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Abstract— Quantitative measurements of restoration quality
in blind deconvolution are complicated by the necessity to
compensate for opposite shifts of reconstructed image and
point-spread function. Alignment procedures mentioned for this
purpose in the literature are sometimes not exactly enough
specified; alignment-free approaches sometimes do not take into
account the full variability of possible shifts. We investigate
by experiments on a simple test case the errors induced by
interpolation-based alignment procedures. We propose a new
method for MSE/PSNR measurement of image pairs involving
non-integer displacements that is based on a superresolution
approach. We introduce an innocence assumption in order
to keep deviations that can be explained by shifted sampling
grids out of the error measurement. In our test case, the new
measurement procedure reduces the variations in MSE/PSNR
measurements substantially, creating the hope that it can be
used for valid comparisons of blind deconvolution methods.

I. INTRODUCTION

The removal of blur in images by blind image deconvo-
lution has been studied for many years [2], [3], [4], [5], [6],
[10], [16], [21], and received increasing interest during the
last years [1], [7], [8], [9], [11], [12], [14]. A frequently used
simplifying assumption is that the blur is spatially invariant,
i.e. the redistribution of intensity is described by the same
point-spread function (PSF) h at each image location. Blur
is then described by a convolution between the unobserved
sharp image g and the PSF h; incorporating additive noise
n, the observed image f is given by the blur model

f = g∗h+n . (1)

Whereas for non-blind deconvolution one assumes that f and
h are known, and aims at an estimate u for the sharp image
g, the knowledge of h is often not available in practice, thus
necessitating blind deconvolution where the estimate u of the
sharp image is to be obtained along with the PSF h, using
only f as input image.

A variety of approaches to solve this task have been de-
veloped, creating the need for quality comparisons. Besides
visual assessment, one is interested in quantitative measure-
ments of reconstruction quality versus a known ground truth.

Frequently used standard measures for image reconstruc-
tion methods include the mean-square error (MSE) as well
as the signal-to-noise ratio (SNR) and peak signal-to-noise
ratio (PSNR) both of which are closely related to the MSE;
furthermore, sometimes the average absolute error (AAE) is
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advocated. Another measure that puts some more emphasis
on important structural details of images such as contrast
edges is the structural similarity index (SSIM), see [17]. Let
us shortly recall the first three measures.

For a reference (ground-truth) image g and degraded (or
reconstructed) image u, both of size n×m pixels, their MSE
is given by

MSE(u,g) =
1

nm

n−1

∑
i=0

m−1

∑
j=0

(ui, j−gi, j)
2 . (2)

Provided that u and g have equal mean intensity µ (which we
will assume in the following), this is the variance var(u−g)
of u−g. Using the variance of g given by

var(g) =
1

nm

n−1

∑
i=0

m−1

∑
j=0

(gi, j−µ)2 , (3)

and the range R(g) := maxi, j gi, j−mini, j gi, j (255 for satu-
rated 8-bit images), one can compute the SNR

SNR(u,g) = 10log
var(g)

var(u−g)
dB (4)

and PSNR

PSNR(u,g) = 10log
R(g)2

var(u−g)
dB . (5)

For non-blind deconvolution, both MSE/(P)SNR and
SSIM are frequently used to assess reconstruction quality.
Although these quantitative measures are not always in good
agreement with visual assessments by humans, they are
generally accepted as simple and objective measures. For a
recent study on measures that approximate better the human
perception of restoration quality see [13].

In blind deconvolution, however, their application meets
a difficulty: If the reconstructed image u is translated by an
arbitrary, often non-integer, displacement d, and the point-
spread function h is translated by −d, these translations
cancel in the convolution u ∗ h. Blind deconvolution results
that differ just by such opposite translations of u and h must
therefore be considered equally valid reconstructions. An ex-
ample of such shifts that indeed occur in blind deconvolution
results is shown in Fig. 1. This precludes a straightforward
(P)SNR or SSIM comparison of blind deconvolution results
with ground truth. Obviously, some kind of alignment – rigid
registration restricted to translations as transformations – has
to be applied.

Nevertheless, blind deconvolution results are compared
by PSNR and other quantitative measures in a number of
works, e.g. [6], [7], [8], [9], [10], [14]. In many of these,
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Fig. 1. (a) Synthetically blurred image with ground-truth PSF, from [11].
– (b) Blind deconvolution result with PSF, from [12]. Note the opposite
shifts of image and PSF.

no alignment whatsoever is mentioned [6], [8], [9], [10].
Such an evaluation relies implicitly on the assumption that
estimated PSFs are aligned with the ground truth PSF;
probably this is approximately achieved by some test cases
with small PSF support. Efforts to compensate shifts, either
for images or for PSFs, are found in [7], [14], [20]. A bench-
mark established in [7] is based on simulating camera shake
by generated trajectories. Multiple ground truth images are
acquired directly along those trajectories, and the best match
is used for error measurement. On one hand, a computational
alignment step is avoided in this way. On the other hand,
the procedure constrains shifts to the ground-truth trajectory
which may be insufficient since blind deconvolution methods
can well yield translations in which the coordinate origin of
the PSF does not happen to be on the (unknown) trajectory
that was used to generate the ground truth. The benchmark
from [7] is also used in [20] and part of the evaluation
in [14]. Further tests in [14] are based on data from [9].
Here, absolute errors of PSFs are measured, namely for
“(aligned) blur estimates” with respect to ground truth PSFs.
This allows indeed to handle unconstrained displacements.
Details of the alignment procedure are not given, however.

In the following we discuss how to make precise such
an alignment procedure. We focus on a scenario where a
ground-truth image and PSF are available, and restoration
quality is to be estimated by measuring the error between
the ground truth and reconstructed images. In specifying
the alignment procedure, some choices have to be made:
first, should one register the reconstructed image to the
ground truth image, or vice versa, or should perhaps both
be transformed? Which interpolation procedure is to be
used in the registration process? It is not a far-fetched
guess that these details will influence the subsequent error
measurements. In fact, we will demonstrate by a simple
experiment in Section II that, dependent on details of the
registration, the PSNR measures vary by 1.5dB and more.

Given the fact that relative improvements of one blind
deconvolution method over the other as reported in e.g. [7],
[14] often amount to as little as 0.5dB or even less, such a
difference is significant.

This might be mitigated by using multiple test images and
performing statistics on the errors measured for these. How-

ever, questions remain: Since errors introduced by interpola-
tion can be expected to differ substantially between test cases
where the displacement is approximately integer, and test
cases where the displacement is near a half-pixel position,
results may be strongly biased towards blind deconvolution
methods that, for whatever reason, tend to reconstruct PSFs
in similar pixel alignment as the ground-truth. Given the
complexity of procedures both for constructing apparently
realistic test cases, and of the blind deconvolution procedures
themselves, it is such favourable alignments occur more often
for some methods under investigation than for others. In
such a case, the bias won’t necessarily average out for larger
sample sizes.

For this reason, we pursue in this paper the goal to
establish an alignment procedure for blind deconvolution
results that avoids these pitfalls. We focus here on the MSE,
from which (P)SNR can be derived via (4), (5).

Structure of the paper. In Section II we evaluate the
errors introduced by interpolation-based alignment proce-
dures using a simple test case. Section III establishes the
fundamentals of an alignment procedure by superresolution
in order to avoid these errors. The details of the procedure
are discussed in Section IV, followed by experiments on
the previously introduced test case in Section V. A short
summary and outlook in Section VI concludes the paper.

II. ALIGNMENT BY INTERPOLATION

To assess the errors introduced by alignment with inter-
polation, we set up a simple test case based on a ground
truth grey-value image shown in Fig. 2 (a). We blur this
image by 16 different PSFs shown in Fig. 2 (b); all these
PSFs are downsampled versions of the same high-resolution
PSF with horizontal and vertical shifts in 1/4 pixel steps.
One blurred image is shown in Fig. 2 (c). Each of the
blurred images is deconvolved with each of the 16 PSFs
using the non-blind deconvolution method from [18] with
the same parameters (α = 0.01, 300 iterations). This yields
256 deblurred images with effective shifts w.r.t. the ground
truth images from −0.75 to +0.75 pixels in x and y direction;
one exemplary deblurred image is shown in Fig. 2 (d).

We can now measure the MSE (and resulting PSNR) for
each deblurred image w.r.t. the ground truth image. In the
following we report PSNR values as this is the most familiar
measure in deconvolution literature. To reduce the impact of
boundary artifacts, a 20 pixel wide margin is excluded from
the measurement, thus using a 88× 88 central patch of the
reference image.

We notice first that in the 16 translation-free cases (where
the same PSF was used for blurring and deblurring) the
PSNR varies between 29.74 and 30.41dB, with an average
of 30.07dB and a standard deviation of 0.21dB.

Next, we measure PSNR values for the entire set of 256
deblurred images. Here, the ground-truth and reconstructed
images are aligned using either bilinear and bicubic interpo-
lation with the ground-truth shift values. For the direction
of alignment we consider three settings: (a) warping the
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Fig. 2. (a) Ground truth image, 128× 128 pixels. (Clipped, downscaled
and converted to greyscale from a photograph of the building of
TU Vienna. Source of original image: https://upload.wikimedia.
org/wikipedia/commons/e/e9/TU Bibl 01 DSC1099w.jpg, Author: Peter
Haas. Available under licence CC BY-SA 3.0.) – (b) 16 PSFs, 10× 10
pixels each, subsampled from the same high-resolution input. The shift
from row to row and from column to column is 0.25 pixels. – (c) Image
(a) blurred by convolution with PSF from (b), first row, second column.
– Bottom right: Image (c) deblurred with PSF from fourth row, third
column, resulting in a shift relative to ground truth of (0.25,0.75) pixels.

reconstructed image to match the ground-truth image; (b)
warping the ground-truth image to match the reconstructed
image; (c) applying half the shift to each of the ground-truth
and reconstructed image. Statistics of the resulting PSNR
values are presented in Table I.

To bring the previous procedure closer to a true blind
deconvolution setting, we now switch to determining also
the displacement from a minimisation of the MSE (or max-
imisation of the PSNR). To avoid analysing possible multiple
optima, we employ here a brute-force optimisation varying
the displacements in x and y direction in 0.01 steps from −1
to 1; note that the exact displacements occur in the sequence

TABLE I
PSNR STATISTICS FOR 256 RECONSTRUCTED IMAGES WITH ALIGNMENT

BY THE KNOWN (GROUND-TRUTH) SHIFT USING BILINEAR OR BICUBIC

INTERPOLATION; (A) WARPING THE RECONSTRUCTED IMAGE, (B)
WARPING THE GROUND TRUTH, (C) HALF-WAY WARPING GROUND

TRUTH AND RECONSTRUCTED IMAGE.

Interpolation bilinear bicubic
Alignment (a) (b) (c) (a) (b) (c)
min 27.47 29.74 29.74 28.35 29.74 29.39
max 30.41 33.54 33.55 30.41 31.84 31.55
(max−min) 2.94 3.80 3.81 2.06 2.10 2.16
mean 28.57 32.18 31.25 29.23 30.85 30.05
standard dev. 0.711 0.970 0.805 0.474 0.489 0.459

of displacements sampled thereby. Table II contains statistics
of the misestimations δx, δy of the x and y displacements,
and the resulting PSNR. The latter values are slightly higher
than in Table I but not seriously so.

As can be expected, warping the reconstructed image to
match the ground truth (see columns marked (a) in Tables I
and II) leads to lower PSNR values for image pairs with non-
integer displacements. The variation is about 3dB with bi-
linear interpolation; bicubic interpolation reduces it to about
2dB which is still likely to warp comparisons substantially.
When aligning instead the ground truth to the reconstructed
images (columns (b) in Tables I and II) PSNR values are sur-
prisingly higher for non-integer displacements, which means
by comparison to the no-shift cases a clear overestimation of
reconstruction quality. Apparently the warping of the ground
truth image introduces some blur which matches well the
remaining blur in the deconvolution results.

Inspection of the detail results corroborates that for the
same image pair the choice which image is aligned to
which one leads to discrepancies in PSNR of 4dB and more
with bilinear, and still about 3dB with bicubic interpolation.
Distributing the shift to both images (columns (c) in Table I)
yields similar results as shifting the ground truth. As this
proceeding does not offer an advantage, we do not pursue
it further in the computationally more expensive scenario of
Table II where also the displacements are optimised.

III. ALIGNMENT BY SUPERRESOLUTION

We turn now to designing a procedure for image re-
construction error measurement with alignment. We give
preference to the MSE as basis of our considerations because
unlike the (P)SNR it treats the two images being compared in
a completely symmetric way. We want to keep this symmetry
also in the alignment procedure, thereby removing one of the
arbitrarities of interpolation-based alignment procedures. For
easier comparison to usual PSNR figures we will neverthe-
less report in the experiments later PSNR values computed
from our MSE measurements.

An obvious requirement is that for perfectly aligned
images the standard MSE measure has to be reproduced.
Whereas the procedure will be described for prescribed

TABLE II
STATISTICS OF DISPLACEMENT MISESTIMATIONS δx, δy AND PSNR FOR

256 RECONSTRUCTED IMAGES WITH ALIGNMENT ESTIMATED BY MSE
MINIMISATION.

Interpolation bilinear bicubic
Alignment (a) (b) (a) (b)
max|δx| 0.18 0.17 0.07 0.16
std. dev. δx 0.079 0.081 0.028 0.080
max|δy| 0.17 0.15 0.06 0.14
std. dev. δy 0.064 0.067 0.024 0.072
min PSNR 27.47 31.42 28.37 29.89
max PSNR 30.41 33.61 30.41 31.86
(max−min) PSNR 2.94 2.19 2.04 1.97
mean PSNR 28.67 32.67 29.25 31.10
std. dev. PSNR 0.697 0.527 0.471 0.465
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displacement values, minimisation of the MSE measure is
an obvious way to estimate also unknown displacements.

For the following, let us consider two images u and
g, which are sampled representations of continuous-scale
images. To specify the sampling process more precise, we
assume that each pixel of g is the integral of the underlying
continuous-scale image G over a rectangled region such that
all pixels together tesselate (a rectangle of) the image plane:

gi, j =
∫ i+1

i

∫ j+1

j
G(x,y)dydx , (6)

and similarly for u whose grid is of equal resolution but
shifted by d = (α,β ) ∈ R2,

ui, j =
∫ i+1+α

i+α

∫ j+1+β

j+β
U(x,y)dydx . (7)

Without loss of generality, we assume 0≤ α,β < 1.
Whereas in the special case of band-limited images sam-

pled with at least their double limiting frequency, Shannon’s
sampling theorem guarantees that u and g contain full
information on their continuous counterparts, this can usually
not be expected to hold true for natural images; thus the
continuous images U and G are in fact unknown.

A good measure for the discrepancy between u and g
should essentially measure the discrepancy between their
continuous versions U and G. In other words, we do not
want to punish reconstructions for badly aligned grids, and
formulate therefore an “innocence assumption” (in dubio
pro reo – in case of doubt for the defendant): Whatever
discrepancy between two images can plausibly be attributed
to different sampling, shall not enter the discrepancy mea-
sure. In particular, if a sufficiently plausible continuous-
scale image V ≡ U ≡ G exists from which both u and g
can be obtained by sampling, their discrepancy should be
measured as zero. Notice that the exact meaning of the word
“plausible” remains to be specified later.

Our considerations can be boiled down to a discrete
image v of size (2n+ 1)× (2m+ 1) whose pixels are the
intersections of pixels of u and g:

vi, j =
∫ ξi+1

ξi

∫ η j+1

η j

V (x,y)dydx , (8)

i = 0, . . . ,2n, j = 0, . . . ,2m, where ξi = i/2 for even i and
ξi = i/2+α for odd i, η j = j/2 for even j and η j = j/2+β
for odd j. Note that pixel (i, j) of g covers the four pixels
(2i,2 j), (2i,2 j + 1), (2i + 1,2 j) and (2i + 1,2 j + 1) of v
whereas pixel (i, j) of u covers the four pixels (2i+1,2 j+1),
(2i+1,2 j+2), (2i+2,2 j+1) and (2i+2,2 j+2) of v. The
image v is therefore a superresolution image [15] of g and u,
albeit with pixels of different sizes. In x direction grid cells
of size α alternate with such of size 1−α , whereas in y
direction the same is true with β and 1−β .

In the general situation when U and G cannot be chosen
as equal, we want to retain this idea and construct a super-
resolution image v that tries to reconciliate the information
of u and g as good as possible. The discrepancy of u and g

will then be measured by combining discrepancies between
u and v, and between v and g.

In the perfectly aligned case, α = β = 0, the MSE (2) of
images g and u can be combined from the MSEs between
each of g and u and their average v := 1

2 (g+u) via

MSE(u,g) = 2(MSE(u,v)+MSE(v,g)) . (9)

Moreover, using the parallelogram identity (or by an
easy combination of Cauchy-Schwarz’ inequality with the
arithmetic-geometric mean inequality) we see that for any
other image v the right-hand side of (9) will be greater than
MSE(u,g). This motivates the following definition.

Definition. Let images u and g of size n×m sampled as
in (6), (7) be given. Let a class X of (2n+ 1)× (2m+ 1)-
images v sampled as in (8) be given. For each image v ∈ X,
define vu, vg as the downsamplings of v to the grids of u and
g, respectively. The alignment-MSE MSEX between u and g
with respect to X is defined as

MSEX (u,g) = min
v∈X

2(MSE(u,vu)+MSE(vg,g)) . (10)

Application of this definition requires, first, the specifi-
cation of the class X for given images u, g. The class X
essentially defines what are plausible superresolution images.
Second, a minimisation method will be needed to find the
minimiser. We will turn to these issues in the next section.

IV. SPECIFYING CONSTRAINTS

Given u and g, a superresolution image v as specified in
the previous section must satisfy the equations

αβv2i,2 j +αβ̄v2i,2 j+1

+ᾱβv2i+1,2 j + ᾱβ̄v2i+1,2 j+1 = gi, j , (11)

ᾱβ̄v2i+1,2 j+1 + ᾱβv2i+1,2 j+2

+αβ̄v2i+2,2 j+1 +αβv2i+2,2 j+2 = ui, j (12)

for i = 1, . . . ,n, j = 1, . . . ,m, where we have used the
abbreviations ᾱ := 1−α , β̄ := 1−β .

On one hand, these are just 2nm equations for 4nm +
2n + 2m + 1 pixels of v (from which two corner pixels
could be eliminated as they are neither covered by g nor
by u); additional conditions will therefore be necessary to
remove this underdetermination. On the other hand, for
images u and g that do not match perfectly, we expect that
the equations should be satisfied only approximately. which
favours smoothness. Thus, we are led to reformulate our
equation system into the minimisation of an energy function

E(v) = Sg(v)+Su(v) (13)

under suitable constraints, where Sg and Su are quadratic
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error terms for the equations above,

Sg(v) :=
n−1

∑
i=0

m−1

∑
j=0

(
gi, j−αβv2i,2 j−αβ̄v2i,2 j+1

− ᾱβv2i+1,2 j− ᾱβ̄v2i+1,2 j+1
)2

, (14)

Su(v) :=
n−1

∑
i=0

m−1

∑
j=0

(
ui, j− ᾱβ̄v2i+1,2 j+1− ᾱβv2i+1,2 j+2

−αβ̄v2i+2,2 j+1−αβv2i+2,2 j+2
)2

. (15)

Up to constant factors, Sg and Su are just the MSE(g,vg) and
MSE(u,vu) from the alignment-MSE definition.

Let us therefore now discuss possible constraints for this
minimisation problem. These constraints will constitute the
class X of images to minimise over that appeared in the
definition of the alignment-MSE.

Note first that in the equations (11), (12) for subsequent
indices i or j the two input images u and g alternate.
This suggests that for images u and g that do not perfectly
match, solutions of (11), (12) are likely to develop oscillating
patterns like stripes of alternating intensity or checkerboard
structures, so the discrepancy between u and g can be
translated to the image boundary where the first and last row
and column of v are linked only to one of the input images
and therefore provide degrees of freedom that can absorb
the discrepancy. In extreme, this could mean that even for
completely mismatching u and g highly oscillatory images
v might exist that fulfil (11), (12) without any error. Such
solutions should be rejected by a suitable class X .

In order to prevent v from developing strong high-
frequency structures, a natural requirement could be that v
should be essentially interpolating; thus each pixel intensity
vi, j should be in the interval bounded by the intensities
gbi/2c,b j/2c, ub(i−1)/2c,b( j−1)/2c of the two input pixels it is
linked to by (11), (12). Whilst conceptually elegant and free
of additional parameters, this constraint turns the minimi-
sation of (13) into a quadratic minimisation problem on a
highly nonconvex domain. We aim therefore at relaxing this
constraint to a convex regularisation that warrants a unique
solution as well as a practical minimisation procedure.

We extend therefore the energy function (13) to

E(v) = Sg(v)+Su(v)+ γT (∇v) (16)

where T is a regulariser that depends on the derivatives ∇v=
(vx,vy) of v approximated by finite differences, and γ > 0 is
a regularisation weight.

With regard to the quadratic nature of the mean square
error to be measured, a Whittaker-Tikhonov regularisation

T (∇v) := ∑
i, j
|∇v|2 (17)

lends itself as a natural candidate, which yields a convex
quadratic minimisation problem, also removing completely
the non-uniqueness of the original equations. Minimisers
can efficiently be computed using standard iterative solution
methods for the linear system of minimality conditions.

a b

Fig. 3. (a) Superresolution image created in aligning the images from
Fig. 2(a) and (d) with Whittaker-Tikhonov regularisation, γ = 0.003.
Alignment-MSE measurement with this superresolution image yields a
PSNR of 46.05dB. – (b) Same with TV regularisation, γ = 0.03, yielding
a PSNR of 29.92dB.

A further candidate is total variation

T (∇v) := ∑
i, j
|∇v| . (18)

To find minimisers with this regularisation, one can use,
e.g., a gradient descent approach where the regularisation
is realised via a locally analytic scheme related to single-
scale Haar wavelet shrinkage; we use here a variant of the
scheme from [19] adapted to the unequal pixel sizes of v.

As a general rule, in order to just remove the underdeter-
minedness of the equation system (11), (12), it is desirable
to keep the regularisation weight γ rather small.

V. EXPERIMENTS

We evaluate the regularised superresolution alignment pro-
cedure from the preceding two sections by the test case from
Section II. Starting with Whittaker-Tikhonov regularisation,
we observe that for large regularisation weight such as
γ = 0.3 fairly precise estimates for the displacement can be
obtained. However, the superresolution images in this case
are severely blurred, leading to overestimation of alignment-
MSE and low PSNR. For example, the resulting PSNR for
the images from Fig. 2(a) and (d) is 28.61dB. On the other
hand, reducing the regularisation parameter to γ = 0.003
yields extremely high PSNR estimates, e.g. 46.05dB for the
same two images. The reason is that the superresolution
images are far away from interpolating between u and g,
showing unnatural oscillations, see Fig. 3(a). In contrast, TV
regularisation yields plausible results over a wide range of
regularisation parameters, see the exemplary superresolution
image in Fig. 3(b). For a more detailed evaluation we focus
therefore on TV regularisation.

We measure first reconstruction errors for the known exact
displacements, see column (a) of Table III. Next we estimate
the displacements using the TV-regularised error measure
itself, see column (b). Once more the minimisation is done
by a grid search with x and y displacements varying from −1
to +1 in 0.01 steps. The TV regularisation weight γ is set to
0.03. As the application of the superresolution alignment in
this brute-force minimisation is computationally expensive,
we add a third scenario, column (c), in which a faster
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variant of the superresolution alignment with Whittaker-
Tikhonov regularisation and large regularisation parameter
γ = 0.3 is used for the displacement estimation, followed by
the actual MSE/PSNR computation with TV regularisation
and γ = 0.03. The latter method gives in a few cases a
slightly lower PSNR than the ground-truth displacement, but
otherwise approximates the previous scenario well.

It is evident that the variation of PSNR measures is
reduced to about half with respect to the measurements with
bicubic interpolation, both in terms of the amplitude between
maximal and minimal PSNR and the standard deviation.
With an amplitude of 1.2dB it is close to the variation of
the shift-free subset of 0.7dB as reported in Section II.

VI. SUMMARY AND OUTLOOK

In this paper we have studied the reliability of MSE/PSNR
measurements for the quality assessment of blind deconvo-
lution results, where the necessity arises to compare images
that may be shifted relative to each other by non-integer
displacements. An experimental study of simple alignment
procedures with bilinear and bicubic interpolation showed
that it introduces substantial deviations into the discrepancy
measures in question. Comparisons of blind deconvolution
methods should therefore not be based on such procedures.
As an attempt to overcome this difficulty, we have designed a
superresolution-based error measurement procedure that can
substantially reduce the variations in MSE/PSNR estimates
induced by the alignment step, leaving error margins that are
closer to the uncertainty in shift-free cases.

In future work, these tests will have to be extended to
more test cases. The applicability of the proposed procedure
to other error measures such as MSSIM [17] or perceptual
similarity measures [13] will be studied. Further analysis will
be devoted to the observed variation of error measures among
the shift-free reconstructed images. It will also be of interest
to include the PSF into the displacement estimation.

Furthermore, the proposed approach will be used for
comparisons between blind deconvolution methods. Taking
into account the results from the present contribution and

TABLE III
STATISTICS OF DISPLACEMENT MISESTIMATIONS δx, δy AND PSNR FOR

256 RECONSTRUCTED IMAGES WITH SUPERRESOLUTION-BASED

ALIGNMENT WITH TV REGULARISATION, (A) USING EXACT

DISPLACEMENTS, (B) ESTIMATING DISPLACEMENTS BY MSE
MINIMISATION WITH TV REGULARISATION, (C) ESTIMATING

DISPLACEMENTS BY MSE MINIMISATION WITH WHITTAKER-TIKHONOV

REGULARISATION.

Setting (a) (b) (c)
max|δx| 0.09 0.09
std. dev. δx 0.037 0.033
max|δy| 0.08 0.08
std. dev. δy 0.031 0.036
min PSNR 29.38 29.40 29.40
max PSNR 30.47 30.63 30.46
(max−min) PSNR 1.09 1.23 1.06
mean PSNR 29.93 29.98 29.92
std. dev. PSNR 0.240 0.263 0.236

the envisioned more extensive studies will help to assess the
significance of method differences in such work.
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