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Robust Transit Time

Abstract

Measuring the flow rate of a gas is an important task for the optimization of combustion

engines. This work presents an adaptive signal processing method for ultrasound transit

time flowmeters. An existing measurement system, developed by the AVL List GmbH,

is investigated in terms of the transmission behavior of its transducers. Electrostatic

(capacitive) ultrasound transducers have been developed by the AVL to be used in this

system. As opposed to the formerly used piezo-electric transducers, it is now possible

to use signals with high bandwidth (∼ 100 kHz), making advanced signal processing

techniques possible.

MLS system identification is used to model the transmission behavior of the electro-

static transducers. With this knowledge, the time-varying groupdelay of the transducers

is estimated. This allows for separating the system group delay from the desired transit-

times. Considering error propagation and theoretical performance bounds, an efficient

method for the estimation of the flow velocity is found. This method improves accuracy,

especially for the critical operating scenario of low flow velocities.

Empirical short- and long term results for zeroflow measurements, conducted with the

proposed algorithm, are presented and discussed. The proposed algorithm fulfills the

required accuracy.
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Zusammenfassung

Für die Optimierung von Verbrennungsmotoren ist die exakte Messung des Gas-Massen-

flusses wichtig. In dieser Arbeit wird ein adaptiver Signalverarbeitungsalgorithmus für die

Durchflussmessung mittels Ultraschall (Transit Time Verfahren) vorgestellt. Ein von der

AVL List GmbH entwickeltes Messgerät wurde hinsichtlich des Übertragungsverhaltens

der verwendeten Ultraschall Wandler analysiert. Elektrostatische (kapazitive) Ultraschall

Wandler wurden speziell für dieses Gerät von der AVL entwickelt. Im Gegensatz zu den

früher verwendeten piezoelektrischen Wandlern sind jetzt hohe Signal Bandbreiten (∼ 100

kHz) realisierbar, was leistungsfähigere Techniken der Signalverarbeitung ermöglicht.

Um das Übertragungsverhalten der elektrostatischen Wandler zu modellieren wird

eine MLS System Identifikation durchgeführt. Damit ist es möglich die zeitvariante

Gruppenlaufzeit der Wandler von der gewünschten Messgröße zu trennen. Theoreti-

sche Überlegungen zur Fehlerfortpflanzung bilden die Grundlage für eine neue effizien-

tere Berechnungsmethode der Strömungsgeschwindigkeit. Diese Methode verbessert die

Messgenauigkeit speziell für den kritischen Fall niedriger Strömungsgeschwindigkeiten.

Empirische Ergebnisse für kurz- und langzeit Messungen des zero-flow Szenarios zeigen,

dass die geforderte Genauigkeit erreicht wird.
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1
Introduction

”Basic research is like shooting an

arrow into the air and, where it

lands, painting a target.”

– Homer Burton Adkins

1.1 Motivation

In recent years the optimization of combustion engines has made accurate gas-flow mea-

surements very important. High gas temperatures, especially in the exhaust train, as well

as rapidly varying flow velocities, demand a highly complex measurement routine. The

AVL List GmbH has conducted extensive research in this field over the past years, result-

ing in a measurement device which is designed to operate both in the intake and exhaust

gas train. While there are many different possibilities to measure the gas flow velocity

within a pipe, the AVL decided to implement the ultrasound transit-time method. This

method uses two opposing ultrasound transducers which measure the time it takes an ul-

trasound pulse to travel from one side of the measurement pipe to the other, to estimate

the flow velocity within the pipe. The piezo-electric ultrasound transducers which were
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1 Introduction

used in earlier approaches were replaced by electrostatic transducers specifically devel-

oped for this task. This killed two birds with one stone, namely the strong limitations

of piezo-electronic transducers regarding the operable temperature range as well as their

very limited bandwidth. Another big advantage of electrostatic transducers is their great

impedance matching for coupling soundwaves into air, i.e. less energy is lost during trans-

mission from the mechanical domain of the membrane into the acoustical domain of the

transmitting medium. The development of these broadband and heat resistant trans-

ducers however lead to new challenges. Neither a reliable system model to describe the

behavior of the transducers under certain conditions, nor the respective signal processing

methods which could exploit the high bandwidth exist. Apart from that it was observed,

that the transmission behavior of the transducers was not stable over time. With further

research, knowledge has been gained in both areas. To justify this new measurement tech-

nique (besides its applicability for high temperatures) a respectively high measurement

accuracy is required. Preliminary work explored the physics and fluid dynamics of gas

within a pipe, required pulse repetition frequencies, the effects of temperature gradients

and non-uniform flow- or pressure profiles along the pipe, different algorithmic approaches

as well as different sensor positions and mounting methods.[1, Wiesinger],[2, Kupnik]

1.1.1 Aim of this Thesis

The aim of this thesis is to tailor an adaptive signal processing algorithm to the existing

measurement hardware, which can cope with the varying response characteristics of the

transducers, and thus make robust transit time estimation possible. As prerequisite for

this task, a model for the system at hand has to be found. System identification is

performed on the transmission behavior of the electrostatic transducers. Reciprocity and

error propagation as well as theoretical performance bounds are considered. With the

information gained, a measurement routine is developed which uses both coherent phase

and magnitude information. The proposed algorithm has been tested under different

conditions and shown to meet the accuracy requirements.

1.1.2 Outline

This thesis is divided into three main parts. The introduction establishes the basics of

flow measurement and explains fundamental aspects of the transit time flowmeter.

In Chapter 2 the theoretical concepts behind system identification with maximum

length sequences are covered, followed by a detailed description of the methods used to

build the proposed algorithm. This includes the fitting of bandpass models, group delay

calculations, error propagation and theoretical performance bounds. Chapter 2 finishes

– 16 – Graz, November 15, 2011



1.2 Flow Measurement

with a summary of the proposed algorithm.

The third part (Chapter 3) discusses the empirical results and relates the performance

of the proposed method to the accuracy requirements.

1.2 Flow Measurement

The following sections describe the basics of flow measurement in Section 1.2.1, followed by

a detailed description of the transit time flowmeter in Section 1.2.2. A short discussion on

robustness and stability issues (Section 1.2.3) rounds off the first part of this introductory

chapter.

1.2.1 Basic Principles

Flow measurement is a technique used in almost every industry that has to deal with gases

or liquids. When talking about flow measurement the desired measurement quantity is

usually the flowrate inside a pipe during a certain time
[

kg
h

]

. The direct measurement

of mass however is often impossible (consider non-invasively measuring the mass of gas

within a pipe). Fortunately the measurement of the flow velocity in
[

m
s

]

is often easier and

can also be related to the massflow, if geometric conditions as well as mass densities are

known. In the case of measuring gases, this implies knowledge of the current temperature,

the composition of the gas and the current pressure. The innumerable areas of application

led to an equally innumerable amount of different measurement techniques. It is beyond

the scope of this work to give an overview over all the current flowmeter techniques.

Instead the focus will be set on a class of flowmeters called transit time flowmeters. Theses

flowmeters are usually designed using ultrasound sensors. Not all ultrasound flowmeters

are transit time flowmeters, for instance there are also so called Doppler flowmeters. A

good overview of ultrasound flowmeters is given in [3, Lynnworth] and [4, Jacobsen]. The

next section will explain the functionality of a transit time flowmeter in detail.

1.2.2 Transit Time Flowmeter (TTF)

A transit time flowmeter uses at least two different time measures (usually called upstream

and downstream transit time). These quantities describe the time it takes a signal (e.g.

an ultrasound pulse) to travel from one side of the measurement pipe to another, where

upstream indicates the signalpath against the flow stream and downstream accordingly

along the signalpath down the stream. The measurement of the upstream and downstream

transit times can be either performed unidirectional, i.e. using two signal paths with two

Graz, November 15, 2011 – 17 –
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opposing sensors each, or bidirectional, i.e. using only one signal path. However, the

mathematical representation is the same regardless of the setup. If a bidirectional setup

is used, then both sensors act as transmitter and receiver respectively. First, the signal is

transmitted simultaneously from both sensors (transmission mode). In the time it takes

the signals to travel to the opposing sensor, the operating mode is switched to receiving

mode. Tab. 1.1 shows different properties of the two methods.

Unidirectional Bidirectional

- more hardware required - less hardware required

- arbitrarily long signals possible - length of transmission signal is re-

stricted to minimal time of flight

- different systems for upstream and

downstream

- same system for upstream and

downstream

- crosstalk unavoidable - no crosstalk between receiving

channels

Table 1.1: Unidirectional vs. bidirectional flow measurement setup

The bidirectional setup was used for this work, but all described techniques and prin-

ciples can be applied to the unidirectional setup as well. Fig. 1.1 shows the basic set up of

a bidirectional TTF. The left figure relates to the actual physical setup, whereas the right

figure gives the equivalent system description for one direction (upstream or downstream

respectively). The soundpath between the two transceivers TC1 and TC2 is modeled as

pure delay and the receivers as Nth order bandpass respectively.. With c being the sound

�

�
�
�

�
�
�

�

�

� �
	

�



(a) physical description system

���������
	
��������

�������
����������

	
�����������

� �

(b) theoretical description

Figure 1.1: System description of a transit time flowmeter

velocity of the medium between the transceivers, L the distance between membranes of
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1.2 Flow Measurement

TC1 and TC2 and α the angle between the normal axis and the sound path, the equations

for the upstream transit time tu and the downstream transit time td can be calculated as

follows

L

tu
= c − v · sin α

L

td
= c + v · sin α

tu =
L

c − v · sin α
(1.1)

td =
L

c + v · sin α
(1.2)

If both tu and td are solved for c and combined the flow velocity is given by

v =
L

2 · sin α
· tu − td

tu · td
(1.3)

Correspondingly, if solved for v, the actual sound velocity c along the sound propagation

path can be calculated

c =
L

2
· tu + td

tu · td
(1.4)

Strictly speaking, as shown in [2, Kupnik], (1.3) and especially (1.4) only hold true if

the following very strong assumptions are made:

• The velocity profile across the measuring pipe is constant, i.e. there are no turbu-

lences, including the transducer cavities

• The temperature along the sound propagation path is constant

• The is no sound drift, i.e. the transmitted pulse is not ’blown away’ by the gas flow

Unfortunately these assumptions are quite a step away from reality. There exist various

extensions and amendments to (1.3) and (1.4) which are also discussed in [2, Kupnik].

The algorithm developed in this work can however apply to these more sophisticated

equations as well.

The detailed description of how the values of tu and td are measured is presented in

Section 2.2

1.2.3 Parameter Drift and Robustness Issues

A key point of interest in dealing with any system is to find an appropriate description

of the behavior of the system under different circumstances. If a system changes its
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characteristics over time, there are two possibilities to cope with this problem. Either

one tries to find a better system model that makes the variations deterministic, or an

adaptive algorithm is designed to compensate for the variation of the system parameters.

While the first approach is clearly ’better’ in terms of understanding a system, the latter

does not require as much specific information on the system. Since a complete and

accurate description of the system transit time flowmeter is very complex, this work

implements the latter approach, i.e. the development of a robust algorithm for transit time

estimation. There are many factors which can influence the robustness of this algorithm.

The main influence, the time varying transducer characteristics, are covered within the

proposed algorithm. However the investigation of the reasons why the characteristics of

the transducers are time variant are beyond the scope of this work. In the following, a

few contributions that investigate into this area, are presented.

The physical conditions inside a measuring pipe and their contributions to flowmetering

have been explored in [5, Lysak et al.] and [6, Lysak et al.]. The authors present a

stochastic model of turbulence as well as its application to flowmeters.

Apparent non-reciprocity in ultrasound flowmeters is discussed in [7, Deventer et al.].

The authors investigate the effects of manufacturing variations of piezo-electronic trans-

ducers. Their main observation is that even very small variations in parameters like

piezo-electric disc thickness and permeability have a huge effect on the reciprocity of a

transducer system. Even though they investigated piezo-electric transducers their results

can be applied to electrostatic transducers as well. E.g, that drift in zero-flow measure-

ment can only be prevented by proper calibration of non-identical sensors.

[8, Caronti et al.] try to formulate an accurate model for capacitive ultrasonic trans-

ducers in terms of equivalent electronic circuits.

The implications of pulsating flow and the corresponding measurement errors are in-

vestigated in [9, Berrebi et al.]. The authors propose a model for pulsations in flows

including harmonics. With the resulting fundamental pulsation period they are able to

improve measurement errors, that are related to a pulsating flow.
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2
Theory and Methods

”The researches of many

commentators have already thrown

much darkness on this subject, and

it is probable that, if they continue,

we shall soon know nothing at all

about it”

– Mark Twain

This chapter consists of three parts. Section 2.1 describes the mathematical techniques

that are required for system identification with maximum length sequences, as well as the

fitting process of a bandpass model. The core of this work lies in Section 2.2 where

the mathematical methods for robust transit time estimation are explained, along with

performance considerations. Section 2.4 gives an algorithmic overview over the proposed

method.
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2 Theory and Methods

2.1 System Identification

This section describes the process of system identification with maximum length sequences

(MLS). Section 2.1.1 explains how to generate maximum length sequences and the result-

ing important properties. The application of MLS on system identification is shown in

Section 2.1.2. The process of fitting a bandpass model to a given impulse response is

explained in Section 2.1.3. Finally Section 2.1.4 describes how to separate the transfer

functions of two concatenated bandpass systems.

2.1.1 MLS Theory

Pseudo random noise sequences are a popular tool for system identification. Maximum

length sequences (also called m-sequences or simply MLS), have some very special prop-

erties which will be discussed in the following. An m-sequence m ∈ {−1, 1} of order M

is of length L = 2M − 1. So a third-order m-sequence would be of length 23 − 1 = 7. The

m-sequence has a flat spectrum, apart from a small DC value (≈ 1
L
) which decreases with

increasing order, and a crest factor of c = 1, which sets it apart from other pseudo random

sequences that tend to have higher crest factors (for Gaussian noise c ≈ 4). A low crest

factor is important to properly excite the system which is to be measured, i.e. to bring a

lot of energy into the system. To generate an m-sequence, a primitive binary polynomial

of the same order is required. The task of finding primitive polynomials of higher orders

is not trivial but has been studied by mathematicians. The theory behind this concept is

beyond the scope of this work so we will rely on given primitive polynomials to generate

m-sequences. Additional information about the use of m-sequences can be found here

[10, Chu],[11, Ning]. For example, there exist two primitive binary polynomials P1, P2

of order M = 3: P1 = 1 + x + x3 and P2 = 1 + x2 + x3. The respective binary coeffi-

cients kn ∈ 0, 1 with n = 0, 1...M and k0 = kM = 1 are [1, 1, 0, 1], and[1, 0, 1, 1]. Either of

these polynomials can be used in an M-stage linear feedback shift register to generate an

m-sequence as follows:

m̂i+1 =

M
∑

n=0

knm̂i−k mod 2 (2.1)

where the mod operator takes the remainder of the division between its elements. This

modulo operation is in general realized in hardware by using XOR elements. In the begin-

ning each element in the register can be set to a random initial state. A different initial

state will only result in a phase shift in the output sequence. The output sequence is peri-

odic with length L. The conversion of the output sequence m̂ with its binary description

to the desired form m ∈ {−1, 1}, is simply obtained by calculating mi = 1 − 2m̂i.
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2.1 System Identification

An important property of an m-sequence is that its cyclic auto-correlation is very

similar to the Kronecker delta function δ[n]. For non-zero lags the auto-correlation of

the m-sequence is constant with the value −1
L

, so for higher orders, the auto-correlation

approaches the Kronecker delta function. Fig. 2.1 illustrates an m-sequence with M = 3

on the left and an m-sequence with M = 6 on the right, as well as their Fourier transforms

and autocorrelations. The first frequency bin, i.e. the bin corresponding to te DC value,

decreases with higher orders. Also the ’DC’ offset in the auto-correlation decreases with

increasing order. These properties result in a very effective calculation of the impulse

response of the system, which is shown below.

1 2 3 4 5 6 7
−1

0

1
m−sequence of order 3

1 2 3 4 5 6 7
0

2

4
Magnitude of FFT(m) 

0 2 4 6 8 10 12 14
−1

0

1
Autocorrelation of m

(a) 3rd-order m-sequence

0 10 20 30 40 50 60 70
−1

0

1
m−sequence of order 6

0 10 20 30 40 50 60 70
0

5

10
Magnitude of FFT(m) 

0 20 40 60 80 100 120 140
−1

0

1
Autocorrelation of m

(b) 6th-order m-sequence

Figure 2.1: Properties of m-sequences of different order

2.1.2 System Identification with MLS

����
���� ����

Figure 2.2: A Standard LTI System

An LTI system is shown in Fig. 2.2. It is completely characterized by its impulse

response h[n]. If an input sequence x[n] of length N is applied to the system, the output

y[n] is given by

y[n] = x[n] ∗ h[n] =

∞
∑

m=−∞

x[m] · h[n − m] (2.2)
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2 Theory and Methods

where the ∗ denotes convolution. Let rab[k] denote the correlation sequence

rab[k] =
∑

n

a[n] · b[n + k] (2.3)

So rxx[k] is the auto-correlation of the input sequence and rxy[k] the cross-correlation

between input and output. An important property of LTI systems relates the cross-

correlation of input and output with the autocorrelation of the input and the impulse

response as follows

rxy[k] = h[k] ∗ rxx[k] (2.4)

The auto-correlation of an m-sequence with length L is given by [11]

rxx[k] =
L + 1

L
δ[k] − 1

L
≈ δ[k] for L >> 0 (2.5)

If an m-sequence is used as input sequence h[n] can now be determined conveniently as

follows (using (2.4) and (2.5))

h[k] = rxy[k] ∗ δ[k] = rxy[k] (2.6)

So by applying the cross-correlation between input and output, one immediately gets

the impulse response. Time domain windowing can be used to separate noise and signal

components in the impulse response, if necessary. Let

h̄[n] = h[n] · w[n] (2.7)

denote the windowed impulse response, where w[n] can be any window function. This

work uses a half-sided Tukey Window, also known as tapered cosine window. It has the

property of being flat in the beginning with a cosine roll-off towards the edge. Fig. 2.3

shows the original impulse response h[n], as well as h̄[n] and the window function w[n].

The right hand side of Fig. 2.3 shows the effect of time-domain windowing on the frequency

response. For better display,normalization of the sequences was performed both in the

time and frequency domain. It is clearly convenient for further processing to use the

smoothed frequency response.

For reduced computational complexity the cross-correlation, necessary to perform sys-

tem identification, can also be replaced by the Fast Hadamard Transform, which works

similar to the Fast Fourier Transform algorithm. This procedure is explained thoroughly

in [10, Chu] and [11]. The following section describes how to fit a bandpass model to a

identified system.
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Figure 2.3: Effect of windowing on impulse response and frequency response

2.1.3 Bandpass Model Fitting

Prior studies, e.g. [2, Kupnik], have shown, that electrostatic ultrasound transceivers have

bandpass characteristics. A bandpass can be efficiently characterized by the following

parameters: bandwidth, center frequency and roll-off factor. The bandwidth is defined as

the passband region between the lower and the upper 3 dB cutoff frequencies. The roll-off

factor describes how steep the edges of the filter are and depends on the filter order.

System Parameters

This section describes how to determine the 3 dB cutoff frequencies of a given bandpass

system. Once obtained, they can be used to express useful system parameters, as the

bandwith or the center frequency. From a given impulse response h[n], e.g. as result of

system identification with MLS, the complex frequency response H [k] is computed via

the Discrete-Fourier-Transform (DFT) as follows

H [k] =

N−1
∑

n=0

h[n] · e−j2π k
N

n (2.8)

where k ∈ K, where K = {0, 1, . . . , N − 1} is the frequency bin index corresponding to

[0, fs) with the resolution of fs

N
and N is the length of DFT. In the following HdB[k] = 20 ·

log(|H [k]|) corresponds to the squared magnitude response, given in dB, and is symmetric

around k = N
2
. For a DFT of size N = 512 and a sampling frequency fs = 2.5MHz this

means that roughly 5 kHz are represented by one single frequency bin. To determine the

3 dB cutoff frequencies following approach has been chosen.

1. Find kM = arg max
k

HdB[k] and Hmax = HdB[kM ].
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2. Compute H̃dB[k] = HdB[k] − Hmax + 3dB.

3. Compute Hs[k] = sgn(H̃dB[k]).

4. Find kL = min(ks) and kH = max(ks), where {ks ∈ K | Hs[ks] = 1}.

5. These two values kL and kH correspond to the frequency bins that are closest to the

true 3 dB cutoff frequencies fL and fH (the subscripts L and H corresponding to

the lower and upper 3 dB cutoff frequencies respectively).

6. Use linear interpolation to fit polynomials PL(f) and PH(f) through the two points
{

H̃dB[kL], H̃dB[kL − 1]
}

and
{

H̃dB[kH ], H̃dB[kH + 1]
}

, respectively.

7. Compute fL and fH , where PL(fL) = 0 and PH(fH) = 0.

8. The resulting values correspond to the desired ’exact’ values for fL and fH .

Fig. 2.4 illustrates this process. Starting from the measured frequency response HdB[k],

Steps 1 and 2 are performed to get H̃dB[k] (blue line). Step 3 computes the signum

function Hs[k] (red). Step 4 finds the minima kL and kH . Once determined, only a linear

interpolation is left to be done (step 5 to 8) . With fL and fH being known (green and

magenta) the bandwidth is B = fH − fL and the center frequency fC =
√

fL · fH . .

Butterworth Fit

For a certain order and given pair of fL and fH , a bandpass filter can be designed that

matches this specification. There is a huge variety of filter types (Butterworth, Chebyshev,

Elliptic . . . ) and design methods, each with different qualities such as passband ripple,

stopband ripple or side-lobe attenuation. One standard filter type is the Butterworth-

Filter, named after its inventor. It is specified to have a maximally flat frequency response

in the passband (no ripple), as well as a roll-off towards zero in the stopband. Once the

cut-off frequencies are known, there are a lot of different possibilities to design a filter. In

this work the following technique (taken from the MATLAB Signal Processing Toolbox)

was used.
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Figure 2.4: Estimation of 3 dB cut-off frequencies

1. Determine the lowpass analog prototype filter.

2. Convert poles and zeros in state-space form.

3. Transform lowpass prototype into bandpass to match cut-off frequencies using state-

space transformation.

4. Convert from analog filter to digital filter with the bilinear transform.

5. Convert from state-space form to frequency response form.

The process of filter design is extensively covered in [12, Oppenheim]. Once the filter model

has been determined, all interesting characteristics, such as impulse response, frequency

response, phase response, group delay response etc... can be computed.

Fig. 2.5 shows the result of a system identification (Section 2.1.2) with subsequent

parameter estimation and Butterworth model fitting. The left hand side displays the
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measured windowed impulse response h̄[n] along with the modeled impulse response h̄f [n]

(where the subscript f stands for fit). The model impulse response has been windowed

with the same window w[n] as in (2.7), to facilitate group delay and phase computations.

The right hand side shows the according magnitude responses. The model magnitude

response |H̄f |2 has the same pass band and roll-off characteristics as the measured response

|H̄|2 but without the noise floor at ∼ −40dB.
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Figure 2.5: Measured system vs. bandpass model

Least Squares Fit

The system that has to be identified consists of two bandpass systems (Fig. 2.6). Each

of these systems has a unique structure, independent from each other. For instance, the

two systems could have different gain factors. A Butterworth model can only account for

the lower and upper cut-off frequency which heavily confines the filter model.

It is also possible to fit a filter to match a desired frequency response in the passband.

There not only two frequency points are specified but arbitrarily many (depending on

the frequency resolution). The filter model is tuned, such that the error between the

frequency response of the filter and the desired frequency response is minimized in a least

squares sense.

It turned out however that this technique often produced filters with instable poles.

Having more degrees of freedom that the Butterworth approach it is also less robust. It

is not used in the final algorithm and therefore not explained any further in this work.

Reciprocity

As mentioned earlier, perfect reciprocity is a very strong assumption which does not hold

in practise. With the estimated system parameters of the upstream and downstream
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measurement, two very convenient measures for reciprocity can be defined.

1. The difference between the bandwidths of the upstream and downstream model:

∆B = Bu − Bd

2. The difference between the center frequencies of the upstream and downstream

model:

∆C = fC,u − fC,d

3. The group delay of the division of upstream and downstream frequency responses:

∆G = G{Hu

Hd
}

G{·} is the group delay (see Section 2.2.3). All measures are zero in the case of perfect

reciprocity. If they grow, it shows that reciprocity does not hold anymore and that the

flow velocity estimations are corrupted by bias. There is a very close relationship between

∆G and ∆B. The are perfectly correlated but with different units. ∆G is measured in

seconds, whereas ∆B is measured in Hertz.

In Section 3.3 the relationship between reciprocity and measurement accuracy are

shown.

2.1.4 System Decomposition

If MLS system identification is applied to a system as shown in Fig. 1.1, the resulting

transfer function consists of two individual transfer functions, one corresponding to each

transducer. Therefore it is not possible to measure the acoustic transmission behavior

of a single transducer directly. To separate the transfer functions of the two transducers

from each other, the following approach was used. A modified version of this approach

can be found in [13, Anderson]. With three measurements, where three transducers are

used in a combinatoric fashion, it is possible to determine the individual systems. For the

sake of simplicity let the complex transfer function

H(ejω) = |H(ejω)| · e∠H(ejω) (2.9)

be denoted by H . Choosing a set of three transducers Ta, Tb, Tc, three bidirectional mea-

surements, each using two out of the three transducers, are performed. This results

in the complex transfer functions Ha,b, Ha,c, Hb,c from the upstream and Hb,a, Hc,a, Hc,b

from the downstream respectively, where the subscripts Hi,j = Hi · Hj denote that the

transducer Ti acts as the sender and Tj as the receiver. Assuming reciprocity, that is
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Hi,j = Hj,i ∀ (i, j) ∈ {a, b, c}, it follows that

(Ha)
2 =

Ha,b · Ha,c

Hb,c
=

Hb,a · Hc,a

Hc,b

(Hb)
2 =

Hb,a · Hb,c

Ha,c
=

Ha,b · Hc,b

Hc,a

(Ha)
2 =

Hc,a · Hc,b

Ha,b
=

Ha,c · Ha,b

Hb,a

and taking the square root (using equation (2.9))

Ha =

√

Ha,b · Ha,c

Hb,c

=

√

|Ha,b| · |Ha,c|
|Hb,c|

· ej 1
2
∠

Ha,b·Ha,c

Hb,c =

√

∣

∣

∣

∣

Ha,b · Ha,c

Hb,c

∣

∣

∣

∣

· ej 1
2
∠Ha,b+∠Ha,c−∠Hb,c

Hb =

√

∣

∣

∣

∣

Hb,a · Hb,c

Ha,c

∣

∣

∣

∣

· ej 1
2
∠Hb,a+∠Hb,c−∠Ha,c

Hc =

√

∣

∣

∣

∣

Hc,a · Hc,b

Ha,b

∣

∣

∣

∣

· ej 1
2
∠Hc,a+∠Hc,b−∠Ha,b

Results of the system identification are shown in Section 3.2

2.2 Transit-Time Estimation

This section describes the proposed algorithm to get a robust estimate for the transit

times. Up to now only the ’raw’ transit time t̃, including the group delay of the sending

and receiving transceiver, has been measured. The contribution of the transceivers is nor-

mally regarded as constant, which enables calibration to eliminate their effects. However,

since their transmission behavior is neither time invariant nor deterministic with respect

to changing operating conditions (see Section 1.2.3), the key problem is to constantly de-

termine estimates of their group delays. Fig. 2.6 shows the structure of the system behind

this task. The true time of the airborn signal (without the additional group delays) is

named t here and will be later referred to as tu and td for the upstream and downstream

respectively. Since both transceivers are of the same type it can be safely assumed, that

they can be represented by bandpasses of the same order N . An equivalent but more

convenient structure is shown on the right hand side of Fig. 2.6. Here only one bandpass

of order 2N accounts for both group delays introduced by the two transceivers. This

makes the model fitting more convenient (see Section 2.1.3).
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The first step is to determin the time it takes the signal to travel through the complete

system. This procedure is explained in detail in Section 2.2.1. Section 2.2.2 describes

the essential method to robustly estimate the beginning of the impulse responses of the

upstream and downstream systems. Section 2.2.3 then describes the estimation of the

group delays so that they can be separated from the overall system delay..

(a) overall system (b) equivalent description

Figure 2.6: System model for a transit time flow meter

2.2.1 Crosscorrelation

The general idea behind a TTF has already been laid out in Section 1.2.2. The method

of choice to determine the delay between a signal x[n] and a time-shifted version y[n] =

x[n− τ ] is the cross-correlation rxy[k]. For infinitely long discrete signals, it is defined as:

rxx[k] =
∞

∑

k=−∞

x[n] · y[n + k] (2.10)

This is essentially the same as a convolution. The only difference is that the second

sequence is not time reversed. rxy[n] has a maximum for k = τ , so by finding the maximum

one automatically determines the desired time-shift. If the system through which x[n] is

sent would consist of a pure delay, i.e. its impulse response would be all zero except for

one unity pulse δ[n − τ ], this would be all one has to do to get t. However, the impulse

response of a system like Fig. 2.6 is a theoretically infinitely long decaying sequence. Thus

y[n] is not merely a time-shifted version of x[n]. Instead y[n] = h[n] ∗ x[n] where h is

the impulse response and the ’∗’ denotes convolution. The position of the maximum of

rxx[k] is now also influenced by the group delay of the bandpass characteristics of the

transducers.

If the transducers are regarded to be linear systems, then the overall measured delay

between x[n] and y[n] is the sum of airborn flight time t and the group delay of the

transducers τG, because y[n] = h[n] ∗ x[n − τ ]. Fig. 2.7 and Fig. 2.8 show the two cases

discussed above. As input signal a gaussian noise burst of length 100 samples has been

chosen. In the first case h[n] was a pure delay of 150 samples. The peak of the cross
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correlation in Fig. 2.7 occurs exactly at 150 samples, corresponding to the correct delay

t = τ = 150.

As second example, a 4th-order Butterworth bandpass was designed using the ’fdatool’

of MATLAB to simulate a transducer system. h[n] consists now of a decaying impulse

response, which starts at an offset of 150 samples. In Fig. 2.8 the maximum of the cross

correlation is at k = 152, due to the group delay induced by the system.
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Figure 2.7: x[n], y[n], h[n] and rxy[k] for a pure delay

If the input sequence is an m-sequence, then the crosscorrelation with the output

sequence is the impulse response of the system h[n] (Recall Section 2.1.2).
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Figure 2.8: x[n], y[n], h[n] and rxy[k] for a 4th-order bandpass system

2.2.2 Robust Transit Time Estimation

In general the starting point of an impulse response is hard to determine, when mea-

surement noise is present. In the scenario of transit time estimation it is however vital

to determine the exact time of the beginning of the impulse response. An accuracy of a

fraction of a sample is required. After convolution of the MLS with the output sequence,

a window has to be applied to cut the relevant portion of the impulse response out of the

cross-correlation sequence. Fig. 2.9 shows the process of finding the starting point of such

a window.

1. Compute the envelope h̃[n] = |h[n] + j · H{h[n]}| , where H{·} denotes the Hilbert

transformation,[12, Oppenheim].

2. Find nm = arg max
n

h̃[n]

3. Find the integer starting index ns = nm − no

no stands for a fixed offset which was empirically chosen to be 10 samples. nm does not

mark the exact maximum of the envelop, but only the sample closest to the maximum.

The starting index ns corresponds to the transit time in seconds via t̃ = ns/fs. This is of
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Figure 2.9: Estimation of the starting point of a measured impulse response

course not the true transit time, but with the group delay estimation techniques described

in Section 2.2.3, the fractional delay between model and measurement can be calculated.

To demonstrate that this approach is valid, following simulation was performed. For

different offsets 10 ≤ no ≤ 14 the impulse response of the measured system was deter-

mined. An offset does not change the magnitude response but only the phase response

and thus the group delay. Therefore the cut-off frequencies remain unchanged, which

results in the same Butterworth model, regardless of the chosen offset.

However an offset of one sample leads to an additional constant group delay of 1

sample. The calculated difference between measured and modeled group delay changes

accordingly. This makes estimation of the correct starting time very robust.

Fig. 2.10 shows the measured group delay for different offsets (blue), along with the

modeled group delay (black). The different measured group delays differ by the amount

of one sample from each other, whereas the group delay of the bandpass model remains

unchanged. This proves that the proposed method is valid.

The next step is to separate the additional group delay of the transducers from the

measured transit time.
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Figure 2.10: Group delay of measurement and butterworth model for different offsets

2.2.3 Group Delay Estimation

The group delay of a system with complex frequency response H(ejω) is defined as the

negative gradient of the phase response

τ(ω) = −dφ(ω)

dω
= −d (arg H(ejω))

dω
(2.11)

For a discrete system H [k], k = {0, 1, . . . , N − 1}, with φ[k] = arg(H [k]), the differen-

tiation is reduced to a simple difference calculation

τ [k] = −φ[k] − φ[k − 1]

k − (k − 1)
= −(φ[k] − φ[k − 1]) (2.12)

If φ[k] is defined in [rad], this corresponds to a group delay in [rad], so τ [k] has to be

divided by 2πN
fs

to get the group delay in [s].

Together with the information gained from the band pass model fitting (Section 2.1.3),

there are several possibilities to accomplish the separation of the transducer group delays

and the desired transit time.
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Linear Phase Approximation

The simplest and most robust way is to compute the slope of the measured phase response

directly, by fitting a straight line to the passband section of the phase response. There

are two points needed for this procedure. Convenient for further calculations are the 3dB

cut-off frequencies fL and fH calculated as shown in Section 2.1.3 and already known

from the band pass model fitting.

The slope of a line y = m · x + c is simply computed by

dy

dx
=

∆y

∆x
=

y(x2) − y(x1)

x2 − x1
= m (2.13)

The measured phase is of course not linear, so fitting a straight line to the passband

section of the phase is only an approximation. Let φ(f) be the phase value at frequency

f , then

∆φ = φ(fH) − φ(fL), ∆f = fH − fL (2.14)

and the average group delay of the measurement in the passband ¯τM becomes

τM = −dφ

df
≈ −∆φ

∆f
(2.15)

It is known from filter theory, that the phase response of a 2N-th order bandpass drops

by N · π
2
. With this, the reference group delay τL becomes

τL = −N · π
2

∆f
= − Nπ

2∆f
(2.16)

Together with the transit times t̃ determined via cross-correlation (Section 2.2.1) this

yields

tL = t̃ − (τM − τL) = t̃ +
∆φ

∆f
− Nπ

2∆f
= t̃ +

2∆φ − Nπ

2∆f
(2.17)

where the subscript L stands for the linear approximation method.

On the upside this method is computationally efficient and very robust. On the down-

side the approximation of the phase response with a straight line can be rather coarse,

depending on the system parameters of the individual transducers (i.e. for not identical

systems).

In Fig. 2.11 the measured phase response (blue) as well as the reference line (magenta)

are shown for a 4th order bandpass system.
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Figure 2.11: Coherent phase measurement and comparison to 4th order model

Butterworth Approximation

If a Butterworth filter was designed with the parameters extracted from the measured

impulse response, the group delays of the measurement and the model can be subtracted

directly. Fig. 2.11 shows the measured phase response (blue) as well as the phase response

of the Butterworth model (red). The slope of the two graphs is almost identical. Let τM

denote the group delay of the measured impulse response and τB the group delay of the

Butterworth fit (both calculated via (2.12)). Together with the transit time t̃ this yields

tB = t̃ − 1

kH − kL

kH
∑

k=kL

τM [k] − τB[k] (2.18)

where the subscript in tB stands for the Butterworth approximation. In (2.18) the group

delay difference within the passband kH − kL is averaged.

2.3 Error Model and Performance Considerations

In this section an error model for the estimation of the stream velocity is introduced,

followed by a discussion on error propagation and performance bounds.
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2.3.1 Error Model

In a first step it is necessary to introduce a model for the measurement errors that occur.

Let θ denote the measurement parameter. Assuming that the random error is normally

distributed with variance σ2
θ and mean µθ, the estimated value θ̂ of the true parameter

value θ is defined as

θ̂ ∼ N (µθ, σ
2
θ), fθ̂(x) =

1
√

2πσ2
θ

· e−
(x−µθ)2

2σ2
θ (2.19)

To describe the effect of an error on a measurement, the two terms accuracy and precision

are often used. While accuracy relates to the bias θ − µθ, precision usually refers to the

standard deviation σθ. When there is no error bias, then of course µθ = θ, i.e. the

estimation is perfectly accurate, or unbiased. Especially for the computation of error

bounds, e.g. the Cramer-Rao bound (see Section 2.3.3), the estimators are restricted to

be unbiased. If there is more than one parameter involved in the measurement, each

parameter is distributed accordingly. For example if there are two parameters θ1 and θ2,

and their according unbiased estimates θ̂1 and θ̂2 with the distributions θ̂1 ∼ N (θ1, σ
2
θ1

)

and θ̂2 ∼ N (θ2, σ
2
θ2

) respectively, they are grouped for convenience in a parameter vector

θ = [θ1, θ2]
T and an estimation vector θ̂ = [θ̂1, θ̂2]

T

Whenever there is more than one parameter involved in a measurement, the individual

errors do not have to be uncorrelated. A measure that describes the correlation between

two random variables is the covariance, defined as

c1,2 = E
{

(θ̂1 − µθ1) · (θ̂2 − µθ2)
}

(2.20)

where E{·} is the expectation operator. Computing c1,1 is the variance σ2
θ1

. The covariance

can also be expressed in terms of a correlation coefficient

r =
c1,2

σ1 · σ2
, −1 ≤ r ≤ 1, r ∈ R. (2.21)

For an estimation vector θ̂ = [θ̂1, θ̂2, . . . , θ̂M ]T the corresponding variances and covari-

ances can be conveniently written in an [M × M ] covariance matrix.

C =















σ2
θ̂1

c1,2 · · · c1,M

c2,1 σ2
θ̂2

. . .
...

...
. . .

. . .
...

cM,1 · · · · · · σ2
θ̂M















(2.22)

with the symmetry property ci,j = cj,i i, j ∈ {1, 2, . . . , M}.
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This error model is now applied to Equation (1.3). The are two different possibilities

to compute the transit time difference in the numerator of (1.3). Either directly via

cross-correlation of the received signals, or indirectly via the individual transit times.

Corresponding to the cross-correlation method, the desired quantity v1 is a function of

tu,td and ∆t.

v1 = C · ∆t

tu · td
(2.23)

If ∆t is not measured directly, but computed via the individual measurements of tu and

td , then v2 is only a function of tu and td .

v2 = C · tu − td
tu · td

(2.24)

where C = L/(2 · sin(α)), is the geometric constant.

The corresponding parameter vectors are

θ1 = [∆t, tu, td]
T (2.25)

and

θ2 = [tu, td]
T (2.26)

In other words v1 = v1(θ1), and v2 = v2(θ2).

2.3.2 Covariance Transformation

The following approach is a standard method in statistics, e.g. [14, Kay].

Let θ̂ = [θ̂1, θ̂2, . . . , θ̂M ]T be the estimation vector, i.e. a set of estimated parameters.

Provided that the covariance matrix of θ̂ is known, the variance σ2
f of a function f(θ̂) can

be computed as

σ2
f = J

T
f · C · Jf (2.27)

where Jf is the [M × 1] Jacobian matrix with all first order derivatives, defined as

Jf = J (f(θ)) =















∂f
∂θ1

∂f
∂θ2

...
∂f

∂θM















(2.28)
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and C is the covariance matrix as defined in Section 2.3.1. Applied to the two calculation

methods of the flow velocity, v1(θ1) and v2(θ2), the respective covariance matrices become

C1 =







σ2
∆t

ctu,∆t ctd,∆t

c∆t,tu σ2
tu ctd,tu

c∆t,td ctu,td σ2
td






(2.29)

and

C2 =

[

σ2
tu ctd,tu

ctu,td σ2
td

]

. (2.30)

Using symmetry properties, with ctu,∆t = ctd,∆t = c∆t,tu = c∆t,td = c∆ and ctu,td = ctd,tu =

ct, this simplifies to

C1 =







σ2
∆t

c∆ c∆

c∆ σ2
tu ct

c∆ ct σ2
td






(2.31)

and

C2 =

[

σ2
tu ct

ct σ2
td

]

. (2.32)

The Jacobian matrices for v1 and v2 are

J1 = C · J
(

∆t

tutd

)

= C ·









1
tutd

− ∆t

tut2
d

− ∆t

t2utd









(2.33)

and

J2 = C · J
(

tu − td
tutd

)

= C ·
[

− 1
t2d

1
t2u

]

(2.34)

Using (2.27), the variances for the two different methods of flow estimation can now be

computed:

σ2
v1 = J

T
1
· C1 · J1 (2.35)

= C2

(

2∆2
t ct

t3ut
3
d

− 2∆tc∆

t3ut
2
d

− 2∆tc∆

t2ut
3
d

+
σ2

∆

t2ut
2
d

+
∆2

t σ
2
tu

t4ut
2
d

+
∆2

t σ
2
td

t2ut
4
d

)

(2.36)

– 40 – Graz, November 15, 2011



2.3 Error Model and Performance Considerations

σ2
v2 = J

T
2
· C2 · J2 (2.37)

= C2

(

− 2ct

t2ut
2
d

+
σtu

t4d
+

σtd

t4u

)

(2.38)

It can be safely assumed that the upstream and downstream transit time can be measured

with the same precision, i.e. σ2
tu = σ2

td = σ2
t . Furthermore the correlation between the

direct measurement of ∆t and tu or td is negligible, i.e. c∆ ≈ 0. With t2u ≈ t2d ≈ td · tu = t2

(valid for low flow velocities), it follows that

σ2
v1 ≈ C2 ·

(

2∆2
t ct

t6
+

σ2
∆

t4
+

2∆2
t σ

2
t

t6

)

(2.39)

and

σ2
v2 ≈ C2 ·

(

−2ct

t4
+

2σ2
t

t4

)

(2.40)

The covariance ct between the two transit time measurements, can also be expressed in

terms of the correlation r. With ct = r · σ2
t , it follows that

σ2
v1 =

C2

t2
·
(

∆2
t

t2
· 2σ2

t

t2
· (1 + r) +

σ2
∆

t2

)

(2.41)

and

σ2
v2 =

C2

t2
· 2σ2

t

t2
· (1 − r). (2.42)

Furthermore note, that the correlation reduces the overall estimation variance σ2
v2 but

increases σ2
v1. It is assumed that the relative error of the transit time difference estimation

σ∆t

t
is considerably smaller than the relative error of the transit time estimation itself σt

t
.

At this stage it becomes clear, that especially for small flow velocities, where ∆t ≪ t,

the first method is favorable, since the transit time estimation variance σ2
t is weighted by

∆2
t/t

2.

Fig. 2.12 shows the predicted standard deviations, i.e. the precisions, σv1 and σv2 for

σ∆t = 10ns and σt = 100ns (@ t ≈ 425µs) and different values for r. These values for σ∆t

and σt are taken from experimental results in Section 3.3. As bench mark, the requested

precision of 1% relative error of the flow velocity is plotted (blue). It can be seen that the

estimation variances for v̂2 are constant over the complete flow velocity range, whereas

the estimation variances for v̂1 are ascending with v. As stated above, especially at low

flow velocities (v < 5m
s
) only v̂2 is better than the required precision. And depending

on the correlation factor, v̂1 is clearly advantageous up to very high flow velocities. The

correlation of the errors in the estimation of tu and td does heavily affect the precision of
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v̂2 but only slightly the precision of v̂1.
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Figure 2.12: Precision of different flow velocity estimates for σ∆t
= 10 ns and σt = 100 ns

All the considerations that were made in this section imply that the estimation vari-

ances σ2
∆t

and σ2
t are known. If they are unknown, it is also possible to estimate a lower

bound for the achievable estimation variances, based on a system and error model. The

calculation of a popular error bound is described in the following section.

2.3.3 Cramer-Rao Lower Bound

The Cramer-Rao Lower Bound (CRLB) computes the optimum, i.e. lowest, achievable

variance of an unbiased estimator. It is defined as the inverse Fisher-Information. The

theory behind the determination of CRLBs as well as application examples are given in

[14, Kay]. The author derives the CRLB for range estimation with radar, an example

very similar to the task of transit time estimation. The following derivation is taken from

[14, Kay].

The (continuous) signal model is given by

x(t) = s(t − τ) + w(t) (2.43)

where x(t) is the received signal, s(t) the transmitted signal and w(t) white gaussian noise

with PSD N0

2
. This is very similar to the computation of ∆t since for perfect reciprocity

the cross correlation between the received signals is essentially an correlation same signal
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s(t) where one is shifted by τ . For this signal model, the Cramer Rao lower bound is

given by

var{τ̂} ≥
N0

2
∫ T

0

(

ds(t)

dt

)2

dt

. (2.44)

With the energy E,

E =

∫ T

0

s2(t)dt (2.45)

and the mean squared bandwidth F̄ 2,

F̄ 2 =

∫ T

0

(

ds(t)

dt

)2

dt

∫ T

0

s2(t)dt

=

∫

∞

−∞

(2πf)2|S(f)|2df
∫

∞

−∞

|S(f)|2df
(2.46)

(2.44) can be rewritten as

var{τ̂} ≥ 1
E

N0/2
F̄ 2

(2.47)

The term E
N0/2

is essentially an SNR. The mean squared bandwidth F̄ 2 is a normalized

measure which includes bandwidth B and center frequency f0 of a bandpass signal s(t).

As an analytic approximation, the magnitude response of a bandpass can be modeled

with a rectangular function as follows

|Sr(f)|2 =







1

2B
, for f0 − B/2 ≤ |f | ≤ f0 + B/2

0, else
. (2.48)

This definition ensures that

∫

∞

−∞

|Sr(f)|2df = 1. (2.49)
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The mean square bandwidth of the rectangular magnitude response bandpass becomes

F̄ 2
r =

∫

∞

−∞

(2πf)2|Sr(f)|2df
∫

∞

−∞

|Sr(f)|2 df

=

2 ·
∫ f0+B/2

f0−B/2

(2πf)2 1

2B
df

1

=
4π2

3B
f 3

∣

∣

∣

∣

f0+B/2

f0−B/2

= 4π2f 2
0 +

1

3
π2B2. (2.50)

This clearly shows, that both f0 and B affect the performance of the estimation. However,

the influence of the center frequency is much greater. With the quality factor

Q =
f0

B
(2.51)

(2.50) becomes

F̄ 2
r = 4π2f 2

0 +
1

3
π2 f 2

0

Q2
= 4π2f 2

0 (1 +
1

12Q2
) ≈ 4π2f 2

0 (2.52)

because it can be assumed that Q > 2.

Now with the rectangular frequency response approximation, and for given SNR and

f0 the resulting CRLB can be computed. Fig. 2.13 shows the achievable precision σ∆t for

different SNRs and center frequencies. It can be seen that changing the center frequency

by one magnitude is equivalent to increasing the SNR by 20 dB. Both results in a change

in σ∆t by one magnitude.
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Figure 2.13: CRLB of σt for different SNR and f0

2.4 Algorithmic Overview

Fig. 2.14 shows a simplified overview of the proposed algorithm. Each time the flow

velocity is to be estimated, the flow diagramm has to be run through once. Bold ar-

rows resemble block processing, and thin arrows resemble scalar values. The two key

improvements this algorithm provides, compared to other flow estimation methods are:

1. The time difference ∆t is estimated directly via cross-correlation of the receiver sig-

nals, which allows for high measurement precision.

2. Due to the choice of m-sequences as input signal, a system identification is efficiently

performed for upstream and downstream respectively, allowing for parameter drift

compensation.
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Figure 2.14: Algorithmic overview

The following enumeration summarizes the proposed algorithm and references the sec-

tions of this work, where the respective methods are explained.

1. Send the same m-sequence simultaneously upstream and downstream.

2. Perform cross-correlation between the received signals and m-sequence to get hu[k]

and hd[k] (Section 2.1.2) and between the two received signals to get ∆t (Sec-

tion 2.2.1).
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3. Find ns = arg max
n

of the envelopes of the impulse responses hu and hd and substract

the offset no, which yields the raw transit times t̃u[n] and t̃d[n] (Section 2.2.2).

4. For each system calculate the parameters fU and fH (Section 2.1.3).

5. Fit 4th-order Butterworth bandpass filters to match theses parameters (Section 2.1.3).

6. Compute the group delays of the filters (τB,u and τB,d) and of the measured transfer

functions from step 2 (τM,u and τM,d) (Section 2.2.3)..

7. Compute the transit time estimates t̂B,u and t̂B,d (Section 2.2.3).

8. Use t̂B,u, t̂B,d and ∆̂t to compute v (Section 1.2.2).
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3
Results and Discussion

”A couple of months in the

laboratory can frequently save a

couple of hours in the library”

– Westheimer’s Law

This chapter is divided into three sections. Section 3.1 describes the measurement

setup used for the system identification as well as for the testing of the algorithm. Sec-

tion 3.2 shows the results of the system identification for the electronic frontend and the

transducers. In Section 3.3 the short and longterm measurement results for the proposed

algorithm are presented.

3.1 Measurement Setup

Fig. 3.1 shows the measurement setup for system identification and algorithm testing. An

Agilent 33120A Arbitrary Waveform Generator sends the m-sequences into the measure-

ment hardware. The received signals are captured with a LeCroy Ditigal Oscilloscope.

The analysis of the data is then performed in MATLAB after transferring the data to a
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PC. The parameter settings, such as sampling frequency, MLS length and memory depth

of the oscilloscope are described in the respective sections.

3.1.1 Setup for System Identification

The MLS system identification technique as described in Section 2.1 was applied to the

transmitting and receiving electronics first (without the transducers). The transmitting

electronics are essentially an inverting amplifier and a switch with an RC element, whereas

the receiving electronics consist of an amplifier and a bandpass. A sampling frequency

of 2 MHz and three periods of a 13th-order m-sequence were used (3 · 8191 samples @ 2

MHz ⇒ 12 ms). Each element of the signal chain was put under test separately.

In a second step, the transducers were connected. In contrast to the identification of the

electronic front end, a maximum signal length of ∼ 100µs is possible. In the bidirectional

setup the operating mode of the transceivers must be switched from transmitting to

receiving (Section 1.2.2). To account for this restriction, 2 periods of an 8th-order m-

sequence at a sampling frequency of 5 MHz were used (2 · 255 samples @ 5 MHz ⇒
∼ 100 µs).

The setup in Fig. 3.1 shows that both, an upstream and a downstream frequency

response can be computed, depending on the chosen receiver. The determination of the

individual impulse responses of the transducers was performed according to Section 2.1.4.
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Figure 3.1: Measurement setup for system identification and testing

3.1.2 Setup for Algorithm Testing

The testing of the algorithm essentially uses the same setup as for the system identification

of the transducers. The only difference is that the measurement routine is performed

repeatedly. To facilitate the capture of measurement data following strategy was used.

In a real application scenario, the electronic hardware of the measurement device re-

peatedly generates pulses that trigger the transmission routine. The pulse repetition

frequency is 1kHz. This trigger signal is fed into the signal generator, so that an m-

sequence is sent every millisecond to the transducers. Due to the huge amount of data,

the oscilloscope is not able to save all the received signals. So the trigger signal is also

provided to the oscilloscope, where a hold-off value Nh can be set. Nh determines the

number of trigger pulses the oscilloscope waits between automated savings of the received

signals. So for every Nh-th trigger pulse, the oscilloscope saves the two receiving channels

automatically. The formula for the required holdoff Nh that results in a desired time

resolution tres of the measurement is then

Nh = tres · 1000 tres in [s] (3.1)
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So a hold-off value of Nh = 10000 corresponds to one measurement every 10 seconds.

This method allows automated long term measurements, as performed in Section 3.3.2,

with identical time intervals between the measurements.

The transducers are mounted in a measurement pipe with no flow applied, hence the

term zero-flow measurement. The goal of this measurement is to observe the zero-stability

of the flow velocity computation. To reduce polarization of the transducers, the bias

voltage is typically switched every few seconds. For the measurements in Section 3.3 this

switching is intentionally turned off to produce a parameter drift of the transducers.

3.2 System Identification

3.2.1 Electronic Frontend

Fig. 3.2 shows the results of the system identification of the transmitting electronics.

The overall amplification is around 60 dB and the phase response matches the inverting

characteristic of the amplifier. The abbreviations PA and RC stand for power amplifier

and resistor-capacitor. As expected the RC element has zero amplification and phase.

The reason why the sum of the two individual systems RC and PA is not equal to the

measurement results of the complete system may be found in impedance matching of the

measurement hardware.

Fig. 3.3 shows the results of the system identification of the receiving electronics. To

avoid harmonics from the power supply scattering into the measurement, a galvanic sep-

aration between the measurement loop and the ground loop was performed using a trans-

former. The frequency and phase responses as shown in Fig. 3.3 are without calibration

for the transformer characteristics, resulting in the drop off to high frequencies.

The results of the third measurement are shown in Fig. 3.4. Here the crosstalk between

the two channels was measured. This is only important when a monodirectional setup

is used, since only then a crosstalk can occur. The damping between transmitting and

receiving electronics in the frequency range where the transducers operate is only between

20dB and 25dB. The reason for the discrepancy in the damping for the different crosstalk

directions is not clear.
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Figure 3.2: System identification for transmitting electronics
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Figure 3.3: System identification for receiving electronics
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Figure 3.4: System identification for crosstalk between channels
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3.2.2 Transducer Measurements

The system identification of the individual transducers was performed as shown in Sec-

tion 2.1.4. It is known from filter theory, e.g. [15, Tietze, Schenk], that the phase response

of a second order band pass spans an amount of π over the whole frequency range and
π
2

within the passband. Fig. 3.5 shows the frequency and phase response of six differ-

ent transducers, as identified from the upstream measurements (see Section 2.1.4). The

transducers T4, T5 and T9 are missing because they were damaged.

While having different center frequencies and bandwidths, the phase response clearly

indicates that the bandpass system that describes a single transducer is of second order.

This means that the concatenation of two transducers forms a band pass system of fourth

order. This is a very important realization since it allows to model the transducer system

as proposed in Section 2.1.3.
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Figure 3.5: System identification for different transducers

Fig. 3.6 shows the system identification results for the upstream (+) and the down-

stream (�) magnitude response. The figure on the left contains the results for the trans-

ducer triplet T1, T2 and T3. The figure on the right for the triplet T7, T8 and T10

respectively. The differences between upstream and downstream measurements in the

passband are small, compared to the variations outside the passband, especially for trans-

ducers 3,6 and 8. This shows, that the assumption that a transducer can be treated as a

reciprocal system is valid.

Fig. 3.7 gives an overview of the transducer characteristics as well as the differences for

upstream and downstream decomposition ((2.9)). Transducers 1, 7 and 10 can be con-

sidered perfectly reciprocal, while the other transducers have a small mismatch between

upstream and downstream response. The deviations among sensors are however clearly

greater than the observed mismatch between upstream and downstream.
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Figure 3.6: Comparison of upstream and downstream system identification of individual transducers
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Figure 3.7: Transducer parameters overview

3.3 Zero Flow Measurements

A critical working scenario for a transit time flow meter is at low flow velocities. Therefore

zero flow measurements were taken, to determine the stability and robustness of the transit

time estimation.

3.3.1 Short Term Measurements

Five different sensor pairs were tested. Each pair was tested for 10 minutes, with 6

measurements per minute. The following tables show the standard deviation of different
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parameter estimates. Each column corresponds to a sensor pair. In the last column the

root mean square of all sensor pairs is computed. The estimated reference transit times

t̂u,ref and t̂d,ref are calculated without group delay correction (only a fixed offset of 12

samples is subtracted from the interpolated peak of the estimated impulse responses).

Tab. 3.1 shows the standard deviations for the individual transit time estimates. The

subscripts L and BW correspond to the linear fitting method and the Butterworth fitting

method as described in Section 2.1.3. The linear fitting method only reduces the standard

deviation of the estimated transit time by a factor of 2 compared to the estimated reference

transit times. The Butterworth method reduces the standard deviation again by a factor

of 2.

It is not clear why the standard deviation for the downstream transit time estimation

is often considerably smaller than the upstream standard deviation. This effect may be

related to an uncalibrated electronic frontend.

T1T2 T3T4 T5T6 T7T8 T9T10 RMS

std of t̂u,ref in [ns] 262 357 358 251 358 321

std of t̂d,ref in [ns] 279 220 350 318 353 308

std of t̂u,L in [ns] 207 205 178 121 111 169

std of t̂d,L in [ns] 180 165 93 127 111 139

std of t̂u,BW in [ns] 70 78 70 85 68 74

std of t̂d,BW in [ns] 76 66 56 61 67 66

Table 3.1: Standard deviation of different transit time estimates

Recalling Section 2.3.3, it plays an important role if the estimation errors are correlated.

This can be seen in Tab. 3.2. It shows the precision of different estimates of the transit

time difference, i.e. the numerator of (1.3). ∆t is estimated directly via cross correlation

of the received signals.

T1T2 T3T4 T5T6 T7T8 T9T10 RMS r

std of t̂u,ref − t̂d,ref in [ns] 384 414 460 396 463 425 0.14

std of t̂u,L − t̂d,L in [ns] 55 37 64 63 46 54 0.86

std of t̂u,BW − t̂d,BW in [ns] 36 32 50 60 40 45 0.84

std of ∆̂t in [ns] 5.4 5.6 7.6 5.7 3.5 5.7 -

Table 3.2: Standard deviation of different estimates of the transit time difference

– 56 – Graz, November 15, 2011



3.3 Zero Flow Measurements

∆̂t is clearly the best estimator for the transit time difference. Compared to the reference

method it achieves a standard deviation roughly two orders of magnitude smaller than

the reference method. The linear fit already improves the estimation significantly and

the Butterworth method outperforms the linear method. However both the linear and

the Butterworth method are still one order of magnitude worse (in terms of standard

deviation) than the direct estimation.

Comparing this results with the standard deviations of the individual transit times, it

becomes clear that the errors of t̂u,ref and t̂d,ref have to be less correlated than the er-

rors of t̂u,L and t̂d,L, or t̂u,BW and t̂d,BW respectively. The averaged (over all five sensor

pairs) correlation coefficient r between the two transit time estimates that are used in

the respective row of Tab. 3.2, is shown in the last column. As shown in Section 2.3.3

a high correlation coefficient is favorable, since the errors cancel each other out in the

difference computation. The advantage of using either of the model fitting methods be-

comes apparent when looking at the correlation factors. For ∆̂t no correlation factor can

be determined, since it is measured directly. The correlation between the error of ∆̂t and

any individual transit time estimate is however zero.

Tab. 3.3 shows 4 different flow velocity estimates, computed as follows

v̂ref = C · t̂u,ref − t̂d,ref

t̂u,ref · t̂d,ref

, (3.2)

v̂L = C · t̂u,L − t̂d,L

t̂u,L · t̂d,L

, (3.3)

v̂BW = C · t̂u,BW − t̂d,BW

t̂u,BW · t̂d,BW

, (3.4)

and

v̂prop = C · ∆̂t

t̂u,BW · t̂d,BW

. (3.5)

T1T2 T3T4 T5T6 T7T8 T9T10 RMS

std of v̂ref in [cm/s] 15.5 16.7 18.5 16 18.7 17.1

std of v̂L in [cm/s] 2.1 2.5 3.4 3.2 3.5 3

std of v̂BW in [cm/s] 1.7 2.2 2.4 2.9 3.4 2.6

std of v̂prop in [cm/s] 0.22 0.23 0.31 0.23 0.14 0.23

Table 3.3: Standard deviation of different flow velocity estimates

The proposed method clearly outperforms the reference estimation. With an average of
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2.3mm
s

, v̂prop is one order of magnitude better than the two methods v̂L and v̂BW which

used the conventional method to calculate v. Even though v̂L is much more efficient to

compute (no butterworth bandpass model fitting is necessary), the standard deviation of

its estimation error is almost equal to v̂BW .

Fig. 3.8 shows the estimated zero flow velocities v̂prop for the different transducer pairs,

corresponding to Tab. 3.3. There are positive and negative biases for the different trans-
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Figure 3.8: Short term zero flow robustness for different sensor pairs

ducer pairs. It is interesting to note the magnitude of the biases is around 1 cm for all

five transducer pairs. In general the standard deviation is the most important measure

to characterize the estimation process, because a constant bias in the estimation can be

removed by calibration. This is not the case for transducer pair T9T10 where the bias is

increasing over time.

Especially in the case of zero flow measurements the bias or accuracy is an import

performance measure as well, because the reference flow is known to be zero. Theoretical

simulations by AVL have shown however, that minimal fluctuations, i.e. convection, can

occur, if a temperature gradient exists along the pipe, resulting in flow velocities as high

as ±1 cm
s

. Another problem is the low-vibration storage of the measurement pipe.

To quantify the accuracy of the different measurements, the mean values are given in

Tab. 3.4. Fig. 3.9 gives an example of the four different flow velocity estimates for trans-

ducer pair T7T8. Due to phase discontinuities v̂ref (green) frequently jumps by ∼ 25 cm
s

.
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Figure 3.9: Short term zero flow estimates for transducer pair T7T8

T1T2 T3T4 T5T6 T7T8 T9T10 RMS

mean of v̂ref in [cm/s] 3 0.5 -7.1 -5.6 -9.6 6.1

mean of v̂L in [cm/s] -0.9 8.6. -9.1 -11 2.7 7.56

mean of v̂BW in [cm/s] -3.1 3.3 -15.5 -9.1 1.6 8.31

mean of v̂prop in [cm/s] -0.8 -0.9 1.7 1.1 1 1.14

Table 3.4: Standard Deviation of Zero-Flow Measurement Results of Different Sensor Pairs

The results in Tab. 3.4 have to be treated with caution since the averaging is only done

over 60 measurements for each transducer pair. As in the example of Fig. 3.9, the mean

of v̂ref depends heavily on the number of jumps within the measurement period. To get

a statistically reliable result longer measurements are needed.

However the results for the different flow estimation methods can still be compared. As

for the precision in Tab. 3.3, the accuracy of the proposed method is best. It is interesting

to see that the mean of v̂BW is greater than the mean of v̂L. Even more surprising both are

higher than the mean of the reference method. As stated above, the statistical significance

of this result is however questionable due to the small number of measurements.
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3.3.2 Long Term Measurement

In this section the results of a long term measurement are presented. Fig. 3.10 shows

the estimated flow velocity for sensor pair 9&10 over 3 days, estimated with the refer-

ence method (red) and the proposed method(blue). Measurements were taken every ten

minutes. The bias voltage was left unchanged to induce polarization and alter the trans-

mission behavior of the transducers. The measurement was performed in an office. It was

started at 5 p.m. on a Friday and stopped at 9 a.m. on a Monday to minimize vibrations

by moving people.
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Figure 3.10: Long term zero flow robustness - proposed method vs. reference method for Sensors

9&10

The phase ambiguities as well as the drift effects, due to changes in the transducer

parameters, lead to an error for the reference method in the range of ±0.25m
s

which is

in accordance with the results from the short term measurements. The proposed method

gets rid of the phase ambiguities and reduces the drift effects to ±0.01m
s
, achieving the

required precision.

Fig. 3.11 shows the transducer parameters over time, the upper 3 dB cut-off frequency

(top line), the center frequency (middle line), and the lower 3 dB cut-off frequency. Judg-

ing from the development of the bandpass characteristics of the upstream (blue) and the

downstream (red), it becomes evident that the assumption of reciprocity may not hold
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under all circumstances. Especially betwen t = 20 h and t = 30 h the difference between

upstream and downstream become apparent. These deviations are not random , as shown

below.
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Figure 3.11: Parameter drift of upstream and downstream identified systems for sensors 9&10

Even though the center frequencies of the transmission system drop roughly 20 kHz

and the bandwidth changes accordingly over the course of 3 days, the proposed method

still estimates the flow velocity with the requested precision. As opposed to the short term

measurements, the estimation errors of subsequent measurements are not independent.

The variance of the error is therefore not directly comparable with the variances from

Section 3.3.1, because for the long term measurement, the time varying bias is included

in the variance.

What appears to be random ripple, especially in the trace of the upper 3 dB cut-off

frequency is shown in detail in Fig. 3.12. The first idea that comes to mind, is that

the estimation of the cut-off frequencies is simply affected by noise. This idea can be

dismissed when looking at this figure. It can be seen that the deviations are not random,

but they occur both in the upstream and downstream measurement. Taking into account

the measurement interval of 10 minutes, the reason for this ripple could be changing

transducer characteristics, or artefacts from the MLS based system identification..

Fig. 3.13 shows the reciprocity measures ∆C , ∆B and ∆G as introduced in Section 2.1.3,

together with the proposed flow velocity estimate. At t = 0 a jump occurs due to a re-
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Figure 3.12: Close-up of Fig. 3.11, upstream and downstream 3 dB cutoff frequencies fH,u and fH,d

adjustment of the bias voltage right after the beginning of the measurement. ∆C and ∆B

are given as relative measures, i.e. divided by the average center frequency and bandwidth

respectively. Since the average of the group delay would be zero, ∆G is given as absolute

value.

Fig. 3.14 shows the upstream (blue) and downstream (green) identified magnitude

responses as well as the the division of the two magnitude responses (red), at the two

exemplary time indices t = 38 h (high reciprocity) on the left side and t = 50 h (low

reciprocity) on the right side. For ideal reciprocity the magnitude response of the division

should equal a straight horizontal line at 0 dB. The difference in the identified magnitude

responses is clearly greater in the case of non reciprocity (right side), which can also

be seen from the magnitude of the division. Fig. 3.14 also shows that the 3 dB cut-off

frequencies of upstream and downstream really differ, and that not only a ripple in the

passband is responsible for the difference. It is not clear why this non reciprocity occurs.

It is evident that there is a strong correlation between the reciprocity measures and

the flow velocity estimate. The regions where ∆C , ∆B and ∆G are small correspond to

regions where the flow velocity is estimated correctly to be zero. This is in accordance

with the observations made by [7, Deventer et al.] that non-reciprocity leads to bias in the

estimation of the flow velocity. Since the reciprocity measures are heavily correlated with

the accuracy of the flow velocity estimation, this knowledge can be used to extract the

correlated amount of the estimation error from the flow velocity estimate (Section 3.3.3).
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Figure 3.13: Flow velocity v vs. reciprocity measures ∆B , ∆C and ∆G
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Figure 3.14: Magnitude responses of Hu, Hd and Hu

Hd

It is however uncertain if the dependence between the reciprocity measures and the flow

velocity estimate is universally valid. E.g. it could depend on the transducer pair. At

least in a post processing step, once all measurements have been made, the resulting

flow velocity estimate can be checked for correlation with the reciprocity measures, and

corrected accordingly.
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For low flow velocities and constant temperatures, the deviations of the estimated flow

velocity occur only due the variations of ∆̂t. In the proposed method ∆t is measured

directly via the cross correlation method, so no additional information that is gained

by system identification is used. As shown in Tab. 3.2 the direct computation is still

significantly more precise than all other investigated methods. The varying reciprocity

may be linked to the initial state of the transducers, i.e. if they are matched to have the

same frequency response.

3.3.3 Post Processing with Reciprocity Measures

The correlation between the reciprocity measure ∆B (difference of bandwith in upstream

and downstream) and ∆t can be used to remove bias in the flow velocity estimate. The

left side of Fig. 3.15 shows the reciprocity measures ∆B and ∆G (group delay of Hu/Hd)

for the long term measurement of Section 3.3.2. Both measures have been normalized to

the same range to make them comparable, since the unit of ∆B is frequency and the unit

of ∆G is seconds. Almost perfect correlation can be observed. It is convenient to use ∆G

because it already has the same unit as ∆t.

On the right side of Fig. 3.15, ∆G is shown together with ∆t. The range of ∆G is at

least one order of magnitude higher than the range of ∆t.
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Figure 3.15: Correlation of reciprocity measures and ∆t

Fig. 3.16 shows on the left, that there is a linear dependency between ∆G and ∆T .

This dependency is modeled by a 1st order polynomial (i.e. a straight line) p(∆G). The

evaluation of the polynomial at the values of ∆G is shown on the right side of Fig. 3.16

(green). The result is very similar to the estimated transit time difference. The magenta

– 64 – Graz, November 15, 2011



3.3 Zero Flow Measurements

−8 −6 −4 −2 0 2

x 10
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

−8

∆
G

∆ t

 

 
∆

t
 vs. ∆

G

p(∆G)

(a) Relation of ∆G and ∆t and line fitting

10 20 30 40 50 60

−5

−4

−3

−2

−1

0

1

2

3
x 10

−8

time in [h]

∆ t in
 [s

]

 

 
∆

t

p(∆
G

)

∆
t
−p(∆

G
)

(b) Bias correction of ∆t

Figure 3.16: Using correlation of ∆t and ∆G to improve estimation of ∆t

graph is the estimated flow velocity, where the correlated part of ∆G is subtracted. Using

v̂prop,c = v̂prop − p(∆G) (3.6)

Fig. 3.17 shows the result of the bias correction. On the left hand side the proposed flow

velocity estimate v̂prop is compared to the bias corrected estimate v̂prop,c. On the right

hand side, the reference estimate v̂ref is included. It can be seen that the bias can be

significantly reduced. The accuracy of the resulting flow estimate is considerably higher

after bias correction.

It is beyond the scope of this work to investigate the relationship between the reci-

procity measure and the transit time difference estimate. There is great potential in

exploiting this knowledge, to make a real-time bias correction possible.
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Figure 3.17: Bias correction of flow velocity estimate
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4
Conclusion

”If you copy from one author, it’s

plagiarism. If you copy from two,

it’s research.”

– Wilson Mizner

After an introduction to transit time flowmetering, the theoretical background for

system identification with m-sequences was explained. The required methods for the

proposed algorithm have been described, especially group delay estimation and robust

transit time estimation. Theoretical considerations regarding performance bounds have

been made, and shown to help understanding the achievable precision.

The algorithm proposed in this thesis achieves the required absolute accuracy and

precision of ±1 cm
s

. The knowledge of how to characterize the transducers, along with

the idea of coherent phase measurement and the direct estimation of the transit time

difference ∆t are the most important steps that helped to achieve this goal.

Both short and longterm measurements show the advantage of the proposed method

as opposed to traditional algorithms. In spite of an artificial parameter drift caused by

polarization, long term stability can be achieved. The dependence on the parameter drift

of the transducers has been reduced by perpetual system identification and subsequent

band pass model fitting.
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4 Conclusion

The variations in the estimated flow velocity have been shown to be correlated with the

reciprocity of the transducers. The proposed algorithm is also applicable for other transit

time measurement setups, including other measurement signals, transducer characteristics

and geometries.

4.1 Future Work

Better understanding of the relationship and causality between reciprocity and the pre-

cision of the estimation of the transit time difference ∆t is yet to be gained, since this

knowledge is extremely helpful in correcting the estimation bias. Flow measurements with

reference flows and under different environmental conditions (i.e. temperature, pressure,

transducer mountings, etc...) should be performed to validate the proposed algorithm.

The bandpass model fitting with a butterworth filter does not allow for different gains

of the two transducer models. The least squares method can account for different gain

factors, at the cost of occasionally resulting in an unstable bandpass model. A compromise

between the two methods, could be beneficial.

Experiments with different signals and pulse shapes to improve the measurement preci-

sion of ∆t could improve even more the robustness for measurements at low flow velocities,

if the cross correlation properties of the signals are considered. Averaging the upstream

and downstream identified system and using only one model for group delay correction

could be beneficial in terms of robustness. Also the information of the actual reciprocity

should be used to reduce the estimation variance.

Measurement setups under real conditions should give insight into the rate of change

of the transducer parameter drift. With this knowledge the system identification could

be performed less often, making use of other signals in the meantime possible.
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