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Abstract— A visual servoing approach is presented that uses
depth images for robot-pose estimation utilizing a marker-
less solution. By matching a predefined robot model to a
captured depth image for each robot link, utilizing an appro-
priate approximation method like the Iterative Closest Point
(ICP) algorithm, the robot’s joint pose can be estimated.
The a-priori knowledge of the robot configuration, alignment,
and its environment enables a joint pose manipulation by
a visual servoed system with potential to collision detection
and avoidance. By the use of two RGB-D cameras a more
accurate matching of the robot’s links is feasible while avoiding
occlusions. The modeled links are coupled as a kinematic chain
by the Denavit-Hartenberg convention, and are prevented from
divergence during the matching phase by the implementation
of an algorithm for joint pose dependency. The required joint
orientation of the robot is calculated by the ICP algorithm
to perform a pose correction until its point cloud align with
the model again. First tests with two structured light cameras
indicated that the recognition of the robot’s joint positions
brings good results but currently only for slow motion tasks.

I. INTRODUCTION

The fourth industrial revolution involves the use of new
robotic technologies for smart and efficient work-flows in
an innovative way. Humans will work together with robots
side-by-side and integrate them in their every day work life
as a collaborative device. Therefore, a collision detection
with humans and the environment has to be established, for
instance, with pressure sensitive skins [1, 2] or abnormal
force recognition [3, 4] which are two approaches for a
collaborative aspect. Another idea is the integration of visual
perception [5, 6]. Robots should see where they are, know
and see the environment they move in and know how they
can grab and move without disturbing the work-flow. The
focus of this paper lies on the application of computer/-
machine vision methods for image processing and robot
actuation. Vision-based motion control of robots is called
visual servoing, where the robot manipulator is operated
by the evaluation of visual information from an eye-to-
hand (camera fix to workspace position) or an eye-in-hand
(camera attached to robot) composition [7]. Figure 1 shows
the recording of a robot in an eye-to-hand composition, that
is used for the visual servoing approach in this paper. The
advantage of visual servoing is that the teach-in procedure of
a robot can be omitted since tool-tip-pose errors caused by
low accuracy between the tool-tip-pose and the joint angle
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Fig. 1: ABB IRB 120 point cloud model overlaid by the
captured point cloud from the Intel R© RealSense R200.

can be corrected in addition. These visual information can
be exploited as position- or image-based information [8–10].
Position-based detection uses interest-points in the image to
detect the object position, while image-based detection uses
a template image of the designed object to predict how the
camera should be aligned to the object.

So far, mainly 2D cameras have been applied for visual
servoing applications [11–13]. The accuracy of the interest
point estimation in the image as edges or corners determines
how precisely the robot can be positioned by 2D cameras. For
objects without distinctive characteristics as curved shapes
without edges, these kinds of camera systems do not suite
perfectly. In this case depth sensing cameras is the better
choice.

RGB-D imaging systems can be separated into three
main groups. First, stereo vision systems [14] which are
based on two cameras and feature disparity where the
depth information is obtained by the use of triangulation.
Second, structured light cameras [15, 16] with the same
basic principles as stereo vision cameras but instead of the
second camera a projector is used. It emits a patterned light
(usually infra-red light) and measures the disparity of the
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Fig. 2: (a) ABB IRB 120 point cloud model - the (joint) frames are set-up by DH convention. Each link is implemented
as an independent model but coupled to its neighbor over the respective DH transformation; (b) ABB IRB 120 kinematic
structure; (c) Robot depth image captured by two Intel R© RealSense R200 in a distance of 1.5 m.

captured pattern in comparison to the original one to get
the depth information by triangulation. Third, Time-of-Flight
(ToF) cameras [17] where the depth information is measured
over the elapsed time of pixel-wise emitted modulated light
signals reflected by the detectable object.

RGB-D cameras provide point clouds (with position in-
formation in R3) generated from depth data. Thus, it is
not necessary to seek for interest points for orientation
estimation since the detected objects are already available
as 2.5D objects in the workspace. Similar to an image-based
approach a 3D model of an object can be matched to the
point cloud via the Iterative Closest Point (ICP) algorithm
[18–20] to find its alignment. It minimizes the distance
between two point clouds with the requirement that the two
point clouds are roughly close to each other (the initial
guess), until they are aligned. The ICP algorithm consists
of the following phases:

• Selection of point pairs,

• Matching of these point pairs,

• Rejection of point pairs due to individual consideration,

• Error metric assignment,

• Minimizing the error metric.

With the ICP algorithm, an alignment can be achieved within
a few iterations.

Now, the idea is, instead of matching the whole robot
as a rigid body, to split the robot into its links and match
them separately (cf. Figure 1) in an eye-to-hand composition,
such that the orientation of its joints can be estimated. In
this case the use of markers can be omitted since the joint
orientation can be calculated from the alignment of the
links to each other, which makes this approach a versatile
applicable method for industrial applications. The knowledge
of the robot’s kinematic chain gives the possibility of robot
pose variation by well-defined joint orientations as well as

the variation of the joint orientation during motion to correct
the trajectory in case of work-flow disturbance. The goal of
this approach is a visual servoing concept by depth sensing
with a potential to collision protection and avoidance in a
collaborative applicable manner.

This paper is organized as follows. In Section II, the
applied method is described. The implementation of the
robot’s link point cloud models is described in Section III.
The description of the setup and the camera alignment is
described in Section IV. In Section V, the presented work is
summarized and Section VI concludes the paper.

II. METHODS & APPROACH

The goal of the presented approach is to track a manip-
ulator with six Degrees-of-Freedom (DoF) by two RGB-
D imaging systems for joint position perception and visual
servoing. For the measurement of the robot’s joint alignment,
the cameras are placed in an eye-to-hand composition. This
allows to capture the whole manipulator from a wider view
and avoid occlusions. The depth sensing technology with
the highest accuracy for positioning and object matching
is derived by comparing two different camera technologies.
Therefore, a structured light camera and a ToF camera
is applied and tested. Before the pose of the robot can
be estimated, the position of both cameras have to be
extrinsically calibrated, to get a perfect aligned point cloud
from both cameras. The camera calibration is carried out
as a transformation of the camera coordinate system by
its physical position relative to the robot’s base coordinate
system.

For a matching process of point clouds by an appropriate
approximation method like ICP to receive the robot’s joint
positions as mentioned in Section I, the models of its links,
generated from Computer-Aided Design (CAD) files, have to
be prepared. This is done by aligning the link models in the
CAD files in their initial position as shown in Figure 2a and
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TABLE I: Denavit-Hartenberg parameter

Name Symbol Description

joint angle θi angle between xi−1 and xi about zi−1

link offset di
distance between the origin of frame Fi−1 and
Fi along zi−1

link length ai offset between frame Fi−1 and Fi along xi

link twist αi angle between zi−1 and zi about xi

subsequently the generation of point cloud representation.
The dependence of each links pose to each other in the
model will be set-up by applying the Denavit-Hartenberg
(DH) convention to achieve the kinematic chain as shown in
Figure 2b. The DH convention describes the transformation
between two frames of a manipulator by a homogeneous
transformation matrix i−1TTT i ∈ R4×4 with four parameters
by placing the joint coordinate frames in a predefined way.
These transformations are represented by four basic transfor-
mations between the joints as a chain of two rotations and
two translations

i−1TTT i = Rotzi−1,θiTranszi−1,diTransxi,aiRotxi,αi , (1)

with the DH parameters listed in Table I.
This convention will simplify the calculation effort for
matching via the ICP algorithm to only one DoF per joint
and keep the links dependent from each other. The deviation
from the robot’s point cloud to the model is used for the
calculation of the joint velocities to align both point clouds
again. The whole implementation is realized with the free
Point Cloud Library (PCL) [21], which includes numerous
algorithms for handling of n-dimensional point clouds and
three-dimensional geometries, in the framework of the Robot
Operating System (ROS) [22]. ROS is a collection of li-
braries, tools and conventions for writing robot operating
software.

III. MODEL IMPLEMENTATION

In an initial step point clouds from the CAD models of
the robot’s links have to be generated. It is important that,
before the point clouds can be generated, the alignment of
the CAD modeled links are prepared correctly as mentioned
in Section II. First, they have to be aligned in their initial
direction (cf. Figure 2b), second, their coordinate system
must be set to the center of their rotation axis, and third,
the link coordinate systems have to be translated such that
they match with the DH convention as it is done for link four
and six (translation in x direction) as shown in Figure 2b.
The point clouds are generated by the tool pcl_mesh2pcd
(based on take views and fuse them together) from the PCL
to achieve an envelope point cloud of the CAD models.

Every link is implemented as an own object with the prop-
erties summarized in Table II, with the first four parameters
as constants and the transformation matrix and joint angle as
variables. The robot’s links will not separate from each other
during the ICP algorithm performs the matching, since they

TABLE II: Robot link properties

Parameter Class

Name std::string

Point cloud pcl::PointCloud<PointXYZRGBA>*

Color pcl::visualization::PointCloudColor-
HandlerCustom<PointXYZRGBA>*

DH-parameter std::vector<double>

DH-transformation matrix Eigen::Matrix4f

Joint angle std::double

are coupled by the transformation of DH with the parameters
of Table III and the dependencies given by

0TTT n =
n

∏
i=1

i−1TTT i , (2)

TTT n,α = 0TTT n TTT α
nTTT 0 , (3)

n−1TTT n =
n−1TTT 0 TTT α

0TTT n . (4)

In Equation (2), 0TTT n ∈ R4×4 is the transformation of joint
n between the base coordinate system and the coordinate
system of joint n as the product of the DH transformations.
By the use of the short notation c(·) = cos(·) and s(·) =
sin(·), the DH transformation matrix i−1TTT i from Equation (1)
can be written as

i−1TTT i =

[ i−1RRRi
i−1pppi

000T 1

]

=




cθi −sθicαi sθisαi aicθi

sθi cθi cαi −cθisαi aisθi

0 sαi cαi di
0 0 0 1




, (5)

with i−1RRRi ∈R3×3 the rotation between the frame Fi−1 and
Fi, the translation i−1pppi ∈ R3×1 from the origin Oi−1 to Oi
and the vector of zeros 000∈R3×1. TTT n,α ∈R4×4 in Equation (3)
is the transformation of joint n in the base coordinate system
by the transformation matrix

TTT α =

[
RRRz(α) 000

000T 1

]
∈ R4×4 , (6)

with the rotation matrix RRRz(α)∈R3×3 along the joint rotation
axis which is obtained from the Euler angles by the ICP

TABLE III: Denavit-Hartenberg parameters of the industrial
robot ABB IRB 120

JointNr. θi [◦] di [mm] ai [mm] αi [◦]

1 q1 165 0 0

2 q2 125 0 −π/2

3 q3 −π/2 0 270 0

4 q4 0 70 −π/2

5 q5 302 0 π/2

6 q6 0 0 −π/2
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Fig. 3: Experimental setup with two Intel R© RealSense R200 structured light cameras in 90◦ alignment to an ABB IRB 120.

algorithm. RRRz(α) performs a roll, pitch, or yaw rotation about
the angle α according to the joint rotation axis. The new DH-
transformation matrix n−1TTT n ∈R4×4 of Equation (4) will be
saved after the rotations have been performed. By iteration
of these equations every rotation RRRz(α) of a joint n will be
passed to the following joints. This guarantees that every
joint keeps coupled to each other.

IV. SETUP & CAMERA ALIGNMENT
Two identical structured light cameras (Intel R© RealSense

R200) are used in the setup (cf. Figure 3) to avoid occlusions
and to get a denser point cloud representation of the robot
as shown in Figure 2c. The cameras are positioned in 90◦ to
each other. This angle has been chosen since the influence
of the illumination disturbance by the projected structured
lights is minimized. Each camera is placed 65 cm above the
robot with a pitch angle of 30◦ down to have a wider view.
The extrinsic camera calibration will be performed through
a plane calibration. Therefore, the table where the robot is
placed on has been detected by the outliers’ detection method
Random Sample Consensus (RANSAC) to receive the model
coefficients of the plane Axy. With the model coefficients, the
dihedral angle between the plane normal and camera image
normal can be derived by the equation

cos(ϕ) =
~n1 · ~n2

|~n1| · |~n2|
(7)

where ~n1 = (a1,b1,c1) is the normal vector of the plane Axy
in z direction and ~n2 = (a2,b2,c2), the normal vector of the
camera image plane Ayz along the x direction with the plane
coefficients ai, bi, ci for i = 1,2. The cameras are aligned by
the rotation with ϕ from Equation (7) (plus the camera pitch
angle) and the known translation from the robot’s base.

V. EVALUATION & RESULTS
The test system, which is used to evaluate the proposed

approach, consists of a personal computer with an Intel R©

TABLE IV: The parameters used for the Iterative-Closest-
Point algorithm

Max. Corre-
spondence
Distance

Max. Iterations Transformation
Epsilon

Euclidean
Fitness Epsilon

0.003 m 100 1e-8 m 5e-4 m

Core
TM

i5-3470 @ 3.20 GHz, 4096 MB RAM, and a GeForce
GT 630 with the operation system Linux Ubuntu 16.04 @
64 bit.

So far, the structured light cameras and the robot motion
communication are implemented successfully in ROS. The
cameras and the robot are launched as ROS nodes such
that they can communicate with each other. The Point cloud
models of the robot’s links are generated from CAD files
and coupled together via the DH convention such that they
depend on each other and that a rotation of joint one, for
instance, has an effect to the other joints (cf. Equations (2)
to (4)). A visualization is implemented to visualize the
model together with the captured depth image as shown
in Figure 1. The joint positions and alignments from the
implemented model are observable and controllable. Since
the ICP algorithm needs an initial guess where it should
start the matching, an initial robot position for program
start has been chosen as shown in Figure 2a, otherwise a
correct estimation of the position would be hardly possible.
In the first experiment the built-in ICP algorithm from the
PCL has been tested with the parameters from Table IV and
structured light cameras with moderate results. While for the
initial pose (start pose) reasonably accurate joint angles with
±0.5◦ have been measured, the deviation increased up to
±5◦ during motion. These evaluation results were obtained
for slow motion tasks (≤1 ◦/s). For faster movements the
ICP algorithm is not able to finish the required number of
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iterations on the test system and the point cloud model can
not be matched. The low accuracy of the ICP algorithm in
the experiments for low speeds may occur to the very bumpy
surface images from the cameras (Figure 1), which makes it
difficult to calculate an accurate match. A smoothing of the
robot’s point cloud by the moving least squares method from
the PCL also does not significantly improve the results, since
the outliers’ in the robot’s point cloud surface are too large
(cf. Figure 2c) to achieve good results.

VI. CONCLUSION & OUTLOOK
A robot point cloud model generated from CAD data

for each robot link have been adopted and linked via the
DH convention. A linked motion algorithm is integrated
so that each link depends from each other. The first tests
with structured light cameras and the ICP algorithm from
the PCL showed moderate results. For the next tests with
structured light cameras, the results should be improved
by the implementation of a Levenberg-Marquardt Optimizer
[23, 24] for an optimized registration. The change of the
camera system to ToF cameras will also bring better results
with the general ICP algorithm. So far the operation area is
limited by only two cameras, because the robot’s tool center
point is not detectable overall by reason of occlusions in
negative y-direction. A remedy would be to place a third
camera right from the robot. This is feasible with a ToF
camera but challenging with a structured light camera due to
illumination disturbance from the counterpart. An alignment
of 60 degrees for three structured light cameras would be
better, since all the three cameras would receive the same
disturbance which is less than if two of three fully receive
it. A faster and more general model implementation would
bring the implementation of an automatic model generation
from COLLAborative Design Activity (COLLADA) [25]
data which can be generated easily by CAD programs. With
the COLLADA data (version 1.5.0) not only the geometry
parameter would be loaded, the mechanical parameter as
mass, inertia and center of mass could be loaded too, which
is interesting for the robot dynamic. This would remove the
model preparation as mentioned in Section III for a more
user-friendly application.
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