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Abstract 

In this study, global sensitivity analysis is performed to determine relative importance of random variables 

and their interaction effects onto the response of concrete gravity dam model. The dam-foundation 

reservoir system is considered in this research to investigate the effect of input variables in the mentioned 

system. Material properties of concrete and foundation are assumed as random variables to tackle 

epistemic randomness involved in these models. The main novelty of this paper is to quantify the effect of 

each uncertain input variable and its interactions with other variables on the response of gravity dams. 

Most of the studies in the field of dam engineering focused on parametric or local sensitivity approaches. 

Nonetheless, these methods have the following drawbacks. First, they are based on only one point in the 

variable space. Second, the interaction between uncertain variables cannot be determined in parametric and 

local sensitivity analyses. On the other hand, in global sensitivity analysis, the interactions of random 

variable with other random variable are determined over the whole input space. In this research, variance-

based sensitivity analysis is utilized as the model free global sensitivity approach to accurately quantify the 

effect of each random variable in the response of concrete gravity dams. 

Keywords: Concrete Gravity Dam, Seismic Excitation, Global Sensitivity Analysis, Limit-State, 

Sensitivity Measure. 

 

 

1. INTRODUCTION 
 

The safety level of infrastructures is a critical concern and traditional methods consider simply safety 

factors for design and safety evaluation. As consequences of infrastructure including dams can be catastrophic, 

it is important to accurately evaluate the safety level of these systems. Furthermore, the failure of these 

infrastructures leads to substantial human casualties and economic losses. Consequently, employing more 

reliable approaches along with improved determination of loading conditions will result in more realistic 

assessments of safety. The complexity of Dam’s behavior and a plethora of uncertainty involved in their 

numerical models has to be tackled specifically in seismic analysis. The probabilistic approach is an effective 

method to take into account the aforementioned difficulties. Uncertainties can be due to material properties, 

geometry of structure, environmental phenomenon, loads, and other factors. The sources of uncertainty can 

generally be categorized into aleatory and epistemic randomness. An aleatory uncertainty is irreducible 

randomness due to the nature of phenomenon, while an epistemic uncertainty is related to a lack of knowledge 

and is measurable and reducible. 

Many previous studies have been determined an accurate assessment of dam safety under different 

failure modes, loading conditions, and various random variables were considered [1-4]. Nonetheless, many 

problematic issues have remained unsolved in these studies. They were unable to sufficiently determine the 

quantitative importance of the variables and utilized insufficient reliability methods and inappropriate 

performance criteria. Some studies used parametric analysis as a sensitivity analysis by applying perturbation to 

the mean of the random variables [5]. The local sensitivity analysis is based on the derivative of each random 

variable in a specific point, which can be the mean or the design point depending on the methods employed [6, 

7]. In global sensitivity analysis, the influence of entire range of variables is neglected. In addition, crude 

sampling methods, such as MCS, require a large number of samples to obtain acceptable accuracy. Hence, 

employing more efficient sampling methods is inevitable and it is intended to implement a reliability method on 

models with an intrinsic high computational cost [8-9]. 

In this investigation, the relative importance of each random variable along with its interaction with 

other random variables is determined. The variance-based sensitivity analysis (VBSA) is used for quantifying 

the importance of random variables. As the computational cost of each deterministic analysis is high, it is 

inevitable to use efficient sampling as the basis of the VBSA. For this purpose, Latin Hypercube sampling 

which is an efficient less time consuming sampling method than MCS is used. 
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2. MODEL DESCRIPTION 
 

For this research, the tallest monolith of the Pine Flat Dam, a concrete gravity dam in Central 

California, is selected as a case study. The geometry of dam’s body and the elevation of the reservoir are 

presented in Figure 1(a). The concrete properties are assumed to be linearly elastic and isotropic. The Pine Flat 

dam is modeled using two-dimensional finite element method in a plane-strain analysis. The dam-foundation-

reservoir interaction is considered in the model. The length of reservoir is assumed five times the dam height 

and non-reflective planar boundary condition is assigned as far-end boundary condition. The foundation rock is 

presumed to be massless. The finite element model of dam-foundation-reservoir is shown in Figure 1 (b). The 

material properties of concrete, water and rock foundation is presented in Table 1. 
 

 

 

(a) (b) 

Figure 1. Geometry, finite element model and element type of the case study 

 

Table 1- Material properties of dam-foundation-reservoir system 

 

For the seismic analysis, Taft ground motion, Kern County, 7/21/1952, Taft Lincoln School, 111, is 

utilized in three different level of intensity based on operating basis earthquake (OBE), maximum design 

earthquake (MDE) and maximum credible earthquake (MCE) having PGA of 0.18, 0.27 and 0.45 g, 

respectively. Based on damage index defined by Alembagheri and Ghaemian (2013), seismic performance of 

gravity dam can be pertinent to crest displacement. They utilized nonlinear static pushover and incremental 

dynamic analysis to quantify the crack state of Pine Flat gravity dam into crest displacement [10]. The crack 

initiation and ultimate state are considered for damage index determination. In their model, the concrete 

behavior in uniaxial tension is controlled by tension stiffening and tensile damage (dt). The degradation of the 

material stiffness due to damage propagation in terms of cracking normal displacement is considered. Crack 

initiation state is defined by the first element of dam body, commonly the hill element, exceeding tensile 

damage. Besides, the ultimate state is indicated by the crack propagation of the dam’s neck as well as the other 

cracked part of the dam body. In these states, the crest displacement has been considered as a performance 

criterion.  

                                  Material Value 

Concrete 

Elasticity modulus 30 (GPa) 

Poisson’s ratio 0.2 

Density 2400 (kg/m3) 

First and third mode damping ratio 5 % 

Water 
Density 1000 (kg/m3) 

Bulk modulus 2.07 (GPa) 

Foundation Rock 
Elasticity modulus 30 (GPa) 

Poisson’s ratio 0.33 
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In this study, the performance criteria are defined using aforementioned damage index and tensile over-

stressing indices as follows: 
 

 1 1 0x cf DI                                                                                                                                                   (1) 

max
c

d

U
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U
                                                                                                                                                           (2) 

 2 0x allf S S                                                                                                                                                    (3) 

 

Where f1(x) and f2(x) are the limit-state functions based on maximum crest displacement (MCD) and 

tensile over-stressing, respectively. Umax and S are the maximum crest relative displacement and tensile stress, 

respectively. Ud and Sall are the thresholds corresponding to displacement and stress limit-states, respectively. 

The domain f(x)<0 represents the failure domain of the responses. These performance criteria controlling the 

maximum crest displacement and the tensile over-stressing are used to define limit-state functions that are 

required for the uncertainty analysis. 

Material properties of dam and foundation rock are taken as random variables to quantify uncertainty in 

the current case study. According to engineering judgment and pertinent studies, these random variables are 

assumed to be uncorrelated and assigned probabilistic characteristics are shown in Table 2. Allocating nearly 

high value of standard deviation to the random variables is justified by large uncertainties involved in these 

variables due to lack of experimental and site data. In addition, influence of seismic randomness is assumed 

using parametric analysis to model uncertainty. 

 

Table 2- Probabilistic characteristics of defined random variables 

Random Variable Mean Standard Deviation Probability Distribution 

Concrete density (kg/m3) 2400 480 Lognormal 

Elasticity modulus of concrete (GPa) 30 0.6 Lognormal 

Ratio of elasticity modulus of rock 

foundation to concrete (GPa) 
0.625 0.216 Uniform 

Concrete Poisson’s ratio 0.2 0.04 Uniform 

 

3.   METHODOLOGY 
 

Variance-based sensitivity analysis (VBSA) determines the influence of each random variable and its 

interaction on the total variance of response, called first order (Si) and total sensitivity (STi) measures, 

respectively [11-15]. This method is appropriate for utilizing with complex nonlinear models. The main 

drawback of this method is its dependence on a number of random variables. The total number of analyses 

required for this approach is (N/2)*M. N and M represent the number of samples and random variables, 

respectively. VBSA was implemented using the Sobol method. The variance of output was decomposed to 

Sobol indices, which imply the first and total effect of each random variable. An analytical function, presented 

in Eq. 8, with three random variables has been selected to verify the accuracy of the implemented method. All 

random variables were uniformly distributed with a minimum and maximum value of   and  , respectively. 
4

1 2 3 1 2 3 1( , , ) sin sin sinf X X X X a X bX X                                                                                                (4) 

In the above equation, a and b are constant parameters and assumed to be 7 and 0.1, respectively [16]. 

The main (first order) and total of Sobol’ indices were calculated for different numbers of samples, as 

demonstrated in Figure 2. In spite of slight differences between the exact and calculated indices, the 

performance of this implemented approach can be observed. For instance, importance measures for N=1024 

were calculated and their comparison with exact values are presented in Table 3. 
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Figure 2. Verification of implemented VBSA (Sobol’ indices) tested for equation 4. 
 

Table 3- Comparison of exact and calculated Sobol’ indices tested for equation 4. 

 Exact value Calculation for N=1024 

 Si STi Si STi 

X1 0.3138 0.5574 0.3140 0.5351 

X2 0.4424 0.4424 0.4468 0.5002 

X3 0 0.2436 0.0064 0.2847 

 

Utilizing Monte Carlo sampling in complex numerical models is not practical since a large number of 

samples are required to achieve an acceptable confidence level. Consequently, it is recommended to employ 

more efficient sampling approaches such as importance sampling, adaptive importance sampling, directional 

sampling, and Latin hypercube sampling (LHS) [17]. LHS was selected for this research since its efficiency and 

simplicity of implementation. On the other hand, the first step for implementation of importance and adaptive 

sampling is to find the design point, which is problematic as limit-state functions tend to be nonlinear. 

The LHS is a stratified Monte Carlo sampling that results in filling all the areas of the sample space [18]. LHS 

was implemented by dividing the cumulative density function (CDF) of each variable into N non-overlapping 

intervals having equal probability as shown in Figure 3. A value for the corresponding variable was randomly 

selected in each interval. The number of samples was then equal to the number of intervals. The sample matrix 

was defined for all the variables and for each interval as follows: 

1 1

, ,

0.5
( ) ( )

1,..., ; 1, ,

i j j i j j

i
x F p F
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i N j M

  
 

 

                                                                                                                                   (4) 

where M  is the number of random variables and 
1F

 is the inverse CDF of probability p. 

 

 
Figure 3. The algorithm of LHS 
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4. RESULTS 
 

The global sensitivity analysis is performed in the model based on 1,000 samples generated using LHS. 

The results are obtained separately for two defined limit-states, maximum crest displacement and maximum 

tensile stress. The first order and total sensitivity measures along with total variance values are calculated based 

on crest displacement and tensile stress, see Figures 4 to 6. 

The result of first order sensitivity measures indicate that for limit-state based on both MCD and 

maximum tensile stress, the most important variable is Young’s modulus of concrete. Furthermore, the second-

ranked important variable in the results based on MCD is the ratio of Young’s modulus of rock to concrete but 

in the results based on maximum tensile stress is concrete density. All the results indicate that concrete 

Poisson’s ratio is the least important variables in this model. Despite the dam is asymmetric and also the seismic 

loading is not identical in U/S and D/S direction, the results of MCD for both of these directions are 

approximately the same. It implies that the importance measures are independent of these situation and they are 

only pertinent to the performance functions. 

By comparing the first order and total sensitivity measures (in maximum tensile stress limit-state), it 

can be inferred that the elasticity modulus of concrete has higher impact on the results when its interaction with 

other variables is considered. For MCD limit-states, it is the ratio of Young’s modulus of rock to concrete is 

significantly affect the response of the dam and is the most important random variables. Based on the total 

sensitivity measures, the second-ranked important variables are Young’s modulus of concrete and the ratio of 

Young’s modulus of rock to concrete for limit-states based on MCD and maximum tensile stress, respectively. 

The total variance chart implies that the variance involved in the maximum tensile stress results is higher than 

MCD when considering first order effect. On the contrary, the total variance in total sensitivity calculation 

indicates that the variance involved in the maximum tensile stress is lower than MCD. 

It is noteworthy that the results of model subjected to OBE, MDE and MCE earthquake determined to 

be identical. The reason is that the model is linear and the by increasing intensity of ground motions, what it is 

in OBE, MDE and MCE earthquake, only shifts backward and forward the results and the variance of the 

responses are not changed. 

 

 
Figure 4. First order sensitivity measure results 
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Figure 5. Total sensitivity measure results 

 

 
Figure 6. Total variance involved in the results 

 

 

5.  CONCLUSIONS 

 
A probabilistic numerical model of concrete gravity dam subjected to seismic load is studied. In this 

study, the performance of concrete gravity dam is assumed to be associated with the maximum crest 

displacement and the maximum principal (tensile stress). For consideration of ground motion effects as a 

parametric study, the same ground motion with different intensity levels is applied to the model. The objective 

of this investigation is to accurately quantify the importance of random variables in the dam-foundation-

reservoir system. For this purpose, global sensitivity analysis based on Latin Hypercube sampling is 

implemented. The sensitivity measures are calculated for different limit-state functions. The results indicate that 

the most important variable based on first order sensitivity measure is concrete Young’s modulus. For results of 

total sensitivity measure, the most important variable is concrete Young’s modulus for maximum tensile stress 

based limit-state and it is the ratio of Young’s modulus of rock to concrete for MCD based limit-state. 
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