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Abstract
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This thesis presents and investigates a model based predictive control (MPC) approach to
control the heating of a thermal storage with a heat pump. Aside from achieving the
required temperatures in the storage the heat pump ought to maximize the utilization of

electricity produced from an on-site photovoltaic (PV) installation.

Predictions for the PV output and the electricity price are combined with characteristic
diagrams of the heat pump and a model of the thermal storage to determine an optimum
heat pump operation. The optimum is found through solving a convex optimization problem.
Different hydraulic circuits for the connection of the heat pump to the thermal storage are
investigated. The nonlinear charging process of the thermal storage required an iterative
MPC routine. The simulation results for the various hydraulic circuits are analyzed for a

defined set of parameters.

Comparing simulation results from the MPC case against results obtained with a hysteresis
control showed that the capacity utilization of the on-site PV — for driving the heat pump —is
significantly higher for the MPC case. In addition, the MPC case shows a higher degree of
compliance for all relevant temperature bandwidths. Finally, the robustness of the
developed approach was proven through a number of annual simulations, however, further
investigations and parameter optimization are required to allow for an assessment of the

MPC performance in terms of energy demand and comfort, on an annual base.



Kurzfassung

Titel: Modellbasierte pradiktive Regelung einer Warmepumpenanlage

Autor: Alexander Arnitz

1. Stichwort: Modellbasierte pradiktive Regelung
2. Stichwort: Warmepumpe

3. Stichwort: Thermischer Speicher

4. Stichwort: Photovoltaik Ertragsprognose

In dieser Arbeit wird ein Ansatz zur modellbasierten pradiktiven Regelung der Beheizung
eines thermischen Speichers mit einer Warmepumpe untersucht. Ziel der Regelung ist
einerseits die Einhaltung der erforderlichen Temperaturen im thermischen Speicher und
andererseits ein Uberwiegender Betrieb der Warmepumpe mit produziertem Strom aus

einer Photovoltaikanlage.

Der optimale Betrieb der Warmepumpe wird durch die Losung eines konvexen
Optimierungsproblems ermittelt. Dazu werden Photovoltaik Ertragsprognosen und
Strompreisprognosen mit Kennfeldern der Warmepumpe sowie einem Model des
thermischen Speichers kombiniert. Fir den Anschluss der Warmepumpe an den thermischen
Speicher wurden unterschiedliche hydraulische Schaltungen untersucht. Der nichtlineare
Beladungsvorgang des thermischen Speichers fiihrte zu einem iterativen Ansatz der
modellbasierten pradiktiven Regelung. Dieser Ansatz wurde fir die unterschiedlichen

hydraulischen Schaltungen in Simulationen analysiert.

Ein Vergleich der Simulationsergebnisse der modellbasierten pradiktiven Regelung mit den
Ergebnissen einer Hysterese Regelung zeigte einen erhdhten Eigenverbrauch des
Photovoltaik Ertrags und eine bessere Einhaltung der erforderlichen Temperaturen mit der
modellbasierten pradiktiven Regelung. Die Stabilitdt des entwickelten Ansatzes wurde in
Jahressimulationen getestet. Um den Energieverbrauch zu bewerten sind jedoch weitere

Untersuchungen notwendig.
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1 Introduction

1 Introduction

This work was conducted at the Institute of Thermal Engineering at the Graz University of
Technology as a part of the project "The Bat - The thermal battery in smart grids in
combination with heat pumps". It was carried out in cooperation with the company
Heliotherm, a manufacturer of domestic hot water (DHW) systems and heat pumps, and the
department of energy efficient buildings at the University of Innsbruck as designer of the

reference system.

The motivation for this project is a result of the continuous efforts to reduce CO2 emissions
through lower fossil energy consumption, in addition to the long term phasing out of the
nuclear energy program in Germany (see http://www.bundestag.de, 09.09.2014). Both of
them lead to a push of renewable energies such as solar and wind power. The energy
provided by solar and wind is, in contrast to conventional energy production, dependent on
exterior factors, like weather and location. This is a challenge, when it comes to the
integration into the grid and is referred to as smart grid.

Smart grids control the interaction between producers and consumers of electricity to find
an economic and energetic balance (see http://www.smartgrids.at, 09.09.2014). This can be
further improved by the use of energy storages which are able to compensate frequency
fluctuations caused by the increasing displacement between demand and production of
electricity. An overview of current storage methods can be found in “Uninterrupted
renewable power through chemical storage cycles” ( Gencer et al., 2014 ). A classification
can be made according to the target group of energy storages. Pumped storage plants and
air compression plants are, due to high investment costs, reserved for industrial purposes in
contrast to batteries and thermal storages which can also be used privately. At the moment,
pumped-storage plants are mainly used for this purpose. However, the possibilities for the
construction of these plants are limited; hence alternative concepts increasingly gain

significance.

Nowadays many single family houses are equipped with heat pump systems. Reasons for
this development are low operating costs, security of supply and environmentally friendly
heat generation (see www.waermepumpe-austria.at, 17.09.2014). Furthermore, heat pumps
based on traditional control strategies are already used as flexible power consumers in
restricted periods. These strategies, however, are unable to consider external input variables
such as economic factors. Therefore, there is still a need to further exploit the potential of

heat pumps using renewable energies.

This work deals with a predictive control approach for a heating system in combination with

a photovoltaic (PV) array of a typical single family home. Thermal storages are the mass of
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the building and the DHW storage. Within this work, the heating system is a monovalent
heat pump with ground as the heat source. The aims are to minimize the costs for heating
and to guarantee comfortable temperatures for the residents. For this, predictions for
electricity prices and weather forecasts to predict PV output are used. Other achievements
of conventional control strategies, like reasonable on and off cycles of the heat pump,

should be maintained with this new control approach.

To achieve this, a model to control the reference system has to be found. This work
investigates the combination of the heat pump with the thermal storage and the modeling
of external input variables. The modeling of the thermal storage was particularly challenging
because of the nonlinear convective heating process. The performance of the heat pump is
mainly influenced by the temperatures of the heat source and sink. To keep the problem
simple, the temperature of the heat source is assumed to be constant with the effect that a
model for the geothermal probe is not necessary. The weather forecast is an ideal forecast.
In real systems this is not possible. Therefore, some considerations about weather forecasts
are discussed. Finally, the simulation results for different parameter settings of the model

based predictive control (MPC) are analyzed and compared to the classical control concept.
This work is divided into the following chapters:

Chapter two gives an introduction into the fundamentals used in this work. At first the
principle of compression heat pumps and PV cells is explained. After a brief overview on fluid
dynamics and heat transfer, the concept of MPC is presented. This includes models used in
control theory as well as the model predictive control toolbox in MATLAB which is used for
solving the optimization problem. Finally, a short review about MPC in heating applications is

provided.

Chapter three deals with the reference system which is represented by a simulation model
implemented in TRNSYS. The chapter starts with an overview on the whole system followed
by some information about the thermal storage and the building. Then the heat pump is
explained with regard to the variable speed compressor, economizer and desuperheater.
Subsequently the implementation of the PV array in TRNSYS is discussed. Finally, the

external input variables (weather and electricity data) are dealt with.

Chapter four explores the modeling of the reference system used in the control algorithm
followed by the parameterization of the MPC. After dealing with the modeling of the heat
pump, by means of characteristic diagrams, the idea for the linear model of the thermal
storage is explained. This explanation starts with a nonlinear approach followed by the
introduction of the linear model used in the optimization problem. After this, the
calculations to adapt the nonlinear behavior to the linear model are explained. The

parameterization of the MPC is shown subsequent to the modeling of the disturbances.
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Chapter five looks at the simulation results for a defined set of parameters. The simulations
over a short period of two days and a long period of a year are compared between the MPC

and a classical control concept based on a hysteresis.

Chapter six summarizes the most important findings and provides insights into further

expansions.
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2 Fundamentals

This chapter deals with the principle of compression heat pumps and PV cells. In the
subchapter “Fluid mechanics and heat transfer” the basics used for the modeling of the
thermal storage are introduced. This is followed by an introduction into the concept of MPC.

Finally, some heating applications based on MPC are discussed.

2.1 Compression heat pumps

The information given in this chapter is mainly based on the lecture notes “Heat pump
technology” ( Rieberer et al., 2009 ). Compression heat pumps invert the natural heat flow
by raising heat to a higher temperature level with the use of external energy. Figure 2-1
shows the working principle of a heat pump. Heat at a low temperature level is extracted
from air, water or ground to evaporate the working fluid. Then the working fluid is
compressed to reach a higher temperature level. This heat can be used to heat buildings or
thermal storages. After the expansion of the working fluid through an expansion valve the

cycle is complete.

compression |
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Figure 2-1: General form of a heat pump cycle (http://www.beama.org.uk/en, 13.09.2014)

The efficiency of a heat pump is expressed by the coefficient of performance (COP) and
represents the current ratio of thermal output to electrical power input. Eq. 2-1 shows the
COP of the Carnot cycle. This is the maximum possible efficiency reached by a process with

reversible state changes.

TC T

COP, =
Carnot Tcr — Ter

Eq. 2-1

Although the Carnot cycle cannot be realized, the COP of heat pumps is mainly dependent
on the temperatures at the source and sink (see Rieberer et al., 2009). Air as heat source has
the disadvantage that the highest efficiency is reached in times of low heating demand. This
aspect is important because lower investment costs for a heat pump with air as heat source

4



2 Fundamentals

will be compensated by higher operating costs. The use of geothermal energy as heat source
avoids partly this mismatch. The Fraunhofer Institute for Solar Energy Systems (ISE)
investigated the COP of different heat pump systems (see Miara et al., 2011). The evaluated
COP values for given temperatures at the source and sink are shown in Figure 2-2.

7

Air/Water-HP DIN EN 14511
Brine/Water-HP DIN EN 255
m  Water/Water-HP

COP

F W10/W35

*Brine/Water-HP takes heat from drinking water

Figure 2-2: COP values of heat pumps divided by the heat source and certification standard ( Miara et al., 2011 )

Another quantity to measure the efficiency of heat pumps is the seasonal performance
factor (SPF). The SPF is a mean average value of the COP usually over one year and is defined

with Eq. 2-2 as the ratio of delivered heat Qy to consumed energy W, (see Rieberer, 2012).

Qn
SPF = — Eq. 2-2
Wel
The SPF for heat pumps with ground as the heat source and low temperature, heat

distribution systems lies around 4 or higher (see Rieberer et al., 2009).

The efficiency is also affected by the working fluid because each refrigerant has certain
pressure ratios for condensation and evaporation temperatures. Other thermodynamic
properties are the volumetric heating capacity which influences size and costs of the heat
pump, the temperature at the compressor outlet as a measure for the thermal stress of the
compressor and the condensing pressure which has to be considered in the design.
Furthermore, a good miscibility with the compressor oil, the possibility to use it as safety
refrigerant as well as the impact on the environment is important. The environmental
impact is characterized by the ozone depletion potential (ODP) and the global warming
potential (GWP).
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2.2 Photovoltaic arrays

Semiconductor materials, such as silicon, are able to absorb photons and release electrons.
This is called photoelectric effect, which is used in PV cells. Semiconductor material contains
unbound electrons known collectively as the conduction band. The bounded electrons form
the valence band. The electrons are able to switch between the two bands. Figure 2-3 shows
the cross section of a PV cell consisting of an n-doped side (e.g. phosphorus has one more
electron then silicon) which faces the sun and a p-doped side (e.g. boron has one less
electron then silicon) at the back. The p-n junction forms a strong, permanent electric field
at the junction of these two sides. In the presence of incident light, electrons are separated
from the atoms in the n-doped side and the p-n junction. This causes a flow of electrons
along the electric field. If the front side and the back side are connected to a load, a current
is produced (see Fry, 1998).

PHOTOVOLTAIC CELL
detail cross-section

Electric
current

Anti-reflection
coating

Figure 2-3: PV principle (http://www.sunbirdenergy.com/, 25.09.2014)

The output of a PV system depends mainly on the solar irradiation, the cell temperature
which is further affected by the wind velocity, the angle of incidence and the load resistance.
There are two operating modes possible, a connection to the grid or the operation in an
island mode. Figure 2-4 schematically shows the steps to feed electricity, produced by a PV

array, into the grid.

Gr, T, Ppe Ppcapp Pac
E—— PV MPPT Inverter Grid/HP

Figure 2-4: Steps to feed electricity, produced by a PV array, into the grid
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First of all, the total solar irradiation Gy meets the PV array under ambient conditions T,,
then the PV effect enables that direct voltage is available at the output. The maximum
power point tracker (MPPT) is installed to ensure that current and voltage deliver maximum
power. Before the electricity is fed into the grid, an inverter is used to switch from direct
current to alternating current, which influences the efficiency.

If a PV array is directly coupled to a load, the system will operate at the intersection of the
current-voltage-curve of the PV array and the current-voltage-curve of the load. The current-
voltage-curve of a load represents all possible operating points for this load. This equally
applies for the current-voltage-curve of PV arrays (see Eckstein, 1990). Figure 2-5 on the left
shows the current-voltage curve of the PV array. In the middle the current-voltage curve for
a load with constant resistance is shown. On the right the resulting operating point is shown,
which lies on the intersection of these curves. Furthermore the maximum power point

(MPP) of the PV array is illustrated. As already mentioned, a PV array with MPPT operates at
this point.

Generation [-V curve Resistive-load curve Curves intersection
A A A
- = =3 MPP
5 = =
T T T , .
o = = Operating
@, @ O point
Voltage [V Voltage [V Voltage [V
124 g

Figure 2-5: Operating point of a PV array directly coupled to a load ( Coelho et al., 2012 )

2.3 Fluid mechanics and heat transfer

This subchapter focuses on the basics for the modeling of the thermal storage. The specific

heat capacity of water as an incompressible fluid can be expressed in Eq. 2-3 (see Brenn et
al., 2010).

» =C Eq. 2-3

The one dimensional conservation equation used for the modeling of the thermal storage is
derived as shown in Figure 2-6. The heat flow across the boundaries can be divided into two

streams. Forced convection is caused by the constant fluid flow u,, and conduction is
caused by a temperature gradient.
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dx
Qcon:v,z Q(zom!.:mrdzn
—> —>
. 20 .
A;r and.a: or Qcond,m f-dax
— I

—

Figure 2-6: Control volume with heat flows

The energy balance for this control volume is shown in Eq. 2-4.

aQ

E = Qconv X + Qcond X Qconv xX+dx T Qcond X+dx Eq. 2-4

Using a Taylor series expansion for Q.wm,,x_kdx and Q'wnd,de leads to Eq. 2-5. This approach

is similar to that applied in “Thermal engineering 1” (see Hochenauer, 2012).

aQ — anonv + anond

ot 0x 0x Fa. 25
The amount of heat in the control volume can be written as Eq. 2-6.
Q=ch=prchdx Eq. 2-6
The convective heat flow is represented by Eq. 2-7.
Qeony =M cT =pAyup cT Eq. 2-7

The heat flow caused by conduction is based on the heat conduction equation according to

Fourier (see Brenn et al., 2010).
. aT
Qconda = —A Ay a Eq. 2-8

Substituting Eq. 2-6 - Eq. 2-8 for Q, Qcony» Qcona N EQ. 2-5 leads with p = constant to Eq.
2-9.

oT oT 0T

ot " ox 4o a9

Whereby a is called thermal diffusivity and is defined by Eq. 2-10 (see Brenn et al., 2010).

a=— Eq. 2-10
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The thermal storage is furthermore in heat exchange with the environment. This is the heat
loss and can be written with the heat transition coefficient and the area dA,, as shown in
Eqg. 2-11.

Quss =U (T =T,) | day, o, 211

Adding the heat losses to the energy balance, written in Eq. 2-9, leads to Eq. 2-12. This
equation is used for the nonlinear model of the thermal storage.

oT aT+ 9T U [ dA,, - ot
ot el 5 T4 a2 pc [av ( a) <

2.4 MPC in a nutshell

This chapter introduces the basic idea behind MPC, starting with a list of benefits and areas
of application. Then some possibilities to characterize optimization algorithms used in
control theory are discussed. After an explanation of the idea of the receding horizon and an
overview on models used in control theory, the model predictive control toolbox is

explained. Finally, an alternative to the model predictive toolbox is presented.

The concept of MPC is used since the 1970's mainly in process industries. A reason for this is
the ability to handle a large number of manipulated and controlled variables including
constraints as well as plants with large time constants or time delays. Other advantages are
that firstly, a cost function can be formulated and secondly, that predicted disturbances can
be considered (see Morari et al., 1998). The cost function is also called objective or quality
factor. Examples for the use of MPC in applications other than the process industry are the
control of locks in canal systems, heating and air conditioning systems or the control of

seasonal heat storage systems (see Grotschel et al., 2008).

MPC is based on an optimization algorithm. Optimization algorithms in control theory can be

separated as follows:

A real time optimization performed at each sampling instant is called online optimization. A
sampling instant specifies the times the controller is called upon. The time between two
sampling instants is called sampling interval. In contrast to an offline optimization where the
optimization is performed to obtain a control rule which can be implemented into the

controller (see Wimmer, 2004).

A classification can be made with regard to the dimension of the optimization variables. If
they are represented by scalars it is called parameter optimization and if the optimization
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variables are represented by trajectories within a time horizon, as it is in MPC, then it is

called dynamic optimization (see Hofer, 2014).

Algorithms can be distinguished with respect to the manipulated variable in direct or indirect
optimization. In an indirect optimization the optimization variables do not contain the
manipulated variable needed for the actuator. This means that the solution of the
optimization problem is further processed to obtain the manipulated variable. Direct
optimization, on the other hand, directly optimizes the manipulated variable needed for the

actuator (see Wimmer, 2004).

The last classification can be made according to the form of the cost function and the
constraints. In this context, the popular approach for a linear, time invariant system with
guadratic cost function, also called linear quadratic regulator (LQR) is specified. This is shown
in Egq. 2-13. Whereby ] represents an arbitrary cost function in quadratic form and the
system equations, which have to be fulfilled, are represented by a linear, time invariant state
space model (see chapter 2.4.2). This constellation leads to a optimization problem which
can be solved exactly (see Hofer, 2014). In this case the optimization is performed offline
with the advantage that the computational effort for the determination of the manipulated
variable is reduced.
min J

. . . Eq.2-13
with subject to the system equations a

The drawback of an optimization problem in the form of Eq. 2-13 is that inequality
constraints in the form of Eq. 2-14 and Eq. 2-15 are not considered. If the manipulated
variable u is not constrained, high or negative values may occur, which cannot be handled by
the actuator. If constraints in the form of Eq. 2-14 and Eqg. 2-15 are incorporated, an exact
solution of the optimization problem is no longer possible. The optimization problem has to
be evaluated online at each sampling instant. This leads to higher requirements on

computational power (see Wimmer, 2004).
Ymin =YV = Ymax Eq. 2-14

Upin S US Upgy Eq. 2-15

The cost function offers the opportunity to impose a certain behavior to a system. Hence the
cost function differs according to the requirements of the system. Eq. 2-16 and Eq. 2-17
show two cost functions for a system with one manipulated variable and one controlled
variable. The first cost function (Eq. 2-16) has the aim to minimize the difference between a
reference value y,.r and the controlled variable y. In the second cost function (Eq. 2-17) a
second term is added and consequently, two different aims are pursued. The second aim is

to reduce e.g. the energy consumption of the manipulated variable u. The aims may be

10
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contradictory. Therefore, a weighting factor w* is introduced to set a priority. For instance,
if the weighting factor is very high, the energy consumption has priority, and if the weighting

factor is zero, the energy consumption is not considered.

p—1
2
J= Z(J/iﬂ - yref,i+1) Eq. 2-16
i=0

1

P
/= [(}’i+1 - yref,i+1)2 + (wy ui)z] Eq.2-17

~
1]
o

2.4.1 The receding horizon

The principle of MPC is based on the idea of the receding horizon which is explained for a
system with one controlled variable y and one manipulated variable u in Figure 2-7. The
main objective is to reach the reference (or setpoint) y,.r with the controlled variable y
under the consideration of constraints on the controlled variable (Vi0x,Ymin) and the
manipulated variable (U4, Umin )- The MPC is called upon and obtains measured values

for y at the sampling instant k.

The lower part of the Figure 2-7 shows a trajectory of u. This trajectory consists of a set of
present and future control moves over the control horizon m. The control horizon can be
smaller than the prediction horizon, which stabilizes the system. If m < p the missing values

remain constant (see Bemporad et al., 2014).

The prediction of y over the prediction horizon p is shown in the upper part. This prediction
is obtained with the system equations (e.g. state space model of the plant) based on the
measured state and the input trajectory u. The optimization algorithm chooses different
trajectories of u and evaluates the impact on y until an optimal solution is found which
minimizes the cost function. Even though a trajectory of control moves is calculated only the
first value is set. This procedure is repeated at each sampling instant by shifting the control
and prediction horizon. The feedback is generated as each set of control moves is based on a

new measured output (see Morari et al., 1998).

For a controlled system based on a perfect model without disturbances the trajectory of u
shown in Figure 2-7 at the bottom would be sufficient to reach the predicted curve of the
controlled variable y shown in Figure 2-7 at the top. Whereas in reality this is rarely the case

for this a feedback is used to compensate this.
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Figure 2-7: The predicted curve of the controlled variable (a) within the receding horizon based on a set of manipulated
variables (b) within the receding horizon ( Bemporad et al., 2014 )

2.4.2 Models used in control theory

The name MPC suggests that a mathematical model is necessary to represent the physical
behavior of the system. For this different models can be used. Impulse or step response
models describe the behavior of the output in dependence of an impulse or step on the
input. These models are derived by measurements on the real plant. If a linear physical
model can be found state space models or transfer functions can be used (see Wimmer,
2004).

Eq. 2-18 - Eg. 2-20 show a continuous, linear, time invariant state space model with the
parameters dynamic matrix 4, the input matrix B, the output matrix C and the variables for

state x, input u and output y (see Hofer, 2009).

XxX=Ax+B-u Eq. 2-18
y=C-x Eq. 2-19
x(0) = x Eq. 2-20

State space models correspond to systems of ordinary, linear differential equations of first
order. If state space models are used in digital control loops they are discretized in time.
Discretized models correspond to a system of linear equations in the state variables between

two successive time steps (see Horn et al., 2004).
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The challenge in the modeling process is to find a linear model, as for problems based on
linear models high quality optimization algorithms are available. Despite this, many technical
systems are nonlinear and operate in a wide range. In those cases, a linear or linearized
model is not sufficient. For these situations there are methods for nonlinear systems
available. These methods are more complex because the optimization problem changes
from a convex quadratic problem to a non-convex nonlinear problem and there is no

guarantee that a global minimum can be found (see Camacho et al., 1999).

2.4.3 The MPC toolbox

The MPC toolbox of MATLAB is used to implement the MPC problem. The content of this
chapter is mainly based on the “Model Predictive Toolbox Users Guide” ( Bemporad et al.,
2014).

Measwred Distorbance

Moise
v v z
- L
Ma.nlpula.ted ? +
Setpoint Variable u
— - = Plant -
1 MPC © Plant to y
d Output
- — C -
¥ Unmeasured
Distirbance

Measured Output (Controlled Variable)
Figure 2-8: Schematic representation of a MPC application ( Bemporad et al., 2014 )

A general schematic representation of a single-input single output MPC toolbox application
is shown in Figure 2-8. The plant represents the process to be controlled. The output value
of the plant ¥ is the signal to be held at the reference value r = y,.r. Therefore y is
measured under the influence of measurement noise z that impairs measurement precision
and accuracy. The measured output y is the feedback signal for the MPC controller. When
the controller receives the measured output variable all state variables have to be updated.
Therefore a state estimation is necessary at the beginning of each sampling instant. If all
plant states are measured, the state estimation has only to consider measurement noise
effects. Other input variables of the MPC controller are the reference value y,.r and the
measured disturbances v. These values are trajectories within the prediction horizon and
can vary in time. Based on these input variables the MPC controller adjusts the manipulated
variable u by minimizing a cost function. The manipulated variable in addition to the
unmeasured d and the measured disturbances are the input of the plant. The difference
between measured disturbances and unmeasured disturbances is that the controller

receives measured disturbances in advance. This allows a feed forward compensation of the
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impact on the output signal. Unmeasured disturbances are present in almost every process

and are handled by feedback compensation.

Bellman's principle of optimality states that infinite horizons ensure stability, as for an
infinite horizon at each sampling instant the same optimization problem is solved. This is due
to the fact that no additional information comes between two successive optimization
problems because they consider the same infinite horizon. In finite horizons optimizations
are based on different problems because each optimization is performed above a receding
horizon and the behavior behind is not considered (see Maciejowski, 2000). The MPC
toolbox provides the possibility to set terminal constraints or terminal weights to achieve
closed loop stability for the LQR. For problems with constraints this is not possible.
Consequently, the constraints, weights and equal concerns for relaxation (ECR) factors have
to be chosen to ensure stability.

Constraints on manipulated and output variables defined for a MPC toolbox application may
be hard or soft. If a hard constraint is violated the controller assumes the system as
unstable. Such a violation occurs under certain conditions (e.g. an unexpected large
disturbance). The MPC toolbox handles this by specifying a degree of softness for each
constraint. The constraints are relaxed by introducing the slack variable € with the
corresponding ECR factors V. V should be chosen large for a soft constraint. If V is equal to

zero the constraint is defined as a hard constraint.

For the further investigations the denomination y(k + i+ 1|k) is interpreted as the
predicted output at time k + i + 1 based on the actuator u(k + i|k) obtained at the current
sampling instant k. The optimization problem solved by the MPC toolbox uses the cost

function shown in Eq. 2-21 and handles constraints in the form of equation Eq. 2-26.

p—1
2
i=0

Eq. 2-21
2
+ (wiA” Au(k + ilk)) + (qu u(k + ilk))z] + peez}

The optimization algorithm chooses Au(k|k), ...,Au(m — 1 + k|k), € to minimize Eq. 2-21
above the whole prediction horizon. The first term represents the deviation of the output
variable from the reference. The second term of the cost function considers the alteration
rate of the manipulated variable. The third term minimizes the manipulated variable. The
last term penalizes the violation of the constraints. The first three terms are weighted with
the non-negative weights wiA“,wi“,wiy. As already mentioned a high value of w raises the

importance of the corresponding term to the overall performance.
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Eq. 2-22 - Eqg. 2-24 define lower and upper bounds on the corresponding variables. Eq. 4-26
ensures that the manipulated variable remains constant for h = m, ...,p — 1. This is relevant
if the control horizon m is smaller than the prediction horizon p. Eq. 2-26 defines a positive
value for the slack variable.

Upin (0) — €V, () S ulk +ilk) < Upgy (D) + €Vigx (D) Eq. 2-22
Aty (i) — €VAYL (i) < Aulk + ilk) < Aty (i) + €VAL (D) Eq. 2-23
Ymin () = €V () S y(k + 1+ 11k) < Ymax (0) + Ve () Eq. 224

Au(k + hlk) =0 Eq. 2-25
€e=0 Eq. 2-26

2.4.4 Alternatives to the MPC toolbox

The MPC toolbox provides a valuable framework to solve optimization problems in MATLAB.
For this, the parameters explained in the previous section are arranged in matrices which
can be handled by a solver for quadratic programs. But this also leads to restrictions on the
form of the optimization problem. One alternative to avoid these restrictions would be to
set up the matrices manually for a suitable solver which is available in MATLAB. This,

however, is a time consuming task.

Another alternative, which is free of charge to use and openly distributed, can be found in
YALMIP. Further information about the license can be found in the “YALMIP Wiki” ( Lofberg,
2014 ). It is a toolbox which can be used in MATLAB for advanced modeling and the solution
of convex and non convex optimization problems. YALMIP can be used for a wide range of
applications. For instance, it can be used for simple parameter optimizations as well as for
MPC (see Lofberg, 2014).

One interesting application can be found in hybrid MPC. Models for hybrid MPC are based
on linear time invariant models in addition to logic operators. For instance, if the behavior of
a system can be described by two state space models depending on the state or input
variable. The optimization problem can be expressed as Eq. 2-27 - Eqg. 2-31 (see Lofberg,
2014).

min] Eq. 2-27
x=A'x+Bi'u ifu>0 Eq. 2-28
x=A,-x+B,-u ifu=0 Eq. 2-29

Ymin =Y < Ymax Eq. 2-30
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Upin S US Upgy Eq. 2-31

This method is highlighted, as it offers another possibility to model the thermal storage
described in chapter 4.2. It has one essential drawback, however, with increasing order of
the system or prediction horizon the number of possible solution increases significantly and

thus the computational effort.

2.5 Predictive control for heating applications — A short review

The most common traditional control strategy for central heating applications is based on a
heating curve to represent the relationship between the ambient temperature and the flow
temperature. The connection between the measured ambient temperature and the flow
temperature as controlled variable is established by a heating curve. This curve may vary in

time to enable a night reduction (see Thron, 2001).

Thron (2001) starts with a good overview on different control concepts for predictive
heating applications. She investigates an adaptive MPC approach for a building to improve
the use of solar heat gains. The heating system is not considered in her work. The approach
is compared to the traditional control strategy by simulations in different building
constructions. The results show a reduction of heating energy consumption in lightweight

construction of approximately 3% and in massive construction of approximately 7%.

Wimmer (2004) investigates three different MPC approaches for a building with integrated
heat pump system. The heat pump with air as heat source is equipped with a compressor of
constant speed. The model for the building is based on a physical state space model of third
order. The state variables are return flow temperature, the temperature of the floor and the
room temperature. The heat pump is modeled according to a nonlinear model of first order
with the flow temperature as state variable. The identification of the parameters for the
models is performed offline with the System Identification Toolbox in MATLAB. This is a non
adaptive approach because the parameters are not updated during the operation. Two MPC
approaches are based on indirect optimizations which optimize the required heat flow.
These are the LQR without constraints and the linear quadratic MPC with constraints. In
these concepts the heat flow provided by the heat pump is determined by a characteristic
diagram. The third concept is based on a nonlinear approach and directly optimizes the
manipulated variable of the heat pump by using the model of the heat pump. The LQR
algorithm was implemented and tested in a real system. The COP is considered as a function
of the ambient temperature and the temperature at the heat sink is not considered. This
enables an optimization of the electrical energy. For the electricity prices Wimmer (2004)
only makes a distinction between low tariff and high tariff times. In the simulation the MPC

approaches are compared to a traditional control strategy. The results show an
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improvement with the innovative concepts, especially in terms of economic costs. The
economic costs can be reduced by 13% and the electrical energy consumption is reduced by
3%. The nonlinear approach, despite higher technical effort, does not show significant
improvement compared to the linear quadratic MPC.

The work of Bianchi (2006) is based on the results found by Wimmer (2004). He improved
the approach with an online identification algorithm to determine the physical parameters
of the building during the operation. The heating system is represented by a heat pump with
ground as heat source. Furthermore, the control concept is expanded for a combined
regulation of a building in combination with a thermal storage for DHW preparation. The
thermal storage is regulated with a classical hysteresis that a physical model is not
necessary. The control concept is compared and emulated in a test bench. The results show
economic cost reductions of 10-20% through shifting the operating time of the heat pump in
low tariff periods. Furthermore, longer operating periods of the heat pump are achieved(see
Bianchi, 2006).

The work of Pichler et al. (2014) investigates a MPC approach for a solar thermal
combistorage. The storage is heated with solar yields in addition to auxiliary heating. The
reference system is represented in a simulation model implemented in TRNSYS. The model
used for control is represented by a linear time invariant state space model. The
optimization algorithm can be classified as direct optimization. The heat flow due to solar
yields is interpreted as disturbances. Such disturbances are derived by a simulation, based
on predicted weather data. Load profiles take DHW demand and SH into consideration. The
results demonstrate the strength of the MPC approach for months where relatively high

irradiance meets an according SH demand.
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3 Reference system implemented in TRNSYS

This chapter introduces the reference system of the project “The Bat” to derive comfort
limits for the design of the control unit and to guarantee a correct operation. At first the
software tool TRNSYS is presented, followed by an overview of the whole system to show
how the components are connected. Then the components of the system are explained with
special focus on the thermal storage, the heat pump and the PV array. Finally, the weather

and electricity data is analyzed.

TRNSYS is a complete and extensible simulation environment for the transient simulation of
systems. It is mainly used for the design and simulation of buildings and their equipment.
This includes control strategies, occupant behavior, weather data as well as a wide range of
components in connection with heating systems. The individual extensibility is one reason
why TRNSYS is such a powerful tool ( TRNSYS, 2012 ). A TRNSYS model for a compression
heat pump has been developed at the Institute of Thermal Engineering at the Graz

University of Technology (see Heinz et al., 2014).

The whole system is shown in Figure 3-1. It consists of a heat pump, a thermal storage, a PV
panel and a building model. External input variables are a DHW load profile and weather
data. The heat pump is illustrated in a simplified form to show the external connections. The
internal cycle of the heat pump is investigated in chapter 3.3.2. The heat pump is used to
heat up the storage or to heat up the building, these two operating modes are controlled by
the valves V1 and V2. The building can only be heated with the condenser c, the heat flow
of the desuperheater d is in both modes injected into the top node. If space heating (SH) is
not necessary the heat flow of the condenser is injected into the middle node of the thermal

storage. The evaporator e is connected to the heat source.

The classical control approach is realized with an ON/OFF control for the heat pump in the
two operating modes whereby the heating of DHW has priority against SH. The reference
value of the flow temperature for the storage is 45 °C. To hold this temperature at the
connection to the DHW station a volume has to be defined which is able to fulfill the daily
demand of DHW (see chapter 3.1). The classical control is based on a hysteresis to hold this
volume of the storage above the temperature limit (see chapter 3.1). The reference value of
the return temperature for the floor heating is calculated according to a heating curve (see
Brychta, 2014).

The MPC application designed in this work is used to control the heating process of the
thermal storage. The heating requirements of the building are not considered in this MPC

application.

18



3 Reference system implemented in TRNSYS

AN e
PV
M1 7 ‘ N MPPT Inverter
h2
TS1 :
dp3o ° dp2i
DHW T§2 ; @
PZENN |
2 dpri e
V2 -
TS4 c
W HP
V1
TS5
dp3i o dplo
P2 P1

Figure 3-1: Reference system

Table 3-1 is an overview of the simulation results collected over one year, based on the
classical control concept. The values fit a typical single family home with a living area
of 160 m?. Important quantities are the SPF in combination with the heating demand Q.
The heating demand is the sum of the DHW demand Qpyy, the SH demand Qgy and the
heat losses of the thermal storage Qg ,ss. Further heat losses occur in the heat distribution
system. These values are not listed in Table 3-1. The heating demand has to be covered by
the thermal output of the condenser Q. and the desuperheater Q,. The work required to

drive the heat pump W¢,,,,,, can consequently be calculated with Eq. 3-1.

W, _ QH _ Qc + Qd
Comp = ¢pp SPF

Eq. 3-1

As already mentioned, the SPF for heat pumps with ground as the heat source and low
temperature, heat distribution systems lies around 4 or higher (see Rieberer et al., 2009). In

this project an innovative heat pump is used, so a SPF of 5.07 is achieved.

Although the PV array is connected to the grid via the inverter, its main purpose is to drive
the heat pump. The MPPT ensures that the PV array operates at the maximum power point
(MPP). The PV array has a total surface of 13.14 m? which faces south with an angle of 45°.
The PV output Wpy and the tilted total irradiation Gr 45 in Table 3-1 are referred to this
area. The PV output does not contain losses caused by the inverter. The comparison of the
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PV output with the electricity requirement of the heat pump can be interpreted as a
motivation of the MPC.

Table 3-1: Characteristic quantities of the system based on an annual simulation

Quantity [kWh] [kWh/m?]
Weomp 2193 14
Q. 10253 64
0, 871 5.4
Qi 2142 13.4
Osh 7694 48
s toss 1230 7.7
Wpy 3579 272
Gr s 45 20856 1587

3.1 Thermal storage

This chapter investigates the thermal storage. At first some aspects for hot water
preparation are introduced. After the discussion of a charging process, the positions of the

sensors, and the temperature limits are explained.

Central systems for hot water preparation are available as instantaneous water heating
systems or hot water storage systems. In instantaneous water heating systems the storage
water is separated from the drinking water. This has the advantage that higher hygienic
standards can be achieved because the growth of legionella is avoided. The thermal storage
used in this work represents the type ZH-S5101 distributed by Heliotherm (see Brychta,
2014). This is a thermal storage with a fresh water counter flow heat exchanger and a total
volume of 500 [ (see Heliotherm, 2014). Figure 3-2 shows a schematic representation of the
thermal storage without the heat pump. The instantaneous water heating system is
connected to the cold water source and the hot water distribution system. If a DHW draw off
occurs the circulation pump feeds water through the heat exchanger for instantaneous
heating of the cold water. The temperature distribution inside the storage is stratified. If the
return temperature into the storage is lower than the temperature at the bottom of the
storage or higher than the temperature above the inlet, a mixing process caused by natural

convection occurs.
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Figure 3-2: Heliotherm fresh water system (http://www.heliotherm.com, 17.09.2014)

The thermal storage is connected to the heat pump through the condenser and the
desuperheater (see Figure 3-1). The mass flow through the heat exchangers is regulated to
reach a certain temperature difference between the inlet and the outlet (see chapter 3.3.2).
The left picture of Figure 3-3 shows a simulation example of the charging from 30 °C
to 55 °C in a thermal storage with an external heat exchanger. The recorded temperatures
refer to the numbering of the nodes shown in Figure 3-1. The cold water is taken from the
bottom. It is additional heated for 5 K and injected at the top of the thermal storage. The
effect of stratified charging is pronounced at the first two stages. For the other stages this is
not so clear because of mixing effects and the thermal inertia of the thermal storage. This

behavior was also observed by Bianchi (2006) through measurements in a real storage.

DHW must be available at every time. For this a volume has to be defined which is able to
fulfill the daily demand of DHW. This volume is set to the half of the whole thermal storage
volume (see Brychta, 2014). The sensor position to control the temperature of this volume
can be calculated with Eq. 3-2. hg py represents the height of the sensor position in the
thermal storage and hg represents the total height of the thermal storage. The right picture
of Figure 3-3 shows an example of the discharging of the thermal storage for an arbitrary
load.

hs pw = > hg Eq. 3-2
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Figure 3-3: Simulated charging and discharging of the thermal storage with an external heat exchanger connected to the
bottom and the top (without the desuperheater), the temperatures refer to the nodes shown in Figure 3-1

As a general rule the temperature of the DHW should be chosen as low as possible in order
to achieve a high efficiency of the heat pump. For a heat exchanger with instantaneous
water heating system a temperature of approximately 45 °C is sufficient. The classical
control uses a hysteresis to switch on if the temperature at the sensor position falls below
45 °C and switches off if the temperature exceeds 50 °C (see Brychta, 2014).

Temperature limits of the thermal storage are necessary to avoid vaporization and to
prevent damages. These limits cannot be achieved with heat pumps. It would be crucial,
however, if an auxiliary heater or a solar system is installed. For the control of the limits for
the heat pump a sensor should be placed at the top or bottom of the thermal storage (see
chapter 3.3.2).

Table 3-2 shows evaluated quantities of the thermal storage based on an annual simulation.
These are the heat losses to the ambient Qs,loss and the temperatures at the nodes t,; of

the thermal storage (see Figure 3-1).

Table 3-2: Characteristic quantities of the thermal storage based on an annual simulation

Quantity mean + std.dev. min max

Qs10ss [KW] 0.14 +0.02 0 02
ts1 [°C] 43+ 2 20 =0
tsz [°C] 40 + 3 20 50
ts3 [°C] 3943 20 0
tsq [°C] 2945 20 49
tss [°C] 29+5 20 49
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3.2 Building

This chapter introduces a few aspects concerning the building, as this work mainly focuses
on the thermal storage. As already mentioned the building represents a single family home.
Buildings with integrated heat pumps are often characterized by high energy efficiency and
are equipped with under floor heating systems. Such systems have a good storage capability
in comparison to radiators and the return temperature for SH is lower, resulting in a positive

aspect for the COP of the heat pump.

Besides the thermal storage, the building represents the second storage and is also directly
coupled to the heat pump. The building has two floors. To keep the temperature constant
inside the building the heating requirements have to cover the losses through windows,
roof, basement and the outside walls reduced by heat gains. The losses depend on the
thermal insulation and the ambient temperature. Heat gains arise through solar irradiation,
technical equipment, artificial light or high occupancy. For the ambient conditions the

weather data of Innsbruck is used.

Table 3-3 shows evaluated quantities of the building based on an annual simulation. These
are the room air temperatures in the ground floor t,; sr and the first floor t,; 155, the
operative room temperatures of the ground floor t,, ¢ and the first floor t,, 15, and the
SH demand of the ground floor QSH_GF and the first floor QSH,lstFl.. The maximum values of
the SH demand in Table 3-3 are outliers and appear for short periods only. The operative
room temperatures which are listed in Table 3-3 are an output value of the simulation model
of the building implemented in TRNSYS. The operative room temperature is relevant for the
thermal comfort. Eq. 3-3 approximates this temperature with the room air temperature t,;,,
the surface temperature t,,,r of the total wall area and the heat transfer coefficient for the
heat convection a,,,,, and the fictitious heat transfer coefficient of the heat radiation ;4
(see Rieberer, 2012).

Aconv Lair + Arad tsurf

to

IR

Eq. 3-3
P
X conv + Arad

Table 3-3: Characteristic quantities of the building based on an annual simulation

Quantity mean + std.dev. min max
tairr [°C] 23+13 18 28
tair 1sert. [°C] 22+13 18 27
top.6r [°C] 23+ 1.2 18 28
top strl. [°C] 23