the time evolving al-
gorithms TEBD and TDVP are introduced and in chapter 3.6, the star geometry as
well as the Wilson chain geometry, which were both used to simulate the baths, are
explained. Chapters 4 and 5 discuss the concepts of particle and thermal currents
in one-dimensional systems. In chapters 4.2 and 5.4, results for particle and thermal
currents in one-dimensional chains are shown. Furthermore, all results regarding the
entanglement growth and convergence properties of the systems can be found in these
chapters. Finally, in chapter 6 the different time evolution algorithms TEBD and TDVP
are compared, especially with respect to their ability of accurately capturing the steady
state currents for given bond dimensions.
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2 Models

In all the formulas in this thesis, atomic units are used i.e.

~ = me = (4πε0)−1 = e = 1

2.1 The Heisenberg model

Introductions on the Heisenberg model can be found in references [5–7]. This introduc-
tion mainly follows the book by Baxter[5].
The Heisenberg model for a spin 1/2 chain with N sites is given by the following Hamil-
tonian:

H = −1

2
J

N∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1

)
(1)

where J is a constant and σxj , σyj and σzj are the Pauli matrices acting on site j.
If J > 0, the energy will be minimized if two neighbouring spins are pointing in different
directions. This means that J > 0 favours antiferromagnetic order. In the case of J < 0,
the energy will be minimized if the spins align parallel and therefore the ferromagnetic
state is favoured.
The Pauli spin matrices and the unity matrix e are given by

e =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2)

In direct product notation, where there are N products in each term as the chain has
N sites, this gives

σxj = e⊗ · · · ⊗ e⊗ σx ⊗ e⊗ · · · ⊗ e
σyj = e⊗ · · · ⊗ e⊗ σy ⊗ e⊗ · · · ⊗ e
σzj = e⊗ · · · ⊗ e⊗ σz ⊗ e⊗ · · · ⊗ e

(3)

The matrices σx, σy and σz in the equation above appear on site j.
As the Pauli spin matrices are 2× 2 matrices, the Hilbert space of the Hamiltonian has
dimension 2N . The Heisenberg model can be seen as a special case of the XYZ model

H = −1

2

N∑
j=1

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

)
(4)

if Jx = Jy = Jz = J . Another common representation of the XYZ model uses the
matrices

Sx =
σx

2
, Sy =

σy

2
, Sz =

σz

2
(5)

which fulfil the commutation relation

3
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[
Sα, Sβ

]
= iεαβγS

γ (6)

A further special case is Jx = Jy = 0. In this case, the Hamiltonian H is diagonal and
the model reduces to the nearest-neighbour Ising model which can be solved easily. In
the case of J = Jx = Jy 6= Jz = ∆, this is the XXZ model. Analogously, the Heisenberg
model can be called XXX model and the case of Jz = 0 is known as the XY model.
The XY model is related to the Ising model and for finite N , all the eigenvalues can be
obtained. This was done by Lieb et al. (1961) and Katsura (1962). The eigenvectors of
the XXZ model were given by Bethe in 1931, later in 1966, the Bethe ansatz was proved
rigorously by Yang and Yang.
Actually, Bethe’s work from 1931 on spin 1/2 Heisenberg chains was the beginning of
the history of exactly solvable many-body quantum systems. He was able to reduce the
problem of calculating the spectrum of the Hamiltonian to the problem of solving a set
of N coupled algebraic equations, the so-called Bethe ansatz equations, where N denotes
the number of overturned spins.

2.2 Physical properties of the Heisenberg model

Let us now consider the physical properties which can be simulated with spin 1/2 chains.
An overview can e.g. be found in [6] or [8], which this section closely follows.
The Hamiltonian of the physically interesting XXZ model is given by

H =
∑
i

Jxy
(
Sxi S

x
i+1 + Syi S

y
i+1

)
+ JzS

z
i S

z
i+1 (7)

The fact that Jx = Jy = Jxy constitutes a rotational symmetry in the xy plane of
the system. In the case of the Heisenberg Hamiltonian (see eq. 1), the interaction is
completely invariant by rotation. For the XXZ Hamiltonian given in eq. 7, several
regimes can be found by making some symmetry considerations: As the Hamiltonian
only has interaction between nearest neighbours, one could try to change the interaction
from J to −J by changing every other spin from S to −S. However, this would only
work for classical spins, in the case of quantum spins, this would violate the commutation
relations given in eq. 6. The transformations

Sxi → (−1)iSxi

Syi → (−1)iSyi
Szi → Szi

(8)

respect these commutation relations but also change Jxy to −Jxy while Jz remains un-
changed. Thus, it is sufficient to only consider Jxy > 0 and one can identify the following
regimes which are determined by the ratio Jz/Jxy:
At Jz = Jxy, there is the antiferromagnetic isotropic point and at Jz = −Jxy, there is
the ferromagnetic isotropic point. For the regimes Jz/Jxy < −1 and Jz/Jxy > 1, one
gets an Ising ferromagnetic state and an Ising antiferromagnetic state, respectively. The
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regime between these two states is called XY, the point Jz = 0 is called the pure XY
point. Furthermore, the interactions between the spins and a finite magnetic field can
be studied by adding a magnetic field Hm in the z direction:

Hm = −gµBh
∑
i

gµBHS
z
i (9)

where h is the magnetic field.
The Heisenberg model works very well for describing magnetic isolators. In isolators, the
magnetism is caused by localized magnetic moments in incomplete electron shells (3d,
4d, 4f or 5f). Examples include Ferromagnets, Antiferromagnets and Ferrimagnets.
Each of those localized magnetic moments is connected with an angular momentum.
The exchange interaction between those magnetic moments can be formulated as an ex-
change interaction between the respective spins. Thus, the constant J in the Heisenberg
model is called the exchange integral. The exchange between the spins simulates the
contribution of the matrix elements of the exchange integral of the Coulomb repulsion,
which are considered to cause spontaneous magnetization. Although the Heisenberg
model describes magnetic isolators very good, it is unable to correctly describe magnetic
metals.

2.3 The Hubbard model

Introductions to the Hubbard model can for example be found in references [7] and [8],
which this section closely follows.
The Hubbard model is given by:

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
iσ

niσniσ̄ (10)

where σ = ↑ (↓) and σ̄ = ↓ (↑). tij denotes the hopping integral between sites i and j

and U is the on-site Coulomb repulsion. c†iσ (ciσ) creates (annihilates) an electron with

spin σ centred on site i and niσ is the number operator given by niσ = c†iσciσ.
In the case of one dimension, a Hubbard chain is considered and the hopping described
by the hopping integral tij can only happen between neighbouring sites on the chain.
The one-dimensional Hubbard model on a chain therefore reads

H = −
∑
iσ

ti,i+1

(
c†iσci+1σ + c†i+1σciσ

)
+ U

∑
iσ

niσniσ̄ (11)

For U = 0, we obtain the tight-binding model which only consists of the kinetic term of
the Hubbard Hamiltonian. For a one-dimensional tight-binding chain, the Hamiltonian
reads:

H = −
∑
iσ

ti,i+1

(
c†iσci+1σ + c†i+1σciσ

)
(12)
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In the simplest case, the hopping integral is the same for all sites i.e. tij = t.
The Hubbard model allows to study the interaction of kinetic energy, Coulomb repul-
sion, the Pauli principle and lattice structures. Therefore, it is used to study topics like
electronic properties of transition metals, Mott transitions or high temperature super-
conductors.
In 1968, Lieb and Wu discovered that the Bethe ansatz can also be applied to the one-
dimensional Hubbard model. By applying Bethe’s ansatz, the spectral problem of the
Hamiltonian can be reduced to solving a set of algebraic equations, which are nowa-
days known as the Lieb-Wu equations. In 1972, Takahashi derived integral equations
which allowed to determine the Gibbs free energy of the Hubbard model. These integral
equations are known as the thermodynamic Bethe ansatz (TBA).

2.4 Physical properties of the Hubbard model

This section closely follows the introduction by Essler et al. in [7].
The Hubbard model was introduced by John Hubbard in order to be able to describe
electronic correlations in narrow energy bands and also proposed approximations to
model the associated many-body problems.
Consider a three-dimensional solid, consisting of ions and electrons in a crystalline struc-
ture. As the ions are much heavier than the electrons, the ions can be described as a
static lattice in which the electrons are moving. The dynamics of the electrons are then
described by

H =
N∑
i=1

(
p2
i

2m
+ VI(xi)

)
+

∑
1≤i<j≤N

VC(xi − xj) (13)

where N is the number of electrons moving in the periodic potential of the ions VI(x)
and the potential of the Coulomb repulsion between the electrons

VC(x) =
e2

‖x‖
(14)

Although this model already includes major simplifications, it is still way too compli-
cated to be solved exactly. Therefore, further simplifications have to be applied. One
approach is the mean-field approach in which one considers a single particle in an aux-
iliary potential VA(x). This contribution is added to the ionic potential VI(x) in eq. 13
and is then subtracted again in the two-body part VC(xi − xj). After imposing these
approximations, the new Hamiltonian gets “second-quantized“ in a suitable basis. As
the potential is periodic, the eigenfunctions of the one-particle Hamiltonian have Bloch
form. Through a Fourier transformation, Wannier functions can be obtained from the
Bloch functions. A further transformation expresses the Wannier functions as creation
and annihilation operators. All these transformations finally lead to an expression of the
Hamiltonian in eq. 13 in second quantized form in the basis of the Wannier functions:

6
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H =
∑
α,i,j,a

tαijc
†
αi,acαj,a +

1

2

∑
α,β,γ,δ
i,j,k,l

∑
a,b

Uαβγδijkl c
†
αi,ac

†
βj,bcγk,bcδl,a (15)

where a, b are spin indices, α, β, γ, δ are band indices and i, j, k, l are site indices. The
hopping matrix is given by tαij and Uαβγδijkl denotes the Coulomb interaction, expressed
by overlap integrals. Notably, eq. 15 is completely equivalent to eq. 13. Now, the influ-
ence of the mutual Coulomb interaction can be minimized by an optimal choice of the
auxiliary potential VA(x). If the interactions are small compared to the hopping matrix
elements, they can be set to zero in a first approximation. They can then be considered
by perturbation theory within the band theory.
However, when the interaction is not negligible, the Hubbard model is obtained. The case
of an intra-atomic Coulomb interaction Uαβγδiiii which is large compared to inter-atomic
interaction but not very small compared to the hopping matrix elements is considered to
be characteristic for transition and rare earth metals. In situations where the interband
interactions are weak and all other bands except e.g. the band α = 1 are far away from
the Fermi level, then one can replace the actual multi-band Hamiltonian in eq. 15 by a
one-band model with effective parameters tij and U as presented in eq. 10. The hopping
matrix elements can be calculated by applying DFT whereas the interaction parameter
U is more difficult to calculate and can e.g. be obtained from comparison with an ex-
periment. Although one cannot expect quantitatively correct answers, this model is still
able to qualitatively capture some of the electronic features of transition metals.
A further simplification is to assume that the Wannier functions are strongly localized
around their respective sites. This so-called tight-binding approximation restricts the
hopping matrix to hopping elements between neighbouring sites i.e. only elements of tij
where i and j are neighbouring sites are non-zero.

The previously mentioned band theory is one of the most successful descriptions of
electrons in solids. The Hubbard model constitutes the simplest generalization beyond
the band theory description of solids but is still capable of describing the gross phys-
ical features of systems such as the electronic properties of solids with narrow bands,
band magnetism in iron, cobalt and nickel, the Mott metal-insulator transition as well as
electronic properties of high-TC cuprates in the normal state. In general, the Hubbard
model can not be solved exactly. However, many properties are calculable in the cases
of lattice coordination numbers two and infinity. The first case corresponds to the one-
dimensional Hubbard model which is integrable, meaning that many physical properties
can be determined exactly. In general, integrable models are rare and mostly occur in
one-dimensional systems. Integrable models allow us to understand and characterize
many-body physics without having to apply perturbation theory or other approxima-
tions. Furthermore, they can also be used as benchmarks for numerical methods.
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3 Methods

3.1 Matrix Product States

Matrix Product States (MPS) were used to perform all the calculations presented in this
thesis1. This section introduces the MPS formalism and closely follows [1].
Let us consider a chain with L sites. Each site has a local spin σi. In case of a tight-
binding chain, the local dimension d = 2:

|σi〉 = {|0〉 , |↑〉} (16)

leading to a Hilbert Space with dimension 2L. In the case of a Hubbard chain, the local
dimension d = 4:

|σi〉 = {|0〉 , |↓〉 , |↑〉 , |↑↓〉} (17)

leading to a Hilbert Space with dimension 4L. The most general pure quantum state on
the chain is then given by

|Ψ〉 =
∑
σ1...σL

cσ1...σL |σ1, . . . , σL〉 (18)

Now we have to introduce the concept of Singular Value Decomposition (SVD).
An SVD guarantees the existence of the decomposition

M = USV † (19)

where M is an arbitrary matrix of dimensions (NA ∗NB) and

• U is of dimension (NA ∗min(NA, NB) and fulfils U †U = 1

• S is of dimension (min(NA, NB) ∗min(NA, NB)) and is a diagonal matrix with the
singular values on the diagonal. The singular values si are always non-negative
and can be chosen so that s1 ≥ s2 ≥ · · · ≥ sr > 0 where sr is the smallest non-zero
singular value. The number of non-zero singular values r is called the Schmidt
rank of the matrix.

• V† is of dimension (min(NA, NB) ∗NB) and fulfils V †V = 1

The SVD can then be used to perform the Schmidt decomposition of a general quantum
state. Any pure state can be written as

|Ψ〉 =
∑
ij

Ψij |i〉A |j〉B (20)

where {|i〉A} and {|j〉B} are orthonormal bases of A and B with dimensions NA and NB.
Ψij can now be considered as a coefficient matrix on which we can perform an SVD:

1Calculations were performed using the ITensor C++ library (version 1.2), http://itensor.org/
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|Ψ〉 =
∑
ij

χ∑
a=1

UiaSaaV
?
ja |i〉A |j〉B (21)

where χ = min(NA, NB). Using eq. 21 we can now perform a basis transformation:

|Ψ〉 =
∑
ij

χ∑
a=1

UiaSaaV
?
ja |i〉A |j〉B

=

χ∑
a=1

Saa︸︷︷︸
λa

∑
i

Uia |i〉A︸ ︷︷ ︸
|a〉A

∑
j

V ?
ja |j〉B︸ ︷︷ ︸
|a〉B

|Ψ〉 =

χ∑
a=1

λa |a〉A |a〉B

(22)

It is sufficient to run the sum over all non-zero singular values up to r ≤ χ and obtain
the so-called Schmidt decomposition:

|Ψ〉 =
r∑

a=1

λa |a〉A |a〉B (23)

The form of the Schmidt decomposition makes it very easy to obtain the reduced density
matrices:

ρ̂A =
r∑

a=1

λ2
a |a〉A A 〈a| ρ̂B =

r∑
a=1

λ2
a |a〉B B 〈a| (24)

The von Neumann entropy of entanglement (SvN) can now be read off directly from the
SVD:

SAB(|Ψ〉) = −Tr(ρ̂A log ρ̂A) = −
r∑

a=1

λ2
a log λ2

a (25)

Furthermore, the SVD can now be used to decompose an arbitrary quantum state into
an MPS. Starting from eq. 18, we modify the coefficient vector cσ1...σL of size dL by
reshaping it into a matrix of size (d ∗ dL−1):

Ψσ1,(σ2...σL) = cσ1,...,σL (26)

We can now apply an SVD on this expression:

Ψσ1,(σ2,...,σL) =

r1∑
a1

Uσ1,a1Sa1,a1(V †)a1,(σ2,...,σL) ≡
r1∑
a1

Uσ1,a1ca1σ2,...σL (27)

where we have multiplied S with V † and reshaped it back into a vector.
U can now be decomposed into a collection of d row vectorsAσ1 with entriesAσ1

a1
= Uσ1,a1 .

9
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Also, ca1σ2,...σL is reshaped into a matrix Ψ(a1σ2),(σ3...σL) of dimension (r1d∗dL−2) leading
to

cσ1...σL =

r1∑
a1

Aσ1
a1

Ψ(a1σ2),(σ3...σL) (28)

Another SVD of Ψ(a1σ2),(σ3...σL) and similar steps lead to

cσ1...σL =

r1∑
a1

r2∑
a2

Aσ1
a1
Aσ2
a1,a2

Ψ(a2σ3),(σ4...σL) (29)

Subsequent application of singular value decompositions finally leads to

cσ1...σL =
∑

a1,...,aL−1

Aσ1
a1
Aσ2
a1,a2

. . . A
σL−1
aL−2,aL−1A

σL
aL−1

(30)

Now we can write the coefficient vector as a product of matrices:

cσ1...σL = Aσ1Aσ2 . . . AσL−1AσL (31)

By plugging eq. 31 into eq. 18, we finally obtain an exact representation of the arbitrary
quantum state as a Matrix Product State:

|Ψ〉 =
∑
σ1...σL

Aσ1Aσ2 . . . AσL−1AσL |σ1, . . . , σL〉 (32)

The dimensions of the A matrices can maximally have the following dimensions:

(1 ∗ d), (d ∗ d2), . . . , (dL/2−1 ∗ dL/2), (dL/2 ∗ dL/2−1), . . . , (d2 ∗ d), (d ∗ 1) (33)

starting with a (1∗d) vector at the first site and ending with a (d∗1) vector at the last site.
As one can see, for practical systems, an exact representation would be impossible as
the matrix dimensions would blow up exponentially. Therefore, in practical simulations,
the maximum bond dimension is significantly smaller than dL/2.
The fact that after an SVD the relation U †U = 1 is fulfilled causes the A matrices to be
left-normalized which means that ∑

σl

Aσl†Aσl = 1 (34)

An MPS only consisting of left-normalized matrices is called left-canonical.
Left-normalized matrices were the result of subsequent SVD starting on the left on site
1. However, the very same thing can be done the other way around by subsequently
performing SVD on the right side of the chain starting on site L. An analogous process
as described above results in a matrix product state of the form

|Ψ〉 =
∑
σ1...σL

Bσ1Bσ2 . . . BσL−1BσL |σ1, . . . , σL〉 (35)

10
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However, now we have B matrices which are, due to the fact that V †V = 1, right
normalized: ∑

σl

BσlBσl† = 1 (36)

An MPS only consisting of right-normalized matrices is called right-canonical.
One could also combine these two representations and construct a so-called mixed-
canonical MPS. This is done by applying both decompositions on the right site as well
as on the left side. One can start decomposing the coefficient matrix from the left up
to site l and then continue by performing decompositions from the right starting on site
L by which one obtains A and B matrices, respectively. The mixed-canonical MPS will
then have the following form:

|Ψ〉 =
∑
σ1...σL

Aσ1 . . . AσlSBσl+1 . . . BσL |σ1, . . . , σL〉 (37)

where A are left-normalized matrices, B are right-normalized matrices and S is a singu-
lar value matrix on bond (l, l + 1).

In order to efficiently represent and work with MPS, the following graphical representa-
tions were introduced: A matrices can be represented in the following way:

al-1 al

σl

al-1 al

σl

Figure 1: Graphical representation of Aσlal−1al
(left) and its conjugate Aσl∗al−1al

(right).

Here, σl denotes the physical (spin) index and al−1 and al denote bond indices.
The left-normalization of the A matrices (eq. 34) can be illustrated in the following way:

al

a'l

= =  ̀a
l
 a'

l

Figure 2: Graphical representation of two left-normalized A matrices that are contracted
over their left index and simplify to δala′l .

11



Methods

3.2 Entanglement entropy

In the last chapter, the von Neumann entanglement entropy was introduced. This chap-
ter will show that the entropy is an important observable for MPS calculations as it is
directly related to the bond dimension of the matrices. The entanglement entropy is
one possibility of measuring the quantum entanglement in systems like quantum spin
chains. Although there are other measures of entanglement, the entropy is a very con-
venient choice.[9]
For a system with two subsystems A and B, the von Neumann entropy reads

SA = −
χ∑
a=1

λ2
a lnλ2

a = SB (38)

This means that the maximum possible value is given when all singular values λa are of
equal value, i.e. λ2

a = 1
χ because

∑
a λ

2
a = 1 has to be fulfilled. Therefore, the reduced

density matrix ρ̂A is of the form

ρ̂A =
1

χ
1 (39)

and therefore the maximum value for SA is given by

SA = −χ
(

1

χ
ln

1

χ

)
= lnχ (40)

During an MPS calculation, the bond dimension χ of the matrices will grow and es-
pecially for large systems, an exact representation with bond dimensions up to dL/2 is
simply not possible. Therefore, the matrices are truncated during the SVD by discard-
ing small singular values λa. The truncation can be done in two ways: Either one sets
a threshold ε (e.g. 10−8) or one can set a maximum bond dimension χmax. All sin-
gular values beyond χmax will be discarded. The quality of the approximation can be
measured with the so-called discarded weight which is defined as

w = 1−
χmax∑
a=1

λ2
a (41)

In order to obtain accurate results, the discarded weight should be in the order of w =
10−8. The discarded weight will be small if the singular values λa decay quickly. This
is the case when the entanglement entropy is small. However, we know that for a given
bond dimension χ, the maximum entanglement entropy is given by ln (χ). Therefore,
we can estimate that the matrix bond dimension one needs is of the size of about

χmax ∼ eSA (42)

This means that a linearly increasing entropy can lead to exponentially growing bond
dimensions. Unless one wants to sacrifice the accuracy of the calculations, this means
that the matrix sizes in the calculations would also have to grow exponentially. However,
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the problem with an increasing bond dimension is that this leads to rapidly increasing
computational costs:
For a matrix with dimension (m ∗n), where m ≥ n, the cost of an SVD is O(mn2).[1] A
simple matrix multiplication of an (m ∗ n) matrix with an (n ∗ p) matrix has a compu-
tational cost of the order O(mnp). Therefore, matrix dimensions have to be limited in
computational simulations which basically means that at some point, one has to discard
relevant singular values which will lead to worse accuracy and eventually to completely
useless results. However, in order to keep the truncated weight below a given thresh-
old, an increasing number of states needs to be kept. (see [10]) As they increase the
computational costs so rapidly, the simulation time of the system is limited by the (ex-
ponentially) increasing bond dimensions. The growing bond dimensions actually were
the major limitation for many of the time evolutions performed in this thesis.
The growth of entanglement entropy in real time quench dynamics of the Anderson
impurity model was e.g. studied by He and Millis.[11] They considered a semi-circular
DOS in a single-impurity Anderson model (SIAM) in the form of a non-interacting chain
model, where two chains on a different chemical potential with different hopping param-
eters are coupled to a single impurity site. However, the hopping parameters within each
of the two chains remain constant. By adjusting the different chemical potentials, the
DOS of the two chains can be varied: When the DOS were touching only at one energy
point, the entropy was growing logarithmically, whereas in the case of overlapping DOS,
a linear entropy growth could be observed. When the system was gapped, the entropy
growth saturated.
In the case of chain geometries, there is also a hopping between the bath sites whereas in
a star geometry bath, hopping is only onto the system possible. For general initial states,
the star geometry has a better entropy behaviour than the chain geometry. However, a
star geometry alone is not a guarantee for logarithmic entropy growth as the order of
the bath orbitals in the MPS does matter: Only for a star geometry in which the bath
sites are ordered by energy, a linearly growing entanglement entropy could be observed.
In other cases, where the order of energies was random, the entropy growth was similar
to the entropy growth for chain geometry baths. For all simulations in this thesis, the
star geometry bath sites were ordered by energy.
The entanglement growth in XXZ spin chains was studied e.g. by Alba and Heidrich-
Meisner.[12] They considered so-called geometric quenches, in which two separate chains
are prepared in different states and put together at t = 0. In this case, the left chain
was in the ground state whereas in the right chain all spins were up spins. In the open
chain XX model, the following entanglement entropy growth could be observed: The
entanglement would grow until a certain plateau is reached. Then the entropy decreases
and increases again onto a plateau with a higher value and so on.
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3.3 DMRG

This section introduces the Density Matrix Renormalization Group (DMRG) (invented
by White in 1992 [13]) in the context of MPS and closely follows [1] and [14].
Now that we have introduced Matrix Product States, this concept can be generalized
and also applied to operators. This can be done by writing the coefficients of operators
as

〈σ| Ô |σ′〉 =
∑
σσ′

Mσ1σ′1Mσ2σ′2 . . .MσL−1σ
′
L−1MσLσ

′
L (43)

These M matrices represent the coefficients of the operator in the same way like the
A and B matrices represent the coefficients of an MPS. Therefore, we can obtain the
representation of an operator as a Matrix Product Operator (MPO):

Ô =
∑
σσ′

Mσ1σ′1Mσ2σ′2 . . .MσL−1σ
′
L−1MσLσ

′
L |σ1, . . . , σL〉 〈σ′1, . . . , σ′L| (44)

In fact, every operator can be brought in the form of eq. 44. One simply starts from the
representation with a coefficient matrix like in eq. 45 and then performs a decomposition
into matrices just like it was done for an MPS before.

Ô =
∑

σ1,...,σL,σ
′
1,...,σ

′
L

c(σ1,...,σL),(σ′1,...,σ
′
L) |σ1, . . . , σL〉 〈σ′1, . . . , σ′L| (45)

Now we can calculate expressions like 〈Ψ| Ô |Ψ〉 in the context of Matrix Products by
using MPS and MPO. The calculation of this expectation value amounts to the contrac-
tion of the full network of MPS and MPO matrices. This can also be done in a graphical
way. MPOs are depicted as squares resulting in the following graphical depiction of
〈Ψ| Ô |Ψ〉:

O

Figure 3: Graphical representation of 〈Ψ| Ô |Ψ〉, where Ô is a local operator acting on
one site.

After a contraction of the right- and left-normalized matrices, just like in fig. 2, this
expression simplifies to fig. 4:
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O

Figure 4: Graphical representation of 〈Ψ| Ô |Ψ〉 after the contraction of the right- and
left-normalized matrices. Ô is a local operator acting on one site.

Having now introduced MPS and MPO, we can understand DMRG in the context of
Matrix Products.
Fig. 5 shows a tensor network with an MPO acting on all sites that will then get con-
tracted during DMRG:

OOO O O

Figure 5: Graphical representation of the expectation value 〈Ψ| Ô |Ψ〉 of a tensor network
with an MPO acting on all sites of the system.

As the MPS matrices can be left- or right-normalized, a general MPS matrix will be
denoted as Xσ

l , MPO matrices are denoted as Mσσ′ . If we start contracting the whole
network from the left, we first obtain

E1 =
∑
σ1σ′1

Xσ1Mσ1σ′1X̄σ′1 (46)

The very same thing can be done starting from the right:

FL =
∑
σLσ

′
L

XσLMσLσ
′
LX̄σ′L (47)

For a general site n, the corresponding matrices are given by

En = Eβnαnα′n
=

∑
αn−1σn

Xσn
αn−1αn

∑
βn−1σ′n

M
σnσ′n
βn−1βn

∑
α′n−1

E
βn−1

αn−1α′n−1
X̄
σ′n
α′n−1α

′
n

Fn = F
βn−1

αn−1α′n−1
=
∑
αnσn

Xσn
αn−1αn

∑
βnσ′n

M
σnσ′n
βn−1βn

∑
α′n

F βnαnα′n
X̄
σ′n
α′n−1α

′
n

(48)
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DMRG can now be used to calculate the ground state energy of a system. The calculation
of the ground state energy corresponds to minimizing the functional

H =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉

(49)

where |Ψ〉 is an MPS of the form

|Ψ〉 =
∑
{σi}

Xσ1Xσ2 . . . XσL−1XσL |{σi}〉 (50)

We also demand that |Ψ〉 is normalized. This condition can be incorporated by using a
Lagrange multiplier λ:

H → H̃ = 〈Ψ|H |Ψ〉 − λ(〈Ψ|Ψ〉 − 1) (51)

Minimizing this functional will result in the ground state wave function |Ψ0〉:

min
|Ψ〉
H̃ → |Ψ0〉 (52)

To perform the minimization, one picks out a single site n and keeps the matrices of all
other sites fixed. The overlap therefore reads

〈Ψ|Ψ〉 =
∑

{σ}{α,α′}

Xσ1
α1
X̄σ1

α′1
. . . Xσn−1

αn−2αn−1
X̄
σn−1

α′n−2α
′
n−1︸ ︷︷ ︸

ΨL
αn−1α

′
n−1

Xσn
αn−1αn . . .

X̄σn
α′n−1α

′
n
Xσn+1
αnαn+1

X̄
σn+1

α′nα
′
n+1

. . . XσN
αN
X̄σN
α′N︸ ︷︷ ︸

ΨR
αnα

′
n

(53)

Therefore, the minimization problem in eq. 51 can be written as

H̃ =
∑

βnαnα′nσ
′
n

βn−1αn−1α′n−1σn

E
βn−1

αn−1α′n−1
Xσn
αn−1αnM

σnσ′n
βn−1βn

X̄
σ′n
α′n−1α

′
n
F βnαnα′n

−

λ

 ∑
αnα′nσ

′
n

αn−1α′n−1σn

ΨL
αn−1α′n−1

Xσn
αn−1αnX̄

σ′n
α′n−1α

′
n
δσnσ′nΨR

αnα′n
− 1


(54)

To find the minimum of eq. 54 with respect to X
σ′n
α′n−1α

′
n
, the derivative by X̄

σ′n
α′n−1α

′
n

is

set to zero. This results in the following equation:
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∇X̄α′ H̃ =
∑
α

(
hα′α − λ

∑
α

Nα′α

)
Xα

!
= 0

hα′α =
∑

βn−1βn

Eβ
n−1

αn−1α′n−1
M

σnσ′n
βn−1βn

F βnαnα′n

Nα′α = ΨL
αn−1α′n−1

ΨR
αnα′n

δσnσ′n

(55)

This equation can be significantly simplified by using a mixed-canonical state in the way
that all X matrices on sites k < n are left-normalized A matrices and all X matrices on
sites l > m are right-normalized B matrices. By doing so, one achieves that ΨL

αn−1α′n−1
→

δαn−1α′n−1
and ΨR

αnα′n
→ δαnα′n . Therefore, eq. 55 simplifies to∑
α′

hα′αXα = λXα

hα′α =
∑

βn−1βn

L
βn−1

αn−1α′n−1
M

σnσ′n
βn−1βn

Rβnαnα′n

(56)

This system can now be solved using for example a Lanczos eigensolver. It is important
to note that hα′α never has to be explicitly built up due to its product structure. Now,
one can search for the ground state in the following way (a more detailed description
can be found in [14]):
At first, the MPS consisting only of right-normalized B matrices is initialized with
random numbers and normalized. Then, all Rn expressions are calculated by running
from right to left. Then, the first L matrix L0 on the left side is calculated. For the first
step, this is a scalar. Starting from the left, one then sweeps from left to right until site
N − 1: On each site, eq. 56 is solved and after the eigensolver is converged, the resulting
matrix X is brought into a left-normalized form A via SVD. Ln can then be obtained
by contracting the new A matrix to the last Ln−1 expression.
After that, one sweeps from right to left, starting on site N until site 2 is reached. Again,
the eigenvalue problem is solved on each site, but now the obtained X matrix is brought
into a right-orthonormal form B by applying an SVD. Rn is then gained by contracting
the new B matrix to the last Rn+1 expression.
Now one checks whether the ground state energy has converged. If not, another sweep
is done until the system is converged or a certain criterion is reached.
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3.4 Time-Evolving Block Decimation

The time-evolving block decimation (TEBD) algorithm was introduced by G. Vidal.[3,
15] This section closely follows [3].
We start from an MPS as introduced in chap. 3.1:

|Ψ〉 =
∑
σ1...σL

Aσ1Aσ2 . . . AσL−1AσL |σ1, . . . , σL〉

However, we will now introduce a certain representation of the matrices, the so-called
canonical form:

A
σi+1
αiαi+1 = λ[i]

αiΓ
σi+1
αiαi+1 (57)

consisting of L tensors {Γσ1 . . .ΓσL} and L − 1 vectors
{
λ[1] . . . λ[L−1]

}
. The resulting

MPS therefore has the following form:

|Ψ〉 =
∑
σ1...σL

cσ1...σL |σ1, . . . , σL〉 (58)

where cσ1...σL is given by

cσ1...σL =
∑

α1...αL−1

Γσ1
α1
λ[1]
α1

Γσ2
α1α2

λ[2]
α2
. . .ΓσLαL−1

(59)

We will now consider a Hamiltonian which acts on two sites i.e. H is a sum of two-site
Hamiltonians hi,i+1. As we have a unitary time evolution, the following Lemma by Vidal
[3] is valid:
“Updating the Γ’s and λ’s of state |Ψ〉 after a unitary operation V acts on qubits l and
l + 1 involves transforming only Γσl , λ[l] and Γσl+1 . This can be achieved with O(χ3)
basic operations.”2

The algorithm to update the MPS now works in the following way:
At first, the system is split up into 4 subsystems:

H = J ⊗HC ⊗HD ⊗K (60)

HC and HD correspond to the sites l and l+1, respectively. J denotes all sites 1 . . . l−1
and K denotes all sites l + 2 . . . L.
J is spanned by the χ eigenvectors of the reduced density matrix

ρ[1...(l−1)] =
∑
α

|α〉 〈α| (61)

and, similarly, K is spanned by the χ eigenvectors of the reduced density matrix

ρ[(l+2)...L] =
∑
γ

|γ〉 〈γ| (62)

2Please note that here, χ is the number of product states
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Thus, the whole system can be represented in the following way:

|Ψ〉 =

χ∑
α,β,γ=1

1∑
i,j=0

Γ
[C]i
αβ λβΓ

[D]j
βγ |αijγ〉 (63)

We will now apply the unitary operation V acting only on sites l and l+ 1. When doing
so, according to the Lemma by Vidal from above, we only have to update Γ[C], λ and
Γ[D]. The result |Ψ′〉 = V |Ψ〉 can be expanded in the following way:

|Ψ′〉 =

χ∑
α,γ=1

1∑
i,j=0

Θij
αγ |αijγ〉 (64)

where

Θij
αγ =

∑
β

∑
kl

V ij
kl Γ

[C]k
αβ λβΓ

[D]l
βγ (65)

Now, the updated matrices have to be evaluated. At first, ρ′[DK] is diagonalized

ρ′[DK] = TrJC |Ψ′〉 〈Ψ′| =
∑

j,j′,γ,γ′

∑
α,i

〈α|α〉Θij
αγ

(
Θij′

αγ′

)∗ |jγ〉 〈j′γ′| (66)

and the obtained eigenvectors
{
|φ′[DK]
β 〉

}
can be expanded in terms of {|jγ〉}

|φ′[DK]
β 〉 =

∑
j,γ

Γ
′[D]j
βγ |jγ〉 (67)

from which we can obtain the updated Γ′[D].
The eigenvectors of ρ′[JC] and λ′ follow from

λ′β |φ
′[JC]
β 〉 = 〈φ′[DK]

β |Ψ′〉 =∑
i,j,α,γ

(
Γ
′[D]j
βγ

)∗
Θij
αγ 〈γ|γ〉 |αi〉

(68)

By expanding each |φ′[JC]
β 〉 into

|φ′[JC]
β 〉 =

∑
iα

Γ
′[C]i
αβ |αi〉 (69)

we also obtain Γ′[C]. The detailed proof can be found in [3].

In order to perform the time evolution, a Trotter-Suzuki expansion of the time evo-
lution operator e−iHt has to be applied:
Let us assume a Hamiltonian consisting of nearest neighbour interactions only i.e.
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H =
∑

i hi,i+1 where hi,i+1 describes interaction between sites i and i+1. The simulation
time is discretized as t = Nt∆t. H can now be split into even and odd parts:

H = Heven +Hodd =
∑
i,even

hi,i+1 +
∑
i,odd

hi,i+1 (70)

where all even hi,i+1 commute with each other as well as all odd hi,i+1 commute with
each other but in general

[Heven, Hodd] 6= 0 (71)

A first order Trotter-Suzuki decomposition is then given by

e−iHt =
[
e−i(Heven+Hodd)∆t

]t/∆t
≈
[
e−iHeven∆te−iHodd∆t

]t/∆t
(72)

which leads to an error of O((∆t)2):

e−iH∆t = e−iHeven∆te−iHodd∆t +O([Heven, Hodd] (∆t)2) (73)

The second order order Trotter-Suzuki decomposition is given by

e−iHt ≈
[
e−iHeven∆t/2e−iHodd∆te−iHeven∆t/2

]t/∆t
(74)

and leads to an error of O((∆t)3):

e−iH∆t = e−iHeven∆t/2e−iHodd∆te−iHeven∆t/2 +O([Heven, Hodd] (∆t)3) (75)

The error occurs due to eq. 71. Finally, Heven and Hodd can be split up into hi,i+1 which
can then be applied according to the TEBD algorithm above:

e−iHeven∆t =
∏
i,even

e−ihi,i+1∆t

e−iHodd∆t =
∏
i,odd

e−ihi,i+1∆t
(76)

20



Methods

3.5 Time-Dependent Variational Principle

3.5.1 Time evolution with TDVP

This section closely follows[4].
Haegeman et al.[4] presented an alternative to TEBD for the time evolution of MPS:
The time-dependent variational principle (TDVP). The basic idea of TDVP is to project
the right-hand side of the Schrödinger equation, Ĥ |Ψ〉, onto the tangent space, so that
the evolution never leaves the manifold. Contrary to TEBD, the TDVP algorithm is
well-suited for long-range Hamiltonians and works independently of the Hamiltonian.
The algorithm presented in [4] is based on a Lie-Trotter splitting of the tangent space
vector and is similar to DMRG. As the TDVP projects the evolution onto the manifold
of MPS with fixed bond dimension, there is no need for a truncation step.
First of all, it is important to mention that a physical state is invariant under a gauge
transformation of the form

As(n)→ AsG(n) = G(n− 1)−1As(n)G(n) (77)

This gauge freedom can especially be used for MPS by using left-orthonormal (Asl (n))
and right-orthonormal (AsR(n)) matrices (see chap. 3.1). Therefore, by applying an SVD,
a one-site center block can be decomposed into a right- or left-orthonormal form:

AsC(n) = C(n− 1)AsR(n) = AsL(n)C(n) (78)

By doing so, the MPS can be written in a mixed canonical form with an orthogonality
center at site n so that all matrices on site s > n are right-orthonormal and all matrices
on sites s < n are left-orthonormal.

The algorithm itself can be understood in a geometric fashion: The right-hand side
of the Schrödinger equation is projected onto the tangent space of the MPS manifold
MMPS by applying an orthogonal projection:

d |Ψ(A)〉
dt

= −iP̂T|Ψ(A)〉MMPS
Ĥ |Ψ(A)〉 (79)

where P̂T|Ψ(A)〉MMPS
is the tangent space projector. This projector can be applied to an

arbitrary state in the Hilbert space and can be written in the form

P̂T|Ψ(A)〉MMPS
=

N∑
n=1

P̂
[1:n−1]
L ⊗ 1n ⊗ P̂ [n+1:N ]

R −
N−1∑
n=1

P̂
[1:n]
L ⊗ P̂ [n+1:N ]

R (80)

where

P̂
[1:n]
L =

D∑
α=1

|φ[1:n]
L,α 〉 〈φ

[1:n]
L,α | (81)
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P̂
[n:N ]
R =

D∑
β=1

|φ[n:N ]
R,β 〉 〈φ

[n:N ]
R,β | (82)

As mentioned above, this projector projects an arbitrary state onto the MPS tangent
space. This space is spanned by the partial derivatives of |Ψ(A)〉 with respect to all en-
tries Asα,β(n) for all sites n = 1, . . . , N . By introducing the collective index i = (α, s, β, n)

and a general variation Bi, the general form of an MPS tangent vector can be written
as

Bi |∂iψ〉 =
N∑
n=1

d∑
{sn}=1

= As1(1) . . . Bsn(n) . . . AsN (N) |s1 . . . sn . . . sN 〉 (83)

Because of the gauge invariance of the A matrices (see eq. 77), the B matrices have
to follow identical transformation laws and follow the same gauge fixing conditions.
By applying left and right orthonormalization in every term of eq. 83, the following
expression for the tangent vector can be obtained:

|Θ [B]〉 =
N∑
n=1

∑
{α,β,sn}

Bsn
α,β(n) |φ[1:n−1]

L,α 〉 |sn〉 〈φ[n+1:N ]
R,β | (84)

In this representation,

Bs(n) = X(n− 1)AsR(n)−AsL(n)X(n) (85)

By imposing the “left gauge fixing condition”
∑

sA
s
L(n)Bs(n) = 0, one can ensure that

the overlap of two tangent vectors will only have diagonal contributions:

〈Θ [B1] |Θ [B2]〉 =
N∑
n=1

∑
sn

Tr
[
Bsn

1 (n)†Bsn
2 (n)

]
(86)

This corresponds to the standard Euclidean inner product and therefore to the choice
of an orthonormal basis. The “left gauge fixing condition” is necessary since the bases
introduced for the projection operator (see eqs. 81 and 82) are actually not orthonormal
as the bases are overcomplete.
When the tangent space projector P̂T|Ψ(A)〉MMPS

is applied onto an arbitrary vector |Ξ〉 of

the Hilbert space, the resulting vector P̂T|Ψ(A)〉MMPS
|Ξ〉 is an element of the tangent space

of the manifold MMPS . Therefore, this vector can be represented in the form |Θ [B]〉.
The standard Euclidean inner product (see eq. 86) of the Hilbert space guarantees that
the equation |Θ [B]〉 = P̂T|Ψ(A)〉MMPS

|Ξ〉 is also a solution of the minimization problem

min
B
‖|Θ [B]〉 − |Ξ〉‖2 (87)

This guarantees an optimal representation of the arbitrary vector |Ξ〉 in the new basis.
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In the following chapters, the one-site and the two-site TDVP algorithm are introduced.
In this context, the so-called one-site effective Hamiltonian H(n) as well as the zero-site
effective Hamiltonian K(n) are used. Those effective Hamiltonians can be best under-
stood if they are introduced in their graphical representation. The one-site effective
Hamiltonian H(n) has the following form:

HHHHH

Figure 6: Graphical representation of the one-site effective Hamiltonian H(n). In this
depiction, the center site is also the orthogonality center, i.e. all matrices on the right
are right-normalized and all matrices on the left are left-normalized.

After a contraction of the matrices left and right of the orthogonality center, H(n)
assumes the following form:

H

Figure 7: Graphical representation of the one-site effective Hamiltonian H(n) after the
contraction of left- and right-normalized matrices

Starting from the one-site effective Hamiltonian H(n), the zero-site effective Hamiltonian
can be easily calculated in the following way:

H K=

Figure 8: Graphical representation of the zero-site effective Hamiltonian K(n) obtained
from H(n) through contraction.
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3.5.2 One-site TDVP

While eq. 79 is an equation in the total Hilbert space, the differential equation obtained

for a single term can be integrated exactly. If one applies the projector P̂
[1:n−1]
L ⊗ 1n ⊗

P̂
[n+1:N ]
R and sets the orthogonality center on site n, the exact time evolution of AC(n)

can be written as

AC(n, t) = e−iH(n)tAC(n, 0) (88)

In a similar way, the projector −P̂ [1:n]
L ⊗ P̂ [n+1:N ]

R can be integrated by making C(n) time
dependent:

C(n, t) = eiK(n)tC(n, 0) (89)

However, in contrary to the time evolution of AC(n) using the one-site effective Hamil-
tonian H(n), the evolution of C(n) can be interpreted as an evolution back in time
applying the zero-site effective Hamiltonian K(n). The integration can be done with
a Lanczos exponentiation algorithm. For the time evolution, the following integration
scheme has to be applied:

• evolve AC(n) according to eq. 88 for a timestep ∆t

• factorize the updated AsC(n)→ AsL(n)C(n)

• evolve C(n) back in time according to eq. 89 and then

• absorb it into the next site C(n)AsR(n+ 1)→ AsC(n+ 1)

This algorithm is similar to the single-site DMRG algorithm. However, the optimization
is replaced with a time evolution and an extra time evolution step of C(n) was added.
The algorithm above depicts a sweep from left to right with timestep ∆t. In practice,
a timestep of ∆t/2 is used for both a sweep from left to right and a sweep from right
to left which together form a complete sweep. A single integration step then consists of
such a complete sweep and evolves the system in time for a total timestep from time t
to t+ ∆t. A more detailed description of both algorithms as well as a derivation can be
found in [4].
As both H(n) and K(n) are Hermitian, the resulting time evolution will have exact
norm and energy conservation (if the Hamiltonian is time-independent). The very same
integration scheme can also be used for imaginary time evolution (t → −iτ) in order
to find ground states, although the algorithm has to be varied or ∆τ → ∞ in order to
obtain the actual ground state. For ∆τ →∞, the algorithm is identical to the variational
MPS formulation of the one-site finite-size DMRG algorithm.
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3.5.3 Two-site TDVP

In the case of the two-site algorithm [16], two successive sites are updated simultaneously.
In order to do so, a block of those two neighbouring sites is formed and after the time
evolution factorized into two individual tensors again by applying an SVD. Therefore,
the bond dimension can be chosen depending on the Schmidt coefficients. In contrast to
the one-site algorithm, this allows to dynamically change the bond dimension, whereas
for one-site TDVP, the bond dimension on every bond is fixed.
In order to apply a two-site algorithm, the tangent space vector in eq. 79 has to be
replaced by a projector onto the linear space of two-site variations. This state is spanned
by the states:

N−1∑
n=1

d∑
{sn}=1

As1(1) . . . Asn−1(n− 1)Bsnsn+1(n : n+ 1) . . .

Asn+2(n+ 2) . . . AsN (N) |s1 . . . sn . . . sN 〉

(90)

For the time evolution, the following integration scheme has to be applied:

• evolve a two-site center block AC(n : n+ 1) according to the effective Hamiltonian
H(n : n+ 1)

• factor the block into A
snsn+1

C (n : n+ 1)→ AsnL (n)A
sn+1

C (n+ 1)

• evolve A
sn+1

C (n+ 1) backwards in time according to H(n+ 1) and then

• absorb it into the next two-site block: A
sn+1

C (n+ 1)A
sn+2

C (n+ 2)→
A
sn+1sn+2

C (n+ 1 : n+ 2)

A more detailed description of both algorithms as well as a derivation can be found in [4].
To sum up, Haegeman et al. have introduced a time integration scheme for the TDVP
in the context of MPS. The algorithm allows the time evolution of an MPS system for
an arbitrary Hamiltonian and is especially suitable for Hamiltonians with long-range
interactions. Such Hamiltonians can for example be given in the form of an MPO.

3.5.4 Long time simulation of local observables

The TDVP algorithm is especially interesting in the context of local observables as it
was recently shown by Leviatan et al.[17].
In their paper, they deal with the problem of the rapid growth of entanglement entropy
in time evolutions. In the context of MPS, this results in exponentially increasing bond
dimensions. Therefore, the computation time at the desired accuracy is limited and they
describe the following way to deal with this problem:
At first, they observed that quantum thermalizing systems are governed at long times
by emergent classical hydrodynamics. This hydrodynamic behaviour is dictated by con-
servation laws and a small number of parameters and therefore, they do not expect that
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the dynamics of local observables depend on the detailed long range entanglement struc-
ture of the micro-state. The decisive challenge is to truncate the growing entanglement
entropy in such a way that the information on local observables is conserved. Several
attempts to control the growth of the entanglement entropy were made but none of
them could avoid the problem of an exponentially growing bond dimension. Therefore,
a different approach was proposed:
Instead of trying to capture the exact dynamics of the system, it was tried to truncate
the entanglement growth with a systematic approximation. This was done by applying
the one-site TDVP algorithm by Haegeman et al. [4] which was introduced above. By
limiting the maximum matrix bond dimension to χ, the maximum entanglement entropy
is given by logχ. Of course, this means that the whole MPS is not anywhere near to
being exactly represented. However, as Leviatan et al. argue: “A crucial feature for our
purpose is that the TDVP respects conservation laws regardless of the truncation.” This
would for example not be given in the case of the TEBD algorithm. However, in the case
of TDVP, non-linear classical dynamics are generated which guarantee that the hydro-
dynamic behaviour of local observables emerges at long times even if only small bond
dimensions are kept. These hydrodynamics are expected to be determined by quantum
processes that occur on short scales and can therefore be captured by MPS with finite
bond dimensions.
To prove their point, the approach is tested on an Ising chain with both longitudinal
and transverse fields:

H = J
N−1∑
i=0

Sxi S
x
i+1 + hx

N∑
i=0

Sxi + hz

N∑
i=0

Szi (91)

Simulations were performed for a chain with 101 sites (i.e. N = 100) and the constants
J = 4, hx = 1, and hz = −2.1. A one-site TDVP algorithm was applied, starting
from an initial state of random product states with the direction of the spin on each site
chosen independently from a uniform distribution on the Bloch sphere. The ensemble is
quenched by applying the single site operator S+

N/2 on the middle site of the chain (fol-

lowed by normalization), to every state in the ensemble. The one-site TDVP algorithm
is then applied with a given fixed bond dimension χ. Very small bond dimensions like
χ = 2, 4, 8 or 16 were used. This guarantees that the entanglement entropy soon reaches
a plateau at the maximum value which is given by log2 χ and does not grow any further.
Indeed, the relaxation of the local operator SzN/2 shows the same behaviour for all dif-

ferent bond dimensions. Especially for large times, the expectation value 〈SzN/2(t)〉 con-
verges to the same value for all different χ. This is what they call the “hydrodynamic
long time tail” and this supports their essential point that long time thermalization dy-
namics of thermalizing closed quantum systems can indeed be captured accurately using
low entanglement states. Hereby, the crucial feature of TDVP is that it satisfies energy
conservation and other conservation rules. Thus, quantities that are generated by quan-
tum processes on a short scale can captured accurately even for tiny bond dimensions
like χ = 2.
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3.6 Star and Chain Geometry of Baths

This section introduces the implementation of baths with different bath geometries and
closely follows [18].
The bath is defined by its spectral function. In this thesis, two different approaches were
used to simulate the bath spectral function: The star geometry and the Wilson chain
geometry.[19, 20] The DOS is defined as

D(ω) = − 1

π
Im(Λ(ω)) (92)

where Λ(ω) is the bath spectral function. The hybridization term of the Hamiltonian
Hhyb couples the bath to the impurity. In our case, the impurity is given by a tight-
binding or Hubbard chain and the left (right) bath couples to the first (last) site of this
chain. For the left bath, Hhyb would be given by

Hhyb =

Lb∑
l=1

∑
σ

(
Vlc
†
0σclσ +H.c.

)
(93)

where c†0σ (c0σ) denotes a creator (annihilator) on the first site of the chain and c†lσ (clσ)
denotes a creator (annihilator) on a bath site. The bath itself is given by

Hbath =

Lb∑
l=1

∑
σ

εlc
†
lσclσ (94)

The potential energy is given by

Hpot =

Lb∑
l=1

∑
σ

ε̃lc
†
lσclσ (95)

and the kinetic energy is given by

Hkin =

Lb−1∑
l=1

∑
σ

(
Ṽlc
†
l+1σclσ +H.c.

)
(96)

In the case of a star geometry, the spectral function is given by

Λstar(ω) =

Lb∑
l=1

|Vl|2

ω − εl + iO+
= Re(Λstar) + i

Lb∑
l=1

|Vl|2 δ(ω − εl) (97)

Comparing eq. 92 with eq. 97 leads to

D(ω) = − 1

π

Lb∑
l=1

|Vl|2 δ(ω − εl) (98)

Therefore, the coupling parameters Vl can be obtained from
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V 2
l =

∫
Il

dω

[
− 1

π
Im(Λ(ω))

]
(99)

with bath discretization intervals Il = [ωl, ωl+1]. For the simulations in this thesis, a lin-
ear discretization was used although other discretizations, like for example a logarithmic
one, are also possible.

Vl

Figure 9: Graphical representation of a system in chain geometry (black sites) coupled
to two baths in star geometry (red sites). Each bath site has an on-site energy εl and
couples to the chain with a coupling constant Vl

After obtaining the parameters for the star geometry, the problem can be mapped to
chain geometry in the following way:
If one denotes the bath orbital sites as |cl〉, the first orbital of the chain is defined as

|c̃1〉 =
1

Ṽ0

Lb∑
l=1

Vl |cl〉

Ṽ0 =

√∑
l

|Vl|2
(100)

By using a Lanczos algorithm, Hbath and Hhyb are represented in their Gram-Schmidt
orthogonalized Krylov basis {|c̃l〉}. Hhyb is already diagonal in this basis and has its
only non-zero component for 〈c̃1|Hhyb |c̃1〉. Therefore, only Hbath has to be considered
in the following Lanczos recursion

ε̃n = 〈c̃n|Hbath |c̃n〉
|rn〉 = Hbath |c̃n〉 − ε̃n |c̃n〉 − Ṽn−1 |c̃n−1〉

Ṽn = |〈rn|rn〉|
1
2

|c̃n+1〉 =
1

Ṽn
|rn〉 , for n = 2, . . . , Lb − 1

(101)

In the case of n = 1, only the definition of |rn〉 changes to

|r1〉 = Hbath |c̃1〉 − ε̃1 |c̃1〉 (102)
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The equations above can be solved by multiplying from the left with 〈cl| and inserting
identities of the form

∑
l′ |cl′〉 〈cl′ |. The two geometries are connected by a unitary

transformation

U † (Hbath +Hhyb)U = Hpot +Hkin (103)

where

(Hbath +Hhyb)ll′ = 〈cl|Hbath +Hhyb |cl′〉
(Hpot +Hkin)nn′ = 〈c̃n|Hpot +Hkin |c̃n′〉

(104)

The transformation matrix is given by

(U)Lbl,n=1 = (〈cl|c̃n〉)Lbl,n=1 =


V1/Ṽ0 〈c1|c̃1〉 . . .

V2/Ṽ0 〈c2|c̃1〉 . . .
...

...
. . .

VLb/Ṽ0

 (105)

and relates the two basis sets via |c̃n〉 =
∑

l U
†
nl |cl〉.

Figure 10: Graphical representation of a system in chain geometry (black sites) coupled
to two baths in chain geometry (red sites). The bath sites couple with each other but
only one bath site couples to the system.

Using the methods above, the following algorithm was applied to perform the time evo-
lution. Let us first consider a star geometry bath: At first, the chain was separated into
3 different parts: left bath, middle chain and right bath. The corresponding Hamiltonian
reads:

H = Hleft +Hmiddle +Hright = Hl +Hm +Hr (106)

A first Trotter-Suzuki decomposition leads to the following representation of the time
evolution operator:

e−iH∆t ≈ e−iHm∆t/2e−iHl∆te−iHr∆te−iHm∆t/2 (107)

A second Trotter-Suzuki decomposition was performed within the middle by decompos-
ing the middle into even and odd sites:

e−iHm∆t ≈ e−iHm,even∆t/2e−iHm,odd∆te−iHm,even∆t/2 (108)

Thus, the time evolution operator for a star geometry system reads:

e−iH∆t ≈ e−iHm,e∆t/4e−iHm,o∆t/2e−iHm,e∆t/4 . . .
e−iHl∆te−iHr∆te−iHm,e∆t/4e−iHm,o∆t/2e−iHm,e∆t/4

(109)
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For the time evolution, two-site time evolution gates of the form hi,i+1 were applied. In
the case of star geometry, the first (last) site on the middle chain is connected to all sites
of the left (right) bath. However, in the simulation, the bath sites are still on a chain. As
the time evolution gate only acts on neighbouring sites, a swap gate was applied which
swapped the first (last) side of the middle chain through the left (right) bath to obtain
the interactions of the whole bath with the middle chain as introduced in [21].
In the case of a chain geometry bath, no special treatment of the baths is necessary, as
the baths are having the same geometry as the middle. Therefore, the whole system can
be seen as one chain and only has to be decomposed into even and odd sites:

e−iH∆t ≈ e−iHeven∆t/2e−iHodd∆te−iHeven∆t/2 (110)

The actual Hamiltonians applied during the time evolution can be found in the following
chapters 4 and 5.
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4 Particle Current

4.1 Particle Transport

This chapter at first introduces the concept of particle current and then gives an overview
of some relevant papers. An overview of relevant literature can also be found in [10] and
[22].
We will now use the methods introduced above to model particle transport through a
one-dimensional tight-binding (and later Hubbard) chain. The tight-binding chain is
connected to two baths, one on the left and one on the right. By applying the methods
introduced in chap. 3.6, one can now model the bath according to the desired DOS. In
this thesis, half-circular and constant DOS were used.
Considering a tight-binding chain with constant hopping parameters

H = −t
∑
i

(
c†ici+1 + c†i+1ci

)
, (111)

we now want to calculate the (particle) current going through the tight-binding chain.
If we define the particle current on site i as ṅi, the following calculation can be obtained:

ṅi =
∂n

∂t
= i [H,ni]

= −it
([
c†ici+1, ni

]
+
[
c†i+1ci, ni

])
= −it

(
c†i [ci+1, ni] + [c†i , ni]ci+1 + c†i+1[ci, ni] + [c†i+1, ni]ci

)

= −it

[c†i , ni]︸ ︷︷ ︸
−c†i

ci+1 + c†i+1 [ci, ni]︸ ︷︷ ︸
ci


ṅi = it

(
c†ici+1 − c†i+1ci

)

(112)

In all further discussions and figures, a current from left to right will be considered a
positive current. The current is induced by starting with a higher occupation in the left
bath than in the right bath.
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Figure 11: Graphical representation of a possible initial state of the whole system. The
left bath is completely filled whereas the right bath is initially empty. The sites on the
tight-binding chain are initially half-filled. The baths as well as the chain are initially
in a ground state.

Fig. 11 shows a graphical representation of the system in its initial state. Before the
time evolution, a ground state search using DMRG is applied on all 3 parts separately.
Of course, if the bath is initially completely filled or completely empty, a DMRG ground
state search would not change a thing but for a particle current, there only has to
be a different filling in the baths and the initial state does not necessarily have to be
completely filled or empty.
In the case of a star geometry, the ground state is actually easy to find: The bath sites
have no interaction with each other and therefore, the ground state of the bath is only
determined by the on-site energies which means that all particles in the system will be
initially placed on the sites with the lowest on-site energies. In the middle chain, the
ground state search leads to an equally filled chain where the occupation is 0.5 on all
sites.
The whole system is described by the following Hamiltonian:

H = Hleft +Hmiddle +Hright (113)

The left and the right bath are similar as the corresponding Hamiltonians have a term
that couples to the chain and an on site energy term:

Hleft =
∑
l

Vl

(
c†l cI,1 + c†I,1cl

)
+
∑
l

εlnl

Hright =
∑
l

Vl

(
c†l cI,L + c†I,Lcl

)
+
∑
l

εlnl
(114)

where cI,1 (cI,L) is the annihilation operator acting on the first (last) site of the middle
chain. The subscript I stands for impurity and the εl denote the on-site energies. The
middle is given by a tight-binding chain:

Hmiddle = −t
L−1∑
j=1

(
c†I,jcI,j+1 + c†I,j+1cI,j

)
(115)
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In the case of a Hubbard chain, the following term would have to be added to Hmiddle:

HU =
L∑
j=1

UnI,j↑nI,j↓ (116)

Another possibility to obtain a current is introducing an electric potential by adding a
different chemical potential to the two baths. Within the system, the chemical potential
increases linearly. Therefore, it is not necessary to variate the filling of the baths and
the whole chain (left bath, middle and right bath) can be initialized with half filling as
it was done in [23]:
Heidrich-Meisner et al. considered a chain separated into two leads and an interaction
region in the middle which is connected to those two leads. On the left lead, a constant
chemical potential of Vi = −V/2 was added and on the right lead, a constant chemical
potential of Vi = V/2 was added. In the interacting region in the middle, which was
given by a Hubbard chain, the chemical potential Vi was increasing linearly with i. By
doing so, they could simulate an electric field acting in the interacting part and V is
a bias voltage between the two leads. Then, they measured the current (as defined in
eq. 112) between the interacting region and the left and right lead, respectively. They
then average over these two currents and call the result the symmetrized tunnel current.
A quasisteady state regime could be observed where the symmetrized tunnel current
would at first oscillate and eventually reach a steady state value. The period of the os-
cillations decreases with increasing voltage V . Apart from these oscillations, the current
reaches a constant value.
Heidrich-Meisner et al. also observe that the time window over which the steady state
current can be sustained is limited in a finite system, depending on both the length of
the system and the length of the interacting region. A perturbation induced by the bias
voltage will travel through the leads, will be reflected on the edges and then travel back
to the interacting region. As soon as the perturbation reaches the interacting region, it
will also perturb the quasisteady state currents.
Similar calculations were performed for single [10] and double quantum dots.[24]
The system with two quantum dots consisted of two dots which were both connected
to two leads. The leads were tight-binding chains with a chemical potential and fully
symmetric tunnel couplings were considered i.e. the constant hopping parameter t in
the leads was the same as the hopping parameter between the leads and the quantum
dots. Again, the current between the two leads was obtained by averaging over the
currents between the dots and the left lead and the dots and the right lead. Measuring
this current, the current at first undergoes transient dynamics but later, a steady state
current could be observed. Finite size effects could also be observed as the steady state
would eventually decrease after a certain time, depending on the size of the system.
This behaviour of the current is similar to the case of a single quantum dot. In [10],
the set-up was similar: Two leads in the form of tight-binding chains, connected to
a single quantum dot. On the dot, there were a chemical potential and a Coulomb
repulsion U acting on the dot. The current would again increase at small times and
then reach a steady state value in the form of a plateau in time. The steady state value
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of the current depends on the number of sites in the leads as well as on the bias voltage V .
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4.2 Results

Here we are looking at a particle current flowing through a tight-binding chain which
is coupled to a bath on both sides. The tight-binding Hamiltonian for a chain was
introduced in eq. 12 and for a constant hopping parameter t, it reads

H = −t
∑
iσ

(
c†iσci+1σ + c†i+1σciσ

)
whereas the particle current on site i (see eq. 112) is given by

ṅi = it
(
c†ici+1 − c†i+1ci

)
In some cases the right bath can be neglected as we are only looking at the particle
current flowing from the left bath into the tight-binding chain.
At the beginning, the chain is half-filled and one of the baths is filled with more particles
than the other one. For example, the left bath is completely filled whereas the right
bath is completely empty. This causes a potential difference between the two baths.
Unless otherwise stated, initially the left bath was completely filled and the right bath
was completely empty for all simulations, leading to a particle flow from the left bath
through the system into the right bath which will be depicted as a positive current.
The baths were either simulated using a star geometry or a Wilson chain geometry
as introduced in chap. 3.6. Regarding the DOS of the bath, a constant DOS or a
semi-circular DOS were chosen. Besides Wilson chains, a chain geometry bath with a
constant hopping parameter t on all sites was also investigated. Before the simulation,
the ground state of all 3 parts was calculated by applying DMRG to all 3 parts separately.
The ground state of the tight-binding chain in the middle would always be an evenly
half-filled state. This was not the case for Wilson chains as the hopping parameter is
different between all sides. In the case of a star geometry bath, as the bath sites are not
connected, all the particles would be located at the sites with the lowest on-site energies
in the ground state.

4.2.1 Comparison of Star and Chain Geometry

A system with a tight-binding chain with 40 sites and 2 baths with 20 sites was sim-
ulated. As the same system was simulated using two different bath geometries, the
tight-binding chain should undergo the same time evolution in both cases. Indeed, the
absolute difference in occupation numbers in the systems of the two simulations had a
maximum error in the order of 10−3. Although, the baths of course significantly vary:
In the case of a star geometry bath, only particles with the suitable on-site energy, de-
pending on the energy dispersion of the system, will flow from the bath into the system.
The energy range from which the particles are taken reaches from ε = 0 to ε = 2. This
can be understood as the energy range of the tight-binding chain ranges from -2 to 2 (for
t = 1) and the tight-binding chain is initially half-filled. Therefore, there are initially no
particles with energies ranging from 0 to 2 in the chain and particles with exactly these
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energes will be taken out of the bath. This fact also limits the possible simulation time
as at some point, the bath sites within the given energy range will be emptied. In the
case of chain geometry baths, the limited simulation time can be understood by the fact
that, due to the finite size of the chain, there will be reflections from the wall at the end
of the bath. As soon as these reflections reach the tight-binding chain, the results get
distorted.
The simulated bath is represented by a normalized, semi-circular DOS with a bandwidth
ranging from -3 to 3. The results for chain and star geometry baths can be found in the
following figures: The occupation numbers are depicted in fig. 12 and fig. 13.
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Figure 12: Occupation number for chain geometry baths with a semi-circular DOS and
a bandwidth ranging from -3 to 3. The baths both have 20 sites and the system has 40
sites.
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Figure 13: Occupation number for star geometry baths with a semi-circular DOS and a
bandwidth ranging from -3 to 3. The baths both have 20 sites and the system has 40
sites.

In both cases, one can observe a linear increasing entropy at the first bond of the middle
chain. (see fig. 14 and 15).
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Figure 14: Entanglement entropy at the first bond of the middle chain for a chain
geometry bath.
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Figure 15: Entanglement entropy at the first bond of the middle chain for a star geometry
bath.

The SvN entanglement entropy on all bonds can be seen in fig. 16 and fig. 17. As one can
see, the entanglement entropy spreads into the baths and the tight-binding chain and is
especially high at the transition between the baths and the tight-binding chain. In the
tight-binding chain however, the entanglement entropies have to be the same for both
bath geometries. One can also see that the spreading of the entanglement entropy in the
baths in fig. 16 looks similar to the “edge of propagation” of the occupation numbers
depicted in fig. 12. Therefore, the spreading of entanglement entropy can be seen as the
propagation of quasiparticles.
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Figure 16: Entanglement entropy on all bonds for a chain geometry bath. The baths
both have 20 sites and the system has 40 sites.

10 20 30 40 50 60 70

0

5

10

15

bond

ti
m

e

star geometry entanglement entropy

0

0.5

1

1.5

2

2.5

Figure 17: Entanglement entropy on all bonds for a star geometry bath. The baths both
have 20 sites and the system has 40 sites.
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4.2.2 Comparison of Wilson and Constant Chain Parameters

Another behaviour of the entanglement entropy can be observed if one uses a chain
geometry bath with a constant hopping parameter t for all bath sites instead of a Wilson
chain. Here, a constant hopping parameter of t = 1 was applied between all sites in both
the bath and the middle chain which both had the same size of about 70 sites. This
basically gives one large tight-binding chain, where bath and system only differ by their
initial filling. Here, only the flow of the particles from the left bath into the tight-binding
chain was observed.
In this case, the entanglement entropy does not increase linearly as it can be seen in
fig. 19 and fig. 20. Instead, the entanglement entropy increases slower in time and
eventually even decreases again. One can also see the change in the hopping parameter
of the bath if one looks at the occupation numbers depicted in fig. 22: The propagation
speed of the particles in the bath is constant and therefore, the “edge of propagation” is
straight and not curved as in fig. 12. This can be understood qualitatively if one looks
at the occupation numbers for the Wilson chain geometry bath depicted in fig. 12 and
the corresponding hopping parameters in the left bath which can be found in fig. 18.
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Figure 18: Hopping parameters of the Wilson chain of the left bath in fig. 12 on all
bonds of the bath.

From eq. 100, it follows that the first hopping parameter in the Wilson chain is t = 1
as the area if the DOS was chosen normalized. The hopping parameters then decrease
from around t = 1.5 which leads to slower particle velocities at the outer sites of the
chain.
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The entanglement entropy on all bonds can be seen in fig. 21. Due to the constant
hopping parameter t in the chain as well as in the bath, the entanglement entropy also
spreads linearly, similar to the occupation number in fig. 22.
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Figure 19: Entanglement entropy at the first bond of the chain. Both bath and middle
chain are tight-binding chains with a constant hopping parameter of t = 1.
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Figure 20: Semi logarithmic plot of the entanglement entropy at the first bond of the
chain. Both bath and middle chain are tight-binding chains with a constant hopping
parameter of t = 1.
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Figure 21: Entanglement entropy on all bonds of the whole system. Both bath and
middle chain are tight-binding chains with a constant hopping parameter of t = 1. The
bath on the left has 72 sites.
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Figure 22: Occupation number for a system where both the left bath and the middle
chain have a constant hopping parameter t = 1. The bath on the left has 72 sites.
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4.2.3 Comparison of a Semi-Circular and a Constant DOS

For a given bandwidth, one can choose different DOS. In this thesis, a semi-circular and
a constant DOS were considered. At first, this was done for a star geometry with only
a left bath with 35 sites and a middle chain ranging from site 36 to site 108. In both
cases, the entanglement entropy increases linearly on the first site of the chain (site 36)
as one can see in fig. 23.
In fig. 24 one can see that the occupation numbers are different: When a semi-circular
DOS is applied, the DOS at the relevant on-site energies (0 to 2), where particles are
taken out of the bath, is larger. Therefore, these sites couple stronger to the chain and
more particles are flowing into the tight-binding chain.
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Figure 23: Entanglement entropy for both a constant and a semi-circular DOS with
bandwidth 3 in the left bath and star geometry.
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Figure 24: Occupation number for all sites at t = 10. The left bath has star geometry
and a semi-circular and constant DOS, respectively. The vertical green line denotes the
transition between bath and chain.

The same thing was done again but for a chain geometry. Again, a constant DOS and a
semi-circular DOS were used for the bath with 35 sites and a tight-binding chain from
sites 36 to 108 coupled to it. Fig. 25 shows the entanglement entropy on the first bond
of the chain for both the constant DOS and the semi-circular DOS of the chain geometry
bath. This figure is similar to fig. 23, where the same system, but a star geometry bath,
was simulated: In both cases, a linearly increasing entanglement entropy can be seen.
Regarding the occupation numbers, the chain geometry bath shows a different picture
in fig. 26: Now, particles are taken out from all sites across the bath which leads to
different occupation numbers in the left bath. However, the occupation numbers in the
middle chain must be the same as both the star and the chain geometry represent the
same bath coupled to the tight-binding chain.
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Figure 25: Entanglement entropy for both a constant and a semi-circular DOS with
bandwidth 3 in the left bath and chain geometry.
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Figure 26: Occupation number for all sites at t = 10. The left bath has chain geometry
and a semi-circular and constant DOS, respectively. The vertical green line denotes the
transition between bath and chain.
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4.2.4 Steady State Current

The current flowing through the tight-binding chain eventually converges towards a
steady state. The amplitude of this steady state is the same for all sites in the chain
and depends on the area of the DOS. Calculations were performed for two systems with
a constant DOS and a bandwidth ranging from -6 to 6. However, the second DOS was
not normalized and had twice the area of the first one. Therefore, a larger value for the
steady state current could be observed in fig. 27.
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Figure 27: Steady state current in the tight-binding chain on sites 51, 56 and 61. The
chain has 100 sites and is coupled to two star geometry baths with 50 sites. The DOS
is constant ranging from -6 to 6 and has an area of 1 (solid lines) and 2 (dashed lines).
For a larger area of the DOS and therefore larger coupling parameters, the steady state
current is also higher.

The same holds true for the number of particles on the same sites: It will also increase
until a certain steady state value is achieved which is again dependent on the area of
the DOS. However, the particle number steady state is not the same for all sites in the
chain. The results can be found in fig. 28
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Figure 28: Steady state occupation number in the tight-binding chain on sites 51, 56
and 61. The chain has 100 sites and is coupled to two star geometry baths with 50
sites. The DOS is constant ranging from -6 to 6 and has an area of 1 (solid lines) and 2
(dashed lines). For a larger area of the DOS and therefore larger coupling parameters,
the steady state occupation number is also higher.

4.2.5 Convergence

For both the chain and the star geometry, the convergence of the entanglement entropy
was observed for different bath sizes and bandwidths D.
In the case of a Wilson chain geometry bath, a tight-binding chain with 100 sites was
coupled to a left bath with 50, 100 and 150 sites. In order to ensure the same dis-
cretization of the on-site energies, the bandwidth D of the constant DOS also had to be
changed to D = 3, 6 and 9, respectively. The calculations can be found in fig. 29 and
show that for D = 6, the calculations are already well converged. For a fixed D, the
baths with size 50, 100 and 150 coincide.
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Figure 29: Entanglement entropy on the first bond of a tight-binding chain with 100
sites for a left bath in chain geometry with 50, 100 and 150 bath sites and D = 3, 6
and 9. While bath sizes larger than 50 sites have no visible impact on the entanglement
entropy, a bandwidth of D = 3 is insufficient.

The same was done in the case of star geometry baths. However, beside the discretization
of the on-site energies, in the case of star geometry baths, one must also consider that
increased coupling parameters result in a higher particle flow and different entropies.
Therefore, the coupling parameters also had to be scaled according to the bandwidth D.
The tight-binding chain with 100 sites was coupled to baths with 51,102 and 153 sites.
Also, a clear difference between the bath with 101 and with 102 bath sites can be seen
in fig. 30.
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Figure 30: Entanglement entropy on the first bond of a tight-binding chain with 100
sites for a left bath in star geometry with 51, 101, 102 and 153 bath sites and D = 3, 6,
6 and 9. In order the achieve comparable results, the coupling parameters V also have
to be scaled.

4.2.6 Current Induced by a Chemical Potential Gradient

One can also obtain a current by introducing an electric potential by adding a chemical
potential. The chemical potential has to be different between the two baths and rises
linearly in the tight-binding chain.[23] In that case, the whole chain is initially half-filled
as the potential difference is now not achieved by different fillings of the baths. However,
now a Hubbard chain as introduced in eq. 11 was coupled to the baths:

H = −t′′
∑
iσ

(
c†iσci+1σ + c†i+1σciσ

)
+ U

∑
iσ

niσniσ̄

In both baths, a hopping parameter of t′ = 1 was chosen. In the Hubbard chain, the
hopping parameter was set to t′′ = 0.2 and an on-site repulsion of U = 1 was chosen.
The on-site energy in the left (right) bath was set to ε = −1 (ε = +1). In the middle
region, the on-site energy was increasing linearly from -1 to 1 and an additional on-site
energy ε0 = −U/2 = −1/2 was added to achieve half-filling. The time evolution leads
to the following behaviour of the entanglement entropy on all bonds (see fig. 31). These
results are in very good agreement with the results from [23].
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Figure 31: Entanglement entropy at different times tΓ (Γ = 2t′′2) for all bonds.

For the same simulation, the particle current was also measured and can be found in
fig. 32. The behaviour of the current is also in good agreement with [23] as a steady
state current is reached at tΓ = 1.
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Figure 32: Particle current going through the Hubbard chain, obtained by averaging
over the current going through the first and the last site of the system. The current
was induced by a bias voltage ∆V = 2 between the baths and the Hubbard chain has a
hopping parameter t′′ = 0.2 and a Coulomb repulsion U = 1.
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5 Thermal Current

5.1 Thermal Transport

This chapter covers thermal energy transport in one-dimensional systems. At first,
the concept of a local energy current is defined for a Fermi-Hubbard model. Then,
the approach of Karrasch[22] to study thermal currents in the Fermi-Hubbard model
is presented, closely following his paper. Finally, an overview of both theoretical and
experimental results regarding thermal current in Hubbard and Spin 1/2 chains is given.
The Hamiltonian for the Fermi-Hubbard model is given by a sum of local terms:

H =
∑
n

hn (117)

with the local terms

hn =− t0
2

(c†n↑cn+1↑ + c†n↓cn+1↓ +H.c.) +

U

2
(ñn↑ñn↓ + ñn+1↑ñn+1↓) +

V (ñn↑ + ñn↓)(ñn+1↑ + ñn+1↓)

(118)

where cnσ (c†nσ) is the annihilation (creation) operator for a fermion on site n with spin

σ and ñnσ = c†nσcnσ − 1/2. U and V denote the on-site Coulomb and nearest-neighbour
interactions, respectively. However, in this thesis we will mostly consider only a tight-
binding chain where U = 0 and V = 0. Finally, we will also switch an on-site Coulomb
repulsion U 6= 0 on. The hopping matrix element t0 was set to 1 and all quantities
like the energy current or the time are given in units of t0. The local energy current is
defined by

jE,n = i[hn+1, hn] (119)

Considering only the tight-binding contribution in eq. 118, the thermal energy current
is given by

jE,n =
∑
σ

i
t20
4

(c†n+2σcnσ −H.c.) (120)

The explicit calculation can be found in Appendix A.5.
In the case of a non-zero on-site Coulomb interaction U , a tedious calculation3 leads to
the following thermal energy current:

3The calculation was performed explicitly and works similar to the calculation for the tight-binding
contribution as shown in Appendix A.5.
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jE,n =
∑
σ

i
t20
4

(c†n+2σcnσ −H.c.) +

∑
σ

i
Ut0
4

(c†nσcn+1σ + c†n+1σcn+2σ −H.c.) ñn+1σ̄

(121)

where σ̄ = ↑ if σ = ↓ and vice versa.
Eqs. 120 and 121 are in perfect agreement with [25].
In order to establish a temperature gradient, one can divide the chain into a left and
right part represented by density matrices ρL and ρR which were initialized as thermal
density matrices with different temperatures TL and TR:

ρL ∼ e−H/TL , ρR ∼ e−H/TR (122)

and

ρ0 = ρL ⊗ ρR (123)

However, Karrasch took a numerically more advantageous way and modelled the bond
between the two parts of the chain smoothly by introducing

ρ0 ∼ e−H̃ (124)

where the temperature gradient is established by defining H̃ as

H̃ =

{
H/TL, n ≤ 0

H/TR, n > 0
(125)

As expected, Karrasch could observe that the energy current 〈jE(t)〉 converges towards
a non-zero steady state value in the case of V = 0. If there are non-vanishing nearest-
neighbour interactions, the current decays to zero. He also found that this steady state
current has the following dependence on TL and TR:

lim
t→∞
〈jE(t)〉 = f(TL)− f(TR) (126)

Karrasch observed such steady state currents for a flow between two baths with different
temperatures as well as from a bath into vacuum. He showed that a steady state current
flowing out of the left part of the chain, which was initialized in equilibrium at TL, can
be approximately described by a universal function of its temperature:

lim
t→∞
〈jE(t)〉 = f(TL) + C (127)

If the right part of the system is also a thermal system with initial temperature TR, then
this constant is given by C = −f(TR) which gives eq. 126.

Earlier, the non-equilibrium transport in spin chains was also studied by Karrasch et
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al.[26]. They considered an XXZ spin 1/2 chain where the integrability was broken by
two perturbations. DMRG methods were applied in order to establish a temperature
gradient in the initial state. They found that the (thermal) energy current of the system,
which is driven by this temperature gradient, would relax fast into a finite steady state
value if the Drude weight D is non-zero. Similar to [22] and the results in this thesis,
the steady state current takes the form

JE(TL, TR) = f(TL)− f(TR) (128)

where TL is the initial temperature of the left part of the chain and TR is the initial tem-
perature of the right part of the chain. This was obtained by separating the whole chain
into two semi-infinite chains. In the initial state, both semi-infinite chains are in thermal
(grand-canonical) equilibrium at temperatures TL and TR. These states are represented
by density matrices. Eq. 128 implies that the non-equilibrium thermal transport in this
system is entirely determined by linear response as the function f can simply be obtained
by integration of the equilibrium conductance ∂T f . Thus, the value of the steady state
(thermal) energy current is completely determined by the linear thermal conductance.

A similar system was discussed in [27]. In this case, a spin chain with local Hamil-
tonians of the form

hn = Jn
(
SxnS

x
n+1 + SynS

y
n+1 + ∆nS

z
nS

z
n+1

)
+ bn

(
Szn − Szn+1

)
(129)

was studied. In order to investigate the finite-temperature transport properties of this
system, DMRG was applied and the thermal statistical operator was obtained via pu-
rification. Similar to the ideas above, the whole chain was again divided into a left and
right part with equilibrium temperatures TL and TR, respectively, in the initial state.
To enable the interaction, two approaches were shown: The two parts could either be
coupled directly at time t = 0 or via an interacting resonant level model (IRLM). The
calculations were also performed by applying MPS where a rapid growth of the matrix
bond dimensions during the time evolution was observed. For the steady state current,
the same relation as stated in eq. 128 was observed. They also investigated the depen-
dence of the steady state (thermal) energy current from the matrix dimension and the
discarded weight, respectively: Too small matrix bond dimensions lead to high trun-
cation errors. As these discarded weights get larger and larger, the steady state gets
represented worse and worse. Instead of a constant current, stronger and stronger oscil-
lations around the steady state value can be observed as the truncation errors increase.
For longer times, a (too small) fixed bond dimension will eventually lead to completely
wrong results. To tackle this problem of rapidly increasing bond dimensions, they reduce
the growth of entanglement by “time-evolving the auxiliary degrees of freedom which
purify the thermal statistical operator.”

Both particle and energy transfer in an XXZ chain were studied by Vasseur et al.[28].
They studied the rates of energy and particle densities moving through systems with
temperature and chemical potential differences. In the initial state, the XXZ spin chain
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was separated into two parts: A left part with µL and TL as well as a right part with
µR and TR. After some oscillations at the beginning, the energy current jE(t) finally
converges towards a steady state energy current as the oscillations quickly decrease.

One-dimensional thermal transport initiated by a linear response can also be realized
in quasi-1D spin systems.[22] Experiments investigating the energy transport in spin-
chain and spin-ladder materials with antiferromagnetic coupling are discussed in [29]. In
this paper, Sologubenko et al. state that recent experimental results, especially in spin
1/2 chains, are consistent with theoretical results which claim a ballistic form of trans-
port. One-dimensional spin 1/2 systems are also experimentally studied in [30] where
Hlubek et al. investigate high purity samples of SrCuO2 which is a chain cuprate that
is considered to be an excellent realization of the spin 1/2 Heisenberg chain: The mag-
netic susceptibility of SrCuO2 single crystals was quantitatively compared to theoretical
calculations and showed excellent agreement.[31] Hlubek et al. studied the scattering
processes in the system and found that only extrinsic scattering processes played a role in
the limitation of the magnetic heat conductivity. This is a manifestation of the ballistic
nature of the thermal energy transport in the spin 1/2 Heisenberg chain. Quantum spin
1/2 chains were also considered in [32], where XX spin chains were coupled to an XX
chain and an XY chain which both had different temperatures. The heat currents were
studied by applying a non-equilibrium Green’s-function formalism. They also studied
the effect of magnetic fields acting on those thermal reservoirs and found that when a
magnetic field is applied at the end chains, one can observe different magnitudes for
the thermal current depending on the direction in which the temperature difference is
applied. They call this the “thermal-diode effect”. Actually, the experimental measure-
ment of the thermal conductivity of a system is way harder than measuring e.g. the
electrical current. This might be a reason why it took until the last few years until
experimental studies, investigating thermal conductivity with respect to system size in
low dimensional systems, were realized. These experiments became possible due to the
advances in nanophysics, making it feasible to realize systems like nanowires or nan-
otubes, suspended between thermal reservoirs.[33]
In [34], finite temperature charge transport is simulated and a ballistic charge transport
behaviour is observed in the one-dimensional Hubbard model. A nonintegrable model
in the form of a mass-imbalanced Hubbard chain is also considered. However, thermal
transport in the one-dimensional Hubbard model is ballistic at any finite temperature
T > 0. [25, 35] An approach via DMRG was chosen by Karrasch et al. in [35], where
they study the thermal conductivity of the 1D Fermi-Hubbard model at finite temper-
atures. For the integrable case, they can confirm ballistic transport. If the integrability
is broken through nearest-neighbour interaction, this leads to diffusive energy transport.
Concerning an experimental realization of the charge and energy transport in Fermi-
Hubbard models, they mention quantum gas microscope experiments as performed in
[36]. Ultracold 40K atoms were also considered in [37], where they studied a 2D Fermi
Hubbard model and were able to observe metallic, Mott-insulating and band-insulating
states. They were also able to measure the entropy per particle and suggest that the
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Mott insulator could provide a well-controlled initial state for studying one-dimensional
Hubbard chains.
In the present thesis, thermal currents flowing through tight-binding and Hubbard chains
are studied. The thermal energy currents are initiated by coupling thermal baths at dif-
ferent temperatures onto both sides of the chain. These thermal baths are modelled by
applying the thermofield approach.[2]
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5.2 Purification

The method of purification is the usual approach to obtain finite temperature states.
The method is described in [1], which this section closely follows.
The purification works for an arbitrary mixed state with physical space P formed from
orthonormal states:

ρP =
∑
a

s2
a |a〉P P 〈a| (130)

This state can now be interpreted as the result of a partial trace over a Schmidt decom-
position of a pure state on PQ, where Q is an auxiliary space:

|Ψ〉 =
∑
a

sa |a〉P |a〉Q ⇒ ρP = TrQ |Ψ〉 〈Ψ| (131)

However, the introduction of the auxiliary space Q means that the Hilbert space has to
be locally doubled:

Figure 33: Graphical representation of the local Hilbert space doubling where P is the
physical space and Q is the auxiliary space. This figure was taken from [1].

The thermal density operator is given by

ρβ = Z(β)−1e−βH , Z(β) = Trρe
−βH (132)

and can be written as

ρβ = Z(β)−1e−βH = Z(β)−1e−βH/2 1 e−βH/2 (133)

Now, the identity matrix 1 can be interpreted as Z(0)ρ0, the infinite temperature density
operator times the infinite temperature partition function. If we assume that we know
the purification of ρ0 as an MPS |Ψβ=0〉, we can write
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ρβ =
Z(0)

Z(β)
e−βH/2TrQ |Ψ0〉 〈Ψ0| e−βH/2

=
Z(0)

Z(β)
TrQe

−βH/2 |Ψ0〉 〈Ψ0| e−βH/2
(134)

As Q is only an auxiliary space, TrQ can be pulled out in front and one can see that
there has an imaginary time evolution to be done:

|Ψβ〉 = e−βH/2 |Ψ0〉 (135)

Therefore, the remaining task is to find |Ψ0〉, perform an imaginary time evolution
and then calculate expectation values as for a pure state. A time evolution at finite
temperature can now be applied on |Ψβ〉.

5.3 Thermofield Approach

This section closely follows [2], in which de Vega and Bañuls applied the concept of
a thermofield approach to simulate the evolution of open quantum systems coupled to
baths at finite temperature. This approach was then used in the present thesis as an
alternative to purification to model thermal baths. By applying this approach, one can
efficiently simulate the evolution of fermionic (or bosonic) systems coupled to thermal
reservoirs. Notably, this can be done without a previous preparation by purification
which would include an imaginary time evolution and in the context of MPS, one can
initialize the thermal bath as a product state.

Consider an environment of harmonic oscillators with annihilation (creation) operators

bk (b†k) and frequencies ωk. The Open Quantum System (OQS) couples with strength
gk. The complete Hamiltonian reads

Htot = HS +HB +
∑
k

gk(L
†bk + b†kL) (136)

with the Hamiltonian of the OQS HS , HB =
∑

k ωkb
†
kbk and L the coupling operator

acting on the OQS Hilbert space. Then, an auxiliary, decoupled environment with
annihilation (creation) operators ck (c†k) is added. This leads to the total Hamiltonian
of the form

Ĥtot = Htot −
∑
k

ωkc
†
kck (137)

Assuming that both environments are initially in a thermal state at the inverse temper-
ature β, a thermal Bogoliubov transformation is applied. For fermionic reservoirs, this
transformation reads

a1k = e−iGbke
iG = cos(θk)bk − sin(θk)c

†
k

a2k = e−iGcke
iG = cos(θk)ck + sin(θk)b

†
k

(138)
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Here, G = i
∑

k θk(b
†
kc
†
k − ckbk) where θk is temperature dependent

cos(θk) =
√

1− nk
sin(θk) =

√
nk

(139)

with nk = 1/(eβωk + 1), the number of excitations in mode k. The explicit calculation
of eqs. 138 can be found in appendix. A.2.
Using this transformation, the following Hamiltonian is obtained

H̃tot = HS +
∑
k

ωk(a
†
1ka1k − a†2ka2k) +∑

k

g1k(L
†a1k + a†1kL) +

∑
k

g2k(La2k + a†2kL
†)

(140)

with g1k = gk cos(θk) and g2k = −gk sin(θk). The mathematical calculation can be
found in appendix A.3 and shows that using these transformations, Htot can actually be
transformed into H̃tot.
However, this version of H̃tot does not conserve the particle number. Therefore, a particle
hole transformation for the auxiliary bath a2k was applied. This transforms the last part
of the Hamiltonian in the following way:

La2k + a†2kL
† =⇒ La†2k + a2kL

† = −(a†2kL+ L†a2k) (141)

Therefore, in the thermal vacuum, the sites of the bath a1k are completely empty whereas
the sites of the auxiliary bath a2k are completely filled in the initial state.

By using this transformation, one gets a thermal vacuum. This thermal vacuum reads

|Ω〉 = e−iG |Ω0〉 (142)

where |Ω0〉 is the vacuum for the bk and ck modes. Comparing eq. 142 with eq. 138, one
can immediately see that |Ω〉 is indeed a vacuum state for the a1k and a2k modes.
Another representation of the thermal vacuum is, up to normalization, given by

|Ω〉 ∝ e−βHB/2 |I〉 (143)

with |I〉 =
∑

n |n〉b |n〉c being the maximally entangled state between the real and the
auxiliary environments with their eigenstates |n〉b and |n〉c. In the case of fermions, this
state is given by |I〉 = |0〉b |0〉c + |1〉b |1〉c. For this representation however, it is not
so clear that this is also a representation of the thermal vacuum. The mathematical
calculation can be found in appendix A.4.

The approach described above was also tested in [2] on a fermionic environment in
which a quantum dot was coupled to an electronic reservoir at finite temperature. Spin
expectation values were calculated and successfully tested against tDMRG results: The
dynamics of the quantum system were coupled to the thermal reservoir and could be
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integrated both in the case of fermionic and bosonic systems. This was done in a pure
state formalism but without the need of a previous preparation of the thermal state
with imaginary time evolution. Instead, the thermal Bogoliubov transformation de-
scribed above was applied. The time evolution of the system was done by applying MPS
techniques.
Another useful application for the thermofield approach can be found in [38], where
Schwarz et al. use the thermofield approach to study steady state non-equilibrium
systems in the context of NRG. Usually, NRG faces some limitations in the case of
steady-state non-equilibrium systems e.g. if a bias voltage is applied. Comparing their
results with several benchmarks, they could show that these limitations can be over-
come if the thermal baths are described with the thermofield approach. By combining
the thermofield approach with a NRG-DMRG quench, one can obtain quantitatively
reliable results for quantum impurity models in steady state non-equilibrium.
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5.4 Results

This section considers a thermal energy current flowing through an initially empty tight-
binding chain. Later, also a Hubbard chain will be considered. The energy current is
given by the commutator of local Hamiltonians as introduced in eq. 118

hn =− t0
2

(c†n↑cn+1↑ + c†n↓cn+1↓ +H.c.) +

U

2
(ñn↑ñn↓ + ñn+1↑ñn+1↓) +

V (ñn↑ + ñn↓)(ñn+1↑ + ñn+1↓)

and a rather tedious calculation (for V = 0) leads to the energy current as introduced
in eq. 121

jE,n =
∑
σ

i
t20
4

(c†n+2σcnσ −H.c.) +

∑
σ

i
Ut0
4

(c†nσcn+1σ + c†n+1σcn+2σ −H.c.) ñn+1σ̄

In order to obtain such a thermal energy current, thermal baths were coupled to the
chain on both sides. The thermal baths were obtained through a thermofield approach
as introduced in chap. 5.3:
One starts with a bath in star geometry. By introducing an auxiliary bath for each ther-
mal bath and performing a Bogoliubov transformation, one obtains a thermal vacuum
containing the information of the temperature of the bath. After performing a particle
hole transformation, the bath (a1k) still is initially completely empty but the auxiliary
bath (a2k) is initially completely filled. Both baths couple to the chain and these cou-
pling parameters are temperature dependent.
The DOS of the bath was chosen constant. However, the convergence rate towards the
steady state thermal energy current was strongly depending on the area of the DOS. For
certain values, the thermal current would converge quite fast towards the steady state
current whereas for higher or lower areas, the current showed strong oscillations. In the
following results, a DOS area which guarantees fast convergence was chosen.
The calculations were performed applying both TEBD and TDVP as introduced in chap-
ters 3.4 and 3.5. Simulations applying TEBD showed an exponentially increasing bond
dimension with time. Therefore, the total simulation time was limited. Applying TDVP
made it possible to obtain equally accurate results but using smaller bond dimensions.
The one-site TDVP algorithm will be denoted as TDVP1 and similarly, the two-site
TDVP algorithm will be denoted as TDVP2.
As the time until the system chain is in equilibrium strongly depends on the length of
the chain, calculations were, unless otherwise noted, performed for a chain length of 3
as this is the minimum length required to measure the thermal current as defined in
eq. 121.
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5.4.1 Fixed Temperature in Right Bath

Like in [22], the thermal current for different temperatures in the left bath was calculated.
The temperature of the right bath was kept constant at βR = 0 and βR = 1, respectively.
The tight-binding chain in the middle had 3 sites and was connected to the two 50 sites
large baths with different temperatures. The thermal current was always measured on
the first site of the impurity (site 51). The results can be found in fig. 34 and are in very
good agreement with the results from [22], which can also be seen in fig. 35.
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Figure 34: Thermal current for constant βR = 0 and βR = 1 with different βL. After
shifting the curves with the same βR = 0 vertically, they all converge towards the same
steady state current as the curve with the same βL and βR = 1. The time evolution was
performed by applying TDVP2.

The occupation number plot for one of the simulations from fig. 34 with βL = 0.5 and
βR = 0.0 can be found in fig. 36. The occupation number of the baths clearly shows
the thermal vacuum: The bath is initially empty and the auxiliary bath is initially filled
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as a particle hole transformation was performed. The chain in the middle eventually
reaches a steady state where all sites are half-filled. Fig. 35 shows the results obtained
by Karrasch in [22], where he also simulated the thermal current flux for the integrable
model and βR was fixed to βR = 0, 1, 2. However, he uses a model with an interaction
strength of U = 1 and U = 4 (see eq. 118) in fig. 35 (a),(b) and (c),(d), respectively.
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Figure 35: Results for the thermal flux between baths at different temperatures from
Karrasch[22]. The results are calculated for the integrable model with interaction U = 1
in (a),(b) and U = 4 in (c),(d). However, Karrasch applies the method of purification
to obtain the thermal baths in contrast to the thermofield approach which was chosen
in this thesis. Still, there is a very good qualitative agreement with fig. 34 regarding
the steady state behaviour of the thermal current: The currents for a certain βR are
shifted vertically until they overlap with the steady state values for a different βR and
the respective values for βL. All currents are shifted for the same value.
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Figure 36: Occupation number on all sites for the thermal system with βL = 0.5 and
βR = 0.0. The initially full bath sites get emptied as the middle chain converges towards
half-filling and some particles also flow into the empty bath sites.

5.4.2 Convergence

The simulation time is limited by the size of the baths as finite size effects occur and
destroy the steady state. As mentioned before, the time it takes the system to go into the
steady state thermal energy current strongly depends on the area of the constant DOS.
For all the calculations above, an area that achieves optimal convergence was chosen for
the DOS. In fig. 37, the dashed line depicts the area with the fastest convergence towards
the steady state. Fig. 37 also shows that, compared to the optimal value which was found
to be A = 2.25, both too large as well as too small areas cause large oscillations in the
thermal energy current, making it impossible to obtain a steady state within reachable
simulation time.
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Figure 37: Comparison of the thermal current for different baths which only differ in
the area of the constant DOS.

5.4.3 Hubbard Chain Simulations

The very same model as above can also be applied to a Hubbard chain instead of a
tight-binding chain. However, introducing also spin down particles makes the problem
of an exponentially increasing bond dimension even worse. These bond dimensions limit
the maximum simulation time even stronger than for the case of a tight-binding chain.
In order to obtain reliable results, the truncation errors were monitored and as they
exceeded 10−8 because of the exponentially growing bond dimensions, the simulation
was aborted.
Here, a Hubbard chain of length 3 was coupled to two baths with 30 sites and temper-
atures βL = 0.0 and βR = 0.4. The chain not only had a hopping parameter t = 1 but
also on-site Coulomb repulsions of U = 1, 4 and 8. The initial state of the chain was
empty but in this case, the full sites in the auxiliary bath a2k are now filled not only with
a spin up electron but also with a spin down electron. In this TEBD time evolution, the
maximum bond dimension of 4200 was reached at around t = 1.7, leading to maximum
truncation errors larger than 10−8 soon afterwards. The semi-logarithmic plot in fig. 38
shows the exponential growth of the bond dimension.
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Figure 38: Semi-logarithmic plot of the maximum bond dimension growing with time
clearly showing the exponential growth of the bond dimension for a system with a
Hubbard chain with U = 1, 4 and 8. At around t = 1.7, the maximum bond dimension
of 4200 was already reached and soon afterwards, truncation errors larger than 10−8

were observed.

The thermal current, which was calculated with eq. 121, can be seen in fig. 39. Obviously,
the steady state has not been reached before the simulation had to be stopped due to
exploding bond dimensions and truncation errors, respectively.
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Figure 39: Thermal current for a Hubbard chain of length 3 with two baths with 30 sites
at inverse temperatures βL = 0.0 and βR = 0.4. The simulation time is limited by the
exponentially growing bond dimensions and therefore no steady state could be reached.
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6 Comparison of TEBD and TDVP

The reason to apply TDVP were the exponentially increasing bond dimensions we faced
in time evolutions applying TEBD. In [17], Leviatan et al. present very surprising
results for time evolutions applying TDVP: They report that certain local quantities are
conserved during time evolution, even for very small bond dimensions in the order of
χ = 10. Thus, TDVP was applied in the present thesis to investigate whether thermal
energy current can also be accurately described with such small bond dimensions.
At first, the two-site TDVP algorithm TDVP2 was tested against TEBD results in the
well known simulation which can be seen in fig. 34. Fig. 40 shows that both algorithms
obtain correct results for a system with 50 bath sites at inverse temperatures βL = 0.5
and βR = 0.0 in the respective thermal baths.
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Figure 40: Comparison of the thermal current for the same system achieved by using
TDVP2 and TEBD. The results show very good agreement although TDVP2 needs
smaller bond dimensions. (see fig. 41)

The maximum bond dimension for this simulation can be found in fig. 41. Interest-
ingly, TDVP2 almost immediately reaches the maximum bond dimension of 300. The
TEBD algorithm at first starts at way lower bond dimensions. However, due to the
exponentially increasing bond dimensions, TEBD eventually needs much higher bond
dimensions. Therefore, the TDVP2 algorithm was tested for very small bond dimen-
sions to investigate how small maximum bond dimensions can get while the thermal
current is still accurately represented.

67



Comparison of TEBD and TDVP

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1,000

1,200

time * tmid

m
a
x
.

b
o
n

d
d

im
en

si
on

max bond dimension TDVP
max bond dimension TEBD

Figure 41: Maximum bond dimension of the simulation depicted in fig. 40 for TEBD
and TDVP2.

6.1 Accuracy at small bond dimensions

According to the paper by Leviatan et al.[17], TDVP is able to satisfy certain conser-
vation laws and is therefore able to accurately describe observables, which depend on
quantum processes on small scales, even for very small bond dimensions. This approach
was at first tested for the two-site TDVP algorithm described in chap. 3.5.3. Here,
the relevant observable was the thermal energy current in a tight-binding chain. The
simulation was started with βL = 0.5 and βR = 0.0, both baths consisted of 30 sites.
Obviously, quite high temperatures are applied which goes well together with [17] as
they also consider systems at high temperatures. The results can be seen in fig. 42 and
show that the thermal current is not conserved by the TDVP2 algorithm for small bond
dimensions. At very short times, all currents are aligned. As time goes on, the result
for the simulation with χ = 5 diverges around t = 0.5. Just before t = 2, the result for
χ = 10 also clearly diverges from the other results and the same is happening to the
χ = 20 result at t = 3. This clearly shows that the insufficient bond dimension χ causes
the thermal current to deviate from the exact result. The smaller the bond dimension
is, the earlier the results get useless. Of course, a higher bond dimension results in a
more accurate description for longer times as a completely unrestrictedly growing bond
dimension would lead to the exact result (with respect to truncation errors, other errors
arise due to the Trotter-Suzuki decomposition). Strong oscillations can be seen and the
currents are even changing their sign. Even the largest bond dimension of χ = 60 is not
large enough to reach the thermal current steady state.
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Figure 42: Thermal current for a system with βL = 0.5 and βR = 0.0 simulated with
TDVP2 at very low bond dimensions. Clearly, no steady state current is reached.

The results for very small bond dimensions seem to be completely useless even after
very short times. For longer times there is as well no indication whatsoever that those
thermal currents would eventually converge towards the same value. This contrasts with
the results by Leviatan et al., especially with their idea of a “hydrodynamic long time
tail”. The thermal current for longer times can bee seen in fig. 48 in chap. A.6 but shows
no qualitative difference: The thermal currents for different bond dimensions are oscil-
lating, even reach positive values although a negative steady state current is expected.

As it seemed that the TDVP2 algorithm actually did not conserve the thermal cur-
rent for small bond dimensions, TEBD, one-site and two-site TDVP were all tested on
a smaller system with only 12 bath sites. At first, all three algorithms were applied at
sufficient bond dimensions. In the case of TEBD, the truncation error was monitored
and the simulation was stopped when the error became larger than 10−8. This usually
happened shortly after the maximum bond dimension was reached. In the case of TDVP,
the maximum bond dimension was soon reached in the case of two-site TDVP, similar
to fig. 41. In the case of one-site TDVP, the bond dimension was given and fixed from
the beginning. We found that, in order to run the simulation properly, the first two
steps of the one-site TDVP time evolution had to be done with two-site TDVP. The
convergence of the results could be checked by repeating the calculation with a higher
maximum bond dimension or by comparing the results to TEBD runs for the same initial
conditions. Furthermore, the steady state current also turned out to be a good indicator
for the convergence of the calculation as the steady state is very sensitive to inaccuracy.
Very soon after the calculation gets inaccurate, the measured thermal energy current
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will significantly diverge from the steady state value.
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Figure 43: Thermal current for a small test system with 12 bath sites (βL = 0.5 and
βR = 0.0) and 3 sites in the middle chain. The thermal current was calculated with
TEBD, TDVP1 with a bond dimension of 150 and TDVP2 with a maximum bond
dimension of 300.

Fig. 43 shows the thermal current calculated with 3 different time evolution algorithms:
TEBD, TDVP1 and TDVP2. While the TEBD reaches matrix dimensions of more than
800 at time t = 4, the TDVP simulations run with smaller bond dimensions at the same
accuracy and also obtain the correct steady state current.
Now the question arises, whether the steady state thermal energy current of this small
system could still be captured for very small bond dimensions in the case of either
TDVP1 or TDVP2. Therefore, the simulation was done again, at first for TDVP2 with
relatively small maximum bond dimensions ranging from 20 to 300. The results can be
seen in fig. 44
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Figure 44: Thermal current for a small test system with 12 bath sites (βL = 0.5 and
βR = 0.0) and 3 sites in the middle chain. The thermal current was calculated with
TDVP2 with maximum bond dimensions 20, 60, 90 and 100 and 300.

As one can see, there is no conservation of the steady state current. For small times, all
simulations coincide, but for larger times, the small bond dimensions are insufficient to
capture the steady state current and the results are getting inaccurate.
However, in [17] there was a one-site TDVP algorithm applied. The major difference
between TDVP2 and TDVP1 is that in TDVP2, two sites are time evolved together and
later separated by applying an SVD. The appliance of an SVD includes truncation and
one could assume that this truncation might destroy the conserving properties of the
TDVP algorithm. The results for small bond dimensions using the TDVP1 algorithm
can be found in fig. 45.
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Figure 45: Thermal current for a small test system with 12 bath sites (βL = 0.5 and
βR = 0.0) and 3 sites in the middle chain. The thermal current was calculated with
TDVP1 with bond dimensions 20, 60, 90, 100 and 300.

Fig. 45 clearly shows that also for the one-site TDVP algorithm, the thermal current is
not a conserved quantity for small bond dimensions. For longer times, the calculations
just get more inaccurate, similar to the two-site TDVP algorithm as depicted in fig. 44.
One can also see that for the same bond dimension, TDVP1 and TDVP2 obtain results
for the steady state current which have the same accuracy.
Both figs. 44 and 45 clearly show that, although the simulation is quite accurate for some
time, to simulate the steady state current at larger times, one needs matrix dimensions
significantly larger than the ones used in [17], where Leviatan et al. performed time
evolutions with very small bond dimensions ranging from χ = 2 to χ = 16.
As a comparison, the same system was now also simulated by applying TEBD at several
bond dimensions. The results can bee seen in fig. 46.
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Figure 46: Thermal current for a small test system with 12 bath sites (βL = 0.5 and
βR = 0.0) and 3 sites in the middle chain. The thermal current was calculated with
TEBD with maximum bond dimensions 20, 40, 100, 200 and 1000.

As expected, TEBD also delivers inaccurate results for insufficient bond dimensions.
One can also see that for such a small system and at short times, the TEBD algorithm
can as well deliver results of comparable accuracy to the results obtained by TDVP
although the maximum bond dimension was restricted.
Finally, the computation times for the three algorithms and the respective bond dimen-
sions were compared. The results can be found in fig. 47
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Figure 47: Computation time for the calculations in figures 44, 45 and 46.

In fig. 47 one can see that the calculations for TDVP1 take an order of magnitude longer
than the TDVP2 calculations for the same bond dimensions. This is due to the fact
that the TDVP2 algorithm time evolves two sites of the chain at once. This is done by
multiplying two sites together and separating them with an SVD after the time evolution
was performed. Therefore, the TDVP2 algorithm is able to change the bond dimension.
However, the TDVP1 algorithm only acts on a single site and can therefore not change
any bond dimension. This means that if one chooses a maximum bond dimension of
100, every single bond has to be initialized at bond dimension 100 which massively slows
down the calculations.
One can also see that the TEBD algorithm is another order of magnitude faster than
the TDVP2 algorithm. This can be understood from fig. 41: While the maximum bond
dimension is almost instantly reached in the case of the TDVP2 algorithm, the TEBD
algorithm uses way smaller bond dimensions at low times which explains the difference
in computation times. Therefore, for small times and small systems, the TEBD algo-
rithm is definitely the better choice. For larger times and larger systems, the TDVP2
algorithm can get more advantageous as it needs smaller bond dimensions while the
bond dimensions are exponentially increasing in the case of the TEBD algorithm.

To sum up, the claim by Leviatan et al. that certain quantities are conserved for time
evolution applying TDVP even for very small bond dimensions could not be replicated
in the case of steady state thermal energy currents flowing between thermal baths. How-
ever, both the TDVP1 and TDVP2 algorithm require lower bond dimensions than the
TEBD algorithm in order to achieve results at the same accuracy.
In a very recent paper, Kloss et al. also discuss the long time behaviour of TDVP in the
context of MPS.[39] They study the convergence of long time observables in integrable
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systems and come to the conclusion “that convergence of long time observables is subtle
and needs to be examined carefully.” However, they conclude that the method “might
still be asymptotically accurate for a class of nonintegrable quantum systems.” To study
such systems, they considered the spreading of a spin-excitation in the one-dimensional
XXZ model as a function of time. The results are then averaged over a few hundred ini-
tial spin configurations, hoping that the method will on average produce correct results
due to the properties of the TDVP algorithm discussed above. They further conclude
that the apparent convergence of long time observables like the diffusion coefficient ob-
tained by TDVP does not indicate that the method is accurate and might even be very
misleading. They could also find examples where the method failed to deliver correct
results, although in other cases like the disordered XXZ model in the ergodic subdiffusive
phase, very accurate results for the long time behaviour could be obtained. They finally
conclude that one should be very careful when studying the convergence of long time
properties within the MPS-TDVP approach. Although the correct long time dynamics
could be obtained in a special case, in general one can not draw reliable conclusions from
the apparent convergence of transport behaviour. This claim is supported by the results
obtained in this chapter.
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7 Conclusions

In this thesis, the particle current and the thermal energy current in one-dimensional
systems were studied.

The discussion of particle currents can be found in chapter 4.2, where both Wilson
chain and star geometries were applied to model baths which were then coupled onto
tight-binding and Hubbard chains. Regarding the DOS of the baths, either a constant
or a semi-circular DOS were considered. The particle current can either be induced
by a different initial filling of the two baths or by applying a bias voltage (see [23]).
The growth of the von Neumann entanglement entropy on the first bond of the chain
(see figs. 14 and 15) was studied as well as the entanglement entropy throughout the
whole system (see figs. 16 and 17). On the first bond of the chain, a linearly growing
entanglement entropy could be observed for both geometries. For a bath consisting of a
tight-binding chain with constant hopping parameter t, a plateau in time of the entan-
glement entropy could be observed in fig. 19.
The steady state values for both current and occupation numbers can be seen in figs. 27
and 28. After a short time, the particle current reaches a steady state value which grows
with the area of the DOS and is the same for all sites of the chain. The steady state
occupation numbers differ throughout the system. The convergence of the entanglement
entropy for different bath sizes and bandwidths of the DOS can be seen in fig. 29 for a
chain geometry bath and in fig. 30 for star geometry baths.
The steady state current and the entropy for a Hubbard chain on which a bias voltage
is applied can bee seen in figs. 31 and 32.

Thermal currents between two baths were studied in [22]. However, instead of ap-
plying the commonly used method of purification, in this thesis the thermal baths were
modelled by applying a thermofield approach on star geometry baths as presented in
[2]. Steady state thermal currents flowing through tight-binding chains for different
temperatures of the left bath can be found in fig. 34 and show that the steady state
value is only a function of the temperatures of the left bath and the right bath of the
form f(βL) − f(βR). After a thermalization time, the steady state is reached but this
convergence rate heavily depends on the area of the DOS of the system and therefore
on the coupling strength of the bath to the system as shown in fig. 37. In the case of
Hubbard chains, due to the presence of particles with both spins, the maximum bond
dimensions showed an even faster, exponential growth (see fig. 38) and therefore, the
steady state thermal energy current could not be reached within the simulation time
which was limited by the maximum bond dimensions (see fig. 39).

Finally, the capability of TDVP1 and TDVP2 to capture thermal currents at (com-
pared to TEBD) small bond dimensions was investigated. Generally, due to the optimal
representation of a state at a given bond dimension, TDVP needs smaller bond dimen-
sions for an accurate time evolution as it was shown in fig. 40 and fig. 41, respectively.
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However, very small bond dimensions on the order of χ = 10 were insufficient of captur-
ing thermal current steady states as was shown in fig. 42. This was not even possible for
small systems as shown in figs. 44 and 45. Thus, the claim by Leviatan et al. [17] that
TDVP conserves certain quantities at very small bond dimensions could not be replicated
in the case of steady state thermal energy currents flowing through tight-binding chains
between two thermal baths. Both the TDVP1 and the TDVP2 algorithm can obtain
accurate results for bond dimensions smaller than those needed by the exponentially
growing bond dimensions in the case of TEBD. On the other hand, TEBD needs an
order of magnitude less computation time than the TDVP2 algorithm as can be seen in
fig. 47. TDVP1 needs another order of magnitude more computation time than TDVP2
at the same bond dimension and accuracy, respectively. Therefore, the TEBD algorithm
is more advantageous, especially for small systems and short simulation times.
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A Appendix

A.1 List of appreviations

• DMRG: Density Matrix Renormalization Group

• DOS: Density Of States

• MPS: Matrix Product State

• MPO: Matrix Product Operator

• SIAM: Single Impurity Anderson Model

• SVD: Singular Value Decomposition

• SvN: von Neumann entanglement entropy

• TEBD: Time-Evolving Block Decimation

• TDVP: Time Dependent Variational Principle

• TDVP1: One-Site Time Dependent Variational Principle

• TDVP2: Two-Site Time Dependent Variational Principle
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A.2 Bogoliubov transformation I

We want to calculate expressions of the form

eXY e−X (144)

For these expressions, a serial expansion exists:

eXY e−X =

∞∑
m=0

1

m!
[X,Y ]m (145)

with
[X,Y ]m = [X, [X,Y ]m−1]

[X,Y ]0 = Y
(146)

In our case, X = −iG and Y = bk with G = i
∑

k θk(b
†
kc
†
k − ckbk).

Using [−iG, bk] = θkc
†
k and [iG, c†k] = −θkbk, the following results can be obtained

[X,Y ]0 = Y

[X,Y ]1 = [X, [X,Y ]0] = [X,Y ] = [−iG, bk] = −θkc†k
[X,Y ]2 = [X, [X,Y ]1] = [−iG,−θkc†k] = θk[iG, c

†
k] = −θ2

kbk

[X,Y ]3 = [X, [X,Y ]2] = [−iG,−θ2
kbk] = θ2

k[iG, bk] = θ3
kc
†
k

[X,Y ]4 = [X, [X,Y ]3] = [−iG, θ3
kc
†
k] = θ3

k[−iG, c
†
k] = θ4

kbk

[X,Y ]5 = [X, [X,Y ]4] = [−iG, θ4
kbk] = θ4

k[−iG, bk] = −θ5
kc
†
k

[X,Y ]6 = [X, [X,Y ]5] = [−iG,−θ5
kc
†
k] = θ5

k[iG, c
†
k] = −θ6

kbk

(147)

Putting the results from eq. 147 into eq. 145, one obtains the final result:

eXY e−X =

∞∑
m=0

1

m!
[X,Y ]m

= bk − θkc†k −
1

2!
θ2
kbk +

1

3!
θ3
kc
†
k +

1

4!
θ4
kbk −

1

5!
θ5
kc
†
k −

1

6!
θ6
kbk

= bk(1−
1

2!
θ2
k +

1

4!
θ4
k −

1

6!
θ6
k + ...)− c†k(θk −

1

3!
θ3
k +

1

5!
θ5
k − ...)

e−iGbke
iG = bk cos(θk)− c†k sin(θk)

(148)
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A.3 Bogoliubov transformation II

Starting from the transformed Hamiltonian

H̃ =HS +
∑
k

ωk(a
†
1ka1k − a†2ka2k)+∑

k

g1k(L
†a1k + a†1kL) +

∑
k

g2k(La2k + a†2kL
†)

(149)

we will transform it backwards using

a1k = e−iGbke
iG = cos(θk)bk − sin(θk)c

†
k

a2k = e−iGcke
iG = cos(θk)ck + sin(θk)b

†
k

(150)

where g1k = gk cos(θk) and g2k = −gk sin(θk). Transformation of the first part gives

a†1ka1k − a†2ka2k =(cos(θk)b
†
k − sin(θk)ck)(cos(θk)bk − sin(θk)c

†
k)−

(cos(θk)c
†
k + sin(θk)bk)(cos(θk)ck + sin(θk)b

†
k)

= cos2(θk)(b
†
kbk − c

†
kck) + sin2(θk)(ckc

†
k − bkb

†
k)+

sin(θk) cos(θk)(−b†kc
†
k − ckbk + c†kb

†
k + bkck)

(151)

Using the fermionic commutator relations, namely ckc
†
k = 1− c†kck,

cos2(θk)(b
†
kbk − c

†
kck) + sin2(θk)(b

†
kbk − c

†
kck) =

b†kbk − c
†
kck

(152)

This gives the final transformation of the first part:∑
k

ωk(a
†
1ka1k − a†2ka2k) =

∑
k

ωk(b
†
kbk − c

†
kck) (153)

The transformation of the second part gives

g1k(L
†a1k + a†1kL) + g2k(La2k + a†2kL

†) =

gk cos(θk)(L
†(cos(θk)bk − sin(θk))c

†
k + (cos(θk)b

†
k − sin(θk)ck)L)−

gk sin(θk)(L(cos(θk)ck + sin(θk)b
†
k) + (cos(θk)c

†
k + sin(θk)bk)L

†) =

gk(cos2(θk)(L
†bk + b†kL) + sin2(θk)(Lb

†
k + bkL

†)+

sin(θk) cos(θk)(−L†c†k − ckL+ Lck + c†kL
†) =

gk(L
†bk + b†kL)

(154)

Therefore,

∑
k

g1k(L
†a1k + a†1kL) +

∑
k

g2k(La2k + a†2kL
†) =

∑
k

gk(L
†bk + b†kL) (155)
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A.4 Thermal vacuum verification

The thermal vacuum is given by

|Ω〉 ∝ e−βHB/2 |I〉 (156)

where |I〉 =
∑

n |n〉b |n〉c = |0〉b |0〉c + |1〉b |1〉c for fermions. HB is given by

HB =
∑
k

ωkb
†
kbk (157)

For this proof, we will only consider a fixed k value and show that applying a1k to that
state is equal to zero. Using only one k value, the thermal vacuum reads

e−βωkb
†
kbk/2(|0〉b |0〉c + |1〉b |1〉c) =

(1 +

∞∑
m=1

(−β
2
ωkb
†
kbk)

m)(|0〉b |0〉c + |1〉b |1〉c)
(158)

Now we can apply the two parts of a1k = cos(θk)bk − sin(θk)c
†
k:

cos(θk)bk |Ω〉 =

cos(θk)bk(1 +

∞∑
m=1

(−β
2
ωkb
†
kbk)

m)(|0〉b |0〉c + |1〉b |1〉c) =

cos(θk)bk(1−
β

2
ωkb
†
kbk + 1/2(−β

2
ωkb
†
kbk) + ....)(|0〉b |0〉c + |1〉b |1〉c) =

cos(θk)bk(|0〉b |0〉c + |1〉b |1〉c −
β

2
ωk |1〉b |1〉c + 1/2(−β

2
ωk)

2 |1〉b |1〉c + ...) =

cos(θk)bk(|0〉b |0〉c + e−
β
2
ωk |1〉b |1〉c) =

cos(θk)bke
−β

2
ωk |1〉b |1〉c =

cos(θk)e
−β

2
ωk |0〉b |1〉c

(159)

sin(θk)c
†
k |Ω〉 =

sin(θk)c
†
k(|0〉b |0〉c + e−

β
2
ωk |1〉b |1〉c) =

sin(θk)c
†
k |0〉b |0〉c =

sin(θk)c
†
k |0〉b |1〉c

(160)

Combining these two parts, we obtain
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a1k |Ω〉 =
(

cos(θk)e
−β

2
ωk − sin(θk)

)
|0〉b |1〉c

=
(√

1− nke−
β
2
ωk −

√
nk

)
|0〉b |1〉c

=

(√
1− 1

eβωk + 1
e−

β
2
ωk −

√
1

eβωk + 1

)
|0〉b |1〉c

=

√e−βωk − e−βωk

eβωk + 1
−
√

1

eβωk + 1

 |0〉b |1〉c
=

√e−βωk + 1

eβωk + 1
− e−βωk

eβωk + 1
−
√

1

eβωk + 1

 |0〉b |1〉c
=

(√
1

eβωk + 1
−
√

1

eβωk + 1

)
|0〉b |1〉c

a1k |Ω〉 = 0

(161)

As the different k values commute with each other, showing this relation for a single k
is sufficient to show that eq. 156 is also a representation of the thermal vacuum.

83



Appendix

A.5 Energy current calculation

The energy current is defined by

jE,n = i[hn+1, hn] (162)

If we only consider the tight binding contribution in eq. 118, hn is given by

hn = − t0
2

(c†n↑cn+1↑ + c†n↓cn+1↓ +H.c.)

= − t0
2

∑
σ

(c†nσcn+1σ︸ ︷︷ ︸
:=Mnσ

+H.c.)

= − t0
2

∑
σ

(Mnσ +M †nσ)

(163)

Therefore, the energy current reads

jE,n = i[hn+1, hn] =
∑
σσ′

i
t20
4

[Mn+1σ +M †n+1σ,Mnσ′ +M †nσ′ ] (164)

The first contribution to jn reads

[Mn+1σ,Mnσ′ ] = [c†n+1σcn+2σ, c
†
nσ′cn+1σ′ ] (165)

Using [AB,C] = [A,C]B +A[B,C] and [C,AB] = {C,A}B −A{C,B}, this leads to

[c†n+1σcn+2σ, c
†
nσ′cn+1σ′ ] =

[c†n+1σ, c
†
nσ′cn+1σ′ ]cn+2σ + c†n+1σ [cn+2σ, c

†
nσ′cn+1σ′ ]︸ ︷︷ ︸
=0

=

({c†n+1σ, c
†
nσ′}︸ ︷︷ ︸

=0

cn+1σ′ − c†nσ′ {c
†
n+1σ, cn+1σ′}︸ ︷︷ ︸

δσσ′

)cn+2σ =

[Mn+1σ,Mnσ′ ] = −c†nσ′cn+2σδσσ′

(166)

If [A,B] = C then [A†, B†] = −C† and therefore

[M †n+1σ,M
†
nσ′ ] = c†n+2σcnσ′δσσ′ (167)

A similar calculation leads to

[M †n+1σ,Mnσ′ ] = [c†n+2σcn+1σ, c
†
nσ′cn+1σ′ ]

= [c†n+2σ, c
†
nσ′cn+1σ′ ]︸ ︷︷ ︸
=0

cn+1σ + c†n+2σ[cn+1σ, c
†
nσ′cn+1σ′ ]

= c†n+2σ({cn+1σ, c
†
nσ′}︸ ︷︷ ︸

=0

cn+1σ′ − c†nσ′ {cn+1σ, cn+1σ′}︸ ︷︷ ︸
=0

)

= 0

(168)
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Therefore, [Mn+1σ,M
†
nσ′ ] = 0 and eq. 164 simplifies to

jE,n = i
t20
4

[hn+1, hn]

=
∑
σσ′

i[Mn+1σ +M †n+1σ,Mnσ′ +M †nσ′ ]

=
∑
σσ′

i
t20
4

([Mn+1σ,Mnσ′ ] + [M †n+1σ,M
†
nσ′ ])

=
∑
σσ′

i
t20
4

(−c†nσ′cn+2σδσσ′ + c†n+2σcnσ′δσσ′)

=
∑
σ

i
t20
4

(c†n+2σcnσ − c
†
nσcn+2σ)

jE,n =
∑
σ

i
t20
4

(c†n+2σcnσ −H.c.)

(169)

The same result can be found for example in [25].
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A.6 Thermal current at small bond dimensions
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Figure 48: Thermal current for a system with βL = 0.5 and βR = 0.0 simulated with
TDVP2 at very low bond dimensions for long times. Clearly, no steady state current is
reached, even for longer simulation times.
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