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Abstract

Investigating cortical involvement in motoric functions could lead to im-
portant progress in the research of motor impairment after brain injury.
Studying brain dynamics during full-body movements, including gait, is a
great challenge due to limitations of neuroimaging methods.
This thesis provides multiple achievements towards the development of an
EEG based neuroimaging tool capable to investigate cortical dynamics dur-
ing actual, full-body movements. These achievements include, the capability
to consider individual head and brain geometries, the reduction of muscular
artifacts during movements and the integration of motion tracking data for
modeling cortical sources of repetitive movements.
Furthermore, these innovative neuroimaging techniques were utilized for
modeling the neurophysiology of repetitive movements. More specifically,
EEG source oscillations were studied during gait and repetitive finger
movements in young healthy volunteers. In the data analysis, sustained
and movement phase-related EEG source amplitude modulations were
separated, based on the movement sequences. Interestingly, the sources
of sustained- and movement-phase related activities were identified to be
different. Therefore, I suggest that these two phenomena represent two dif-
ferent types of large-scale networks. First, movement state related networks,
which upregulate cortical excitability in areas, specific to the body part that
is moved. Second, movement-phase related networks, which modulate their
frequency-specific synchrony in relation to the movement sequences. These
networks may be related with other functions, including top-down control,
prediction and integration of sensorimotor information.
The distinction of different large-scale cortical networks introduced in this
work facilitates the interpretation of EEG sources during repetitive move-
ments. The methods and findings of this thesis may contribute to further
progress in basic and clinical neuroscience research as well as to the im-
provement of Brain-Computer Interfaces.
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Zusammenfassung

Die Untersuchung kortikaler Einflüsse auf die Ausübung motorischer Funk-
tionen kann zu Fortschritten in der Erforschung von motorischen Beeinträch-
tigungen führen, welche als Folge von Gehirnschädigungen entstehen
können. Die Erforschung von Gehirnaktivität während der Bewegung des
ganzen Körpers, u.a. der Gangfunktion, ist allerdings eine Herausforderung
die aus den methodischen Möglichkeiten bildgebender Verfahren resultiert.
Diese Doktorarbeit enthält einige Beiträge zur Entwicklung von EEG basieren-
den, bildgebenden Verfahren, die die Untersuchung der Gehirnaktivität
während Körperbewegungen ermöglichen. Diese Entwicklungen beinhal-
ten die Berücksichtigung individueller Geometrie des Kopfes und Gehirns,
die Unterdrückung von Muskelartefakten und die Integration von Bewe-
gungstrajektorien für die Modellierung der kortikaler Quellen von repeti-
tiven Bewegungen.
Weiters wurden diese innovativen Technologien dafür genutzt, um die
Neurophysiologie während repetitiven Bewegungen zu modellieren. Hi-
erzu wurden die EEG Quelldynamiken des Ganges sowie während rhyth-
mischen Fingerbewegungen untersucht. In der Datenanalyse wurden an-
dauernde von bewegungsphasen bezogene Modulationen der EEG Quel-
lamplituden unterschieden. Interessanterweise wurden die Quellen der
beiden Phänomene als unterschiedlich identifiziert. Diese Ergebnisse lassen
vermuten, dass die beiden Modulationstypen unterschiedliche makroskopis-
che kortikale Netzwerke repräsentieren. Zum einen, Bewegungszustands-
Netzwerke die die kortikale Erregbarkeit in Gehirnregionen spezifisch zum
bewegten Körperteil erhöhen. Zum Anderen, bewegungsphasen bezogene
Netzwerke, die ihre Frequenz-spezifische Synchronizität in Relation zu den
Bewegungssequenzen modulieren. Diese Netzwerke könnten mit anderen
Funktionen in Verbindung stehen, wie etwa der hierarchischen Kontrolle,
sowie der Prädiktion und Integration sensomotorischer Information. Die
Unterscheidung verschiedener kortikaler Netzwerke, die in dieser Arbeit
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eingeführt wurde, erleichtert die Interpretation von EEG Quellsignalen
während repetitiven Bewegungen. Die Methoden und Ergebnisse der Arbeit
können zu weiteren Fortschritten in der neurowissenschaftlichen Grundla-
genforschung sowie in der klinischer Forschung, als auch zur Verbesserung
von Gehirn-Computer Schnittstellen beitragen.
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1. Introduction

1.1. A brief overview of Brain Mapping

In accordance with the Medical Subject Headings (MeSH) vocabulary,
Brain Mapping is defined as ”Imaging techniques used to colocalize sites of
brain functions or physiological activity with brain structures.”1. There are
two types of signals, which are mainly used for studying brain functions.
First, hemodynamic response signals, which are suggested to represent
energy consumption of brain cells in a certain region. These signals are
recorded by functional magnetic resonance imaging (fMRI) [1–3] and func-
tional near-infrared spectroscopy (fNIRS) [4, 5].
Second, electrophysiological signals which directly record electrical dy-
namics of single neurons or neural populations. Neural population signals
can be recorded invasively as local field potentials (LFP) and, on a larger
spatial scale, electrocorticography (ECoG). LFP are capturing fluctuations of
membrane potentials. ECoG signals are recorded on the cortical surface and
as spatio-temporal summation of underlying LFP [6–8]. The non-invasive,
extracranial counterpart to ECoG signals can be recorded as electroen-
cephalography (EEG) at the scalp [9, 10]. Magnetoencephalography (MEG),
in distinction to EEG, records the magnetic fields originated by the dynamics
of electrical currents in the brain [11, 12].
The temporal resolution of electrophysiological recording techniques is
much higher in comparison to fMRI and fNIRS recordings. While the
temporal resolution is in the milliseconds range for electrophysiological
recordings, it is >1 second for fMRI and fNIRS. However, fMRI is the
most frequently used brain mapping technique these days. An important
advantage of fMRI is it’s high spatial resolution, which is at around one

1MeSH Unique ID: D001931.
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millimeter. Further, using fMRI recordings it is possible to scan activity of
the whole brain, including deep structures. In other words the coverage of
these recordings is high.
Electrophysiological recording techniques largely differ in their spatial reso-
lution. LFP represents the electrical dynamics of about 1000 neurons within
a radius of about 140 µm [7] to the electrode tip. On the other hand, the
spatial resolution of the EEG is typically 1 cm, capturing the summed elec-
trical activity of 10 to several 100 million of neurons [13]. However, there
is a trade-off between spatial resolution and coverage. For example, LFP
are capable to record nearby neuronal activity in great detail. But naturally,
they are spatially limited to a very specific brain region. That is, the location
of the electrode tips. However, using high density EEG it is easily possible
to record brain activity from many brain regions simultaneously. In compar-
ison to invasive recordings, the signal quality of EEG recordings is much
lower. The lower signal to noise ratio is largely caused by the comparably
greater distance of the EEG electrodes to the neuronal sources of the signal.
The electrical field monotonically decreases with increasing distance to their
sources. More precisely, it is distorted by the propagation through different
kinds of tissues associated with different electrical conductivities.
Based on the above mentioned properties of each brain mapping technique
it appears that every recording method has advantages and disadvantages.
Therefore, the choice of a brain mapping technique is highly dependent
on the research question itself. In this work, we aim to study the cortical
dynamics linked to body movements. In the next section, I argue why high
density EEG recordings in combination with inverse source reconstruction
methods is the brain mapping technique of choice in this thesis.
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1.2. EEG: A brain mapping technique capable to
study body movements

The majority of recent brain mapping studies are using fMRI. For studying
body movements in humans however, fMRI has some critical limitations.
The tube of MRI scanners restricts subjects in their movements. Further,
subjects have to lay in the MRI scanner having their heads fixated. Any head
movement during fMRI measurements is lowering it’s signal quality and in
the worst case is causing misleading results. Due to the heavy weight and
large dimensions of MRI scanners, this setting restricts mobile applications.
Therefore, fMRI, despite it’s great usefulness, is not well-suited for studying
cortical dynamics in humans during body movements, e.g. walking.

For studying cortical dynamics linked to body movements, EEG brain
mapping provides several advantages. First, EEG recordings provide high
temporal resolution in the milliseconds range. This high temporal resolu-
tion enables to directly investigate cortical signals in relation to movement
kinematics and trajectories. Second, EEG signals provide many features,
e.g. oscillations in distinct frequency ranges that are suggested to signify
different large-scale neuronal interactions [14–16]. Because of these manifold
features and due to the good coverage, EEG recordings are well-suited for
investigating different cortical systems. Third, EEG recording systems, due
to their lightweight, enable ambulatory experimental setups, which allow
studying body movements including walking [17, 18].
Further, advances in EEG recording hardware resulted in the availability
of compact, high-density (64 or more electrodes) systems which can be
set up and mounted in a reasonable amount of time. High-density EEG
recordings in combination with advanced computational methods for signal
processing are leading to the utilization of EEG as a brain imaging tool [19].
To do so, information from different data sources has to be integrated in
computational models. For studying body movements such modeling is
twofold. First, computational modeling is needed to reconstruct cortical
sources from EEG scalp recordings [19–22]. Based on these reconstructed
EEG sources a second modeling step is necessary to directly relate specific
EEG phenomena to the movement parameters of an experiment.
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To reconstruct cortical sources, high-density EEG signals are combined with
their electrodes’ locations and a realistic model of the head. This model
considers the geometries and conductivities of different tissues of the head
(e.g. grey and white brain matter, cerebrospinal fluid, skull, skin). The
tissues’ geometry can be obtained from individual structural MRI scans.
Head models are used to determine how the electrical field propagates
from cortical populations to the EEG recording sites. This relationship can
be computationally inverted using physiological constraints, thus allowing
reconstruction of the cortical dynamics directly from EEG recordings. In
summary, advanced EEG source reconstruction techniques integrate infor-
mation from high-density EEG recordings and sophisticated head models
into brain images at a millisecond temporal resolution.
For studying body movements, the reconstructed cortical dynamics can
be related in a second modeling step to the movement parameters of an
experiment. Traditionally, brain imaging was restricted to fixed setups as a
result of above mentioned reasons. Recently, brain imaging was enabled also
in mobile experimental setups, because of the availability of portable EEG
recording systems along with methodical progress in EEG brain imaging
methods [17, 18]. These methodical developments crucially include sophis-
ticated artifact handling. The novel possibilities in mobile brain imaging
implicate also additional variables, which have to be considered in the
experimental design with respect to brain imaging. For instance, movement
kinematics could be used as regressors in a model to determine cortical
sources which correlate significantly with these kinematics. Another exam-
ple would be to consider the position of a subject during brain imaging in a
spatial navigation experiment.
The interpretation of the resulting EEG brain images is highly dependent
on the EEG phenomena which are studied and respectively are mapped
in these images. These phenomena and the corresponding theories are
discussed in the next section.
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1.3. EEG phenomena, what do we map?

1.3.1. The genesis of the EEG

EEG signals are fluctuations of the electric potentials recorded at the scalp.
These signals are mainly generated by the spatio-temporal superimposition
of postsynaptic potentials (PSP) of neuronal populations in the cortex. PSPs
are alterations of the neuronal membrane potentials, caused by successful
synaptic transmissions. Excitatory postsynaptic potentials (EPSP) cause a
depolarization of the membrane potential, while inhibitory postsynaptic
potentials (IPSP) cause a hyperpolarization. Therefore, the former increase
the spiking probability, the latter decrease it.

cortical
pyramidal cell

initial segment

Figure 1.1.: The genesis of EEG fluctiations in dependence of different PSP. Modified from
Zschocke [23] with permission from Springer.

Relevant for the genesis of EEG signals are the extracellular ionic current
shifts resulting from the PSPs. EPSPs lower the number of positively charged
ions located beneath the synapse. Relative to inactive membrane parts,
the extracellular potential at the synapse is getting electrically negative
and consequently forming an electrical dipole. The equivalent applies for
IPSPs with inverted signs. Therefore, the orientation of these dipoles is
dependent on the type of the PSP (excitatory/inhibitory) as well as the
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position of the synapse at the neuron. For instance, an EPSP at the apical
dendrites of a neuron will cause the same dipole orientation as an IPSP at
the soma. This relationship is also illustrated in Figure 1.1. The synaptic
activity of one single neuron, naturally cannot be detected in such large-scale
recordings as EEG. At the cellular level, the extracellular field results from
the activity of up to 10

4 synapses for one neuron. Since EEG is recording
the activity of millions of neurons, these electrical fields are summed up
additionally in the extracellular space for a large cortical population. To
cause a macroscopic fluctuation of the scalp potential, which can be recorded
as EEG, the synchronous activity of spatially aligned structures is necessary.
Pyramidal neurons in the grey matter of the brain are largely spatially
aligned, perpendicular to the cortical surface. Additionally to the spatial
alignment the extracellular dipoles, they have to be electrically aligned at a
given time point. Therefore, a fluctuation of the scalp potential depends on
the temporal (synchrony) and spatial alignment of underlying large-scale
neuronal populations. [10, 13, 23]

1.3.2. EEG oscillations

The observation of oscillatory phenomena in EEG recordings is directly
linked with the discovery of the EEG itself. Prominent waves with a fre-
quency between 8 and 13 Hz recorded over occipital areas were firstly
described and therefore, were named ’alpha’ waves. Large alpha amplitudes
appeared when subjects closed their eyes and diminished, when the eyes
were opened again [9]. Based on these findings, EEG oscillations are classi-
cally categorized into different frequency bands, that are, delta (0.5-4 Hz),
theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (>30 Hz). These
different EEG oscillations were roughly associated with different states of
the brain, e.g. sleep, wakefulness, memory, motoric or cognitive processing,
etc. [10]
However, this classical view on EEG signals has changed gradually over the
years. For instance, it is necessary to distinguish between parieto-occipital
alpha oscillations and central alpha, so called ’µ’ rhythms [24, 25]. The
generators of EEG oscillations are not well understood yet [26].
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Figure 1.2.: Genesis of neuronal oscillations in a simple model. Initial, asynchronous ac-
tivity (left) is replaced by alternating, synchronous suppression (middle) and
activation (right) states due to interactions in neuronal circuitries. The resulting
rhythmic fluctuations of the membrane potentials can be recorded extracellu-
larly as neuronal oscillations. Reprinted from Miller and Buschman [27] with
permission from Elsevier.

However, there are models suggesting that neuronal oscillations are mainly
generated by recurrent connections in thalamocortical and cortico-cortical
networks [14, 28, 29]. A very simple model capable to describe how neural
oscillations could come about is illustrated in Figure 1.2. In this model,
excitatory neurons (orange) are initially activated by asynchronous synaptic
inputs (left). An active inhibitory interneuron (red) which is connected to
both excitatory neurons suppresses these neurons simultaneously (middle).
After suppression, both excitatory neurons are activated in parallel, which
in turn charges the interneuron again. When the interneuron is active again,
the cycle starts again. In local populations, the alternation between suppres-
sion and activation can be recorded as neuronal oscillations. Synchronous,
rhythmic activity of the excitatory neurons increases the impact on down-
stream target neurons and thereby facilitates neural processing [27, 30].
Large-scale network interactions in the brain are naturally much more com-
plex. Yet, this simple model illustrates how oscillations could be linked
and therefore represent neuronal network interactions. Again, to generate
an observable effect in macroscopic recordings as EEG, a large neuronal
population is necessary to oscillate in synchrony.
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1.3.3. Event-related desynchronization and synchronization

Similarly to the suppression of the alpha rhythm by eyes opening [9]
µ rhythm (8-13 Hz) amplitudes recorded over motor areas decrease by
the preparation, imagination and execution of movements [31–33]. This
frequency-specific power decrease was suggested to reflect decreased syn-
chrony of underlying neuronal populations and therefore is called event-
related desynchronization (ERD) [31, 34]. The opposite scenario, namely
power increase, is called event-related synchronization (ERS) and is con-
sidered to represent increased synchrony at a given frequency [34, 35].
ERD/ERS measures are defined by the comparison of the power during
an active period (A) and a baseline or reference period (R) as indicated in
equation 1.1. Thereby, ERD/ERS phenomena represent the modulation of
oscillations in neuronal networks during an event in the active period in
relation to the reference period.

ERD/ERS =
A− R

R
· 100% (1.1)

In distinction from event-related potentials which appear phase-locked to an
internal or external event, ERD/ERS are time-locked, but not phase-locked
to the event. Therefore, some sort of power estimation in a defined fre-
quency range is necessary when, as usually, multiple epochs are averaged to
calculate the ERD/ERS measure. Otherwise, signals from different epochs
would attenuate each other, due to their different phases.
The terms ERD and ERS are only meaningful, if there is a clear spectral peak
at a given frequency, that is attenuated for ERD or is evolved for ERS [34].
ERD/ERS phenomena are extensively studied during movement experi-
ments. It has been shown that µ rhythm ERD appears specific to right and
left hand movements, on the contralateral hemisphere respectively. Further,
foot movements induce ERD centrally over the sensorimotor areas [36].
These spatial localizations are in accordance with the somatotopic arrange-
ment of the motor cortex [6] and were also reproduced using invasive, ECoG
recordings [37]. Similarly, beta oscillations at around 20 Hz were also shown
to desynchronize specifically to movements [37–39]. After movement, beta
amplitudes increase in a short-lasting burst [33, 40, 41]. Therefore, ERD at
µ and beta frequencies were suggested to reflect an increased excitability
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level of neurons in respective cortical areas. On the contrary, beta ERS was
interpreted as inhibition of neural circuitry [33, 34]. The description of
ERD/ERS phenomena is of great importance for investigating EEG oscilla-
tory dynamics, since it provides physiological interpretations for large-scale
measures, i.e. EEG band power.

1.3.4. Frequency-specific cortical networks

Neuronal oscillations are studied in more detail using intracranial, invasive
recordings. In addition to the LFP, microelectrode recordings are capable
to record spiking activity of nearby neurons simultaneously. Therefore,
the temporal relation of LFP signals and spike events can be studied. In-
deed, this line of research found neuronal oscillations to be involved in the
temporal coordination of neuronal populations. Especially, gamma oscilla-
tions (>30 Hz) in the visual system are related with the synchronization
of neuronal groups [42–44]. Further, gamma oscillations are modulated
by selective attention and were suggested to facilitate neuronal processing
between distant cortical sites [45, 46]. More recently, oscillations in the high
beta frequency range (20-40 Hz) were similarly found to mediate spike syn-
chronization in neurons and selectively form neuronal assemblies [47–49]. In
summary, neuronal oscillations are involved in forming frequency-specific
networks [14]. Therefore, neural oscillations which are visible as spectral
peaks in large-scale recordings (e.g. EEG) can be seen as markers of spe-
cific network interactions [15, 16]. Neuronal populations in a given cortical
region may include several neuronal computations simultaneously. For in-
stance, encoding and integrating information in local as well as long-range
networks. Donner and Siegel [15] suggested that specific brain functions
are linked to different frequency-specific network interactions (Figure 1.3).
Separating specific neuronal oscillations by their different spectral profiles
could therefore be use to identify these simultaneously active frequency-
specific networks. So, different spectral profiles were proposed to signify
frequency-specific network interactions which are related to distinct brain
functions. To directly associate certain brain activity measures, in this case
spectral profiles, with specific brain functions is crucially for interpreting
large-scale recordings such as EEG.

9



Figure 1.3.: Neuronal computations involve local as well as long-range network interactions.
These different network interactions, mediated by neuronal oscillations, result in
different spectral profiles in a cortical region. Therefore, different spectral peaks
in cortical population signals were suggested to represent different frequency-
specific network interactions subserving different functions. Reprinted from
Donner and Siegel [15] with permission from Elsevier.
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1.4. EEG source imaging

EEG is a very classical brain signal recording technique. Traditionally, the
waveform of single channels were analyzed to characterize different brain
states [10, 13]. In the last two decades however, more sophisticated methods
for imaging EEG signals are evolving. Further, the availability and afford-
ability of computational memory and power opens up novel methodical
possibilities.

1.4.1. Forward modeling

In order to model the sources of EEG recordings, it is necessary to de-
scribe how bioelectrical potentials propagates from cortical sources to EEG
electrodes at the scalp in a so-called forward model. The propagation of the
electrical field in a medium with defined conductivity is well-described [50–
53].
In brief, the bioelectric fields can be described from the quasistatic ap-
proximation of Maxwell’s equations. In a media with defined conductivity,
electrical potentials V can be determined from the primary current density
Jp solving Poisson’s equation 1.2.

∇ · (σ∇V) = ∇ · Jp (1.2)

For an unbounded homogeneous medium with constant conductivity σ, the
solution of equation 1.2 is:

V(r) =
1

4πσ

∫
Ω

Jp(r′) ·
r− r′

|r− r′|3 d3r′ (1.3)

Where V(r) is the electric potential at the recording location r in the volume
Ω, while r’ is the source location.

For modeling the bioelectric potentials of the brain however, the assump-
tion of only one homogeneous volume is too simplistic. Electric fields are
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propagating through various kinds of tissues from their cortical sources to
the scalp. Usually, several tissues (grey matter, cerebrospinal fluid, skull,
skin) with different conductivities are modeled to describe the electrical
field propagation in the head appropriately. The most common approach to
solve such forward problems numerically is the boundary element method
(BEM) [52–54]. This method is also capable to solve the forward problem for
arbitrary head geometry. BEM models consist out of several surface layers
with constant conductivities in the volumes between them. Only the electric
potentials at the surfaces are computed solving equation 1.2 with certain
boundary conditions.
First, the current across the boundary (surface Sk) at volume i to volume
j is continuous (equation 1.4). Second, also the electric potentials on both
sides of the surface Sk are equal (equation 1.5). Third, the outermost volume
ΩN+1 expands from the skin surface to infinity, where σN+1=0. That means
no currents are flowing outside of the head.

σi∇Vi · dSk = σj∇Vj · dSk (1.4)

Vi(Sk) = Vj(Sk) (1.5)

By discretizing the boundaries into meshes the BEM provides a solution
describing scalp potentials as weighted sum of current densities. Using
matrix notation the forward model can be written in the form:

V = G · J (1.6)

With G is the gain or lead field matrix. V is a vector containing the surface po-
tentials (recordings) and J is a vector containing the source density currents.
The dimension of V equals the number of used electrodes (recorded EEG
signals), the dimension of J results from the number of modeled source ver-
tices. The values in the lead field matrix represents the tissue conductivities
and geometric distances between the cortical sources and each recording
location.
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Figure 1.4.: a) Four individual cortical surfaces reconstructed from MRI scans. b) Exemplary
individual head model, consisting of the cortex as solution space, skull and
skin surfaces. Electrode positions (white dots) from a custom montage were
integrated in this model.

Head geometry and brain surface are different for each individual. For
accurate forward and source modeling, it is therefore necessary to use
realistic head models based on individual anatomy. In Figure 1.4a) different
brain surfaces are illustrated from four exemplary subjects. Brain, skull
and head surfaces can be gained from individual T1 MRI scans using
cortical reconstruction and volumetric segmentation tools, e.g. provided in
the FreeSurfer image analysis suite [55, 56]. These surfaces along with co-
registered EEG electrode positions results in realistic head models, capable
for solving the forward problem with the BEM as described above. A
realistic head model rendered from individual anatomy is shown for a
custom electrodes montage in Figure 1.4b).
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1.4.2. Inverse modeling

While the forward model is capable to describe the scalp potentials as a
function of the electrocortical sources, inverse modeling aims the opposite
(Figure 1.5). That is, to estimate the sources from scalp potentials, i.e. EEG
recordings. Additional constraints are necessary for solving the inverse
problem. Dependent on the number of sources that are modeled in an
inverse problem, it is either overdetermined (N sources < N sensors) or un-
derdetermined (N sources > N sensors). In the overdetermined case, usually a
few dipoles are used to fit the scalp potentials. To do that, it is necessary
to choose an appropriate number of dipoles, before their locations can be
computed. The number of used dipoles directly influences the results, that
is the location of the dipoles. It is challenging to determine the number of
dipoles, since the scalp recordings in many cases do not show multipolar
topographies which can be modeled with a few dipoles.

Figure 1.5.: An actual cortical source (top left) is causing (forward model) electric poten-
tials on the scalp (right topography). The sources of scalp potentials can be
reconstructed (bottom left) using certain assumptions (inverse model).

For underdetermined problems no unique solution exists, which means that
an infinite number of source arrangements can explain the scalp record-
ings. Such problems are called ill-posed inverse problems. Mathematically,
the challenge in solving the inverse problem is to invert the lead field
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matrix G. In ill-posed inverse problems, the simple inversion of G is not
defined. However, sources estimates that explain the recordings ’most likely’
can be determined. A very common approach are minimum-norm esti-
mates [57]. Generally, the aim is to estimate source densities from scalp
recordings, based on their linear relationship provided by the forward model
(equation 1.6). Minimum-norm estimates are calculated by minimizing the
functional in equation 1.7.

F = ||V − G · J||2 + λ · ||J||2 (1.7)

This leads to a solution which minimizes the model error in a least-squares
sense, explaining the scalp recordings with minimum norms of the sources.

Ĵ = T ·V (1.8)

T = GT(G · GT + λ · C)−1 (1.9)

In equation 1.8, Ĵ are the estimated current densities and T is the transfor-
mation matrix or inversion kernel (equation 1.9). λ>0 is the regularization
parameter. This parameter is necessary to stabilize the inverse solution in
the presence of noise. It is possible to find a mathematically exact solution
with the inherent risk to fit to the noise of the data. Increasing λ leads to
smoother current estimates and introduces a discrepancy between modeled
and measured data for sake of robustness of the solution.
C is the data noise-covariance matrix which contains certain signal proper-
ties of the recordings. Diagonal entries of this matrix contain the variances
of each channel which are estimates of their signal power. The off-diagonal
entries contain the covariances of the channels. Given volume conduction,
the covariance, for instance, is higher for lower distances of two channels.
So, the noise-covariance matrix also provides information about the EEG
montage to some extent. This matrix is commonly computed from resting
state data while no specific task is performed. In this work, the implemen-
tation provided from the open-source toolbox Brainstorm [58] is used for
computing the inverse kernel. In this implementation, the noise-covariance
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is used for pre-whitening the leadfield matrix. In this case the ’whitened’
inverse kernel T̃ is:

T̃ = G̃T(G̃ · G̃T + λ · I)−1 (1.10)

G̃ = C−1/2 · G (1.11)

λ ∼ 1
SNR

(1.12)

Where G̃ is the ’whitened’ lead field matrix and I is the identity matrix. Pre-
whitening orthogonalizes the recordings V based on the noise-covariance
matrix C. For computing the ’whitened’ inverse kernel a common choice
for λ is written in equation 1.12, where SNR is the signal to noise ratio. This
relation represents the practical notion that for noisy data (with low SNR)
more regularization is needed.

sLORETA [59] stands for standardized low-resolution brain electromagnetic
tomography and is a variant of the minimum norm solution in which
the sources are normalized with the resolution matrix R (equation 1.13).
The resolution matrix is expressing the bias between estimated and actual
sources (equation 1.14). As discussed above, due to the presence of noise,
some inaccuracies will remain in source estimation. However, the aim of
standardizing the minimum norm estimates is to correct for the inherent
modelling error of forward and inverse transformation.

R = T · G (1.13)

Ĵ = R · J (1.14)

sLORETA estimates of the current density power at the lth vertex are then
computed as:

ĴT
l · [R]−1

ll · Ĵl (1.15)

In this work, sLORETA is used for solving the inverse problem, because
independent research groups validated sLORETA mathematically as well
as with simulations [60, 61], in addition to the convincing results in the
original publication [59].
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1.5. Organization of the chapters

Chapter 1 ’Introduction’ contains a brief overview of brain mapping tech-
niques and a rational, why EEG brain imaging is the method of choice in
this thesis. Moreover, EEG phenomena, corresponding theories and EEG
source imaging methods, which are relevant for this work are introduced.

In Chapter 2 ’Motivation and Aim of this Thesis’, literature on which this
work is based upon is briefly reviewed. Following these works, possible
advancement in the field of brain imaging during body movements is dis-
cussed. Consequently, the objectives of this dissertation are defined.

In Chapter 3 ’Methods and Results’ the core publications and their contri-
bution to this thesis are summarized.

Chapter 4 ’Discussion and Conclusions’ provides an overall discussion of
the core publications and how they met the aims of the thesis. Moreover,
the scientific progress in respect to the state of the art is argued.
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2. Motivation and Aim of this
Thesis

2.1. State of the Art

To image cortical dynamics during actual movements, high temporal resolu-
tion and a lightweight brain imaging technique allowing ambulant setups is
needed. Both of these requirements can be met with EEG source imaging [19–
22]. Especially, high density EEG systems and advanced signal processing
methods can be combined to a brain imaging tool that, as described by
Michel and Murray [19] ”actually is the ultimate brain imaging tool for those
who are interested in the temporal dynamics of large-scale brain networks
in real-life situations”. Furthermore, EEG source imaging methods are avail-
able in open-source toolboxes like, e.g. Brainstorm [58], CARTOOL [62],
FieldTrip [63], MNE [64] and NFT [65]. In this work, Brainstorm was mainly
used for source estimation. Brainstorm provides many compatible interfaces
to other brain imaging tools. For instance, the Freesurfer image analysis
suite [55, 56] was used for reconstructing the cortical surface from MRI
scans and OpenMEEG [53, 54] was used for forward modelling herein.

Accurate source estimation of the EEG recordings is one challenge of EEG
based brain imaging. Another, no less important issue in this thesis, is to
interpret and model the reconstructed signals in relation to motor behavior.
As discussed in section 1.3.3, previous literature report specific µ and beta
ERD/ERS patterns for different isolated body movements (reviewed in
Pfurtscheller and Lopes da Silva [34] and Neuper and Pfurtscheller [33]).
These results were also replicated using ECoG recordings [37] and com-
plemented with the finding that amplitudes in the high gamma (> 60 Hz)
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frequency range increase prior to and during movements [39, 66, 67]. This
high gamma increase appeared more focally than µ and beta ERD [39]
and matched with fMRI activity more precisely [68, 69]. Furthermore, the
time course of high gamma amplitudes resembles the flexion and extension
sequences during finger tapping [70–72]. In summary, these studies showed
that high gamma activity is important for studying motor functions of
the cortex. Ball et al. [73] and Darvas et al. [74] showed that high gamma
activity can also be detected in non-invasive EEG recordings during finger
movements.
The above mentioned studies investigated finger movements at large. Here,
we also aim to study the gait function. Traditionally, full-body movements
are prevented during EEG measurements, because muscular activities cause
major artifacts in the EEG recordings. In recent years however, the devel-
opment of independent component analysis (ICA) based artifact reduction
methods [75] led to first mobile brain imaging studies [76–78]. These studies
used dipole fitting to localize independent components. Gwin et al. [77]
reported that EEG spectral power in a wide frequency range is coupled
to the gait cycle phase during walking. Wagner et al. [78] however, found
power modulations in central midline areas, in a specific frequency range,
at 25-40 Hz (’low gamma’) to be related to the phases of the gait cycle.
Interestingly, these modulation patterns did not match with those reported
in Gwin et al. [77]. Similarly to results from studies investigating isolated
foot movements [36, 79], Wagner et al. [78] showed a suppression of µ and
beta oscillations (ERD) during walking in comparison to standing, which
occurred in independent component clusters located in sensorimotor areas.
While ICA based methods enabled much progress in mobile brain imaging,
this approach however, has some limitations. First, the location of indepen-
dent components is not necessarily consistent with certain EEG measures
(e.g. ERD/ERS) which are used for interpreting the signals. Second, it is
hard to evaluate if the artifact correction methods were successful. More
detailed criteria are needed to ensure that the findings are caused by elec-
trocortical activity, not from electromyographic (EMG) artifacts. Third, to
the author’s best knowledge, no mobile brain imaging study considered the
individual head and brain geometry for EEG source localization.
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2.2. Challenges

Several challenges are necessary to be faced in order to study cortical
functions related to actual body movements. First, to provide a mobile
neuroimaging tool capable to study cortical dynamics during movement,
multiple methodical limitations had to be solved. Second, to achieve progress
towards a neurophysiological model, that is linking EEG source signals to
motoric actions, more conceptual work is needed.

Methodical

• Consider individual head and brain geometry in EEG source imaging
based on available open-source toolboxes.

• Reduce motion artifacts during gait experiments based on the proper-
ties of electromuscular acitity.

• Integrate motion tracking parameters into EEG analysis expanding
previous mobile brain imaging analysis methods.

Conceptual

• Describe differences in EEG source signals between experimental
conditions, e.g. movement versus non-movement, following studies
investigating ERD/ERS phenomena.

• Relate EEG source signals to movement parameters, i.e. link cortical
with movement dynamics.

• Integrate these findings in a model in relation to existing frameworks
and theories.
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2.3. Aim of this Thesis

The general aim of this thesis is to develop brain imaging based methods
and concepts that, in combination enable to investigate cortical involvement
in motoric actions. These research tools should be capable to study brain
dynamics related to movement sequences, including gait while guaranteeing
natural body postures.
Imaging the brain’s dynamics during movements is intended to achieve a
deeper understanding of the relation between cortical and motor functions.
This knowledge could lead to important progress in the research of motor
impairment after brain injury. Models that are capable to describe motor
behavior as a function of intact as well as injured cortical systems may
subserve as basis for more advanced interventions or the development of
novel rehabilitation strategies.
Because of this clinical perspective, an additional aim is that the developed
methods and concepts of this work are capable to meet the requirements of
clinical follow-up studies.
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3. Methods and Results

3.1. EEG beta suppression and low gamma
modulation are different elements of human
upright walking

Seeber M., Scherer R., Wagner J., Solis-Escalante T., and Müller-Putz G.R.
“EEG beta suppression and low gamma modulation are different elements
of human upright walking.” In: Frontiers in Human Neuroscience 8 (2014).
DOI: 10.3389/fnhum.2014.00485 [80]
Seeber M., Scherer R., Wagner J., Solis-Escalante T., and Müller-Putz G.R.
“Corrigendum: EEG beta suppression and low gamma modulation are differ-
ent elements of human upright walking.” In: Frontiers in Human Neuroscience
9 (2015). DOI: 10.3389/fnhum.2015.00542 [81]

The aim of the first work was to directly map ERD/ERS phenomena during
human upright walking. Previous studies investigated EEG during gait
using ICA and dipole localization. Dipole reconstruction of independent
components however, does not necessarily match with the location of os-
cillatory sources, i.e. ERD/ERS. To consider different geometries of the
subjects’ heads and brains, individual head models were rendered from
individual MRI scans. Based on these head models and high density EEG
recordings (120 channels), we applied sLORETA for distributed source
modeling. The data of ten healthy volunteers were available, which were
walking in a robotic gait orthosis [78]. We found upper µ (10-12 Hz) and
beta (18-30 Hz) to be suppressed (ERD) during walking in comparison to
standing. The beta (18-30 Hz) ERD was located to central sensorimotor areas.
These findings are also illustrated in Figure 3.1.
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Figure 3.1.: a) Time-Frequency (TF) maps of identical data with different reference periods
used for amplitude normalization. Either, sustained beta ERD (in blue, left
TF) or low gamma GPM (right TF) can be seen better dependent on the
normalization. Spectral profiles are shown in the middle. b) ERD and GPM
source images. c) Time course at optimal frequencies for ERD and GPM.

We furthermore found amplitude modulations in the low gamma (24-40 Hz)
frequency range to be related with the gait cycle. To determine the exact
spectral profiles of these gait-phase related modulations (GPM), we intro-
duced a measure. This measure is described in equation 3.1 and quantifies
the relation between EEG source amplitude modulations and the gait phase
as a function of their carrier frequency and cortical location.
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GPM( f ) =
2√

2 · σA( f ) · N
·

N−1

∑
n=0

A(n, f ) · e−2πi· 2·nN (3.1)

In equation 3.1, A(n, f ) denotes the amplitude of an oscillation with the
frequency f at a sample point n in the gait cycle. N is the total number of
samples in a gait cycle. σA( f ) is the standard deviation of A(n, f ). The GPM
measure is a complex number which magnitude would be 1 if A(n, f ) is
modulated sinusoidally with the step frequency. The GPM phase describes
the phase relation of the amplitude modulation of a certain brain oscillation
and the gait cycle.

We conclude that µ and beta ERD reflect an increased excitability state in
corresponding areas during walking, while the low gamma modulations
may reflect sensorimotor processing or integration dependent on the gait
phase. Because we identified the spectral profiles of ERD and gait-phase
related modulations to be different, we suggest that these phenomena are
associated with different frequency-specific network interactions.

Contribution to this thesis: Because it was the first work of this thesis,
much engineering work was necessary to set up the methods for further
investigations. The methodology, used in this study is fundamental for the
entire thesis. It demonstrates how to enable EEG source imaging based on
individual anatomy on the one hand. On the other hand, this study shows,
the importance of distinguishing between different frequency-specific EEG
phenomena, i.e. ERD and gait-phase related modulations. To the author’s
best knowledge this is the first EEG source imaging study investigating gait,
which is based on distributed source models and individual anatomy.
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3.2. High and low gamma EEG oscillations in
central sensorimotor areas are conversely
modulated during the human gait cycle

Seeber M., Scherer R., Wagner J., Solis-Escalante T., and Müller-Putz G.R.
“High and low gamma EEG oscillations in central sensorimotor areas are
conversely modulated during the human gait cycle.” In: NeuroImage 112

(2015), pp. 318–326. DOI: 10.1016/j.neuroimage.2015.03.045 [82]

The objective of the second publication was to correct for electromuscular
artifacts, which affect EEG recordings during gait movements. The idea of
this work was to separate electromuscular (EMG) from true electrocortical
activity. Successful artifact correction would solve some limitations of pre-
vious works and enables the investigation of EEG source signals at higher
frequencies (>30 Hz). To do so, we developed a novel artifact correction
method based on frequency spectral decomposition. EMG affects the record-
ings in a wide range of frequencies, especially for > 30 Hz. Moreover, these
artifacts have much larger amplitudes than EEG and are strongest at sites
close to their origin, the muscles. The artifact correction approach in this
study is based on these properties of EMG which makes it separable from
EEG. Indeed, the principal spectral component with the largest magnitude
met these criteria in every subject. Characteristic for this component is
the broadband spectral profile and source activities which are located to
dorsolateral sites, close to the neck muscles. Correcting for this component,
revealed narrow band high gamma (60-80 Hz) oscillations which were in-
creased during the whole gait cycle. The principle of this artifact correction
approach is shown in Figure 3.2. After artifact correction, we additionally
found that amplitudes at 70-90 Hz are modulated in relation to the gait
cycle. Interestingly, these high gamma activities were conversely modulated
to the previously reported low gamma (24-40 Hz) modulations. Both of
the reported high gamma features were directly localized to functionally
meaningful, central sensorimotor areas.
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Figure 3.2.: Muscular artifact correction method. The rows in this Figure correspond to the
corrected (top), removed (middle) and uncorrected (bottom) source estimates.
a) EEG source images of normalized amplitude increase at the high gamma
peak (68 Hz) of an exemplary subject. The central sensorimotor region in the
corrected source image was used for illustrating the TF dynamics. b) TF plots
showing a clear high gamma increase (relative to standing) for the corrected
sources (top) and broadband activity for the removed component. c) Same as
in b) but normalized for sustained effects. Gait phase-related amplitudes can
be seen, which are conversely modulated to each other at high and low gamma
frequencies.

26



Contribution to this thesis: This publication complements previous find-
ings, by enabling the investigation of the high gamma activities due to
the novel artifact correction approach. Furthermore, the correction method
can be applied fully data driven and therefore is not dependent on user-
driven artifact selection, which may be subjective. High gamma activities
are reported to play an important role in motor preparation and execution.
Similar to the distinction of sustained beta ERD and low gamma GPM, this
study showed slightly different spectral peaks for high gamma increase and
gait phase-related modulation. This finding additionally supports the idea
that sustained and gait-phase related amplitude modulations are caused by
different neuronal network oscillations.
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3.3. EEG oscillations are modulated in different
behavior-related networks during rhythmic
finger movements

Seeber M., Scherer R., and Müller-Putz G.R. “EEG Oscillations Are Mod-
ulated in Different Behavior-Related Networks during Rhythmic Finger
Movements.” In: Journal of Neuroscience 36.46 (2016), pp. 11671–11681.
DOI: 10.1523/jneurosci.1739-16.2016 [83]

The idea of the third paper was to investigate EEG source dynamics during
rhythmic finger movements, based on the findings of the previous gait
studies. In distinction to leg movements, finger movements are represented
more laterally in sensorimotor areas. Therefore, we hypothesized to iden-
tify different spatial sources for sustained ERD/ERS and movement-phase
related amplitudes (MPA), in addition to their different frequency spectra.
EEG source imaging was applied based on the methods developed in the
previous works. In the analysis we distinguished between sustained and
movement-phase related amplitude modulations. To determine MPA, the
finger movements were recorded with a data glove and related to EEG
source amplitude envelopes. We actually found sustained ERD for alpha (10-
12 Hz) and beta (18-24 Hz), as well as increased high gamma (60-80 Hz)
amplitudes during the rhythmic finger movements in the hand represen-
tation area. Furthermore, we found significant MPA, most pronounced at
high beta (24-30 Hz) frequencies in bilateral sensorimotor and prefrontal
regions. We identified the frequency spectra and spatial sources of the
sustained ERD/ERS and MPA phenomena to be different. These findings
are summarized in Figure 3.3 and support our hypothesis that these two
different phenomena are caused by different frequency-specific network
interactions. First, we suggest that sustained ERD/ERS activities are repre-
senting static synchrony modulations in networks which may upregulate
the excitably in associated cortical regions during movement. Second, we
suggest that movement-phase related amplitude modulations reflect dy-
namic network synchrony modulations which could be associated with
the prediction and integration of sensorimotor information linked to the
movement sequences.
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Figure 3.3.: a) Finger movements recorded with the data glove. b) TF plots of movement-
phase related amplitudes in left (L) and right (R) sensorimotor regions. c) TF
plots showing sustained amplitude modulation (ERD/ERS in blue/yellow)
during movements. d) MPA source images at different beta frequencies. e) Fre-
quency spectra of the ERD/ERS and MPA in the L/R region in magenta/green.
f) ERD source images at different beta frequencies.

Contribution to this thesis: This study show that movement-phase related
amplitude modulations appear also during repetitive finger movements.
Furthermore, it supports and generalizes the viewpoint that sustained and
movement-phase related modulations are generated by different types of
network interactions. However, we also identified these frequency-specific
network to partly overlap spatially as well as in their frequency spectra.
Therefore, the distinction and identification of different large-scale networks,
which is pointed out in this work, facilitates the interpretation of EEG
sources during repetitive movements.
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4. Discussion and Conclusions

The central aim of this thesis is to study cortical dynamics during repetitive
movements, i.e. during walking and rhythmic finger movements. To do
so, it was necessary to achieve progress towards an EEG based, mobile
neuroimaging tool which enables the investigation the brain’s dynamics
during actual movements. Further, to facilitate the interpretation of EEG
source signals, advancement in modeling the neurophysiology of movement
dynamics was needed. In the following, the achievements of this thesis
along these two lines are discussed.

4.1. Methodical progress - Towards a mobile brain
imaging tool

In order to extend the possibilities of neuroimaging during actual move-
ments, this work provides multiple contributions towards the development
of a mobile brain imaging tool. Based on previous methods [19, 20] func-
tional (EEG) was combined with structural (MRI) data to enable EEG source
imaging. Individual head and brain geometry was considered using realistic
head models (Seeber et al. [80]). This approach is important for clinical
follow-up studies, because EEG source localization based on individual
head models is more precisely than using template models [84]. In addition
to EEG source reconstruction methods, the combination of multiple tech-
niques are necessary to enable mobile brain imaging. First, that is to deal
appropriately with motion and muscular artifacts in the recordings and the
data analyses of movement experiments. Second, to include motion tracking
data in the analyses of source reconstructed signals [17]. Third, to directly
map and relate specific EEG phenomena to the motion tracking data.
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For relating EEG source dynamics to movement tracking data, gait cycle
patterns were recorded simultaneously with the EEG during the gait ex-
periment. Based on this information the GPM measure (equation 3.1) was
introduced in Seeber et al. [80] to quantify the relation of EEG source ampli-
tude modulations to the gait cycle. So, with this measure it is possible to
compute EEG source images indicating gait-phase related cortical activities.
In Seeber et al. [82], a novel artifact correction method was developed, that is
based on frequency spectral decomposition of source images. This advanced
artifact correction approach revealed narrow-band high gamma activity
during a gait experiment. Further, multiple criteria are indicated in this
work, that can be used to identify muscular artifacts in EEG source images.
That are, the frequency spectra, spatial patterns and magnitudes of remain-
ing source activities. Electromuscular activity appear in a wide frequency
range above 30 Hz [85, 86]. The distributed source modeling approach, used
in this work, furthermore provides the benefit that remaining muscular
artifacts can be recognized as spatially wide-spread patterns in the source
images. Typically, these activities have large magnitudes at sites close to
their true origin, that is mainly the neck and face muscles. The distinction
of true electrocortical activity from movement artifacts is crucial in mobile
brain imaging to prevent misleading results.
Utilizing the brain imaging methods of the previous works, EEG source
dynamics were investigated in Seeber et al. [83] during repetitive finger
movements. Movement-phase related activities were quantified and investi-
gated similarly as in the previous gait studies. This study, revealed different
EEG source images for movement-phase related and ERD/ERS sources. This
finding demonstrates that the EEG phenomena which are used for brain
imaging are of great importance. This is discussed in more detail in the next
section.
Here, I would like to suggest that the techniques discussed above, only
in combination result in a brain imaging tool that is capable to study the
cortical dynamics during body movements.
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4.2. Conceptual progress -Towards a
neurophysiological model of repetitive
movements

In this thesis, I focused on the analysis of EEG source oscillations. This
approach is motivated by previous literature, reporting an important role
for cortical oscillations in motor function (reviewed in Pfurtscheller and
Lopes da Silva [34], and Jenkinson and Brown [87]). Further, oscillatory
abnormalities are associated with various disorders of the brain, including
motor deficits (reviewed in Brown [88], Schnitzler and Gross [89], Uhlhaas
and Singer [90]). Especially, beta and high gamma activity were previously
shown to be important for motor function [39, 67, 87, 91]. For example, in
individuals suffering from Parkinson’s disease, the suppression of exag-
gerated beta oscillations following drug treatment is correlated with the
improvement of bradykinesia and rigidity [87]. After treatment with lev-
odopa, high gamma synchrony between cortical and basal ganglia motor
areas is increased and motor performance is improved [88]. Moreover, the
role of beta and high gamma oscillations in motor performance was studied
using transcranial alternating current stimulation to experimentally increase
these oscillations. These studies found beta oscillations to promote tonic
muscle contraction [92], while high gamma activity was suggested to facili-
tate motor processing [93].
In this work, suppressed beta oscillations along with high gamma increase
are suggested to signify a state of increased cortical excitability in associated
areas during movement execution. In the first two works investigating gait,
i.e. repetitive leg movements, these activities were located to central senso-
rimotor regions (Seeber et al. [80], Seeber et al. [82]). During right finger
movements, sustained beta ERD and high gamma amplitude increase was
located to contralateral, left sensorimotor regions (Seeber et al. [83]). These
findings are in accord with previous studies [36, 39] showing spatially spe-
cific patterns for the movement of different body parts, which match to the
somatotopic arrangement of the motor cortex. Therefore, the upregulated
excitability states during repetitive movements, reported in in this work, are
further proposed to facilitate motor processing specific to the limb that is
moved.
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ERD/ERS phenomena per definition (equation 1.1) compare different states
of spectral power at a given frequency, which are interpreted as repre-
sentation of altered synchrony in underlying neuronal populations. Here,
gait- or movement-phase related activities are investigated in addition to
the well-established ERD/ERS phenomena. Gait phase-related amplitude
modulations at 25-40 Hz were first reported by our group [78]. In Seeber
et al. [80] we suggested that these phenomena are generated by different
frequency-specific network interactions than sustained ERD/ERS activity.
Furthermore, in Seeber et al. [82] we report GPM for high gamma (70-90 Hz)
frequencies along with sustained high gamma (60-80 Hz) increase during
the whole gait cycle. These findings generalize the results from Seeber et al.
[80] for a different frequency range.
In Seeber et al. [83] repetitive finger movements were investigated because
of their lateral representation in the motor cortex. We found the spatial
sources of MPA and ERD/ERS activities to be different. This finding, in ad-
dition to the differences in their spectral profiles supports the viewpoint that
sustained ERD/ERS and MPA are representing different frequency-specific
networks. Narrow band amplitude modulation can be seen as a marker of
modulated frequency-specific network synchrony [14–16]. Therefore, MPA
are proposed to represent networks, which modulate their synchrony in
relation to the movement sequences.
We found MPA to be well pronounced in bilateral sensorimotor areas
and prefrontal areas at high beta (18-30 Hz) frequencies. Previous studies
reported beta modulation in cortical motor areas to be associated with
predictive timing of rhythmic, anticipated stimuli [94–96]. Moreover, studies
using invasive recordings showed that high beta oscillations are forming
specific neuronal assemblies between the left and right motor cortex [48]
as well as in prefrontal areas [49, 97]. These results show that high beta
oscillations mediate information processing between the hemispheres of the
motor cortex [48] on the one hand. On the other hand, prefrontal activity
was proposed to reflect top-down control [49, 97].
Based on these previous findings, high beta MPA in this work are suggested
to be associated with top-down control, the prediction and integration of
sensorimotor information.
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4.3. Limitations and Recommendations

The EEG source imaging results in this work are limited in their spatial
resolution. Due to the ill-posed inverse problem inherent in EEG source
imaging, no unique source solution exists. The methods for EEG source
modeling which were used in this work are validated in many respects and
are well-accepted in the community. Yet, for interpreting EEG source images,
it is important to keep the constraints of the methods in mind. Therefore,
only large-scale spatial differences are discussed in this work, of course not
such in the millimeter range. Moreover, sources of deep brain structures
should be interpreted with great caution.
For studying cortical involvement in gait, a robotic orthosis was restricting
the gait movements. This setup is naturally not mobile, but the methods
we have developed and applied are capable for such setups. Furthermore,
the findings of the gait studies were also replicated in follow-up treadmill
studies. For the artifact correction method introduced in Seeber et al. [82],
it is important to make sure that the spectral component that is removed,
because it represents artifacts, shows the characteristic properties discussed
above. Conversely, remaining activity, especially at higher frequencies, must
not show these characteristics, to ensure that they are of cortical origin.
EEG source imaging results can be validated by comparing them with find-
ings from ECoG. To support the results in this thesis they were compared
with ECoG recordings wherever this was possible. An ongoing ECoG study
moreover is aiming to replicate and validate the findings of this work.

4.4. Conclusions and Future Perspective

I consider this work to contribute multiple achievements towards the de-
velopment of a neuroimaging tool that is capable for studying full-body
movements. First, this included methodical achievements that are, the capa-
bility to consider individual head and brain geometries, the reduction of
artifacts during movements and the integration of motion tracking data for
modeling the cortical sources of repetitive movements.
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Second, the main conceptual achievement of this thesis is to distinguish
between movement state (sustained ERD/ERS) and movement phase-related
(GPM, MPA) activities.
Here, I propose that these two phenomena are representing two different
types of large-scale networks. Movement state related networks to upreg-
ulate excitability in cortical areas that are specific to the body part that is
moved. Movement-phase related networks to modulate their synchrony
in relation to the movement sequences which may reflect other functions.
For movement-phase related activities at high beta frequencies these may
include top-down control, prediction and integration of sensorimotor infor-
mation. The innovative neuroimaging methodology in combination with
this preliminary model of cortical dynamics during repetitive movements,
developed in this thesis, could lead to further progress in basic and clinical
neuroscience research as well as to further improvements of Brain-Computer
Interfaces [98–100].
In basic neuroscience, the function of the proposed two different network
types can be investigated in greater detail. Especially, with a focus on the
multiple frequency-specific networks which are reported herein. For in-
stance, follow-up studies could test each of the preliminary functions which
were suggested for the different large-scale networks.
In clinical neuroscience, different large-scale networks could be investi-
gated in respect to specific brain disorders. Motor deficits would be of
primary interest following this thesis. So it would be interesting, if a distinct
dysfunction could be associated with a certain abnormality in a specific
cortical network. Such knowledge could be utilized for calculating defined
network measures, which could be used to identify cortical dysfunctions
more specifically. Based on this knowledge, novel rehabilitation strategies,
therapies or interventions could be developed to recover normal network
states and dynamics. To do so, frequency-specific electrical brain stimulation
or neurofeedback strategies may be helpful.
For Brain-Computer Interfaces, the different phenomena and cortical signals
which are described and separated in this thesis, could provide innovative
features. For instance, to select an active state or action versus controlling
the parameters in this state or action.
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Cortical involvement during upright walking is not well-studied in humans. We analyzed
non-invasive electroencephalographic (EEG) recordings from able-bodied volunteers who
participated in a robot-assisted gait-training experiment.To enable functional neuroimaging
during walking, we applied source modeling to high-density (120 channels) EEG recordings
using individual anatomy reconstructed from structural magnetic resonance imaging scans.
First, we analyzed amplitude differences between the conditions, walking and upright
standing. Second, we investigated amplitude modulations related to the gait phase. During
active walking upper μ (10–12 Hz) and β (18–30 Hz) oscillations were suppressed [event-
related desynchronization (ERD)] compared to upright standing. Significant β ERD activity
was located focally in central sensorimotor areas for 9/10 subjects. Additionally, we found
that low γ (24–40 Hz) amplitudes were modulated related to the gait phase. Because
there is a certain frequency band overlap between sustained β ERD and gait phase related
modulations in the low γ range, these two phenomena are superimposed. Thus, we
observe gait phase related amplitude modulations at a certain ERD level. We conclude that
sustained μ and β ERD reflect a movement related state change of cortical excitability while
gait phase related modulations in the low γ represent the motion sequence timing during
gait. Interestingly, the center frequencies of sustained β ERD and gait phase modulated
amplitudes were identified to be different. They may therefore be caused by different
neuronal rhythms, which should be taken under consideration in future studies.

Keywords: electroencephalography (EEG), gait, brain mapping, motor cortex, magnetic resonance imaging

INTRODUCTION
Investigating neural dynamics during natural motor behavior
is necessary to gain new knowledge about cortical involvement
during motor control. This knowledge is fundamental for study-
ing motor impairment after brain injury. We aim to develop a
neurophysiological model of human gait. To address this prob-
lem, we focused on the analysis of neuronal oscillations (Buzsáki
and Draguhn, 2004) gained from high-density electroencephalo-
graphic (EEG) recordings. The excellent temporal resolution of
EEG recordings enables the analysis of electrocortical activity as it
relates to the gait cycle phases. The spatial interpretability of the
EEG can substantially be improved by applying source modeling
(Baillet et al., 2001; Michel et al., 2004) to high-density EEG data.
Yet, electrocortical oscillations during human upright walking are
not well-studied.

Previous studies have shown that EEG spectral power in the μ

and β band decreases over sensorimotor areas (Jasper and Pen-
field, 1949) during isolated foot movements (Pfurtscheller et al.,
1997; Crone et al., 1998; Miller et al., 2007), motor preparation
and motor imagery (Pfurtscheller and Neuper, 1997; Müller-Putz
et al., 2007), walking on the treadmill (Severens et al., 2012) and
robot-assisted walking (Wagner et al., 2012), when compared to a
rest (non-movement) condition. These phenomena are classically

described as event-related desynchronization and synchroniza-
tion (ERD/ERS; Pfurtscheller and Aranibar, 1977; Pfurtscheller
and Lopes da Silva, 1999). After the movement, β band power
increases in a short-lasting burst called post-movement β syn-
chronization (Pfurtscheller et al., 1996; Müller-Putz et al., 2007;
Solis-Escalante et al., 2012). The presence of β oscillations at rest
and the elevated state after movement led to the view that β oscil-
lations represent an idling state of the motor cortex (Pfurtscheller
et al., 1996). This theory has been revised with the hypothesis
that β oscillations promote the maintenance of the current motor
set at the expense of new movements (Engel and Fries, 2010;
Jenkinson and Brown, 2011). A recent study reported signifi-
cant coupling between EEG recordings over the leg motor area
and electromyography (EMG) from the anterior tibialis muscle at
24–40 Hz during treadmill walking (Petersen et al., 2012). This
frequency range is very similar to gait cycle modulated low γ

oscillations (25–40 Hz) located in central midline areas shown
from Wagner et al. (2012). Contrary to this evidence, Gwin et al.
(2011) reported gait cycle phase coupled electrocortical activ-
ity in the α, β and the high γ band located in the anterior
cingulate, posterior parietal, left and right sensorimotor cortex.
In summary, the literature describes two major alterations of
EEG oscillations during gait. First, neuronal oscillations in the
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μ and β band are suppressed (ERD) during movement when
compared to a rest, non-movement condition. Second, their
amplitudes are modulated locked to the gait cycle phase during
walking.

The previously mentioned studies relied heavily on indepen-
dent component analysis (ICA) and dipole analysis for spatial
location identification. While this methodology has many benefits,
the location of specific independent components is not necessar-
ily consistent with the location of certain brain activity patterns,
e.g., ERD/ERS. The aim of this work was to directly localize μ

and β ERD activities as well as gait phase modulated oscillations.
To meet this objective, we introduced a measure that quantifies
the gait cycle related amplitude modulation of a certain oscilla-
tion. These activity measures were mapped on the cortex using
EEG source imaging (Baillet et al., 2001; Michel et al., 2004) based
on individual anatomy reconstructed from magnetic resonance
imaging (MRI) scans. Furthermore, we discuss the coexistence and
superposition of sustained μ and β ERD and gait phase modulated
oscillations in terms of cortical location and frequency of appear-
ance, since these phenomena have thus far only been discussed
separately.

MATERIALS AND METHODS
EXPERIMENT
Ten healthy volunteers (S1–S10, five female, five male,
25.6 ± 3.5 years) participated in this study. The experimental
procedure was approved by the ethical committee of the Medical
University Graz. Each subject gave informed consent before the
experiment. Participants completed 4 runs (6 min each) of active
walking and 3 runs of upright standing (3 min each) in a robotic
gait orthosis (Lokomat, Hocoma, Switzerland). Walking speed was
constant and adjusted to the participants’ leg length ranging from
1.8 to 2.2 km per hour. Body weight support was adjusted with
the help of experienced physical therapists to less than 30% in
every participant. The Lokomat was operated with 100% guid-
ance force. This set-up was chosen to ensure a well-controlled
and steady gait pattern during the experiment. Participants were
trained to walk in a natural way in the Lokomat and were asked
look straight ahead and to blink normally to avoid eye artifacts
during the experiment.

RECORDINGS
120 EEG channels were recorded by combining four 32-channel
amplifiers (BrainAmp, Brainproducts, Munich, Germany). To
determine the electrode positions and anatomical landmarks
(nasion, vertex, left- and right pre-auricular points) for each
subject, we used a 3D localizer (Zebris Elpos system, USA).
Structural T1 MRI scans were recorded in a post-screening ses-
sion using a 3.0 Tesla (Tim Trio/Skyra, Siemens, Erlangen,
Germany) scanner. EEG was sampled to 2.5 kHz, high pass
filtered at 0.1 Hz and low pass filtered at 1 kHz. The elec-
trode montage was in accordance with the 5% international
10/20 EEG system (EasyCap, Germany; Oostenveld and Praam-
stra, 2001). Reference and ground electrodes were placed on
the left and right mastoids respectively. Electrode impedances
were <10 k�. Foot contact was measured by electro-mechanical
switches placed over the calcaneus bone at the heel of both

feet. We defined one gait cycle as the interval between two right
leg heel contacts. More detailed information about the exper-
imental set-up and procedure can be found in Wagner et al.
(2012).

DATA ANALYSIS
Preprocessing and artifact correction
The EEG recordings were high pass filtered at 1 Hz [zerophase
FIR filter order 7500] and low pass filtered at 200 Hz [zerophase
FIR filter order 36]. To reduce computation time and required
memory for time-frequency (TF) analysis, the data was down
sampled to 250 Hz. EEG data from the active walking (gait)
condition was epoched and time warped according to the mean
gait cycle duration for every subject individually (group mean
2.13 ± 0.17 s). EEG data from the upright standing (rest)
condition was sliced into non-overlapping segments with the
length of the mean gait cycle duration. An EEG channel was
not used if its variance was >2 times the median variance of
all channels or if its kurtosis was >5 resulting in 99.28 ± 7.36
retained channels. An entire trial was rejected if more than
half of the electrodes were excluded based on the previously
mentioned criteria. Finally, an average of 219.3 (range 89–484)
gait trials and 231.6 (range 130–301) rest segments were used
for analysis. EEG was re-referenced according to the common
average and the trials were corrected for direct current (DC)
offsets.

EEG source modeling
To enable neuroimaging during the gait paradigm, we applied
inverse mapping to high-density EEG recordings using a dis-
tributed source model based on individual anatomy. Source
imaging of high-density EEG data (Baillet et al., 2001; Darvas
et al., 2004; Michel et al., 2004) is increasingly evolving into a
capable brain imaging method (Michel and Murray, 2012) due
to advances in signal processing and the availability of computa-
tional power. The capability of high-density EEG source imaging
based on sophisticated head models using individual anatomy has
been demonstrated by Brodbeck et al. (2011) in a large-scale clin-
ical study. Thus, we computed realistic head models as boundary
element model (BEM) consisting of four surface layers (brain,
inner skull, outer skull, head surface) that were reconstructed from
individual structural T1 MRI scans. Cortical reconstruction and
volumetric segmentation was performed with the Freesurfer image
analysis suite (Dale et al., 1999; Fischl, 2012)1. The BEM model and
EEG electrode positions were co-registered using four anatomical
landmarks (nasion, vertex, left- and right pre-auricular points).
The bioelectric forward problem was formulated as distributed
source model using OpenMEEG (Kybic et al., 2005; Gramfort
et al., 2010), in which 15000 sources were oriented perpendicu-
lar to the reconstructed gray matter cortical surface. This number
of sources was necessary to model the folded brain surface and
to take into account the individual gyri and sulci of each individ-
ual. To solve the ill-posed inverse problem, we used the sLORETA
approach (Pascual-Marqui, 2002). The noise covariance matrix
was calculated from the rest EEG segments and was used for

1http://surfer.nmr.mgh.harvard.edu/
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whitening the lead field matrix. These analyses were performed
with the Brainstorm toolbox (Tadel et al., 2011)2.

Time-frequency decomposition of EEG sources
To enable the computation of functional topographies that can
describe the dynamics of different brain rhythms during the
gait cycle, we analyzed the EEG sources in the TF domain pre-
serving the high temporal resolution of the EEG. Based on
previously demonstrated utility in EEG analysis (Tallon-Baudry
and Bertrand, 1999), we used Morlet et al. (1982) wavelets for
TF decomposition. To design the mother wavelet, we set the
full width half maximum value to 3 s for the Gaussian ker-
nel at a center frequency of 1 Hz. Because TF decomposition
is linear, we performed it in the sensor space before apply-
ing the linear inverse method to reduce computational cost.
TF magnitudes were then calculated in the source space. This
analysis results in brain topographies for each center frequency
(4–50 Hz, 2 Hz steps) and every time sample. To enhance the
signal to noise ratio (SNR) of the topographies, we averaged
the TF magnitudes for the gait and rest condition segments
respectively.

μ and β ERD source imaging
Logarithmic (natural logarithm) amplitude ratios of the gait and
rest condition were computed in the EEG source space. These
topographies illustrated relative amplitude changes between the
gait and rest condition for a specific frequency. We applied a log-
arithmic function to give an activity scale that was centered at
0 and avoid the strong effect effect of outliers on power spec-
trum values induced by squaring. In noisy data squaring has the
effect to amplify outliers relative to the signal of interest. Although
logarithmic amplitude ratio is distinct from the classically defined
ERD/ERS, it describes the same phenomena namely a relative spec-
tral change between a defined task and reference period, in our case
walking relative to upright standing. Because the terms ERD/ERS
are well established in EEG analysis community, we continue using
these terms.

To show general, sustained ERD/ERS activity over the whole
gait cycle we calculated temporal mean ERD/ERS topographies
for every frequency. The individual μ (8–13 Hz) and β (13–
30 Hz) center frequencies were identified from local extreme
ERD values for these bands. These ERD extremes were obtained
from a global, spatially independent spectrum calculated from the
population mean of the 150 source vertices (1% of the source
space vertices) in the whole source space that showed most ERD.
We used this approach to assure the identification of sensori-
motor rhythms (μ and β) was fully data driven, without any
a priori spatial region of interest (ROI). For the resulting μ

and β center frequencies, we obtained ERD/ERS topographies,
which showed significant ERD in the sensorimotor cortex. We
clustered these significant vertices in sensorimotor cortex to iden-
tify an individual brain ROI in every subject. This cluster was
reduced to the 150 sources (1% of the source space vertices)
where ERD was greatest to obtain the same ROI size for each
subject.

2http://neuroimage.usc.edu/brainstorm

Gait phase modulated oscillatory amplitudes
To analyze the modulation of oscillatory amplitudes relative to the
gait cycle, we calculated logarithmic magnitude ratios for each time
point relative to the mean TF magnitude of the whole gait cycle.
These activities therefore express relative spectral changes across
the gait cycle, not changes relative to the rest condition. To identify
and localize the EEG frequency components with amplitude mod-
ulations most strongly locked to the gait cycle, we introduce the
gait phase modulation (GPM) measure. To do so, we calculated
a modified version of the modulation index that has previously
been used to quantify the phase amplitude coupling (Canolty et al.,
2006) of slow to fast neuronal oscillations. Here, we generated a
phase signal according to the gait cycle, assuming a two periods
pattern.

GPM(f ) = 2√
2 · σA(f )

·
N−1∑

n=0

A(n, f ) · e−2πi· 2·n
N

In this formula, A denotes the TF magnitude at a certain fre-
quency f and sample point n. N is the total number of samples
per gait cycle. σA(f ) is the standard deviation of A and was multi-
plied with 2√

2
to normalize the modulation measure. The GPM is

a complex number which has a magnitude of 1 if A is modulated
sinusoidally with the step frequency. The angle of A expresses the
reconstructed phase of the modulation. This formulation is equiv-
alent to the scaled discrete Fourier transform (DFT) component
of the TF magnitude at the step frequency, and therefore can be
back-transformed using the inverse DFT. This would result in a
representation as a sinusoid with the step frequency having the
magnitude and phase of the GPM. Figure 1 shows an exemplary
low γ amplitude modulation and the reconstructed GPM. This
measure was calculated for multiple frequencies (4–50 Hz, 2 Hz

FIGURE 1 | Schematic illustration of the GPM measure. Top panel:
exemplary (single trial) gait phase modulated low γ oscillation in blue and
reconstructed GPM as time course. Bottom panel: generated gait phase
assuming a two period pattern per gait cycle.
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steps) and every vertex in the source space. The resulting func-
tional topographies show the actual cortical origin of the GPM.
Additionally, we can evaluate whether the GPM are caused by
EMG activities, since EMG artifacts occur as superposition in
EEG recordings. Considering electrical volume conduction it is
likely that EMG sources get mapped to regions close to the muscle
locations, especially at sites near the neck muscles. If the GPM
were caused by EMG activities these modulations would be larger
in brain regions near the muscles than in central sensorimotor
cortical areas.

Statistical non-parametric mapping (SnPM)
In statistical analysis of functional brain topographies, it is impor-
tant to control for Type I errors due to the multiple comparison
problem inherent to a large number of vertices or sources in a
model. The family-wise error rate (FWER) was controlled by
applying SnPM using permutation tests (Nichols and Holmes,
2001; Maris and Oostenveld, 2007). We pooled the single trial
topographies from the gait and rest condition. From this pooled
data two random subsets were drawn with permuted labels from
the gait and rest condition. The logarithmic ratio of the two ran-
dom subset means was computed, resulting in random ERD/ERS
topographies calculated from the actual data with permuted
condition labels. This procedure was performed for 104 per-
mutations. Activity was indicated as significant if its value was
larger than the 95% of the maximum activity values from 104

random topographies, resulting in FWER < 0.05. To evaluate
GPM chance levels, we destroyed the temporal order between
the trials. To this end, we shifted the TF magnitudes in time
using randomly (uniform distribution) drawn time lags between
0 and the mean gait cycle period. We calculated the mean
over these temporally shifted trials, resulting in topographies.
Again, we performed 104 permutations and set thresholds of
5% for the topographies. We ranked clustered activity accord-
ing to the cluster size. Activity was deemed significant if a
cluster was larger than 95% of the largest clusters from 104

permutations.
To evaluate the chance level of the GPM in the central senso-

rimotor ROI for different rhythms we performed the same time
shift procedure as described above. Here we calculated the mean
GPM in the ROI, ranked the randomly observed GPM values, and
deemed the GPM significant if its magnitude was greater than 95%
of the values from 104 permutations.

RESULTS
μ AND β ERD SOURCE IMAGES
Event-related desynchronization and synchronization topogra-
phies showed significant ERD in sensorimotor areas for the μ and
β rhythm. Significant β ERD was visible focused in central sensori-
motor areas (Figure 2A) in 8/10 Subjects. S6 showed weak, but still
significant activity in central sensorimotor areas, while S10 showed
a different pattern in the sensorimotor area. We also observed sig-
nificant μ ERD for most of the subjects (Figure 2B), which were
spatially less consistent across subjects than the β activity patterns.
S6 and S8 showed fewer than 150 sources with significant activ-
ity in the sensorimotor cortex for the β topography. So, we used
a smaller cluster of 69 sources for S8. The focal μ cluster in the

central sensorimotor areas was downsized to a size of 150 sources
and used as ROI for S6. Activities in Figure 2 illustrated in red
are likely to be caused by EMG artifacts and not by ERS brain
activities.

GAIT PHASE MODULATED AMPLITUDES
Amplitude changes were found in central sensorimotor ROI, both
from walking to standing and across the gait cycle (Figure 3).
ERD/ERS activities during the gait cycle show sustained μ and
β ERD during the entire gait cycle (Figure 3A). There were pro-
nounced amplitude modulations relative to the mean gait cycle
activity at 25–40 Hz with similar temporal dynamics locked to the
gait cycle in 9/10 Subjects (Figure 3C). Subject 10, who already
showed unusual μ and β brain topographies, also featured dif-
ferent TF patterns. A comparison of the temporal dynamics of
TF magnitudes at μ and β frequencies compared to GPM center
frequencies revealed that the GPM magnitudes were significantly
higher (Wilcoxon signed rank) at the GPM peak frequency than
at the μ (p = 0.0049) and the β (p = 0.002) center frequencies
(Table 1; Figure 3D). While sustained ERD is by definition max-
imal at β center frequencies, the temporal amplitude modulation
is bigger at the peak GPM frequencies (Figures 3A,D). More-
over, the GPM frequencies were significantly different (Wilcoxon
signed rank) from the μ (p = 0.002) and β (p = 0.0137) center
frequencies (Figure 3B). This indicates that sustained μ and β

ERD and GPM occur in different neuronal rhythms. The GPM
activities were localized to the central sensorimotor areas for 8/10
Subjects.

DISCUSSION
We directly localized μ and β ERD and gait phase modulated
amplitudes during upright walking in humans using EEG source
imaging. To investigate and quantify the cortical origin and
frequency spectrum of gait phase modulated oscillations, we
introduced the GPM measure.

Upper μ (10–12 Hz) and β (18–30 Hz) rhythms were sup-
pressed (ERD) during the whole gait cycle, while low γ (25–40 Hz)
oscillations were dynamically modulated related to the gait cycle
phase. β ERD and low γ GPM were both localized in central sen-
sorimotor areas. Interestingly, ERD and GPM center frequencies
were identified to be different. They may therefore be caused by
different neuronal rhythms.

μ AND β ERD SOURCE IMAGES
The ERD/ERS brain topographies showed β ERD patterns in
central sensorimotor areas. These spatial patterns are consistent
with the classical somatotopic location of lower extremities in the
human motor cortex (Jasper and Penfield, 1949). Furthermore,
these patterns coincide with results for invasive electrocortico-
graphic (ECoG) recording studies that showed β spectral power
decreased in central sensorimotor areas during isolated leg move-
ments (Crone et al., 1998; Miller et al., 2007). The variability
of functional somatotopy across individuals has been reported
before (Crone et al., 1998; Miller et al., 2007). Yet, the inter-
subject consistent β ERD pattern located in central sensorimotor
areas was a robust feature of our study. ERD/ERS topogra-
phies illustrate general, conditional spectral changes between
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FIGURE 2 | Functional topographies of the 10 subjects illustrating

significant μ and β ERD in the sensorimotor cortex during the

active walking compared to the upright standing. (A) β rhythm
topographies, activity in log spectral magnitude ratios. Significant
(non-parametric permutation tests, corrected p < 0.05) spectral decrease
(ERD) is illustrated in blue, spectral increase in red. (B) μ rhythm

topographies, figure setting as in (A). Individual center frequencies were
used for the μ and β rhythm in every subject which showed most
ERD, whereas all μ peaks were identified at 10–12 Hz and all β peaks
were between 18–30 Hz; the specific frequencies are listed in Table 1.
Based on these functional topographies the central sensorimotor ROI
was identified individually for every subject.

active walking and upright standing, since there was no tempo-
ral information considered in this measure. ERD in the μ and
β rhythm consequently describe general state changes for these
oscillations during walking relative to a non-movement condi-
tion. ERD was interpreted as an electrophysiological correlate of
activated cortical areas that are involved in sensory or cognitive
processing, or in the production of motor behavior (Pfurtscheller
and Lopes da Silva, 1999). Following this theory the sustained
ERD reflects an active state of the sensorimotor areas during
walking.

SUPERPOSITION OF SUSTAINED ERD AND GAIT PHASE MODULATED
AMPLITUDES
In addition to sustained μ and β ERD, during the whole gait cycle,
oscillatory amplitudes are modulated relative to the gait phase in
the low γ band. These two phenomena occur simultaneously dur-
ing walking and are superimposed, both in spatial location and
frequency range. The GPM values are significantly larger in the
low γ than at μ and β center frequencies (Figure 3, Table 1).
This finding shows that GPM values, which are largest for fre-
quencies between 28 and 36 Hz, cannot be explained exclusively
by modulations of the μ and β rhythm. These modulations in
the low γ are strongly linked to the gait cycle phase (Figure 3C,
Table 1). The GPM maxima are clustered and located isolated
in central sensorimotor areas (Figure 4). This localization sug-
gests that the GPM are caused by brain signals and not by EMG
activities, considering the location of head muscles and electrical

volume conduction. Moreover, large GPM is present in a lim-
ited frequency band (24–40 Hz), not as broadband activity, which
was reported to be associated with motion or muscular artifacts
during walking (Castermans et al., 2014). The gait phase related
rhythm in the low γ band was previously reported by our group
(Wagner et al., 2012) using ICA and dipole reconstruction for
localization. Again, the location of particular independent compo-
nents is not necessarily congruent with the location of ERD/ERS
activity or the GPM measures we introduced in the present work.
Here, we directly localized μ and β ERD and low γ GPM using
inverse modeling in a distributed source model. Moreover, our
results show that μ and β ERD occur at different frequencies than
the GPM, which are driven by a different rhythm in the low γ

range.
The superposition of μ and β ERD and GPM is shown in

Figure 3, where the overlay of these two phenomena can be deter-
mined to be dependent upon the frequency overlap (Figure 3B,
Table 1) of the β ERD and the GPM center frequencies. In some
subjects, the β ERD “covers” the GPM in these plots. The iso-
lated gait phase related modulations are illustrated in Figure 3C.
Because gait cycle mean activities were used as a reference, sus-
tained ERD/ERS activities disappear in these plots. The time
courses in Figure 3D additionally outline the coexistence of sus-
tained ERD and GPM. Depending on the difference of the β and
GPM center frequencies, these time courses differs in terms of
their offset (ERD/ERS) or their temporal modulation (related to
GPM).
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FIGURE 3 | (A) Time-frequency ERD/ERS plots from the 10 subjects
illustrating spectral changes between active walking and upright
standing. Activity in log spectral ratios, spectral de/increase in blue/red
(B) ERD (blue) and GPM (red) as a function of frequency. (C) TF plots
illustrating amplitude modulations relative to the gait cycle mean

activities. (D) Time courses for the β rhythm (blue) and GPM (red)
center frequency. The negative offsets in these plots represent
sustained ERD while the temporal modulation indicates the GPM. All
plots in this figure show mean activity in the individual central
sensorimotor ROI for each subject.
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Table 1 | μ, β rhythm and modulation center frequencies (f) in Hz with

the corresponding GPM values.

fμ fβ fmod GPMμ GPMβ GPMmod pmod

S1 12 22 28 0.603 0.679 0.887 0.0001

S2 10 24 34 0.384 0.522 0.884 0.0001

S3 12 26 30 0.440 0.492 0.753 0.0001

S4 10 22 30 0.312 0.781 0.914 0.0001

S5 10 18 30 0.355 0.515 0.777 0.0001

S6 10 18 28 0.333 0.318 0.741 0.0001

S7 10 26 30 0.386 0.478 0.549 0.0001

S8 10 30 28 0.408 0.456 0.475 0.0015

S9 12 24 22 0.475 0.657 0.673 0.0001

S10 10 18 20 0.517 0.334 0.333 0.0120

Median 10 23 29 0.397 0.503 0.747 0.0001

POTENTIAL LIMITATIONS OF THE CURRENT STUDY AND FUTURE WORK
We investigated robot-assisted walking in the Lokomat for several
reasons. First, the robotic gait orthosis ensures a very steady gait
pattern during the experiment. Second, the participants’ trunk
can be stabilized to some extent using body weight support, which
reduces movement artifacts. Third, we plan to study electrophys-
iology during stroke rehabilitation in future studies using the
Lokomat. Nonetheless, Lokomat walking is similar but still dif-
ferent from treadmill walking (Hidler and Wall, 2005; Hidler et al.,
2008). The generalizability of our findings therefore has to be
investigated for everyday walking tasks in the future. However,
our findings may be helpful both for analysis of EEG data in more
naturalistic human walking tasks on one hand as well as ultimately
for clinical research on the other hand.

Lower extremities are both represented close to the midline in
the human motor cortex (Jasper and Penfield, 1949). Due to this
cortical location and the low spatial resolution of the EEG, we
are limited to reporting summed activity from both feet. In this
study, it is not possible to discuss EEG activity in relation to the
movement of a particular foot. For example, increased amplitudes
during 10–30% of the gait cycle could be related ether to the initial
and midswing phases (10–37%) of the left foot or to the mid
stance phase (10–30%) of the right foot. We are therefore careful
in discussing TF activity in relation to certain phases of a particular
foot.

FUNCTIONAL MEANING OF β ERD AND LOW γ MODULATION
In this section, we discuss our findings in relation to previous stud-
ies in terms of frequency ranges of the gait modulated oscillations
and their cortical origin. The frequency ranges we report in this
study for sustained β ERD (18–30 Hz) and the GPM (24–40 Hz) are
very similar to corticomuscular coherence (CMC) peak frequen-
cies from a recent study. In Petersen et al. (2012), the synchrony of
EEG and EMG signals were investigated during treadmill walking.
The authors reported CMC peaks located at the vertex (at the Cz
electrode) for frequencies at 15–30 Hz for static contraction of the
anterior tibial muscle, but for frequencies of 24–40 Hz for slow

FIGURE 4 | Functional topographies of significant (non-parametric

permutation tests, corrected FWER < 0.05) gait phase modulated

oscillations (GPM) at individual GPM center frequencies (Table 1).

and normal walking. The drift of CMC peak frequencies from the
β range during isometric movement tasks toward the low γ range
during phasic movements has been previously discussed for upper
limbs (Marsden et al., 2000; Omlor et al., 2007) and lower limbs
(Gwin and Ferris, 2012). Considering these findings and assuming
that different neuronal oscillations reflect different functional net-
works (Buzsáki and Draguhn, 2004; Schnitzler and Gross, 2005),
the CMC peak drift from β frequencies during isometric move-
ment toward low γ frequencies during phasic movements could
be explained by different cerebral networks associated with the
β rhythm and the low γ we identified and distinguished in this
work.

The presence of β oscillations is related to maintenance of the
current motor set (Engel and Fries, 2010) and promotes tonic
activity at the expense of voluntary movement (Gilbertson et al.,
2005; Brown, 2007; Pogosyan et al., 2009; Jenkinson and Brown,
2011). Thus, β ERD may reflect the suppression of an inhibitory
network and signifies a neuronal state during walking that enables
voluntary movement. We argue that β ERD during walking reflects
a sustained active, movement related neuronal state, which is
present during the whole gait cycle.

The most recent work from our group investigated different
interactive virtual environment (VE) tasks during robot-assisted
walking (Wagner et al., 2014). The authors reported low γ (23–
40 Hz) gait cycle related modulations in the premotor cortex
to be dependent on the VE task. This dependence was greatest
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during 10–30 and 60–80% of the gait cycle and was suggested
to represent processes involved in motor planning. In local field
potential (LFP) recordings, low γ frequencies at 25–40 Hz have
been shown to modulate the firing rate of macaque primary
motor neurons during a center-out brain-machine interface task
(Canolty et al., 2010). γ synchronization is a fundamental process
in cortical computation (Fries et al., 2007; Fries, 2009) and facil-
itates the coordination of distributed functional cell assemblies
(Canolty et al., 2010). Consequently, the gait phase modulated low
γ oscillations we report could be involved in gait phase dependent
local synchronization of neuronal populations linked to sensori-
motor processing or integration. The particular involvement of
low γ oscillations in motor control will be investigated in future
work.

μ and β ERD and gait phase related amplitude modulations are
simultaneously present during walking. Following the view that
neuronal oscillations at different frequencies are involved in dif-
ferent cortical networks (Buzsáki and Draguhn, 2004; Schnitzler
and Gross, 2005; Siegel et al., 2012), our findings suggest that the
sustained μ and β ERD reflect altered states of the associated net-
works during walking. Furthermore, another network related to
the low γ rhythm may be modulated dynamically locked to the
gait cycle phase. Gait phase related low γ amplitude modulation
and sustained μ and β suppression may therefore be organized in
different neuronal networks.
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A corrigendum on

EEG beta suppression and low gamma modulation are different elements of human upright

walking

by Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T., and Müller-Putz, G. R. (2014) Front. Hum.
Neurosci. 8:485. doi: 10.3389/fnhum.2014.00485

In the Original Research Article there is a missing normalization by “N” in the formula on page 3.
This formula describes the gait phasemodulation (GPM)measure. The corrected formula is written
below.

GPM(f ) =
2

√
2 · σA(f ) · N

·

N−1
∑

n=0

A
(

n, f
)

· e−2πi· 2·nN

In our original article, the description of the GPM formula as well as the reported results are
correct. As properly stated in the commentary from Trenado (2015) to our original article, the
normalization by N is necessary to scale the GPM magnitude in an interval from 0 to 1. In our
calculations this normalization was already applied what is represented in the GPM values we
reported in Table 1 and Figure 4 in the original publication.

In contrast to Trenado (2015) we suggest to use the GPM measure as complex number, not
only it’s magnitude. The GPM magnitude expresses it’s strength, while the GPM angle represents
the phase lag between behavior and amplitude envelop at a given carrier frequency and location in
the brain. In our opinion it is a benefit of the GPM measure not only to describe the correlation
between amplitude envelops of brain oscillations and behavior, i.e., walking patterns, but also to
provide their phase relation.
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Investigating human brain function is essential to develop models of cortical involvement during walking. Such
models could advance the analysis of motor impairments following brain injuries (e.g., stroke) and may lead to
novel rehabilitation approaches. In this work, we applied high-density EEG source imaging based on individual
anatomy to enable neuroimaging during walking. To minimize the impact of muscular influence on EEG record-
ings we introduce a novel artifact correction method based on spectral decomposition.
Highγ oscillations (N60Hz)were previously reported to play an important role inmotor control. Here, we inves-
tigate high γ amplitudes while focusing on two different aspects of a walking experiment, namely the fact that a
person walks and the rhythmicity of walking. We found that high γ amplitudes (60–80 Hz), located focally in
central sensorimotor areas, were significantly increased during walking compared to standing. Moreover, high
γ (70–90 Hz) amplitudes in the same areas are modulated in relation to the gait cycle. Since the spectral peaks
of high γ amplitude increase and modulation do not match, it is plausible that these two high γ elements repre-
sent different frequency-specific network interactions. Interestingly, we found high γ (70–90 Hz) amplitudes to
be coupled to lowγ (24–40Hz) amplitudes, which both aremodulated in relation to the gait cycle but conversely
to each other. In summary, our work is a further step towards modeling cortical involvement during human
upright walking.

© 2015 Elsevier Inc. All rights reserved.

Introduction

The ability to walk safely and independently is important for
humans. Cortical injuries (e.g., stroke) can cause motor impairment
and lead to limitations in the execution of daily life activities. Thus,
great effort is put into restoring walking in people with motor impair-
ments. To get a deeper understanding of cortical involvement during
walking it is necessary to developmodels, which are capable of describ-
ing cortical activities in relation to human walking patterns. Such
models could facilitate the development of novel rehabilitation strate-
gies in the future.

Neuroimaging studies using functional magnet resonance imaging
(fMRI) restrict subjects to a lying positionwith fixated heads. Therefore,
such setups are not well-suited for studying human brain function
during walking. To overcome these methodical limitations electroen-
cephalographic (EEG) source imaging (Baillet et al., 2001; Michel

et al., 2004, 2004) can be used. Despite its low spatial resolution (centi-
meters), sophisticated analysis of the EEG offers several advantages.
First, the temporal resolution of EEG signals in milliseconds allows
analyzing cortical processes in relation to walking patterns. Second,
analysis in the frequency domain opens possibilities to investigate
different elements of cortical activity (Buzsáki and Draguhn, 2004;
Siegel et al., 2012). Third and most important for investigating cortical
involvement duringwalking, EEG source imaging can be done in ambu-
latory conditions (i.e., mobile brain imaging).

In recent years, several studies have investigated brain activity
during walking (Gwin et al., 2011; Gramann et al., 2010; Presacco
et al., 2011; Severens et al., 2012; Petersen et al., 2012; Wagner et al.,
2012, 2014; De Sanctis et al., 2014; Ehinger et al., 2014; Lau et al.,
2014; Seeber et al., 2014). In agreement with earlier studies of isolated
footmovement (Pfurtscheller et al., 1997; Crone et al., 1998;Miller et al.,
2007; Müller-Putz et al., 2007), β oscillations in central sensorimotor
areas were found to be suppressed (event-related desynchronization,
ERD) during walking relative to a non-movement reference (Wagner
et al., 2012; Severens et al., 2012; Seeber et al., 2014). Additionally,
low γ (25–40 Hz) amplitudes were found to be modulated locked to
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the gait cycle (Wagner et al., 2012, 2014; Seeber et al., 2014). The same
frequency range was reported by Petersen et al. (2012) for significant
coherence between EEG recordings over legmotor areas and the anteri-
or tibialis muscle.

Sustained β suppression and low γ modulation were found to be
simultaneously present and superimposed in the frequency domain
and in spatial location during walking. Nevertheless, the different spec-
tral peaks of β suppression and low γ modulation suggest that these
phenomena are different elements of EEG activity during walking. We
proposed that altered levels of β suppression duringwalking signify en-
hanced cortical excitability in central sensorimotor areas. Furthermore,
gait cycle related modulation of low γ amplitudes may reflect sensori-
motor processing linked to the motion sequences (Seeber et al., 2014).

In this work, we further develop the electrophysiological model of
walking, including data from higher frequency oscillations (N50 Hz).
Previous studies showed high γ oscillations (60–90 Hz) to play an im-
portant role in motor execution (Crone et al., 1998; Pfurtscheller et al.,
2003; Miller et al., 2007; Cheyne et al., 2008; Ball et al., 2008; Donner
et al., 2009; Muthukumaraswamy, 2010; Darvas et al., 2010; Joundi
et al., 2012). High γ power increase in electrocorticographic (ECoG)
recordings correspond spatially well to fMRI activity (Hermes et al.,
2012a) and its superior focal distribution enables the decoding of single
fingermovement (Kubánek et al., 2009;Miller et al., 2009; Scherer et al.,
2009; Hermes et al., 2012b). The feasibility of detectinghighγ activity in
the motor system from non-invasive recordings was reported for mag-
netoencephalography (MEG) (Cheyne et al., 2008; Dalal et al., 2008;
Donner et al., 2009; Muthukumaraswamy, 2010) and EEG (Ball et al.,
2008; Darvas et al., 2010) during isolated limb movements. However,
due to muscular [electromyographic (EMG)] and movement artifacts,
it is very challenging to detect high γ activity from EEG recordings dur-
ingwalking. EMG artifacts during bodymovements affect EEG recordings
in a wide range of frequencies (~20–300 Hz) (Muthukumaraswamy,
2013; Castermans et al., 2014).

Extending the previous findings of our group (Wagner et al., 2012;
Seeber et al., 2014) we focus on two different aspects of the walking ex-
periment: the fact that a person walks and the rhythmicity of walking
movements. Therefore, we first investigate differences of the amplitude
spectra between conditions walking and standing. In these analyses we
introduce a novel artifact correction method based on spectral decom-
position to minimize the impact of muscular influence on EEG source
images. This correction method enables us to analyze high γ activity
duringwalking. Second, we examine amplitudemodulations in relation
to gait phases reflecting the rhythmicity of walking movements.

Methods

Experiment and recordings

Data were taken from a previous study of our group (Wagner et al.,
2012). Ten healthy volunteers (5 female, 5 male, 25.6 ± 3.5 years)
completed four runs (6 min each) of active walking and three runs of
upright standing (3 min each) in a robotic gait orthosis (Lokomat,
Hocoma, Switzerland). Walking speed was constant and adjusted for
each participant individually ranging from 1.8 to 2.2 km per hour. The
Lokomat was operated with 100% guidance force and body weight
support was less than 30% in every participant. This set-up was chosen
to ensure a well-controlled and steady gait pattern during the experi-
ment. Participants were trained to walk in a natural way, in accord
with the movement pattern of the Lokomat.

Multichannel EEG (120 channels) was recorded by combining four
32-channel amplifiers (BrainAmp, Brainproducts, Germany). A 3D
localizer (Zebris Elpos system, USA) was used to determine electrode
positions and anatomical landmarks (nasion, vertex, left- and right
pre-auricular points) for each subject. Structural T1magnetic resonance
imaging (MRI) scans were recorded in a post screening session using a

3.0 T (Tim Trio/Skyra, Siemens, Erlangen, Germany) scanner. EEG sam-
pling ratewas set to 2.5 kHz and the band pass filter to 0.1Hz and 1 kHz.
Electrodesweremounted in accordwith the 5% international 10/20 EEG
system (EasyCap, Germany) (Oostenveld and Praamstra, 2001). Refer-
ence and ground electrodes were placed on the left and right mastoids,
respectively. Electrode impedanceswere lower than 10 kΩ. Foot contact
wasmeasured by electro-mechanical switches placed over the calcane-
us bone at the heel of both feet.We defined one gait cycle as the interval
between two right leg heel contacts. More detailed information about
the experimental set-up and procedure can be found in Wagner et al.,
2012.

Preprocessing

The EEG recordings were band pass filtered between 1 and 200 Hz,
notch filtered at the line frequency (50 Hz) and its integer multiples
(i.e., 100, 150, and 200 Hz). EEG data during walking was segmented
into gait cycle periods corresponding to the measured foot triggers.
EEG data from upright standing was separated into non-overlapping
segments with the length of the mean gait cycle duration of every sub-
ject. EEG channels were not used if their variance was greater than 2
times the median variance of all channels or exceeded a threshold of
±1 mV resulting in 98.9 ± 7.5 retained channels. A segment was ex-
cluded from analysis if any channel exceeded a threshold of ±200 μV.
This resulted in 404 walking and 231 standing segments (99.2% of all
segments) that were analyzed on average for each subject. EEG was
re-referenced according to the common average and the trials were
corrected for direct current (DC) offsets.

EEG source imaging

High-density EEG source imaging (Baillet et al., 2001; Darvas et al.,
2004; Michel et al., 2004; Michel and Murray, 2012) was applied
based on distributed source models using realistic head models. For-
ward models were computed using OpenMEEG (Kybic et al., 2005;
Gramfort et al., 2010) as boundary element models (BEM) consisting
of four layers (brain, inner skull, outer skull, head surface) which were
reconstructed from individual structural T1 MRI scans. Cortical recon-
struction and volumetric segmentation were performed with the
FreeSurfer image analysis suite (Dale et al., 1999; Fischl, 2012) (http://
surfer.nmr.mgh.harvard.edu/). BEMmodel and EEG electrode positions
were co-registered using four anatomical landmarks (nasion, vertex,
left- and right pre-auricular points). 15,002 brain sourcesweremodeled
with perpendicular orientation to gray matter surface. This number of
sources was necessary to take into account the individual gyri and
sulci of each folded brain surface. sLORETA (Pascual-Marqui, 2002)
was used to solve the ill-posed inverse problem. For whitening the
lead field matrix, we used the noise covariance matrix calculated from
the standing EEG segments. Analyses were performed in Matlab
(Mathworks, Natick, USA) using custom scripts and the Brainstorm
toolbox (Tadel et al., 2011) (http://neuroimage.usc.edu/brainstorm).

Time–frequency analysis

Time–frequency (TF) decompositionwas used to investigate tempo-
ral dynamics of EEG oscillations in the source space. These analyses
contained the following 6 stages:

(1) TF decomposition was applied to walking and standing
segments. We used Morlet wavelets (Morlet et al., 1982) for TF
analyses (2–200 Hz, 2 Hz steps). Mother wavelet parameters
were set to full width half maximum value of 3 s for the Gaussian
kernel at a center frequency of 1 Hz. The magnitudes of TF
decomposed signals were calculated in the source space and
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time warped to match the mean gait cycle duration. This data
was then averaged for the walking and standing segments,
respectively.

(2) We calculated relative amplitude changes (in decibel, dB) be-
tween thewalking and standing condition for every frequency de-
noted above. These TF matrices (sources × time × frequencies)
were used in each individual for muscular artifact correction as
described in the next section.

(3) We investigated gait cycle related amplitude modulations
representing the rhythmicity of walking movements. Therefore,
we computed the amplitude ratio (in dB) of every time point in
the gait cycle to the temporal mean amplitude at a certain fre-
quency to obtain zero-mean amplitude modulations. From these
data we calculated the gait phase related amplitude modulation
(GPM) measures as normalized Fourier transform component
of TF source magnitudes corresponding to the step frequency
(Seeber et al., 2014). The magnitude of this measure expresses
the correlation of the amplitude envelope at a certain carrier
frequency and a sinusoid of the modulation, in our case, the step
frequency. The benefit of the GPM measure is, due to its Fourier-
based origin the capability to evaluate the phase lag of the ampli-
tudemodulation and the heel strike. This property is not provided
by the common correlation coefficient.

(4) TF plots were calculated in the central sensorimotor region of in-
terest (ROI). This ROI was defined as the cortical region in which
low γ (24–40 Hz) GPM was significant (see section Group
statistical analysis). The pattern, frequency range, and location of
the low γ GPM were previously reported from this data set
(Wagner et al., 2012; Seeber et al., 2014).

(5) Specific frequencies of interest were selected for further analysis
based on frequency spectra in the central sensorimotor ROI.
Peaks in the relative amplitude spectrum indicate maximal differ-
ences between walking and standing. Accordingly, peaks in the
GPM spectrum indicate maximal gait phase related amplitude
modulations at this frequency. Source images at the selected
frequencies were subsequently tested for significant activity.

(6) Cross-frequency coupling (CFC) was analyzed in the central
sensorimotor ROI as correlation of the amplitude envelopes for
every frequency combination. Again, peaks in the GPM spectra
were used to select frequency ranges to test for significant CFC.

Muscular artifact correction

Previous EEG studies on walking mostly focused on independent
component analysis (ICA) (Gwin et al., 2011; Petersen et al., 2012;
Wagner et al., 2012) to correct for artifacts. In this work, we use a differ-
ent approach based on frequency spectral decomposition. Instead of
decomposing the EEG signals in time domain into independent compo-
nents our intention was to decompose the frequency spectra into
orthogonal spectral components using principal component analysis
(Jolliffe, 2002). Muscular activity (EMG) is present in a wide range of
frequencies (~20–300 Hz) (Muthukumaraswamy, 2013; Castermans
et al., 2014) and spreads spatially tomany EEG channels duringwalking,
especially to ones which are close to neck muscles (Gramann et al.,
2010; Gwin et al., 2011; Seeber et al., 2014). In contrast, amplitudes of
cortical oscillations decrease in narrow frequency ranges in the upper
μ (10–12 Hz) and β (18–30 Hz) range during isolated foot movements
(Pfurtscheller et al., 1997; Crone et al., 1998; Miller et al., 2007;
Müller-Putz et al., 2007) and walking (Wagner et al., 2012; Severens
et al., 2012; Seeber et al., 2014). High gamma amplitudes increase in
an approximately 20 Hz wide range centered between 60–100 Hz and
were located to contralateral hand/feet representation areas in the
motor cortex during finger (Ball et al., 2008; Cheyne et al., 2008;
Donner et al., 2009; Muthukumaraswamy, 2010; Darvas et al., 2010)
and foot movements (Cheyne et al., 2008) respectively. Because of

these spatial and spectral differences between muscular activity and
cortical signals, the assumption of the proposed approach is that these
two sources are separable. Therefore, our objective was to decompose
the mixed spectral profiles we are recording as EEG into muscular arti-
facts and actual cortical activities. The spectral profile of muscular arti-
facts then is identified and the corresponding principal spectral
component (PSC) ignored in the back projection. The utility of spectral
decomposition approaches in EEG analysis for different purposes was
shown previously (Miller et al., 2009; Onton and Makeig, 2009).

Commonly, temporal information is used to calculate the covariance
matrix for PCA or ICA in EEG analysis to decompose the channels. Here,
we used the spatial information of EEG sources to calculate the covari-
ance matrix to decompose the frequency spectra.

C ¼ XT
_X

C _V ¼ V _D

W ¼ X _V

U ¼ V−1

YPSC n ¼ W1:N;n _ Un;1:N

e.g.

YPSC 1 ¼ W1:N;1 _ U1;1:N

YPSC 2:M ¼ W1:N; 2:M _ U2:M; 1:N

Where X is a matrix of the dimension N ×M (sources × frequencies)
containing the amplitude ratios between walking (at a specific time
point) and standing. C is the covariance matrix of the size M × M. V is
amatrix containing the eigenvectors andD is a diagonalmatrix contain-
ing the eigenvalues. Eigenvalues were sorted in descending order and
columns in V were rearranged accordingly. W is a matrix containing
the images projected on the eigenvectors, i.e., the images of the orthog-
onal spectral components. YPSC n is aN ×Mmatrix of the back-projected
principal spectral component n. Each PSC has a static brain topography
(W1:N,n) scaled by its frequency profile (Un,1:N). The frequency spectra of
the PSCs' are orthogonal due to the decomposition criteria. In sum, each
PSC is therefore identified by a static topographic pattern and its fre-
quency spectrum. This decomposition was calculated for every time
sample in the gait cycle, individually for every subject.

Group statistical analysis

Results are reported on the group level statistics in this work. To en-
able group analysis it is necessary to project the individual EEG source
images on a common space. Here, we used the Colin 27 (Montreal
Neurological Institute, http://imaging.mrc-cbu.cam.ac.uk/imaging/
MniTalairach) surface. Each hemisphere of individuals' cortices was in-
flated to a sphere. This sphere then was warped to align the individual
gyri and sulci to the Colin 27 surface. The result of this spatial aligning
process is a projection matrix, which can be used to project EEG source
images from one cortical surface to another. This spatial aligning proce-
dure (Fischl et al., 1999) was performed using the FreeSurfer image
analysis suite (Dale et al., 1999; Fischl, 2012) (http://surfer.nmr.mgh.
harvard.edu/). Gait cycle durations were different for each subject.
Therefore, we time warped the TF data according to the grand average
gait cycle duration to enable group analysis.

Significant EEG source activity was identified based on nonparamet-
ric permutation tests (Nichols andHolmes, 2001;Maris andOostenveld,
2007). We selected specific frequency ranges for each measure respec-
tively. First, for analyzing amplitude differences between walking and

320 M. Seeber et al. / NeuroImage 112 (2015) 318–326



standingwe selected μ (10–12Hz),β (18–30Hz) andhighγ (60–80Hz)
ranges. Second, for the GPM measure we focused on low γ (24–40 Hz)
and high γ (70–90 Hz) ranges. These frequency ranges were selected
based on peaks in the frequency spectra in the central sensorimotor
ROI. Afterwards, we tested for significant activity in source images of
these five selected features. To correct for the multiple comparisons
inherent to the large number of sources (15,002) we applied
suprathreshold cluster size tests (Nichols and Holmes, 2001; Maris
and Oostenveld, 2007). The primary threshold was set to the 95%
quantile of activities in an actual image which was calculated with
unpermuted labels. We pooled the source images from the walking
and standing condition. Therefore, the pooled data set contained 20
source images (ten individuals × two conditions). From these pooled
data sets ten images were drawn randomly and used to calculate the
group average. This procedure was performed for 104 permutations.
The primary threshold was applied in every image resulting from the
permutations. A cluster in the actual images was then defined as signif-
icant if its sizewas larger than 95% of themaximal cluster sizes from the
randomly observed 104 images.

Spearman's rank correlation coefficient was calculated to determine
the coupling of high γ (70–90 Hz) and low γ (24–40 Hz) amplitude
envelopes. We tested for significant correlation using a permutation
test similar to the one described above. Here, we pooled amplitude en-
velopes from central sensorimotor ROI for the subjects and the walking
and standing condition.We intentionally tested high γ and low γ corre-
lation to be larger duringwalking compared to standing and not only to
be significantly larger than zero. By this means, we are able to preclude
that this correlation is a result of the TF analysis itself or the artifact

correction method, because we used identical analysis pipelines for
walking and standing data for these statistical tests.

Results

Muscular artifact correction

The spatialmap of thefirst PSC (with the largest eigenvalue) showed
activity located in lateral and dorsal regions close to the location of head
and neckmuscles (Figs. 1a, 2c). The eigenvalue of the first PSCwas 5–10
times bigger than the eigenvalue of the 2nd one in every subject
(Fig. 2b). Moreover, the spectral profile of this component increases
from 2–20 Hz and remains at a certain level for higher frequencies
(Figs. 1b/c, 2a/c, S1). The spatial location and spectral profile of the
first PSC suggests this component to reflect muscular activity rather
than cortical oscillations. Thus, this component was excluded from fur-
ther analysis.

The first PSC resembled the spectral profile at dorsolateral sites
(Fig. 2c) where after artifact correction (omitting this component) the
spectral amplitudes were close to the reference level (standing, 0 dB).
Similarly, spectral amplitudes in central sensorimotor areas were
lowered in a wide frequency range in accord with the first PSC spec-
trum. In contrast, narrow band μ and β amplitude decrease as well as
highγ increase at 60–80Hz (Figs. 1a/b, 2c) remain in central sensorimo-
tor areas after applying the correction method. GPM magnitudes were
decreased in the high γ range in left and right dorsolateral regions
after applying the artifact correction method, but were increased in

Fig. 1.Artifact correctionmethod. The rows in a–c) show the corrected (PSC 2-100), removed (PSC 1) and uncorrected (all PSC's) patterns of a representative subject. a) Amplitude increase
at 68 Hz (reference: standing). Note the focal activity in central sensorimotor areas in the corrected image, the prominent activities at dorsal and lateral sites of the removed component
and the summation of these patterns in the uncorrected image. b) TF plots in central sensorimotor ROI (reference: standing). The corrected TF plot showswell-known amplitude decrease
for μ and β frequencies (blue) and high γ increase (red) in dB. TF plot of the removed component illustrates broadband activities, which spectral profile is quite similar over the gait cycle.
c) TF plots in central sensorimotor ROI (reference: walking). The corrected TF plot reveals narrow band modulations in the high γ and low γ frequency range, broadband activity in the
removed component and the summation of all components in the uncorrected TF plot.
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central sensorimotor areas at the low γ and high γ ‘bump’ in the spec-
trum (Fig. 2d).

High γ amplitudes during walking

High γ (60–80 Hz) amplitudes were increased during walking rela-
tive to standing. Significant high γ amplitude increase was located to
central sensorimotor areas (Figs. 3, S2). Furthermore, high γ (70–
90 Hz) amplitudes were significantly modulated in relation to the gait
cycle. Interestingly, the spectral peaks of the high γ amplitude increase
(70 Hz) and the carrier frequency (76 Hz) of the high γ modulation do
not match (Figs. 3, S2). We also reanalyzed earlier findings showing

significant μ (Fig. S3) and β suppression as well as low γ GPM in central
sensorimotor areas (Figs. 3, S2).

TF results are illustrated in twofold fashionwith different references.
First, the TF plot in the right panel of Fig. 3 shows amplitudes during
walking relative to standing. Amplitudes during standingwere averaged
over time and used as reference in this TF plot. The frequency spectrum
in the right panel of Fig. 3 shows the temporal mean of this TF plot. That
is the spectral profile of relative amplitude differences betweenwalking
and standing. Second, the TF plot in the left panel of Fig. 3 shows ampli-
tudes during walking relative to the mean amplitudes during walking.
Here, amplitudes during walking were averaged over time and used as
reference. The spectrum in the left panel of Fig. 3 shows the spectral

Fig. 2. Characteristics of the artifact correctionmethod. a) First eigenvector entries (subjects' mean± std) show the spectral profile of this component b) Eigenvalues 1–5 for each subject,
where thefirst (largest) eigenvalue is 5–10 times larger than the second eigenvalue and therefore can robustly be identified. c) Relative amplitude spectra (subjects' mean) duringwalking
in left dorsolateral, central sensorimotor and right dorsolateral areas (ROIs indicated on top). Theuncorrected frequency spectra are illustrated in red, the removed component in green and
the resulting, corrected spectra in blue. d) Frequency spectra of GPMmagnitudes, areas and colors as in c.
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profile of the GPMmagnitude, which quantifies the amplitude modula-
tion in relation to the gait cycle.

High γ and low γ amplitudes are conversely modulated during walking

High γ (70–90 Hz) and low γ (24–40 Hz) amplitudes were both
modulated with the step frequency (Fig. 4a). Notably, high γ and low

γ amplitude envelopes are negatively correlated (ρ = −0.847, p =
0.0014) (Figs. 4b, 3 left TF plot). We also investigated amplitude modu-
lation at different modulation frequencies from the step frequency. As
shown in Fig. 4a, high γ and low γ amplitudes are modulated with the
step frequency, but not with other modulation frequencies. The cross-
frequency amplitude correlation plot in Fig. 4b additionally underpins
the negative coupling of high γ and low γ amplitudes. Moreover, it

Fig. 3. Left panel: Gait phase related amplitude modulations (GPM). EEG source images show significant high γ and low γ GPM (grand average) located focally in central sensorimotor
areas. The temporal modulation of high γ and low γ amplitudes in the gait cycle is illustrated in the TF plot (reference: walking) below. The spectrum of GPM magnitudes (walking in
blue, standing in cyan) indicates amplitude modulation in relation to the gait cycle as a function of frequency. Right panel: Relative amplitude changes between walking and standing.
Significant high γ increase and β decrease (grand average) occurred in central sensorimotor areas. The sustained high γ increase and μ and β decrease during the gait cycle is shown
in the TF plot (reference: standing). The temporal mean of the relative amplitude changes (walking vs. standing) are illustrated as frequency spectrum (red). Spectra and TF plots were
calculated in the central sensorimotor ROI, all amplitude changes in dB. Spectral peaks of high γ (76 Hz) and low γ (30 Hz) GPM are marked with blue lines, while the spectral peaks
of high γ increase (70 Hz) and β decrease (24 Hz) are marked with red lines.

Fig. 4. a) GPM magnitudes as a function of carrier and modulation frequency. High γ (70–90 Hz) and low γ (24–40 Hz) amplitudes are modulated with the step frequency. Modulation
frequencies were normalized by the step frequency. b) Cross-frequency amplitude correlation plot (pos./neg. correlation in red/blue) illustrates that high γ and low γ amplitudes are
negatively correlated.
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provides more general results of the amplitude envelope correlation for
various frequencies. Note that the high γ and low γ amplitude correla-
tion is the most prominent one.

Discussion

Muscular artifact correction

The spatial location and the frequency spectrum of the first principal
spectral component (Figs. 1a–c) suggest this component to represent
muscular artifacts. The first PSC can be robustly identified by its eigen-
value, because its magnitude is 5 to 10 times larger than the eigenvalue
of the 2nd PSC in every subject (Fig. 2b). Spatially widespread activity
and such with high amplitudes lead to large eigenvalues in our ap-
proach. Both criteria are given for muscular activities and therefore ex-
plain the dominant first component. Although the first PSC was
identified in every subject (Figs. 2a, S2) to reflect artifacts in this work,
it is not necessarily given that this is the case for every walking para-
digm.Morework is needed to generalize thisfinding on variouswalking
experiments. Hence, it ismandatory to take great care in the selection of
components which are omitted during artifact correction.

The reduction of spectral power in dorsolateral areas to approxi-
mately baseline levels (Fig. 2c) suggests that the correction method is
able tominimize the influence ofmuscular artifacts duringwalking. Fur-
thermore, high γ increase at 60–80 Hz was larger in central sensorimo-
tor than in dorsolateral areas (Figs. 2c, 3 right panel). Similarly, gait
cycle related amplitude modulation in the high γ range at 70–90 Hz
was larger in central sensorimotor than in dorsolateral areas (Figs. 2d,
3 left panel). Because electric potentials decrease monotonically with
the distance to its source, these results show the cortical origin of both
high γ phenomena that we report in this work.

GPMmagnitudes describe the proportion of gait cycle related ampli-
tude modulation to the standard deviation of amplitude envelopes at a
given frequency. Therefore, the increase of GPM magnitudes after arti-
fact correction at the low γ and high γ spectral ‘bump’ in central senso-
rimotor areas, but its decrease at dorsolateral sites (Fig. 2d) additionally
suggests an improved signal to noise ratio of gait cycle related cortical
signals to muscular noise.

Taken together, the proposed artifactmethodwas capable of robust-
ly identifying and rejecting patterns, which are likely to represent
muscular artifacts.

The first PSC in the present studymust not be confusedwith the first
PSC described in Miller et al. (2009, 2014). In these works the spectral
decomposition was applied on single ECoG electrodes and the first
PSC was used as a marker of asynchronous local population firing.

High γ amplitudes during walking

We report increased high γ (60–80 Hz) amplitudes during walking
compared to standing, whichwere located focally in central sensorimo-
tor areas. The frequency range of high γ increase is in agreement with
previous reports of isolated limb movements (Crone et al., 1998;
Pfurtscheller et al., 2003; Miller et al., 2007; Cheyne et al., 2008; Ball
et al., 2008; Donner et al., 2009; Darvas et al., 2010). The spatial location
of high γ increase in central sensorimotor area is consistentwith results
from studies of isolated foot movements using invasive ECoG (Crone
et al., 1998; Miller et al., 2007) and noninvasive MEG (Cheyne et al.,
2008) recordings. This localization to central sensorimotor areas is ana-
tomically meaningful considering the foot representation areas in the
somatotopic organization of the motor cortex (Jasper and Penfield,
1949). To our knowledge, this is the first study that provides evidence
of significantly increased high γ amplitudes located central sensorimo-
tor area during human upright walking. High γ (60–80 Hz) amplitudes
were constantly increased during the whole gait cycle (Fig. 3 right
panel). Previous studies suggested high γ oscillations to facilitatemove-
ments (Brown, 2003) in individuals suffering from Parkinson's disease.

Moreover, Joundi et al. (2012) provided first evidence for mechanistic
relationship of high γ oscillations and motor performance. The authors
reported enhancedmotor performance when high γ oscillations are ar-
tificially increased using transcranial alternating current stimulation
(tACS). Thus, the increase in highγ amplitudes duringwalkingmay rep-
resent a state of enhanced cortical excitability in central sensorimotor
areas which facilitates motor processing.

We also found high γ (70–90 Hz) amplitudes to be modulated in
relation to the gait cycle (Fig. 3, left TF plot). Previous studies showed
that high γ power envelopes are related to the motor output during
repeated finger movements (Miller et al., 2007; Darvas et al., 2010;
Muthukumaraswamy, 2010; Hermes et al., 2012b). Our finding that
high γ amplitude modulation is related to themotor output is in accord
with these studies.

A recent study byGwin et al., 2011 investigated electrocortical activ-
ity during treadmill walking based on ICA. The authors reported that
spectral power in wide-range of frequencies including the high γ
range are coupled to the gait cycle phase. The corresponding indepen-
dent components were localized in left/right sensorimotor, posterior
parietal and anterior cingulate regions. These results are controversially
discussed in Castermans et al., 2014. In our work we directly addressed
and corrected for activities occurring in a wide frequency range and at
dorsal and lateral cortical sites. The gait phase related amplitude high
γ modulation we report here is in contrast to results from Gwin et al.,
2011 in many respects. First, high γ gait related amplitude modulation
was localized in central sensorimotor areas in our study. Second, we
report that high γ and low γ amplitudes are conversely modulated in
relation to the gait cycle. Third, because we directly corrected for
broad band activities our results showed that high γ modulation was
strongest for a limited frequency range between 70 and 90 Hz (GPM
spectrum in Fig. 3).

High γ increase and modulation — signatures of different networks?

In this work we report high γ amplitude increase (60–80 Hz) and
modulation (70–90 Hz) duringwalking relative to standing. These phe-
nomena can be separated by their time course (static increase vs. gait
phase related modulation) and frequency spectra. A narrow-band
peak in the EEG frequency spectrum was proposed to reflect increased
synchrony of underlying neuronal populations (Elul, 1972; Singer,
1993; Pfurtscheller and Lopes da Silva, 1999; Buzsáki et al., 2012). Neu-
ronal oscillations arise from frequency-specific neuronal network inter-
actions (Buzsáki and Draguhn, 2004; Donner and Siegel, 2011; Siegel
et al., 2012;Womelsdorf et al., 2014). Therefore, EEG amplitude changes
at a specific frequency can be interpreted as altered synchrony levels of
large neuronal populations in the same frequency-specific neuronal
network. Thus, the static increase of high γ amplitudes (60–80 Hz) dur-
ing walking relative to standing may reflect an altered synchrony state
of the associated network. Furthermore, the dynamic, gait phase related
amplitude modulations at 70–90 Hz could be a signature of gait phase
dependent interactions in another frequency-specific neuronal
network.

High γ and low γ amplitudes are conversely modulated during walking

We report high γ (70–90 Hz) low γ (24–40 Hz) amplitudes are both
modulated in relation to the gait cycle (Fig. 3, left TF plot), but converse-
ly to each other (Fig. 3 left panel, Fig. 4). This is an interesting finding,
since γ oscillations are classically discussed for frequencies N30 Hz.
Because of the negative coupling of high and low γ amplitudes it is nec-
essary to distinguish these two modulations in walking experiments.
Cross-frequency amplitude envelope correlation was observed previ-
ously but its functional role remains unclear (Canolty and Knight,
2010). Unfortunately, we are not able to relate the time course of the
amplitude modulations to a particular foot movement for two reasons.
First, both feet are simultaneously involved in walking. Second, the
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cortical areas representing the left and right foot area are spatially too
close to each other to separate them with EEG source localization for
now. Thus, we are not able to separate the temporally and spatially
summed activity of both feet. Further studies are needed to explain
why high γ and low γ amplitudes are negatively correlated during
robot-assisted walking.

However, the previously reported prokinetic role of high γ and
antikinetic role of β oscillations (reviewed in Brown, 2003; Hutchison
et al., 2004; Engel and Fries, 2010; Jenkinson and Brown, 2011)
may be relevant. We recently reported that β suppression and low
γ modulation are different elements of human walking, which are
superimposed in their frequency range and cortical location (Seeber
et al., 2014). These results are emphasized in this work. Analogous to
thesefindingswe found that spectral peaks of highγ amplitude increase
(70 Hz) andmodulation (76 Hz) are different (Figs. 3, S2). This suggests
that underlying neuronal networks which drive these phenomena are
different. In contrast to high γ, enhanced β oscillations in the human
motor cortex promote tonic motor sets (Brown, 2003; Joundi et al.,
2012).

Basically, the superposition of high γ increase andmodulation could
be caused by the summation of two independent phenomena in over-
lapping frequency ranges and cortical areas due to volume conduction.
Because these phenomena can be identified by their peak frequency
and time course to be different, the key question is whether high γ in-
crease and modulation are functionally coupled at the intersection of
their frequency ranges. The same applies to β suppression and low γ
modulation.

Notably, tACS enhancement of β oscillations slows voluntary move-
ments (Pogosyan et al., 2009), but enhancement of high γ oscillations
facilitate such (Joundi et al., 2012). Thus, total β and high γ amplitude
levels seem to play a role in motor performance. The sustained lowered
level of β and raised level of high γ amplitudes that we report may both
reflect altered states of increased cortical excitability during walking. It
would be plausible that gait phase related high γ and low γ amplitudes
dynamically modulate these states. From this perspective the negative
correlation of high γ and low γ amplitudes we report here (Fig. 3 left
panel, Fig. 4) would contribute to causing the modulation of cortical
excitability.
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EEG Oscillations Are Modulated in Different Behavior-
Related Networks during Rhythmic Finger Movements
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Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation
between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for
source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the
actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for
� (10 –12 Hz) and � (18 –24 Hz), but increase for high � (60 – 80 Hz) frequencies during the entire movement period. Additionally, we
found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster
movement cadences, movement phase-related amplitudes included high � (24 –30 Hz) frequencies in prefrontal areas. Interestingly, the
spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they
represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically
modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions
specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in
relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including
top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work,
improves the interpretation of EEG sources in relation to human motor behavior.

Key words: EEG source imaging; finger movements; large-scale networks; neural oscillations; sensorimotor system; spectral profiles

Introduction
Generation of motoric actions for interacting appropriately with
the environment is one of the key functions of the human brain.
Sequencing of our body movements is essential for performing
motoric tasks. Significant progress was achieved in studying re-
lationships between brain activity and rhythmic motor behavior

in humans (Gerloff et al., 1998; Toma et al., 2002; Pollok et al.,
2005; Miller et al., 2009; Houweling et al., 2010; Hermes et al.,
2012). Yet, the temporal relation between cortical activities in
different brain areas and human motor behavior is not fully un-
derstood. In this study, we investigate EEG source oscillations in
various brain regions during rhythmic finger movements. Be-
cause of the high temporal resolution of EEG source recon-
structed signals (Baillet et al., 2001; Michel et al., 2004), it is
possible to investigate the temporal relation of cortical activities
to movement sequences.

During movements, � and � oscillations are suppressed in
sensorimotor areas, but high � amplitudes are increased com-
pared with a premovement reference period (Pfurtscheller and
Aranibar, 1977; Pfurtscheller et al., 1997; Crone et al., 1998a, b;
Müller et al., 2003; Miller et al., 2007; Scherer et al., 2009; Hermes
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Significance Statement

EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG
sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We
separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale
networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG
source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities.
Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensori-
motor system in humans as well as to provide more advanced features for brain-computer interfaces.
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et al., 2012). These relative amplitude decreases and increases
were suggested to represent altered synchrony states (event-
related (de)synchronization [ERD/ERS]) of underlying neuronal
populations (for review, see Pfurtscheller and Lopes da Silva,
1999; Neuper and Pfurtscheller, 2001). Especially, � oscillations
were discussed to play a prominent role in motor function (for
review, see Engel and Fries, 2010; Jenkinson and Brown, 2011).
For faster movement rates, � ERD becomes stronger (Houweling
et al., 2010; Yuan et al., 2010), and its amplitude does not return
to premovement levels anymore during finger tapping (Yuan et
al., 2010; Hermes et al., 2012). Additionally, � amplitudes were
found to decrease prior movement onset and increase afterward,
forming a comodulated pattern with the time sequence of rhyth-
mic finger movements (Toma et al., 2002; Houweling et al.,
2010). In sensorimotor regions, � ERD was suggested to repre-
sent an increased excitability state of neuronal populations,
whereas � ERS was interpreted as active inhibition of neuronal
circuitry (for review, see Neuper and Pfurtscheller, 2001). In con-
trast to � oscillations, high � amplitudes increase prior move-
ment onsets, and its time course resembles the movement
sequence during finger tapping (Miller et al., 2009; Hermes et al.,
2012).

In recent walking experiments of our group (Wagner et al.,
2012, 2014; Seeber et al., 2014, 2015), we report two different EEG
source elements. First, sustained � ERD along with high � in-
crease, which are present during the entire gait cycle. We inter-
preted this pattern as altered synchrony states in respective
central sensorimotor networks. Second, we found gait cycle-
related amplitude modulations in the high �/low � and high �
frequency range, which were conversely modulated to each other.
Interestingly, the spectral profiles of sustained ERD/ERS did not
match those of gait cycle-related amplitude modulations (Seeber
et al., 2014, 2015). Different spectral profiles were suggested to
represent different large-scale neuronal network interactions
(Donner et al., 2011; Siegel et al., 2012). Therefore, we hypothe-
size that, during continuous rhythmic movements, one type of
large-scale networks (up)regulate the neuronal excitability state
in specific cortical regions, but other networks represent the tem-
poral structure of the movement sequence. In this work, we test
this viewpoint for rhythmic finger movements to derive princi-
ples, which may unify findings from both extremities. In contrast
to foot movements, the fingers are represented laterally in the
somatotopic arrangement of the motor cortex (Jasper and Pen-
field, 1949). Because of the low spatial resolution of the EEG, it
was not possible to unambiguously separate supplementary mo-
tor area (SMA) from central motor areas in the walking studies.
Because of the lateral representation of the fingers, we further
hypothesize in this work that sustained ERD/ERS and movement
phase-related sources are different in both respect, their spectral
profile, and, additionally, in their spatial patterns during rhyth-
mic finger movements.

Materials and Methods
Experiment and recordings. We recorded EEG from 18 right-handed
healthy volunteers (24 � 4 years, 9 female) during rhythmic right finger
movements. Each participant gave informed consent to the study, which
was performed in accordance to the Declaration of Helsinki. During the
experiments, subjects were seated in a comfortable chair in an electrical
shielded room with their right hand supinated on an armrest. A blue dot
was shown in the center of a computer screen and was blinking three
times, indicating either 0.67 or 1.5 Hz finger movement cadences (see
Fig. 1a). Participants were asked to rhythmically open and close their
right hand continuously, imitating the previously displayed blinking ca-
dence of the dot. Subjects initiated their movements after the dot stopped

blinking. Importantly, no external stimuli were present during the move-
ment period. Because we aimed to study the cortical motor system, we
minimized the impact from other sensory modalities. A movement trial
ended when the dot disappeared from screen. In total, one trial lasted 13 s
and was followed by a 1–2 s random break with a black screen. Ninety
trials were completed for both movement cadences, respectively. Partic-
ipants were asked to fixate the dot with their eyes, not to count during the
movements and avoid any additional movement as good as possible. At
the beginning of each trial, a red arrow was additionally displayed. It was
pointing down to indicate finger movements without the thumb or
pointing toward left for thumb movements only. The movement exper-
iment was recorded in three blocks. Before and after each movement
block, we recorded EEG during a resting period lasting 3 min each. Dur-
ing the resting period, the blue dot was constantly shown on the screen
for gaze fixation. We pooled finger and thumb movement data for each
tapping cadence because we investigate temporal patterns of movement
sequences in this work, not which fingers were moved.

EEG was recorded combining five 16 channel amplifiers (g.USBamp,
g.tec) sampled to 512 Hz and bandpass filtered between 0.1 Hz and
200 Hz. A notch filter was set to suppress 50 Hz line noise. Passive
Ag/AgCl electrodes were mounted at selected 72 positions (see Fig. 1d) of
the 5% international 10/20 EEG system (Oostenveld and Praamstra,
2001). Reference and ground electrodes were placed on the left and right
mastoid, respectively. Electrode impedances were kept �5 k�. Electrode
positions were measured using a 3D localizer (Elpos, Zebris). Finger
movements were digitalized using a data glove (5DT Data Glove 14 Utra,
5DT). Structural MRI T1 scans (TE � 2.07 ms, TR � 1560 ms, voxel
size � 1 � 1 � 1 mm, 3 tesla Skyra, Siemens) were acquired in a post-
screening session for each individual brain.

EEG preprocessing. EEG was visually inspected for prominent artifacts,
and related time intervals were excluded from further analysis (94.1%
were kept). Subsequent independent component analysis (ICA) (Hyväri-
nen, 1999) (FastICA, https://research.ics.aalto.fi/ica/fastica/) was used to
identify noncortical components. Artifact stereotypical ICs were selected
based on their time course, power spectra, and topographies and were
rejected ranging from 3 to 7 ICs per subject. After ICA correction, signal
periods exceeding amplitudes of �200 �V were detected and ignored for
subsequent analysis. Considering the previously excluded time periods,
88.3% of the raw data points remained in total for further analysis.
Subsequently, EEG recordings were rereferenced to common average
reference.

EEG source imaging. EEG source imaging (Baillet et al., 2001; Darvas et
al., 2004; Michel et al., 2004; Michel and Murray, 2012) was applied based
on realistic head models using individual MRI scans. To describe the
propagation of electrical fields from the cortical surface to the scalp, a
forward model was formulated as boundary element model (BEM) for
each subject using OpenMEEG (Kybic et al., 2005; Gramfort et al., 2010).
The BEM consisted of four surface layers (brain, inner skull, outer skull,
head surface), which were reconstructed from individual T1 MRI scans.
Cortical reconstruction and volumetric segmentation were performed
with the FreeSurfer image analysis suite (Dale et al., 1999; Fischl, 2012)
(http://surfer.nmr.mgh.harvard.edu/). BEM and electrode positions
were coregistered, matching four anatomical landmarks (nasion, vertex,
left and right preauricular points). EEG sources were modeled perpen-
dicular to individual gray matter surfaces and consisted of 5000 vertices.
Resting EEG periods were used to calculate the noise covariance matrix
for whitening the lead field matrix. For solving the inverse problem,
sLORETA (Pascual-Marqui, 2002) implemented in the Brainstorm tool-
box (Tadel et al., 2011) (http://neuroimage.usc.edu/brainstorm) was ap-
plied. sLORETA is a standardized variant of the minimum norm inverse
solution (Hämäläinen and Ilmoniemi, 1994). To prevent overfitting, no
EEG data of the movement trials and no frequency-specific information
was used to calculate the inverse Kernel.

EEG source amplitude envelope (AE) analysis and glove data alignment.
AEs were computed in the EEG source space using complex Morlet wave-
let (Morlet et al., 1982) for time-frequency (TF) decomposition
(2–100 Hz, 2 Hz steps). Parameters for the mother wavelet were set to
FWHM of 3 s for the Gaussian kernel at a center frequency of 1 Hz.
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Magnitudes of TF decomposed signals were calculated to obtain EEG
source amplitude envelopes.

Glove data were used to align and warp the EEG source AE. The first
principal component (Jolliffe, 2002) of the glove sensors was calculated
to get a single curve describing the finger movements. Movement cycles
were quantized in quarters, which were determined by the turning points
and zeniths of this movement curve for each trial. Subsequently, the
glove data were stretched and bended to match these sampling points and
the average movement cycle quantity for all trials of the two different
movement cadences, respectively. The glove data were equally used to
realign and time warp the EEG source AE on a single-trial basis.

EEG source amplitudes were normalized relative to a nonmovement
reference period (second 2– 4 of the trial) in decibels (dB) for each sub-
ject. To improve signal quality for higher frequencies (�30 Hz), we
suppressed broadband source space activity, which we consider to reflect
electromuscular activity during movement tasks, using a spectral decom-
position approach (Seeber et al., 2015). These AEs then were low and
high pass filtered at 0.3 Hz, respectively, to separate sustained and dy-
namic AEs (see Fig. 2). This frequency is a trade-off between capturing
sustained effects precisely without affecting modulations in the move-
ment frequency range. Sustained AE in our analysis corresponds to sus-
tained ERD/ERS (Pfurtscheller and Lopes da Silva, 1999) measures using
a logarithmic scale in dB. To assess movement phase-related amplitudes
(MPAs), we investigated the dynamic AE in relation to the movement
cycle phase from the glove data. To do so, we quantized the movement
cycle phase into 4° (�/45) steps. TF source amplitude values were aver-
aged for each phase step to determine amplitude curves as function of the

phase in the movement cycle. To quantify this relationship, we computed
the modulation (analytical) amplitude of the resulting MPA curves using
Hilbert transform.

These calculations were processed for every source vertex and analyzed
frequency resulting in source images for both, sustained and MPA.

In this work, we present time courses, frequency spectra, and TF plots
in a left and right ROI. These ROIs were determined based on the centers
of the well-known � (18 –24 Hz) ERD patterns and were subsequently
normalized to the same spatial size. Frequency ranges for the topograph-
ical analysis were chosen based on peaks in the frequency spectra. We also
investigated amplitude comodulation between cortical areas using the
ROIs as seed regions. Amplitude comodulation was investigated because
it was previously shown to reveal similar connectivity patterns as fMRI
networks (Brookes et al., 2011; Engel et at., 2013). To ignore volume
conduction effects, we computed the imaginary part of coherence (Nolte
et al., 2004) between AEs.

Group analyses were enabled by aligning and projecting individual
cortices to match the ICBM 152 surface (Fischl et al., 1999; Tadel et al.,
2011). Significant clusters in EEG source images were determined and
corrected for multiple comparisons using nonparametric permutation
tests (Nichols and Holmes, 2002; Maris and Oostenveld, 2007). In detail,
EEG source amplitudes of randomly selected halves (9 of 18) subjects
were sign flipped and averaged to obtain a random distribution. We
performed 10 4 permutations for each source topography. From these
analysis, we applied a primary threshold of p � 1e-3 for the ERD/ERS and
MPA images, except for high � MPA images. For these images, p � 0.01
was used due to the lower signal-to-noise ratio for higher frequencies.

Figure 1. Task, behavior, and EEG montage. a, Time line of the movement task instruction displayed on the computer screen. b, Glove data (mean � SEM) after alignment of trials for the slow
(blue) and fast (red) tapping cadence. c, Histogram of performed movement cycles. d, EEG montage. Circles represent electrodes.

Seeber et al. • EEG Network Modulations during Rhythmic Movements J. Neurosci., November 16, 2016 • 36(46):11671–11681 • 11673



After applying the primary thresholds, the re-
sulting clusters were compared with maximum
clusters sizes from again 10 4 permutations. We
chose the same significance levels as described
above for these cluster-level statistics. Signifi-
cant amplitude comodulations were deter-
mined using the same procedure for the AE
coherence.

Results
Behavioral data
Glove data showed that subjects per-
formed 5 and 9.75 movement cycles on
average for the slow and fast movement
cadence, respectively (Fig. 1b,c). These
data also show that the aligning and warp-
ing procedure was successful due to the
small standard error of the mean (SEM).
Considering the movement duration, the
performed movement cadences were 0.66
and 1.37 Hz. The visual instruction (i.e.,
dot blinking frequency) were 0.67 Hz and
1.5 Hz, so the movement frequency for
the faster movement was not exactly as
instructed. However, the histogram of
performed movements shows two clear,
nonoverlapping groups for the slow and
fast cadence (Fig. 1c).

Sustained and movement
phase-related AE
We separated source AE in two elements:
a sustained and a dynamic one. The latter,
we hypothesized to represent the move-
ment phases. These two elements are sig-
nificantly present in sensorimotor areas
for both movement cadences (Figs. 2,
3b– d, 4b– d). First, for the sustained AE
element, amplitudes decrease in the � (10 –12 Hz) and �1
(18 –24 Hz), but increase in the high � (60 – 80 Hz) frequency
range during movements. This amplitude de/increase starts 2.5 s
and 2.6 s before the slow and fast movement, respectively, peaks
at its onset, and remains at a sustained level during the entire
movement duration (Figs. 2, 3c, 4c). Second, the dynamic AE
element shows a clear relationship to the movement phase in the
�1 (18 –24 Hz) and �2 (24 –30 Hz) frequency range and resem-
bled the glove data (Figs. 2, 3b,f, 4b,f). Movement phase-related
�2 amplitudes peak at the start of a movement cycle (phase:
�3.00 rad and �2.93 rad) and are lowest preceding maximal
finger flexion at �0.97 rad and �0.63 rad during slow and fast
movement cadences, respectively. For the slow movement ca-
dence, a second peak is present at 0.70 rad (Figs. 3f, 4f). We also
found that AE of different frequencies showed a similar temporal
structure locked to the movement cycle but shifted to each other.
�2 precedes � amplitudes in the movement cycle. This delay was
tested for significance (�	1,17


2 � 21.33, p � 3.9e-6) using a Fried-
man’s test with factors frequency range (n � 2) and experimental
condition (n � 2) in the right ROI, where �2 and � MPA spatially
overlap. Further, �2 amplitudes are conversely modulated to
high � amplitudes in a movement cycle. These amplitudes are
negatively correlated to each other for slow (permutation test,
r � �0.90, p � 1e-4) and fast movements (permutation test,
r � �0.78, p � 2e-4).

Interestingly, the MPA frequency spectra does not fully match
with the spectra of sustained amplitude decreases/increases.
Spectral � peaks for the sustained decrease are at 20 Hz for both
movement cadences. MPAs are additionally present in the �2
frequency range, especially for the faster movement cadences
(Figs. 3g, 4g). Selecting these specific frequency ranges, we further
analyzed the spatial patterns of both modalities.

EEG source images
The sources of the sustained AE element (Figs. 5a, 6a) show a
well-known left hemisphere lateralized pattern in the right hand
representation area of the sensorimotor cortex for �1 desynchro-
nization and high � increase. Apart from this contralateral hand
area, we also located significant clusters in the homologous right
sensorimotor area and paracentral regions for these frequency
ranges. Sustained � amplitudes decrease less specific in bilateral
sensorimotor areas. Friedman’s test with factors frequency range
(n � 2) and experimental condition (n � 2) determined a higher
lateralization for �1 compared with � desynchronization
(�	1,17


2 � 8.53, p � 0.0035). Comparing fast with slow movement
cadences, sustained �1 ERD in the left cluster is significantly
stronger during fast movements (Wilcoxon signed rank, p �
0.0073). No significant difference in �1 lateralization (Wilcoxon
signed rank, p � 0.71) was found.

In contrast to the well-known ERD/ERS patterns during
movement, MPA sources revealed different sources (Figs. 5, 6).

Figure 2. Separating sustained from dynamic AE. a, Amplitude time course for �1 (18 –24 Hz) frequencies during the slow
movement cadence (0.66 Hz) in the left ROI. Blue represents original AE. Green represents low pass filtered “sustained AE.” Red
represents high pass filtered “dynamic AE.” Magenta represents glove data, shown for comparison with dynamic AE, which are
related to the movement phase. b, Same illustration as in a, but for faster movement (1.37 Hz).
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Because of the different spectral profiles we found in the sensori-
motor regions, we pooled � frequencies to compare the spatial
patterns of both modalities in terms of lateralization. Friedman’s
test with factors modality (sustained ERD/ERS and MPA, n � 2)
and experimental condition (n � 2) identified different lateral-
ization for � frequencies (�	1,17


2 � 22.53, p � 2.1e-6). � MPA
sources were localized to bilateral sensorimotor and paracentral
regions. These activities are significantly lower (Wilcoxon signed
rank, p � 2e-4) during fast compared with slow movements. For
the faster movement cadence, we additionally found MPA lo-
cated in the right prefrontal cortex at �2 frequencies (Fig. 6b).
High � MPA sources were localized to the contralateral hand area
and left paracentral region during slow movements. For fast
movements, the paracentral cluster exclusively reached signifi-
cance. � MPA sources showed a widespread pattern, which was
strongest in right sensorimotor areas, but also covered bilateral
superior parietal and paracentral regions (Figs. 5, 6).

Amplitude comodulation between cortical areas
We also observed well-pronounced amplitude modulations dur-
ing the visual instruction strongest for � frequencies in the left
ROI (Figs. 3b, 4b). In this time interval, of course, there was no

movement executed. To further investigate this modulation, we
computed amplitude comodulation between the left ROI (seed
region) to every other site of the cortex using � as carrier fre-
quency. This analysis showed significant comodulation in visual
areas for both movement conditions, which precede the left seed
region (Fig. 7, left).

Furthermore, we focused on the analysis of �2 MPA in the
right ROI to test for significant comodulation with other cortical
sites. During slow movements, subcortical areas are significantly
comodulated with the right seed region and precedes in the
movement cycle. For the fast cadence, prefrontal areas are signif-
icantly comodulated and are leading the right sensorimotor seed
cluster (Fig. 7, right).

To provide further information about the temporal relation of
�2 MPA sources in different cortical areas, we rendered videos for
both movement cadences showing �2 amplitudes in dependence
of the movement cycle phase (Movies 1, 2). During slow move-
ments, we observe two peaks during a movement cycle. The first
peak occurs at the movement cycle onset at ��/� and shows a
pattern in bilaterally in sensorimotor hand areas. Subsequently,
�2 amplitudes decrease, reaching its minimum preceding the
maximal displacement of the fingers (at 0 rad). Then a second

Figure 3. Dynamic and sustained AE in the right and left ROI during the slow movement cadence. a, Glove data. b– d, TF plot of dynamic (high pass filtered), sustained (low pass filtered), and
original (unfiltered) source AE. e, Right and left ROI. f, Relation of dynamic AE to the movement phase, centered (0 rad) at peak displacement of the fingers. g, Frequency spectra for sustained
(bottom) and MPA (top) for the left/right ROI in magenta/green. Selected frequency ranges marked in gray shaded regions. Amplitudes in dB.
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peak evolves, which is, compared with the first peak, rather asso-
ciated with superior sensorimotor and central regions. During
the fast movement cadence, the temporal sequence of �2 ampli-
tudes shares two characteristics with the slow movement ca-
dence: that is, (1) the peak at the movement cycle onset, and
(2) the �2 minimum before the finger displacement maximum.
Additionally, amplitudes in prefrontal areas are modulated in
relation to the movement cycle. These prefrontal modulations
show a different phase relation to the movement cycle, preceding
amplitude envelopes in sensorimotor regions. In summary, one
can observe that amplitudes start decrease and increase in frontal
areas, which then spreads toward parietal areas while additional
amplitude modulations in the sensorimotor network occur.

Discussion
In this study, we investigated EEG sources during rhythmic finger
movements in humans. Analyzing these source we distinguish
between sustained (de-)synchronization (ERD/ERS) and MPA
modulations. We found that the sources of these two electrocor-
tical elements are different, confirming our hypothesis.

The sustained ERD/ERS element replicated previous works
showing � and � desynchronization accompanied with high �

increase in contralateral areas representing right finger move-
ments (Pfurtscheller et al., 1997; Crone et al., 1998b; Miller et al.,
2007). Further, the temporal properties of these features, evolv-
ing at �2 s before the movement are also in line with these stud-
ies. As well as that, � are less spatially specific than � ERD sources
(Crone et al., 1998a). Further, consistent with previous reports,
we found sustained � desynchronization (Hermes et al., 2012),
which is getting stronger during faster rhythmic movements
(Yuan et al., 2010).

� and � desynchronization along with high � increase may
signify a state of enhanced cortical excitability in associated
areas, which facilitates motor processing. Previous studies in-
deed provide evidence for causal relationship of cortical oscil-
lations and motor performance. These studies showed that
transcranial alternating current stimulation at � frequencies
slows voluntary movements (Pogosyan et al., 2009), but stim-
ulation at high � facilitates motor processing (Joundi et al.,
2012). Consequently, � and high � oscillations were found to
possess opposing roles in the motor cortex, the former to
inhibit, the latter to facilitate, dynamic motor actions during
its preparation and performance.

Figure 4. Dynamic and sustained AE in the right and left ROI during the fast movement cadence. a, Glove data. b– d, TF plot of dynamic (high pass filtered), sustained (low pass filtered), and
original (unfiltered) source AE. e, Right and left ROI. f, Relation of dynamic AE to the movement phase, centered (0 rad) at peak displacement of the fingers. g, Frequency spectra for sustained
(bottom) and MPA (top) for the left/right ROI in magenta/green. Selected frequency ranges marked in gray shaded regions. Amplitudes in dB.
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We found the MPA sources to be different from the well-
known ERD/ERS patterns during movement. EEG source im-
aging revealed different spatial patterns for these two elements
(Figs. 5, 6). Further, the spectral profiles we investigated in left
and right sensorimotor areas did not match. For instance, we
found different � peaks for the sustained ERD and MPA fea-
ture. Narrow-band peaks in the EEG frequency spectra reflect
the summation of neuronal oscillations on a larger spatial
scale. Neuronal oscillations mediate synchrony in neuronal
populations forming frequency-specific networks (Buzsáki,
2006; Siegel et al., 2012). Because of spatiotemporal integra-
tion inherent in large-scale recordings as EEG, the amplitudes
of these signals are markers of underlying network synchrony
(Elul, 1971; Pfurtscheller and Lopes da Silva, 1999; Donner et
al., 2011; Buzsáki et al., 2012). Amplitude modulation at a
certain frequency, therefore, is a signature of modulated syn-
chrony in a frequency-specific neuronal network. Based on
this, we interpret sustained ERD/ERS and MPA to represent
two different types of large-scale networks, due to the diff-
erent spectral profiles and spatial patterns we report in this
study.

First, networks represented by sustained ERD/ERS, which
statically modulate their synchrony level during continuous
movements. These patterns may upregulate neuronal excitability
during motor preparation and performance specific to the limb,
in this work the right hand area.

Second, MPAs are generated by other frequency-specific net-
works, which dynamically adapts their synchrony levels depen-
dent on the phase in a movement cycle. Therefore, these networks
provide information about the movement sequence timing. We
found MPAs are well pronounced at � frequencies in sensorimo-
tor regions and SMA. This spatial pattern resembles the sensori-
motor resting state network (Raichle, 2010). Notably, � MPAs
are significantly stronger during slow compared with fast move-
ments, which was also reported previously (Toma et al., 2002;
Houweling et al., 2010; Hermes et al., 2012). These studies further
described � amplitude modulations associated with different
movements to merge at faster movements (�2 Hz). We did not
find this phenomenon probably because of the comparably lower
movement cadences we studied. To build up neural synchrony,
increasing time is needed for larger cortical populations (Buzsáki,
2006). This relationship could explain the larger MPA during the
slower movement cadences, where longer time periods are avail-
able in movement cycle to build up synchronized networks.

Movement phase-related � synchrony peaked at the start of a
movement cycle, that is, at the initial position of the fingers, and it
was diminished preceding the maximal fingers flexion (Fig. 4f). Be-
cause of the bilateral sensorimotor regions we found for � MPA, it
would be plausible that they also mediate sensorimotor processing
between the hemispheres. The time course of � modulation in the
motor system was previously reported to be associated with predic-
tive timing of upcoming external rhythmic visual (Saleh et al., 2010)

Figure 5. EEG source images of the slow movement cadence in selected frequency ranges (left to right column). a, EEG sources of sustained ERD/ERS during movements are illustrated in
blue/yellow-red. b, EEG sources of movement MPAs are illustrated as modulation magnitude in red to white. Amplitudes in dB.
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Figure 7. Amplitude comodulation between cortical areas. Left, Visual areas are comodulated with the left sensorimotor area (seed region in red) during visual instruction. Right, Subcortical
regions are comodulated with the right sensorimotor area (seed region in red) during slow, but prefrontal areas during fast movement cadences.

Figure 6. EEG source images of the fast movement cadence in selected frequency ranges (left to right column). a, EEG sources of sustained ERD/ERS during movements are illustrated in
blue/yellow-red. b, EEG sources of movement MPAs are illustrated as modulation magnitude in red to white. Amplitudes in dB.
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and auditory (Fujioka et al., 2012) stimuli in absence of actual move-
ments. In this study, we investigated the opposite scenario, where no
external stimuli were provided during rhythmic movement execu-
tion. Naturally, sensory inputs of the fingers are present during
movements. Consequently, � MPA we report may represent pro-
cesses related to the prediction and integration of this information.
Saleh et al. (2010) observed � synchrony in the primary motor cortex
only for behaviorally relevant, anticipated cues that required atten-
tion. Indeed, high � synchronization in prefrontal areas was found
to be involved in top-down attention and control (Buschman and
Miller, 2007; Buschman et al., 2012). Therefore, we interpret the
prefrontal MPA cluster we found for �2 frequencies (Fig. 6b) to
reflect additional top-down control during the faster movement ca-
dence. Moreover, analyzing amplitude comodulation between cor-
tical areas showed that prefrontal �2 MPA precedes those in the right
sensorimotor seed (Fig. 7). This relationship is also visible in Movie
2 where �2 MPAs travel from frontal toward sensorimotor and pa-
rietal areas, contributing to the modulation in these regions. For the
slow movement cadence, we found two � peaks in a movement cycle
in sensorimotor regions (Fig. 3f). Based on Movie 1, we suggest that
these two peaks are related to two different processing streams. The
first involves sensorimotor processing in bilateral hand regions; the
second one is more related to central sensorimotor regions and
SMA. In contrast to prefrontal �2 MPA during fast movements,
subcortical regions are leading sensorimotor seed cluster modula-
tions during the slow movement cadence. This may be explained by
the basal ganglia and thalamus being involved in top-down control
during simple tasks but prefrontal regions during more complex
behaviors (Buschman and Miller, 2014). However, precise localiza-
tion of deep sources based on EEG recordings is challenging. More
work is needed to further disentangle � MPA and investigate their
specific functions. We observed this � modulation pattern simulta-
neously with the much stronger sustained � desynchronization we
suggest to represent another network. Therefore, the MPA cannot be
explained by postmovement � synchronization effects. Further, in
contrast to the bilateral � MPA we report in this work, postmove-
ment � synchronization was localized focally to contralateral areas
(for review, see Neuper and Pfurtscheller, 2001; Cheyne, 2013).

We also found significant MPA at � and high � frequencies. Their
time courses resembled the � MPA in sensorimotor areas, but they
were temporally shifted in the movement cycle and showed different
spatial source patterns. � temporally lagged �2 MPA in sensorimo-
tor areas. We localized � MPA to bilateral sensorimotor, SMA, and
parietal areas, which were stronger in the right hemisphere. Alpha
oscillations in these cortical areas are related to working memory
during retention of previously shown items (Jensen et al., 2002).
Because our paradigm included remembering the movement speed
instruction, it would be plausible that the � MPA we found here
represents short-term working memory processes.

We found high � MPA in the contralateral hand region, which is
in agreement with invasive studies showing a close relation of high �
amplitudes to movement sequences (Miller et al., 2009; Hermes et
al., 2012). An interesting finding is that only the SMA cluster reached
significance during the faster movement cadence (Fig. 6b). In these
clusters, high � amplitudes were conversely modulated to the high �
MPA. This relationship could be explained by the opposing roles of
� and high � oscillations we discussed above. Moreover, we similarly
found amplitudes in the high �/low � range to be conversely mod-
ulated to high � amplitudes in a gait cycle during walking in humans
(Seeber et al., 2015). Further, we previously reported sustained � and
� ERD along with high � increase during walking (Wagner et al.,
2012; Seeber et al., 2014, 2015). Together, these findings suggest

Movie 1. EEG source amplitudes for high � (24 –30 Hz) frequen-
cies during the slow movement cadence as function of the phase in
a movement cycle. Phase axis in radian, ranging from �� to �, is
centered (0) at the maximal flexion of the fingers. Relative ampli-
tude decreases/increases are illustrated in blue/red. EEG source am-
plitude threshold was set to 50% of the color scale maximum; the
minimum cluster size was set to 20 vertices.

Movie 2. EEG source amplitudes for high � (24 –30 Hz) frequen-
cies during the fast movement cadence as function of the phase in a
movement cycle. Phase axis in radian, ranging from �� to �, is
centered (0) at the maximal flexion of the fingers. Relative ampli-
tude decreases/increases are illustrated in blue/red. EEG source am-
plitude threshold was set to 50% of the color scale maximum; the
minimum cluster size was set to 20 vertices.
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shared electrophysiological principles of rhythmic finger tapping
and walking.

In conclusion, we showed two different types of networks
during rhythmic finger movements in this work. First, sustained
� and � desynchronization may be associated with release of
inhibition during movement. Together with high � enhance-
ment, these networks may upregulate excitability in regions spe-
cific to the body parts that are prepared to be, or actually are,
moved (Pfurtscheller and Lopes da Silva, 1999; Miller et al.,
2007). Second, movement phase-related networks, which mod-
ulate their synchrony in relation to the flexion and extension
sequence of the fingers. We suggest frequency-specific MPA to
signify distinct large-scale networks associated with specific func-
tions, including top-down control, sensorimotor prediction, and
integration. Our findings suggest that EEG source amplitudes
reconstructed in a cortical patch are the summation of simulta-
neous present overlapping networks. Separating these two types
of behavior-related large scale networks we distinguished in this
work improves the interpretability of EEG sources and advances
to relate them to human motor behavior.
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