
Visualisation Islands

Interactive Visualisation and Clustering of Search Result
Sets

Vedran Sabol

Visualisation Islands

Interactive Visualisation and Clustering of Search Result Sets

Master’s Thesis

at

Graz University of Technology

submitted by

Vedran Sabol

Institute for Information Processing and Computer Supported New Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

October 2001

c© Copyright 2001 by Vedran Sabol

Advisor: Univ.Ass. Dr. Keith Andrews

Coadvisor: Dipl.-Ing. Christian G̈utl

Visualisation Islands

Interaktive Visualisierung und Clustering von Suchresultatssätzen

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Vedran Sabol

Institut für Informationsverarbeitung und Computergestützte neue Medien (IICM),
Technische Universität Graz

A-8010 Graz

Oktober 2001

c© Copyright 2001, Vedran Sabol

Diese Arbeit ist in englischer Sprache verfaßt.

Betreuer: Univ.Ass. Dr. Keith Andrews

Mitbetreuender Assistent: Dipl.-Ing. Christian Gütl

Abstract

The amount of knowledge available electronically is increasing exponentially. Huge amounts
of information are available over the Internet and searching for a specific topic often results in a
large number of matches. A significant portion of hits is often not at all of interest and the retrieved
information contains no explicit relations between different hits, making it hard to obtain an overview
and find relevant information.

Visualisation is a powerful technique for distinguishing relevant from non-relevant information
and for locating information of interest easily and efficiently. This thesis describes Visualisation Is-
lands, a system for topically organising documents returned in a response to a search query according
to their similarity. Search results are visualised in the form of an explorable, intuitive, topically organ-
ised topographic map, where relationships between documents are encoded by proximity. Topically
similar documents are grouped together forming densely populated areas visualised as mountains and
labeled with corresponding documents’ keywords. These areas are separated by lower areas or water
containing less similar objects.

The topical map visualisation is constructed by applying clustering algorithms on documents in
vectorised form, creating groups of similar documents, subsequently positioning the documents in
the 2-D viewport space according to the similarity of their vectors by using a force-directed place-
ment algorithm, and generating a topographic background image based on computed 2-D document
coordinates. To provide platform-independence Visualisation Islands is implemented in Java.

Kurzfassung

Die Menge von elektronisch verfügbarem Wissen steigt exponentiell. Riesige Mengen von In-
formationen sind im Internet vorhanden und das Suchen nach einem spezifischen Thema resultiert
sehr oft in einer grossen Anzahl von Treffern. Ein signifikanter Anteil dieser Treffer ist jedoch nicht
von Interesse und die zurückgelieferte Information enthält keine explizite Zusammenhänge zwischen
einzelnen Treffern, was den̈Uberblicküber die ganze Menge der Suchergebnisse und das Auffinden
relevanter Information besonders erschwert.

Visualisierung ist eine m̈achtige Technik um die relevanten von den nicht relevanten Daten zu un-
terscheiden und die Information, welche von Interesse ist, leicht und effizient zu finden. Diese Arbeit
beschreibt Visualisation Islands, ein System, das die Dokumente, die als Antwort zu einer Suchan-
frage zur̈uckgeliefert werden, vektorisiert und abhängig von ihrerÄhnlichkeit thematisch organisiert.
Die Suchergebnisse werden in Form einer erforschbaren, intuitiven, thematisch organisierten topo-
graphischen Karte visualisiert, wobei Zusammenhänge zwischen den Dokumenten durch ihre Nähe
repr̈asentiert werden. Thematischähnliche Dokumente werden gruppiert und bilden dicht besiedelte
Bereiche. Diese Bereiche werden mit Schlüsselwortern zugehöriger Dokumente gekennzeichnet und
als Berge visualisiert. Die Berge sind von niedrigeren Bereichen oder Wasserflächen, in denen sich
wenigerähnliche Objekte befinden, getrennt.

Die thematische Visualisierungskarte wird konstruiert, indem zuerst die Clusteringalgorithmen
auf die Dokumente in vektorisierter Form angewendet werden um Cluster vonähnlichen Dokumen-
ten zu bilden. Danach werden die Dokumente, mit Hilfe einer force-directed placement Methode,
abḧangig von der̈Ahnlichkeit ihrer Vektoren im 2-D Viewport Raum positioniert. Anschliessend, ba-
sierend auf den berechenten 2-D Dokumentenkoordinaten, wird ein topographisches Hintergrundbild
generiert. Um Plattformunabhängigkeit zu geẅahrleisten ist Visualisation Islands in Java implemen-
tiert.

I hereby certify that the work presented in this thesis is my own and that work performed by others is
appropriately cited.

Ich versichere hiermit, diese Arbeit selbständig verfaßt, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient zu haben.

Acknowledgements

I want to thank my advisor Keith Andrews for his advice, continuous support, attention to my
questions, and for correcting the draft versions of this thesis. Additional thanks go to my coadvisor
Christian G̈utl for helpful suggestions, to all members of the xFIND team for their assistance in

technical aspects, in particular to Josef Moser for help concerning Java and xFIND, and to Michael
Granitzer und Mathias Lux of KNOW-Center for their help in translating the thesis abstract into
German. I would like to thank everyone at the IICM for the friendly cooperation and feedback, and
many other colleagues and friends for providing constructive criticism and invaluable help.

I want to express special thanks to my family for standing helpfully by me, for their support and
understanding. My most heartfelt thanks are due to those who supported and encouraged me during
the last time of my studies as without them this thesis would not have been possible, I am indebted to
you. Last but not least, a great thank you goes to my girlfriend for her enduring support and patience.

Vedran Sabol
Graz, Austria, October 2001

i

ii

Contents

1 Introduction 1

2 Information Retrieval and Searching 5
2.1 Indexing . 5

2.1.1 Inverted Index . 6
2.1.2 Content Analysis and Term Operations .7
2.1.3 Keyword Relevance Filtering .8
2.1.4 Identifying Indicators of Document Content9
2.1.5 Measuring Retrieval Effectiveness .10

2.2 Vector Space Model .11
2.2.1 Proximity Measures .11

2.3 Search Engines .13
2.3.1 Search Engine Types .13
2.3.2 Estimated Relevance Calculation .14
2.3.3 Search Engine Features and Characteristics15

3 Clustering Techniques 17
3.1 Overview and Basic Principles .17

3.1.1 Definitions .17
3.1.2 Characteristics of Clustering Algorithms .18
3.1.3 Representation of clusters .19

3.2 Partitional Algorithms .20
3.2.1 Single Pass Clustering .20
3.2.2 K-Means Clustering .20
3.2.3 ISODATA Clustering .23

3.3 Hierarchical Methods .24
3.3.1 Hierarchical Agglomerative Clustering .24
3.3.2 Divisive Clustering .26

3.4 Artificial Intelligence Techniques .27
3.4.1 Fuzzy Clustering .27
3.4.2 Neural Networks .28

3.5 Scatter/Gather .29
3.5.1 Browsing as an Information Access Method30
3.5.2 Clustering Algorithms: Buckshot and Fractionation30
3.5.3 Browsing of Very Large Document Collections33

iii

4 Search Result Visualisation 35
4.1 Introduction and General Principles .35

4.1.1 Metaphors and Coding .35

4.1.2 User Interface Operations .36

4.1.3 Different Approaches to Search Results Visualisation37

4.1.4 Placement Models .38

4.2 Visualisation of the Content of the Retrieved Documents41

4.2.1 Tile Bars .41

4.2.2 Visualising and Navigating an On-Line Library Catalog41

4.3 Visualisation of Multidimensional Data .41

4.3.1 Envision .42

4.3.2 Parallel Coordinates .44

4.4 Systems Supporting the User in Building the Search Query44

4.4.1 LyberWorld .46

4.5 Systems Visualising Document Hierarchies .46

4.5.1 Cat-a-Cone .46

4.5.2 Hyperbolic Trees .49

4.6 Visualising the Hyperlinks Connecting Retrieved Documents49

4.6.1 WebTOC .50

4.6.2 WebQuery .51

4.6.3 Fetuccino .54

4.6.4 HyperSpace .56

4.7 Visualising Document Collections According to Their Content57

4.7.1 InfoViz VRML-Document-Finder .57

4.7.2 The NIST Information Retrieval Visualisation Engine (NIRVE)60

4.7.3 Wilmascope .61

4.7.4 Lighthouse .61

4.7.5 SQWID .61

4.7.6 VIBE and VR-VIBE .66

4.7.7 Vineta .66

4.7.8 BEAD .69

4.7.9 Sitemap: A Self-Organizing Map (SOM) Based System71

4.7.10 SPIRE - Spatial Paradigm for Information Retrieval and Exploration72

4.7.11 Cartia Themescape .75

4.7.12 WebMap .76

5 The xFIND Search Engine 79
5.1 Moving Beyond Harvest .79

5.2 xFIND Architecture .81

5.2.1 The xFIND Gatherer .82

5.2.2 The xFIND Indexer .83

5.2.3 The xFIND Broker .83

5.3 QCF - Query Communication Format .84

5.4 The Search Result Explorer (SRE) .84

iv

6 Visualisation Islands Software Architecture 87
6.1 What is Visualisation Islands? .87
6.2 Java .88

6.2.1 Platform Independence .88
6.2.2 Java Foundation Classes .90

6.3 Classes and Interfaces .90

7 Selected Details of the Implementation 101
7.1 Similarity Computation .102
7.2 Clustering Algorithms .103

7.2.1 Single Pass Clustering .104
7.2.2 K-means Clustering .104
7.2.3 Hierachical Agglomerative Clustering .107

7.3 Force-Directed Placement .108
7.4 Map Background Generation .112

8 Visualisation Islands Case Study 115
8.1 Typing the Query and Retrieving Results .115
8.2 Exploring Search Results .117
8.3 Identifying Relevant Documents .120
8.4 Finding the Right Document .124

9 Future Work 125

10 Concluding Remarks 127

A Visualisation Islands User Guide 129
A.1 Introduction to Visualisation Islands .129
A.2 Running the Program .129
A.3 Tool Box .130
A.4 Pull Down Menus .131

A.4.1 Query Menu .131
A.4.2 Window Menu .131
A.4.3 Tools Menu .132
A.4.4 View Menu .132
A.4.5 Mode Menu .133
A.4.6 Options Menu .134

A.5 Main and Query Windows .136
A.6 Selecting .136
A.7 Zooming .138
A.8 Searching .139
A.9 Filtering .140
A.10 Details Window .141
A.11 Popup Menu .142
A.12 Parameters Dialog .143
A.13 Preferences Dialog .143
A.14 Info Dialog .144

v

B Visualisation Islands Advanced Parameters 145

B.1 Loading Parameters .145

B.2 Clustering Parameters .146

B.3 Layout Parameters .147

B.4 Map Background Parameters .148

B.5 Map Parameters .150

B.6 View Parameters .151

B.7 Filter Parameters .152

vi

List of Figures

2.1 Discriminating power of significant words compared to their frequency.9

2.2 Precision and Recall [FBY92]. .11

2.3 Vector Space Model with the dimensionality of 312

2.4 Millions of Web pages indexed by popular search engines as of November 1st, 2000.
[SEW01]. Google indexed 602 million pages, but because of the way that Google
handles the link data, it can return pages it has not actually visited, giving it a coverage
of almost 1.25 billion pages. Taken from [SEW01].15

3.1 Different cluster representations: 1) centroid, 2) one element, 3) a group of bounding
elements 4) a bounding polygon 5) convex hull. .19

3.2 Effects of seed selection techniques and centroid updating policy on quality and speed
of clustering. Taken from [LAA99]. .22

3.3 A dendrogram. .24

3.4 MST clustering: by removing the 3 longest links 4 separate clusters are created. . . .26

3.5 SOM network architecture .29

3.6 Scatter/Gather interface, taken from [HEP96]. .31

3.7 Precision of clustering algorithms compared to the ranked list, based on queries to the
MetaCrawler meta-search engine. Taken from [ZAE98].32

3.8 Scatter/Gather browsing, taken from [CKP92]. .33

4.1 TileBars visualisation, taken from [HEA95]. .42

4.2 Visualising and navigating an on-line library catalog, take from [VHN96].42

4.3 The Envision client, taken from [NFH96]. .43

4.4 The Parallel Visual Explorer displaying 10 parallel coordinates, taken from [CHT95].44

4.5 Screenshot of LyberWorld showing the NavigationCones visualisation, taken from
[LYB01]. 45

4.6 Screenshot of LyberWorld showing the RelevanceSphere visualisation, taken from
[LYB01]. 45

4.7 Cat-a-Cone system, taken from [HEK97]. .47

4.8 Hyperbolic trees, taken from [LRP95]. .48

4.9 Hyperbolic trees: Changing the focus. A node is being brought into focus. As other
nodes move away from center the amount of space they are displayed in becomes
smaller. Taken from [LRP95]. .48

4.10 The WebTOC system, taken from [WET01]. .50

4.11 WebQuery: sorted list view, taken from [CAK97].52

vii

4.12 WebQuery visualisation: bullseye view, taken from [CAK97].52

4.13 WebQuery: the planes view, taken from [CAK97].53

4.14 WebQuery graph visualisation, taken from [CAK97].53

4.15 WebQuery: 2D cone tree visualisation, taken from [CAK97].54

4.16 The Advanced Form in the Fetuccino service (light version), taken from [BHJ99]. . .55

4.17 The Mappucino applet, taken from [BHJ99]. .55

4.18 A screen-shot of the HyperSpace system, taken from [WDB95].56

4.19 InfoViz VRML-Document-Finder: a VRML scene of document hierarchy. Taken
from [IVD01]. 58

4.20 The NIRVE Control Window displays a menu for the user to select among the various
operations. Taken from [CLP97]. .58

4.21 The NIRVE Concept Control Window, taken from [CLP97].59

4.22 The NIRVE Document Space Window, taken from [CLP97].59

4.23 Wilmascope showing 17 nodes in 4 clusters. .62

4.24 Lighthouse applet showing 50 search results with labels attached to spheres. The
query was “visualisation”. .63

4.25 Lighthouse applet showing 50 search results grouped in 11 clusters. The query was
“visualisation”. .63

4.26 SQWID search results visualisation. The query was: “visualisation query results”.
SQWID chose the three terms for the term nodes. The result pages are grouped to site
nodes. Taken from [CKO97]. .64

4.27 SQWID: By increasing the number of visible nodes the repulsive forces between them
spread out the nodes, so they do not cover each other too much. The stress indicators
are turned on. Taken from [CKO97]. .64

4.28 SQWID: Site nodes are exploded into page nodes. Taken from [CKO97].65

4.29 The VIBE system visualising the query “president europe student children economy”.
Documents are represented by rectangles. Where the concentration of documents is
high, clusters are represented by large rectangles. Taken from [OKS93].65

4.30 Screenshot of VR-VIBE: documents are placed in a 2D plane, height corresponds to
relevance. Taken from [VRV01]. .67

4.31 Screenshot of VR-VIBE containing 5 POIs and a number of users, full 3D layout.
Taken from [VRV01]. .67

4.32 Screenshot of Vineta showing the galaxy visualisation. Taken from [YOU96].68

4.33 Screenshot of Vineta showing the landscape visualisation. Taken from [YOU96]. . .68

4.34 Screenshot of BEAD showing a data landscape constructed from over 500 biblio-
graphic references. Taken from [YOU96]. .70

4.35 Sitemap: A Self-Organising Map. Taken from [VSM01].71

4.36 SPIRE: Galaxies visualisation. Taken from [SPI01].72

4.37 SPIRE: Themescape visualisation. Taken from [SPI01].74

4.38 Cartia Themescape landscape visualisation, taken from [CAR01].75

4.39 WebMap displaying the category “Europe”. .77

4.40 WebMap after zooming into the “Central Europe” category.77

5.1 xFIND extended search query input form. .80

viii

5.2 The standard xFIND search results page. .81

5.3 The xFIND architecture. .82

5.4 The Search Result Explorer. .85

6.1 Java: platform-independent software development and execution.89

6.2 Visualisation Islands class hierarchy. .91

7.1 Four objects with overlapping peaks form a mountain.113

7.2 Computing the slope for the selected pixel with a pixel window of 4.114

8.1 Typing in the query: “visualisation”. .116

8.2 Results of processing the query: “visualisation”. .116

8.3 Results of the query: “visualisation visualization”.117

8.4 Marking a rectengular area around the “visualization” label which shall be zoomed in.118

8.5 The island labeled “visualization’ is zoomed in. .118

8.6 Marking a circular area with similar documents which shall be selected.119

8.7 Marked document are selected. .119

8.8 Selected documents are reprocessed allowing a more detailed analysis of their content.120

8.9 Filter dialog over the window with reprocessed documents.121

8.10 Objects not satisfying the filter condition are hidden.121

8.11 Search dialog. .122

8.12 Found objects are selected. All documents can be pointed at with the mouse.122

8.13 Selected objects can be examined in the details window. An interesting document is
located. .123

8.14 Chosen document is opened in an external browser.123

A.1 VisIslands tool box. .131

A.2 VisIslands Query menu. .131

A.3 VisIslands Window menu. .132

A.4 VisIslands Tools menu. .132

A.5 VisIslands View menu, Map submenu. .133

A.6 VisIslands View menu, Clusters submenu. .133

A.7 VisIslands Mode menu. .134

A.8 VisIslands Options menu. .134

A.9 VisIslands main window and query window waiting for input.135

A.10 VisIslands loading and processing progress. .135

A.11 VisIslands multiple query windows. .137

A.12 VisIslands: dragging the mouse in select mode. .137

A.13 VisIslands: selected objects are highlighted. .138

A.14 VisIslands: dragging the mouse in zoom mode. .138

A.15 VisIslands: a zoomed in part of the map. .139

A.16 VisIslands search dialog. .139

A.17 VisIslands: found objects are selected. .140

ix

A.18 VisIslands filter dialog. .140

A.19 VisIslands: only objects satisfying the filter condition are displayed.141

A.20 VisIslands details window. .141

A.21 VisIslands popup menu. .142

A.22 VisIslands parameters dialog. .143

A.23 VisIslands preferences dialog. .144

A.24 VisIslands info dialog. .144

B.1 Loading parameters. .146

B.2 Clustering parameters. .147

B.3 Layout parameters. .149

B.4 Map background parameters. .150

B.5 Map parameters. .151

B.6 View parameters. .152

B.7 Filter parameters. .153

x

List of Tables

2.1 Data Retrieval vs. Information Retrieval. .6

xi

xii

Chapter 1

Introduction

Very large amounts of information are now available electronically over the Internet. Searching for a
specific topic often results in receiving a huge number of search results, mostly in unstructured form,
and much of the retrieved information may not be of interest. Standard search engines return search
query results in the form of a linear list of hits sorted by estimated relevance, but the relationships
between different hits are not made explicit. It is a difficult task for the user to obtain an overview and
to tell which of the retrieved documents are actually of interest. Visualisation of search result sets can
be a powerful technique for distinguishing relevant from non-relevant information and for retrieving
it easily and efficiently. This thesis describes Visualisation Islands, a search client that addresses
this problem by topically organising documents returned as a result of a search query. Visualisation
Islands is an xFIND search engine client which processes documents returned in a response to a
search query, organising them according to their content and similarity. The results are visualised
in the form of an interactive, intuitive, topically organised topographic map, where relationships
between documents are encoded by proximity. Topically similar documents are grouped together
forming densely populated areas visualised as mountains or islands, which are labeled with keywords
extracted from underlaying documents. These areas are divided by lower areas or water containing
less similar objects. The visualisation offers the user a possibility to instantaneously locate areas of
interest and explore documents located in those areas.

In Visualisation Islands, a document’s content is described by a high-dimensional vector contain-
ing relevant keywords returned by the xFIND search engine. A similarity coefficient can be computed
for every two vectors making it possible to compare the retrieved documents. When the documents are
loaded, groups of similar documents are created by applying a standard clustering algorithm. These
groups are used to display the document set in table of contents style. Then, a force-directed place-
ment algorithm with stochastic sampling is used to map the documents from the high-dimensional
vector space to a 2-D space by placing similar documents close to each other while dissimilar ones
are moved apart. Based on computed 2-D coordinates, a 2-D or 3-D style topographic background is
generated, forming mountains at areas where document density is high. The mountains are divided by
areas with lower document density which are represented as lower areas or water, resulting in a map
containing islands of topically similar documents. Document icons are displayed atop the generated
background and the mountains are labeled with keywords from the underlaying documents, produc-
ing a intuitive, topically organised landscape (or seascape). It is easy for the user to locate areas of
interest and explore the document set with operations such as zooming, searching, filtering, selecting,
and viewing details and contents of documents of interest. The user can explore and process multiple
sets of search results simultaneously and can reprocess any subset of the original set for more detailed
insight. Visualisation Islands is written in Java providing cross-platform portability.

This thesis is organised in two parts. The first part consists of Chapters 2 to 5 which introduce and

1

2 CHAPTER 1. INTRODUCTION

discuss the theoretical basics and describe similar approaches and systems. Chapters 6 to 10 describe
the Visualisation Islands system, the design decisions, the implemented algorithms, and show the
program in action. Appendices A and B constitute a user guide for beginning and advanced users.

Chapter 2 covers the field of Information Retrieval (IR), describing how information in human-
readable form, such as HTML documents, can be analysed, organised, and searched for. Indexing
of documents is described and concepts such as the vector space model and similarity measures are
introduced. An overview of search engines and search engine types is also given.

Chapter 3 focuses on clustering algorithms, describing basic clustering concepts and a number
of methods for organising sets of objects into clusters of similar objects. Several partitional, hierar-
chical and artificial intelligence methods are described, analysed, and compared. Scatter/Gather, a
system which uses clustering methods for browsing large and very large document collections is also
presented.

In Chapter 4, general principles of visualisation are given. Several document visualisation sys-
tems are presented and discussed. A closer look is taken at how visualisation concepts can be ap-
plied to improve the process of searching and presenting retrieved document sets. The presented
systems are subdivided into the following groups: systems showing a compact representation of do-
cuments’ content, systems visualising multidimensional data, systems supporting the user in building
a search query, systems visualising document hierarchies, systems displaying the hyperlink structure
surrounding documents and systems visualising document collections according to their content. The
emphasis is on the last group of systems.

Chapter 5 describes xFIND, a scalable, distributed search engine which, in response to a search
query, supplies Visualisation Islands with retrieved documents and their keywords. The advantages
of a distributed approach over a conventional centralised approach are presented. The Search Results
Explorer tool for visualisation of multi-dimensional data is presented. It is used as an xFIND client
for visualisation of documents’ meta-data.

The theoretical basics described in Chapters 2 to 5 were used as a foundation in the development
of Visualisation Islands and had a strong impact on many design decisions. They are also the key to
understanding how Visualisation Islands operates.

Chapter 6 describes the software architecture of the Visualisation Islands package. The motiva-
tion for development of such a system is presented and subsequently a description of the process of
generating the visualisation is given. The object-oriented architecture of the program is described and
the responsibilities and interactions between all packages and classes are specified.

Chapter 7 concentrates on the algorithms implemented in Visualisation Islands. Design decisions
and a detailed description and analysis of the three processing steps for constructing the visualisation
is given. The algorithms (or classes of algorithms) described are: clustering of the retrieved docu-
ments using single-pass, k-means, or hierarchical agglomerative clustering algorithms; mapping the
documents from the high-dimensional term space to the 2-D viewport space using a force-directed
placement algorithm; generation of a 2-D or 3-D style map background image.

In Chapter 8, Visualisation Island is demonstrated in practice. Several examples and typical use
cases are presented and advantages of the systems are discussed.

Chapter 9 outlines ideas for further research and future extensions of Visualisation Islands.

Chapter 10 briefly describes the motivation for development of Visualisation Islands and gives an
overview of implemented techniques. The content of this thesis is summarized.

Appendix A is a user guide for Visualisation Islands, all program functions and user interface
interactions are described, with the exception of advanced parameters which are not intended for
modification by a standard user.

3

In Appendix B advanced parameters and their effects on processing results are described. These
parameters should only be modified by an expert user.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Information Retrieval and Searching

The Internet and the World Wide Web are developing to a primary media of the future. As human
knowledge is increasing and the volume of electronically available information is growing, an impor-
tant question arises: how can the user find information? Together with this question the importance
of Information Retrieval (IR) has been growing. Although it is not easy to give an exact and complete
definition of Information Retrieval, this question leads us to attempt a following definition: Informa-
tion Retrieval are procedures and technologies for finding the desired information in files saved in
electronic form, or, trying to be more exact, Information Retrieval is the study of systems and tech-
nologies for indexing, searching, and recalling data, mostly in the form of text. Therefore, in this
chapter techniques for identification and retrieval of matching documents from an information base
in response to a query will be discussed. As the amount of information stored in Internet is already
huge and is growing rapidly, it is very important that the documents returned as a result of a query are
highly relevant and not just distantly related to the area specified by the query. Due to the fact that the
response of a IR system is based on statistical methods, some relevant documents may not be returned
while some other, much less or non-relevant are returned instead. It is a difficult and complex task to
identify and return only the information which is of interest, and the variety of technologies used in
this area is large.

Distinguishing between a Data Retrieval system and an Information Retrieval system gives a
better understanding of what an IR system should be capable of (see Table 2.1). These differences
are caused by the fact that Data Retrieval Systems, for example relational Data Base Management
Systems (DBMS), work with structured records with a specified set of fields with exactly defined
contents. The retrieval model used in this case is a Boolean model. The information is retrieved only
if an exact match between the query and specified record fields occurs. In contrast, IR systems consist
of documents that do not have an exactly defined internal structure, each having have attributes such
as title, author, and keywords. The key to retrieving documents in such a system is to build an index
based on the attributes, or based on the whole document content, the so-called full text index. In both
cases a match in an IR system is only partial, depending on the similarity between the query and the
contents of the index. Similarities between different documents in the index can also be determined
as well as retrieval effectiveness.

2.1 Indexing

Looking for each query term in every document by sequential scanning is very slow and therefore
possible only for a small number of documents. To organise the documents so that they can easily
be found is not an easy task. The oldest approach is to assign the documents to thematic categories,

5

6 CHAPTER 2. INFORMATION RETRIEVAL AND SEARCHING

Data Retrieval Information Retrieval
Matching exact partial, best match
Inference deduction induction
Model deterministic probabilistic
Classification monothetic polythetic
Query Language formal natural
Query Specification complete incomplete
Searched Objects fulfilling the search specification relevant
Reaction on Data Errors sensitive insensitive

Table 2.1: Data Retrieval vs. Information Retrieval.

but this approach was not flexible and powerful enough. Several problems exist with this approach
including the creation, definition and the representation of categories, how specific or general they
should be, how the documents should be assigned to categories and how the categories should be
searched and browsed. Many of these problems can be solved by the use of indexing. A great
advantage of this approach is that the index can be generated automatically.

Indexing is the key to efficient searching in a system with a large number of documents. A
standard index is a matrix, also called document term matrix, where rows represent documents and
columns represent terms. Therefore, the rows of the matrix are called term vectors. In the simplest
representation an entry of 1 in the matrix means that a term is present in the document and a 0 means
that it is not present. To construct an index all documents have to be analysed in a step called content
analysis, where the each document is scanned to extract some content, attributes or terms, resulting
in a indexed representation of the scanned documents. Two kinds of indexes can be constructed,
depending on what is indexed:

• Attribute index: the attributes of the IR system are indexed, such as title, authors, and keywords.
This type of index is smaller, as well as easier and faster to generate, however it does not
represent every aspect of the scanned documents, as many words contained in the documents
are simply lost. The decisions regarding the extraction of significant words that characterise
and discriminate a document are mostly based on statistical procedures, but also some artificial
intelligence approaches can be used.

• Full text index: every word in every document of the IR system is indexed and almost every
aspect of the scanned documents is therefore taken into consideration. Such an index is typi-
cally very large, but fortunately there exist a number of techniques for compressing it without
loosing any of the collected information.

2.1.1 Inverted Index

The standard index representation is not very suitable for searching because it takes a long time to
find out if a term is present in a document or not, as the system must scan all term vectors. To
make the searching process fast and efficient the matrix is inverted. The inverted index is a collection
of terms, each pointing to those documents that contain it. In an inverted index rows represent the
terms and columns represent the documents. The rows of the matrix are called document vectors
in this case. This structure is very suitable for effectively determining which documents contain the
search query terms. The rows do not have to be scanned in this case as they contain by definition all

2.1. INDEXING 7

documents containing the desired term. The retrieval model used in this case is called the Boolean
model. Queries are composed of keywords that characterise the information that the user is looking
for, and can be combined with the use of Boolean expressions. By comparing the query terms with the
terms in the index matching documents are easily identified. However, it is not possible to calculate
the estimated relevance and therefore the documents that match the query can not be ranked with
respect to the search query.

2.1.2 Content Analysis and Term Operations

When a document is sequentially scanned the words and phrases that it is composed of are identified
and their occurances can be statistically analysed. On the basis of this analysis keywords, which
describe the document best and discriminate it from other documents, can be identified and extracted.
Also, the place of appearing of terms inside of a document, for example in the title or at the beginning
of the document, is an indicator of the their significance. HTML allows words in bold or italics
to be identified and given a higher weight. The relative position of words in a sentence, and their
significance, give a measurement for determining the significance of sentences. Thus, frequency
data can be used to extract words and sentences to represent a document and automatically create
summaries.

Stemming

Stemming means removing common suffixes as “ion”, “ed”, and “ing” from the terms in the processed
document and in the search query, leaving them in their basic form where tense and plurality are lost.
In this way many terms are replaced by only one term in its root form, reducing the index size a lot.
This is a very powerful technique but it has to be used carefully, because it can introduce ambiguity
and produce undesired effects if it is not used correctly. Detailed knowledge of the document language
is required for correct and effective stemming, and correct decisions have to be made concerning the
question if all parts of the document and all its attributes should be stemmed.

Case Folding

Case Folding is a technique that avoids the problem of search failures due to case sensitivity and
reduces the size of the index considerably. Every letter of each term is converted to its lowercase
equivalent, both for the terms in the document term matrix and for the terms in the search query. This
is a simple and effective procedure, but imposes a problem if a case sensitive search is required. In
this case a separate document scan is needed where exact pattern matching is performed.

Thesaural Substitution of Synonyms

There are many words that are different but have the same meaning. Searching for one of them would
miss the others. To overcome this problem and also to reduce the size of the index, these synonyms
can be replaced, in the documents and in the search query, by a single term having the same meaning.
This is achieved by the use of a thesaurus. Spelling differences between different English versions
should also be taken into consideration at this point (for example visualization vs. visualisation).

8 CHAPTER 2. INFORMATION RETRIEVAL AND SEARCHING

Term Weighting

When using an index the simplest way to indicate the presence of a term in the document is to use
a 0 for not present and a1 for present. A more advanced solution is using weights for the terms,
for example a high number of points it the term is in the title, a medium if it is a keyword and a
small number of points if it occurs in the text. The sum of the points gives the term weight, giving a
possibility to rank the documents relative to a specific term or to the search query. It is also possible to
give a weight to search terms, giving a fine control to the user. On the other hand query construction
and matching becomes more complicated.

There are two ways to represent the term weight in the index:

• relative term weight= term weight
sum of all term weights in the document

• normalised document vector

2.1.3 Keyword Relevance Filtering

Each document contains a number of words that occur more or less often in the text, but have no
meaning for finding the information and can not be used to discriminate between different documents.
Removing such words can reduce the size of the index significantly and improve the quality and speed
of the retrieval process.

Stop List

There is a number of words that occur very often in every English document which do not contribute
in discriminating between documents but increase the size of the index significantly and therefore
should be eliminated. These words are, for example:

• Articles: “the”, “a”, “an”

• Conjunctions: “an”, “or”, “also”, “that”, ...

• Prepositions: “in”, “to”, “out”, ...

• Modal verbs: “have”, “be”, ...

• Questions: “what”, “why”, “who”, “where”, ...

A commonly used approach is to collect them in a list called a stop list. While scanning the
document each identified word is compared to the entries in the stop list and is eliminated if it is
found to be present. This procedure can reduce the size of the inverted index up to 40 percent, but if
the index is compressed, which is mostly the case due to its huge size, the benefit of the stop list is
much smaller. This is due to the fact that the words in the stop list are very common and therefore have
a high compression ratio in the compressed index. Eliminating certain common words using a stop
list can still be a very good idea as they, in general, do not help in discriminating between documents,
and can even have an opposite effect, making it more difficult and time consuming to calculate the
similarity between documents. In some cases omitting words can cause certain problems, for example
if users want to find exactly those words, or they are the main terms of the document, or because they
can change the meaning of surrounding words. Consequently a good stop list filter can be difficult to
build.

2.1. INDEXING 9

Figure 2.1: Discriminating power of significant words compared to their frequency.

Frequency Based Filtering

The frequency of occurrence of different words in a given position of text, f, and their rank order,
r, that is, the order of their frequency of occurrence, give a curve similar to the hyperbolic curve,
demonstrating Zipf’s Law which states that the productf ∗ r is approximately constant. It is possible
to specify an upper and a lower cut-off that exclude non-significant words. The words exceeding
the upper cut-off are considered to be too common and those below the lower cut-off too rare, and
therefore these words can not contribute significantly to the content of the document [LUH59]. The
fact that words with very low frequency do not characterise a document well is quite clear, but even
those words occurring more often are sometimes not good discriminators: for example a word like
“space” is surely not a very good discriminator in a context of a NASA server. It can be generally
assumed that the ability of relevant words to discriminate content of the articles containing them
reaches a peak at position half way between the two cut-offs falls, in both directions, reaching a value
of almost zero at the cut-off points. There is no general rule for determining the cut-off positions and
they are mostly based on testing and experience.

2.1.4 Identifying Indicators of Document Content

One of the biggest challenges of document analysis and automatic indexing is finding those words
or phrases which express the content of a document. Although by taking into consideration whole
phrases the content of a document can be expressed better than with single words stripped of their
environment, for reasons of simplicity only single words will be taken into consideration as content
indicators. Each termTj extracted from documentDi is given a weight,wij , and only words with a
weight exceeding a specified threshold are considered good for representing the document’s content.
After completing the steps discussed in previous sections of this chapter, the term frequencytfij , of
every termTj in the documentDi is calculated. As already said, this value alone is not a reliable

10 CHAPTER 2. INFORMATION RETRIEVAL AND SEARCHING

indicator, because words which occur too often are not good discriminators. Based ontfij and some
other values good measures for suitability of words as discriminators and indicators of document
content can be computed. Examples include (taken from [GRG97]):

• Discrimination value,dv, based methods take into consideration the frequency of the keyword
in a document as well as the keyword’s discrimination power to calculatewij . Each of theN
documents can be represented as a point in a high-dimensional document space. The dimen-
sions of this space are the words which the documents are composed of. The distance between
points is a measure of dissimilarity between documents, similar documents are located close to
each other, dissimilar documents are located far apart. Regions of the high-dimensional space
where many similar documents are located have higher densities than regions populated by less
similar documents. If a termTj is assigned to all documents in the set, average distance of
the documents, and with it the average density, changes to some degree. Discrimination value
of the termTj , dvj is defined as the difference of the document density before and after the
assignment of the word to all documents. A higher value ofdvj means that the word is a good
discriminator. The value ofwij is calculated as :

wij = tfijdvj

• Inverse document frequency based methods take into consideration the frequency of occurrence
of a termTj in a documentDi, tfij , as well as in how many documents the term occurs in,
which is denoted bydfj . The inverse document frequency is a measure describing how well a
term can be used for discriminating between documents. It is defined as:

idfj = log(N
dfj

)

whereN is the number of documents. The value ofwij is calculated as :

wij = tfijidfj

2.1.5 Measuring Retrieval Effectiveness

The standard measures for estimating the retrieval effectiveness are Precision and Recall. Precision
is defined as the number of relevant documents retrieved divided by the number of all retrieved do-
cuments. Recall is defined as the number of relevant documents retrieved divided by the number of
all relevant documents in the collection. Both have a value between 0 and 1 and are inversely related.
It is a simple task to achieve one of these requirements at a time, retrieving only one document for
maximum Precision or all documents for maximum Recall, so a system should attempt to maximize
both precision and recall at the same time. If the set of retrieved documents is denoted byF and the
set of all relevant documents in the whole collection asR, than Precision and Recall are defined as:

Precision:P = |F∩R|
|F |

Recall:R = |F∩R|
|R|

To evaluate the retrieval performance using both values at once a combined measure is needed
like [FBY92]:

2.2. VECTOR SPACE MODEL 11

Figure 2.2: Precision and Recall [FBY92].

E = 1− (1+b2)PR
b2P+R

where b is a measure of relative importance of precision and recall.

2.2 Vector Space Model

To construct a Vector Space Model [SYW75] a standard index has to be constructed. Each document
is represented by a row in the document term matrix, which is actually a term vector consisting of
zeros and ones to indicate if a particular term is present or not. In this way documents are represented
as points in the document space, which is a multidimensional space, where each coordinate represents
a unique keyword. The vector space model can be easily used in combination with the inverted index
which is also constructed from the standard index by inverting the document term matrix .

As each document is assigned a vector and represented as a point in the document space, a pos-
sibility is created to define a measure of similarity for a pair of documents. A query can also be
represented as a vector of terms in the space. Retrieved documents can be ranked according to their
similarity values with respect to the search query. Furthermore, through the possibility to compare
each pair of documents, a way is given to clusters documents in topically similar groups.

2.2.1 Proximity Measures

Proximity measures can be divided into similarity measures that express the similarity of a pair of
documents as a number, and distance measures, which actually measure the dissimilarity between
documents. The smaller the distance of two points in this space is the more similar the contents of the
corresponding documents. Values used in the following definitions are:s is the similarity coefficient,

12 CHAPTER 2. INFORMATION RETRIEVAL AND SEARCHING

Figure 2.3: Vector Space Model with the dimensionality of 3

d is the Euclidean distance,Di andDj are the compared documents,k is the coordinate,xi,k and
xj,k are the values of the k-th coordinate of the appropriate document and L is the dimension of the
document space.

Distance measures are for example [RIJ79]:

• Euclidean Distance:dDi,Dj =

√
L∑

k=1
(xi,k − xj,k)2

• City Block-, Manhattan, or Taxi Driver-Metric:dDi,Dj =
L∑

k=1
|xi,k − xj,k)|

which are both special cases of Minkowski-Metric:dDi,Dj = (
L∑

k=1
(xi,k − xj,k)n)

1
n

To apply such distance measures the vectors should be normalised. Similarity coefficients do
not require this and are therefore particularly good for the comparison of document vectors. Such
coefficients are:

• “Dice” Coefficient:sDi,Dj =
2

L∑
k=1

(xi,kxj,k)

L∑
k=1

x2
i,k

+
L∑

k=1

x2
i,k

2.3. SEARCH ENGINES 13

• “Jaccard” Coefficient:sDi,Dj =

L∑
k=1

(xi,kxj,k)

L∑
k=1

x2
i,k

+
L∑

k=1

x2
i,k
−

L∑
k=1

(xi,kxj,k)

• “Cosine” Coefficient:sDi,Dj =

L∑
k=1

(xi,kxj,k)√
L∑

k=1

x2
i,k

L∑
k=1

x2
i,k

2.3 Search Engines

Search Engines are used for searching the World Wide Web (WWW) for documents and resources.
To perform this task they use a spider, also called a robot or a crawler, to browse the Web following
the hyperlinks. These programs navigate the structure of the Web, which is given through the hyper-
links, to collect documents. Information like metadata, content, and structure is extracted from the
documents, organised in a form of an index to allow fast searching, and presented as a response to
a user query, mostly in the form of a linear list sorted by estimated relevance. Automated methods
for indexing documents are neccessary as the number of documents in the Web is much too large for
human beings to do the job. However, search engines have a number of shortages. Query formulation
is a difficult task as the exact terminology might not be known to the user, but search engines hardly
support the user in creating and refining the query. The precision of the search engines is often low,
resulting in a great number of non-relevant documents. The presentation of results in the form of
linear list sorted by relevance gives no possibility to differentiate between relevant and non-relevant
results. Also, much of the information collected by the search engine, like the author, publisher, date
of publication, keywords and similar, is not presented to the user. Finally, the number of returned
results can be huge, and the search engines do not offer tools that would allow the user to organise
the results and get an overview. As the number of document available in Internet is rising rapidly,
these problems will become ever more acute. Despite all this, search engines are the only universal
tools for locating information in the Web, and can be a powerful means of information retreival if
their strengths can be used to the maximum and ther shortcomings avoided, which is also the purpose
of this thesis.

2.3.1 Search Engine Types

The number of search services in the Internet is large and each system has a number of special
features. The biggest differences between them arise from the method of gathering the information.
Some operate completely automatically, others rely on humans to classify the Web content, and some
use other search services to gather the results.

• A general use Search Engine is a database system designed for exploring and indexing the
Internet. A special program called a spider, or robot, or crawler follows the URLs and retrieves
files found on different servers in Internet. The collected files are analysed for contents and
attributes and stored in a database structure that enables fast and precise searching in response to
a user query. The process of crawling through the Web, collecting information, and organising
it into an index is completely automated. Different serch engines use different approaches
to extract information from collected documents, different data structures to organise it, and
compute the relevance of documents with respect to the user query in different ways. The

14 CHAPTER 2. INFORMATION RETRIEVAL AND SEARCHING

methods and strategies used affect greatly the quality of returned results, the speed, and the
number of documents indexed by the engine. The biggest problem probably is the growth
of the Internet and the huge amount of documents present in the Web, so that search engines
typically cover only a small portion of available documents. Another problem is how to deal
with dynamically generated content. Most of the well-known search tools fall in this category,
probably everybody will recognize some of the following names: Fast (All The Web), Northern
Light, AltaVista, Google!, Excite, Go (Infoseek), WebCrawler, HotBot, GoTo.

• Meta-Search Engines, like Dogpile, Mamma, Metacrawler or SavvySearch, are not “real”
search engines as they do not maintain a database of collected information, but use other en-
gines to do the job. In a response to a user query they send requests to a number of “real”
search engines and combine the results. As each search engine can scan only a small portion of
Internet, combining results from more of them increases the number of documents taken into
consideration. On the other size it is very hard to give each document a relevance rating since
all search engines have different methods of calculating it.

• Subject Directories, like those offered by Open Directory, Look Smart, Yahoo, Lycos and Mag-
ellan, rely on humans to organise Internet contents into categories based on their subject. The
user can choose a cathegory of interest and is offered a list of resources to browse. By choosing
a series of progressively more narrow search terms that are offered as descriptions of the list,
the user finally obtains a list of resources that meet all chosen descriptions. Subect directo-
ries cover a much smaller portion of the Internet than the serach engines, but can offer high
precision and relevant results, since they were built by humans.

• Link Guides are sets of hyperlinks on a subject, created and maintained by experts and hobby-
ists familiar with the topic. Such subject guides guarantee high quality, but have a disadvantage
of the user first having to find the right guide on the topic of interest. Guides to link guides
exist to support the user and overcome this problem.

• Intelligent Web Agents are search tools that provide information about structure, environment
and content of documents and act as an intelligent aid learning from user habits, suggesting
documents that are similar to those already identified as interesting, or that were accessed very
often in the past.

However, it should be emphasised that this division is not so strict any more. Many search engines
use results of other engines or subject directories to improve the quality of returned results. Some
systems, like Inktomi, do not offer direct services to the user at all, but are designed to power other
search services, others, such as Northern Light and Vivisimo perform clustering of search results (see
Chapter 3).

2.3.2 Estimated Relevance Calculation

To order the documents found in a response to a user query the search engine must provide means
to calculate the estimated relevance of each document with respect to the search query terms. The
simplest way to achieve this is to count the occurrences of each search term in the document. A signif-
icant improvement is brought by checking where and how the search terms appear in the document.
Terms appearing in the title, at the beginning of the document or in bold should be given a higher
weight. This method, called location/frequency method, is used by many search engines, however in
diferent variations. Another criteria for determining the relevance is the number of links pointing to
a document. It is assumed that important documents will be referenced more often than those less

2.3. SEARCH ENGINES 15

Figure 2.4: Millions of Web pages indexed by popular search engines as of November 1st, 2000.
[SEW01]. Google indexed 602 million pages, but because of the way that Google handles the link
data, it can return pages it has not actually visited, giving it a coverage of almost 1.25 billion pages.
Taken from [SEW01].

important. Metadata could also be used to improve the calculation of the estimated relevance, but
they are rarely used as they are prone to manipulation. Some search engines exclude documents from
the index if they detect some kind of manupulation that should push the page higher in the list, for
example repeating a certain word very often to increase its frequency. The frequency of access to a
document is another property that can be used for calculating the relevance, which is often used by
intelligent web agents.

2.3.3 Search Engine Features and Characteristics

Search engines may seem very similar to the user at the first look, but each of them operates more
or less diferently and offers some features that should improve the quality of results. Here is a list of
features and options offered by different search engines:

• Number of indexed documents. Can be larger than109 in the case of Google and Wise Nut.

• Percentage of dead links returned by the system. Typically between 1% and 15%, depends on
the actualisation frequency.

• Boolean capabilities: Boolean operators like AND, OR, NOT as well as the used of brackets
supported in the advanced search. Even fuzzy operators are possible (Excite).

• Proximity operators for search terms such as ADJ, (adjacent) and NEAR available in the ad-
vanced search.

• Stemming, plural/singular conversions, stopword removal.

• Switchable case sensitivity.

16 CHAPTER 2. INFORMATION RETRIEVAL AND SEARCHING

• Limiting the search according to some criteria like language, date, document type, domain and
even subject.

• Sorting the result to some criteria other than relevance, like date, size or site.

• The ability to return more similar documents after an interesting document was found.

• Classification of search results, supported by Northern Light.

• Support for concept searching for narrowing down the search, as provided by Excite.

• The ability to search only selected fields like the title or URLs.

• Full text search.

• Exact phrase search.

• Duplicate detection.

• Search refining by suggesting more words.

• Presentation of summaries of the results.

Chapter 3

Clustering Techniques

3.1 Overview and Basic Principles

Clustering is a name for methods, statistical or artificial intelligence based, which form categories of
objects from unorganised sets of objects. Objects, which are assigned to the same category, or cluster,
must be similar according to a certain criteria, while objects that are different must be assigned to
different clusters. The underlying hypothesis for the use of clustering in document retrieval can be
stated as follows: closely associated documents tend to be relevant to the same requests. This hypoth-
esis is known as the Cluster Hypothesis. Clustering algorithms are able to structure large quantities of
documents and to distinguish relations between them. This procedure is similar to the automatic clas-
sification of documents, with the difference that in the case of classification, also known as supervised
clustering, the categories are already known before processing, while in the case of clustering, also
known as the unsupervised clustering, the categories are created dynamically during the processing.
Documents are mostly categorised thematically on the basis of their content, which means depending
on the keywords and terms they contain, but the grouping can also take place according to any other
criteria.

Clustering algorithms can be applied to almost any kind of data, not only documents. A single
data item is typically a vector of dimensionalityL where its scalar components are called attributes.
To apply clustering methods on a set of documents a way has to be found to express the similarity of
a pair of documents as a number. Such functions are called similarity functions and were discussed in
Chapter 2.2.1. Different clustering methods have been successfully used with images, as well as with
all kinds of multidimensional data. The number of approaches and different principles used is very
large and continuously new methods are being developed, each having different characteristics tuned
for application in specific areas. In this chapter the most common algorithms and principles used for
clustering of documents are explained.

3.1.1 Definitions

For better understanding all concepts, values and notations are described here in a short overview:

• A data item or objectD is a vector of dimensionalityL with the form:

D = ~x = (x1, x2, . . . , xL)

where the scalar componentsxi, i = 1 . . . L are the vectors attributes. In this thesis the data
items are documents.

17

18 CHAPTER 3. CLUSTERING TECHNIQUES

• A set ofN vectors is denoted by:

S = {D1, D2, . . . , DN}
which is often viewed as aN × L matrix.

• A cluster containingn objects can be viewed as a set:

C = {D1, D2, . . . , Dn}

• A set ofM clusters is denoted by:

CS = {C1, C2, . . . , CM}

• Different similarity measuress as well as a distance measured were defined in chapter 2.2.1.

• A fractional degree of membership, used by fuzzy clustering methods, of the objectDi to the
clusterCj is denoted withuij .

3.1.2 Characteristics of Clustering Algorithms

Clustering methods can be distinguished according to a number of different characteristics and crite-
ria. Here is a short overview:

• Partitional vs. hierarchical: Clustering methods are usually divided according to the cluster
structure which they produce. The partitional methods divide a set ofN documents intoM
clusters, producing a “flat” structure of clusters. In most cases no overlaps are permitted, which
means that each object belongs to only one cluster that it is most similar to. The more complex
hierarchical methods produce nested pairs of clusters or documents by interconnecting them
gradually, until each document is integrated into the hierarchy.

• Agglomerative vs. divisive: Hierarchical methods can be agglomerative or divisive. The ag-
glomerative methods, which are more common in praxis, produce up to N-1 connections to
pairs, beginning from single documents each representing one cluster. The divisive methods
begin with all documents placed in a single cluster and perform up to N-1 divisions of the
clusters into smaller units to produce the hierarchy.

• Monothetic vs. polythetic: Monothetic means that only one feature is taken into consideration
to determines the membership in a cluster. Polythetic means that more features are taken into
consideration at once.

• Exclusive vs. overlapping: If the clustering method is exclusive, it means that each object can
be assigned to only one cluster at a time. Overlapping strategy allows multiple assignments of
any object.

• Fuzzy vs. hard clusters: Fuzzy methods are overlapping in their nature, assigning to an object
a degree of membership between0.0 and1.0 to every cluster. Hard clusters allow a degree of
membership to be either 0 or 1.

• Deterministic vs. stochastic: Deterministic methods produce the same clusters if applied to the
same starting conditions, which is not the case with stochastic methods.

• Incremental vs. non-incremental: Incremental methods allow successive adding of objects to
an already existing clustering of objects. Non-incremental methods require that all items be
known in advance, before the actual processing takes place.

3.1. OVERVIEW AND BASIC PRINCIPLES 19

Figure 3.1: Different cluster representations: 1) centroid, 2) one element, 3) a group of bounding
elements 4) a bounding polygon 5) convex hull.

• Order sensitive vs. order insensitive methods: Order sensitive methods produce clusters that
depend on the order in which the objects are added. In order insensitive methods the order of
items does not play a role, the method always produces the same clusters .

• Ordered vs. unordered clusters: An example of an ordered classification is a hierarchy, which
can be helpful for searching.

3.1.3 Representation of clusters

The representation of a cluster and their relations depend on the clustering algorithm used. The rep-
resentation used should be a cluster profile best representing the objects in the cluster. The most
common way to represent a cluster is through its centriod, although some other representation meth-
ods are available, as can be seen from the following overview:

• Representation through cluster members by using one object or a set of selected members.

• Centroid is the most common way of representing a cluster. It is usually defined as the center
of mass of all contained objects:

c =

n∑
i=1

Di

n

Vectors for the objects contained in a cluster should be normalised. If this is not the case large
vectors will have a much stronger impact on the position of the centroid than small vectors. If
only relative profiles of the objects and not their sizes should be taken into consideration all
vectors must be normalised.

• Geometric representation. Some boundary points, a bounding polygon containing all members
of the cluster or a convex hull constructed from the cluster members can be used.

• Decision tree or predicate representation. A cluster can be represented by nodes in a decision
tree, which is equivalent to using a series of conjunctive logical expressions likex < 5∧x > 2.

20 CHAPTER 3. CLUSTERING TECHNIQUES

3.2 Partitional Algorithms

Partitional methods try to reach an approximate solution by creating an initial partition and then
assigning each document in to the best fitting partition, reaching a state of local minimum. The great
advantage of this method over hierarchical methods is that running times ofO(NM) can be achieved.
On the other hand there are a number of disadvantages, which differ from algorithm to algorithm, like
the sensitivity to the choice of initial partition or the dependance on the order in which the documents
are processed. However, due to good execution times, partitional methods are very often used when
very large numbers of documents must be processed.

3.2.1 Single Pass Clustering

Single pass methods [HIL68] are probably the mathematically simplest clustering techniques, since
the documents set is processed only once in a single pass. This makes single pass methods faster
than the methods requiring multiple iterations. The number of clusters generated by this method
is not fixed. It depends on the similarity threshold,sth, which is used to decide if a document is
similar enough to be assigned to a certain cluster. The following algorithm illustrates the principle of
operation:

1. The first documentD1 is used to build the first clusterC1.

2. Take the next documentDi and compare it to all existing clustersC1 . . . CM with the goal of
finding the best fitting clusterCj . The similarity to the found cluster issij .

3. If sij is larger than the similarity thresholdsth the document is assigned to the found cluster,
Cj , otherwise a new clusterCM+1 is created with the current documentDi as its first member.

4. The previous two steps are repeated until allN documents are assigned to a cluster.

Single pass methods have a disadvantage of creating large clusters at the beginning with the size
of the clusters getting smaller as more clusters are created. The created partition depends strongly on
the order in which the documents are processed. As the quality of the partition is relatively poor, it is
a good idea to refine it with a few iterations of a reallocational algorithm like K-Means.

3.2.2 K-Means Clustering

K-Means [ROC66] is one of the most popular clustering algorithms which performs well on data hav-
ing isotropic hyperspherical clusters. It is a reallocational method that requires an initial partitioning,
with a predefined number of clusters, of the documents as a starting point. To improve the given
partitioning the documents are moved from cluster to cluster with the goal of reducing the squared
error, sometimes also called the distortion. It has been shown by [SEI84] that the partition converges
towards a local minimum of the squared error function in finite number of iterations. The quality of
the reached local minimum depends on the choice of the initial partition. The K-Means algorithm has
a great advantage over hierarchical methods in having a time complexity ofO(MN), which, for a
constant number of clustersM , can be regarded as linear. However, there are a number of important
issues regarding the quality of results, like the sensitivity to the initial partition, the number of clus-
ters that should be formed and the choice of continuous or non-continuous centroid updating, just to
mention a few. The number of clusters,M , is chosen when forming the initial partition and can not
be changed during processing. The general form of the algorithm is as follows:

3.2. PARTITIONAL ALGORITHMS 21

1. An initial partition of the document set intoM clustersC1 . . . CM is given.

2. TheN documentsD1 . . . DN are compared one by one to theM clusters and reassigned to the
clusterCj that is most similar to it.

3. Centroids of theM clusters are recalculated.

4. Previous two steps are iterated until in the allocation of the documents to clusters hardly
changes, or until some other criterion is satisfied, for example a maximum number of itera-
tions is reached or the decrease of the squared error goes below a specified value.

The squared error is the sum of squared distances between each cluster member and the cluster
centroid. It is given by:

e2(S, CS) =
M∑

j=1

nj∑
i=1

‖x(j)
i − cj‖2

wherej stands for the sum overM clusters andi stands for the sum overnj-th cluster’s members.

Number of Clusters and Initial Partition

As the K-Means algorithm works with an already created partition the number of clusters is predefined
and the algorithm keeps it unchanged even if the number was not suitably chosen. An even bigger
problem involves selectingM cluster seeds which are used to build the initial partition. The K-Means
algorithm is extremely sensitive to the initial choice of cluster seeds, which makes this a crucial
problem that has not been solved adequately yet. A technique that is very often applied is running
the algorithm several times with different initial configurations and then choosing the one with the
least squared error, which increases the running time significantly. A number of other strategies can
be applied, like positioning the seeds uniformly in the information space or performing a hierarchical
agglomerative clustering on a small sample of the document set as is done in Scatter/Gather (see
Section 3.5) with the Buckshot and Fractionation algorithms. Another interesting method, that is
based on the idea of clustering the cluster centroids of different partitions of the object set obtained
with random seeds, is a refinement algorithm working on subsamples of the document set. To find
the seeds fork initial clusters it operates as follows:

1. J small random samples of the data,Si, i = 1, . . . , J are clustered with K-Means choosing
an random initial partition. The setsCMi, i = 1, . . . , J are cluster centroids of the found
solutions, which form the setCM = ∪iCMi.

2. The setCM is clustered with KMeans using the setsCMi as seeds producing cluster centroids
FMi.

3. The initial point set is chosen as theFMi having a minimal squared error over the setCM .

Clustering ofCM over the sets of initial pointsCMi provides smoothing to avoid solutions corrupted
by outliers. A it was reported in [BRF98], by using 10 samples of 10% the size of the original set, the
solution shows significant improvements, specially for data with high dimensionality.

22 CHAPTER 3. CLUSTERING TECHNIQUES

Figure 3.2: Effects of seed selection techniques and centroid updating policy on quality and speed of
clustering. Taken from [LAA99].

Continuous Versus Non-continuous Centroid Updating

The other issue concerns the decision when to update the cluster centroids. The first possibility is
to update the cluster centroids after each iteration is completed, the second is to update the cluster
centroid continuously each time an element is inserted to or removed from the cluster. Although the
first possibility seem to be a faster solution, evidence was presented by [LAA99] that this method
requires more iterations than the second one and has a greater sensitivity to initial partitions that are
not ideal. Especially when using random initial partitions, continuous updating brings significantly
better results and needs less iterations.

In the Figure 3.2.2 the letter “c” stands for continuous and the latter “n” for non-continuous
centroid updating. The number indicates the number of performed iterations. TheF -Measure is a
measure for quality of the clusters created by an algorithm compared to those created by humans. For
this purpose each document as assigned a topic label T by a human judge. AF -Measure for each
clusterC with respect to a topicT is defined as:

3.2. PARTITIONAL ALGORITHMS 23

F (C, T) = 2PR
P+R

where:

• P = Precision(C, T) = N1/N2,

• R = Recall(C, T) = N1/N3,

• N1 = number of documents judged to be of topicT in clusterX

• N2 = number of documents in clusterC

• N3 = number of documents judged to be of topicT in the whole set

F (T) is the system’s value of theF -Measure for the topic T and it is defined as the largest value
F (C, T) over all created clusters. The overallF -Measure is defined as:

F =

∑
T∈TS

(|T |×F (T))∑
T∈TS

|T |

whereTS is the set of Topics and|T | is the number of documents judged to be of topicT .

Halt Criteria

The simplest halt criteria is to specify a maximum number of iterations, but sometimes it is not easy
to guess the appropriate number of iterations, since it depends on the number and the configuration
of the documents in the set. A better idea is to monitor the shift in cluster centroids or the squared
error of the configuration, and when one of them falls below a specified value the algorithm stops.
However, depending on the document set, their number and the implementation, it is possible that the
shifting of documents will never stop completely. Therefore, the algorithm should actually stop when
the improvement in either of these two values falls under a specified level.

3.2.3 ISODATA Clustering

The ISODATA Classification method [TOG74a] is a modification of the K-Means method, addi-
tionally incorporating a number of heuristic trial and error procedures for splitting, combining, and
discarding clusters to reach an absolute minimum and therefore obtain an optimal set of clusters. At
the beginning of every iteration it evaluates the clusters produced by the previous iterations. Large
clusters can be split into two smaller ones depending on a combination of factors, like the maximum
standard deviation of the cluster, or the number of objects in the cluster. When the distance bet-
ween the cenroids of two clusters falls below a certain threshold, the clusters are merged together.
If the number of objects in a cluster falls below a pre-defined number, the cluster is destroyed and
the objects it contained are assigned to other existing clusters. Using these procedures the ISODATA
clustering algorithm is theoretically able to find the optimal partitioning from every initial partition
and it can be used on data sets with clusters that are not necessarily hyperspherical. However, the
difficulty with this approach is that there is a number of additional parameters concerning splitting,
merging and discarding clusters. These values must be carefully chosen to obtain the best results, and
the optimal values may be different for different data sets.

24 CHAPTER 3. CLUSTERING TECHNIQUES

Figure 3.3: A dendrogram.

3.3 Hierarchical Methods

Hierarchical methods differ from partitional methods in the fact that they do not create a flat partition
of N objects intoM clusters, but build a hierarchy of clusters. This hierarchy can be visualised as a
dendrogram (see Figure 3.3), which, by breaking it at different levels, gives different clusterings of
the original data set. Data set objects are placed at the bottom of the dendrogram. The height of the
connection depends on the similarity of connected objects, which are in this context both the data set
objects as well as clusters. Connections in the lower part of the dendrogram connect objects which
are more similar to each other, while those in the upper part connect the less similar ones.

Hierarchical methods can be subdivided into agglomerative and divisive methods. The first begin
with the individual data objects and group them together according to a predefined similarity measure,
until a desired number of clusters remains. The divisive methods work in the opposite direction,
beginning with one cluster containing all data set objects and dividing it into more and more smaller
clusters. Both methods have high computing times what makes their application on large numbers of
objects impractical.

3.3.1 Hierarchical Agglomerative Clustering

Agglomerative clustering algorithms compute a sequence of partitions beginning from finest, where
each cluster contains one data set object, to the coarsest where all objects are placed in a single
cluster. The number of desired clusters can be chosen by cutting the resulting dendogram at a certain
level. Agglomerative methods begin by creatingN clusters, one for each data set object, which are
then paired together step by step according to some similarity measure, until a certain number of

3.3. HIERARCHICAL METHODS 25

clusters remains. Most of these algorithms use the same base pattern, differing mainly in the method
of building the pairs and in the representation of the clusters.

Hierarchical agglomerative clustering (HAC) [VOO86] is a very popular greedy strategy giv-
ing very good results, but having a penalty of long execution times, as its time complexity is
O(N2 log N), or worse, depending on the implementation. It requires the generation of the simi-
larity matrix which is a triangular matrix containing the pairwise similarity values for each two data
set objects. The time and space complexity for this operation isO(N2). In its general form the
algorithm is made up of the following steps:

1. Create the(N − 1)× (N − 1) similarity matrix.

2. Find a pair of two most similar objects in the matrix and merge them to a single cluster.

3. Update the proximity matrix to reflect the merge operation.

4. Repeat the previous two steps until the number of objects is reduced to a certain number, and
than stop.

This method is quite sensitive to noise and outliers, in all of its forms. Another big problem is
the halt criteria: at a certain point there can be a number of clusters left that are all dissimilar to
each other. Merging the best pair at this point has no sense and it would decreases the quality of the
resulting clustering significantly and increase the square error. A possible workaround would be to
define a similarity threshold,sth, that stops the algorithm if no pair can be found that has a similarity
larger thansth. However, a good value forsth is different for every data set. Another approach for
addressing this problem is to watch the squared error development. If the next merger would cause
a strong increase of the squared error the algorithm should stop. The difficulty lies in deciding what
constitutes a strong increase and what not, which is, again, different for each set of objects.

Different versions of the hierarchical agglomerative clustering algorithm exist. The main differ-
ence between them is how the similarity between clusters is calculated. Most popular methods are
the single-link and the complete-link method. Other methods are for example the average-linkage
method which is a combination of the previous two, the centroid based method where cluster cen-
troids are used to calculate the similarity, the median method and the Ward method, each having
different characteristics.

• Single-link method: This is method is also called nearest neighbor method or minimum dis-
tance method. The similarity of two clusters is defined as the similarity between the two most
similar members each being a member of a different cluster:

s(Ci, Cj) = max{s(Dk, Dl) : Dk ∈ Ci, Dl ∈ Cj}
The single-link method tends to produce a small number of large clusters that are not very
tightly bound and suffers from a chaining effect, sometimes merging clusters that are not very
similar in their content. However, it can produce clusters that are non-isotropic, for example
elongated or concentric clusters can also be identified.

• Complete-Link method: The complete-link method is also called farthest neighbor or max-
imum distance method. Similarity between two clusters is defined as the minimum off all
pairwise similarities between members of the two clusters:

s(Ci, Cj) = min{s(Dk, Dl) : Dk ∈ Ci, Dl ∈ Cj}
This method produces a relatively large number of small, tight and compact clusters and it
proved more useful than the single-link method in many applications, for example in document
retrieval.

26 CHAPTER 3. CLUSTERING TECHNIQUES

Figure 3.4: MST clustering: by removing the 3 longest links 4 separate clusters are created.

• Average-link method: The average-link method is a a compromise between the previous two.
It tries to avoid the extremes of either too large or too compact clusters.

• Centroid method: Here the cluster centroids are used to calculate the similarity values between
any two clusters. This method generally yields very good results. The problem in some appli-
cations of the method is that when merging a large and a small cluster, the small cluster has
little influence on the centroid of the merged cluster, which can lie completely inside of the
larger of the two paired clusters.

3.3.2 Divisive Clustering

Divisive clustering works top-down. Many different algorithms for divisive clustering were developed
having completely different properties, but most of them suffer the problem of quadratic execution
time, and are therefore not suitable for very large numbers of documents. The general form of the
method can be described by the following steps:

1. All objects are assigned to one big cluster, which is than split with some division procedure.

2. Find the clusterCi, which should be split into two smaller clusters according to some criteria
for example the cluster with largest variance.

3. The last step is repeated until the desired number of clusters is reached.

The different algorithms differ mostly in the way the clusters are split. For example the Median-
Cut [HEX82] and the similar Mean-Split [WIT85] algorithms, developed for finding representative
colors for image quantisation, recursively subdivide the 3-dimensional color space into rectangular
hyperboxes with the partition plane perpendicular to the coordinate axis with the largest color spread
and passing through the median point, for the Median-Cut, or through the mean point, for Mean-Split,
of the projected color distribution along this axis.

Minimum Spanning Tree Clustering

Minimum spanning tree clustering is a well known graph-theoretic divisive clustering method (see
Figure 3.4). The minimum spanning tree, or MST, is the tree of minimum length connecting a set
of objects in space. The length of the tree is defined as the sum of lengths of the links connecting

3.4. ARTIFICIAL INTELLIGENCE TECHNIQUES 27

the objects in a tree. The MST is similar to trees created by the single-link hierarchical clustering
method. After the MST is constructed, which has an approximately quadratic time complexity, links
are deleted from the MST, beginning with the longest link, and proceeding in order of decreasing
length. Each time a link is removed from the MST a cluster is split into two smaller clusters, both be-
ing more compact then their parent. The MST is similar to trees created by the single-link hierarchical
clustering method as connected sets obtained after each deletion are actually single-link clusters. This
method does not perform well in data sets with many outliers, which is, together with its worse than
linear running time, its biggest drawback.

3.4 Artificial Intelligence Techniques

Artificial intelligence techniques use approaches other than the statistical methods described so far.
Fuzzy methods differ from the hierarchical and partitional algorithms in that they do not assign an
object to a single cluster, but make use of partial memberships of every object to every cluster. Arti-
ficial Neural Networks (ANN) is a popular AI concept that has the ability to learn and adapt to new
situations, similar to their biological counterparts.

3.4.1 Fuzzy Clustering

Hard clustering approaches generate partitions where each pattern belongs to one cluster. Fuzzy
clustering [RUS69] uses the concepts of fuzzy logic and fuzzy sets, which are suitable for situations
in which the boundaries between the considered mathematical sets are not sharply defined. This
is, for example, the case in an image, where the boundaries between areas of different color are
often unsharp. A fuzzy set can be defined by extending the standard concept of a set by adding a
membership grade between 0 and 1 to every element of the set, where a higher membership value
stands for higher confidence in the assignment of the object to the cluster. A function assigning a
membership grade to every element of the fuzzy set is called the membership functionµ. The design
of this function is the most important problem in development of fuzzy clustering algorithms. In fuzzy
clustering methods every cluster is a fuzzy set of all data set objects. The clustering is performed by
associating each data set objectDi with every clusterCj by assigning a degree of membershipuij .
Therefore each cluster, represented as a fuzzy set, can be defined as:

Cj = {µCj (D1), µCj (D2), . . . , µCj (DN)} with

µCj (Di) ∈ [0, 1] and
N∑

i=1
µCj (Di) = 1

The fuzzy partitioning of the document setS composed of fuzzy clustersC1, C2, . . . , CM can
be represented through aN ×M membership matrixU , where the elements of the matrix are given
by uij = µCj (Di), with uij ∈ [0, 1]. With these definitions a general form of the Fuzzy C-Means
partitional algorithm can be given:

1. Analyse a sample of the input data set to findM prototype clusters, the seeds. The valuesuij of
the membership matrixU are calculated by determining the membership degree of every data
set object in each cluster.

2. Calculate the value of the fuzzy squared error for the current partition using the matrixU . The
objects are reassigned to clusters in such a way to minimise the squared error function. The
fuzzy centroids and the membership matrixU are recomputed.

28 CHAPTER 3. CLUSTERING TECHNIQUES

3. Check for convergence. The algorithm converges when the membership functions of the(p+1)-
th iterations are the same or did not change significantly as those of thep-th step. If this is true
stop, otherwise repeat the previous step.

The fuzzy squared error function is the sum of the squared distances of all data set elementsDi

represented by vectors~xi from the centroids~cj of each clusterCj weighted by the membership grade
uij :

e2(S, U) =
N∑

i=1

M∑
j=1

uij‖~xi − ~cj‖2

Fuzzy C-Means is much better than the hard K-means algorithm at avoiding local minima and it
can converge to a global minimum of the fuzzy squared error function. However, for some data set
configurations it will converge only towards a local minimum.

3.4.2 Neural Networks

Artificial Neural Networks (ANN) have, as their biological counterparts, the ability to learn their in-
terconnection weights adaptively. Objects represented by vectors are presented at the input and are
associated with the output nodes. The weights between the input nodes and the output nodes are iter-
atively changed in a process called learning until some termination criteria is satisfied. ANNs process
numerical vectors, grouping similar vectors automatically based on data correlations and representing
them by a single neuron. The process of training the neural network is computationally very intensive,
so ANNs can not be used to produce results on-the-fly and are not suitable for interactive applications.
Examples of ANNs used for clustering purposes are the Self Organising Map networks [KOH88] and
Adaptive Resonance Theory networks [CAG90].

Self Organising Map

Self Organising Map (SOM) is an example of an Artificial Neuronal Net based on unsupervised
learning and therefore well suited for clustering tasks. It reduces the dimensionality of the input data
and produces a 2-D map out of a multidimensional data set by converting the input feature space to a
topological map with bounded regions. Vectors that are close in the high-dimensional space will also
be close in the 2-D projection. SOM differs from neural networks like the feedforward or multi-layer
perceptron, that are more widely used, through its network architecture and approach to learning. The
network is made of only two layers, one for input and one for output. Every unit in the input layer is
connected to all units in the output layer. The output units are mostly ordered as a 2-D array to form
a topological map.

SOM (see Figure 3.5) is similar to the Linear Vector Quantisation (LVQ) classification method
that adjusts the boundaries between pre-defined categories in such a way to minimise the misclassi-
fications. In the training phase the best matching output node is found for each input training vector.
If the known class of the input vector differs from the class of the best matching node then the next
best matching node is found and, if it has the correct class, the weights of the best matching node
are moved a little farther from the training vector and the weights of the next best matching node are
moved a little closer to it. The boundary between classes are moved closer to the optimum position.
The SOM differs from LVQ in the fact that output nodes do not correspond to some known classes but
to unknown clusters that are found during the processing. During the training phase the SOM finds
the output node with the smallest distance from the current training vector and changes the weights

3.5. SCATTER/GATHER 29

Figure 3.5: SOM network architecture

wji to increase the similarity to the current input. The weights of neighbours of the matching node are
also updated. By applying different training vectors, different winning output nodes and their neigh-
bours are influenced in such a way that the weights associated with the output nodes are changed to
map the distribution of the input vectors. When the training is completed the weights of every output
node model the features of a cluster in the input data set.

A general form of the Kohonen’s training algorithm is as follows:

1. Initialise the weights vectorwj to small random values.

2. Present a new input vectorx.

3. Find the output nodec whose weights are closest to the input vector. This is the winning node.
Euclidean distance is used as proximity measure:d = ‖x− wj‖.

4. Modify the neighbourhood sizeNc(k) and the learning rateα(k), wherek is the iteration,
reducing them linearly and slowly during the training phase.

5. Go to step 2 until learning is complete. The process can take as many as 10000 to 100000
iterations to complete.

The process is sensitive to the initial configuration and can produce a suboptimal partition for bad
initial weights. The convergence depends on several parameters like the neighbourhood sizeNc(k)
and the learning rateα(k). For example if the initial value of the neighbourhood sizeNc(0) is too
small the convergence can fail to occur. After the training phase is finished the network can be used
for recognition of patterns. The weights are saved and the output nodes are labelled according to the
class they represent. A vector is presented at the input which fires the best match output node, the
winning node. The winning node is lit up or the node’s label is displayed to show to which cluster the
presented vector belongs to.

3.5 Scatter/Gather

Scatter/Gather [CKP92] is a clustering-based document browsing system, developed at Xerox PARC.
It introduces two fast, linear time clustering algorithms and uses clustering as an information access
tool instead of using it for information retrieval purposes, as it has proved unsuitable and too slow in

30 CHAPTER 3. CLUSTERING TECHNIQUES

this area. Following the cluster hypothesis stating that relevant documents are more similar to each
other than to non-relevant documents, an interactive document browsing system based on clustering
was developed. The system builds clusters containing similar documents, which are represented by
textual summaries. These summaries are made up of titles as well as keywords that characterize the
cluster. Based on the summaries the user can select several clusters or documents for further study,
forming a subcollection, which is then reclustered to refine the results and give a more detailed view
in the structure of the chosen selection. The operations of scattering a group of documents and then
gathering some of the formed clusters that appear interesting for another scatter/gather round, and
repeating the steps, make the groups become smaller and more detailed. Scatter/Gather can be used
on results returned by conventional search engines or on any given collection of documents.

3.5.1 Browsing as an Information Access Method

Typically, information retrieval systems are driven by a query. Sometimes it is very hard to formulate
a good and precise query and if the user wants to get an overview on the document set, such systems
are not very useful. Scatter-Gather uses a metaphor of a conventional textbook: if the user is interested
in getting an overview, the table of contents, which shows the logical structure of the text, is the best
solution. The table of contents gives clues about of which questions can be answered by the text. If
the user has a specific question with terms defining the question, the solution is to consult the index.
Scatter/Gather presents cluster-based, dynamic table of contents to the user for navigating a collection
of documents, and also offers a query based text search method.

The Scatter/Gather orders documents into topically coherent groups and characterises them by
presenting descriptive textual summaries consisting of topical terms and titles that sample the contents
of the cluster. The clusters can be used to identify interesting documents or sets of documents, which
can be reclustered into more refined groups and to eliminate irrelevant documents. The user can
select clusters or documents and form a subcollection that is reexamined by reclustering it on-the-fly.
By iteratively repeating the examination different topics can be seen depending on the subcollection
chosen to be clustered.

For this purpose Scatter/Gather needs a clustering algorithm which can cluster a large number of
documents in a time which is tolerable for user interaction and which offers good clustering quality.
Hierarchical methods offer good results but have quadratic execution time and are therefore too slow.
Partitional algorithms approach linear running time but the quality of the results is often inadequate.
Two linear partitioning algorithms using techniques from the hierarchical algorithms were developed
for this purpose.

3.5.2 Clustering Algorithms: Buckshot and Fractionation

Partitional seed-based clustering algorithms like the popular K-Means can be divided in two phases:

1. Identifying theM seeds for the initial partition that is constructed by assigning each document
in the data set to the best fitting cluster.

2. Refining the initial partition iteratively.

The k-means algorithm is known to be very sensitive to the choice of initial partition, producing
poor results for bad choices. The Buckshot and Fractionation algorithms are procedures for find-
ing the centres for an initial partition. The initial partition is created by assigning each document
to the nearest centre creatingM clusters. These are then refined by the K-Means algorithm or a
modification of it. To find the seeds both algorithms use a clustering technique that can produce

3.5. SCATTER/GATHER 31

Figure 3.6: Scatter/Gather interface, taken from [HEP96].

high quality clusters but has a bad running time ofO(N2). This clustering technique, also called the
cluster subroutine, is an implementation of the group average agglomerative clustering. However, to
achieve linear running times the clustering subroutine is only applied locally, on a small subset of the
document set.

Buckshot and Fractionation are both fast, linear time clustering algorithms, applying principles
from hierarchical agglomerative clustering methods. Each has a different application area in the
Scatter/Gather system. Fractionation, although having a linear running time, is significantly slower
than Buckshot, but produces better, more accurate results. Therefore, fractionation it suitable for the
non-interactive partitioning of large document corpora. A clustering of the whole document corpus
can be produced and presented to the user at the beginning of the interactive Scatter/Gather session.
Buckshot, being faster, is used for interactive reclustering of the selected document subsets during the
interactive Scatter/Gather session. Although both algorithms are linear and produce accurate results,
they are, and this specially applies to Fractionation, sensitive to data sets with many outliers which is
consequence of using hierarchical agglomerative clustering (HAC) concepts and techniques.

The refinement procedure is essentially a K-Means algorithm with additional Split and Join pro-
cedures (also see ISODATA algorithm in Section 3.2.3). Split divides a cluster with poor coherency
into two smaller clusters using the Buckshot algorithm without refinement steps. The criterion is the
cluster self-similarity which is the average similarity between documents themselves and between
the documents and the cluster’s centroid. The Join procedure merges clusters based on the degree of
overlap of their topical words.

32 CHAPTER 3. CLUSTERING TECHNIQUES

Figure 3.7: Precision of clustering algorithms compared to the ranked list, based on queries to the
MetaCrawler meta-search engine. Taken from [ZAE98].

Buckshot Algorithm

Buckshot [CKP92] finds the initial cluster centroids, the seeds, by selecting a random sample of
size

√
MN from the document collection of sizeN , and clusters them with the cluster subroutine

to produceM cluster centroids. These centroids are the initial seed for the K-Means algorithm.
By keepingM small and constant compared toN , and by using the HAC algorithm on a subset
of documents of size

√
MN , Buckshot reaches processing time that is linear with the number of

documents. However, the sampling of the document set is risky if the clusters are small because they
may not be included in the sample, but as Scatter/Gather mostly generates a relatively small number
of larger clusters this is not so much a problem. As a consequence of using random samples the
algorithm is not deterministic.

Fractionation Algorithm

Fractionation [CKP92] is an approximated HAC algorithm which operates on the whole document set
using successive application of the cluster subroutine over fixed sized samples of the document set to
find the seeds. In each iteration the search for the closest pair of clusters is performed on a subset, in
a locally bound region, of the document set. By performing this search on a fixed size sample instead
of the document set, linear time complexity can be reached. In the first step the algorithm divides the
document setS into N/k subsets of fixed size, wherek > M . Each subset is clustered separately
with the cluster subroutine, forming a number of clusters in each group so that reduction in number,
from documents to clusters, in each subset is approximately a factor ofp. The procedure is iteratively
repeated with all formed clusters instead of documents, until only M clusters are left. This algorithm
has similar advantages and disadvantages to the hierarchical agglomerative methods: it produces high

3.5. SCATTER/GATHER 33

Figure 3.8: Scatter/Gather browsing, taken from [CKP92].

quality results on data sets with not too many outliers, and has the problem with the halting criteria.

3.5.3 Browsing of Very Large Document Collections

The linear time algorithms require less than a minute to process a few thousands of documents.
This is fast enough for interactive browsing, but the system can not deal with very large document
collections containing hundreds of thousands or millions of documents. Scatter/Gather tries to address
this problem by offering constant interaction time document clustering, however combined with a
longer, near-linear time, preprocessing [CKP93]. The hypothesis is that documents that are similar
enough to be clustered together in a fine-grained clustering will also be clustered together in a coarse-
grained clustering. This is called the Cluster Refinement Hypothesis.

A cluster hierarchy is a data structure that follows from the Cluster Refinement Hypothesis. It
is a tree whose internal nodes are subtrees of hierarchies and whose leaves are single documents, as
produced by HAC algorithms. Similar documents have a common ancestor low in the tree, while
less similar documents have a common ancestor near the root. An internal node can be viewed
as a meta-document representing all documents it contains. The hierarchy allows us to view the
collection at different granularities, either as a smaller set of meta-documents closer to the root,
or more finely as a larger set meta-documents closer to the leaves. The same can be applied to
each meta-document because it can be viewed as a root of its own tree. The hierarchy is generated

34 CHAPTER 3. CLUSTERING TECHNIQUES

by recursively applying the Fractionation algorithm on the complete document set, in the first step
producingM clusters inO(MN) time , and than recursively on each generated cluster each time
producingM subclusters, stopping when the number of documents in a cluster is small enough. If
the tree is balanced so that each cluster contains approximately the same number of subclusters, the
running time isO(NM log N) because there areO(log N) levels in the tree. The typical size of the
generated hierarchy is approximately 10% of the size of the original document set.

After a hierarchy is constructed in a pre-processing step it can be presented to the user for brows-
ing, this time in form of clusters containing constant numbers of meta-documents. This allows the
gathering and reclustering of collections of meta-documents in constant time, typically less then a
minute. In this case the faster Buckshot algorithm is used. The meta-documents contain profiles
of constant size constructed from the most topical entries in the profiles of the contained meta-
documents, thus not increasing the computation time at the higher levels of hierarchy. After a few
Scatter/Gather steps, when the groups become small enough, individual documents can be located.

Chapter 4

Search Result Visualisation

4.1 Introduction and General Principles

A huge amount of information is available electronically over the Internet stored in textual, multime-
dia or some other file format. Searching for a specific topic results in a large number of search results
in a completely unstructured form, mostly presented to the user as a list of documents sorted by es-
timated relevance to the search query and containing attributes like title, URL, and author. Although
Information Retrieval (IR) systems often return large amounts of information and almost every rele-
vant information can be found, it is hard for the user to tell which of the retrieved information is of
interest and which is not. To allow a distinction of relevant and non-relevant information, to provide
an overview and to avoid the problem of getting lost in Hyperspace different visualisations tools have
been developed to help the user retrieve the desired information effectively, organise and display it in
a meaningful way, and navigate and access it interactively. Additional information can be presented to
the user by mapping metadata attributes of the search results, such as estimated relevance, document
size, modification date or number of links to graphical attributes of the visual representation, such
as the size, colour, shape, height. Relationships between documents can be displayed by proxim-
ity, containment, connecting lines or some other means of shaping the information space, giving the
user a sense of overall composition and layout. Explorable visualisations provide very powerful and
intuitive means to the user to deal with very large numbers of documents, to identify groups of do-
cuments similar in content, eliminate outliers, compare documents with regard to different attributes,
and recognise trends and patterns in the data. However not all methods are suitable for all types of
data. For example, for multi-dimensional data, an effective way must be found to map the relations
in multi-dimensional space to 2-D or 3-D space that can be visualised. There is no general solution
that would fit every kind of data. As a result a large number of different approaches were developed,
and a small number of those that are suitable for search results visualisation will be presented in this
chapter.

4.1.1 Metaphors and Coding

Visualisation systems should be able to present large amounts of information in an understandable
and intuitive manner giving the possibility for interactive navigation through the information space
and providing fast access to any information. Commonly documents are represented as dots or shapes
in 2-D or 3-D space. 2-D representation slightly extended into a third dimension (also called 2.1-D)
has proved powerful enough without posing excessively high cognitive loads on the user. Metaphors
are used to help the user build up a mental model of the information space. These metaphors can
be applied to encode information in the representation of each document, but can also represent

35

36 CHAPTER 4. SEARCH RESULT VISUALISATION

relations between them, and are even used to shape the information space itself, for example with
a topographical map. Both numerical and non-numerical information can be encoded, linearly or
in some other way. When designing such a visualisation system, several decisions have to be made
concerning the mapping of data set attributes to the attributes of the objects in the user interface. The
overview of visualisation as well as the use of space and the details filling it must also be taken into
consideration. Some often used coding principles are:

• Size Coding: Size is commonly use to indicate quantitative information like the size of a docu-
ment, number of elements contained in an object, or the relevance of a document.

• Colour Coding: Colour can also be used to show quantitative information, but it is not as
suitable as the size. Colour is better for coding the type of an object.

• Brightness Coding: This is very suitable for coding numeric information and is similar to size
coding.

• Shape Coding: Shapes are mostly used to display non-numerical information such as the type
of a document Shapes are metaphors used to code some information and are often derived from
real world objects. Ssuch metaphors help the user build up a mental model of the information
space. Simple geometrical forms like rectangles, triangles, circles, spheres, cubes, or more
real-world-like objects are used to code documents, while structures like trees and landscapes
are used to shape the information space and visualise relationships.

• Proximity Coding: The distance between any two documents in the information space can be
used to code the similarity of the documents: the closer they lie the greater the similarity. This
kind of coding produces groups of similar documents which are easy to identify visually. If the
groups can be marked or labeled in some way, the user can locate the documents containing the
desired information very easily.

• Position Coding: A position of an object relative to an axis can be proportional to a numerical
value, but even non-numerical information can be coded this way as certain attributes can be
placed on suitable positions on the axis.

4.1.2 User Interface Operations

A visualisation should offer the possibility to intuitively manipulate the displayed objects and to
navigate the information space. Feedback is also an important component in interactive systems.
Some of the operations and methods offered by such systems are:

• Pointing to (mousing over): By pointing, an object or a group of objects extra information can
be displayed, such as the title, size, keywords or even a summary. This helps in getting a more
detailed overview as well a locating points of interest.

• Selection: This operation is mostly used to choose objects that some other operation should be
applied on. A selection of objects is obtained through operations like pointing and dragging,
but can also be the result of a search operation.

• Dragging: Moving a group of objects or selecting them by marking a part of the display can be
achieved by dragging.

• Searching: Although we are here talking about search results visualisation, it can be useful to
perform more detailed searches on the search result set itself. Such a search can also include
attributes and allows very fine extraction of items with certain characteristics.

4.1. INTRODUCTION AND GENERAL PRINCIPLES 37

• Zooming: Zooming is the technique of selecting a smaller region of the currently displayed,
larger portion of space, for more detailed display. Zoom out is the opposite operation, changing
the view from a smaller space area back to the previously displayed larger one.

• Panning: In a case when a viewed space is too large to be displayed on-screen at once, smooth
motion from one part of the space to another can be achieved by sliding the scroll bars.

• Filtering: The operation of removing, temporarily or permanently, uninteresting elements from
the display, according to a specified criteria, can give a better overview, especially when the
number of displayed items is very large.

• Exchanging axis dimensions: Many systems visualising multidimensional data, for example
document matadata, position objects in space according to the value of some attribute. By
exchanging the dimension of an axis the objects are repositioned.

• Axis range setting: By defining the range of the attribute currently assigned to an axis, the user
can filter out unwanted objects and get a more detailed view of those within the selected range.

• Details display: Visualisation systems should be able to give a closer look at a displayed object
or an object group. A more detailed view or additional information on the object, a summary,
or a complete view of the object should be given by performing simple mouse operations like
pointing or clicking.

• Relating: The possibility to relate displayed objects helps to discover relationships between
them.

• Maintaining history: Explorative visualisation is a sequential process, so that maintaining his-
tories enables the user to retrace previous actions, and undo, modify or repeat them.

• Query Construction Support: Constructing a query is crucial to getting good search results.
It should be a creative process where the system supports the user, for example by proposing
a refinement of previous queries with relevance feedback (from previously returned objects),
analysing the user’s earlier behavior, etc.

4.1.3 Different Approaches to Search Results Visualisation

Documents which were returned as a result of a search query can be visualised according to differ-
ent criteria and with different objectives. Depending on the organisation of the documents, on the
environment that they were found in, on the purpose of the visualisation, and on analysis and process-
ing performed on the retrieved documents, the following classification of search results visualisation
systems can be given (combined systems are, of course, also possible):

• Systems showing compact representation of the content of the retrieved documents give clues
to how the documents are composed, in which parts of the document the search terms can be
found and what their frequencies are, as well as how each document relates to every term of
the search query as a whole. As these visualisations are mostly simple and compact, they can
be used inside more complex systems.

• In some cases it can be very useful to concentrate on document metadata instead of on their
actual content. Analysing and comparing size, creation and last modification date, authors and
similar attributes, helps finding wanted information and can lead to the discovery of interesting
patterns in document distribution.

38 CHAPTER 4. SEARCH RESULT VISUALISATION

• Composing a good search query is key to getting good search results. As a result systems
visually supporting the user in building the search query based on feedback or history can
improve greatly the quality of the retrieved documents.

• As today almost all documents can be accessed through the World Wide Web, displaying and
analysing the structure of links pointing to and from the retrieved documents can give a picture
of the importance of found documents and lead to the discovery of more relevant documents
that were not returned by the search query.

• Systems visualising document collections according to the similarity of their content try to
group documents with similar contents together and possibly mark or label them, so that the
user can quickly decide where to locate relevant information. The number of techniques used in
this area is large and many completely different approaches are used and combined to achieve
the goal.

4.1.4 Placement Models

Systems which deal with the content of the documents returned as a result of a search query, generally
use a representation of the documents as n-dimensional vectors, called Vector Space Model (see Sec-
tion 2.2). As high-dimensional spaces can not be directly visually presented to the user, a procedure
is needed to map the documents from the high-dimensional space, to 2-D or 3-D space preserving as
far as possible the relations in the multidimensional space. Many approaches are known each hav-
ing different characteristics, but they all share the same proximity principle: similar documents close
to each other in the high-dimensional space must lie close to each other in the display. Here is an
overview of a few popular techniques for dimensionality reduction:

Multidimensional Scaling

Multidimensional scaling (MDS) takes a distance or similarity matrix of objects existing in a space
with a number of dimensions equal ton, and iteratively places objects in a space with number of
dimension equal tom so that the original distance matrix is represented as well as possible. MDS is
not an algorithm or an exactly defined procedure, but it is a name for multivariate analysis techniques
which attempt to rearrange the objects from the space with any number of dimensions to a space with
some other number of dimensions approximately preserving the original distances. It moves objects
in the space with the requested number of dimensions and uses a function minimization algorithm
to evaluate how well the distances between objects can be reproduced by different configurations
maximizing the goodness-of-fit. Stress is often used as a measures of goodness-of-fit, which means it
is a measure for the degree to which the distances in the m-dimensional space differ from the original
distances in the n-dimensional space. High stress values mean that a particular configuration poorly
reproduces the original distances, while lower stress values imply a better fit. Several different stress
definitions can be used, but most of them are based on the computation of the sum of squared distance
differences:

stress =
∑

[dij−f(δij)]2 , wheredij stands for the produced distances,δij stands for the original

distances, andf() is a monotone transformation of the original distances.

4.1. INTRODUCTION AND GENERAL PRINCIPLES 39

Force-Directed Placement

Force-directed placement is a very popular iterative technique based on a spring model. A system
of N masses, connected to each other with springs, is described using mechanical physics. At the
beginning the masses are positioned at some initial positions exhibiting attractive and repulsive forces
Fij on each other. These forces depend on high-dimensional distancesdij between the objects or on
their similarities, and on the geometric distancesgij of the objects in the layout space. Afterwards
the masses are iteratively moved depending on the forces until the resulting forces are equal to zero
and the system is in a minimal energy state. Additionally speeds as well as damping proportional to
the speed can be taken into consideration to add smoothness, stability and realism to the simulation.
The result is a separation in the layout, where high-dimensional distances are mapped to 2-D or 3-D
distances in the layout in such a way that the high-dimensional relations of the objects are preserved.
However, this approach has two big drawbacks. The first is that for each of theN documents in
the search result set a force resulting from all of the otherN − 1 documents has to be calculated,
which results in quadratic running time per iteration. The second side effect is that the algorithm
has a tendency to getting stuck in some local minimum before reaching the state of global minimum
energy.

The magnetic spring model is an extension to the standard force-directed placement method trying
to minimise the problem of getting stuck in a local minimum. A magnetic spring is a object having
mechanical spring characteristics and additional magnetic features. Parallel, polar and concentric
magnetic fields are introduced as well as compositions of those. This results in the standard attractive
and repulsive forces caused by springs and rotative forces caused by the magnetic fields.

There are a number of techniques which address the problem of high time complexity. Clustering
can be applied, where the documents are compared only to cluster centers and to documents from
their own cluster. The problem is that the quality of the clustering algorithm determines the quality
of the visualisation, and iterative linear clustering algorithms are in general less precise than those
with quadratic time (see Chapter 3). Also much detail information is lost as most of the document
to document comparisons are left out. A hierarchical space subdivision is another approach where
documents are compared to other documents directly only if they are in the same subarea. Otherwise
they are compared to a subarea as a whole. However, as documents move between subareas, sig-
nificant overhead is required to update and maintain the subdivision hierarchy, making this solution
rather complex.

A technique based on stochastic sampling of the document set, described in [CHA96a], preserves
all advantages of the force based model, while having a linear execution time per iteration. The
algorithm is relatively easy to implement and linear execution times are achieved by taking into con-
sideration only a constant size sample of the complete set when calculating the force on each object
in the set. Each of theN objects in the information space maintains two sets of constant size:

• Random setSi: A new random set is constructed for each iteration, by selecting a fixed number
of random elements from the remainingN − 1 elements, excluding elements that are currently
in the object’s neighbour set.

• Neighbour setVi: The neighbour set dynamically maintains references to neighbour objects in
the high-dimensional space. Before the first iteration it is filled with random elements. Real
neighbours are found iteratively during each construction of the random set. Each time a new
random element is selected for insertion into the random set it is compared to the furthest ele-
ment of the neighbour set. If the selected random element lies closer than the furthest neighbour
element in the high-dimensional space, the random element is inserted in the neighbour set and
the worst neighbour is removed from the set. Otherwise, if the selected random element does

40 CHAPTER 4. SEARCH RESULT VISUALISATION

not lie closer than the worst neighbour, it is inserted normally into the random set. In this way
neighbour elements get collected in the neighbour set through the iterations.

The force between each two objectsi and j in the set, denoted byFij , is proportional to the
magnitudedij − gij , wheregij is the geometric distance anddij is the high-dimensional distance
between the two objects. The high-dimensional distance is defined asdij = (1−sp

ij), wheresij is the
scalar product of the vectors of the two objects, andp is an exponent to increase the discrimination
between them. The force on every object, denoted byFi is calculated by adding force components
produced by the elements stored in both sets of the object.

Fi =
∑

v∈Vi

Fiv +
∑

s∈Si

Fis

When forces acting on every particle are calculated, the position and velocity are updated for each
of them by a fourth order Runge-Kutta process. To provide stability and smoothness, viscous damp-
ing proportional to the velocity is added. The halting criteria is reached once a maximum number
of iterations have been made or the stress value has little or no decrease over a certain number of
iterations. This stress value is based on mechanical stress in spring systems. Calculating it for every
iteration would increase the overall running time from linear to quadratic, therefore it is calculated
only every

√
N iterations.

stress =

∑
i<j

(dij−gij)
2∑

i<j

g2
ij

Simulated Annealing

Simulated annealing is a technique derived from a statistical mechanics physical model, describing
the cooling down of liquids form an unordered to an ordered, solid, state by iteratively lowering the
temperatureT and recalculating the state in every step. The difference from other iterative placement
methods is that it introduces steps that spoil the momentary solution making this approach less prone
to getting stuck in a local minimum. However this is only true if the cooling occurs very slowly.
Depending on the speed of lowering the temperature the system reaches different final values of
energy. If the cooling is fast only a local minimum is found. On the other hand if the temperature
sinks slowly, a state representing the minimum energy is reached. Best results are achieved when
the temperature is reduced in very small steps, which unfortunately results in long execution times,
making this technique suitable only for relatively small numbers of objects. The behavior of simulated
annealing systems is described through the Boltzmann probability distribution:

p(E) ∼= exp(−E
kT) ,

whereE is the energy,T is the temperature,k the Boltzmann constant, andp(E) the probability
distribution of energy values. Deriving the Boltzmann distribution and setting the value ofk to 1 for
simulation purposes, the probability with which the system moves from the position with the energy
E1 to a position with the energy E2 is obtained:

exp(−(E2−E1)
T)

4.2. VISUALISATION OF THE CONTENT OF THE RETRIEVED DOCUMENTS 41

Therefore, the system can, although with a small probability, move to a state with a higher energy.
This feature is useful for avoiding a state of local minimum as the systems can shake free of such non-
optimal solutions.

4.2 Visualisation of the Content of the Retrieved Documents

The following systems offer simple visualisations designed to display the how each returned docu-
ment relates to each term in the search query. They also have additional capabilities such as supporting
the user in constructing the query or approximately displaying where in the document the desired term
can be found enabling faster access to information.

4.2.1 Tile Bars

TileBars [HEA95] give users a compact representation of the content of the retrieved documents with
respect to the keywords in the query (see Figure 4.1). They simultaneously display the length of
the document, the frequency of keywords, and their distribution in the document. Between the title
of each document and the document number there is an icon which represents the document. Each
row of boxes in the icon represents one keyword or a group of keywords and each box represents
a thematic section of the text. Thematic sections are found by an algorithm which analyses the
document and partitions it into logical substructures. The shade of each box indicates how often a
keyword occurs in that section of the text: a darker colour represents a part of the document where
the given keyword appears often, a lighter shade a section where it appears less often. Vertically
aligned boxes represent the same sections in the given document. The user can navigate directly to
any section of the document by clicking on the boxes in the icon.

4.2.2 Visualising and Navigating an On-Line Library Catalog

A system for querying, navigating and visualising an on-line library catalog was presented by
[VHN96]. An online thesaurus suggests additional query terms to support the user in construct-
ing queries. The system also provides a simple visualisation which displays the total relevance for
each document together with the relevance for each keyword (see Figure 4.2). Every search keyword
is displayed on the left side of the figure, while right from it there is a row of bars. Each bar rep-
resents a document that was retrieved while the height of the bar represents the document’s rank for
that keyword. A taller bar means that the keyword is more relevant to that document. The last row
represents the total rank for each document, which is calculated as a combination of ranks for every
search keyword. Documents are ordered from left to right in decreasing order of total rank, where
vertically aligned bars represent the same document.

4.3 Visualisation of Multidimensional Data

As multidimensional data sets differin size and dimensionality, different approaches exist trying to
provide the best scheme for the data visualisation. A common approach is, for example, visualising
documents as matrices of objects in the display, with different metadata values on theX andY axis,
allowing easy identification in trends and patterns in the document set. If the number of dimensions
that should be viewed simultaneously is large, more than only two axis at once can be used. Such

42 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.1: TileBars visualisation, taken from [HEA95].

Figure 4.2: Visualising and navigating an on-line library catalog, take from [VHN96].

systems differ in the number of axis used, the way the axis are ordered in the display, and the flexibility
of assigning attributes to each axis or to some other characteristic of the display objects.

4.3.1 Envision

Envision [NFH96] is a multimedia digital library of computer science literature, with searching and
retrieval possibilities. The Envision system is made up of four main parts: a query server, an object-
oriented database management system, a presentation server, and the Envision client. The user in-
terface was designed to give the user full control of layout semantics and it allows the exploration
of patterns in the literature by choosing and combining different document characteristics to be vi-
sualised. An extensive range of user actions is possible, such as accessing bibliographic information,
abstracts, and viewing full content by double clicking the document icon. The Envision client window
(see Figure 4.3) is divided into three main parts:

• The Query Window: The query window provides the possibility to search for authors, words in
title and content words. The search interface maintains a query history, so the user can edit and
reuse old queries.

• The Graphic View Window: contains the graphical representation of the search result set, the
icon matrix.

• The Item Summary Window: provides bibliographic information in form of a list, correspond-
ing to marked icons in the Graphic View Window.

4.3. VISUALISATION OF MULTIDIMENSIONAL DATA 43

Figure 4.3: The Envision client, taken from [NFH96].

In the graphic view window, the search results are displayed as a matrix of icons. Each icon
represents one (or more) documents returned as a search result and its position in the matrix depends
on the document characteristics as well as on semantics of the axis chosen by the user. The user
has complete control over the semantics of each axis and is able to view every possible combination
of document characteristics by simply choosing which characteristic is displayed on each axis. An
axis can represent attributes like estimated relevance, author names, publication years, index terms,
document type etc. Changing icon attributes such as size, colour or shape the user can gain even
more information about each document. Following choices are possible: icon size - relevance, icon
colour - relevance or document type, icon shape - document type, label associated with each icon -
relevance rank or a unique Envision document identifier. The most relevant document is the first icon
in the cell. If icons overlap, they are combined to an elliptical cluster icon that shows the number of
documents represented by it. The user can zoom-in to gain access to documents contained in such a
cluster icon. Usability evaluation results showed great user satisfaction with Envisions style of search
results presentation.

44 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.4: The Parallel Visual Explorer displaying 10 parallel coordinates, taken from [CHT95].

4.3.2 Parallel Coordinates

Often the number of dimensions that should be displayed is much higher than the number of spatial
dimensions that are displayable on screen. This problem can be addressed by coding the extra di-
mensions into some attributes of display objects, like size, colour or shape, but this approach is also
limited. This method, called parallel coordinates, was described and invented by [IND87].

Parallel Visual Explorer (PVS) [CHT95] data analysis software, enables the visualisation of
datasets with very many variables enabling the user to easily discover relations among the them
(see Figure pvevisfig). PVS displays several dimensions as parallel vertical axes. For every display
object the data values for each dimension are then displayed on a corresponding axis. The number
of dimensions displayed at once is limited by the number of parallel axis on the screen. For every
multi-dimensional objectn valuesx1, x2, ..., xn are marked on axis 1 to n, and these points are than
connected by lines each object is visualised as a polygonal line. Parallel Visual Explorer is a power-
ful visualisation tool for discovering patterns and similarities for every kind of multidimensional data.
Relationships between objects can be easily identified as their lines have, locally or globally, similar
shapes.

4.4 Systems Supporting the User in Building the Search Query

A common problem for the user is how to describe best what she or he is looking for, as the used
terminology is often very broad or it is only known to experts. Constructing a query is crucial to
obtaining good search results. Thus, it should be a creative process where the system supports the
user, proposing a refinement of previous queries with feedback from previously returned objects,
analysing the user’s earlier behaviour, etc. In this way the user not only gains access to information
that was not retrieved with the original query, but also learns about the subject and the terminology
commonly used in the subject of interest, and acquires the ability to form better and more exact
queries.

4.4. SYSTEMS SUPPORTING THE USER IN BUILDING THE SEARCH QUERY 45

Figure 4.5: Screenshot of LyberWorld showing the NavigationCones visualisation, taken from
[LYB01].

Figure 4.6: Screenshot of LyberWorld showing the RelevanceSphere visualisation, taken from
[LYB01].

46 CHAPTER 4. SEARCH RESULT VISUALISATION

4.4.1 LyberWorld

The LyberWorld [HKW94] search visualisation system offers two main visualisations, the Naviga-
tionCone and the RelevanceSphere. NavigationCones (see Figure 4.5) visually supports the user in
forming the search query and also gives a visualisation of the retrieval history showing how far the
data space has been explored. The first level LyberTree is a cone-tree which is built as a result of a
standard search query and it contains all documents found by the specified query. The returned docu-
ments are represented using labels and are placed in the 3-D space so that more relevant documents
are shown in front, closer to the view point. The user can rotate the tree to view and select the do-
cuments that were classified as less relevant and were originally displayed behind the more relevant
ones and eventually covered by them. If the number of documents is very large a spiral structure can
be used instead of a cone. The construction of the search query can now be continued and refined
by clicking on an interesting document. This opens a term tree containing the keywords extracted
from the current document. Selecting a keyword starts a new, refined search query and the retrieved
documents form a new cone-tree, which is appended to the already present structure. This proce-
dure enables the user to refine the search query step by step and simultaneously follow the whole
retrieval and query history. Any of the retrieved documents can be opened using the LyberRoom, a
3-D visualisation of a virtual room where the documents are projected on a wall for viewing.

The second visualisation offered by the system is the RelevanceSphere (see Figure 4.6) which is
used to display the relevance of the documents with respect to each of the search terms in the query.
In this way the documents are visually clustered enabling the user to determine which document is
related to which query term as well as which documents are related themselves. All documents are
displayed inside of a sphere while the search query terms are placed on the surface and are represented
by small spheres. The distance of the document to the surface of the sphere represents the overall
relevance, so relevant documents are placed closer to the surface, and those less relevant closer to the
center of the sphere. The documents are also attracted by the query terms spheres depending on their
keyword profiles. By moving the query term spheres over the surface of the RelevanceSphere the
documents are automatically reclustered and placed to new positions, following only certain query
term spheres. The user can easily decide which documents are relevant to which query term.

4.5 Systems Visualising Document Hierarchies

Documents sre often organised and stored in hierarchy or a hierarchical structure can be dynamically
built after a search is performed, with the goal of organising the found documents. Very large amounts
of information can be stored in a hierarchical structure enabling the user to classify it and keep an
overview. Systems managing such structures can handle single or multiple memberships of stored
objects. However, the number of documents or files that are nowdays commonly stored in such a
system is becoming so large that hierarchies could not be displayed in whole any more, and new
methods of visualising and navigating had to be developed. A hierarchy that is too large to fit on
screen forces the user to scroll and the visualisation fails to give an overview that is simple and easy
to understand and navigate. Different approaches, some using 2-D and some 3-D geometry, have
been developed to visualise hierarchies with a very large number of nodes.

4.5.1 Cat-a-Cone

Cat-a-Cone [HEK97] is an interactive system for specifying searches and visualising retrieval results
using large category hierarchies (see Figure 4.7). It enables the user to simultaneously display re-
trieved documents and multiple categories in the category hierarchy to which the documents belong.

4.5. SYSTEMS VISUALISING DOCUMENT HIERARCHIES 47

Figure 4.7: Cat-a-Cone system, taken from [HEK97].

Documents inserted into the category hierarchy are classified according to general subject areas and
other semantic attributes. The documents retrieved as a result of a search query are stored in a so-
called WebBook. This is a 3-D animated book with scrollable pages, with the user’s query shown
on the cover of the produced WebBook as its title. A document can belong to more than only one
category in the category hierarchy, which is displayed as a ConeTree behind the WebBook. The user
can move through the pages of the book and watch the changes caused by his action happening in the
category hierarchy representation. These changes are animated in 3-D. When the user turns the pages
of the book, the subtrees of the category hierarchy rotate, expand, and contract according to which
categories the current document belongs to. Only those categories, together with their ancestors, to
which the currently viewed document belongs to are shown in the category hierarchy. For each docu-
ment in the 3-D WebBook there are two scrolled pages, the left page containing the title and the links
to corresponding categories in the category hierarchy and the right page containing the document’s
contents and/or its abstract. By clicking on a category on the left page, the corresponding category
label in the ConeTree is rotated and displayed in the foreground. At the same time all the labels of its
ancestors are highlighted. Books that are results of some previous searches are stored in bookshelf,
allowing the user to view the results of the previously performed queries. Cat-a-Cone is implemented
in Common LISP, running on Silicon Graphics IRIX machines.

48 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.8: Hyperbolic trees, taken from [LRP95].

Figure 4.9: Hyperbolic trees: Changing the focus. A node is being brought into focus. As other
nodes move away from center the amount of space they are displayed in becomes smaller. Taken
from [LRP95].

4.6. VISUALISING THE HYPERLINKS CONNECTING RETRIEVED DOCUMENTS 49

4.5.2 Hyperbolic Trees

Tree views are probably the simplest method to visualise hierarchies and they are provided as standard
graphical components by almost all user interfaces, like Microsoft Windows, the Macintosh File
Finder or any X-Windows based window manager. They are well known to everybody who ever
worked with modern computers and therefore need not be explained into detail. Normally not all
subtrees of the hierarchy are expanded at the beginning. The user navigates the tree by choosing
which subtrees to expand or collapse, going as deep or as wide in the hierarchy as needed. The
greatest disadvantage of these systems is that by opening subtrees the displayed part of the hierarchy
expands and needs an ever bigger display area. In such a case scrollbars are used to access parts that
are currently not visible, but a complete overview of the structure of the entire hierarchy is lost. This
is a huge problem when managing very large hierarchies and it mostly leads to the user becoming lost
and loosing orientation.

Hyperbolic trees [LAR94] make use of hyperbolic geometry for visualising large hierarchies (see
Figures 4.8 and 4.9). A large part of the display area shows only a small, focused, part of the hierarchy,
but still the entire hierarchy is displayed. The part of the hierarchy that the user is concentrating
on is displayed large and detailed, while the rest of the hierarchy is small and less detailed. This
technique allows smooth, animated focusing on a part of the hierarchy that the user is interested in by
magnifying the components that move towards the center, while other components become smaller as
they move away from the center. It is an example of the principle of focus + context. The hyperbolic
browser can display up to 10 times as many nodes as conventional tree representation and at the same
time provides navigation around the hierarchy with mouse clicks and dragging, making it easy for the
user to explore the hierarchy without getting lost in it. As a only 2-D geometry is used the required
computing power is kept low which makes the system suitable for implementing on any platform
including Java.

Implementations of this technique are developed by InXight Software Inc.,a subsidiary of Xerox
Corp. Applications for visualisation of data organization using hyperbolic trees [IHT01] were devel-
oped, enabling the user to explore the Web and his computer’s contents while simultaneously viewing
the structure of the Web and the directory structure on his computer. The user can perform different
operations such as searching for and identifying broken links. Another interesting tool by Inxight is
Murax [IMU01], designed for searching and browsing of query results based on topic and content
similarities. It uses language processing technology to analyze document content and establish rela-
tionships between the search words and phrases and to produce results by similar subject, concept or
phrase. Results are displayed grouped by subjects, in a form of virtual table of contents, starting with
those that best match the search query.

4.6 Visualising the Hyperlinks Connecting Retrieved Documents

Most web search engines present search results as a ranked list of titles and/or URLs, possibly together
with some additional data like the size, date, number of contained pictures and similar. The contexts
in which the pages exist, and their relationships to one another, are not displayed. The following
systems take additionally into account the connectivity of the found documents, which is the links
from and to the document. Some systems follow these links trying to find more relevant documents
which were possibly skipped by the search engine or were erroneously classified as not relevant to
the query.

A variety of techniques is used to produce the visualisations. As the hyperlinks define an directed
graph on the search results set, a hierarchical structure is often used to organize the returned docu-
ments and display them in a tree-like structure or in a virtual table of contents. Iterative placement

50 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.10: The WebTOC system, taken from [WET01].

models are also used, with the number of links connecting the documents, called the connectivity,
used as a measure of relatedness between documents.

4.6.1 WebTOC

WebTOC [NPM97] is a tool which visualises and quantifies web sites using a hierarchical table of
contents (see Figure 4.10). It is made up of two parts: the WebTOC Parser and the WebTOC Viewer.
Both are implemented in Java, the first as an application the second as an applet that it can be loaded
on the fly by a browser. The Parser begins its search from a chosen Web page and follows all the
links contained in this document. By doing so, a hierarchical representation of the documents found
is created. The Viewer organizes the collected information in form of a Table of Contents, which can
be viewed with standard Web browsers. Due to memory and time limitations the number of links
that can be represented is about 10,000. Every line in this Table of Contents represents a link to a
document that can be displayed by simply clicking on it. Additionally each document is represented
by a coloured line with the length corresponding the document’s size, while the colour of the line
tells the user what type of file it is, for example text, image or audio. If a document contains links to
other documents, the lines representing the documents it includes can be collapsed into a size bar that
shows the size of all the documents that can be reached through the links contained in it. This size
bar also has a shadow whose size represents the number of the document’s children.

4.6. VISUALISING THE HYPERLINKS CONNECTING RETRIEVED DOCUMENTS 51

4.6.2 WebQuery

The WebQuery system [CAK97] is designed for searching and visualising the Web based on both
connectivity and content. This is done by examining and following links among the documents which
are returned as a result of a query, where the document that is most highly connected gets the highest
rank. WebQuery extends the result set beyond documents returned by the search engine, by collecting
and including documents that are highly connected to those returned by the original query. In this way
searching is extended from being content-based to being also structure-based.

Results of the search engine are processed by the VANISH visualisation tool, which extends the
original search results with the structural information collected by its own spider. The original hit
set is expanded into a so-called neighbour set by finding all nodes that are linking to or are linked
by the documents in the hit set. The node’s total number of incoming and outgoing links, which is
called connectivity, is computed, and the nodes are sorted in decreasing order of connectivity. In this
way nodes that were not returned by the search engine are also considered. It has been found out that
these nodes are often also relevant to the query, although they were not returned by the search engine
because of a vocabulary problem, or because they were simply missed by the search engine’s spider.
Many uninteresting nodes matching the query are filtered out by the system. They are ranked so low
that they are not visualised, or they are pushed away from the center.

WebQuery offers five different visualisations:

• The sorted list view (see Figure 4.11) shows nodes that have equal connectivity in the same
colour.

• In bullseye view (see Figure 4.12) each circle contains nodes with equal connectivity, which is
represented by a number inside of it. Selecting a node causes URL to appear.

• The planes view (see Figure 4.13) shows a 3-D visualisation where nodes are ordered in planes
according to their connectivity and links are drawn between hyperlinked nodes. Those nodes
that were returned by the search engine are shown as tetrahedra, while those found by Web-
Query are shown as cubes.

• The cone tree view (see Figure 4.15) is constructed by traveling through the structure of hyper-
links, beginning at the artificial root node and adding nodes to the tree in the order in which they
were collected. Each parent node is labeled by the connectivity value of its children. Nodes
from the hit set are coloured according to their score returned by the search engine, where red
indicates highest and blue indicates the lowest score. Nodes that did not appear in the original
hit set are coloured black.

• The graph view (see Figure 4.14) uses a springs-and-weights algorithm that simulates the forces
between nodes and calculates the positions of the nodes. The artificial parent nodes are shown
in blue-green and are labeled with the connectivity values of their children. The used algorithm
pulls nodes with high connectivity to the center, while those with low connectivity are pushed
away from center. By default all nodes repel each other and only the connections between them
result in forces that attract nodes that are connected with each other by links.

52 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.11: WebQuery: sorted list view, taken from [CAK97].

Figure 4.12: WebQuery visualisation: bullseye view, taken from [CAK97].

4.6. VISUALISING THE HYPERLINKS CONNECTING RETRIEVED DOCUMENTS 53

Figure 4.13: WebQuery: the planes view, taken from [CAK97].

Figure 4.14: WebQuery graph visualisation, taken from [CAK97].

54 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.15: WebQuery: 2D cone tree visualisation, taken from [CAK97].

4.6.3 Fetuccino

Fetuccino [BHJ99] is an extension of the Mapuccino site mapping system and provides a user inter-
face for visualisation of search results as an advanced graph layout. The system offers the following
possibilities:

• Extending the standard static search with a dynamic search that explores the neighbourhood
of the returned documents to find more relevant documents, check for broken links and even
include dynamically generated documents.

• A dynamic two-phase search that allows the user to specify a domain query and a focused
query, and apply the focused search in the specified domain.

• Visualising the results of the search process, showing the structure and relations of the returned
documents in relation to the sites where they were found.

A standard search engine is used to obtain a set of documents in response to a user’s search
query. These documents are then analyzed and used as a starting point for the dynamic searching
process. New documents are found by following hyperlinks from the original set of documents. The
user can specify the depth of the search and the system will follow the hyperlinks of the documents
retrieved by the dynamic search up to a specified depth (see Figure 4.16). As this searching process
is time-consuming, the user can also specify a time limit after which the dynamic search stops.

4.6. VISUALISING THE HYPERLINKS CONNECTING RETRIEVED DOCUMENTS 55

Figure 4.16: The Advanced Form in the Fetuccino service (light version), taken from [BHJ99].

Figure 4.17: The Mappucino applet, taken from [BHJ99].

56 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.18: A screen-shot of the HyperSpace system, taken from [WDB95].

The map view shows the search results page as root, and the documents with the highest relevance
as first-level children (see Figure 4.17). The shade of blue represents the relevance of each document,
where a darker shade means that the document is more relevant. Following levels in the tree show the
documents found by the dynamic searching process. It was found out that some documents with very
high relevance were not among those found by the standard search, but were found by the dynamic
search process. The system also checks for broken links which can be presented to the user. There is
an extended version of Fetuccino, called Fetuccino Alfredo that offers the following extension: The
user specifies two terms: a domain term, and a query term. In the first phase, the specified domain is
found and in the second phase the query is evaluated inside of it.

4.6.4 HyperSpace

HyperSpace [WDB95] is a World Wide Web tool which adds visualisation to the process of browsing
the Web. It displays the organization of the web by considering the hyperlinks connecting the docu-
ments, so that related topics are displayed close to each other and those unrelated are pushed away
from one another (see CFigure hypspacefig). Every time a page is loaded into the browser it is also
loaded into a separate program, that analyses the page and extracts the title and all links. This data is
used by the HyperSpace viewer which represents each document as a sphere whose size corresponds
to the number of links showing from or to the document. Links between documents are shown as ar-
rows between spheres. Spheres normally repel each other while links provide attractive forces pulling
highly interconnected documents together. In this way a 3-D system, where the spheres are randomly
placed at the beginning, organises itself so that documents with no links between them are pushed
apart, and those that are highly interconnected are clustered together. The viewer displays all links
emanating from a document, as well as all known links pointing to it.

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 57

4.7 Visualising Document Collections According to Their Content

Documents are usually represented as vectors in a high-dimensional space. This model, called the
vector space model (see Section 2.2), is the most commonly used model and allows the comparison
of documents with respect to their content. A problem that all systems which visualise documents
according to their mutual similarity or to their similarity to search query terms have in common, is
how to perform the mapping from the high-dimensional space to the 2-D or 3-D space which can
be visualised on screen. Most systems display the documents with the Euclidean distance between
documents as a measure for their similarity, although some other approaches also being used, like
the use of angular distance. A number of different techniques were developed, many of them itera-
tive (see Section 4.1.4) like multidimensional scaling (MDS), simulated annealing or force-directed
placement, others making use of artificial intelligence methods, like Self Organising Maps which are
based on neural networks. Most of these techniques have the disadvantage of being very slow or
having quadratic execution times and therefore can parctically handle no more than a few thousand
documents. This problem led to the development of near linear or linear algorithms such as the An-
chored Least Stress used by the SPIRE Project (see Section 4.7.10), or the force-directed placement
with stochastic sampling used in Bead (see Section 4.7.8).

4.7.1 InfoViz VRML-Document-Finder

The InfoViz VRML-Document-Finder [IVD01] is a tool for 3-D visualisation of search results (see
Figure 4.19). The systems is made up of several modules including a complete document retrieval
and analysis system, a system for hierarchical clustering and automatic categorisation of retrieved do-
cuments and a 3-D visualisation system. Documents returned by the retrieval system as the result of
a search query are analysed and clustered according to their similarity. The clustering system builds
a tree representation of the topic hierarchy, where nodes are labeled according to the contents of the
documents contained in the corresponding subtrees. The blue platforms are clusters representing sub-
ject areas marked by the label term on top. They are arranged in the form of the generated hierarchical
tree structure with yellow and red cubes placed on them. The cube elements represent text documents
assigned to the subject area underneath them. The colour of the cube gives information if the content
of the document cannot be described by a more specific subject term, which is displayed by a red
cube, or, if it can, which is displayed by a yellow cube, it will appear at a deeper, more specific,
level of the subject hierarchy. The generated structure is displayed in 3-D giving the user the pos-
sibility of moving, navigating and exploring the virtual reality environment by free navigation or by
through predefined viewpoints. The system requires the user to have a VRML-enabled web browser
and consists of three main modules written in Perl:

• CGI control script: controls the program, executes database query and returns an unsorted list
of matching document references.

• Information processor: builds up a structured document hierarchy from the unsorted list of
document references.

• VRML generator: generates a VRML scene of the document hierarchy.

58 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.19: InfoViz VRML-Document-Finder: a VRML scene of document hierarchy. Taken from
[IVD01].

Figure 4.20: The NIRVE Control Window displays a menu for the user to select among the various
operations. Taken from [CLP97].

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 59

Figure 4.21: The NIRVE Concept Control Window, taken from [CLP97].

Figure 4.22: The NIRVE Document Space Window, taken from [CLP97].

60 CHAPTER 4. SEARCH RESULT VISUALISATION

4.7.2 The NIST Information Retrieval Visualisation Engine (NIRVE)

NIRVE [CLP97] is a 3-D visualisation system which takes a set of documents delivered by a search
engine as input, enables the user to build up concepts from keywords occurring in the documents, and
than builds clusters of related documents according to constructed concepts. NIRVE allows the user
to manipulate, browse, recategorise and filter the document set, to assign a relevance to documents
and clusters or eliminate them and then view the results with this new set of parameters. The user
can choose the number of clusters to be built from the returned set of documents, thus obtaining a
smaller number of clusters containing more documents or more clusters containing a larger number of
documents. By clicking on a document icon the system invokes a browser and displays the documents
contents in it and is even able to automatically generate HTML summaries of a cluster, or of a chosen
subset of documents. The following data is needed for performing the clustering and visualisation:

• A relevance score, computed by the search engine, representing how well a document matches
the query.

• The sequential rank of the document depending on the score.

• Document title.

• Document URL.

• Document length.

• Number of occurrences of each keyword in the document.

NIRVE displays three windows to the user: the Control Window (see Figure 4.20), the Concept
Control Window (see Figure 4.21), and the Document Space Window (see Figure 4.22). The Concept
Control window allows the user to construct concepts by mapping query keywords, and to assign
a weight to each concept. It is often useful to add synonyms and redundant phrases in the search
query, but this creates extra dimensions in the n-dimensional document space, while the meaning
of the keywords is the same. This has a negative effect on both quality and speed of clustering the
documents. Concept mapping solves this problem by allowing the user to identify such keywords and
map them in a smaller set of concepts. Each concept has a different colour assigned to it, so the user
can easily distinguish between them.

The Document Space window displays the clusters and the documents inside them. Both the
document icons, displayed in 2-D, and the cluster icons, displayed in 3-D, display their concept profile
as a histogram where colours of the bars correspond to the colours of certain concepts. The documents
are ordered in clusters which are created on the basis of the similarities of document’s concept profiles
and their weights. Similar documents have similar concept profiles and are placed close to each other
inside of the cluster they belong to. The gaps between documents have different sizes according
to document’s similarities, and a cluster is defined as a maximal sequence of documents where no
gap is larger than a specified threshold. User can set this threshold higher or lower to generate less
clusters with a larger number of documents or more clusters with a higher number of documents
respectively. The angular distance between clusters is proportional to their concept profiles in the
concept space, so that similar clusters are placed closer to each other. There are three different modes
for manipulating the document space. In spin mode, the display rotates around the center. In move
mode, the mouse is used to translate and rotate the displayed clusters. In pick mode, the user can
perform different operations on documents or clusters and assign a relevance status to documents and
clusters. A small flag attached to the icon represents the current relevance value: red for bad, yellow
for unsure, green for good. The user can choose to display only documents or clusters with a specified

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 61

relevance status and filter out the others. As mentioned before, the system can automatically generate
a HTML summary page for any number of chosen documents, for some selected clusters, or for all
items in the Document Space window.

A number of other interesting approaches and papers, including the evolution of the NIRVE de-
sign [CLS00], can be found at the NIRVE homepage [NIR01].

4.7.3 Wilmascope

Wilmascope [WLM01] is a system for creating 3-D animated dynamic graph structures (see Figure
4.23). It is implemented in Java and makes use of the Java3D graphics library. The system in its
current implementation is not used specifically to visualise documents, but the force-directed layout
model it employs and a simple CORBA API it provides can be used to visualise any kind of data.
The user can create graphs by adding nodes, attaching labels to them, and connecting the nodes with
directed or non-directed edges. It is possible to group nodes into clusters which are visualised as
transparent spheres surrounding the nodes. Global and cluster-oriented force-directed layout algo-
rithms arrange the elements of the graph. In the employed force model, nodes push each other apart
by default and edges are springs between nodes. A field orientation is used for directed edges. To
prevent unconnected nodes from floating away, a long-range attraction force is employed. Addition-
ally a planar force can be used to squash graphs onto z=0. The user can rotate, pan and zoom the
visualised structure and adjust every force component.

4.7.4 Lighthouse

Lighthouse [LEA00] is a system for browsing search results offering visualization and clustering of
documents in addition to the ranked list (see Figure 4.25). The search query can be sent to a number
of popular search engines such as Google, Alta Vista, or Excite and the specified number of matches
will be processed. The system can check for broken links by trying to access the results, so that
unavailable pages can be filtered out. The resulting documents are displayed as spheres floating in
2-D or 3-D space, where their proximity is a measure for their similarity. A sphere representing the
query can also be added to the result set. Document titles can be displayed in three ways: as a linear
list sorted by estimated relevance, as labels attached to the corresponding spheres (see Figure 4.24),
or grouped in clusters (see Figure 4.25). Documents having a higher estimated relevance are coloured
with a green shade, while those with a smaller estimated relevance have a red shade. The clustering
algorithm can build a specified number of clusters, or, in the second operation mode, a dissimilarity
threshold can be used to place documents with the dissimilarity value below this threshold in the
same cluster. Adaptive clustering is also available allowing the user to mark documents as relevant
or non-relevant, which forces the system to recluster the set and place differently marked documents
into different clusters.

4.7.5 SQWID

The SQWID (Search Query Weighted Information Display) system [CKO97], provides an interactive
visualisation of the search results, allowing users to see the relevance of documents to different key
terms (see Figure 4.26). It is implemented in Java. SQWID takes the results of a query, identifies key
terms related to the result set and creates a node-link graph of search results containing two different
types of nodes: term nodes and page nodes, where page nodes can represent a single document or
a site. The visualisation contains three differently coloured term nodes and one page node for every

62 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.23: Wilmascope showing 17 nodes in 4 clusters.

search result. The three term nodes are always displayed in fixed places forming a triangle. Page
nodes that are highly related to a term are pulled closer to it, while pages that are not closely rated to
the a term node are pushed away from it. The position of a page node depends on the similarity to
those three terms that are currently displayed as term nodes. Page nodes that take a position in the
middle of the triangle are attracted to all three term nodes, nodes on the edges are attracted to two,
and nodes that are pushed outside of the triangle are attracted to only one. If a page does not match
any of the three terms, its node is pushed away from the all term nodes and it floats away to the edge
of the view area. To avoid mutual covering of similar page nodes they repel each other by default. In
this way they tend to spread out and the covering of each other is reduced (see Figure 4.27). Inside
of each page node there is a coloured Tilebars representation, where the colours correspond to the
colours of the term nodes currently displayed, and the colour intensities correspond to the rating for
that page. Page nodes themselves can be combined into site nodes to prevent too many nodes from
being displayed at once. The user can collapse the page nodes into site nodes to obtain a clearer
overview, and can select term nodes from a number of identified key terms by simply choosing them
from the menu upon which the systems recalculates the page node positions. It is also possible to
adjust the number and date range of pages shown to filter out unwanted documents, explode site
nodes back into page nodes (see Figure 4.28), view the links between sites and pages, as well as visit
sites and view pages in a browser by double clicking its page node. On double-clicking a site node a
site summary is automatically produced.

The operation of SQWID is divided in two phases. In the first phase, the processing phase, it
collects data from the AltaVista search engine as a result of a standard search query. The system
extracts relevant terms from the returned results set and calculates ratings for all pages and sites
according to their similarities to the extracted terms. In the second phase the node layout is computed
using a simulated annealing algorithm (see Section 4.1.4), where the nodes reach a state of minimum
energy and come to rest in fixed positions.

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 63

Figure 4.24: Lighthouse applet showing 50 search results with labels attached to spheres. The query
was “visualisation”.

Figure 4.25: Lighthouse applet showing 50 search results grouped in 11 clusters. The query was
“visualisation”.

64 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.26: SQWID search results visualisation. The query was: “visualisation query results”.
SQWID chose the three terms for the term nodes. The result pages are grouped to site nodes. Taken
from [CKO97].

Figure 4.27: SQWID: By increasing the number of visible nodes the repulsive forces between them
spread out the nodes, so they do not cover each other too much. The stress indicators are turned on.
Taken from [CKO97].

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 65

Figure 4.28: SQWID: Site nodes are exploded into page nodes. Taken from [CKO97].

Figure 4.29: The VIBE system visualising the query “president europe student children economy”.
Documents are represented by rectangles. Where the concentration of documents is high, clusters are
represented by large rectangles. Taken from [OKS93].

66 CHAPTER 4. SEARCH RESULT VISUALISATION

4.7.6 VIBE and VR-VIBE

The VIBE (Visual Information Browsing Environment) system [OKS93] is a document collection 2-
D visualisation system and one of the first with the capability to group objects together according to
their semantic closeness. Points of Interest (POIs) corresponding to query keywords are placed in an
abstract space. VIBE arranges documents within this space so that the position of a document repre-
sents its relationship to each of the POIs, creating a topical overview of the document collection. By
assigning weights to POIs and moving them, the user can visually perceive the strenght of similarity
of documents to the terms represented by the POIs.

VR-VIBE (Virtual Reality - VIBE) [BSG95] is a virtual reality version of the original VIBE
system for 3-D visualisation of large document collections. The first step in using the system is to
define a set of so-called Points of Interest (POIs). POIs contain keywords which are used to perform
a query. A text search is performed on the document set and every document in the collection is given
a relevance score for each POI. POIs are placed in 3-D space and the documents are attracted to them
according to their relevance scores. VR-VIBE offers two layout methods. In the first one, which is
similar to the original VIBE layout, the document nodes are placed on a 2-D plane depending on their
relevance scores to the POIs. The third, vertical dimension, is used to represent the overall relevance
of the object to the search query (see Figure 4.30). The second layout method allows the objects
to be positioned freely in 3-D space, anywhere between the POIs (see Figure 4.31). The object’s
colour is used to represent the relevance to a POI, its dimensions represent a state of the object, for
example selection, and its shape helps the user to differentiate between documents, POIs and other
users. VR-VIBE supports multiple users, who can see each other in the same visualisation. They
can navigate through the 3-D space and perform a number of different operations on the documents,
perform queries, apply filtering according to certain criteria, add POIs and switch them on or off,
move POIs to see which documents get pulled after them, request additional information, etc. Users
may also define a number of different viewpoints and switch between them to compare different
views. The following document actions can be performed:

• Selection: To obtain additional information one or more objects can be selected. This causes
the icon to change colour and is visible to all users.

• Marking: The user can mark documents of special interest with a label, which is attached to
the document.

• Viewing: This allows the user to view the document contents in a browser.

• Filtering: Using a relevance slider a relevance threshold can be defined. Only documents with
a relevance above this threshold will be displayed.

4.7.7 Vineta

Vineta [KRO95] is a system which displays both documents and search terms as objects in a 3-D
navigation space. The documents are positioned in this space according to their similarities as well as
to their relations to the search terms, so that semantically similar objects are placed closer together.
Documents which have a higher overall relevance are positioned closer to the user’s view point.
There are other systems which use a similar approach for visualising documents in 3-D space, like
VR-VIBE or BEAD. However, Vineta differs from these systems, because for mapping documents
from n-dimensional document space to 3-D navigation space it uses techniques from multivariate
analysis and numerical linear algebra. In this way Vineta can visualise much larger term sets or POIs
than is possible with similar systems.

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 67

Figure 4.30: Screenshot of VR-VIBE: documents are placed in a 2D plane, height corresponds to
relevance. Taken from [VRV01].

Figure 4.31: Screenshot of VR-VIBE containing 5 POIs and a number of users, full 3D layout. Taken
from [VRV01].

68 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.32: Screenshot of Vineta showing the galaxy visualisation. Taken from [YOU96].

Figure 4.33: Screenshot of Vineta showing the landscape visualisation. Taken from [YOU96].

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 69

During early development Vineta implemented two different visualisations, the galaxy (see Fig-
ure 4.32) and the landscape (see Figure 4.33) visualisation. In the galaxy visualisation documents and
terms were freely placed within the 3-D navigation space. Terms are represented as arrows (cones),
while documents are displayed as spheres. As with other similar systems that make use of full 3-D
geometry for visualising documents sets, this proved to be too complex for the user in terms of orien-
tation and navigating. Therefore the landscape visualisation was chosen for the final implementation
of Vineta system. The users found it to be more intuitive and much easier to understand and use.
In the landscape visualisation the documents are visualised as flowers, whose stems help the user to
exactly determine the 2-D positions of objects as they are touching the ground plane. Determining
the overall relevance of the document is therefore much easier than in the galaxy visualisation. Petals
represent the search terms and their relevance to each document. In the upper part of the screen there
is a legend showing which colours and directions are assigned to different terms. This is the key for
understanding the direction and colour of petals on the flowers. A profile of each document can be
recognised by determining the colour profile of the flower representing the document.

4.7.8 BEAD

BEAD [CHC92] is a multi-participant document visualisation system which uses the force-directed
placement technique to position documents inside a 3-D space (see Figure 4.34). It produces a so-
called information terrain where similar documents attracting each other are grouped closer together,
and those not similar repel each other, using a linear force-directed placement algorithm (see Section
4.1.4). Documents weakly or not at all related to most other documents are pushed away to the
edges of the viewing area. The underlying algorithm relies on document similarities calculated for
every two documents in the set from the word co-occurrence in both documents. In the first versions
of BEAD, documents could exist freely anywhere in the virtual 3D space, but the complexity of
obtained structures was to high for users to orientate themselves. To overcome this problem and
make navigation easier for the users, additional forces were used to pull the documents closer to a
2-D plane. Connecting the documents and forming polygons produces the information terrain with
its peaks and valleys which help the user in orientating and navigating the terrain. It was discovered
that this 2.1-D landscape metaphor decreases the cognitive load on the user as compared to a full 3-D
representation. Different users are represented as T-shaped figures constructed of two cuboids, with a
further two cuboids representing the eyes. Different users can see each other and can interact with the
data. They can select an object to perform operations upon it and can perform searches. Documents
matching the query are highlighted in another colour. It is also possible that documents close to it are
interesting to the user because they are similar to the highlighted ones, although they did not match
the query directly and were not highlighted themselves.

In BEAD the documents are represented by particles with a mass and each document has a vector
of n terms assigned to it. Each term in the vector represents a certain property and the value of the
term indicates the amount of the property for the considered document. In the case of text documents
these properties are words contained within the document, but also some other properties, like size or
connectivity, could be taken into consideration. The vector representation makes is easy to calculate
the similarity measures, like cosine correlation, between any two documents in the set. These sim-
ilarity measures represent the relations between documents in this model. In BEAD a spring force
model is used to describe the forces between particles in the 3-D space. The strength and the sign of
these forces depend on the similarities between documents and on their distances in the 3-D space.
Similar documents attract each other, while documents that are not similar but are lying close to each
other are pushed apart. This mechanical model reaches a stable local minimum after a certain num-
ber of iterations, which is a state of a minimum energy for the system, where related documents are
placed close to each other forming clusters of related documents. The structures and patterns formed

70 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.34: Screenshot of BEAD showing a data landscape constructed from over 500 bibliographic
references. Taken from [YOU96].

in the layout can be easily identified by the user. However, the spring force model is a part of the
well-known N-body problem, that requires, for each of the N particles, the calculation of the force to
the remaining N-1 particles. Since this would have quadratic complexity, an approximate solution of
linear complexity has been developed. In this approach each particle maintains two lists, each with
a fixed number of elements: a list of neighbours and a list of random elements. In each iteration
the new position for a document is calculated by considering only those forces associated with the
documents in the two lists, instead of considering all N-1 documents in the set. A new random list
is generated for every iteration from all documents in the set that are not members of the neighbour
list. The neighbour list contains related documents, that means documents that are placed close to the
considered document in the high-dimensional term space. This list is improved over time by checking
documents that are fed into the random list, and putting them in the neighbour list instead if the ran-
dom element is found to be better than the worst neighbour element. Good values for the sizes of the
lists are found to be 5 for the neighbour set and 10 for the random set of documents. Increasing these
values did not bring any significant increase in the layout quality and could not justify the increased
calculation time.

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 71

Figure 4.35: Sitemap: A Self-Organising Map. Taken from [VSM01].

4.7.9 Sitemap: A Self-Organizing Map (SOM) Based System

Visual Sitemap [VSM01] is an implementation based on Kohonen’s Self Organizing Map (see Section
3.4.2). It is an application for visualisation of a web site and is made up of three main components.
The first component is a WebCrawler which indexes the site, the second component is a neural net-
work which organises the data and computes the map, and the third component is an interactive Java
applet which presents the computed map of the site to the user (see Figure 4.35). The WebCrawler
follows every link and analyses every document on the given web site, collecting data and building
an index of all the words and pages of the site. Every document is internally represented by a vector
which is then used to train a neural network. The output of this processing is an organised map, which
visually represents the structure of the analysed site. In this way the documents are clustered and lo-
cated inside of their subject areas. The neural network is able to automatically identify subject areas
and categories, and extracts key terms that describe them. The sizes of these areas, their locations
and relative positions are defined by semantic relationships between the subjects and characteristics
of the documents belonging to the subject areas. The maps are labeled with words that represent
important or frequently used terms in the documents represented by the area. Label size indicates the
importance of the area. Coloured dots represent links to web documents or sites. The user interface,
written as a Java-applet, is fully interactive so the user can conduct searches on the element set and
perform different operations like selecting, getting additional information or viewing a document in
a browser. The vertical scroll bar is used to set the number of visible dots, in order of their overall
relevance. The horizontal scroll bar is used to control how detailed the labeled subject area in the
map should be. However, web crawling and indexing are slow and time consuming operations. The
neural network training is also a very complex and computation-intensive process, so Sitemap can
not be used to produce a map on the fly. Visual Sitemap was employed on web pages of some major
companies like, for example, Boeing.

72 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.36: SPIRE: Galaxies visualisation. Taken from [SPI01].

4.7.10 SPIRE - Spatial Paradigm for Information Retrieval and Exploration

The SPIRE system [SPI01] is a set of tools for conducting queries and exploring the information.
The project was funded by the Department of Energy and U.S. intelligence agencies with the goal to
develop means of visualising text. However, it should be mentioned that a variety of other very inter-
esting visualiation projects are currently underway at PNNL [IPN01]. Since a human can not read,
classify, and analyse thousands of documents in a short period of time, an electronic aid is needed
to reduce information processing load and to improve productivity. An automated procedure had to
be found to represent the documents and their contents and to perform retrieval, categorisation, ab-
straction and comparison. The SPIRE system was designed to do just that, offering two visualisations
intuitive to human users. The metaphor for the Galaxies visualisation are stars in the night sky rep-
resenting documents. The ThemeScapes visualisation is a further development of the concept where
document characteristics are represented as sedimentary layers which together create a landscape.
SPIRE generates a visualisation in a five step process:

1. The system takes text documents in digitised form that are fed to it in a completely unstructured
way. The documents are in their natural forms, what means that they are not pre-processed in
any way, there is no use of keywords or a dictionary, no classification, no topics and themes are
extracted and there are no structure of any kind.

2. As SPIRE uses the vector space model (see Section 2.2) for internal representation of the digi-
tised documents, a text engine analyses the documents to build high dimensional vectors for

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 73

each of them. In an early stage of development a commercially available text engine with a dic-
tionary of 200,000 words was used. Depending on whether a word in the dictionary appeared in
the document, a 1 or a 0 appeared at the appropriate coordinate of the vector. The problem with
this approach was that a document vector was up to 200,000 units long, which was much too
large for a high number of documents. To overcome this problem, in a later version of SPIRE,
text analysis was performed by the Matchplus text engine created by HNC, Inc., which uses a
neural net with 280 output nodes trained on a document set. This resulted in shorter vectors
and opened the way to processing more documents. Finally, a special text engine optimised for
visualisation systems was developed by the SPIRE team. In the first processing step stemming
and stop word removal is performed. After that band pass frequency filtering is performed as
too high and too low frequency terms do not generally help in discriminating among document
content. In the following step, significant topical terms are extracted by measuring the random-
ness of the terms in the documents, the so-called Condensation Clustering Value (CCV), as it
was found that good terms occur in serial bursts instead of being randomly distributed. The
extracted topical terms are also supported by a list of terms that appear together with the topical
terms, which characterise the context in which the topical terms are being used. Normalised
vectors are constructed with topical terms as dimensions of the vector space.

3. Using the document vectors, the documents are clustered in the high-dimensional space pro-
ducing groups of topically related documents where each document belongs to exactly one
cluster. Standard k-means and complete linkage hierarchical clustering algorithms were taken
into consideration and were found to be good for document sets containing a few thousands
items. Driven by the important visualisation requirement that Euclidean distances of the docu-
ments in the plane should be proportional to distances in the high dimensional representation
led to the development of a Fast Divisive Clustering algorithm. The number of clusters to be
generated must be set by a person operating the system. Cluster seeds are randomly distributed
in the high-dimensional space with some extra analysis ensuring that they did not land too
close to each other. Documents are placed into clusters by determining into which of the non-
overlapping hyperspheres defined around the seeds they belong to. New cluster centroids are
calculated causing a shifting of the hyperspheres, so that some documents have to be assigned
to new hyperspheres. This procedure is iteratively repeated until the shifting of the centroids
falls under a certain threshold.

4. Projecting the document vectors and their cluster centroids from the high-dimesional space
onto a 2-dimensional plane is the basis for creating both Galaxies and ThemeScapes visuali-
sations. Multidimensional Scaling (MDS) was found to be good only for small document sets
of arround 1500 elements as it showed an exponential increase in computational complexity.
The development of the team’s own projection algorithm, the Anchored Least Stress (ALS)
algorithm was necessary. The idea behind it is that document placement should be based on its
distance to the cluster centroids and not its distances to all other documents, such as is the case
with MDS. The document is placed in the 2-D plane so that its position reflects its similarity to
the clusters’ centroids and not to other documents. Some information is lost with this approach,
but considering that by projecting documents from a high dimensional space to a 2-D plane al-
ready brings a loss of information, and considering the improvement in computing time, this
proved to be a good solution.

5. The last step is the construction of Galaxies and ThemeScapes visualisations based on the po-
sitions of the document in the 2-D plane. Galaxies represent the documents directly as stars on
a dark background (see Figure 4.36). ThemeScape uses the document positions in Galaxies as
a starting point for constructing a landscape (see Figure 4.37). It is built by layering computed

74 CHAPTER 4. SEARCH RESULT VISUALISATION

Figure 4.37: SPIRE: Themescape visualisation. Taken from [SPI01].

contributions of theme terms over each other. Some 150-300 terms are used, chosen to discrim-
inate clusters from each other as well as possible, which should ensure obtaining a sufficiently
detailed landscape. These thematic terms with corresponding document coordinates are used
to deposit each term’s contribution as sediment layer of certain thickness to obtain the height of
the landscape. The layers are summed together and normalised and a smoothing filter is passed
over to produce a more natural landscape form. A term layer is thickest where the density of
documents with that term is highest and if the clustering and projections of documents from
high dimensional space to the 2-D plane are accurate enough to place documents containing
with the same terms approximately in the same region of the 2-D plane, then, as term layers
accumulate over each other the highest elevations occur where the thickest layers overlay each
other, peaks generated in this manner symbolise groups of related documents. In lower regions
the number of documents is smaller or the documents are less thematically focused, while a
sharp cliff separates areas with strong thematic term content from those with low content.

Galaxies view imposes limitations on screen space for displaying large numbers of documents as
each document is represented by at least one dot. With very large numbers of documents the distribu-
tion patterns become indistinct. The Themescape view avoids this limitation and is therefore ideal for
an overall introduction to the document set. The user can select a desired part of the landscape, and
then use the Galaxies view of documents containing topics in the selected part of the landscape. With
a slider on each topical term, the user can select their relative weights which results in transformed
visualisations providing an additional analysis tool.

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 75

Figure 4.38: Cartia Themescape landscape visualisation, taken from [CAR01].

4.7.11 Cartia Themescape

Themescape [CAR01] is a commercial spin-off to the SPIRE visualisation system. It is a collection
of four programs for automatically organizing and visualising large collections of documents. By
pointing the software to a collection of documents like one or more web sites, directories, or a set
of search query results, the system reads and analyses all the documents and creates an interactive
map for exploring them. The software analyses the document contents, identifies important themes
and topics, extracts words that describe them, creates abstracts, and visualises the results by creating a
map with peaks, valleys and dots representing the documents in the set. Similar documents are placed
close to each other on the map creating peaks on the landscape in areas where the concentration
of documents with similar contents is large. These peaks are named after topics contained in the
corresponding documents and are displayed as labels on the map giving names to certain areas so the
user can easily locate the areas of interest. The distance between peaks corresponds to the similarity

76 CHAPTER 4. SEARCH RESULT VISUALISATION

of the topics that they symbolise. Themescape maps are fully interactive: document title and a short
summary is shown when the mouse pointer is placed over a document, the user can select documents
or conduct searches, which causes the matching document to be highlighted.

The system is composed of four main components: ThemeServer, Web Manager, Theme Pub-
lisher and Map Viewer. The first three make the core of the system and manage the production,
distribution and access to the maps. The Map Viewer is a client for viewing and browsing the maps,
written in Java which makes it possible to view the maps from virtually any system.

4.7.12 WebMap

WebMap [WMP01] can automatically analyse a data repository and transform it into an interactive,
visual map presenting very large amounts of data on a single screen. Data is organised into categories
which are presented as distinctly shaped polygons. The size and shape of the polygon depends on
the quantity and type of the information stored in the corresponding category. Proximity mapping is
performed both for items and categories depending on a content relations metric so that the proximity
of objects on the display is a measure for their relatedness. Documents have ratings assigned; docu-
ments with higher rating appear higher on the topography. The rating can be based on a parameter
of choice. Items are visualised as stars or as icons where the former are used for highly rated items,
search results, bookmarks and the similar. The visualised information is personalised dynamically so
that icons can appear at the higher levels or sink to the lower levels of the hierarchy. The user can
rearrange and customise the map by dragging and dropping items from one part of the map to another.

Animated zooming is WebMap’s basis for browsing and retrieving information. Information is
provided with a context allowing the user to explore the data and locate the needed information by
zooming through the levels of the category hierarchy. Shapes of categories are preserved while zoom-
ing to improve orientation. This can be seen in Figure 4.39 where the category “Central Europe” has
been selected and zoomed into to produce the representation displayed in Figure 4.40. The amount
of map data that must be transferred from the server to the client application to display the visuali-
sation is significant. For this purpose WebMap employs a proprietary communication protocol, load
balancing mechanisms, and local caching of loaded data.

4.7. VISUALISING DOCUMENT COLLECTIONS ACCORDING TO THEIR CONTENT 77

Figure 4.39: WebMap displaying the category “Europe”.

Figure 4.40: WebMap after zooming into the “Central Europe” category.

78 CHAPTER 4. SEARCH RESULT VISUALISATION

Chapter 5

The xFIND Search Engine

5.1 Moving Beyond Harvest

The number of documents stored in the web is exploding. There are billions of accessible web pages
in the Internet, and the effort, demanded of search service in finding and indexing them, and keeping
indices up to date, is getting ever more difficult. The web has to be searched in regular intervals
to meet the requirements, and while the number of pages is increasing so is the number of search
services which are searching the web with their robots. Further, entire documents are loaded with all
their raw data, although for processing only a fraction of the data is important. Centralised searching
systems load documents from the web, analyse them and store the extracted data. Since each search
service does this independently, it is obvious that the inefficiency of these systems can cause very
high network and server loads. Such systems visit many pages that have not been altered too often,
while other, rapidly changing pages, are not updated often enough.

The Harvest research project [HAS94], with its distributed hierarchical search index, goes around
the problem of exploding network loads by separating the functionality for location and processing
of data from the functionality for information retrieval and presentation. The part for locating and
processing data is called the Gatherer. It collects and processes documents from several assigned
information servers and examines them in regular intervals for modifications and new documents.
Ideally the Gatherer itself runs on one of these servers, reducing the network load to a minimum.
The data collected by a Gatherer are passed on, depending upon the configuration of the distributed
searching system, to one or more Brokers. The Broker administers and stores the data from one or
several Gatherers and it can also load information from other Brokers. It provides a user interface for
performing queries to the user.

Distributed systems like Harvest try to address a number of other problems that centralised search
engines can not cope with in a satisfying way, like providing many documents not containing relevant
information, providing no quality ratings, not supporting the narrowing of the searches to specific
domains, inability to deal with humans with different skills and interests etc. Such distributed systems
are able, to a certain extent, to offer additional information depending on a situation and even give
an advice, making them more a knowledge processing system than a standard search engine. Such
problem-specific behaviour can be supported by other knowledge management systems and can be
improved through experience by learning.

79

80 CHAPTER 5. THE XFIND SEARCH ENGINE

Figure 5.1: xFIND extended search query input form.

The xFIND (eXtended Framework for INformation Discovery) [XFI01] system was designed as
an open system with all these requirements in mind. It is a highly scalable distributed system, able
to manage very large amounts of data and deal with highly dynamic content, reducing network and
server loads considerably and improving search results using metadata sets, quality rating labels and
web site descriptions. An xFIND system is made up of one or more Gatherers, Indexers, and Brokers.
These components can be configured in different ways to match the user’s interests and improve
performance. For example, parts of the system can be configured to search only certain web locations,
and sites with content that is updated or changed very often can inform the system and be re-indexed
more often than others. The user has more influence on the search process than is the case with most
of the standard search engines. It is possible to specify different weights for the occurrence of search
terms, as well as which attributes, such as number of links or images, of matching documents should
be returned. Statistical information, collected during indexing, can be presented to the user, protected
documents, which are found but the user has no access, are reported together with an appropriate
message and document metadata. xQMS, a quality metadata scheme for classification of resources

5.2. XFIND ARCHITECTURE 81

Figure 5.2: The standard xFIND search results page.

depending on their richness of information and fitness for use, was defined, and includes fields which
can be used to ensure that the quality metadata is trustworthy. Such a distributed system should be
able to run on any machine in any available environment, and is therefore implemented in Java. For
detailed information of how the xFIND system works please consult [GUT00].

5.2 xFIND Architecture

The xFIND System is a framework for distributed information discovery and knowledge management.
The architecture of the system is based on three components: the Gatherer, the Indexer and the Broker.

82 CHAPTER 5. THE XFIND SEARCH ENGINE

Figure 5.3: The xFIND architecture.

5.2.1 The xFIND Gatherer

The Gatherer visits servers and gathers information about documents and resources from local and
remote sources. The pre-processing of the document data is also done at this point. This includes
identifying the title, keywords, type, language, creation time, modification time, in case of HTML
files the links, images that can be represented by thumbnails and other embedded objects like Java
applets and metadata fields. An electronic fingerprint of each document is created, which makes it
possible to detect the origin of every piece of information and to determine the trustworthiness of
information in case of replication. Metadata embedded in the document as well as external metadata
are processed. The system allows a wide range of configuration for pre-processing and handling of
metadata sets, and supports the use and conversion between the following:

• Dublin Core Metadata (DC)

• Learning Object Metadata (LOM)

• xFIND Quality Metadata Scheme (xQMS)

The pre-processing and the reduction of information together with the usage of additional meta-
data improves the retrieval process, what is especially useful for learning environments. The en-
richment of documents with metadata is made easy for authors as xFIND supports them to define
metadata for a whole document structure, a directory or a particular document by inserting additional
metadata files, where more specific metadata overrides more general. This help to improve the qual-
ity of information received by users greatly, but unfortunately authors of documents rarely use such
possibilities to enrich their documents with such additional description. The xFIND Gatherer is able
to process HTTP and plain text documents and information stored in local file systems and generates
a set of metadata for each document. The document descriptors are passed to one or more Index-
ers, depending on the configuration of the system. The gathering process is configurable, so entire
servers, particular sub-sites, or individual documents can be gathered at certain intervals. For best

5.2. XFIND ARCHITECTURE 83

performance in terms of reduction of server and network load a local Gatherer should be used. It
can also be configured to search for read-protected documents, in this case only a configurable prede-
fined set of meta information is forwarded to the xFIND system, and the document remains protected.
xFIND was designed to serve active information systems so an API and a communication layer had
to be designed for this purpose. In this way active information systems with highly dynamic con-
tents can contact the xFIND system and inform it about new or modified documents that should be
processed. This improves greatly the actuality of the information and reduces the network and server
loads as processing is done only when necessary. External systems for information enrichment (like
expert rating systems, announcement systems, collaboration systems, etc.) may be processed simi-
larly. Gatherers also process meta descriptions about information sources and summarise statistical
data about information sources. The latter may be used for detecting highly dynamic information or
may give a summary about activities of areas of interest.

5.2.2 The xFIND Indexer

Indexers are acting as a connection between Gatherers and Brokers. The document descriptors col-
lected by gatherers can be fetched by or sent compressed to one or more authorised indexers. An
Indexer may be specialised on a particular topic or can be dedicated to a project group, department or
a geographical location. Indexer’s job is to enable the Knowledge Broker to search for words, phrases
and metadata and to provide statistical data about documents, like term frequencies. Indexers store
information about web resources from documents to information sources, for example the number of
changed or new documents for web areas. The indexer manages the communication with external
systems (ranking systems, archiving systems, etc.) that, if trusted, can inform the xFIND system
about new or modified documents, or send some additional information and metadata. Descriptions
and external additional information improve the information structure for the learning process with
respect to the information lifecycle. xFIND allows either the whole contents of a particular index or
some parts of it, depending on topics or information sources, to be replicated from one Indexer to
the others, if granted by the administrator of the Indexer. In this way network traffic network loads
are reduced. Fingerprints for all documents and the relation to their origin help to detect and prevent
changes of contents supporting a global information platform, which can be crucial when sharing
information. Search capabilities of an external systems can also be used with the help of a xFIND
API or a wrapper.

5.2.3 The xFIND Broker

The xFIND Broker is the component where user interactions take place. Following the distributed
design concept of xFIND and because of the fact that Indexers manage only parts of the whole
knowledge base, the Knowledge Brokers must distribute their search queries to a set of Indexers
corresponding to the current search query. Using a thesaurus a broker can expand and transform
queries, and the results of such a distributed search are put together to form a uniform search result
set. Due to the open concept using the xFIND API external information sources can also be searched.
For example, Hyperwave knowledge management systems [HYP01], a large-scale, multi-user, dis-
tributed, structured hypermedia information system [MAU96], developed at the Institute for Informa-
tion Processing and Computer Supported New Media (IICM) at Graz University of Technology, can
be searched directly and the results are merged with xFIND results. To improve search queries and
the quality of returned information Knowledge Brokers can be specialised for a particular topic or can
search only some problem specific Indexers or parts of them. Brokers are able to consider past search
results and user ratings, as well as feedback from users that can influence the decision which Indexers
should be queried. Thanks to the distributed architecture, Brokers can be configured individually to

84 CHAPTER 5. THE XFIND SEARCH ENGINE

provide best results for a division or a department, for a single user or a group of users with similar
interests, or to support particular topics. Similar to an agent system, the Personal Knowledge Broker
is able to adapt to user habits and current problems and it will inform the user in case of new relevant
information. When using an ordinary web browser, the xFIND broker provides standard search func-
tions through HTML forms, like simple, extended, and expert search. Such a personalised Broker can
provide additional information and find relevant keywords with respect to the users current interests.
These keywords can be used to provide dynamically generated links, which start a new query when
clicked. Relations to similar documents and links to expert or user opinions can be added to the orig-
inal document. While in a standard centralised system, a high request rate can lead to a very high
response time, such a distributed concept will not cause excessive network loads for any user. The
search results are returned as a linear list ranked by relevance.

5.3 QCF - Query Communication Format

The internal communication format of the xFIND system is a text based QCF format. It is a query
language standard for xFIND systems in which an application, the client, sends its request to the server
and receives an answer from the it. The query sent to the xFIND system is an array of strings, with
variable length which depends on the number of terms in the query, the number of query attributes
specified by the user, and the number of attributes the user wants to receive. The array is made up of
QCF keys and values, where the keys describe the values. The structure of the keys is hierarchical,
different areas are separated by periods. The areas get more specific from left to right, so that the first
word is specifies most global area. The query array is divided into three parts:

• Query: The first part contains the query, which is composed of search words and boolean
operators combining the search words. Additionally xFIND offers the possibility to specify
where the search words should occur enabling the user to influence the results. It is possible to
search, selectively for each term of the query, for a string in the keywords, title and the body
of the document assigning to each of these a different weight and influencing the estimated
relevance of matching documents in this way. The ability to provide prefix, infix and postfix
notation in the search terms with the use of wildcards such as *, ? is also offered.

• Query Attributes: The second part of the string array allows the user to specify additional
settings that influence the search. To mention a few examples: the number of reported results
and the number of keywords returned with each document, can be specified, it is possible to
vary the weights of words that occur in different parts of the document, etc.

• Return Attributes: The third section specifies which attributes of the found documents should
be returned giving the user full control of the result formats. The user can choose if keywords
or parts of the body surrounding the keywords should be returned, which metadata should be
returned, etc.

5.4 The Search Result Explorer (SRE)

The Search Result Explorer was developed to address one of the main problems with the currently
available information discovery systems: they generally do not present explorable results. Standard
search engines produce a list of matching documents, ranked by estimated relevance, with little or
no additional information. The user has no possibility to compare the retrieved documents and can

5.4. THE SEARCH RESULT EXPLORER (SRE) 85

Figure 5.4: The Search Result Explorer.

hardly decide which documents are up to date and contain wanted information. SRE sends queries
to the xFIND system and visualises search result sets using the rich metadata returned by the search
engine. SRE uses metadata attributes such as document size, modification date, relevance, and num-
ber of links and maps them to the display axes to present retrieved documents by plotting them on
a two-dimensional display, with further dimensions mapped to colour, size and shape of the dis-
played graphic primitives, providing an interactive and intuitive interface with features like flexibility
in scaling, functions for details on demand, etc. SRE benefits from the capabilities of the xFIND
search system and is a further development of the similar File Attribute Explorer (FAE), which gave
an overview of the files in a file system’s directory hierarchy. The variety of the returned attributes
make an ideal basis for creating multidimensional visualisation of the returned data.

SRE is designed to improve the searching process by visually presenting all attributes, metadata,
and statistical information of the returned documents, enabling the user to compare age, size, last
modification time, estimated relevance, authors, and other meta-information, with the goal to enhance
and speed up the search process. A visual presentation of the retrieved documents is created. As
already mentioned, the user is allowed to define the semantics of the two axes assigning any attribute

86 CHAPTER 5. THE XFIND SEARCH ENGINE

to any of the two axes, as well as mapping some of the attributes to size, colour and shape of the icons
representing the documents. The axes can be mapped to the following values:

• Size: The size of the document.

• Date: Last modification time of the document.

• Name: Title of the document.

• Relevance: The estimated relevance of the document for the given query as computed by
xFIND.

• Host: Specifies the server where the document is located.

• Number of links: Describes the “connectivity” of the document. It can be useful to find docu-
ments that are themselves tables of contents.

• Number of images: The number of all images in the document.

• Number of scripts: This value can be seen as a degree of interactivity of the document.

SRE supports and manages some additional descriptive information such as keywords, description
and author, which are not be mapped to axes, but that can be displayed in the Table of Files and in the
Document Detail Window, with both tables offering sorting possibilities for every displayed column.
Furthermore, keywords, size and date can be used for searching and filtering the retrieved documents.
Additional attributes supported by SRE are:

• Keywords: This string contains the keywords and their number of occurrences in the document.
They are extracted from metadata and content by the xFIND search engine.

• Author: The person who created, and is responsible for the content of the document.

• Publisher: The entity responsible for making the resource available in its present form.

• Organisation: The organisation where the document was created.

• Description

Chapter 6

Visualisation Islands Software
Architecture

Search engines usually return search query results in the form of a linear list of hits sorted by their
estimated relevance to the query. It is hard to get an overview when the number of results is large and
the relationships between different hits are not made explicit. Visualisation Islands software pack-
age organizes search query results depending on their content and visualises them using an intuitive
topographic map. This chapter discusses design decisions, the class hierarchy and tasks of different
classes, interfaces and packages, as well as data and control flow.

6.1 What is Visualisation Islands?

Visualisation Islands is an xFIND search engine client which processes documents returned in a re-
sponse to a search query, organising them according to their similarity, and visualising the results in a
form of an interactive, intuitive 3-D topographic map. Document data returned include the title, URL,
the size and the creation date as well as a number of keywords (and their frequencies), describing the
documents’ content. Visualisation Islands uses these keywords to build a vector representation of the
documents in a high dimensional space (see Section 2.2), allowing the definition of a similarity mea-
sure (see Section 2.2.1) for every two vectors and thus giving a mechanism for comparing returned
documents. In the first processing step, clusters of similar documents are formed using a standard
clustering algorithms such as hierarchical agglomerative clustering (see Section 3.3.1) or the k-means
algorithm (see Section 3.2.2). The obtained structure is used to display the documents in a table of
contents style. In the second processing step a force-directed placement algorithm (see Section 4.1.4)
based on stochastic sampling [CHA96a] maps the documents from the high-dimensional vector space
to a 2-D plane whilst trying to preserve their relative distances as far as possible. This is achieved by
assigning a force between every pair of documents according to their similarity: an attractive force
for similar and a repulsive force for dissimilar documents. After a certain number of iterations a 2-D
layout is obtained where similar documents are grouped together forming clusters, while less similar
documents are placed apart from each other. Instead of comparing every two documents in every
iteration, stochastic sampling is used to improve performance. In the third processing step, a 3-D
(or 2-D) topographic background is generated based on the computed 2-D document coordinates,
forming mountains at areas where document density is high. Mountains are divided by areas with
smaller document density which are represented as lower areas or water. As a result islands of topi-
cally similar documents are formed. By labeling the mountains with the keywords of the underlaying
documents and displaying the documents’ icons atop the generated background, an intuitive land-

87

88 CHAPTER 6. VISUALISATION ISLANDS SOFTWARE ARCHITECTURE

scape (or seascape) is created enabling the user to instantaneously locate areas of interest and discard
documents covering less interesting topics. The user interface provides several means of exploring
the map including zooming, searching, filtering and selecting and viewing the details and contents of
documents of interest. The system can handle and process multiple maps simultaneously by using
several execution threads and allows the reprocessing of any subset of the returned documents for
more detailed insight.

Visualisation Islands is written in Java (see next section) and therefore follows the object-oriented
paradigm. Java was chosen for the reasons of inter-platform portability and because of the fact that
the xFIND system is also implemented in Java. The program itself is modularly designed. It is a
Java package consisting of three main parts, or sub-packages, with clearly defined interfaces, which
makes it possible to easily expand or interchange any of the parts without the need to change the oth-
ers. The parent package visislands provides the main program control. The three sub-packages are:
visislands.searchenginecommunication which handles the communication with the xFIND search en-
gine, sending the query and loading results; visislands.dataprocessing provides data structures and
processing algorithms for organising the loaded documents and creating the visualisation; visis-
lands.userinterface displays the computed results and interacts with the user.

6.2 Java

Java is an object-oriented language, developed by Sun Microsystems in the early 1990’s, similar
to C++, with certain restrictions such as elimination of multiple inheritance and pointer arithmetic,
which do not affect the power of the language, but eliminate some common sources of errors. An-
other important feature is the garbage collector so that the programmer does not have to care about
releasing memory: a chunk of memory which is not referenced any more by a pointer will be col-
lected and released automatically. Java’s simplicity and similarity to C and C++ make it possible
for most programers to become familiar with it in a fast and straightforward manner. The language
was designed for use in Internet and distributed environments and it is therefore secure and robust.
Java executable code can move through the network and be executed anywhere, even remote calls are
possible through the RMI (Remote Method Invocation). In addition to standalone applications, Java
has another program form: an applet. An applet is executed in a browser and is dynamically loaded
together with the rest of the page. The use of multi-threading (and multi-processing if multiple pro-
cessor are available) is also well supported, but the most important feature of Java is its portability
and platform independence. The language and the accompanying libraries are designed in such a
way that a Java program will execute and perform in the same way on any hardware and under any
operating system, provided a Java Virtual Machine (JVM) is available and installed. Today Java is
widely supported and available for almost any system, making software development in Java a write
once - run everywhere solution.

6.2.1 Platform Independence

Portability and platform-independence are probably the most important features of Java. A significant
effort was needed to achieve this. First of all a number of standardised Application Programing
Interfaces (API) had to be developed covering a large number of programing areas, for example user
interface functionality, 2-D graphics, sound, security, naming, input and output, networking, remote
method invocation, just to mention a few covered by the Java2 platform. Additional APIs are making
their way into the platform or are available as an add-on. These APIs are, for example, Java 3-D,
advanced imaging, media framework, Java speech API, and many others. The language, APIs, and the
accompanying libraries are designed in such a way that a Java program will execute and perform in the

6.2. JAVA 89

Figure 6.1: Java: platform-independent software development and execution.

same way on any platform, independent of the hardware and the operating system. To understand how
this works, take a look at Figure 6.1. After a Java program is written it is compiled and Java byte code
is generated. This is a machine code which is not generally executed directly by a microprocessor
(although such processors were also designed), but by the Java Virtual Machine (JVM). Therefore, to
execute a Java program a Java Virtual Machine must be available for a particular system. As Java is
a widely supported industry standard this is the case for almost any hardware platform and operating
system (ever more systems are supporting Java2 as a standard feature). Early Virtual Machines simply
interpreted the Java bytecode which brought a serious performance penalty and that is probably the
most serious drawback of the Java concept. To overcome this problem just-in-time (JIT) compilers
were developed. These compilers translate byte code into native code just before execution. This
results in a noticeable increase in performance but has some disadvantages: the size of the code
explodes, the time to start the program is longer and the compiled code is not optimised as this
would bring a much greater delay. The latest generation of Java Virtual Machines (summer 2001), so-
called Hot Spot VM, address these problems in a completely different way. The byte code is initially
interpreted, but at the same time the Virtual Machine watches which part of the code is executed often.
These parts of the code are dynamically converted from byte code to the native code and optimised.
As a part of the code is executed more and more often it is more aggressively optimised. Much of the
code is executed only once, and often most of the execution time is spent in small, localised pieces of
the code, the hot spots. This approach improves performance further significantly, reducing long start
delays and code size explosion. However, Java performance, although very much improved, is still
far from the performance provided by a good C++ compiler. There are Java native code compilers
too, but producing native code for improved performance sacrifices one of the Java’s most important
features, the platform-independence.

90 CHAPTER 6. VISUALISATION ISLANDS SOFTWARE ARCHITECTURE

6.2.2 Java Foundation Classes

Java Foundation Classes (JFC) is a powerful set of graphical user interface class libraries, giving
programers the possibility to develop modern, user friendly, full featured, platform independent user
interfaces. At present, the JFC consists of six libraries each covering an important area of design and
development of graphical user interfaces. These libraries are:

• The Abstract Window Toolkit (AWT) supports Graphical User Interface (GUI) programming
featuring a set of user interface components, layout managers, an event handling model, graph-
ics and imaging tools, shape, color, font and data transfer classes for cut-and-paste operations.
AWT user interface components like buttons or menus rely on native platform components. For
this reason only a relatively small set of components, that exists on all platforms, is supported.
Being native components they do not look and work exactly the same on every platform.

• Swing is a set of GUI components implemented in 100% pure Java. Many Swing components
inherit on existing AWT components, like buttons, menus or scrollbars. A large number of
new components with a many new features, such as tree view, internal frames and tabbed
panel, was added. Swing components do not need to exist as native components as they are
implemented in pure Java. As a consequence, components with powerfull features which look
and work the same on every system are available to the programmer. Also, additional event
handlers and layout managers were introduced. Another interesting feature of Swing is the
pluggable look-and-feel: a single set of GUI components can automatically change the look
and feel to Microsoft Windows, Solaris, Macintosh, or Metal - the native Swing look-and-feel.
Although Swing components are called lightweight components (AWT components are called
heavy weight), these, being quite complex and being written in pure Java, need significantly
more hardware resources than AWT components.

• The Accessibility API supports people with disabilities, letting Java programs interact with
assistive technologies such as screen readers, speech recognition systems and refreshable braille
displays.

• The Java 2D Graphics and Imaging API is made of classes added to java.awt and java.awt.image
packages. They provide tools for managing line art, text, and images, a rich set of imaging
operators, accurate colour space definition and conversion and support for image compositing
and alpha channel images.

• Drag-and-Drop enables simple and user friendly data transfer between Java applications as well
as between Java and native applications.

• Input Method Framework is a link between text editing components and input methods in en-
tering text. Input methods are software components that let a user enter text in other ways then
typing it on the keyboard, for example handwriting and speech recognition. These methods are
also used to enter symbols such as Chinese which might have thousands of different symbols.

6.3 Classes and Interfaces

Visualisation Islands is organised as a single visislands package, together with three sub-packages:
searchenginecommunication, dataprocessing and userinterface. The role of each package, class and
interface is explained here, together with most important interactions between classes. A hierarchy of
classes defined in Visualisation Islands is presented in the Figure 6.2.

6.3. CLASSES AND INTERFACES 91

Figure 6.2: Visualisation Islands class hierarchy.

92 CHAPTER 6. VISUALISATION ISLANDS SOFTWARE ARCHITECTURE

• Package visislands: Provides main program control and service classes as well as classes con-
taining different parameters which influence the processing and the look of the program.

– Parameters class: This class contains all parameters important for loading, processing
and displaying the processing results. Visualisation Islands can handle more than one
query at a time whereby each query is represented by two special objects, one at the
data processing side, a QueryEnvironment instance, and one on the user interface side, a
QueryWindow instance. An instance of Parameters is created by the ProgramRoot class
and assigned to each query. As parameters for each query can be modified, a Parameters
instance is able to check if the entered parameters are within allowed intervals and if
they are consistent with each other. If this is not the case an error message is issued,
inconsistencies are automatically corrected and the user is informed of the changes.

– Preferences class: Settings that are not directly connected to a query, but apply to the
program as a whole, for example which browser is used for viewing the documents, are
contained in this class.

– ProgramRoot class: There exists only one instance of this main program class. Its job is
to maintain a list of existing queries, destroy queries which are not needed any more and
to create new queries by creating instances of the QueryEnvironment and QueryWindow
classes. When a request to create a new query is received the two classes are instantiated
as a pair and connected to each other, representing a query on the data-processing and
user-interface side respectively. The class also provides services to the existing queries,
like starting a document viewer process through the ViewerLauncher class or creating an
instance of QueryLoader which sends the query to xFIND and receives results. It also
maintains one instance of Parameters class which is cloned and passed over to each new
query at its creation and one instance of Preferences class which holds main program
settings. One instance of MainWindow class, which contains and manages user interface
components, is owned by the ProgramRoot instance.

– ViewerLauncher class: When a QueryWindow instance sends a request to the Program-
Root to display a document in a browser (or any viewer application) the ViewerLauncher
class is used to display a document in the selected viewer. The class tries to start a stan-
dard browsing application like Netscape Navigator or Microsoft Internet Explorer, and if
it does not succeed it asks the user to select an application.

– VisIslands class: This class contains the main() method and is only used as a program
name. It creates an instance of the ProgramRoot class which actually initiates the pro-
gram.

• Package visislands.searchenginecommunication: Provides classes for parsing the query string,
taking care of the communication with the xFIND search engine, sending the query in the
desired format (QCF) and receiving and storing the returned document data in data structures
provided by the visislands.dataprocessing package.

– QueryLoader interface: This is an interface used by QueryEnvironment class to access the
instance which handles the communication with the xFIND search engine. Methods are
provided for setting the query string, initiating and controlling of the loading of document
data, and handling of errors.

– XFindCommunication class: XFindCommunication is an implementation of the Query-
Loader interface. Communication with the xFIND server, which means sending the query
and query parameters and loading the document data, is handled by an instance of this

6.3. CLASSES AND INTERFACES 93

class, using the Query Communication Format (QCF, see Section 5.3). After QueryEnvi-
ronment sends a request to the ProgramRoot instance for loading, ProgramRoot responds
by delivering an instance of XFindCommunication class. This object, for each document
received from xFIND, requests its parent QueryEnvironment instance to create a new
Document object, and then writes the loaded data using methods of the Document class.

– XFindTokenizer class: This class is used by the XFindCommunication object to transform
the query string typed by the user into the array format required by the QCF (no syntax
checking is performed). The code contained in the XFindTokenizer was developed by
Erwin Weitlaner [WEI99] for his Master’s Thesis Metadata Visualisation Tool (SRE, see
Chapter 5.4) and is used with kind permission of the author.

• Package visislands.dataprocessing: Provides data structures and algorithms for processing
the data loaded from the xFIND search engine. Implemented algorithms organise the re-
turned documents into clusters, compute the 2-D layout of the documents by positioning
similar documents close to each other and pushing dissimilar documents apart, and generate
the 3-D topographic map background. Also, Java interfaces are provided, used by the visis-
lands.userinterface package, which allow manipulation and access of processing results as well
as full control of the processing.

– Cluster class: A child of the NDimensionalVector abstract class. A Cluster object can con-
tain any number of other NDimensionalVector instances (Document or Cluster instances)
which can be added or removed at will and can be checked for membership. The high-
dimensional vector representation, inherited from the NDimensionalVector class, can be
updated automatically when adding or removing members, if stated so in the Parameters
instance of the QueryEnvironment owning the Cluster object.

– Clustering class: This is a child of the Processing abstract class. An instance of this class
is contained by each QueryEnvironment class. The code for three implemented cluster-
ing algorithms (for details on hierarchical agglomerative clustering see Section 3.3.1, for
K-Means clustering see Section 3.2.2 and for single pass clustering see Section 3.2.1) and
their initialisation is contained in this class. An array of Document instances (or more
generally NDimensionalVector instances) is passed to the chosen algorithm and an array
of Cluster instances is produced as a result. Certain important operations are delegated
to other objects, like cluster centroid updating which is performed by classes represent-
ing a cluster (Cluster, HAClusteringNode, or any implementation of the ClusteringNode
interface). A Clustering object makes heavy use of similarity computation functions im-
plemented in VectorSimilarity class. For implementation details on clustering algorithms
please consult Section 7.2.

– ClusteringNode interface: This is a child of the NDimVector interface. A Cluster class
is a good representation for a cluster, but different clustering algorithms need different
data structures for effective operation. Classes implementing such data structures should
implement the ClusteringNode interface to provide methods that allow the Cluster class
to initialise itself from such objects.

– Document class: This is a child of the NDimensionalVector abstract class. It contains do-
cument data such as, the title, URL, size and creation time as well as document keywords.
When adding a keyword to a Document object this class interacts with its parent QueryEn-
vironment instance which maintains a dictionary of all keywords. This is necessary as a
Document only holds IDs of the keywords it contains, while all existing keywords for one
query and the their IDs are managed by the parent QueryEnvironment object.

94 CHAPTER 6. VISUALISATION ISLANDS SOFTWARE ARCHITECTURE

– ForcesSimulation class: This class is a child of the Processing abstract class. One in-
stance is contained by each QueryEnvironment class. The code for the force-directed
placement algorithm based on stochastic sampling (see Section 4.1.4) is contained in that
class, however it should be noted that some operations, like initiating and handling the
neighbour and random set and the data associated with these two sets, is handled by the
TwoDimensionalVector class. An array of TwoDimensionalVector instances is passed to
the algorithm, which then calculates their 2-D layout positions by performing a number
of simulation steps in which the forces between the objects are calculated based on their
similarity in the high-dimensional space and the 2-D layout distance. During the sim-
ulation the objects are pulled together or moved apart depending on the force between
them. A ForcesSimulation object makes heavy use of similarity and distance computa-
tion functions implemented in VectorSimilarity class. For implementation details of the
force-directed placement algorithms please consult Section 7.3.

– HAClusteringNode class: An implementation of the ClusteringNode interface. It provides
a tree-like data structure suitable for hierarchical clustering algorithm merging operation.
The class maintains and automatically updates a centroid representing all objects in this
object’s sub-tree. Also, methods for initialising an instance of Cluster with the objects
contained in the sub-tree of this HAClusteringNode instance are implemented here.

– MapGenerator class: This is a child of the Processing abstract class. One instance of this
class is contained by each QueryEnvironment class. It contains the code for generating a
3-D (or 2-D) map background image based on the density of documents and clusters in
the 2-D layout created by algorithms of the ForcesSimulation class. The arguments for the
map background generation algorithm are an array of documents, an array of clusters, and
an array and colours which are assigned to different heights. Using the 2-D positions of
the documents and clusters a 3-D style topographic map background image is computed.
For implementation details please consult Section 7.4.

– NDimensionalVector class: This abstract class is a child of the TwoDimensionalVector
class and implements the nDimVector interface. It models an object in a high-dimesional
vector space, where the dimensions of the vector space correspond to different keywords.
Each entry in the high-dimensional vector is proportional to the product of frequency and
weight of the corresponding keyword. It is a central class both for clustering and force-
directed placement algorithms. The implementation of the NDimVector interface, which
defines the internal representation (implementation) of the high-dimensional vector, is
needed for the computation of the similarity values for a pair of Document or Cluster
instances (classes that inherit on NDimensionalVector), which is performed by a special
VectorSimilarity object. The class also provides access to data fields like title, size, URL
(only in case of a document) and keywords. NDimensionalVector stores frequencies and
weights of object’s keywords and provides means for checking if a particular keyword is
contained by the object. For this purpose NDimensionalVector class defines an internal
class Keyword:

∗ Keyword class: This internal class implements the java.lang.Comparable interface
used for sorting the keywords in descending order of the product of their frequency
and weight. The class contains a pointer to the keyword’s string kept in the dictionary
managed by the QueryEnvironment parent instance, a unique identifier (as defined in
the dictionary) and keyword’s weight and frequency.

– NDimVector interface: This interface defines an internal representation of a high-dimensional
vector. Instances of classes which implement and interfaces which inherit this interface
(NDimensionalVector, ClusteringNode) can be compared by calculating their similarity,

6.3. CLASSES AND INTERFACES 95

which is accomplished by VectorSimilarity class.

– Processing class: This abstract class is a parent of all processing classes (Clustering, For-
cesSimulation, MapGenerator and VectorSimilarity). As processing of a query is always
executed in a separate thread a mechanism for stopping the execution by setting a stop-
flag to true has been implemented. This class offers methods for setting this flag’s values
as well as methods for informing the owner of the processing object, which is a QueryEn-
vironment instance, of the progress of the execution.

– QueryEnvironment class: This very important class represents a query on the data pro-
cessing side of Visualisation islands. It is also a unit of execution, a thread, providing
an environment in which the document data returned by the xFIND search engine are
processed. Each QueryEnvironment is connected to a corresponding QueryWindow in-
stance which is the user interface side representation of a query. The class implements the
QueryProcessing interface which allows a QueryWindow object to access certain meth-
ods and data managed by an QueryEnvironment object. This object can in turn access
QueryWindow methods through the QueryDisplay interface to display some info during
processing and to notify the QueryWindow when the processing is finished or display an
error message in case of some problem (network connection, out of memory, etc.). An
instance of Parameters class, containing all relevant parameters for this query concerning
the loading, processing and display, is kept by an QueryEnvironment object. It should be
noted that the same Parameters instance is shared with the corresponding QueryWindow
object.

QueryEnvironment is a central class for the data processing side of Visualisation Islands
as all data related to a query and objects performing the processing are contained by this
class: one instance of each processing class (Clustering, ForcesSimulation, MapGenera-
tor and VectorSimilarity), an array of Document instances, an array of Cluster instances
created by some clustering algorithm, document to document, cluster to cluster and docu-
ment to cluster similarity matrices, and a dictionary of all keywords belonging to a query.
This dictionary consists of a String array, representing integer to string mapping, and a
hash table, representing string to integer mapping. It can translate each keyword string to
a unique integer identifier and the other way round which is used by NDimensionalVector
instances that keep keyword integer IDs instead of whole strings, as well as for searching
for and filtering objects containing a specific string(s). The QueryEnvironment class of-
fers a number of powerful and flexible methods for finding documents and clusters with
any selected set of features and combination of features (keywords, size, creation date,
etc.).

As already mentioned this class is a unit of execution. For this purpose it implements
java.lang.Runnable interface and can be started and executed as a separate thread. De-
pending on the parameter values stored in its Parameters instance QueryEnvironment
controls the loading and processing of the data and dispatches tasks and passes data to
the four processing objects it owns. Error handling and notification of the user interface
part of the program is also the task of this class.

– QueryProcessing interface: This interface is implemented by QueryEnvironment class.
It is used by the user interface side representation of a query, the QueryWindow class,
to access certain methods of the QueryEnvironment class. Through the QueryProcessing
interface the user interface gains control of the data loading and processing. A Query-
Window object can start or interrupt the data processing, as well as search for and get
access to loaded document data and processing results. Through this interface it is possi-
ble to access sets and arrays containing data loaded from the xFIND search engine as well

96 CHAPTER 6. VISUALISATION ISLANDS SOFTWARE ARCHITECTURE

as data created and by the processing procedure, but objects in these arrays can not be
modified as they are accessed through the QueryResultObject interface. QueryProcessing
also offers a means to extract only those objects that have certain features or satisfy some
conditions concerning their contents, size, modification date, and some other attributes.

– QueryResultObject interface: This interface is implemented by the TwoDimensionalVec-
tor class and is designed for the visislands.userinterface package, and the QueryWindow
class in particular, to gain read access to data stored in every Document instance loaded
or Cluster instance created by the processing performed in QueryEnvironment. This in-
cludes reading the object’s attributes, like the title or the URL of the document, getting
objects contained by a cluster, reading 2-D layout coordinates of an object, checking for
some property, etc.

– TwoDimensionalVector class: This class meets the needs of the force-directed placement
algorithm implemented in the ForcesSimulation class. As its name suggests it models
an object having a position in 2-D space. The implemented force-directed placement al-
gorithm makes use of stochastic sampling, taking into consideration only a constant size
subset of the complete object set when computing the position of each object. This re-
duces the execution time significantly compared to standard method of comparing each
object with all other objects in the set. Each processed object maintains this subset divided
into two different sets: a neighbour set containing only objects similar to this object and
a random set containing a new random sample of objects for each iteration of the algo-
rithm. TwoDimensionalVector class includes methods for initialising the neighbour set,
called before staring the algorithm, and methods for filling the random set and updating
the neighbour set, which are called anew for each iteration of the algorithm. TwoDi-
mensionalVector class also implements the QueryResultObject interface which is used by
classes of the visislands.userinterface package to access the processing results.

– VectorSimilarity class: This class is a child of the Processing abstract class. One in-
stance of this class is contained by each QueryEnvironment class. It contains the code
for calculating the similarity of each two objects implementing the NDimVector interface
(NDimensionalVector class, ClusteringNode interface). Three different types of similar-
ity coefficients can be computed by this class: cosine, which is the most commonly used
coefficient, dice, and jaccard. However the main task of the VectorSimilarity class is to
calculate a similarity matrix for one array of objects, giving a triangular matrix, or for two
arrays of objects, returning a quadratic matrix. Force-directed placement and clustering
algorithms compare every pair of objects many times. Matrices containing object-to-
object similarity values are therefore computed before running other algorithms, and then
stored, to reduce the computation time. VectorSimilarity can also be used to calculate 2-D
Euclidean distances of TwoDimensionalVector instances.

• Package visislands.userinterface: Provides classes to display the processing results, handle in-
teraction with the user and allow the manipulation of the processing itself as well as of process-
ing results. Interfaces are provided, used by the visislands.dataprocessing package, allowing
the processing part of the program to display processing progress, notify the user in case of an
error and initiate the displaying of the computed results.

– CenteredDialog class: This abstract class extends the javax.swing.JDialog class. It is
a superclass of four different dialogs: InfoDialog, ParametersDialog, PreferencesDialog
and SearchAndFilterDialog. Its task is to display itself centered with respect to its owner
window, however ensuring that the whole dialog is displayed inside of the screen borders.

6.3. CLASSES AND INTERFACES 97

– DetailsWindow class: Extends the javax.swing.JFrame class. When a number of objects,
documents or clusters, is passed to this class, it displays a list of strings describing each
of these objects. The user can select an object to display detailed information about it.
This class contains five inner classes that have following tasks:

∗ QueryObjectList class: Extends the javax.swing.JList class. It displays the titles of
the given objects in a list and lets the user chose a document or cluster with a mouse
click.

∗ DetailsPanel class: Extends the javax.swing.JPanel class. It displays metadata of the
document: title, URL, size, creation date, and the cluster to ehich ot belongs. For a
cluster its number and the number of contained objects is shown.

∗ ContentsPanel class: Extends the javax.swing.JPanel class. It displays up to four
lines of the content of the selected document for the user to gain more knowledge of
the document’s content. The content shown are words surrounding the query terms
found in that particular document1.

∗ KeywordTable class: Extends the javax.swing.JTable class. It displays a table with
all keywords of an object, together with their weights and frequencies, sorted in
descending order of the product of their frequency and weight.

∗ ButtonPanel class: Extends the javax.swing.JPanel class. It enables the user to view
the selected document in a browser (or some other viewer application) and to close
the dialog.

– InfoDialog class: This is a child of the CenteredDialog abstract class which displays info
about the program, the author, the author’s advisors and license and copyright informa-
tion.

– MainWindow class: This important class builds an environment in which all other user
interface objects exist. One instance of this class is created, owned and controlled by the
ProgramRoot instance, which also offers certain services, like starting a viewer applica-
tion, to the MainWindow. The class offers a menu bar with pull-down menus containing
most program functions, a toolbar with buttons for most important functions, and an area
where any number of QueryWindows can be displayed. MainWindow owns and controls
one instance of PreferencesDialog, ParametersDialog, SearchAndFilterDialog and Info-
Dialog and can launch a number of DetailsWindow instances. MainWindow listens to all
events generated by the pull-down menus and the toolbar buttons and dispatches them to
the corresponding component.

– ParametersDialog class: This class is a child of the CenteredDialog abstract class and its
only task is to display a ParametersPanel instance which is used to edit data fields of the
Parameters class.

– ParametersPanel class: A subclass of javax.swing.JPanel class. Its job is to edit data
fields of a Parameters instance. Two modes exist: a simple mode that changes only the
number of documents and clusters with the help of two sliders, and an advanced mode
which displays a tabbed panel and gives access to around 70 parameters managed by the
Parameters object.

– PreferencesDialog class: A subclass of the CenteredDialog abstract class used to edit the
fields of a Preferences instance.

– QueryDisplay interface: This interface is implemented by QueryWindow class. It is used
by the data processing side representation of a query, the QueryEnvironment class in par-

1For technical reasons this function is disabled in the Version 1.0 of Visualisation Islands.

98 CHAPTER 6. VISUALISATION ISLANDS SOFTWARE ARCHITECTURE

ticular, to access methods of the QueryWindow class. Through these methods a Query-
Window can be driven to display a form for entering the query and its parameters, to dis-
play information about the task currently being performed by the processing, show error,
warning and info messages, display processing results once they are computed, highlight
a number of objects as a result of search or select operation and hide (filter) objects which
do not satisfy some criteria.

– QueryInputPanel class: This class extends the javax.swing.JPanel class. It is used to
enter the query string and to adjust a number of parameters which influence the loading,
processing and visualisation of the data. Once the query has been sent to the xFIND search
engine this panel displays a description of the current processing task and its progress. To
achieve this two inner classes, both extending the javax.swing.JPanel class, are employed:

∗ QueryPanel class: This panel is divided in two parts. The upper area is used for
typing in the query, or choosing it from the query history list, and sending it to the
xFIND search engine by clicking on the Go! button. It should be noted that all event
processing is done in the QueryWindow instance that owns the enclosing QueryIn-
putPanel instance. The lower part of the panel is used to display a ParametersPanel
instance which is used to adjust and edit the query’s Parameters instance. By default
QueryPanel is displayed and ProgressPanel is hidden.

∗ ProgressPanel class: When the user has typed the query, adjusted the parameters, and
pressed the Go! button, this panel is shown and QueryPanel is hidden. A Progress-
Panel instance gives the user detailed information on how the loading and processing
is proceeding. A textual description of the currently performed task together with its
progress is displayed and refreshed continuously.

– QueryResultsPanel class: This class is, together with QueryWindow, the most important
class of the userinterface package. Each QueryWindow instance owns one instance of
QueryResultsPanel which displays the documents returned by xFIND, after they have
been processed by the clustering, force-directed placement and map generation algo-
rithms. QueryResultsPanel visualizes the document partition created by some of the
clustering algorithms in a table-of-contents manner and presents the topographic map
of topically organised documents. The class also handles zooming, displays selected ob-
jects highlighted, hides objects that do not satisfy the filter condition, displays info for the
object the mouse is pointing to and scrolls automatically the table-of-contents representa-
tion to display the object(s) selected in the map. Events generated by user interactions are
not handled by the class itself, but by the QueryWindow instance owning this QueryRe-
sultsPanel object. While the QueryWindow takes actions to handle the user interactions
and subsequently changes the state of the QueryResultsPanel, the QueryResultsPanel in-
stance takes care that the current state is properly visualised. To achieve this the class del-
egates some responsibilities to four internal classes described below. QueryResultsPanel
is visually divided in three parts. The bottom part is a StatusPanel displaying object
details, while the upper part is divided by a javax.swing.JSplitPane into the left half,
occupied by a ClusterDocumentList, and a right half which visualises the map using a
javax.swing.JLayeredPane. JLayeredPane is a special panel for handling panels which
are placed over each other each having a different depth. It was chosen to conveniently
brake up the map into a BackgroundPanel and a ForegroundPanel.

∗ ClusterDocumentList class: Extends javax.swing.JList class. This class displays the
partition of the document set, produced by clustering methods implemented in the
Clustering class, in a table-of-contents style. The javax.swing.JList class allows the
user to select and deselect its elements and maintains an internal selection model.

6.3. CLASSES AND INTERFACES 99

This selection model is used by the enclosing QueryResultsPanel instance to manage
the selecting and deselecting of the displayed objects.

∗ BackgroundPanel class: Extends the javax.swing.JPanel class. This task of this class
is to display the computed topographic map of topically organised documents. The
map consists of several components, each computed by different algorithms, which
are displayed all together forming the main visualisation offered by the program. The
first component, documents and clusters icons, are placed at positions computed by
the force-directed placement algorithm implemented in ForcesSimulation class, ac-
cording to their similarity. The icon shape is different for document and cluster and
their sizes vary depending on the width and height of the BackgroundPanel instance.
The second map component is the map background image (3-D or 2-D style) com-
puted by MapGenerator class, depending on 2-D documents and clusters positions
and their local density in the 2-D space. The background image is displayed under
the icons to give clue where large amounts of similar objects can be found. It is
dynamically resized to fill the current BackgroundPanel area. The third component
are the labels placed close to cluster icons giving the user the possibility to imme-
diately find areas of interest. Labels are those keywords with the highest imporance
extracted from the high-dimensional term vectors of clusters, where importance of
a keyword is defined as the product of its frequency and weight. The number of
currently displayed labels and their sizes depend on the size of the BackgroundPanel
instance. If the number of clusters currently displayed is larger than the maximum
allowed number of icons, which can vary depending on the zoom degree, labels of
large clusters have priority. The last map component is a grid displayed over all other
components to improve the user’s orientation. Together these four components create
a metaphor of a topographic map populated by documents positioned into topically
similar groups.

∗ ForegroundPanel class: This class extends the javax.swing.JList class. Its task is
to display the user interactions of zooming and selecting. When the user drags the
mouse a rectangle enclosing the area that will be zoomed is displayed, if in zoom
mode, or, if in select mode, a circle is drawn and all objects inside of it will be
selected when the mouse button is released.

∗ StatusPanel class: Extends the javax.swing.JPanel class. This class displays the title,
URL and the keywords of the object that the mouse pointer is positioned on. The
keywords are sorted and displayed by descending importance.

– QueryWindow class: This class extends the javax.swing.InternalFrame class. It represents
a query on the user interface part of the program. The class implements the QueryDisplay
interface used by the QueryEnvironment class, which is the data-processing-side repre-
sentation of a query, to access methods of the QueryWindow. Each QueryWindow is
connected to a corresponding QueryEnvironment instance, with which it shares a Param-
eters instance. On the other side a QueryWindow object can access QueryEnvironment
methods through the QueryProcessing interface to control the loading and processing of
the data as well as to get access to processing results. A QueryWindow owns an instance
of the QueryInputPanel class for entering the query, setting the query parameters and
displaying the processing progress. When query results are loaded and processed Query-
InputPanel is hidden and QueryResultsPanel is shown to displays the results. A very
important aspect of the QueryWindow class is that it is a listener for all user events fired
by its QueryInputPanel and QueryResultsPanel instances. The class processes every user
interaction with the query represented by this QueryWindow instance and dispatches ac-

100 CHAPTER 6. VISUALISATION ISLANDS SOFTWARE ARCHITECTURE

tions to other classes like MainWindow, ProgramRoot and QueryEnvironment. To achieve
this the class implements following event listeners: InternalFrameListener, ActionLis-
tener, ComponentListener, ChangeListener, ListSelectionListener, MouseInputListener,
KeyListener.

– SearchAndFilterDialog class: This child of the CenteredDialog abstract class is used to
enter the upper and lower limit for size and date and some keyword string(s) with the goal
of searching for and filtering the documents and clusters currently displayed.

– StartupWindow class: This class is a child of javax.swing.JWindow class. While the
program is loading it displays a startup image in a window without a title bar and window
management buttons. The StartupWindow will try to display itself atop all other windows
on the screen and will remain visible for a specified number of milliseconds or until the
program is completely loaded. By clicking on it the window will close.

Chapter 7

Selected Details of the Implementation

Visualisation Islands is composed of over 50 classes organised in four packages. As already explained
in Chapter 6 the visislands package takes care of the program control and servicing other packages,
the visislands.searchenginecommunication package parses the user’s query, sends it to the xFIND
search engine, receives results and passes them to the visislands.queryprocessing package which pro-
cesses the loaded document data, creates the visualisation and maintains the processing results, which
are used by visislands.userinterface package to display the results and handle user interactions like
zooming, selecting, viewing and searching. Each of these packages constitutes an important part of
Visualisation Islands software, however, the most important classes and algorithms, those that blow
life into the program, are contained in the visislands.queryprocessing, while other packages are con-
cerned with providing data to the algorithms, displaying the processing results and providing other
services.

When the document data is loaded as a response to a query the documents are transformed into
high-dimensional vectors, according to the keywords returned as their representation. In this vector
space model (see Section 2.2) every keyword represents a dimension in the high-dimensional space.
A vector representing an object has an entry for each keyword in the object set, and each entry is
proportional to the frequency of the keyword in that particular object multiplied by its weight (its
weight is for example higher if the keyword is in the document’s title). The product of frequency and
weight of a keyword is the keyword’s importance. This vector form gives the possibility to compute
object-to-object similarity values and thus to compare objects having a vector representation. The
algorithms used to compute and create the visualisation rely heavily on this similarity function to
perform their task. The similarity coefficient for two objects is a value between 0 and 1, where a
value of 1 means complete similarity and a value of 0 indicates no similarity at all. As each pair of
objects may be compared more than once during the execution of different algorithms, it is a good idea
to pre-compute and store all inter-object similarities in a matrix. Such a similarity matrix serves as a
similarity values cache and greatly improves the execution speed of the implemented algorithms. The
visualisation offered by Visualisation Islands software package is based on three different algorithms,
or classes of algorithms, which are performed successively, each providing data used by the following
steps. These are:

• Clustering algorithms: Clustering is the first processing step which places all documents in
the given set in a predefined number of clusters in such a way that each cluster contains only
documents which are similar to each other. A cluster is represented by its centroid which is
a high-dimensional vector composed of terms of all documents contained in the cluster. A
centroid of a cluster is the centre of gravity of its documents. Thus, a cluster can be seen as a
pseudo-document and can be compared to other clusters and documents or to any other object

101

102 CHAPTER 7. SELECTED DETAILS OF THE IMPLEMENTATION

that has a high-dimensional vector representation. Three different clustering algorithms are
implemented: the single pass clustering, k-means clustering with continuous centroid updating,
and hierarchical agglomerative clustering. The first two, being less precise but faster can be
applied to a larger number of documents, while the third algorithm gives the best results at the
cost of high execution time.

• Force-directed placement algorithm: The force-directed placement algorithm performs a simu-
lation in which 2-D positions of objects with high-dimensional vector representation are calcu-
lated depending on their similarities and their distances in the 2-D space. Attractive or repulsive
forces between objects are calculated depending on these two values. Similar objects in high-
dimensional space are pulled together in the 2-D layout to form visual clusters of similar docu-
ments, while dissimilar objects are pushed apart. As a result, objects from the high-dimensional
space are mapped to 2-D space preserving their relationships (distances) as well as possible.
Clustering results can be used to improve the results and reduce computation time by first pro-
cessing cluster centroid vectors, then placing the clusters’ documents around the computed
positions and running the algorithm again. To reduce the complexity of the algorithm, not all
vectors are compared in every iteration, but a stochastic sampling technique with a neighbour
and a random set is used.

• Map background generator: Based on the calculated 2-D layout positions of documents and
clusters the algorithm generates a 3-D landscape bitmap image reflecting document and cluster
density in the 2-D plane. The principle of the algorithm is to imagine each element in the layout
to represent a small peak with a base of circular form. When more elements are placed close
to each other on a small area, these peaks overleap and are added together to build larger and
higher peaks - the mountains. As similar documents are gathered together by the force-directed
placement algorithm to build visual clusters, the result of generating an image from such layout
are islands of similar documents divided by some empty or scarcely populated areas - the sea.
By choosing colours proportional to the height and doing some shading a 3-D landscape image
is generated, which together with documents and clusters displayed as icons on corresponding
2-D positions, and labels extracted from clusters’ vectors and displayed close to corresponding
cluster icons, results in an interactive 3-D style topographic map of the original document set.

The particular implementations of different algorithms used in Visualisation Islands software
package will presented in this section, using natural language, mathematical expressions and pseudo
code. The goal is to emphasize important parts of the algorithm and to avoid getting lost in less impor-
tant details. Therefore, exact implementations of objects such as clusters or high-dimensional vectors
is not presented here, but some of their properties are explained if necessary for better understanding
of the algorithms.

7.1 Similarity Computation

The most common similarity measure is the cosine of the angle between two vectors, but other sim-
ilarity coefficients, like dice or jaccard, can also be used in Visualisation Islands by simply setting a
corresponding parameter. Please see section 2.2.1 for exact coefficient definitions. As the same pairs
of objects can be compared many times during processing, inter-object similarity measures are stored
in a similarity matrix where they can be accessed in a fast and straightforward manner. If a similarity
matrix for a single array of objects is needed then a triangular matrix, with its diagonal set to 1, is
used, as a quadratic matrix would be symmetric and waste space. Of course, if similarity values for

7.2. CLUSTERING ALGORITHMS 103

objects from two different arrays are needed a full matrix is computed. For the rest of this chapter the
following conventions are used:

• Method similarity(O1, O2) returns the similarity between the high-dimensional vectors of
objectsO1 andO2, by computing it explicitly or by retrieving it from a pre-computed similarity
matrix, depending on the need.

• Method similarityMatrix(Array AO) computes and returns an × n triangular similarity
matrix with object-to-object similarity values for objects from the arrayAO. n is the number
of objects in theAO array.

• MethodsimilarityMatrix(Array AO1, Array AO2) computes and returns am×n similarity
matrix with similarities values for objects from the arrayAO1 compared to objects from the
array AO2. The valuesm and n are the numbers of objects in the arraysAO1 and AO2
respectively.

• Methoddistance(O1, O2) computes the 2-D Euclidean distance between two 2-D vectors.

7.2 Clustering Algorithms

Three standard clustering algorithms have been implemented: the single pass clustering (see Section
3.2.1), the k-means algorithm (see Section 3.2.2) and the hierarchical agglomerative clustering algo-
rithm (see Section 3.3.1). Each of these algorithms was already discussed in Chapter 3 in their generic
form. They place all documents from the given set into a predefined number of clusters, each contain-
ing similar documents. All documents are normalised using the Euclidean norm prior to clustering,
although a maximum norm, or no normalisation at all, can also be employed. Like the documents,
every cluster is represented by a high-dimensional vector, its centroid. Visualisation Islands computes
the centroid as the center of mass (gravity) of all documents contained in the cluster. Such a cluster
can be updated inO(dim) time, wheredim is the dimensionality of the high-dimensional space. As
this value is constant for a given document set, removing and adding document from and to the cluster
is a simple task performed in constant time. Withdi[h] representing theh-th coordinate of thei-th
document, theh-th coordinate of the centroid of a cluster withn documents,c[h], is defined as:

c[h] =

n∑
i=1

di[h]

n whereh = 1...dim

Both partitional algorithms, k-means and single pass, make use of thecreateZeroDimensionCluster
method. This method is used to extract documents which have no keywords and are placed at the ori-
gin of the high-dimensional space. Before the actual algorithms are run, all such documents are put
in a separate cluster as they would have a negative influence on the clustering algorithms.

MethodcreateZeroDimensionCluster(array of documentsAD):

• Create an empty clusterCzero.

• For all documentsD in the arrayAD

– Get the document’s high-dimensional vectorV .

– If all components ofV are zero put documentD into clusterCzero.

• If clusterCzero is not empty return it, otherwise returnNULL.

104 CHAPTER 7. SELECTED DETAILS OF THE IMPLEMENTATION

7.2.1 Single Pass Clustering

The main idea of this algorithm is to consider every document exactly once (hence the name single-
pass), compare it to all existing clusters and put it in the best fitting one, but only if the similarity
between the document and the best fitting cluster is higher than a predefined threshold, otherwise a
new cluster with this document as its only member is created.

MethodsinglePassClustering(array of documentsAD, empty array of clustersAC):

• ClusterC = createZeroDimensionCluster(AD).

• if C is notNULL putC in AC.

• For all documentsD in the arrayAD.

– For all clustersC in the arrayAC.

∗ Calculatesimilarity(D,C), remember the best fitting clusterCbest

– if (similarity(D,Cbest) >= similarity-threshold)

∗ Put documentD in the clusterCbest.

∗ Update the centroid ofCbest.

– otherwise

∗ Create new clusterCnew.

∗ Put documentD in the clusterCnew.

∗ Put clusterCnew in the cluster arrayAC.

∗ Update the centroid ofCnew.

• runkMeansReallocationalClustering(AC) to refine the partition.

This algorithm is quite simple and fast because it passes through the document set only once. The
algorithm tends to build larger clusters at the beginning, with the size of those clusters created when
most documents are already assigned getting ever smaller. The partition depends strongly on the order
of the processed documents. The consequence of this is that the quality of the obtained partition is not
very good, which is the reason why a k-means reallocational algorithm is subsequently launched to
refine the partition. Due to two nested loops the execution time of the algorithm isO(mn) wherem
is the number of created clusters andn is the number of documents. The number of created clusters
depends on the similarity threshold value, where a small value gives a smaller number of clusters.

7.2.2 K-means Clustering

The k-means clustering is a reallocational iterative algorithms that requires an initial partition to be
created in advanced. The algorithm refines the given partition by passing through the document set
inspecting each document and replacing it, if necessary, to the best fitting cluster. As this procedure
is repeated a number of times the partition converges towards a local minimum with each performed
iteration. The algorithm can be implemented with continuous or non-continuous centroid updating.
Continuous centroid updating means that whenever a document is moved from one cluster to another
both cluster centroids are immediately updated. With non-continuous centroid updating cluster cen-
troids are updated at the end of an iteration when all documents have been inspected. Visualisation
Islands uses continuous centroid updating.

7.2. CLUSTERING ALGORITHMS 105

The initial partition passed to the k-means algorithm for refining can be generated in two different
ways. The first is to run a single pass clustering algorithm as described in the previous subsection.
The second way is to randomly choose a predefined number of documents as initial cluster seeds and
add all other documents to the best fitting seed, which actually is a k-means algorithm performing
only one iteration after creating the initial seeds. The procedure to build a random initial partition is
implemented by the following method:

MethodbuildInitialPartition(array of documentsAD, empty array of clustersAC):

• ClusterC = createZeroDimensionCluster(AD).

• if C is notNULL putC in AC.

• For all documentsD in the arrayAD

– if D is not in clusterC putD in the list of free documentsFDL

• While (size(AC) < required number of clusters) do:

– Choose a random documentD from FDL and remove it fromFDL

– Create a clusterC with documentD as its only member

– Add cluster C to cluster array AC

• While (FDL is not empty) do:

– Take a documentD from FDL and remove it fromFDL

– Pass all clusters inAC and find clusterC that is most similar to documentD

– Add D to C and update the centroid ofC

When an initial partition is created each document from the document arrayAD is a member of
exactly one cluster from the cluster arrayAC. However not every document will belong to a cluster
most similar to it, a result of centroid movement as more and more documents were added to each
cluster. To improve the partition an iterative refinement procedure, the k-means algorithm, is applied
by passing every document in the set and reallocating it, if necessary, from the current cluster to the
cluster with the most similar centroid. The procedure is repeated several times until a stop condition
is reached. There are a number of different stop conditions or combination of these which can be
found in the literature. The one implemented in Visualisation Islands is relatively complex. Another
iteration is executed if following three conditions are satisfied: the maximum number of iterations has
not yet been reached, the number of replaced documents compared to the number of the documents
in the complete set is still higher than a predefined threshold, the relative improvement of quadratic
error, or distortion in Visualisation Islands terminology, over the previous two iterations is higher than
a predefined treshold. The k-means reallocational clustering procedure is implemented as follows:

MethodkMeansReallocationalClustering(array of documentsAD, array of clustersAC):

• new distortion= distortion(array of documentsAD)

• Let iteration= 0

• Repeat

106 CHAPTER 7. SELECTED DETAILS OF THE IMPLEMENTATION

– iteration= iteration+ 1

– reallocated documents= 0

– Let old distortion = new distortion

– For all documentsD in the arrayAD

∗ Let Cold = parent cluster(D)
∗ Consider all clusters inAC and find clusterCnew most similar to documentD

∗ if Cold <> Cnew

· replaceD from Cold to Cnew

· Update centroids of clustersCold andCnew

· reallocated documents= reallocated documents+ 1

– new distortion= distortion(array of documentsAD)

• Until (reallocated documents/ size of(AD) <= reallocation threshold) OR

(new distortion/ old distortion>= distortion threshold) OR

(iteration>= maximum iteration)

The distortion for a particular partition is defined as the sum of the squared high-dimensional
distances between each document and the centroid of the cluster it belongs to. However, it is not
in the sense of Visualisation Islands to use high-dimensional distances, but rather to operate with
similarity values based on high-dimensional vectors, a value(1 − similarity) is used instead of a
high-dimensional distance. Distortion, or the squared error is calculated by the following method:

Methoddistortion(array of documentsAD):

• distortion = 0

• For all documentsD in the arrayAD

– C = parent cluster(D)

– distortion = distortion + (1− similarity(C,D))2

• returndistortion

The k-means algorithm converges towards a local minimum. If the maximum number of itera-
tions is limited, which is the case in Visualisation Islands, the execution time isO(mn), where m is
the number of clusters and n the number of clustered objects. Putting a limit on the number of per-
formed iterations is usually not a problem since convergence occurs rapidly in the large majority of
cases. The quality of the reached partition depends very strongly on the choice of the initial partition
which is probably the largest drawback of this algorithm, as there is no sure way of guessing the best
initial partition of an object set. Despite this k-means is one of the most popular clustering algorithms,
because it offers a very good trade off between speed and quality. In many cases the initial partition
problem is solved by running the algorithm several times using different initial partitions and taking
the result with the smallest squared error. This is a very time consuming procedure, so one may want
to consider heuristic procedures for generating an initial partition as described in Section 3.2.2. The
same section discusses the influence of continuous versus non-continuous centroid updating. Contin-
uous centroid updating leads to faster convergence and is much less sensitive to the choice of initial

7.2. CLUSTERING ALGORITHMS 107

partition. Non-continuous centroid updating can produce empty clusters which must be eliminated
and at the same time some other clusters must be split into two if the desired number of clusters should
be obtained. Continuous centroid updating avoids this problem. For these reasons this strategy was
implemented as standard for k-means algorithm providing reasonably good clustering results with
relatively small processing and implementation overhead. Note that non-continuous centroid updat-
ing is also supported by the implemented algorithms. The chosen strategy has one negative aspect: a
similarity matrix containing pre-computed document to cluster similarity values can not be used. The
reason for this is that each time a document is moved form one cluster to another their centroids are
recomputed and two rows of the similarity matrix (containing similarity values of these two clusters
to all other documents) would have to be recomputed. If the number of replaced documents in one
iteration is larger than the number of clusters divided by two (which is especially true at the begin-
ning) it is less time consuming to compare documents and clusters directly by explicitly computing
the similarity coefficient. However, it has been found that this does not lead to a significant increase
in processing time as the high-dimensional vectors are not excessively large for a typical document
set processed by Visualisation Islands.

7.2.3 Hierachical Agglomerative Clustering

Hierarchical agglomerative clustering follows a simple and effective idea. At the beginning each
document is treated as a cluster with one element. All existing clusters are compared and the two
most similar in the set are merged together forming a new cluster. A number of different methods
for comparing clusters of objects are described in the literature (single link, complete link, etc., see
Section 3.3.1). Visualisation Islands uses a centroid-based approach: cluster centroids are computed
and used to compare clusters with other high-dimensional vectors. For improved performance this
implementation uses a pre-computed triangular similarity matrix storing similarity coefficients for
the whole document set. Each time a new cluster is formed by merging two others the row and the
column of one cluster are marked as not used, whilst the row and column containing similarity values
of the other cluster are updated with values for the newly formed, merged cluster. The merging of
clusters is repeated until the number of clusters is reduced to the number defined by the user, or until
all existing clusters have similarity coefficients of 0 meaning that there no relation between any of
them and further merging would make no sense.

MethodhierarchicalAgglomerativeClustering(array of documentsAD, array of clustersAC):

• For each documentDi create a clusterCi containing only this document and putCi in AC

• matrix = similarityMatrix(array of clustersAC)

• Mark all matrix rows and columns as USED

• Repeat

– Inspect all USEDmatrix values and findCi andCj with the largest similaritysij

– if sij > 0

∗ MergeCi andCj to Ci and update its centroid

∗ RemoveCj form AC

∗ Mark j-th row and column ofmatrix as NOT USED

∗ Updatei-th row and column ofmatrix with similarity values forCi

108 CHAPTER 7. SELECTED DETAILS OF THE IMPLEMENTATION

• Until (length(AC) <= desired number of clusters) OR (sij == 0)

The similarity matrix must be searched for the largest similarity coefficient for every merge that is
performed. As the similarity matrix is of quadratic size and the number of merges is maximallyn−1
the execution time of this algorithm isO(n3) in worst case, wheren is the number of documents.

7.3 Force-Directed Placement

The force-directed placement algorithm computes a 2-D layout for a set of high-dimensional vec-
tors preserving their high-dimensional relations as well as possible. This is achieved by placing
the objects in 2-D space and computing forces between them depending on the similarities of their
high-dimensional vectors and their 2-D distances. The implementation of force-directed placement
is based on an algorithm described in [CHA96a]. Similar objects are pulled together by an attractive
force whilst dissimilar are pushed apart by a repulsive force. Instead of comparing each object to all
other objects in the set to compute its new position, each object is compared to a constant size sample
of the complete set.

Every object maintains its own sample in the form of two special sets: the neighbour and the
random set. The idea is to keep a few similar objects in the neighbour set and to take a new random
sample of the complete object set for each processing iteration and store it in the random set. Before
the algorithm is started, the object’s neighbour set is filled with random elements and its least similar
element is identified. In Visualisation islands terminology this neighbour element is called the worst
neighbour. For every iteration of the algorithm the random set is filled with new elements, but before
a new element is inserted into the random set it is compared to the worst neighbour. If the randomly
chosen element is more similar to the object owning the sets than the worst neighbour, the worst
neighbour is removed from the neighbour set and replaced by the randomly chosen element.

In this way the neighbour set is continuously updated to contain objects having a high similarity
to the object owning the sets. In each algorithm iteration each object is compared to all objects in
its sets and a force between each pair of compared objects is computed depending on their similarity
and distance in the 2-D space. If objects are similar the force is attractive and the object owning the
sets is moved towards the objects it is compared to, otherwise the force is repulsive and the object
is pushed away. Averaging these movements over all elements in the sets gives the new position of
the object. This procedure is applied on all objects and then repeated a number of times proportional
to the number of processed objects. The result is a layout in which similar objects are placed close
together in the 2-D space.

Before the force-directed placement algorithm is executed three similarity matrices are com-
puted: a rectengular document-to-clusters matrix and triangular document-to-document and cluster-
to-cluster matrices. Thesimilarity(O1, O2) function used in methods of this section accesses these
matrices to retrieve similarity coefficients for objectsO1 andO2.

doc-to-cluster matrix= similarityMatrix(Array of documentsAD, Array of clustersAC)

doc-to-doc matrix= similarityMatrix(Array of documentsAD)

cluster-to-cluster matrix= similarityMatrix(Array of clustersAC)

Each object stores its 2-D coordinates and maintains its neighbour and random sets. Java offers
excellent data structures for implementing the sets and set operations such as inserting and removing
of elements and checking membership. These structures are based on hash tables (constant amor-
tised time set operations), red-black balanced sorted trees (amortised logarithmic time set operations,

7.3. FORCE-DIRECTED PLACEMENT 109

constant time smallest and largest member retrieval) and resizeable arrays. Only the functionality
of the implemented set data structures is described here, detailed implementation is not given. The
initialisation of the neighbour setNS and updating of the neighbour set and the random setRS for an
objectO is performed by following two methods. Note that for improved performance the neighbour
set of a document is initialised with documents from the same cluster as the original document (as far
as it is possible), because these are expected to be similar to the object owning the sets.

MethodinitNeighbourSet(integerNSsize, array of objectsAO):

• Clear neighbour setNS

• Worst neighbourWN = null

• Repeat

– if size(parentCluster(O)) > (size(NS) + 1)

∗ ObjectN = random element ofparentCluster(O)

– else

∗ ObjectN = random element ofAO

– if ((N <> O) AND NOT (N ∈ NS))

∗ InsertN into NS

∗ if (similarity(N,O) < similarity(WN, O)) thenWN = N

• Until (size(NS) = NSsize)

MethodupdateSets(integerRSsize, array of objectsAO):

• Clear random setRS

• Repeat

– ObjectR = random element ofAO

– if ((R <> O) AND NOT (R ∈ NS) AND NOT (R ∈ RS))

∗ if (similarity(R,O) > similarity(WN, O)) then

· RemoveWN from NS

· InsertR into NS

· WN = N with similarity(N,O) = minNi∈NS(similarity(Ni, O))
∗ else

· InsertR into RS

• Until (size(RS) = RSsize)

The implemented force-directed placement algorithm with stochastic sampling makes use of a
force function to compute the force between two objects as a function of their similarity and their
distance in the 2-D space. The similarity between the two objects, a value between 0 and 1 is raised to
the power ofdiscriminator, which, if greater than 1, increases the power of differentiation between

110 CHAPTER 7. SELECTED DETAILS OF THE IMPLEMENTATION

similar and less similar objects. Multiplied by a constantsfactor this term represents the attractive
force component dependent upon the similarity between the pair of objects. The second term, a
product of thedfactor constant and the 2-D distance between objects, adds another, much weaker
attractive component. Being proportional to the distance this component prevents the objects from
flying apart into infinity. The third term,rterm, is a constant repulsive term that pushes non-similar
objects apart. The attractive distance proportional term and the constant repulsive term should be
looked upon together. When the similarity between a pair of objects is low there is a distance at
which the force is 0. If the distance becomes smaller, a repulsive force appears keeping dissimilar
objects apart. If the distance increases, an attractive force prevents the object set from breaking apart
completely. The higher the similarity between a pair of objects the higher the attractive similarity
term of the force and consequently the distance for which the force is 0 becomes smaller allowing
similar objects to come closer together.

Methodforce(ObjectO1, ObjectO2):

• returnsfactor ∗ similarity(O1, O2)discriminator + dfactor ∗ distance(O1, O2)− rterm

Every object processed by the force-directed placement algorithm has two pairs of coordinates:
(oldX, oldY) and(newX, nexY). Old values store coordinates computed in the previous iteration,
the new values store object’s new coordinates computed on the base of old coordinates of objects
being elements of the object’s neighbour and random sets. Before the actual processing by the force-
directed placement algorithm begins, clusters are placed at random positions of the 2-D space inside
the interval[(0, 0), (1, 1)] and their neighbour sets are initialised.

To improve the quality of the layout the algorithm is first applied to clusters and once their 2-D
positions are computed the documents are placed very close to their parent clusters instead of being
placed at completely random positions. Documents’ neighbour sets are initialised and the algorithm
is then applied again on documents and clusters together. This two step procedure has two positive
effects: it reduces the possibility for a document to get stuck somewhere in a local minimum before
reaching objects similar to it and reduces the number of iterations the algorithm needs to reach a good
layout. In every iteration all objects being processed are considered and each of them is compared
to all objects contained in its neighbour and random sets. The similarity of a pair of objects is read
from one of the three pre-computed similarity matrices and the 2-D euclidean distance between them
is computed. These values are used to calculate the force between the processed object and the
influencing object. Proportional to the value of the force and depending on positions of both objects,
a movement along the line connecting the objects is computed for the processed object, separately for
the X and Y coordinate. A positive force moves it towards and a negative force moves it away from
the influencing object. A force of 0 causes no movement at all. Every movement results in a special
new position of the processed object and all these positions caused by all objects in its sets are added
together and averaged giving a new 2-D position. At the end of the iteration, when all objects have
been moved to new positions, new coordinates are copied to the old coordinates and the whole process
is repeated. The number of iterations needed to reach a good, stabilised layout is roughly proportional
to the number of processed objects. This fact is used as a rule of thumb for the termination condition.

Methodcalculate2DPositions(array of documentsAD, array of clustersAC):

• For eachC ∈ AC do

– C.oldX = random(0, 1)

7.3. FORCE-DIRECTED PLACEMENT 111

– C.oldY = random(0, 1)

• For eachC ∈ AC doC.initNeighbourSet(integerNSsize, array of clustersAC)

• Let iteration = 0

• Repeat

– Let iteration = iteration + 1

– For eachC ∈ AC

∗ C.updateSets(integerRSsize, array of clustersAC)
∗ Let tx = ty = 0
∗ For eachN ∈ C.NS

· tx = tx + force(C,N) ∗N.oldX + (1− force(C,N)) ∗ C.oldX

· ty = ty + force(C,N) ∗N.oldY + (1− force(C,N)) ∗ C.oldY

∗ For eachR ∈ C.RS

· tx = tx + force(C,R) ∗R.oldX + (1− force(C,R)) ∗ C.oldX

· ty = ty + force(C,R) ∗R.oldY + (1− force(C,R)) ∗ C.oldY

∗ C.newX = tx/(size(C.NS) + size(C.RS))
∗ C.newY = ty/(size(C.NS) + size(C.RS))

– For eachC ∈ AC do

∗ C.oldX = C.newX

∗ C.oldY = C.newY

• Until (iteration == size(AC))

• For eachD ∈ AD do

– D.oldX = parentCluster(D).oldX + (random(0, 1)/1000)

– D.oldY = parentCluster(D).oldY + (random(0, 1)/1000)

• For eachD ∈ AD doD.initNeighbourSet(integerNSsize, array of documentsAD)

• Let AO = concatenate(AD,AC)

• Let iteration = 0

• Repeat

– Let iteration = iteration + 1

– For eachO ∈ AO

∗ O.updateSets(integerRSsize, array of objectsAO)
∗ Let tx = ty = 0
∗ For eachN ∈ O.NS

· tx = tx + force(O,N) ∗N.oldX + (1− force(O,N)) ∗O.oldX

· ty = ty + force(O,N) ∗N.oldY + (1− force(O,N)) ∗O.oldY

∗ For eachR ∈ O.RS

112 CHAPTER 7. SELECTED DETAILS OF THE IMPLEMENTATION

· tx = tx + force(O,R) ∗R.oldX + (1− force(O,R)) ∗O.oldX

· ty = ty + force(O,R) ∗R.oldY + (1− force(O,R)) ∗O.oldY

∗ O.newX = tx/(size(O.NS) + size(O.RS))
∗ O.newY = ty/(size(O.NS) + size(O.RS))

– For eachO ∈ AO do

∗ O.oldX = O.newX

∗ O.oldY = O.newY

• Until (iteration == size(AO))

Standard force-directed placement algorithms compare each object to all other objects in the
collection, therefore the number of operations during one iteration isO(n2) with n being the number
of processed objects. The stochastic sampling version implemented in Visualisation Islands compares
each objects with an object sample of constant size so that one iteration has a time complexity ofO(n).
Although some extra overhead is needed to manage the sets this is a huge improvement over the
standard, non-sampling version. The number of iterations needed to reach a stable layout is roughly
proportional to the number of processed objects although this depends very much on the properties of
the object set and, to a lesser degree, on objects’ initial positions. Therefore the time complexity of
the sampling algorithm is roughlyO(n2) compared toO(n3) of the standard version. It should also
be noted thatO(n2) is a lower boundary for all algorithms that need all object-to-object similarity
values to be computed as the similarity matrix computation is of that time and space complexity.
The sampling algorithm has also another advantage over the conventional version. The fact that each
object is influenced by similar objects from the neighbour set which is continuously updated and
improved during each iteration, and that the number of less similar objects, stored in the random
set, it is influenced by is small compared ton, ensures that the object is quickly attracted to objects
similar to it and is not distracted by a larger number of dissimilar object present in the collection. This
characteristic leads to faster building of visual clusters of similar objects. The algorithm is also less
sensitive to becoming stuck in a local minimum then the non-sampling version, because of the certain
amount of jitter which is brought in by taking a new sample for the random set for every iteration.

7.4 Map Background Generation

Map background generator is an algorithm to compute a 3-D style topographic map background
image based on the 2-D document and cluster coordinates computed by the force-directed algorithm.
Each element in the layout represents a small peak with a shape of a spherical cap thus having a base
of circular form. The height of a peak representing a cluster and the radius of its base are larger than
document peaks. The objects are placed on a matrix where each element of the matrix represents one
pixel, as shown in Figure 7.1. If more objects are placed close to each other on a small area the peaks
overleap and their heights are accumulated to build larger and higher structures - the mountains. Now
every matrix element contains the height of the mountain above it. A number of colours can be passed
to the algorithm (otherwise a default set of colours is used) and each is assigned to a different height
interval. To obtain a 2-D style background the algorithm creates an image and writes the color values
depending on the height of the corresponding element of the matrix.

If a 3-D style background is desired some additional operations are performed. A colour palette
is computed from the given colours so that continuous shades exist for every color, from darkest to
lightest. Furthermore, a slope is assigned to each pixel by calculatingdh/dp as shown in Figure 7.2.
The colour shade taken is proportional to the slope, a lighter shade is taken if the slope is positive

7.4. MAP BACKGROUND GENERATION 113

Figure 7.1: Four objects with overlapping peaks form a mountain.

and a darker one if the slope is negative. It is very important to note that the slope should never
be measured with the help of neighbour pixels. Using a larger pixel window makes smaller details
disappear, but at the same time the surface is smoothed giving a realistic landscape image reflecting
document and cluster density in the 2-D plane.

The execution time of this algorithm depends on a number of factors. The most important is the
resolution of the created image which linearly affects the execution time. The radius of the base of
the peak also has a strong impact as for a larger radius more pixels are influenced. As the area of the
base is proportional to the squared radius this affects the execution time strongly. The last factor is
the number of processed objectsn. The execution time is a linear function ofn.

114 CHAPTER 7. SELECTED DETAILS OF THE IMPLEMENTATION

Figure 7.2: Computing the slope for the selected pixel with a pixel window of 4.

Chapter 8

Visualisation Islands Case Study

This Chapter demonstrates the use of Visualisation Islands with real world data. Typical user inter-
actions and their results are described and discussed while exploring the retrieved document set. The
user guide in Appendix A gives details on how to perform the various operations.

8.1 Typing the Query and Retrieving Results

The search query “visualisation” is entered, see Figure 8.1, and sent to an xFIND search engine. The
maximum number of documents is set to 100 and the number of clusters of similar document that
should be built is set to 10. The xFIND search engine responds by sending data for 53 documents.
These are processed by Visualisation Islands which generates the visualisation shown in the Figure
8.2. The left part of the window shows a list containing similar documents grouped in clusters,
displayed in a table of contents style. The right part of the window contains a topographic map where
similar documents are placed closed together forming visual clusters which are labeled with keywords
of underlaying documents. Areas of the map where the density of documents is high are displayed as
islands or mountains. These areas are separated by water denoting areas with little or no documents.
Documents are displayed as filled icons while cluster icons are hollow and slightly larger.

By taking a look at the map no area of the map is labeled with “visualization” although this was the
query term. There is an island labeled “multimedia”, which could contain documents on visualisation,
however it is not particularly compact, what means that these objects are not very similar to each other.
This, and the fact that only 53 documents were returned, could be a hint to extend our query with
another term. Adding “visualization” to the search query, which is the American spelling of the word,
brings the desired improvement. 100 matching documents with the highest estimated relevance are
returned by the xFIND search engine. They are organised in 10 clusters and we can get a clue about
the content of each cluster by looking at its keywords displayed in the list. However, the topographic
map offers a better overview than the table of contents representation of the document set. Looking
at Figure 8.3, a high island labeled “visualization” can immediately be located. Its height tells us that
there is a large number of documents located in that area. The documents are placed quite tightly to
each other, meaning that they are very similar in content. Clearly, these are the documents we are
looking for and that is where we will continue our exploration of the search results.

The list representation in Figure 8.3 tells us that the majority of returned objects, 62 of them,
are topically similar and that the emphasis of their contents is on visualisation (Cluster 1 keywords:
visualization, 3d, environments, visual, ...). This large cluster and the “visualization” peak represent
the same documents, which could be confirmed by selecting the objects.

115

116 CHAPTER 8. VISUALISATION ISLANDS CASE STUDY

Figure 8.1: Typing in the query: “visualisation”.

Figure 8.2: Results of processing the query: “visualisation”.

8.2. EXPLORING SEARCH RESULTS 117

Figure 8.3: Results of the query: “visualisation visualization”.

8.2 Exploring Search Results

Now we wish to focus on the “visualization” island and therefore the part of the map where the island
is located is magnified. While in zoom mode the mouse is dragged and a red rectangle is drawn
around the area that will be zoomed in (see Figure 8.4). When the mouse button is released the part of
the map within the borders of the rectangle is magnified as seen in Figure 8.5. By moving the mouse
pointer over document or cluster icons (or over entries in the list) object’s title, URL, and keywords
are displayed in the bar at the bottom of the window.

However, we discover that the island is populated with a large number of documents which lie
too closely to each other to be separately analysed. This document subset should be reanalysed and
organised in a new topical map to give us an overview of the topics covered only in this subset. This
can be achieved by entering select mode and dragging the mouse over the documents. A red circle is
drawn (see Figure 8.6) and when the mouse button is released all objects inside the circle are selected.
Selected objects are highlighted, red in the map and blue-gray in the list. Note that objects, in the
map or in the list, can be selected by clicking on them, by using the popup menu activated with the
right mouse button, or by double-clicking them to select the whole cluster. Once the documents of
interest have been selected the spawn query tool is applied on them. This opens a new pseudo-query
window (pseudo because no real search query is sent to xFIND), the documents are processed, and
the resulting visualisation is displayed (see Figure 8.8). The new window is named after keywords
contained by the processed documents and these keywords are also placed in the query history list as
a suggestion for a potential search query on the topic.

118 CHAPTER 8. VISUALISATION ISLANDS CASE STUDY

Figure 8.4: Marking a rectengular area around the “visualization” label which shall be zoomed in.

Figure 8.5: The island labeled “visualization’ is zoomed in.

8.2. EXPLORING SEARCH RESULTS 119

Figure 8.6: Marking a circular area with similar documents which shall be selected.

Figure 8.7: Marked document are selected.

120 CHAPTER 8. VISUALISATION ISLANDS CASE STUDY

Figure 8.8: Selected documents are reprocessed allowing a more detailed analysis of their content.

As can be seen in Figure 8.8 the reprocessed documents are well layed out forming distinct struc-
tures in the map which can be explored (and reprocessed) further until a document or a reasonably
small group of documents is identified which are reliable candidates for relevant documents.

8.3 Identifying Relevant Documents

We can now assume that the subset of documents we are concentrating on is thematically connected
to visualisation. To narrow the current set of documents further we can try to filter the set, for example
displaying only those objects having “visualisation” or “visualization” as keywords. It is likely that
documents which do not have one of these words as keywords are not as relevant as those which have.
Typing the words in the filter dialog (see Figure 8.9) and applying the filter brings us to Figure 8.10.

Only a smaller part of the current subset was eliminated strengthening our assumption that we
have tracked down and isolated relevant documents. At this point the number of displayed objects is
reduced enough that we could start exploring them one by one with the mouse pointer and viewing
their title, URL and keywords and perhaps viewing their contents. In view mode every document can
be opened in an external viewer application, typically a HTML browser such as Netscape or Internet
Explorer, by clicking on it or by invoking the popup menu with the right mouse button.

Another possibility would be to identify documents with some characteristics which are of special
interest to us. Visualisation Islands is itself a tool for browsing document collections and searching for
relevant documents in search results sets. Let us take a look if there are any documents on browsing
and searching document collections in our visualisation document subset.

8.3. IDENTIFYING RELEVANT DOCUMENTS 121

Figure 8.9: Filter dialog over the window with reprocessed documents.

Figure 8.10: Objects not satisfying the filter condition are hidden.

122 CHAPTER 8. VISUALISATION ISLANDS CASE STUDY

Figure 8.11: Search dialog.

Figure 8.12: Found objects are selected. All documents can be pointed at with the mouse.

8.3. IDENTIFYING RELEVANT DOCUMENTS 123

Figure 8.13: Selected objects can be examined in the details window. An interesting document is
located.

Figure 8.14: Chosen document is opened in an external browser.

124 CHAPTER 8. VISUALISATION ISLANDS CASE STUDY

8.4 Finding the Right Document

Now that we have a collection of documents which are relevant to the search query we cant attempt to
find documents on browsing and searching document collections, among these. By typing “document
browsing searching” in the search dialog (see Figure 8.11) and performing a search on the current
document set, matching documents are selected as shown in Figure 8.12. We can take a more detailed
look by viewing the data of found documents in the detail window (see Figure 8.13). On choosing an
object all available data on it is displayed, its title, URL, size, creation date, and its keyword profile,
making it an easy task to find one fitting our interests. Viewing a document is a matter of one mouse
click, Figure 8.14 shows the chosen document in Netscape.

Chapter 9

Future Work

Visualisation Islands version 1.0 is the first implementation of an xFIND client for organising and
visualising search results according to their content. Although the system in its present state appears
quite complete and is sufficiently stable there are numerous improvements which the author would
like to propose for possible future versions. These are aimed at improving the quality of results
as well as improving performance with the goal of processing a larger number of objects than is
currently possible. Implementing improved algorithms paired with a more usable user interface and
possibly extending the system to handle other data sources would make Visualisation Islands far more
attractive. In particular future extensions might include:

• Loading and pre-processing: The algorithms implemented in Visualisation Islands could be
applied on search results of other search engines, or on any document collection, if a a pre-
processing algorithm to analyse documents and transform them into vector representation were
implemented.

• Clustering algorithms: Improvement of the k-means algorithm and performance of the hierar-
chical agglomerative algorithm should be considered.

– Improving the k-means algorithm by implementing better initial partition generators. This
would improve the quality of clustering results greatly, which is important if larger num-
ber of documents should be processed, since in that case hierarchical agglomerative clus-
tering becomes too slow. However, the behaviour and quality of such algorithms is rela-
tively unexplored. Currently a random initial partition or the partition produced by single
pass clustering algorithm are used.

– Optimisation of the hierarchical agglomerative clustering algorithm. The current im-
plementation hasO(n3) time complexity in the worst case. Is is possible to reach
O(n2log(n)) time complexity with more aggressive optimisation.

• Force-directed placement: This part of the program offers many possibilities for improvement
and further research, both in terms of performance and layout quality.

– Investigation of other force models with the goal of achieving better discrimination bet-
ween objects and a higher degree of stability of the simulated system.

– Computing mechanical stress is computationally intensive and the level of stress reached
depends on the processed object set and the initial configuration. Therefore, investiga-
tion of less computationally intensive, adaptive termination conditions is recommended.
Decreasing of average object movement or average force could be used for this purpose.

125

126 CHAPTER 9. FUTURE WORK

– The current implementation has anO(n2) execution time and is primarily limited by
the need to compute all inter-object similarity coefficients and store them in a similarity
matrix for later use. Removing this obstacle should be one of the primary future goals
if large number of objects need to be processed in short time. A possible solution would
be to use clustering results in the force-directed placement algorithm and compare each
document to all cluster centroids and to documents from the same cluster only.

• Map generator: The map generator algorithm could be adapted to produce backgrounds other
than the currently implemented island map. Mountains landscapes (Alps) or deep space back-
grounds could be implemented by using different peak forms and other colour palettes.

• User interface: Currently little is known about the usability of Visualisation Islands. Perform-
ing a usability study would surely be of great significance for discovering problems and draw-
backs of the user interface, and would provide fresh ideas how to improve the system. Some
suggestions are:

– Table of contents should be displayed in the form of a tree in addition to the currently
implemented list view.

– The saving of results could be added, giving the possibility to exchange the maps between
users or to explore them gradually. This would be an important feature, because the
implemented algorithms are not deterministic. Therefore, each time the algorithms are
applied a map with a different appearance is computed for the same document set.

– Possibility of bookmarking interesting documents and clusters should be implemented.

Chapter 10

Concluding Remarks

This thesis discussed the problem of retrieving relevant information. Very large amounts of infor-
mation are available electronically over the Internet. Searching for a specific topic often results in
receiving a huge number of search results in unstructured form. Standard search engines return search
query results as a linear list of hits sorted by estimated relevance, but no relations between returned
documents are given and it is difficult for the user to obtain an overview and to tell which of the
retrieved information is of interest and which is not.

Visualisation Islands was implemented as an attempt to address these problems by organising and
visualising topically related documents. It is an xFIND search engine client which processes and
organizes search query results depending on their content and similarity, and visualises the results
in the form of an interactive, intuitive, topically organised topographic map. Relationships between
documents are displayed by proximity: topically similar documents are grouped together to form
mountains which are separated by lower areas or water containing a smaller number of less similar
objects. Visualisation Islands is a modularly designed software package, written in Java for inter-
platform portability. The system can process multiple sets of search results simultaneously and allows
the reprocessing of any subset of the returned documents for more detailed insight.

Once the user has typed in the search query the loading phase begins. The data for matching
documents is returned, including the title, URL, the size and the creation date, as well as a number
of keywords and their frequencies, describing the documents’ content. Visualisation Islands uses the
extracted keywords to build a vector representation of the documents in a high dimensional space,
allowing the definition of a similarity measure between every pair of vectors and thus giving a possi-
bility to compare returned documents.

In the first processing step, clusters of similar documents are formed using standard clustering
algorithms such as hierarchical agglomerative clustering, the k-means algorithm, or the single pass
algorithm with k-means refinement. The obtained structure is used to display the documents in a table
of contents style.

In the second processing step, a force-directed placement algorithm based on stochastic sampling
is used to map the documents from the high-dimensional vector space to a 2-D plane preserving
their relative distances so far as possible. A force is assigned to every pair of objects according to
their similarity and 2-D distance: an attractive force for similar and a repulsive force for dissimilar
documents. After a certain number of iterations is performed a 2-D layout is obtained where similar
documents are grouped together, and less similar documents are pushed apart. Instead of comparing
every pair of documents every iteration, stochastic sampling is used to improve performance.

In the third processing step, a 2-D or 3-D topographic background is generated based on the 2-D
document coordinates computed in the previous step. Mountains are formed at areas where document

127

128 CHAPTER 10. CONCLUDING REMARKS

density is high. These areas are divided by areas with smaller document density which are represented
as water. As a result islands of topically similar documents are formed. By labeling the mountains
with keywords representing the underlaying documents and displaying the documents’ icons atop the
generated background an intuitive landscape (or seascape) is created.

Having retrieved documents organised in a table of contents together with the landscape of islands
of topically similar documents labeled with their keywords, makes it easy for the user to instanta-
neously locate areas of interest and discard documents or document groups covering less interesting
topics. An intuitive user interface provides a means for interactively exploring the map by zooming,
searching, filtering, selecting, viewing document details, reading contents of chosen document, and
analysing the returned document sets in more detail.

This thesis is organised in two parts: a theoretical part composed of Chapters 2 to 5, and a Visual-
isation Islands part consisting of Chapters 6 to 10 and Appendices A and B. In Chapter 2 Information
Retrieval (IR) was covered, describing techniques such as indexing of documents and the vector space
model. Chapter 3 describes clustering methods. A number of partitional, hierarchical and artificial
intelligence methods were discussed and compared. Chapter 4 gives an overview of general visuali-
sation principles. A series of document visualisation systems were presented to illustrate how visu-
alisation can be applied to improve the searching for and presentation of document sets. In Chapter
5 xFIND, a scaleable, distributed search engine was described. xFIND supplies Visualisation Islands
with documents in response to a search query.

The theory is the foundation on which Visualisation Islands was built. The software was intro-
duced in Chapter 6 where the object-oriented architecture of the program was described and respon-
sibilities and interactions of all packages and classes were specified. In Chapter 7 the algorithms
implemented in Visualisation Islands were described: the clustering of the retrieved documents using
single-pass, k-means or hierarchical agglomerative clustering algorithms, mapping the documents
from the high-dimensional term space to the 2-D viewport space using a force-directed placement
algorithm, and generation of a 2-D or 3-D style map background image. Visualisation Island was
demonstrated in practice on a number of examples in Chapter 8 and finally some ideas for future
research end program improvements were presented in Chapter 9. The user guide can be found in
Appendix A, with the exception of advanced parameters which are described in Appendix B.

Appendix A

Visualisation Islands User Guide

A.1 Introduction to Visualisation Islands

A standard search engine returns search query results in a form of a linear list of hits sorted by
estimated relevance, but no relations between returned documents are given. Visualisation Islands is
an xFIND search engine client that processes and organises search query results depending on their
content and similarity, and visualises the results in form of an interactive, intuitive, topically organised
map. Similar documents are grouped together to form mountains which are divided by lower areas
or see containing a smaller number of less similar objects. The user is offered a 2-D or 3-D style
landscape (or seascape) with islands of topically similar documents labeled with their keywords. This
makes it easy to instantaneously locate areas of interest and discard documents or document groups
covering less interesting topics. It is possible to interactively explore the map by zooming, searching,
filtering, selecting, viewing details and reading contents of chosen documents as well as to reprocess
any subset of the returned documents for a more detailed insight. Also a “table of contents” style
organisation of the retrieved documents is offered. Visualisation Islands is able to process and handle
several queries simultaneously.

A.2 Running the Program

Visualisation Islands was written in Java and can be run on almost any machine or operating system,
provided a Java virtual machine is available and installed on the system. Visualisation Islands requires
Java2 runtime environment (JRE) version 1.2.0 or higher, or Java2 software development kit (SDK)
version 1.2.0 or higher (JRE is part of the SDK). For Windows and Linux on x86 machines and for
SPARC/Solaris platform the latest version of Java can be downloaded from http://java.sun.com .

If the Java2 JRE is installed on the system Visualisation Islands can be started with one of the
following commands:

• java -jar -Xmx128m VisIslands.jar

• java -Xmx128m visislands.VisIslands

The -Xmx128m option is not required but it is strongly recommended as the virtual machine default
maximum memory setting of 64MB might not be enough for handling large queries or more queries
at once. Under Windows a double click on VisIslands.jar will also start the program, but the -Xmx
option can not be set directly in this case.

129

130 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

A.3 Tool Box

Most important program functions can be accessed through buttons in the tool bar. If no query window
is active some buttons will be disabled. The buttons have following functions, from left to right, as
displayed in Figure A.1:

• New query. Opens a new query window in query input mode where you can enter the query
text and set the query parameters.

• Modify query. By pressing this button you will be able to modify the query text and param-
eters of a loaded and processed query for the active query window. You will have to reload
and reprocess the query for changes to take effect except for some display related advanced
parameters (see Appendix B).

• Previous query. Visualisation Islands allows you to process and keep open more than one query
at a time. This button will make the previous query active and push its query window to front.

• Next query. Makes the next query active and push its query window to front.

• Spawn query. Launches a pseudo-query by processing the selected objects of the current query
and displaying them in a new query window. The pseudo-query will be named after keywords
with highest importance (product of keyword’s frequency and weight), and its title will be
placed in the query history list. This allows you to refine the results and explore them in more
detail.

• Search. Invokes the search dialog giving you the possibility to search for objects from the active
query window with certain features. The object found are selected (highlighted).

• Details. Used to display all selected objects of the active query in the details window giving
you the possibility to view information such as title, URL, size, creation date and keywords
profiles of each object.

• Filter. Invokes the filter dialog, which is very similar to the search dialog. The difference is that
only objects satisfying the filter condition will remain visible, all other objects are hidden.

• View mode. Switches to view mode. In view mode, clicking on a document displayed in the
map or in the list will show its contents in an external viewer application (usually a browser).

• Select mode. Switches to select mode. In select mode, the mouse is used to select and des-
elect objects by clicking on them for single selection, or by dragging the mouse for multiple
selection.

• Zoom mode. Switches to zoom mode. In zoom mode the mouse can be dragged to select a
rectangular map area which is zoomed in when the mouse button is released.

• Zoom out. Will zoom out one step backwards in the zoom hierarchy.

• Info. Invokes the info dialog displaying program, author, author’s advisors and licence infor-
mation.

A.4. PULL DOWN MENUS 131

Figure A.1: VisIslands tool box.

A.4 Pull Down Menus

While the tool box gives access to the most often used program functions the pull down menus extend
this functionality with a number of additional functions. These functions are ordered into six pull
down menus.

A.4.1 Query Menu

Query menu, displayed in Figure A.2 offers basic query operations:

• New creates a new, unloaded query. The query window is in input mode allowing you to input
the query text and set the parameters.

• Modify. Allows modification of the query text and the parameters of a loaded query. You will
have to reload and reprocess the query for the changes to take effect except for some display
related advanced parameters (see Appendix B).

• Close. Destroys the active query and closes its query window.

• Exit. Exits the Visualisation Islands application.

Figure A.2: VisIslands Query menu.

A.4.2 Window Menu

The windows menu displayed in Figure A.3 gives an overview of all currently opened queries and
allows you to directly switch to each one. The currently active query window is selected.

132 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

Figure A.3: VisIslands Window menu.

A.4.3 Tools Menu

Tools menu, displayed in Figure A.4, offers tools for searching for objects with certain characteristics,
viewing detailed object information and launching a pseudo-query by processing selected documents
of the active query.

• Spawn query. Launches a pseudo-query by processing the selected documents of the current
query and displaying them in a new query window. The pseudo-query will be named after
keywords with highest product of frequency and weight and these will be placed in the query
history list. This allows you to refine the results and explore them in more detail.

• Search. Invokes the search dialog where you can enter keywords, size and creating date inter-
vals for the objects you are looking for. Objects found are selected.

• Details. Invokes the details window that displays all selected objects of the active query giving
you the possibility to view information such as title, URL, size, creation date and keywords
profiles of each object.

Figure A.4: VisIslands Tools menu.

A.4.4 View Menu

With the view menu, shown in Figures A.5 and A.6, you can adjust how and which results will be
displayed. The menu is divided in three parts:

• Filtering. Offers two operations: a switch for enabling and disabling the filtering function and
a button wjich invokes the filtering dialog where you can enter keywords, size and creating date
intervals for the objects that should be displayed. Only objects with selected characteristics are
displayed, all other object are hidden.

A.4. PULL DOWN MENUS 133

• The map part offers a submenu with three switches. With these you can choose if you want to
display the grid, the map background and the labels in the map visualisation.

• The clusters part offers a submenu that lets you choose where the clusters will be displayed.
They can be shown in both list and map, in the list only or can be hidden completely. In this case
the list will display a relevance sorted list of documents as they were returned by the xFIND
search engine.

Figure A.5: VisIslands View menu, Map submenu.

Figure A.6: VisIslands View menu, Clusters submenu.

A.4.5 Mode Menu

The mode menu, shown in Figure A.7, is used to choose one of the three different modes for managing
and interacting with the objects displayed in the query window.

• In view mode any document can be viewed in the external viewer application by simply clicking
on it.

• In select mode the mouse is used to select and deselect objects by clicking on them for single
selection, or by dragging the mouse for multiple selection.

134 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

• In zoom mode the mouse can be dragged to select a rectangular map area which will be zoomed
in when the mouse button is released.

• The zoom out button will not switch you to another mode, but will zoom out one step backwards
in the zoom hierarchy.

Figure A.7: VisIslands Mode menu.

A.4.6 Options Menu

The options menu, displayed in Figure A.8 offers following three functions:

• Invoking the query parameters dialog to edit the parameters used to initialise each new query.

• Invoking of the preferences dialog for setting some general program parameters and prefer-
ences.

• Invoking of the info dialog to display information on the program, author, author’s advisors and
the licence.

Figure A.8: VisIslands Options menu.

A.4. PULL DOWN MENUS 135

Figure A.9: VisIslands main window and query window waiting for input.

Figure A.10: VisIslands loading and processing progress.

136 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

A.5 Main and Query Windows

Main window is a container for all existing query windows. It also contains the tool bar and the pull
down menus. When a new query window is created, as displayed in Figure A.9, it is in query input
mode. Here the query text can be entered or chosen from a query history list, and sent to the xFIND
search engine by pressing the Go! button. The lower part of the window displays a parameters panel
for editing query parameters. In standard mode the panel offers two sliders for choosing the number
of desired documents and the number of desired clusters, a button for resetting the parameters to
default values which are guaranteed to give good results and a query reset button which resets the
parameters and the query text and discards all loaded data. The advanced parameters button flips the
parameter panel into advanced parameters mode, which is reserved for expert users only. Advanced
parameters are documented in Appendix B.

When the query has been sent to the xFIND server it responds by sending the resulting document
data which are than processed by Visualisation Islands to create the visualisation. The query window
switches to progress mode showing the progress of loading and of different processing stages, as can
be seen in Figure A.10. Pressing the Stop button will interrupt the current action and switch the query
window back to query input mode. Visualisation Islands supports simultaneous processing of more
than one query. Also, while some queries are being processed, at the same time other, finished query
windows can be viewed and explored.

When the documents are loaded and the processing is completed the query window switches to
query display mode to show the created visualisation, as shown in Figure A.11. The left part of the
window displays a scrollable, indented list of clusters and documents in a table of contents style. The
right part of the window shows the topically organised map of documents which are represented by
filled black icons, and clusters represented by hollow icons. Different regions are labeled according to
the contents of documents placed in that area. The map background contains peaks at regions where
object density is high indicating where a larger number of similar documents can be found.

The list and the map are divided by a bar which can be slid left and right to assign part of the
area of the query window to either. When an object in the map or in the list is pointed to, its title,
URL and a few most important keywords are displayed in the bar at the bottom of the window. The
visualisation is fully interactive as is explained in detail in the following sections.

A.6 Selecting

To select objects you must first enter select mode. In this mode the mouse is used to select and
deselect objects. One click select an object the next one deselects it. To select more objects in the
map keep the left mouse button pressed while dragging it. A circle is drawn as you drag the mouse
(Figure A.12) and when the button is released all objects inside of the circle will be selected (Figure
A.13). The list is scrolled to display (some of) the selected objects. To select an interval in the list,
click first on one object and than on another one keeping the “Shift” button down. This will select all
objects between the two you clicked on. Double clicking a document or a cluster will, additionally
to that object, select all elements of the corresponding cluster. By keeping the “Control” key down
while clicking or dragging the mouse, objects can be added to the current selection or a single object
can be removed from it.

A.6. SELECTING 137

Figure A.11: VisIslands multiple query windows.

Figure A.12: VisIslands: dragging the mouse in select mode.

138 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

Figure A.13: VisIslands: selected objects are highlighted.

A.7 Zooming

To zoom in to a part of the map you must first enter zoom mode. To select an area to be zoomed keep
the left mouse button pressed while dragging it. A rectangle is drawn as you drag the mouse (Figure
A.14) and when the button is released this part of the map will be displayed enlarged (Figure A.15).
You can repeat this procedure to explore ever smaller portions of the map. Note that when zooming
in, additional labels might be displayed to mark regions of the currently viewed area. You can move
backwards in the zoom hierarchy by using the zoom out function.

Figure A.14: VisIslands: dragging the mouse in zoom mode.

A.8. SEARCHING 139

Figure A.15: VisIslands: a zoomed in part of the map.

A.8 Searching

You can search for objects having desired characteristics using the search dialog displayed in Figure
A.16. You can search according to three different criteria and combine them by selecting or deselect-
ing the corresponding switches:

• Keyword search. Enter keywords you are looking for and choose if all or only some of them
must be in the objects you are looking for.

• Size search. Enter the size interval in KB for the objects you are looking for.

• Date search. Enter the creation date interval for the objects you are looking for.

Objects with the selected features will be selected as shown in Figure A.17.

Figure A.16: VisIslands search dialog.

140 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

Figure A.17: VisIslands: found objects are selected.

A.9 Filtering

You can filter out objects having desired characteristics using the filter dialog displayed in Figure
A.18. Only objects satisfying the filter condition will be displayed, all other objects are hidden. Fil-
tering can be turned on and off using a general switch placed in the bottom of the dialog. You can filter
according to three different criteria and combine them by selecting or deselecting the corresponding
switches:

• Keyword filtering. Enter keywords you are looking for and choose if all or some of them must
be in the objects you would like to have displayed.

• Size search. Enter the size interval in KB of the objects you would like to filter have displayed.

• Date search. Enter the creation date interval of the objects you would like to have displayed.

Objects with selected features are displayed as shown in Figure A.19.

Figure A.18: VisIslands filter dialog.

A.10. DETAILS WINDOW 141

Figure A.19: VisIslands: only objects satisfying the filter condition are displayed.

A.10 Details Window

When the details window, shown in Figure A.20, is invoked, it displays selected documents and
clusters as well as detailed information for each of these objects. The left side of the window contains
a list of objects letting you choose any of them with a mouse click. Detailed information for that
object is displayed: title, URL, size, creation date, cluster it belongs to and a part of its content if
it is a document1. A table displaying object’s keywords and their frequencies and weights is also
displayed. A view button is available for viewing documents in an external viewer application.

Figure A.20: VisIslands details window.

1For technical reasons the content information is not loaded from the xFIND server in this Visualisation Islands version.

142 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

Figure A.21: VisIslands popup menu.

A.11 Popup Menu

The popup menu, displayed in Figure A.21, appears when the right mouse button is clicked inside
of the map or inside the list. The following operations are offered, although some might be disabled
depending on the kind of object the mouse pointer was positioned over:

• View. Opens the document, if any, that was under the mouse pointer when the right mouse
button was clicked in the viewer application.

• Select. Selects the object, document or cluster, that was under the mouse pointer when the right
mouse button was clicked.

• Select cluster. Selects all objects in the cluster if applied to a cluster, or, if applied to a docu-
ment, all documents which are elements of the same cluster.

• Select all. Selects all objects of that query.

• Unselect all. Unselects all objects of the query.

• Zoom out. Zooms out one step backwards in the zoom hierarchy.

• Zoom mode. Switches to zoom mode. In zoom mode the mouse can be dragged to select a
rectangular map area which is zoomed in when the mouse button is released.

• Select mode. Switches to select mode. In select mode the mouse can be dragged to select a
circular map area inside of which all objects are selected. Objects in the list are selected by
simply clicking on them.

A.12. PARAMETERS DIALOG 143

• View mode. Switches to view mode. In this mode, when the mouse is clicked over a document,
an external viewer application is launched to display the document’s content.

A.12 Parameters Dialog

The parameters dialog, shown in Figure A.22, displays a special panel which enables you to change
all parameters which determine how the query results will be loaded, processed, and visualised. The
parameters entered in this parameter dialog will be used to initialise every new query, existing queries
are not affected by any changes. These parameters are saved when the program is exited and reloaded
again the next time it is started. In the standard mode you are able to change the maximum number of
documents that should be loaded2 and the desired number of clusters to be created with two sliders.
You have the possiblity to enter the advanced parameters mode, and to reset all parameters to standard
values that are likely to give good results. Advanced parameters mode is reserved for the expert user
only. Details on advanced parameters are given in Appendix B. Note that the same parameters panel
which is used to edit parameters in the parameters dialog, is also displayed in a query window when
it is in query input mode. In this case it is only used to edit local parameters of that query.

Figure A.22: VisIslands parameters dialog.

A.13 Preferences Dialog

The preferences dialog, displayed in Figure A.23, gives you the possibility to adjust three settings
which influence the behaviour of the whole program, not just a single query. These are:

• Text entry field for the number of query terms for spawned pseudo-queries lets you adjust how
many keywords are extracted from the selected documents to act as a title of a pseudo-query
spawned from them.

2Due to a technical reasons the number of documents is currently limited to maximally 200.

144 APPENDIX A. VISUALISATION ISLANDS USER GUIDE

• Enable multiple detail windows switch determines if details of selected objects are always
displayed in a single window or each time a new details window will be opened.

• Document viewer application text field lets you type in the exact path and name of the applica-
tion used to view the document content. With the browse button a file dialog is opened giving
you the possibility to browse the file system and select the application with a mouse click.

Figure A.23: VisIslands preferences dialog.

A.14 Info Dialog

Info dialog, shown in Figure A.24, displays information about the author of the Visualisation Islands
software package, his advisors, the program version and a licence agreement.

Figure A.24: VisIslands info dialog.

Appendix B

Visualisation Islands Advanced
Parameters

Advanced parameters are intended for the expert user only. These parameters give you the possibility
to change almost every parameter concerning the loading, processing and visualisation of the data.
They are organised into seven groups: loading parameters, clustering parameters, layout parameters,
map background parameters, map parameters, view parameters and filter parameters. It is important
to mention at this point that if query parameters from the first four groups are modified the query will
have to be reloaded and reprocessed for changes to take effect. Changes on the last three groups of
parameters can be applied directly on the currently loaded data set.

B.1 Loading Parameters

The loading panel (see Figure B.1) gives you the possibility to set the parameters concerning the
communication with the xFIND search engine and the loading of document data.

• Host name: The name of the xFIND server the query is sent to.

• Port number: The port on which the xFIND server is waiting for requests.

• Number of documents: The maximum number of documents which should be sent back by the
xFIND server in response to a query1.

• Keywords per document: The maximum number of relevant keywords returned per document.

• Relevant keywords percentage interval : A keyword is considered relevant if it is contained by
the percentage of documents defined by this interval.

• Keyword weight: The weight assigned to a standard keyword.

• Title keyword weight: The weight assigned to a keyword which is part of the document’s title.

1Due to technical reasons the number of documents is currently limited to maximally 200.

145

146 APPENDIX B. VISUALISATION ISLANDS ADVANCED PARAMETERS

Figure B.1: Loading parameters.

B.2 Clustering Parameters

Clustering parameters (see Figure B.2) determine the usage and behaviour of different clustering
algorithms.

• Number of clusters: The number of clusters which should be created by the hierarchical ag-
glomerative or k-means clustering algorithm.

• Similarity threshold: This value is relevant for the single pass clustering algorithm. It deter-
mines a minimum similarity between a document and a cluster. If the document’s similarity to
a cluster is smaller than this value it can not be assigned to that cluster.

• Maximum k-means iterations: The upper limit on the number of iterations performed by the
k-means clustering algorithm.

• Maximum distortion ratio: A k-means clustering algorithm stop condition value. When the
ratio between the distortion value for the current and the previous iteration becomes larger than
this value it means that no significant improvement in the partition quality was achieved during
the last iteration and the algorithm will be stopped.

• Minimum replaced document percentage: Another k-means clustering algorithm stop condition
value. If the percentage of replaced documents in the last iteration was smaller than this value
the algorithm is stopped.

• Similarity metric: A similarity metric is used to compare two objects. Three different metrics
can be chosen: cosine, dice and jaccard.

• Clustering method: Four choices are available: k-means clustering applied on a random initial
partition, single pass clustering with k-means refinement, hierarchical agglomerative clustering
and auto mode. Note that in the current implementation hierarchical agglomerative clustering is
always used in auto mode, due to the 1000 document limitation of the current implementation.

B.3. LAYOUT PARAMETERS 147

Eventual future program versions, allowing the processing of more than 1000 documents, might
switch to a faster algorithm beyond this point.

• Cluster keywords build method: Two methods are offered. The exact method reads keywords
belonging to each document in that cluster, adds their frequencies of occurrence and assigns
the keywords to the cluster. The relative method is faster since it extracts the keywords from
the documents’ high dimensional vector. As these may be normalised the keyword frequencies
are floating numbers instead of integers in this case. Note that the keyword profile of the cluster
(and its high-dimensional vector) is in both cases the same.

• Norm formula: Determines how document high-dimensional vectors will be normalised. Three
possibilities are available: Euclidean norm, maximum norm and no normalisation at all. No
normalisation leads to larger documents having proportionally more influence on cluster cen-
troids, because their high-dimensional vector will be larger. This is not the case when using the
Euclidean norm, where all documents will have the same influence on their cluster’s centroid.

Figure B.2: Clustering parameters.

B.3 Layout Parameters

This section describes the parameters which determine the behaviour of the force-directed placement
algorithm with stochastic sampling (see Figure B.3).

• Similarity force factor: The attractive component of the force proportional to the similarity of
the interacting pair of objects is multiplied by this factor.

• Distance force factor: The attractive component of the force proportional to the distance of the
interacting pair of objects is multiplied by this factor.

• Repulsive force term: This is a constant repulsive component of the force.

148 APPENDIX B. VISUALISATION ISLANDS ADVANCED PARAMETERS

• Maximum iteration factor: The number of processed objects is multiplied by this factor to
calculate the maximum number of iterations which will be performed by the force-directed
placement algorithm.

• Discriminator: The similarity values used to compute the force are raised to the power of this
coefficient. If the objects in the considered set are all very similar to each other then increasing
this value will improve the discrimination power of the force-directed placement algorithm.
Care has to be taken as an inverse effect will be achieved if the similarity values are small.

• Random set size: Size of the random set used for stochastic sampling. For each iteration of the
algorithm it is filled with a random sample of objects.

• Neighbour set size: Size of the neighbour set used for stochastic sampling. It contains objects
similar to the object owning the set.

• Initial cluster position: Before applying the force-directed placement algorithm clusters can be
placed in a form of a circle or they can be placed on random positions of the low dimensional
space.

• Initial document position: Before applying the force-directed placement algorithm on docu-
ments, clusters have already been processed. At the beginning the documents can be placed
at random positions in the low dimensional space, or can be arranged around the cluster posi-
tions to improve the computed layout quality. This will also contribute to avoiding a document
becoming stuck in a local minimum far from objects similar to it.

• Smart neigbour set initialisation: Before the force-directed placement algorithm is applied the
neighbour set of each object is filled with random elements. If this option is set then the
objects’s neigbour set elements are chosen from the cluster the object belongs to, as far as these
are available.

• Dynamic force parameters adjustment: If this option is set the distance force factor and the
repulsive force factor are inverse proportionally scaled with the number of processed objects.
If this option is not turned on and a large number of objects is processed a tendency of the
algorithm to place the objects in a form of a ring around the origin of the 2-D space will
be noticed. This is a result of pressing them into a small area. When too many objects are
pulled together by a high distance force factor then the repulsive forces, resulting from a high
the repulsive force term, are those that determine how the final layout will look like, not the
attractive forces resulting from the inter-objects similarities.

B.4 Map Background Parameters

Map background parameters (see Figure B.4) determine the characteristics of the generated back-
ground image.

• Light shade limit: If a 3-D background is generated from each of the eight base map colours a
palette of darker or lighter shades is computed. This value determines how much lighter than
the original shade, which has a shade value of 0, the lightest shade is allowed to be.

B.4. MAP BACKGROUND PARAMETERS 149

Figure B.3: Layout parameters.

• Dark shade limit: If a 3-D background is generated every of the eight base map colours is made
darker or lighter to provide shading. This value determines how much darker than the original
shade, which has a shade value of 0, the darkest shade is allowed to be.

• Slope pixel distance: A base colour assigned to a pixel is made lighter or darker depending on
the slope value at that pixel’s position. The slope for a pixel is computed as a difference of
heights of two pixels surrounding it. The distance of these two pixels from the original pixel is
given by this value. Larger values results in smooth, realistic peaks and islands, however at the
cost of filtering out small details.

• Slope exponent: The slope value for each pixel is raised to the power of this value. Values
smaller than 1 result in sharper colour transitions between the darker and lighter regions of the
background image, while values larger than 1 result in very smooth colour transitions.

• Document density radius: The radius of the peak surrounding each document.

• Cluster density radius: The radius of the peak surrounding each cluster.

• Document density weight: The height of the centre of the peak surrounding each document.
The weights are added for overlapping peaks to determine the local object density at each pixel
position.

• Cluster density weight: The height of the center of the peak surrounding each cluster. The
weights are added for overlapping peaks to determine the local object density at each pixel
position.

• Map background size: This value defines the size (resolution) of the raster, in pixels, containing
the map background image.

• Map background style: A 2-D style or a 3-D style map background image can be chosen.

• Dynamic slope distance adjustment: If this switch is enabled the slope pixel distance will be
slightly reduced for large object sets allowing smaller details to be recognised. For small objects

150 APPENDIX B. VISUALISATION ISLANDS ADVANCED PARAMETERS

sets the slope pixel distance value will be slightly enlarged for better smoothing of transitions
between overlapping peaks. The default value of objects is 100.

• Dynamic radius adjustment: If this option is set to true the radius of documents and clusters is
is made slightly larger as the number of processed get smaller. This improves the quality of the
background image for small object sets.

• Colour bounds proportionality: Normally one of the eight base colours is assigned to each pixel
proportionally depending on the height at that pixel position. The height is computed by adding
overlapping peaks surrounding each object. Sometimes better results can be achieved if base
colours are not assigned exactly proportionally to the height, but so that each colour is assigned
to approximately the same amount of pixels. Recommended only for 2-D style backgrounds.

Figure B.4: Map background parameters.

B.5 Map Parameters

These parameters (see Figure B.5) determine how the map of topically organised documents will be
displayed on the screen.

• Icon size: Size of a document icon. Cluster icon is one pixel larger than the document icon.

• Label size: Size of the font used to display the labels.

• Number of region labels: Maximum number of labels that will be displayed at once. Labels
with a higher importance have precedence.

• Map grid density: Number of horizontal and vertical lines (parallels and meridians) that should
be displayed.

B.6. VIEW PARAMETERS 151

• Dynamic icon size adjustment: If this option is set the size of document and cluster icons will
be dynamically adjusted taking into consideration the current on-screen width and height of the
map, in pixels, as well as the number of icons currently displayed (may vary depending on the
zoom factor).

• Dynamic label size adjustment: If this option is set the size font used to display the labels will
be dynamically adjusted taking into consideration the current on-screen width and height of the
map, in pixels, as well as the number of labels currently displayed (may vary depending on the
zoom factor).

• Map margin percentage: A margin around the borders of the map, having the size determined
by this value and the on-screen size of the map, will be left free. All document and cluster icons
are displayed in the map area surrounded by this margin.

• Display background: A switch determining if the map background image is to be displayed.

• Display labels: A switch determining if the labels is to be displayed.

• Display grid: A switch determining if the grid (parallels and meridians) is to be displayed.

Figure B.5: Map parameters.

B.6 View Parameters

View parameters (see Figure B.6) are general parameters defining how the processing results will be
displayed inside their query window.

• Initial window width: This is the width the query window will be resized to when switched to
results display mode.

152 APPENDIX B. VISUALISATION ISLANDS ADVANCED PARAMETERS

• Initial window height: This is the height the query window will be resized to when switched to
results display mode.

• Maximise window for viewing results: If this switch is set to true the query window will be
maximised when switched to results display mode.

• Query results view: When the processing of the loaded documents is completed the split pane of
the query window can be configured to display the table of contents style list only, the topically
organised map view only, or both the list and the together.

• Display map background while resizing: If this option is chosen the map background image
will be continuously resized while the query window is being resized by the user. This is
recommended only if you are running Visualisation Islands on a fast machine. On slower
machines turn this option off.

• Display clusters in the list: If this switch is set to on, clusters are displayed in the list together
with the documents forming a table of contents style structure. If this switch is set to off the
list will contain the documents in the order as they were returned by the xFIND search engine
(which is the order of their estimated relevance). Note, that in this case, the cluster icons will
not be displayed in the map.

• Display cluster icons in the map: This switch determines if the cluster icons will be displayed
in the map.

Figure B.6: View parameters.

B.7 Filter Parameters

This set of parameters (see Figure B.7) determines if and how the document set will be filtered.

B.7. FILTER PARAMETERS 153

• Keyword filter: Enter here the keywords that must be contained by an object. If an object
contains the keywords it will be displayed, otherwise it will be hidden.

• Keywords required: Choose if an object must contain all or at least one of the entered keywords
to be displayed.

• Size filter: Enter here the size interval that an object’s size must be within. If an object’s size is
within the given interval it will be displayed, otherwise it will be hidden.

• Date filter: Enter here the creation date interval that an object’s creation date must be within.
If an object’s creation date is within the given intervall it will be displayed, otherwise it will be
hidden.

• General filter switch: This switch determines if filtering of the object set is performed or not.

• Keyword filter switch: Keyword filter switch can be turned on and off here. Filtering after
keywords is performed only if this switch is set to on.

• Size filter switch: Size filter switch can be turned on and off here. Size filtering is performed
only if this switch is set to on.

• Date filter switch: Date filter switch can be turned on and off here. Date filtering is performed
only if this switch is set to on.

Figure B.7: Filter parameters.

154 APPENDIX B. VISUALISATION ISLANDS ADVANCED PARAMETERS

Bibliography

[AGM01] Keith Andrews, Christian Guetl, Josef Moser, Vedran Sabol, Wilfried Lackner. Search
Result Visualisation with xFIND.In Proc. of Second International Workshop on User
Interfaces to Data Intensive Systems (UIDIS 2001), Zurich, Switzerland, May 2001.
ftp://ftp.iicm.edu/pub/papers/uidis2001.pdf

[AKM95] Keith Andrews, Frank Kappe, and Hermann Maurer. Hyper-G and Har-
mony: Towards the Next Generation of Networked Information Tech-
nology CHI’95 Conference Companion, Denver, Colorado, May 1995.
http://www.acm.org/sigchi/chi95/Electronic/documnts/demos/
ka bdy.htm

[AND95] Keith Andrews. Visualising Cyberspace: Information Visualisation in the Harmony In-
ternet Browser.Proc. of IEEE Symposium on Information Visualization (InfoVis 95), At-
lanta, Georgia, Oct. 1995.ftp://ftp.iicm.edu/pub/papers/ivis95.pdf

[AND96] Keith Andrews. Browsing, Building, and Beholding Cyberspace: New Ap-
proaches to the Navigation, Construction, and Visualisation of Hypermedia
on the Internet. PhD thesis, Graz University of Technology, Austria, 1996.
ftp://ftp.iicm.edu/pub/keith/phd/

[BEZ81] J. C. Bezdek. Pattern Recognition With Fuzzy Objective Function Algorithms, 1981.
Plenum Press, New York, NY.

[BHJ99] Israel Ben-Shaul, Michael Herscovici, Michal Jacovi, Yoelle S. Maarek, Dan
Pelleg, Menachem Shtalhaim, Vladimir Soroka, Sigalit Ur. Adding support for
Dynamic and Focused Search with Fetuccino. IBM Haifa Research Laboratory,
Dept. of Computer Science Carnegie-Mellon University, Dept. of Electrical Engi-
neering Technion, Haifa, Israel.http://www8.org/w8-papers/5a-search-
query/adding/adding.html

[BRF98] P. S. Bradley, Usama M. Fayyad. Refining Initial Points for KMeans Clustering. [1]
Computer Sciences Department University of Wisconsin Madison, [2] Microsoft Re-
search Redmond.Proc. 15th International Conf. on Machine Learning.1998.

[BSG95] Steve Benford, Dave Snowdon, Chris Greenhalg, Bob Ingram, Ian Knox, and Chris
Brown. VR-VIBE: A Virtual Environment for Co-operative Information Retrieval.Com-
puter Graphics Forum, 14, (3), pp.349-360, 1995, NCC Blackwell

155

156 BIBLIOGRAPHY

[CAK97] Jeromy Carrire, Rick Kazman. WebQuery: Searching and Visualizing the Web
through Connectivity. [1] Nortel Ottawa, ON Canada, [2] Software Engineering
Institute Pittsburgh, PA. 6th International World-Wide Web Conference. 1997.
http://www.cgl.uwaterloo.ca/Projects/Vanish/webquery-
1.html

[CAG90] G. Carpenter, S. Grossberg. ART3: Hierarchical search using chemical transmitters in
self-organizing pattern recognition architectures, 1990. Neural Networks 3, 129152.

[CAR01] Cartia Themescape Homepage:http://www.cartia.com/

[CHA93] Matthew Chalmers. Using a landscape methaphor to represent a corpus of documents.
In Proceedings European Conference on Spatial Information Theory, COSIT 93, pages
337-390, Elba, September 1993.

[CHA96] Matthew Chalmers. Adding imageability features to information displays.In Proceed-
ings UIST96, Seattle, Washington, November 1996. ACM.

[CHA96a] Matthew Chalmers. A linear iteration time layout algorithm for visualising high-
dimensional data.In Proceedings Visualization96, pages 127-132, San Francisco, Cali-
fornia, October 1996. IEEE Computer Society.

[CHT95] Avijit Chatterjee. Parallel visual explorer at work in the money markets, 1995.
http://www.ibm.com/news/950203/pve-03.html

[CHC92] Matthew Chalmers and Paul Chitson. Bead: Explorations in information visualization.
In Proceedings SIGIR92, pages 330337, Copenhagen, June 1992. ACM.

[CKO97] D. Scott McCrickard, Colleen M. Kehoe. Visualizing Search Results using SQWID.
Graphics, Visualization, and Usability Center College of Computing Georgia Institute
of Technology.In Proceedings of the Sixth International World Wide Web Conference,
April 1997.
http://www.cc.gatech.edu/grads/m/Scott.McCrickard/sqwid/
Doc/www6.html

[CKP92] Douglass R. Cutting, David R. Karger, Jan O. Pedersen, John W. Tukey. Scatter/Gather:
A Cluster-based Approach to Browsing Large Document Collections. [1] Xerox Palo
Alto Research Center [2] Stanford University [3] Princeton University.In Proceedings of
the Fifteenth Annual International ACM SIGIR Conference, pages 318-329, June 1992.
Also available as Xerox PARC technical report SSL-92-02.

[CKP93] Douglass R. Cutting, David R. Karger, Jan O. Pedersen. Constant Interaction-Time Scat-
ter/Gather Browsing of Very Large Document Collections. [1] Xerox Palo Alto Research
Center [2] Stanford University.In Proceedings of the Sixteenth Annual International
ACM SIGIR Conference, 1993.

[CLP97] J. Cugini, S. Laskowski, C. Piatko. Document Clustering in Concept Space: The
NIST Information Retrieval Visualization Engine (NIRVE). National Institute of Stan-
dards and Technology (NIST) Gaithersburg and Johns Hopkins University.CODATA
Euro-American Workshop on Visualization of Information and Data, Paris, France,
June 1997. http://zing.ncsl.nist.gov/ cugini/uicd/concept-
clusters.html

BIBLIOGRAPHY 157

[CLS00] J. Cugini, S. Laskowski, M. Sebrechts. Design of 3D Visualization of Search
Results: Evolution and Evaluation,Proceedings of IST/SPIE’s 12th An-
nual International Symposium: Electronic Imaging 2000: Visual Data Ex-
ploration and Analysis (SPIE 2000), San Jose, CA, 23-28 January 2000.
http://www.itl.nist.gov/iaui/vvrg/cugini/uicd/nirve-
paper.html

[CSB97] E. Churchill, D. Snowdon, S. Benford, P. Dhanda. Using VR-VIBE: browsing and
searching for documents in 3d-space.In the 7th International Conference on Human-
Computer Interaction (HCI International’97), San Francisco, CA, USA, August 1997

[FBY92] William B. Frakes, Ricardo Baeza-Yates. Information Retrieval, Data Structures and
Algorithms. Prentice Hall, Reading, MA, 1992.

[FUH98] Norbert Fuhr. Information Retrieval, Skriptum zur Vorlesung, 1998.http://ls6-
www.informatik.uni-dortmund.de/ir/teaching/courses/ir/

[GAM98] Christian Guetl, Keith Andrews, Herman Maurer. Future Information
Harvesting and Processing on the Web.Conference European Telemat-
ics: advancing the information society, Barcelona, 4-7 February 1998.
http://www2.iicm.edu/ ˜cguetl/papers/fihap

[GRG97] Kenkat N. Gudivada, Vijay V. Raghavan, William I. Grosky, Rajesh Kasanagottu. Infor-
mation retrieval on the World Wide Web.IEEE Internet Computing, 1(5):58-68, Septem-
ber/October 1997.

[GUT00] Christian G̈utl . xFIND: Extended Framework for Information Discovery V0.95, Pro-
grammers Documentation. Institute for Information Processing and Computer Supported
New Media (IICM), Graz University of Technology, Austria, 2000

[HAR75] J. Hartigan. Clustering Algorithms, 1975. Books on Demand.

[HAS94] Harvest, Internet Research Task Force Research Group on Re-
source Discovery (IRTF-RD) at the University of Colorado - Boulder.
http://www.ccu.edu.tw/doc/harvest/hpccbb.html
http://archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/
Searching/schwartz.harvest/schwartz.harvest.html

[HEA95] M. A. Hearst. TileBars: Visualization of Term Distribution Information in Full Text
Information Access.Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems, Denver, CO, ACM, May 1995, pp. 55-66.

[HEK97] Marti Hearst, Chandu Karadi. Cat-a-Cone: An Interactive Interface for Spe-
cifying Searches and Viewing Retrieval Results using a Large Category Hi-
erarchy. [1] Xerox Palo Alto Research Center, [2] Stanford University.Pro-
ceedings of the 20th Annual International ACM/SIGIR Conference Philadelphia,
PA, July 1997.http://www.sims.berkeley.edu/ hearst/papers/cac-
sigir97/sigir97.html

[HEM93] Matthias Hemmje. Lyberworld - eine 3D-basierte benutzerschnittstelle fuer die com-
puterunterstuetzte informationssuche in dokumentenmengen. In Der GMD-Spiegel 193,
January 1993.

158 BIBLIOGRAPHY

[HEP96] Marti A. Hearst and Jan O. Pedersen. Reexamining the Cluster Hypothesis: Scat-
ter/Gather on Retrieval Results. Xerox Palo Alto Research Center.In Proceedings of
the Nineteenth Annual International ACM SIGIR Conference, Zurich, June 1996.

[HEP96a] Marti A. Hearst and Jan O. Pedersen. Visualizing information retrieval results: A demon-
stration of the Tilebar interface.In Proceedings of ACM CHI 96 Conference on Human
Factors in Computing Systems, pages 394-395, 1996.

[HEX82] P. Heckbert. Color image quantization for frame buffer display.ACM Trans. Comput. Cr.
16, 3, July 1982, 297-307.

[HIL68] D. R. Hill. A vector clustering technique. In Samuelson (ed.), Mechanised Information
Storage, Retrieval and Dissemination, North-Holland, Amsterdam, 1968.

[HKW94] Matthias Hemmje, Clemens Kunkel, and Alexander Willet. Lyberworld - a visualiza-
tion user interface supporting fulltext retrieval. German National Research Center for
Computer Science (GMD).In Proceedings SIGIR94, Dublin, Ireland, July 1994. ACM.

[HYP01] Hyperwave Homepage:http://www.hyperwave.com/

[IHT01] Inxight Hyperbolic Tree Technology. Xerox Palo Alto Research Center.
http://www.inxight.com/products/star tree/overview.html

[IMU01] Inxight Murax text analysis tool.
http://www.inxight.com/products sp/murax/index.html

[IND87] Alfred Inselberg, Bernard Dimsdale. Parallel Coordinates for Visualizing MultiDimen-
sional Geometry.Proceedings of Computer Graphics International Conference, 1987.

[IPN01] Information Visualisation at Pacific Northwest National Laboratory, operated
for the United States Department of Energy by Battelle Memorial Institute.
http://www.pnl.gov/infoviz/index.html

[IVD01] Working groups Visualisation of Dataspaces. InfoViz VRML-Document-Finder. Fach-
hochschule Potsdam and the Daten- und RechenZentrum at the GeoforschungsZentrum
Potsdam,http://fabdo.fh-potsdam.de/infoviz/docfinder.html

[JAT01] The Java Tutorial, 2001.
http://java.sun.com/docs/books/tutorial/index.html

[JEN96] John R. Jensen. Introductory Digital Image Processing (2nd ed.). Chapter 8, Thematic
Information Extraction: Image Classification, 1996. Upper Saddle River, NJ: Prentice-
Hall. pp. 236-238.

[JST01] The JFC Swing Tutorial, 2001.
http://java.sun.com/docs/books/tutorial/uiswing/index.html

[KCP01] Kansas City Public Library: Introduction to Search Engines, 2001.
http://kclibrary.org/search/srchengines.htm

[KOD99] Helmut Kopka and Patrick W. Daly. A Guide to LaTeX 2e. Addison-Wesley, third edi-
tion, 1999.

[KOH88] T. Kohonen. Self-Organization and associative memory, Springer-Verlag, Berlin, Second
Edition, 1988.

BIBLIOGRAPHY 159

[KOH90] T. Kohonen. The self-organizing map,Proceedings of the IEEE, Vol. 78, No. 9, 1990,
pp. 1464-1480.

[KRO95] U. Krohn. Vineta: visualizing navigational information retrieval.Paper presented at
FADIVA 2, the Second International Workshop on Foundations of Advanced 3D Infor-
mation Visualization, July 20-22, 1995, University of Glasgow, Glasgow, Scotland, UK.

[KRO96] Krohn, U. VINETA: Navigation through virtual information spaces.Paper presented at
AVI ’96, Advanced Visual Interfaces: An International Workshop, May 27-29, 1996,
Gubbio, Italy.

[LAA99] Bjornar Larsen and Chinatsu Aone. Fast and Effective Text Mining Using Linear-time
Document Clustering.Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining.1999.

[LAR94] John Lamping, Ramana Rao. Laying out and visualizing large trees using a hyperbolic
space.In Proceedings UIST94, pages 13-14, Marina del Rey, California, November
1994. ACM.

[LEA00] Anton Leuski and James Allan. Lighthouse: Showing the Way to Relevant Informa-
tion. In the Proceedings of IEEE Symposium on Information Visualization 2000 (InfoVis
2000), Salt Lake City, Utah, October 9-10, 2000. pp. 125-130.

[LIG01] Lighthouse homepage:http://toowoomba.cs.umass.edu/ leouski/
lighthouse/

[LRP95] John Lamping, Ramana Rao, Peter Pirolli. A focus+context technique based on hyper-
bolic geometry for visualizing large hierarchies.In Proceedings CHI95, pages 401-408,
Denver, Colorado, May 1995. ACM.

[LTK94] Thomas M. Lillesand, Ralph W. Kiefer. Remote Sensing and Image Interpretation (3rd
ed.). Minimum Distance to Means Classifier in Chapter 7, Digital Image Processing,
1994. New York: John Wiley and Sons. pp. 590-591.

[LUH59] Hans Peter Luhn. Auto-Encoding of Documents for Information Retrieval Systems.
Pergamon Press, London, 1959.

[LYB01] Demos of the LyberWorld Project:
http://www.darmstadt.gmd.de/ ˜hemmje/Activities/Lyberworld/
demos.html

[LYB01a] The LyberWorld Homepage:
http://www.darmstadt.gmd.de/ ˜hemmje/Activities/Lyberworld/

[MAU96] Hermann Maurer. HyperWave: The Next Generation Web Solution. Addison-Wesley,
May 1996.http://www.iicm.edu/hgbook

[MAY97] Susanne Mayr. Masters Thesis: SearchVis, Visualising Search Result Sets Using a Force-
Based Method to Form Clusters of Similar Documents. Institute for Information Pro-
cessing and Computer Supported New Media (IICM), Graz University of Technology,
Austria, 1997.ftp://ftp.iicm.edu/pub/theses/smayr.pdf

160 BIBLIOGRAPHY

[NPM97] David A. Nation, Catherine Plaisant, Gary Marchionini, and Anita Komlodi. Visualizing
websites using a hierarchical table of contents browser: WebTOC, 1997. University of
Maryland.
http://www.cs.huji.ac.il/ ˜sdbi/1999/elik/nation.html

[NFF96] Lucy Terry Nowell, Robert K. France, Edward A. Fox. Visualizing search results with
Envision.In Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, System Demonstrations: Abstracts,
pages 338-339, 1996.

[NFH96] Lucy Terry Nowell, Robert K. France, Deborah Hix, Lenwood S. Heath, Edward A.
Fox. Visualizing search results: Some alternatives to query-document similarity.In Proc.
SIGIR96, pages 67-75, Zurich, Switzerland, August 1996. ACM.

[NFH96a] Lucy Terry Nowell, Robert K. France, Deborah Hix, Lenwood S. Heath, Edward A.Fox.
Visualizing search results: Some alternatives to query-document similarity.In Proceed-
ings of the 19th Annual International ACM SIGIR Conference on Research and Deve-
lopment in Information Retrieval, Visualization, pages 6775, 1996.

[NIR01] NIRVE Homepage:http://zing.ncsl.nist.gov/ ˜cugini/uicd/nirve-
home.html

[OKS93] Kai A. Olsen, Robert R. Korfhage, Kenneth M. Sochats, Michael B. Spring, James G.
Williams. Visualisation of a Document Collection: The VIBE System, Information Pro-
cessing and Management, 29 (1), 6981, 1993.

[RHS97] Michael Reed, Dan Heller, Ben Shneiderman. Online library of information visualization
environments, 2001.http://www.otal.umd.edu/Olive

[RIJ79] C. J. van Rijsbergen. Information Retrieval. Butterworth and Co Ltd., London, second
edition, 1979.

[RMC91] George G. Robertson, Jock D. Mackinlay, Stuart K. Card. Cone trees: Animated 3D
Visualizations of Hierarchical Information.In Proceedings CHI91, pages 189-194, New
Orleans, Louisiana, May 1991. ACM.

[RMC94] George G. Robertson, Jock Mackinlay, Stuart K. Card. Display of Hierarchical Three-
dimensional Structures with Rotating Substructures. US Patent 5,295,243, Xerox Cor-
poration, March 1994. Filed 29th Dec. 1989, granted 15th March 1994.

[ROC66] J. J. Rocchio. Document retrieval systems - optimization and evaluation. Ph.D. Thesis,
Harvard University, 1966.

[RUS69] E. H. Ruspini. A new approach to clustering, 1969. Inf. Control 15, 22-32.

[SEI84] S. Z. Selim, M. A. Ismail. K-means-type algorithms: A generalized convergence the-
orem and characterization of local optimality.IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-6, 1, 1984, 81-87.

[SES01] Search Engine Showdown, 2001.http://searchengineshowdown.com

[SPI01] SPIRE - Spatial Paradigm for Information Retrieval and Exploration. Pacific Northwest
National Laboratory.http://www.pnl.gov/infoviz/spire/spire.html

BIBLIOGRAPHY 161

[SEW01] Search Engine Watch, 2001.
http://www.searchenginewatch.com

[SWC01] The Swing Connection.
http://java.sun.com/products/jfc/tsc/index.html

[SYW75] Salton, G., Yang, C. and Wong, A. A vector space model for automatic indexing.Com-
munications of the ACM , 18 (11)613-620. 1975.

[TOG74] Julius T. Tou, Raphael C. Gonzales. Pattern Recognition Principles. A Simple Cluster-
Seeking Algorithm in Chapter 3, Pattern Classification By Distance Functions, 1974.
Reading, MA: Addison -Wesley. pp. 90-92.

[TOG74a] Julius T. Tou, Raphael C. Gonzales. Pattern Recognition Principles. Isodata Algorithm in
Chapter 3, Pattern Classification By Distance Functions, 1974. Reading, MA: Addison-
Wesley. pp. 97-104.

[VHN96] A. Veerasamy, S. Hudson, S Navathe. Querying, navigating and Visualizing an Online
Library Catalog, GVU Tech report. 1996.

[VSM01] Visual SiteMap, Drexler University.
http://faculty.cis.drexel.edu/sitemap/

[VOO86] E. M. Voorhees. Implementing agglomerative hierarchical clustering algorithms for use
in document retrieval. Information Processing and Management, vol. 22, 1986, pp 465-
476.

[VRV01] VR-VIBE screen shots.http://www.emptiness.org/vr/vrvibe.html
http://www.crg.cs.nott.ac.uk/research/technologies/
visualisation/vrvibe/

[WDB95] Andrew Wood, Nick Drew, Russell Beale, Bob Hendley. HyperSpace: Web Brows-
ing with Visualisation. School of Computer Science of The University of Birmingham.
http://www.igd.fhg.de/archive/1995 www95/proceedings/
posters/35/

[WDB95a] A. Wood, R. Beale, N. Drew, R. Hendley. HyperSpace: A World-Wide Web Visualiser
and its implications for Collaborative Browsing and Software Agents. HCI’95, UK.

[WEI99] Erwin Weitlaner. Masters Thesis: Metadata Visualisation Visual Exploration of File Sys-
tems and Search Result Sets based on Metadata Attributes. Institute for Information Pro-
cessing and Computer Supported New Media (IICM), Graz University of Technology,
Austria, 1999.ftp://ftp.iicm.edu/pub/theses/eweit.pdf

[WET01] WebTOC Homepage: A Tool to Visualize and Quantify Web Sites using a Hierarchical
Table of Contents. University of Maryland Human-Computer Interaction Laboratory.
http://www.cs.umd.edu/hcil/webtoc/

[WIL88] P. Willet. Recent Trends in Hierarchic Document Clustering: A Critical Review. Infor-
mation Processing and Management, 24(5):577-597, 1988.

[WIT85] X. Wu, I.H. Witten. A fast k-means type clustering algorithm. Dept. Computer Science,
Univ. of Calgary, Canada, May 1985.

[WLM01] Wilmascope homepage:http://www.wilmascope.org

162 BIBLIOGRAPHY

[WMP01] WebMap Homepage:http://www.webmap.com/

[WSM01] WEBSOM - Self-Organizing Maps for Internet Exploration.
http://websom.hut.fi/websom/

[XFI01] xFIND Homepage: xFIND - eXtended Framework for Information Discovery, 2001.
http://xfind.iicm.edu

[YOU96] Peter Young. Three Dimensional Information Visualisation. Visualisation Research
Group, Centre for Software Maintenance, Department of Computer Science, Univer-
sity of Durham. 24th March, 1996, Revised: 1st November 1996, Computer Science
Technical Report, No. 12/96.

[ZAE98] Oren Zamir and Oren Etzioni. Web Document Clustering: A Feasibility Demonstration.
Department of Computer Science and Engineering University of Washington Seattle.In
ACM SIGIR 98, pages 46–54, 1998.
http://www.cs.washington.edu/research/clustering

[ZAE99] Oren Zamir and Oren Etzioni. Grouper: A Dynamic Clustering Interface to Web Search
Results. Department of Computer Science and Engineering, University of Washington.
Proceedings of the Eighth International World Wide Web Conference, Computer Net-
works and ISDN Systems, 1999. 66
http://www.cs.washington.edu/research/clustering

