
Long-Term Behaviour and Environmentally Friendly Rehabilitation Technologies of Dams (LTBD 2017) DOI:10.3217/978-3-85125-564-5-079 

 

590 

 

Introducing a New Long-Lead Hydrologic Forecasting System for 

Improving Reservoir Operation 
 

 
Shahab Araghinjead1, Saeed Jamali2, Mohammad Hoseini Moughari3, Fereshteh 

Modaresi3 

1-Associate Professor, University of Tehran, IRAN 

2 Assistant Professor, Islamic Azad University, Central Tehran Branch, IRAN 

3- University of Tehran, Tehran, IRAN 

 
Email: araghinejad@ut.ac.ir 

 
Abstract 

Long-lead streamflow forecasting plays an important role in water resources planning and management. In 

this paper a new forecasting system named FARDA (Forecasting and Related Decision Analysis) is 

introduced. The results of the application of this system to two great river basins of Iran, namely Karkheh, 

and Karun are presented, briefly. Three data-driven models including K-Nearest Neighbor Regression 

(KNN), Artificial Neural Network (ANN), and monthly Rainfall-Runoff (R-R) models are performed within 

the system as individual forecasting models (IFMs). The fusion of all IFMs best outputs resulted from 

ordered series of model outputs is applied within the system to report the most reliable forecasts. All the 

forecasting models are presented in the model base of FARDA. Furthermore, the model base of the system 

consists of reservoir operation models which get benefit from the outputs of forecasting models to provide 

the best operating policies for the system of reservoirs.  The inputs of those models are supported by the data 

base of the system which consists of different types of local and global hydro-climatological data as well as 

dams’ data and information.  This paper presents some characteristics of the system such as its conceptual 

model, the framework of its data and model base, and its specific graphical user interface. Some of the results 

of the application of the system in recent years is also presented.    

Keywords: long-lead forecasting, model base, data base, graphical user interface, great Karun river 

basin, Karkheh river basin. 

 

 

1.  INTRODUCTION  
 

  One of the most important issues in long-term management of the surface reservoirs is the awareness of 

the amount of inflow to the reservoirs for better decision making. Decision making is one of the most significant 

challenges in the field of water resources and environmental engineering because of either the complexity around 

a problem or the un-predicted impacts of a decision. This challenge might be a result of multi-disciplinary 

problems, which may put some contrasting objectives in a competition that no compromising is allowed [1]. To 

overcome this challenge, new technologies have presented powerful tools to increase efficiency and accuracy of 

decisions and to accelerate the responses in facing with the real world problems. Decision Support Systems 

(DSSs) are one of the most efficient tools, with distinctive ability approval in the enormous engineering contexts. 

This paper presents a DSS namely FARDA which has been developed for long-lead streamflow forecasting, 

specifically.  

  A strategy for increasing the accuracy of long-lead forecasting results is to apply data-driven models 

such as Neural Networks (NN) [2,3], K-Nearest Neighbor regression (KNN) [4], and Support Vector Machines 

[5,6] which are able to recognize different relations between predictor and predicted variables for forecasting 

process. Nevertheless, each of those models contains estimation errors that are inevitable, and somehow lead to 

decline the accuracy of the forecasts.  

  In order to decrease the forecasting errors resulted from modeling, model fusion technique has been 

applied in a variety of fields for forecasting process such as cooling-load prediction [7], stock market forecasting 

[8,9], and wind power forecasting [10]. 

  A forecasting model is developed to help solving a specific problem; however, in cases that we need to 

frequently face a generic forecasting problem and finding appropriate responses based on the current spatial and 

temporal state of a system, it is preferred to improve a model to a decision support system. Generally, the decision 

making procedure includes three main steps namely: data gathering, recognition of alternatives to solve a specific 

problem, and finally, selection of the best alternative. This procedure may be followed by two different 

approaches. In the first approach, well known mathematical formulation and decision rules are used 

algorithmically in different steps of solving a specific problem. Problems that are likely to be solved by this 
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approach are usually called structured problems. These kinds of problems could be possibly solved manually by 

the use of computer softwares, where no human judgment is needed. In contrast, in some problems, usually called 

unstructured problems, no decision rules and algorithmic procedure are defined and are dependent considerably 

to the human judgment to be solved. Decision support systems could be called as the second approach have been 

developed to be used in solving the latter.   

  Bonczek et al. [11] has defined DSSs as computer systems including three interactive components of 

user interface, a knowledge system, and a problem-processing system. Technology developments have changed 

slightly the definition of such systems in both holistic and detailed manner. Watkins and McKinney [12] have 

defined a DSS as a computer system which uses analytical models to help decision makers in defining and 

organizing various alternatives, and analyzing their impacts to choice most appropriate alternatives. In a general 

definition, the architecture of DSS consists of three components namely data base, model base, and user interface 

as shown in Figure 1.  

 

User Interface

Data base Model base 

 
 

Figure 1.  Main components of a decision support systems 
 

  DSSs usually are developed for a certain groups of decision makers. This needs a specific design such 

that decision maker could define new alternatives, and more importantly change an existing alternative to analyze 

that using the models embedded in the system.  Since the delay in responding by the system is considered as an 

index of inefficiency, an interactive user interface, easy change of input parameters, and quick, understandable 

and managed output are considered as characteristics of a DSS. Next sections of the paper present the main 

components of FARDA DSS. The paper ends with the results of applying the system in hydrological forecasting 

in recent years. However, the system deals with the reservoir operation models either, the emphasis of this paper 

is on the hydrological forecasting. 

 

2.  FARDA: A LONG-LEAD HYDROLOGIC FORECASTING SYSTEM 
 

2.1.  CONCEPTUAL MODEL 
 

To get benefit from the forecasting results in a real world system, the system has been developed which 

enables decision makers to have instant access to data, results of different models, applicable analysis, and saving 

the reports. As far as the general characteristics of the system is concerned, it is a platform to run different 

forecasting models, and integrating the forecasting results with reservoir operation models. The system is actually 

a combination of five following modules: 

 Data Base, 

 Long-lead forecasting models, 

 Reservoir operation models, 

 Management dashboard, and 

 Report generation.  

Figure 1 shows the conceptual model of the system demonstrating the relationship between different modules of 

the system.   
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Figure 2. Conceptual model of FARDA system 
 

2.2.  DATA BASE AND MODEL BASE  
 

Data base of the system consists of different local and global hydro-climatologic data and 

reservoir/hydropower data. Hydro-climatologic data of the system include: 
 

 Tele-connection signals including Southern Oscillation Index (SOI), Northern Atlantic Oscillation 

(NAO), and Pacific Decadal Oscillation (PDO), 

 Sea Surface Temperature (SST) data including Persian Gulf and Mediterranean SST,    

 Rainfall data, 

 Air temperature data, 

 Snow cover data, and 

 Historical inflow to the reservoirs. 

Dam’s data include 

 Elevation-area-volume curve of dams,  

 Hydropower plants parameters, and  

 Water demand values at downstream of each dam.  

 

Model base of the system includes forecasting models and reservoir operation models. All forecasting 

models are employed through the forecasting module of the system. This module is categorized to two interrelated 

sections: individual models, and the fused model. In addition, all models have been developed in a way to 

generate, upper bound, lower bond, and most probable forecast values. A list of applied models within the system 

is presented in Table 1.  

 

Table 1. Different forecasting models of the model base of the system 
Category Models Name of the Model in the System 

Individual Models Artificial Neural Network  AI 

K-Nearest Neighborhood Regression  K-NN 

Monthly Rainfall-Runoff Model R-R 

Fused Model Multi-Model Data Fusion Model [1] MMDF 
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Due to the effect of available water on the hydropower generation and water allocation of reservoirs, a 

reservoir operation module has been designed within the system. This module is fed by the results of forecasting 

module, explicitly. Actually, the inputs to the reservoir operation model comes directly from what has been 

resulted by the forecasting models (Figure 2).  

 

2.3.  GRAPHICAL USER INTERFACE  
 

Different graphical user interfaces in forms of interactive input/output forms, tables, graphs, and 

management dashboards have been designed and employed through the system. Examples of the graphical user 

interfaces are presented in this section.  

Figure 3, shows the main page of the system. Different modules are presented in this page including: 

 Data base,  

 Forecasting,  

 Reservoir Operation,  

 Dashboard,  

 System Management, and  

 Help  

Figure 4, demonstrates the interactive form for hydrologic data base of the system including 

meteorological data, hydrological data, climatic signals, sea surface e temperature, and reservoir data. Figure 5 

shows the user interface designed to report the results of forecasting in a matrix form. By this matrix the user is 

able to monitor the forecast results for the entire water year in a monthly basis. Furthermore, the observed inflow 

to the reservoirs from the beginning of each water year to the current time is illustrated in this matrix. Figure 6 

shows the management dashboard of the system which demonstrate the forecasting results in forms of informative 

gauges for months, seasons, half years, and annual basis. Each gauge demonstrate the situation of the forecasts in 

comparison with the historical experience of inflows to the reservoir. The user explores if the forecast values 

demonstrate a dry, normal, and wet situation at a glance. Seasonal and annual forecast are also shown in this 

dashboard. Furthermore, the details in seasonal and annual forecasts are reported in forms of graphs as shown in 

Figure 7.  
 

 

 
Figure 3. Main Page of the System 

 

 
Figure 4. Interactive Form for Hydrologic Data Base of FARDA 
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Figure 5. The reporting matrix of monthly/annual forecasts in FARDA   

 

 
Figure 6. Long-Term forecasting Dashboard of FARDA 

 
 Figure 7. The graph of seasonal and annual forecasts in the system 

  

3.   CASE STUDY AND RESULTS 
 

Forecasting of monthly to annual inflow to the Seimareh and Karkheh reservoirs in Karkheh river basin, 

and Karun VI, Karun III, Karun I, Godar, Gotvand and Dez reservoirs in Karun river in southwest of Iran, has 

been considered in the presented system. Figure 8 illustrates the location of those dams, rivers and their branches 

in Iran map.  At the beginning of each month, a monthly hydrograph of inflow to each reservoir is forecasted by 

the end of the water year. While the inflow to the upstream reservoirs (Seimareh ,Dez, and Karun VI) are 

forecasted as natural streamflow of the rivers, the inflow to the downstream series of reservoirs (Karkheh, and the 

remaining reservoirs on Karun river) are forecasted by the summation of river branches between two dams and 

the release by the upper dam. 
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Figure 8. Location of Karkheh, Dez, and Karun I dams  
 

Among the history of forecast values generated by the system, only a few of them is presented here as 

examples. Table 2 and Figure 9 show the forecast generated by the system for Seimareh dam in water year 2013-

14. The forecast error of the system for this dam has been 27 percent as far as the annual forecast generated at the 

beginning of the water year (October 2013) is concerned. The forecasts became more accurate by the errors of 21 

and 9 percent for the forecasts of January, and March 2014, respectively.  It demonstrates the precision of forecast 

by the system as its getting better by receiving new data and establishment of the climate situation. A similar 

evidence is shown in Figure 10, where the forecast values is illustrated for Karun IV reservoir by the October 

2011, and January 2012.      

 

Table 2. Long-lead forecasts for Seimareh dam in water year 2013-14 
Seimareh Dam 2013-14 

Observed 1156 

Forecast of October 850 

Forecast of January 914 

Forecast of March 1271 

 

As an overall experience of applying the system, an average error of 25 percent is expected at the 

beginning of each water year, however, the forecast errors became less in recent years where tuning of the models 

have been applied after real world experience of the system.   
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(a) 

(b) 

 
(c) 

 

Figure 9. Long-lead forecast of inflow to the Seimareh reservoir generated at October 

2013 (a) January 2014 (b), and March  2014 (c) (Red and Blue Lines demonstrate the 

forecast and observed values, respectively. The unit of the vertical axis is Million Cubic 

Meter) 
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(a) 

(b) 

 

Figure 10. Long-lead forecast of inflow to the Karun IV reservoir generated at October 

2011 (a) and January (b) 2012 (Red and Blue Lines demonstrate the forecast and 

observed values, respectively. The unit of the vertical axis is Million Cubic Meter) 
 

4.  CONCLUSIONS 
 

The aim of developing this system was to apply different models which need to be used in a regular basis 

to forecast the future of hydrologic state of the system for an optimal operation of surface reservoirs. While it was 

important to develop an efficient system, it was a significant aim to develop a system which is rather user friendly. 

The system is developed on the basis of a decision support system. Conceptual model of the system was presented 

in the paper as well as the main framework of its data base and model base and examples of its graphical user 

interface.  While the system deals with both forecasting and reservoir operation models, the focus of the paper 

was on the forecasting models. The novelty of the forecasting models of the system is the use of multi model 

fusion strategy which benefits from the skill of different individual forecasting models. The system was applied 

to the series of operating reservoirs in Karun and Karkheh river basins. The system could be applied to the other 

systems of reservoirs. The results of applying the system in real world experience demonstrate the efficiency of 

the system as an applicable tool for long-lead hydrologic forecasting.  
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