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Abstract— State of the art dense image matching in combi-
nation with advances in camera technology enables the recon-
struction of scenes in a novel high spatial resolution and offers
new mapping potential. This work presents a strategy for fusing
highly redundant disparity maps by applying a local filtering
method to a set of classified and oriented 3D point clouds.
The information obtained from stereo matching is enhanced
by computing a set of normal maps and by classifying the
disparity maps in quality classes based on total variation. With
this information given, a filtering method is applied that fuses
the oriented point clouds along the surface normals of the 3D
geometry. The proposed fusion strategy aims at the reduction of
point cloud artifacts while generating a non-redundant surface
representation, which prioritize high quality disparities. The
potential of the fusion method is evaluated based on airborne
imagery (oblique and nadir) by using reference data from
terrestrial laser scanners.

I. INTRODUCTION

While the processing of aerial and satellite imagery for the
generation of 2.5D Digital Elevation Models (DEM) from
Multi-View Stereo (MVS) systems is a standard procedure
in the field of photogrammetry and remote sensing, the
reconstruction of complex 3D scenes poses several new
challenges. Therefore, this work focuses on a 3D fusion of
point clouds, in contrast to classical mapping approaches that
only produce and fuse 2.5D DEMs or elevation maps (cf.
[14]). In order to process large frame airborne and satellite
imagery, it is necessary to ensure that the MVS system
is capable of processing data of arbitrary size in adequate
runtime at highest possible geometric accuracy.
The main contribution of this work is an easy to implement,
scalable 3D point cloud fusion strategy which builds on clas-
sic multi-view stereo pipelines. By restricting, respectively
weighting, disparities based on their quality it is possible
to generate surface representations of large-scale datasets in
adequate runtime, simultaneously reducing the redundancy
in the point cloud and increasing the geometric accuracy.

II. STATE OF THE ART

Typically, the processing of multiple stereo images yields
one depth map or disparity map per stereo pair. To generate
one consistent, non-redundant representation of the mapped
scene, the depth maps have to be fused. Some MVS systems
tackle this problem by linking surface points directly in the
process of image matching. In contrast, MVS systems like
PMVS [4], use multi-photo consistency measures to opti-
mize position and normals of surface patches and iteratively
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grow the surface starting from a set of feature points. In
many MVS systems, depth maps are generated via Semi-
Global Matching (SGM) [6] and spatial point intersection
yielding one depth map per stereo pair. SGM is one of the
most common stereo matching algorithms used in mapping
applications offering robust and dense reconstruction while
preserving disparities discontinues.
Depth map fusion or integration is one of the main challenges
in MVS and different approaches have been developed
over the last decades. Authors of [17] propose an excellent
benchmark dataset for the evaluation of MVS surface re-
construction methods. As mentioned in [12], the Middlebury
MVS benchmark test demonstrates that global methods tend
to produce the best results regarding completeness and ac-
curacy, while local methods like [3] offer good scalability
at smaller computational costs. Moreover MVS methods
can be categorized based on their representation which can
differ from voxels, level-sets, polygon meshes up to depth
maps [17]. Authors like [5] and [15] focus on the fusion
of depth maps to generate oriented 3D point clouds. The
surface reconstruction in terms of fitting a surface to the
reconstructed and fused points is defined as a post-processing
step which can be solved using algorithms like the generic
Poisson surface reconstruction method proposed by Kazhdan
et al. [8].
Regarding the processing of aerial imagery scalability is an
important factor. As mentioned in [12], a number of scalable
fusion methods have been presented in the last years, e.g. [3],
[11], [18], yet they are still not able to process billions of 3D
points in a single day or less [18]. Kuhn et al. [9] propose
a fast fusion method via occupancy grids for semantic
classification. The fusion method complements state-of-the-
art depth map fusion as it is much faster. However, it is only
suitable for applications that have no need for dense point
clouds. All of the mentioned scalable fusion methods have in
common, that octrees are used as underlying data structures.
Kuhn et al. [10] introduce an algorithm for division of very
large point clouds. They discuss different data structures
and their capability for the decomposition of reconstruction
space. In addition, Kuhn et al. [12] show that the 3D
reconstruction of fused disparity maps can be improved
by modeling the uncertainties of disparity maps. These
uncertainties are modeled by introducing a feature based on
Total Variation (TV) which allows pixel-wise classification
of disparities into different error classes. Total variation in
context with MVS was first introduced by Zach et al. [19].
They propose a novel range integration method using a global
energy functional containing a TV regularization force and
an L1 data fidelity term for increased robustness to outliers.
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Fig. 1. Workflow of the processing pipeline for point cloud fusion.

As mentioned before, Rothermel et al. [15] fuse depth maps
in terms of oriented 3D point cloud generation. They intro-
duce a local median-based fusion scheme which is robust to
outliers and produces surfaces comparable to the results of
the Middlebury MVS. Similar to Fuhrmann and Goesele [3]
points are subsampled using a multi-level octree. Favoring
points with the smallest pixel footprint, an initial point set
is created utilizing nearest neighbor queries optimized for
cylindrical neighborhoods, points are then iteratively filtered
along line of sight or surface normals. The capability of
the fusion strategy for large scale city reconstruction and
the straight forward manner for implementation make it
particularly interesting for this work. In our work we adopt
the concept of the fusion strategy using a weighted median
approach favoring high quality disparities assessed by a total
variation based classification.

III. METHODOLOGY

The proposed framework builds upon the Remote Sensing
Software Graz (RSG)1. The photogrammetric processing (i.e.
image registration, stereo matching) leads to different inter-
mediate results which are utilized in the processing pipeline
(see Fig. 1). Disparity maps are derived from a set of epipolar
rectified images using a matching algorithm based on SGM
[6]. Forward and backward matching are employed to derive
two point clouds via spatial point intersection per stereo pair
whose coordinates are stored in East-North-Height (ENH)
raster files (i.e. a three band raster file holding the coordinates
in geometry of the disparity map). The advantage of this
approach is that coordinates can be accessed directly while
preserving the spatial organization, i.e. the structure, of the
point cloud.
In the next step, surface normals and weights are computed
and stored into a compressed LAS file (i.e. a lossless com-
pressed data format for point cloud data) [7]. Subsequently,
the point clouds are assigned to tiles in order to enable a tile-
wise fusion of the data. Fig. 1 depicts the complete workflow
of the presented processing pipeline.

1http://www.remotesensing.at/en/
remote-sensing-software.html

A. Oriented Point Cloud Generation

While in Rothermel et al. [15] normals are derived based
on a restricted quadtree triangulation [13], we estimate
surface normals in a least squares manner. A moving window
operation is applied on the ENH raster files. Normals are
derived by locally fitting a plane to the extracted point neigh-
borhood. The normal estimation fails in areas with less than
three reconstructed disparities. By introducing a threshold
defining a minimum number of successfully reconstructed
points, we are able to control the robustness of the normal
calculation. In our experiments we set the pixel neighborhood
to 5 pixels and used a threshold of 3 points for all datasets.

B. Disparity Quality Assessment

The quality of disparities is affected by many factors like
variation of texture strength and surface slant. We assess the
quality of disparities in order to derive weights for every
single observed point. These weights are later used in the
fusion procedure using a weighted-median approach. Kuhn
et al. [12] introduced a TV-L2 based classification of the
disparities uncertainty. In contrast to many TV-L1 based
MVS methods, the L2 norm takes noise and outliers into
consideration which is required to measure the quality of the
disparities. The TV is calculated over square windows with
increasing radius m resulting in n ∈ [1, 20] ⊂ N discrete
classes. Starting from a neighborhood containing 8 connected
pixels at a radius of m = 1 it increases by the factor of 8m.
The discretization is achieved by introducing a regularization
term τ which limits the TV to stay below a certain value.
These TV classes describe the degree of the local oscillation
of the disparities. The outlier probability can be obtained
by learning error distributions from this classification using
ground truth disparities. In our case we evaluate the quality
of the disparities based on the work of Kuhn et al. [12] using
a regularization term of τ = 2.
Due to the lack of ground truth disparities, we are not able to
learn error distributions directly. Therefore, we analyze the
quality of the classified disparities in 3D space. Reference
data from Terrestrial Laser Scanners (TLS) is used to assess
the quality of the raw dense point cloud for every single
TV class independently. According to Cavegn et al. [2],
vertical Digital Surface Models (DSM) are computed for
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facade patches where reference data is available. Analysing
the DSM derived from the classified pointcloud and the
reference data enables us to compute the weights in form
of a weighting function. The weighting function is derived
by calulating the standard deviation of the flatness error and
fitting an exponential function in a least squares manner. The
flatness error is defined as the point cloud deviations to a best
fitting plane and is also an indicator for the noise of the 3D
geometry [1].
Later on, we evaluate the fused pointcloud in a similiar way,
to gain insight on the potential and quality of the entire
fusion method. Specific information regarding the evaluation
routine, selected test areas and datasets are given in Section
IV.

C. Weighted-Median Based Fusion

The concept of median-based fusion originates from
fusion algorithms for the generation of 2.5D DSMs.
Rothermel et al. [15] adapted the idea by fusing point
clouds in 3D space along a defined filtering direction.
While for close range datasets the line of sight is suitable
as filtering direction, point-wise normals are used for the
fusion of aerial datasets. We adapt this fusion strategy using
a weighted-median based approach.
In a first step, an initial pointset P is created from the input
point cloud by storing the input point cloud in an octree
data structure. The pointset P is derived by subsampling
the point cloud with the centroid of the points located in
a leaf node. In our work the entire fusion process was
realized with the aid of the Point Cloud Library (PCL ver.
1.8.0) [16] which also provides a custom tailored octree
implementation.
As a result of the disparity quality assessment every point
possesses a weight representing the quality of the point.
We add up the weights of all points located in the same
leaf node. Thus, the weight of the initial point p ∈ P is an
indicator for the density and quality of the reconstructed
scene.
Subsequently, the point cloud is fused using nearest neighbor
queries optimized for cylindrical neighborhoods. For every
point in the initial pointset P a set of candidate points
Q, located in a cylinder with its central axis given by the
initial point and its normal, is derived. Points with surface
normals diverging more than 60◦ are discarded for further
processing. After the candidate pointset Q is detected,
the point p is filtered by projecting all candidate points
onto the surface normal of the initial point p. Taking the
weighted-median of all deviations to the point p yields the
new point coordinates. Especially for noisy data further
iterations can be inevitable to generate a consistent surface
representation. Between every iteration, duplicate points
are united to avoid redundant computations. A detailed
description of the original fusion routine including the
parameters and employed neighborhood queries is given in
[15].
In a first iteration, Rothermel et al. [15] includes all points of
the input point clouds for the identification of the candidate

pointset Q. To speed up further iterations the filtering is
restricted to the initial pointset p ∈ P solely. In our case, we
restrict the filtering of the point cloud to the initial pointset
P from the beginning on. We compensate the loss of detail
of the input point cloud by approximating the density of the
captured 3D scene with the accumulated weight. The final
surface representation is derived by discarding points with
weights smaller than a defined threshold α. The influence
of the threshold is analyzed in Section IV-A. In this way
large and highly redundant 3D point clouds can be fused
in moderate time (e.g. processing 2.5 billion points on a
computer with 16 cores within a single day, resulting in a
fused point cloud whose density fits the spatial resolution
of the input imagery).

IV. RESULTS

In this section we discuss results obtained with the pro-
posed fusion pipeline. The datasets used for the evaluation
are provided by the ISPRS/EuroSDR project on “Benchmark
on High Density Aerial Image Matching”2 and consist of one
nadir and one oblique dataset.

A. Oblique Aerial Imagery

The oblique imagery dataset was acquired over the city of
Zürich with a Leica RCD30 Oblique Penta camera consisting
of one nadir and four oblique 80 megapixel camera heads.
While the nadir camera head is pointing downwards, directly
towards the earth, the four oblique camera heads are tilted
at an angle of 35 degrees, each pointing in a different
cardinal direction. The entire datasets comprises 135 images,
captured from 15 unique camera positions. While the nadir
imagery leads to a Ground Sample Distance (GSD) (i.e.
the spatial resolution) of 6 cm the GSD of the oblique
views vary between 6 and 13 cm. Reference data captured
with terrestrial laser scans provide accurate and reliable
information for the evaluation of the datasets. The evaluation
was carried out by computing DSM’s of different facade
patches distributed over the test area. More information on
the image acquisition, benchmark and reference data can be
found in [2].

Photogrammetric Processing and Pre-processing. In a first
step, the image registration was carried out using the interior
and exterior orientation parameters provided along with the
image data. Subsequently images are matched in flight direc-
tion with an overlap of 70%, resulting in a total of 314 stereo-
pairs, containing approximately 10.6 billion points. After the
generation of disparity maps TV classes and normal maps
are computed. As mentioned in Section IV the weighting
function assigns a weight to every TV class which is then
used in the fusion process.

The derived weighting function is depicted in Fig. 3
and shows that a correlation between TV classes and the
geometric precision (i.e. level of noise) can be verified.

2http://www.ifp.uni-stuttgart.de/ISPRS-EuroSDR/
ImageMatching/
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Fig. 2. Raw dense point cloud restricted to different TV classes.

While higher TV-classes show smaller standard deviations
and deliver better overall accuracy, lower TV-classes are
more likely to contain outliers (also cf. Fig. 2). TV classes
greater than 8 are only present in flat areas facing the camera
position. Since we focus on the reconstruction of vertical
surfaces (i.e. facades) the information obtained by the test
areas is extrapolated for all TV classes. The weighting
function is derived by inverting the estimated function and
defining the minimum weight with 1.0.

Fig. 3. Box plots representing the standard deviation of the flatness error
derived from different test areas for all available TV classes (top). Estimated
weight function (bottom).

Point Cloud Fusion. The fusion of the point cloud was carried
out in three iterations with a cylinder radius of 15 cm (i.e. two
times the GSD) and a height of 1.5 m. It is worth mentioning
that, in some cases, during the image acquisition parts of the
helicopter skids protruded into the camera angle, which leads
to strong distortions in the matching procedure. The size of
the octrees leaf node, which is used for the generation of the
initial pointset, controls the approximate output density of the
fused point cloud. Therefore, faster runtimes can be achieved
producing point clouds with lower density. The resolution
used for the oblique imagery is set to 10 cm, to match the
GSD of the input data. Within the point cloud fusion process,

the points are filtered along the surface normal and weights
are accumulated. The final surface representation is derived
by discarding low weights, which are more likely to contain
outliers. As depicted in Fig. 4, increasing the minimum
weight threshold α leads to more accurate, however less
dense point clouds.

Fig. 4. Impact of rejecting low weighted points after the fusion procedure
on density (top), accuracy and precision (bottom).

Since the fusion method produces oriented point clouds, a
mesh representation can be computed using Poisson surface
reconstruction [8]. The complete workflow is depicted in Fig.
5. The runtime of the fusion process can be improved by
discarding low level TV classes in a pre-processing step.
However, the rejection of low level TV classes causes a loss
in detail in areas with bad coverage.

Evaluation. In order to measure the capability of the fu-
sion routine different statistical measures are analyzed. The
RMSE of the deviations between the reference point cloud
and fused point cloud, give information about the accuracy
of the 3D geometry. The standard deviation of the vertical
digital surface model indicates the noise level of the point
cloud, respectively the distribution of points perpendicular
to the facade. As mentioned before, the density can be
controlled by setting the octree resolution and by regulating
the threshold for the minimum weight α. In Table I the raw
point cloud is compared to the fused point cloud considering
the influence of TV weights. The minimum weight threshold
α is set to generate point clouds with comparable densities.
Test areas include the school building located in the northern
part of the mapped scene and the tower building located in
the south.

TABLE I
COMPARISON OF THE FUSION ROUTINE REGARDING WEIGHTS.

min. Density RMSE Fused Mean Fused Std. Dev.
weight α [pnts/m2] PC-TLS [m] PC-TLS [m] of DSM [m]

Raw (unfused) - 4398.00 0.199 0.108 0.296
Fused (no weights) 20 75.15 0.122 0.067 0.052
Fused (weighted) 30 74.25 0.111 0.063 0.040
Fused (weighted 18 75.23 0.102 0.049 0.032

pre-filter TV >1)
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Fig. 5. Processing pipeline of the point cloud fusion: (1) Raw data from dense image matching (50.64 M points), (2) fused point cloud (1.73 M points),
(3) discarding weights smaller than α = 30 (0.47 M points), (4) mesh generation, and (right side) merged surface tiles.

Regarding the oblique dataset, best results can be achieved
by neglecting points with TV class 1. By doing so, execution
time is speed up by a factor of 2.2. Compared to the raw point
cloud the fusion procedure reduces noise while improving the
accuracy of the point cloud (see Fig. 6). A visual assessment
shows that the fused point cloud including all TV classes
and applying weights produces the best results regarding
completeness and outliers (see Fig. 7). As expected, roof

Fig. 6. Comparison of the main school facade before and after fusion
procedure (cf. Fig. 5): Mean deviation between DSM derived from terrestrial
laser scanner data and point cloud (top), and standard deviation of the point
clouds DSM representing the level of noise (bottom).

Fig. 7. Taking all TV classes into account produces point clouds containing
less outliers (left), in contrast to point clouds restricted to TV classes > 1
(right).

structures and other nadir oriented faces are reconstructed
with the highest precision. Table II shows that in all cases
the precision of the point cloud can be improved while
decreasing redundant information.

TABLE II
COMPARISON OF TEST AREAS BEFORE AND AFTER THE POINT CLOUD

FUSION.

Density RMSE Fused Mean Fused Std. Dev.
[pnts/m2] PC-TLS [m] PC-TLS [m] of DSM [m]

Tower South (raw) 2345.9 0.378 0.051 0.538
Tower South (fused) 49.4 0.204 0.003 0.087
Tower North (raw) 1781.4 0.427 -0.222 0.447
Tower North (fused) 45.3 0.195 -0.052 0.071
Tower West (raw) 3570.8 0.350 0.237 0.499
Tower West (fused) 62.7 0.256 0.152 0.155
Roof (raw) 13864.2 0.150 -0.023 0.218
Roof (fused) 178.7 0.122 0.028 0.105

B. Nadir Aerial Imagery

The nadir image dataset covers an area of approximate 1.5
× 1.7 km2 in the city of Munich. The dataset was acquired
by a DMC II 230 megapixel aerial image camera with a
spatial resolution of 10 cm and consists of 15 panchromatic
images. As depicted in Fig. 8, facade information can be
reconstructed by utilizing the proposed fusion routine. Due
to the wide angle of the aerial camera, enough information
is captured to produce 3D city models from nadir aerial
imagery.

V. CONCLUSION

A novel method for fusing 3D point clouds was presented.
The underlying point clouds originate from stereo matching
of aerial images and were enriched by the calculation of
surface normals and a classification of the disparity maps
into quality classes. The proposed filtering method then
fused the point cloud in direction of the surface normals
and used a weighting based on the classification. Evaluation
to ground truth data showed the increased quality of the
fused point cloud while reducing the redundancy. Overall,
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Fig. 8. Reconstructed surface from nadir aerial imagery. The depicted surface shows the Frauenkirche in Munich, located in the west part of the test
area. Therefore, west-facing facades cannot be reconstructed.

this fusion concept can be easily put into state-of-the-art
mapping pipelines, is able to handle large point clouds due
to the tiling concept and can be applied for terrestrial, aerial
or satellite based mapping application.
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