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Abstract

The goal of this thesis is to give a comprehensive overview of stochastic in-
terest rate models, which are of great importance in financial and actuarial
mathematics, not only since new regulations require market-consistent val-
uation of assets and liabilities. After establishing the basics of interest rate
theory and looking at the evolution of those models over time, a special fo-
cus will be laid on the G2++ model, a two-factor Gaussian model with a
deterministic shift, which is used in Germany to simulate market scenarios
for retirement provisions.
Additionally, an intensity-based approach to incorporate default risk is go-
ing to be presented. It turns out that, with suitable assumptions, including
default risk simply leads to a stochastic spread added to the risk-free inter-
est rate. Therefore, the results and methods derived for risk-free interest
rate models can often be readily transferred to the case where default risk is
present. Methods for calibrating the models to the market will be presented
and implemented.
This thesis only brushes the surface of this exciting topic, which is still ad-
justing to the new market environment as an aftermath of the global financial
crisis.
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Abbreviations and notation

• ATM = At the money
• CDF = Cumulative distribution function
• CDS = Credit default swap
• CIR = Cox-Ingersoll-Ross model
• FRA = Forward rate agreement
• G2++ = Two-factor Gaussian-model with deterministic shift
• IRS = Interest Rate Swap
• ITM = In the money
• MC = Monte Carlo
• OTM = Out of the money
• RFS = Receiver IRS
• SDE = Stochastic differential equation
• Bt = Bank account at time t
• r(t)t≥0 = Instantaneous spot interest rate (”short rate”) process
• λ(t)t≥0 = Intensity process driving survival probabilities
• D(t, T ) = Stochastic discount factor for the interval [t, T ]
• P (t, T ) = Zero-coupon bond price for maturity T at time t
• PM (0, T ) = Zero-coupon bond price for maturity T currently observed in the

market
• P̄ (t, T ) = Defaultable zero-coupon bond price for maturity T at time t
• R(t, T ) = Continuously-compounded spot rate for the interval [t, T ]
• L(t, T ) = Simply-compounded spot rate for the interval [t, T ]
• Y (t, T ) = Annually-compounded spot rate for the interval [t, T ]
• Y k(t, T ) = k-times annually-compounded spot rate for the interval [t, T ]
• F (t, T, S) = Simply-compounded forward rate at time t for the interval [T, S]
• f(t, T, S) = Continuously-compounded forward rate at time t for the interval
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[T, S]
• Si,j(t) = Forward swap rate at time t for initial reset time Ti and payment times
Ti+1, · · · , Tj

• Ri,j(t) = CDS forward rate at time t for payment times Ti, · · · , Tj
• L = Loss given default of a CDS
• R = premium payment rate of a CDS
• P = physical (or real-world) measure
• Q = risk-neutral (or equivalent martingale) measure
• QT = T-forward measure (corresponding to numeraire P (·, T ))
• (W (t))t≥0 = Brownian motion with respect to the risk-neutral measure
• (W T (t))t≥0 = Brownian motion with respect to the T-forward measure
• E = Expectation w.r.t. to a previously specified measure
• EQ = Expectation w.r.t. to the risk-neutral measure
• ET = Expectation w.r.t. to the T-forward measure
• T = Set of relevant dates {Tα, Tα+1 · · · , Tβ} of an interest rate derivative. Tα

is the first reset date, Tβ the last settlement date
• τ = Set of year fraction {τα+1, · · · , τβ} corresponding to T , i.e. τi = Ti − Ti−1.
• τ = Time of default of a company
• 1A = Indicator function for set A; equals 1 for ω ∈ A, else equals zero
• Φ = Cumulative distribution function of the standard normal distribution
• CDSa,b(t, R, L) = Price at time t of CDS with payment dates Ta, · · · , Tb, pre-

mium rate R and loss given default L
• Cap(t, Ti−1, Ti, N,K) = Price of a cap at time t with relevant dates T , strike

rate K and notional amount N
• Cpl(t, T , τ,N,K) = Price of a caplet at time t with reset date Ti−1, settlement

date Ti, strike rate K and notional amount N
• Flr(t, Ti−1, Ti, N,K) = Same as Cap(t, Ti−1, Ti, N,K), just as a floor
• Fll(t, T , τ,N,K) = Same as Cpl(t, Ti−1, Ti, N,K), just as a floorlet
• PS(0, T , τ,N,K) = Price of a payer swaption at time t with relevant dates T ,

strike rate K and notional amount N
• RS(0, T , τ,N,K) = Same as PS(0, T , τ,N,K), just as a receiver swaption
• ZBC(t, T, S,N,K) = Price of a European call at time t option with maturity
T and strike K with an S-bond with notional N as an underlying

• ZBP(t, T, S,N,K) = Same as ZBC(t, T, S,N,K), just as a put option.
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Chapter 1

Introduction

Interest rate models are a very important tool in today’s world of financial
and actuarial mathematics. To give an example, consider the Solvency II
directive of the European Union, which came into effect at the beginning of
2016. Among other things, it requires insurance companies to perform mar-
ket consistent valuation of their assets and liabilities to be able to verify that
the solvency capital requirements are met. For liquid financial contracts, one
can just take the price quoted on the market. However, if a financial contract
is illiquid, mathematical models are necessary to valuate them. In the case
of bonds or some kinds of interest rate derivatives, interest rate models are
a way of performing this market-consistent valuation.
The first part of this thesis will deal with various types of such interest rate
models. In this first part, the counterparties concluding the financial con-
tracts are assumed to be default-free. However, in reality this is often not
case. For example, it is possible that a corporation, who issued a corporate
bond, goes bankrupt and is not able to meet its debts. For this reason, the
second part of this thesis presents an approach to incorporate the possibility
of default into interest rate models.
To give the reader an idea of what to expect, the contents of each chapter
will now briefly be presented: Chapter 2 will give an overview of the basics
of interest rate theory, including the definition of different types of interest
rates and their derivatives, as well as pricing formulas for those derivatives.
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2 CHAPTER 1. INTRODUCTION

Chapter 3 will briefly introduce the notion of affine term-structure models
and then present the most famous models in that category. They are ex-
clusively one-factor models, i.e., driven by a single source of randomness.
Their dynamics and distributional properties will be discussed and analyti-
cal expressions for pricing bonds within those models will be derived. Most
of those models feature considerable weaknesses, yet they are important to
gain a first insight into the topic and are very interesting in a historical sense.
However, they are not the main focus of this thesis and will therefore not be
dealt with in great detail.
Chapter 4 will encompass an in-depth treatment of the G2++ model, a two-
factor Gaussian model with a deterministic shift, which was proposed by
Brigo & Mercurio in [5]. Next to stating the dynamics and the distributional
behaviour, prices of zero-coupon bonds, caps and floors will be derived. The
equivalence to the two-factor Hull-White Model will briefly be mentioned
and methods of calibration to current market data will be described and per-
formed. The motivation behind mainly focusing on the G2++ model is that
it is used in Germany for simulation of market scenarios in order to divide
tariffs of retirement provision into risk-reward categories1.
Chapter 5 gives an overview of how to incorporate default risk. The focus
will lie on the so-called intensity-based approach, where the evolution of the
default probabilities is dependent on a stochastic intensity process. In the
corresponding deterministic setting, this intensity matches the mortality rate
in life-insurance mathematics. Under certain assumptions, it will be shown
that the general pricing formulas are equal or similar to the ones in the
default-free setting, with the difference that discounting occurs w.r.t. to the
default-free interest rate plus an interest rate spread. The second section
of this chapter will give an introduction to credit default swaps, since their
rates on the market are an indicator for the creditworthiness of a company.
Therefore, they can be used to calibrate the stochastic intensity to the mar-
ket. One method of calibration will be presented in the last section of the

1The full description of the applied model can be found here
(German only): http://www.produktinformationsstelle.de/assets/
PIA-Kapitalmarktmodell-Basisprozesse-2017.pdf

http://www.produktinformationsstelle.de/assets/PIA-Kapitalmarktmodell-Basisprozesse-2017.pdf
http://www.produktinformationsstelle.de/assets/PIA-Kapitalmarktmodell-Basisprozesse-2017.pdf
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chapter, along with a practical example.
Finally, the appendix will give a brief introduction to the existence and
uniqueness of solutions of a special type of stochastic differential equations,
namely time-homogeneous diffusion processes.
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Chapter 2

Interest rate basics

This chapter deals with the basics of interest rate theory. Firstly, the notion
of a bank-account, bonds and different types of interest rates will be pre-
sented within a stochastic framework. Secondly, the most important interest
rate derivatives will be introduced along with Black’s pricing formulas. Fi-
nally, some model independent pricing formulas will be presented and Black’s
formula for caps will be derived . Notation and structure of this chapter fol-
low mainly [5], Chapter 1. Furthermore it is based on [12], Chapter 2 and
[25], Chapter 16.

2.1 Some definitions

Let (Ω,A,F ,P) be a filtered probability space, where F = (Ft)t≥0 is a fil-
tration fulfilling the usual conditions1 and the sigma-field Ft contains all
information available up to time t.

1A filtration is said to fulfil the usual conditions if

• it is right-continuous, i.e., Ft+ = Ft hold for all t, where Ft+ = ∩s>tFs
• and P-complete, i.e., Ft contains all P null sets.

5



6 CHAPTER 2. INTEREST RATE BASICS

2.1.1 Bank account and zero-coupon bond

Definition 2.1.1 (Bank account process). The process (B(t))t≥0 given by

B(t) := exp
(∫ t

0
rsds

)
, B(0) = 1

is called bank account (process). The real-valued, Ft-adapted stochastic pro-
cess (r(t))t≥0 is called instantaneous spot rate, or more commonly short
rate. rt can be interpreted as the interest rate prevailing at time t for the
infinitesimal interval [t, t+ dt].

Remark: In former times, it was a desirable property for the interest rate to
be positive, which posed a problem for models which relaxed this property in
exchange for analytical tractability. However, small negative interest rates
became a common sight on the market in certain instances, turning the
disadvantage of those models into an advantage.2

Definition 2.1.2 (Stochastic discount factor). The process

D(t, T ) := B(t)
B(T ) = exp

(
−
∫ T

t
rsds

)

is called stochastic discount factor. It can be interpreted as the money amount
at time t, which enables to pay a unit of money at time T .

It is important to note that D(t, T ) is FT -measurable, but not Ft-measurable,
since rt is stochastic. For the motivation of the discount factor one returns
to the deterministic setup: If one wants to have a unit amount available at
the bank account at time T , the initial investment (i.e. at t = 0) needs to be
B(T )−1, since B(T )−1B(T ) = 1. At time t ∈ [0, T ] the initial investment is

2For example, on July 21th, 2017 the yields of German governmental bonds up
to a time to maturity of 6.5 years were negative (See https://www.bundesbank.de/
Redaktion/DE/Downloads/Service/Bundeswertpapiere/Rendite/kurse_renditen_
bundeswertpapiere_2017_07.pdf?__blob=publicationFile) Another example can
be found here https://www.bundesbank.de/Redaktion/EN/Downloads/Statistics/
Money_Capital_Markets/Interest_Rates_Yields/stat_geldmarkts.pdf?__blob=
publicationFile, where one can see, that the overnight-rate EONIA and all EURIBOR
rates up to a year were also negative on July 21th, 2017.

https:// www.bundesbank.de/Redaktion/DE/Downloads/Service/Bundeswertpapiere/Rendite/ kurse_renditen_bundeswertpapiere_2017_07.pdf?__blob=publicationFile
https:// www.bundesbank.de/Redaktion/DE/Downloads/Service/Bundeswertpapiere/Rendite/ kurse_renditen_bundeswertpapiere_2017_07.pdf?__blob=publicationFile
https:// www.bundesbank.de/Redaktion/DE/Downloads/Service/Bundeswertpapiere/Rendite/ kurse_renditen_bundeswertpapiere_2017_07.pdf?__blob=publicationFile
https://www.bundesbank.de/Redaktion/EN/Downloads/Statistics/ Money_Capital_Markets/Interest_Rates_Yields/stat_geldmarkts.pdf? __blob=publicationFile
https://www.bundesbank.de/Redaktion/EN/Downloads/Statistics/ Money_Capital_Markets/Interest_Rates_Yields/stat_geldmarkts.pdf? __blob=publicationFile
https://www.bundesbank.de/Redaktion/EN/Downloads/Statistics/ Money_Capital_Markets/Interest_Rates_Yields/stat_geldmarkts.pdf? __blob=publicationFile
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worth B(T )−1B(t) = D(t, T ), i.e. the discount factor describes the value at
time t of a unit of money available at time T .
On the market, where the time value of money is traded, the primary financial
instruments are bonds. The most basic form of a bond, and also the most
important one for developing an interest rate theory, is the zero-coupon bond.

Definition 2.1.3 (Zero-coupon bond). A zero-coupon bond is a contract
concluded at the current time t, which guarantees its holder a unit amount
of money at a fixed future date T , the so-called maturity of the bond, without
any coupon-payments in [t, T ). The value of such a zero-coupon bond, also
called T-bond, is denoted by P (t, T ).

An immediate consequence of this definition is that P (T, T ) = 1∀T holds.
Since the price of a T-bond at time t expresses the value of one unit of money
at maturity T , it can be seen as a discount factor. Indeed, if the short rate r
is deterministic, then so is D(t, T ), thus implying P (t, T ) = D(t, T ), whereas
in the stochastic setting P (t, T ) is Ft-measurable, but D(t, T ) is not.

2.1.2 Spot interest rates

By means of the bonds prices P (t, T ) one can define various types of spot
interest rates. Spot interest rates are fixed rates which prevail at time t < T

till maturity T and depend on the way of compounding.

Definition 2.1.4 (Simply-compounded spot interest rate). The constant in-
terest rate, which yields a unit of money at maturity T when investing an
amount of P (t, T ) at time t and accruing proportionally to the time to ma-
turity T − t, is called simply-compounded spot interest rate and denoted by
L(t, T ). Thus, mathematically speaking

L(t, T ) := 1
T − t

(
1

P (t, T ) − 1
)
. (2.1.1)

This definition makes sense, since rearranging it leads to

P (t, T )(1 + (T − t)L(t, T )) = 1, (2.1.2)
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which fits exactly the situation described in the definition.

Definition 2.1.5 (Annually-compounded spot interest rate). The constant
interest rate, which yields a unit of money at maturity T when investing an
amount of P (t, T ) at time t and compounding annually, is called annually-
compounded spot interest rate and denoted by Y (t, T ). Thus,

Y (t, T ) := 1
P (t, T )

1
T−t
− 1.

Once again, because of

P (t, T )(1 + Y (t, T ))(T−t) = 1, (2.1.3)

the definition is useful.
Compounding an arbitrary number of times within a year is also possible,
leading to the following definition:

Definition 2.1.6 (k-times-per-year compounded spot interest rate). The k-
times-per-year compounded spot interest rate defined by

Y k(t, T ) := k

P (t, T )
1

k(T−t)
− k,

is the constant interest rate (referred to a one-year period) which, when in-
vesting an amount of P (t, T ) at time t and reinvesting it k times a year,
yields one unit of money at maturity T .

Analogously to the annual compounding case, rearranging the definition
yields

P (t, T )
(

1 + Y k(t, T )
k

)k(T−t)

= 1. (2.1.4)

Definition 2.1.7 (Continuously-compounded spot interest rate). The con-
stant interest rate, which yields a unit of money at maturity T when invest-
ing an amount of P (t, T ) at time t and compounding continuously, is called
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continuously-compounded spot interest rate and denoted by R(t, T ). Thus,

R(t, T ) := − lnP (t, T )
T − t

.

Also in this case,

eR(t,T )(T−t)P (t, T ) = 1, (2.1.5)

shows the motivation behind the definition. The origin of the term continu-
ously compounded lies in the fact that compounding ”infinitely” often, i.e.,
letting k tend to infinity in Y k(t, T ), yields the continuously compounded
interest rate. The following calculation shows this:

lim
k→∞

Y k(t, T ) = lim
k→∞

k

P (t, T )
1

k(T−t)
− k

= lim
k→∞

k
(

1− P (t, T )
1

k(T−t)

)
P (t, T )

1
k(T−t)︸ ︷︷ ︸

−→1

= lim
k→∞

(
1− exp

(
k−1 ln

(
P (t, T )

1
(T−t)

)))
k−1

= lim
k→∞

exp
(
k−1 ln

(
P (t, T )

1
(T−t)

))
ln
(
P (t, T )

1
(T−t)

)
k−2

−k−2

= − ln(P (t, T ))
T − t

= R(t, T ),

where L’Hôpital’s rule was used. It would be interesting to visualize the
interest rates implied by the T-bond prices as a function of the maturities
T ∈ [t, T ∗], with T ∗ being the time horizon. The following definition does
just that:

Definition 2.1.8 (Zero-coupon curve). For fixed current time t the graph of
the function

T 7→

L(t, T ) t < T ≤ t+ 1 (years)

Y (t, T ) T ≥ t+ 1 (years)



10 CHAPTER 2. INTEREST RATE BASICS

0 5 10 15 20 25 30

Residual maturity (years)

-1

-0.5

0

0.5

1

1.5

2

2.5
Y

ie
ld

 (
%

)
Comparison of yield curves

EURO
EURO AAA

Figure 2.1: Comparison of euro zero-coupon yield curves estimated by the
ECB on July 31st, 2017

is called zero-coupon curve, yield curve or term structure of interest rates.

I.e., for maturities less than a year simply-compounded interest rates are
used, else annually-compounded ones. Figure 2.1 shows two zero-coupon
yield curves estimated by the European Central Bank3: The dashed line is
a yield curve average over all euro area central government bonds, the solid
line only considers government bonds of euro countries rated AAA from the
rating agency Fitch, which consisted of the Netherlands, Luxembourg and
Germany at the time. As already mentioned above, negative interest rates
are a very common sight nowadays. Figure 2.1 confirms this; AAA govern-
ment bonds with maturities up to 6 years show negative yields.

3Source: https://www.ecb.europa.eu/stats/financial_markets_and_interest_
rates/euro_area_yield_curves/html/index.en.html

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
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Remark: The notion of a risk-free rate is easily introduced in theory, yet
needs some additional remarks in practice. A quick summary, based on [10]
and [17], of current and former market practices for proxies of risk-free rates
will now be stated: An intuitive proxy for the risk-free rate is the yield curve
of high-rated government bonds. An example is the AAA-rated yield curve
published daily by the ECB, cf. Figure 2.1 above. A flaw of this approach,
especially in times of turmoil on the market, is that there might be rather
large differences in the yield curves within the group of AAA rated countries,
because potential downgrades might not yet have been executed by the rat-
ing agencies. Those downgrades can then have quite significant effects on the
AAA curve. However, in the current market situation, which is very stable
and where only 3 countries are rated AAA, the AAA yield curve is a very
viable option.
In pre-crisis times, the market standard for risk-free rates were yield curves
stripped from the market through quotes of derivatives with interbank offered
rates (IBOR) as an underlying. In the euro area, the benchmark IBOR rate
is the EURIBOR. With the start of the global financial crisis at the end of
2008, things changed. As banks grew more sceptical to lend money to other
banks because of credit concerns, IBOR rates started to increase. Spreads
between IBOR rates with different tenors arose, which made them unsuitable
as a proxy for risk-free rates. This fact led to a different proxy for the risk-free
rate, which has now become market standard. It is bootstrapped from the
market with the aid of so-called OIS rates. OIS stands for Overnight Index
Swap, which is an interest rate swap with an average of overnight rates as an
underlying. In the euro area, the EONIA (Euro OverNight Index Average)
is taken as an underlying for OIS. Although the EONIA is also an interbank
rate, due to its overnight nature, the credit spreads incorporated in those
rates are less than in EURIBOR rates, which have longer tenors. For more
information why OIS-discounting is used in practice, see [17].



12 CHAPTER 2. INTEREST RATE BASICS

2.1.3 Forward interest rates

This section will deal with forward interest rates. A forward interest rate in-
volves the current time t, and future times T , called expiry time, and S, called
maturity, with T ≤ S. It is the rate for which one agrees to lend/borrow at
time t for the future time interval [T, S]. To guarantee absence of arbitrage,
the forward interest rates have to be consistent with the current term struc-
ture of discount factors defined in the previous chapter, i.e., the current bond
prices. The discount factors depend on the kind of spot rate used (simply-,
annually-, continuously-compounded), therefore yielding also different for-
ward rates. The simply-compounded forward rate will be considered first.

Definition 2.1.9 (Simply-compounded forward interest rate). The simply-
compounded forward interest rate is the rate prevailing at time t for lending
and borrowing within the time interval [T, S] when using simple compounding
and is defined by

F (t, T, S) := 1
S − T

(
P (t, T )
P (t, S) − 1

)
. (2.1.6)

This definition can be derived by the assumption of absence of arbitrage. The
value of an initial amount invested at time t for the time interval [0, T ] and
reinvested at time T for the interval [T, S] has to equal the value of the same
initial amount invested at time t for the time interval [0, S]. Mathematically
speaking, this means

(1 + (T − t)L(t, T ))(1 + (S − T )F (t, T, S)) = (1 + (S − t)L(t, S))

⇔ F (t, T, S) = 1
S − T

(
1 + (S − t)L(t, S)
1 + (T − t)L(t, T ) − 1

)
.

Rearranging (2.1.2) and plugging it into the above expression yields

F (t, T, S) = 1
S − T

(
P (t, T )
P (t, S) − 1

)
, (2.1.7)

which matches the definition.
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Remark: A forward rate agreement (FRA) at time t is a contract including
the following parameters: A nominal value N, a fixed rate K, a floating rate
L, both simply-compounded, and future dates T, S with T < S. K is fixed
at time t, whereas the floating rate is reset in T . The ”payer” of a FRA
agrees to pay an interest-rate payment on the nominal value for the time
interval [T, S] at time S based on the fixed rate K, whereas the ”receiver”
agrees in return to do the same for the floating rate. From the receivers
viewpoint, the payoff thus equals N(S − T )(K − L(T, S)). (2.1.6) can also
be derived from the fact that in order for the FRA to be a fair contract at
time t, i.e. having value zero, the fixed rate K needs to equal F (t, T, S),
since arbitrage opportunities would arise otherwise. It is worth mentioning
that since L(T, S) is already known at time T , it is common practice that the
interest rate payments are already exchanged at the reset date T by discount-
ing the time S value of the payments by a discount factor agreed-upon before.

The definitions for the annually- and continuously compounded cases are
as follows:

Definition 2.1.10 (Annually- and continuously-compounded forward inter-
est rate). The annually- and continuously-compounded forward interest rates
are defined by

Y (t, T, S) := S−T

√√√√P (t, T )
P (t, S) − 1.

and

R(t, T, S) := 1
S − T

(ln(P (t, T ))− ln(P (t, S))) .

respectively.

Both definitions can be derived in the same way as in the simple compound-
ing case using (2.1.3) and (2.1.5) respectively. Clearly, F (t, t, T ) = L(t, T )
holds, as well as the analogous statements in the annual and continuous com-
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pounding cases. If one lets the maturity tend to the expiry, a notion called
the instantaneous forward rate arises, which can be seen as the short rate for
a future time T prevailing at time t.

Definition 2.1.11 (Instantaneous forward interest rate). The interest rate
defined by

f(t, T ) := lim
S→T+

F (t, T, S) = −∂ lnP (t, T )
∂T

is called instantaneous forward interest rate for maturity T . For the second
equality to hold, it is assumed that P (t, T ) is sufficiently smooth.

The second equality in the definition is verified as follows:

lim
S→T+

F (t, T, S) = lim
S→T+

1
S − T

(
P (t, T )
P (t, S) − 1

)

= − lim
S→T+

1
P (t, S)

(
P (t, S)− P (t, T )

S − T

)

= − 1
P (t, T )

∂P (t, T )
∂T

= −∂ lnP (t, T )
∂T

.

Rearranging the definition yields

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
.

2.2 Interest rate derivatives

Interest rates can be used as an underlying for different kinds of derivatives.
In this chapter, interest rate swaps and interest rate options are going to be
presented.

2.2.1 Interest rate swaps

An interest rate swap (IRS) is a contract consisting of a series of pay-
ment exchanges between a fixed and a floating leg on a nominal value N
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at prespecified points in time T := {Tα, · · · , Tβ}. At each settlement date
Ti, i ∈ {α + 1, · · · , β}, the so-called ”payer” of the IRS pays an amount ac-
cording to a fixed rate K and the ”receiver” pays according to a floating
rate L, determined at the corresponding reset date Ti−1 for the ith accrual
period [Ti−1, Ti]. In other words, the payments NτiK and NτiL(Ti−1, Ti)
are exchanged at time Ti, where τi := Ti − Ti−1 and τ := {τα+1, · · · , τβ}.
The IRS can therefore be seen as a portfolio of forward rate agreements.
Consequently, the payoff at time Ti of a ”Receiver IRS” (RFS) is given by

Nτi(K − L(Ti−1, Ti))

and therefore

RFS(t, T , τ, N,K) = N
β∑

i=α+1
P (t, Ti)τi(K − F (t, Ti−1, Ti))

= N
β∑

i=α+1
P (t, Ti)τi

(
K − 1

τi

(
P (t, Ti−1)
P (t, Ti)

− 1
))

= −NP (t, Tα) +NP (t, Tβ) +NK
β∑

i=α+1
P (t, Ti)τi

is the value at time t. To not create arbitrage, the RFS needs to be fair, i.e.,
the value must equal zero. This gives rise to another definition:

Definition 2.2.1. The particular interest rate for the fixed leg, which makes
an IRS a fair contract at time t, i.e., the particular K for which RFS(t, T , τ, N,K) =
0, is called forward swap rate Sα,β(t) and defined by

Sα,β(t) = P (t, Tα)− P (t, Tβ)∑β
i=α+1 P (t, Ti)τi

.

An IRS can be used to lock in interest rates. Assume, for example, that
someone pays interest on a loan according to a floating rate. By entering a
payer IRS, one always pays interest according to the fixed rate, as the interest
payments of the loan are met by the received floating leg payment.
IRS of above description are said to be settled in arrears, since the payment
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exchanges occur at the settlement dates. In practice, IRS are also often
settled in advance, i.e., reset and settlement dates coincide, and therefore
the payments need to be discounted. The interest rate used to discount
depends on the location of the market, with U.S. and European markets
usually using the floating rate of the reset date L(t, Ti−1).

2.2.2 Interest rate options

In practice, the two most commonly used interest rate derivatives are both
options, namely caps/floors and swap options (known as swaptions).

Caps and Floors: A cap is a contractual agreement, which involves the
same parameters and payments as a payer IRS, with the difference that a
payment exchange only occurs when the payoff is positive, i.e., if the floating
rate at the settlement dates exceeds the previously agreed upon strike rate.
The buyer’s discounted payoff consequently equals

N
β∑

i=α+1
D(t, Ti)τi(L(Ti−1, Ti)−K)+.

Caps are used to protect oneself against rising interest rates when being float-
ing rate indebted. Buying a cap leads to interest payments of L(Ti−1, Ti) −
(L(Ti−1, Ti)−K)+ = min(L(Ti−1, Ti), K) at each settlement date Ti, so that
the variable interest payments are ”capped” by K.
A floor on the other hand is the equivalent to a cap for a receiver IRS. The
seller agrees to make a payment if the floating rate at the settlement dates
is below the strike rate. The buyer’s discounted payoff at time t is therefore
given by

N
β∑

i=α+1
D(t, Ti)τi(K − L(Ti−1, Ti))+.

Analogously to the cap, the floor protects against decreasing interest rates.
Caps/floors can be seen as a portfolio of β − α individual contracts, named
caplets/floorlets, with discounted payoffs D(t, Ti)τi(L(Ti−1, Ti)−K)+ and
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D(t, Ti)τi(K − L(Ti−1, Ti))+ respectively.
In practice, caps and floors are often priced by Black’s Formula (for the
derivation see Section 2.3).

CapBlack(0, T , τ, N,K, σα,β)

= N
β∑

i=α+1
P (0, Ti)τiBl(K,F (0, Ti−1, Ti), vi, 1), 4 (2.2.1)

FlrBlack(0, T , τ, N,K, σα,β)

= N
β∑

i=α+1
P (0, Ti)τiBl(K,F (0, Ti−1, Ti), vi,−1). (2.2.2)

Caplets and floorlets are just special cases of a cap/floor, where T = {T, T + τ ∗}
and τ = {τ ∗}, which means that the pricing formula in their cases reduces
to

CplBlack(0, T , τ, N,K, σα,β)

= NP (0, T + τ ∗)τ ∗Bl(K,F (0, T, T + τ ∗), σα,β
√
T , 1), (2.2.3)

FllBlack(0, T , τ, N,K, σα,β)

= NP (0, T + τ ∗)τ ∗Bl(K,F (0, T, T + τ ∗), σα,β
√
T ,−1).

In pre-crisis times, when interest rates were still strictly positive, the market
commonly quoted caps/floors not by their price, but by their volatilities.
Typically, the included volatilities related to α = 0, T0 = 3M and Ti =
T0 + i ·3M for all i or, alternatively, 3-month spaced within the first year and
Ti = Ti−1 + i ·6M for reset dates exceeding one year. However, since negative
interest rates for shorter maturities have appeared on the market in recent
years, it is often not possible to use Black’s formula. The reason for this is
that certain forward rates also become negative, which is a contradiction to
the Black-Scholes model, where the underlying is modelled as a geometric
Brownian motion, which by definition is always strictly positive. Therefore,
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the caps/floors cannot be quoted by their volatilities in that case. Finally,
a cap(let) is said to be in the money (ITM), if K < Sα,β(0), at the money
(ATM) , if K = Sα,β(0) and out of the money (OTM), if K > Sα,β(0). In
case of a floor(let), the inequalities are reversed.

Swaptions: A swap option, commonly known as swaption, entitles the
buyer to enter an IRS at the swaption maturity. A payer (receiver) swap-
tion contains the right to conclude a payer (receiver) IRS contract. Usually,
the swaption maturity Tα and first reset date of the IRS coincide. Since a
rational investor is only going to execute the swaption when the value of the
underlying IRS at maturity (cf. section 2.2.1) is positive, the payoff of a
(payer) swaption at t ≤ Tα is given by

ND(t, Tα)
 β∑
i=α+1

P (Tα, Ti)τi(F (Tα, Ti−1, Ti)−K)
+

(2.2.4)

= ND(t, Tα)
P (Tα, Tα)− P (Tα, Tβ)−K

β∑
i=α+1

P (Tα, Ti)τi

+

= ND(t, Tα)
(
P (Tα, Tα)− P (Tα, Tβ)∑β

i=α+1 P (Tα, Ti)τi
−K

)+ β∑
i=α+1

P (Tα, Ti)τi

= ND(t, Tα) (Sα,β(Tα)−K)+
β∑

i=α+1
P (Tα, Ti)τi

4 Black’s Formula is given by

Bl(K,F, v, ω) = FωΦ(ωd1(K,F, v))−KωΦ(ωd2(K,F, v))

d1(K,F, v) =
ln
(
F
K

)
+ v2

2
v

d2(K,F, v) =
ln
(
F
K

)
− v2

2
v

vi = σα,β
√
Ti−1,

where Φ denotes that CDF of the standard normal distribution and σα,β are quoted on
the market.
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Therefore, the time zero price of a payer swaption (PS) and receiver swaption
(RS) according to Black’s formula equal

PSBlack(0, T , τ, N,K, σα,β) = NBl(K,Sα,β(0), σα,β
√
Tα, 1)

β∑
i=α+1

P (0, Ti)τi,

RSBlack(0, T , τ, N,K, σα,β) = NBl(K,Sα,β(0), σα,β
√
Tα,−1)

β∑
i=α+1

P (0, Ti)τi.

Again, at time t ≤ Tα, a payer swaption is ITM, if K < Sα,β(t), ATM, if
K = Sα,β(t) and OTM, if K > Sα,β(t). In case of a receiver swaption, the
inequalities are reversed. As a final remark, one can mention that the price of
a swaption is always lower than the price of the corresponding cap contract,
since it is easily seen that
 β∑
i=α+1

P (Tα, Ti)τi(F (Tα, Ti−1, Ti)−K)
+

≤
β∑

i=α+1
P (Tα, Ti)τi (F (Tα, Ti−1, Ti)−K)+

holds.

2.3 No-arbitrage and pricing

2.3.1 Foundations

This section is based on [25, Chapter 12]. To get a deeper understanding in
no-arbitrage theory and its consequences, the interested reader is referred to
[25, Chapter 10] and [5, Chapter 2].
Let (Ω,A,F ,P) again be a filtered probability space, where P is called the
actual probability measure. In this case, F = (Ft)t∈[0,T ∗] is the P-completed
version of the filtration generated by an underlying Brownian motion and
T ∗ denotes some fixed end point in the considered time horizon. Let the
short rate process (rt)t∈[0,T ∗] and the bank-account process (B(t))t∈[0,T ∗] (cf.
Definition 2.1.1) be adapted processes w.r.t. the same underlying probability
space. Then the following notion of no-arbitrage can be defined.
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Definition 2.3.1. If for a family of processes P (t, T ), t ≤ T ≤ T ∗ with
P (T, T ) = 1, ∀T ≤ T ∗, there exists a measure P∗ equivalent 5 to P, such that
the relative bond price process

Z∗(t, T ) = P (t, T )
B(t) , (2.3.1)

is a martingale under P∗ for all T ≤ T ∗, then P (t, T ) is called an arbitrage-
free family of bond prices w.r.t. (rt)t∈[0,T ∗] . P∗ is called a martingale measure
for the family P (t, T ).

At first sight, it might not be clear where this definition comes from. It
becomes clear when considering the following:

Z∗(t, T ) = EP∗ [Z∗(T, T ) | Ft] = EP∗

[
P (T, T )
B(T )

∣∣∣∣∣Ft
]

⇔ P (t, T ) = B(t)EP∗

[
1

B(T )

∣∣∣∣∣Ft
]

= EP∗ [D(t, T ) | Ft] .

This means that the bond price is the expectation of the discount factor
under a certain equivalent measure, which is called risk-neutral or equivalent
martingale measure. It will be used extensively later on to price bonds and
derivatives. It can be shown that a market is arbitrage-free6 if and only if
there exists an equivalent martingale measure.
Let it now be assumed, that the short rate dynamics follow a one-dimensional
diffusion process, i.e.,

drt = µtdt+ σtdWt, r0 > 0, (2.3.2)

under the actual probability measure P. µ and σ are adapted processes and
are implicitly assumed to fulfil the necessary conditions, such that a strong
solution to the (2.3.2) exists7. W is the underlying Brownian motion and is

5Two probability measures are called equivalent if their respective sets of null sets
coincide.

6Arbitrage can intuitively be described as the possibility of making riskless profit. For
a mathematical definition see [25, Chapter 10.1] or [12, Chapter 4.3].

7See the Appendix of this thesis for details on those conditions.
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here assumed to be one-dimensional. However, the following results are also
valid if W is a d-dimensional Brownian motion and σ is a Rd-valued adapted
process. Using the natural filtration of the underlying Brownian motion has
several advantages. Given a measure P̃ equivalent to P, it can be shown that
the Radon-Nikodym density equals

dP̃
dP

= ηT ∗ ,

ηt := Et
(∫ .

0
λudWu

)
:= exp

(∫ t

0
λudWu −

1
2

∫ t

0
λ2
udu

)
,

(2.3.3)

for some predictable, real-valued process λ. On the other hand, starting from
an adapted real-valued process λ fulfilling the suitable integrability conditions
(e.g. Novikov condition), (2.3.3) defines an equivalent measure Pλ and since
the process ηt can be shown to be a martingale w.r.t. the natural filtration,
Girsanov’s theorem implies that

W λ
t = Wt −

∫ t

0
λudu, (2.3.4)

is a Brownian motion w.r.t. Pλ. These observations lead to the following
proposition. The formulation and the proof are based on [25, Chapter 10],
with the proof being carried out in greater detail here.

Proposition 2.3.2. Let the short-rate dynamics under P be as in (2.3.2).
Let the arbitrage-free family of bond prices P (t, T ) and the corresponding
martingale measure P∗ be as in Definition 2.3.1. Let λ be the predictable
process fulfilling (2.3.3) for dP∗

dP
, implying P∗ = Pλ. Then:

(i) The dynamics of rt under Pλ are

drt = (µt + σtλt)dt+ σtdW
λ
t .

(ii) There exists a predictable, real-valued process bλ(t, T ) which satisfies

dP (t, T ) = P (t, T )(rtdt+ bλ(t, T )dW λ
t ).

Proof. (i) immediately follows from plugging in (2.3.4) in (2.3.2).
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(ii): Since Z∗(t, T ) is martingale under Pλ, the conditional Bayes’ rule implies
that the process Mt = Z∗(t, T )ηt is a martingale under P w.r.t. to F . It can
be shown (see [25, Appendix B.2]) that there exists a predictable process γ,
such that

Mt = E[Mt] +
∫ t

0
γudWu = E[Z∗(t, T )ηt] +

∫ t

0
γudWu = Z∗(0, T ) +

∫ t

0
γudWu,

which implies that M is continuous. Observe that

dZ∗(t, T ) = d(Mtη
−1
t ) = η−1

t dMt +Mtd(η−1
t ) + d[Mt, η

−1
t ].

Calculating each summand separately using Itô’s formula yields

dMt = γtdWt,

dη−1
t = η−1

t

1
2λ

2
tdt− η−1

t d
(∫ t

0
λudWu

)
+ 1

2η
−1
t d

[∫ t

0
λudWu

]
︸ ︷︷ ︸∫ t

0 λ
2
udu

= η−1
t

1
2λ

2
tdt− η−1

t λtdWt + 1
2η
−1
t λ2

tdt

= −η−1
t λt(dWt − λtdt) = −η−1

t λtdW
λ
t ,

d[M, η−1]t = d
[
Z∗(0, T ) +

∫ t

0
γudWu,

∫ t

0
−η−1

u λu(dWu − λudt)
]

= d
[∫ t

0
γudWu,

∫ t

0
−η−1

u λudWu

]
= d

(
−
∫ t

0
γuη

−1
u λud [W,W ]u

)
= −γtη−1

t λtdt.

Putting everything together leads to

dZ∗(t, T ) = η−1
t γtdWt −Mtη

−1
t λtdW

λ
t − γtη−1

t λtdt

= η−1
t γt(dWt − λtdt)−Mtη

−1
t λtdW

λ
t

= η−1
t (γt −Mtλt)dW λ

t .
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Finally, the bond price dynamics are given by

dP (t, T ) = d(Z∗(t, T )B(t)) = Z∗(t, T )dB(t) +B(t)dZ∗(t, T ) + d[Z∗(t, T ), B(t)︸ ︷︷ ︸
=0

]

= Z∗(t, T )B(t)rtdt+B(t)n−1
t (γt −Mtλt)dW λ

t

= P (t, T )rtdt+ P (t, T )( γt
Mt

− λt)dW λ
t

= P (t, T )(rtdt+ ( γt
Mt

− λt)dW λ
t )

= P (t, T )(rtdt+ bλ(t, T )dW λ
t ).

Since γ, λ are predictable and M is continuous (and therefore in particular
predictable), bλ(t, T ) is also predictable, which concludes the proof.

What do those results mean? Given a short rate process with dynamics as in
(2.3.2), one can define a bond price by P (t, T ) = EPλ

[
D(t, T )

∣∣∣FWλ

t

]
, where

Pλ is an arbitrary measure equivalent to P. A corollary from the previous
proposition is, that bond price dynamics under P satisfy

dP (t, T ) = P (t, T )((rt − λtbλ(t, T ))dt+ bλ(t, T )dW λ
t ).

When examining this expression, it can be noticed that the drift term rt −
λtb

λ(t, T ) differs from the short term interest rate. The additional term is
usually called market price of risk and originates from the argument, that
since the bond is risky it should yield higher instantaneous return than a
risk-free security, e.g., a savings account.

2.3.2 Pricing formulas

This section is based on [5, Chapter 2.6]. The setup consists again of a
probability space (Ω,A,F ,Q), where F = (Ft)t≥0 is a filtration fulfilling the
usual conditions and Q is the risk-neutral measure. It will be assumed that
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the time t price of any claim8 with terminal payoff HT is given by

πt = E
[
e−
∫ T
t
rsdsHT

∣∣∣∣Ft] . (2.3.5)

In particular, the price of a T -bond equals

P (t, T ) = E
[
e−
∫ T
t
rsds

∣∣∣∣Ft] , (2.3.6)

which will be a formula heavily used throughout this thesis. If the so-called
T -forward measure QT is defined by the following Radon-Nikodym derivative

dQT

dQ
= P (T, T )B(0)
P (0, T )B(T ) = e−

∫ T
0 rsds

P (0, T ) = D(0, T )
P (0, T ) , (2.3.7)

then it can be shown by the change-of-numeraire technique (see [5, Chapter
2.2]), that

πt = P (t, T )ET [HT | Ft] , (2.3.8)

where ET denotes the expectation under QT . If one considers a European
call option with strike K, maturity T and a S-bond as an underlying, its
price at time t ≤ T ≤ S ≤ T ∗ obeys

ZBC(t, T, S,K) = E
[
e−
∫ T
t
rsds(P (T, S)−K)+

∣∣∣∣Ft] . (2.3.9)

The corresponding formula under QT reads

ZBC(t, T, S,K) = P (t, T )ET
[
(P (T, S)−K)+

∣∣∣Ft] , (2.3.10)

which is very useful if the dynamics of the bond price under QT are known,
as it will be the case later on. Extensions to arbitrary face values N of the

8A claim is any FT -measurable random variable H with E[H2] <∞.
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underlying S-bond are straightforward, namely

ZBC(t, T, S,N,K) = P (t, T )ET
[
(NP (T, S)−K)+

∣∣∣Ft]
= NP (t, T )ET

[
(P (T, S)− K

N
)+
∣∣∣∣Ft] = NZBC(t, T, S, K

N
).

Formulas ZBP(t, T, S,N,K) for put options are defined analogously.
Consider a cap, where T = {T0, T1, · · · , Tn} denotes the set of all relevant
dates and τ = {τ1, · · · , τn} with τi = Ti−Ti−1 are the involved time intervals.
Let N be the cap nominal value and L the underlying simply compounded
rate. Then, as already seen, the fair price at time t ≤ Ti−1 of the i-th caplet
is given by

Cpl(t, Ti−1, Ti, N,K)

= E
[
e−
∫ Ti
t

rsdsNτi(L(Ti−1, Ti)−K)+
∣∣∣∣Ft]

= NE
[
E
[
e−
∫ Ti
t

rsdsτi(L(Ti−1, Ti)−K)+
∣∣∣∣FTi−1

] ∣∣∣∣Ft]
= NE

[
e−
∫ Ti−1
t

rsdsτi(L(Ti−1, Ti)−K)+E
[
e
−
∫ Ti
Ti−1

rsds
∣∣∣∣∣FTi−1

] ∣∣∣∣∣Ft
]

= NE
[
e−
∫ Ti−1
t

rsdsτi(L(Ti−1, Ti)−K)+P (Ti−1, Ti)
∣∣∣∣Ft] ,

where the tower property of the conditional expectation was used. Plugging
in (2.1.1), i.e. L(t, T ) = 1

T−t

(
1

P (t,T ) − 1
)
, yields

Cpl(t, Ti−1, Ti, N,K)

= NE

e− ∫ Ti−1
t

rsds

(
1

P (Ti−1, Ti)
− 1−Kτi

)+

P (Ti−1, Ti)

∣∣∣∣∣∣Ft


= NE
[
e−
∫ Ti−1
t

rsds (1− P (Ti−1, Ti)(1 +Kτi))+
∣∣∣∣Ft]

= N(1 +Kτi)E
e− ∫ Ti−1

t
rsds

(
1

(1 +Kτi)
− P (Ti−1, Ti)

)+
∣∣∣∣∣∣Ft


= N ′iZBP(t, Ti−1, Ti, K

′
i) = ZBP(t, Ti−1, Ti, N

′
i , N), (2.3.11)
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where N ′i = N(1 +Kτi) and K ′i = 1
1+Kτi . The derivation of the formulas for

floorlets is analogous and yields

Fll(t, Ti−1, Ti, N,K) = N ′iZBC(t, Ti−1, Ti, K
′
i)

= ZBC(t, Ti−1, Ti, N
′
i , N). (2.3.12)

Finally, cap and floor prices are just the sums of the underlying caplet/floorlet
prices, i.e.,

Cap(t, T , τ, N,K) =
n∑
i=1

N ′iZBP(t, Ti−1, Ti, K
′
i), (2.3.13)

Flr(t, T , τ, N,K) =
n∑
i=1

N ′iZBC(t, Ti−1, Ti, K
′
i). (2.3.14)

2.3.3 Derivation of Black’s formula

In this section Black’s formula for prices of caplets will be derived. The
case of floorlets is analogous. The derivation closely follows [5, Chapter 6.2].
Assume that the simply-compounded forward rate process F (t, T1, T2) for
future dates T1 < T2 follows, under the risk-neutral measure Q, a driftless
geometric Brownian motion with volatility σ > 0 , i.e.,

dF (t, T1, T2) = σF (t, T1, T2)dWt,

where Wt as always denotes a Brownian motion. The well-known solution to
this SDE is given by

F (t, T1, T2) = F (0, T1, T2) exp
(
−σ

2

2 t+ σWt

)
, (2.3.15)

which can be easily checked using Itô’s formula. This means that F (t, T1, T2)
is a log-normally distributed random variable for every t. To obtain an
explicit formula within this setup, the expectation

Cpl(0, T1, T2, N,K) = E
[
e−
∫ T2

0 rsdsτN(L(T1, T2)−K)+
]
,
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needs to be calculated ,where τ = T2 − T1 and F (T1, T1, T2) = L(T1, T2).
Since the discount factor within the expectation makes it impossible to com-
pute this expectation directly, a change to the forward measure QT2 will be
performed analogously to (2.3.7). It follows, as in (2.3.8), that

Cpl(0, T1, T2, N,K) = P (0, T2)EQT2
[
τN(L(T1, T2)−K)+

]
holds. The problem is that the dynamics of F (t, T1, T2) under QT2 are not
yet known. However, by definition

F (t, T1, T2) = 1
τ

(
P (t, T1)− P (t, T2)

P (t, T2)

)
.

Consequently, the forward rate multiplied by P (t, T2) is a tradeable asset,
because it is a multiple of the difference of two bonds. Therefore, F (t, T1, T2)
follows a martingale under QT2 (see [5], Prop. 2.5.1). It is well-known that
diffusion processes are martingales if and only if they are driftless, since a
non-zero drift contradicts the ”fair game” property of martingales. Con-
sequently, the dynamics of F (t, T1, T2) equal (2.3.15), with the difference
that the Brownian motion is now w.r.t. QT2 . That in turns means, that
F (t, T1, T2) is also log-normally distributed under QT2 and therefore

EQT2
[
(L(T1, T2)−K)+

]
is the price of a call-option with strike K and maturity T1, where the risk-
free rate is zero and the volatility of the underlying is σ. It can therefore be
computed by the usual Black-Scholes formula. Multiplication by P (0, T2), N
and τ leads to (2.2.3).
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Chapter 3

One-factor models

In this chapter, one-factor interest rate models will be presented, i.e., mod-
els driven by a single source of randomness. Let again (Ω,A,F ,Q) be a
filtered probability space, where F = (Ft)t≥0 is a filtration fulfilling the
usual conditions and Q is the risk-neutral measure. For the moment, only
time-homogeneous models are going to be considered, i.e., drift and diffusion
coefficient are at most functions of the short rate and do not depend on time.
The first two models, namely the Vasicek and the Cox-Ingersoll-Ross model
(CIR), are in addition endogenous models, meaning that the current term
structure is to be seen as an output rather than an input. Trying to fit
the model to the initial market term structure, i.e., choosing parameters to
match the model-implied term-structure curve T 7→ P (0, T ) to the market
curve T 7→ PM(0, T ), is not at all satisfactory. On the one hand, the number
of parameters is too low, on the other hand, there are some term structure
shapes (e.g. inverted), which cannot be reproduced by any choice of parame-
ters. Despite their many drawbacks, those models are still presented as they
do not only show the evolution of short-rate models through time and are
therefore interesting in a historic sense, but also help to ease into this topic
before more complicated models are considered, as they are very tractable
analytically.
The last model which will be dealt with in this section, the CIR++ model,
is an extension of the CIR model, which enables exact fitting of the current

29
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market curve, while still preserving the analytical tractability of the other
models.
In some of the proofs in this section, there will be references to proofs in the
following Chapter 4 on two-factor-models, since there lies the main focus of
this thesis.
The content and notation of this chapter are based on [5, Chapter 3] and [12,
Chapter 5].

3.1 Affine-term-structure models

A model is called an affine-term-structure model (ATS), if the bond price
admits the representation

P (t, T ) = A(t, T )e−B(t,T )r(t) ∀t ≤ T,

where both A and B are suitably smooth functions. P (T, T ) = 1 for all T
implies A(T, T ) = 1, B(T, T ) = 0. The following proposition characterizes
ATS models. The proposition and its proof closely follow [12, Chapter 5.3].

Proposition 3.1.1. A short-rate model following, under the risk-neutral
measure Q, the dynamics

dr(t) = b(t, r(t))dt+ σ(t, r(t))dW (t),

is an ATS model if and only if

b(t, x) = λ(t)x+ η(t), σ2(t, x) = γ(t)x+ δ(t) (3.1.1)

with λ, η, γ, δ continuous, and A,B satisfy the system of ODEs

∂tB(t, T ) + λ(t)B(t, T )− 1
2γ(t)B(t, T )2 + 1 = 0, B(T, T ) = 0

∂t lnA(t, T )− η(t)B(t, T ) + 1
2δ(t)B(t, T )2 = 0, A(T, T ) = 1.

(3.1.2)

for all t ≤ T .
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To proof this, a very famous result of stochastic calculus is needed, which
is generally known as the Feynman-Kac formula. It makes a connection
between partial differential equations and stochastic processes. The theorem
and its proof follow the formulation of [12, Chapter 5.2]. Additional sources
include [20, Chapter 4.4].

Theorem 3.1.2 (Feynman-Kac formula). Let the short-rate dynamics be as
in Proposition 3.1.1. Let φ be continuous on a closed interval I ⊂ R, which
has a non-empty interior, and let F (t, r) ∈ C1,2((0, T )× I) be a solution to

∂tF (t, r) + b(t, r)∂rF (t, r) + 1
2σ

2(t, r)∂2
rF (t, r)− rF (t, r) = 0,

F (T, r) = φ(r).
(3.1.3)

If M(t) = F (t, r(t))e−
∫ t

0 r(u)du, t ≤ T is a martingale, then

F (t, r(t)) = E
[
e−
∫ T
t
r(u)duφ(r(T ))

∣∣∣∣ Ft]

holds.

Proof. Using Itô’s formula yields

dM(t) = e−
∫ t

0 r(u)dudF (t, r(t)) + F (t, r(t))d(e−
∫ t

0 r(u)du)

= e−
∫ t

0 r(u)du

∂tF (t, r(t))dt+ ∂rF (t, r(t))dr(t) + 1
2∂

2
rF (t, r(t)) d[r(t)]︸ ︷︷ ︸

σ2(t,r(t))dt


− F (t, r(t))e−

∫ t
0 r(u)dur(t)dt

= e−
∫ t

0 r(u)du
(
∂tF (t, r(t)) + ∂rF (t, r(t))b(t, r(t)) + 1

2∂
2
rF (t, r(t))σ2(t, r(t))

−r(t)F (t, r(t))) dt+ e−
∫ t

0 r(u)du∂rF (t, r(t))σ2(t, r(t))dW (t)

= e−
∫ t

0 r(u)du∂rF (t, r(t))σ2(t, r(t))dW (t),

where the last equality is due to F (t, r(t)) solving (3.1.3). This shows that
M(t) is always a local martingale, and under suitable conditions a true mar-
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tingale1 . Using this and the boundary condition of the partial differential
equation leads to

E
[
e−
∫ T

0 r(u)duφ(r(T ))
∣∣∣∣Ft] = E [M(T ) | Ft] = M(t) = F (t, r(t))e−

∫ t
0 r(u)du

⇔ E
[
−e
∫ T
t
r(u)duφ(r(T ))

∣∣∣∣Ft] = F (t, r(t)).

This result is very powerful, because for a given claim with terminal payoff
φ(r(T )), the function F (t, r(t)) describes its price process. In particular, for
a T-bond, i.e., φ ≡ 1, the price can be represented by P (t, T ) = F (t, r(t), T ).
Solving the PDE is now one way of computing the price. However, a draw-
back is that a PDE has to be solved for every maturity T .
With the aid of the Feynman-Kac formula, Proposition 3.1.1 can be verified.

Proof Proposition 3.1.1. Since the bond price under the risk-neutral measure
is given by

P (t, T ) = E[e−
∫ T
t
r(s)ds|Ft] = A(t, T )e−B(t,T )rt ,

one can insert it into (3.1.3), which yields

0 = A(t, T )e−B(t,T )r∂t(−B(t, T )r)− b(t, r)A(t, T )e−B(t,T )rB(t, T )

+ 1
2σ

2(t, r)A(t, T )e−B(t,T )rB(t, T )2 − rA(t, T )e−B(t,T )r + e−B(t,T )r∂tA(t, T )

⇔ 0 = ∂tA(t, T ) + A(t, T )∂t(−B(t, T )r)− b(t, r)A(t, T )B(t, T )

+ 1
2σ

2(t, r)A(t, T )B(t, T )2 − rA(t, T ),

1Sufficient conditions for a local martingale to be a true martingale are:

• M is uniformly bounded
• E[

∫ T
0 |∂rF (t, r(t))e−

∫ t
0
r(u)du

σ(t, r(t))|2dt] <∞
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which means an ATS is also characterized by

−∂t lnA(t, T ) + r(∂tB(t, T ) + 1) = 1
2σ

2(t, r)B(t, T )2 − b(t, r)B(t, T ).

(3.1.4)

Inserting equalities (3.1.1) and (3.1.2) in the above expressions yields a true
statement, which proves the ”if” part of the proposition. For the ”only if”
part, first assume, for fixed t, linear independence of B(t, ·) and B(t, ·)2.
Then the matrix

M =
B(t, T1)2 −B(t, T1)
B(t, T2)2 −B(t, T2)


is invertible for some T1 > T2 > t. Rearranging (3.1.4) gives

1
2σ

2(t, r)
b(t, r)

 = M−1

−
∂t lnA(t, T1)
∂t lnA(t, T2)

+
∂tB(t, T1) + 1
∂tB(t, T2) + 1

 r
 ,

which shows that that drift and volatility are affine functions in r and can
consequently be represented as in (3.1.1). Inserting this representation into
(3.1.4) yields

1
2δ(t)B(t, T )2 − η(t)B(t, T ) +

(1
2γ(t)B(t, T )2 − λ(t)B(t, T )

)
r

= −∂t lnA(t, T ) + r(∂tB(t, T ) + 1).

Comparing expressions containing r and expressions without r leads to (3.1.2).
In the case of linear dependence, B(t, ·) = c(t)B(t, ·)2 holds for some constant
c(t). For that relation to be true, c(t) = B(t, ·)−1 would have to hold for all
T ≥ t. Since B(t, t) = 0 , this is not possible, implying that c(t) = 0 and
therefore B(t, ·) ≡ 0, which in turn means ∂tB(t, T ) = −1. Consequently,
the union of all t, for which linear independence holds, constitutes an open
and dense set in R and since a continuity assumption for λ, η, γ, δ was made,
(3.1.1) and therefore (3.1.2) hold for all t, which concludes the proof.

All models considered in this chapter are ATS models, even such that the
Ricatti differential equation in (3.1.2) produces an analytical solution.
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Another useful property of ATS models, which will be needed later on, is
that the instantaneous forward rate can be written in a special form:

f(t, T ) = −∂ lnP (t, T )
∂T

= −∂ lnA(t, T )
∂T

+ ∂B(t, T )
∂T

r(t). (3.1.5)

3.2 The Vasicek Model

One of the first and most famous interest rate models is the Vasicek model
(1977). Its instantaneous short-rate dynamics under the risk-neutral measure
are given by

dr(t) = k(θ − r(t))dt+ σdW (t), r(0) = r0, (3.2.1)

with r0, k, θ, σ > 0. This means, that the short rate is modelled as an
Ornstein-Uhlenbeck process with constant coefficients. Whenever r(t) < θ,
the drift becomes negative and whenever r(t) > θ, it is positive, therefore r(t)
is always drifting towards θ. Hence, such a process is called mean-reverting.
k is called the mean-reversion rate, i.e., the larger k, the faster the process
will drift to θ.
Simple integration of (3.2.1), almost analogous to the proof of Proposition
4.1.1, yields for every s ≤ t:

r(t) = r(s)e−k(t−s) + θ
(
1− e−k(t−s)

)
+ σ

∫ t

s
e−k(t−u)dW (u).

Before distributional properties are going to be analysed, an important lemma
will be stated, which will be used extensively throughout the thesis. The
lemma is taken from [27, Chapter 10].

Lemma 3.2.1 (without proof). Let f : [0,∞) −→ R satisfy
∫ t

0 f(s)2ds <∞
for all t ≥ 0. Then the process {Xt :=

∫ t
0 f(s)dW (s)}t≥0 has continuous

sample paths, independent increments and Xt is normally distributed with

E[Xt] = 0, Cov(Xt, Xs) =
∫ min(t,s)

0
f(u)2du.
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Lemma 3.2.1 implies that r(t) conditional on Fs, the sigma-field generated
by r up to time s, is normally distributed with

E[rt|Fs] = r(s)e−k(t−s) + θ
(
1− e−k(t−s)

)
,

V ar[rt|Fs] = σ2

2k [1− e−2k(t−s)].

Letting t tend to infinity in the above expression shows that θ is indeed the
long-term mean. The normal distribution property of r(t) also means, that
there is positive probability for negative interest rates. This was considered
one of the major drawbacks of the Vasicek model. However, as already
mentioned, negative interest rates are not uncommon in the market anymore.
The T -bond price in the Vasicek model is given by

P (t, T ) = A(t, T )e−B(t,T )r(t),

where

A(t, T ) = exp
((

θ − σ2

2k2

)
[B(t, T )− T + t]− σ2

4kB(t, T )2
)

B(t, T ) = 1
k

[
1− e−k(T−t)

]
.

are the solutions of (3.1.2).

3.3 The Cox-Ingersoll-Ross model

The need to solve the (former) problem of a possibly negative interest rate
led to the Cox-Ingersoll-Ross model (1985), which emerged from the Vasicek
model by adding a multiplicative square-root factor to the diffusion coeffi-
cient, i.e., the short-rate evolves according to

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dW (t), r(0) = r0,
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Figure 3.1: Sample paths of the interest rate in the CIR model with different
mean-reversion rate

with r0, k, θ, σ > 0. The process is non-negative for arbitrary positive param-
eters and stays strictly positive for 2kθ > σ2 (known as Feller-Condition).
Existence and positivity of the solution to this particular stochastic differen-
tial equation will be proven in the Appendix.
Sample paths of a CIR process, generated in a distributionally exact way,
are shown in Figure 3.1. One can clearly observe the effects of different
mean-reversion rates, where higher values cause the process to approach the
mean-reversion level faster.
Again, simple integration yields, for every s ≤ t:

r(t) = r(s)e−k(t−s) + θ
(
1− e−k(t−s)

)
+ σ

∫ t

s
e−k(t−u)

√
r(u)dW (u).
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Using the expression and Lemma 3.2.1 above enables to calculate expected
value and variance of r(t) conditional on Fs, which are given by

E[rt|Fs] = r(s)e−k(t−s) + θ
(
1− e−k(t−s)

)
,

V ar[rt|Fs] = r(s)σ
2

k
(e−k(t−s) − e−2k(t−s)) + θ

σ2

2k (1− e−k(t−s))2.

As far as the distributional properties of r(t) are concerned, according to [8]
it follows a non-central chi-squared distribution , i.e., the density function f
is given by

fr(t)(x) = ctfχ2(v,λt)(ctx)2 (3.3.1)

where

ct = 4k
σ2(1− exp(−kt)) ,

v = 4kθ
σ2 ,

λt = ctr0 exp(−kt).

The price of a T -bond in the CIR model again admits to the representation

P (t, T ) = A(t, T )e−B(t,T )r(t),

2 The density of a non-central chi-squared distribution with v degrees of freedom and
non-centrality parameter λ and the chi-squared distribution with v+2i degrees of freedom
are respectively given by

fχ2(v,λ)(z) =
∞∑
i=0

e−
λ
2
(
λ
2
)i

i! fχ2(v+2i)(z),

fχ2(v+2i)(z) =
( 1

2
)i+v/2

Γ(i+ v/2)z
i−1+v/2e−z/2.
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where

A(t, T ) =
 2h exp

(
1
2(k + h)(T − t)

)
2h+ (k + h)(exp {(T − t)h} − 1)


2kθ
σ2

,

B(t, T ) = 2 (exp {(T − t)h} − 1)
2h+ (k + h)(exp {(T − t)h} − 1) ,

(3.3.2)

are the solutions of (3.1.2) and h =
√
k2 + 2σ2.

3.4 The Hull-White Model

The desire to be able to fit a model to the current yield curve led to an
extension proposed by Hull and White in [16] in 1990, which in its general
form follows, under the risk-neutral measure, the dynamics:

dr(t) = [ϑ(t)− a(t)r(t)]dt+ σ(t)dW (t),

where ϑ, a, σ are deterministic functions. Since in the general setting an-
alytical tractability is lost, the short rate process considered here evolves
according to

dr(t) = [ϑ(t)− ar(t)]dt+ σdW (t), (3.4.1)

where a, σ > 0 are constants. ϑ is used to fit the model to the currently
observed term structure of discount factors PM(0, T ). Since the Hull-White
model is an ATS model, by using (3.1.2) and (3.1.5) it is easily shown that

ϑ(t) = ∂

∂T
fM(0, T )|T=t + afM(0, t) + σ2

2a(1− e−2at)

must hold, assuming fM(0, T ) = −∂ lnP (0,T )
∂T

is sufficiently smooth. For details
see [12, Chapter 5.4.5]. Simple integration of (3.4.1), almost analogous to
the proof of Proposition 4.1.1, and inserting the above expression for ϑ yields
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for every s ≤ t:

r(t) = r(s)e−a(t−s) +
∫ t

s
ϑ(u)e−a(t−u)du+ σ

∫ t

s
e−a(t−u)dW (u)

= r(s)e−a(t−s) + α(t)− α(s)e−a(t−s) + σ
∫ t

s
e−a(t−u)dW (u),

where α(t) := fM(0, t) + σ2

2a2 (1− e−at)2. Like in the Vasicek and CIR model,
this representation can be used to derive the distributional properties of the
short rate process. Here, r(t) conditional on Fs is normally distributed with

E[rt|Fs] = r(s)e−a(t−s) + α(t) + α(s)e−a(t−s),

V ar[rt|Fs] = σ2

2a [1− e−2a(t−s)].

T-bonds can be priced with the formula

P (t, T ) = E[e−
∫ T
t
r(s)ds|Ft].

To do this, let us first introduce the process dx(t) = −ax(t)dt + σdW (t),
x(0) = 0. It is easy to show that r(t) = x(t) + α(t) holds for all t.

Lemma 3.4.1.
∫ T
t r(u)du conditional on Ft is normally distributed with

E
[∫ T

t
r(u)du

∣∣∣∣∣Ft
]

=B(t, T )[r(t)− α(t)] + ln
[
PM(0, t)
PM(0, T )

]

+ 1
2[V (0, T )− V (0, t)] (3.4.2)

V ar

[∫ T

t
r(u)du

∣∣∣∣∣Ft
]

=V (t, T ), (3.4.3)

where

B(t, T ) = 1
a

[1− e−a(T−t)]

V (t, T ) = σ2

a2

[
T − t+ 2

a
e−a(T−t) − 1

2ae
−2a(T−t) − 3

2a

]
.
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Proof. The same computation as in the proof of Lemma 4.2.1 leads to

∫ T

t
x(u)du = x(t)1− e−a(T−t)

a
+ σ

a

∫ T

t

(
1− e−a(T−u)

)
dW (u).

Lemma 3.2.1 implies that
∫ T
t x(u)du is normally distributed with meanB(t, T )[r(t)−

α(t)]. Since α(t) is deterministic,
∫ T
t r(u)du is also normally distributed. Fur-

ther,

∫ T

t
α(u)du =

∫ T

t
fM(0, u) + σ2

2a2 (1− e−au)2du

= − lnPM(0, u)|Tt + σ2

2a2

∫ T

t
(1− 2e−au + e−2au)du

= ln
(
PM(0, t)
PM(0, T )

)
+ σ2

2a2

T − t+
(2
a
e−au − 1

2ae
−2au

) ∣∣∣∣∣
T

t


= ln

(
PM(0, t)
PM(0, T )

)
+ 1

2[V (0, T )− V (0, t)].

Together, this yields

E
[∫ T

t
r(u)du

∣∣∣∣∣Ft
]

= E
[∫ T

t
x(u)du

∣∣∣∣∣Ft
]

+ E
[∫ T

t
α(u)du

∣∣∣∣∣Ft
]

= B(t, T )[r(t)− α(t)] + ln
[
PM(0, t)
PM(0, T )

]
+ 1

2[V (0, T )− V (0, t)]

Using Lemma 3.2.1 and the results of Lemma 4.2.1 once again yields

V ar

[∫ T

t
r(u)du

∣∣∣∣∣Ft
]

= V ar

[∫ T

t
x(u)du

∣∣∣∣∣Ft
]

= V ar

[
σ

a

∫ T

t

(
1− e−a(T−u)

)
dW (u)

∣∣∣∣∣Ft
]

= σ2

a2

∫ T

t

(
1− e−a(T−u)

)2
du = V (t, T ),

which concludes the proof.

An analogous calculation to the one in the proof of Theorem 4.2.2 or solving
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(3.1.2) leads to

P (t, T ) = A(t, T )e−B(t,T )r(t)

A(t, T ) = PM(0, T )
PM(0, t) exp

{
B(t, T )fM(0, t)− σ2

4a(1− e−2at)B(t, T )2
}
,

where B(t, T ) is as in Lemma 3.4.1. For the sake of completeness, it should
be mentioned that this model allows again for negative interest rates.

3.5 CIR++ - the extended Cox-Ingersoll-Ross
model

As already mentioned, one of the major drawbacks of the Vasicek and the
CIR model is that the current term structure is endogenously given. The
CIR++ model avoids that problem by adding a deterministic shift, i.e the
short rate dynamics under the risk neutral measure Q are given by

r(t) = x(t) + ϕ(t),

dx(t) = k(θ − x(t))dt+ σ
√
x(t)dW (t), x(0) = x0,

with x0, k, θ, σ > 0.
Before one can compute the bond price within the CIR++ model, more
general results need to be stated. Firstly, for the bond price P (t, T ) of a
process given by r(t) = x(t) + ϕ(t), the following holds:

P (t, T ) = exp
[
−
∫ T

t
ϕ(s)ds

]
P x(t, T, x(t)),

where P x(t, T ) is the bond price of a process which is governed by the same
dynamics under a measure Qx as x(t) under Q. Furthermore, it can be shown
that the following statements are equivalent:

(i) The currently observed bond curve is fitted by the CIR++ model, i.e.,
PM(0, T ) = P (0, T ) ∀T ∈ [0, T ∗].
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(ii) ϕ(t) = fM(0, t)− fx(0, t), where fM(t, T ) and fx(t, T ) are the instan-
taneous forward rates corresponding to the bond prices PM(t, T ) and
P x(t, T, x(t)) respectively.

(iii) exp
[
−
∫ T
t ϕ(s)ds

]
= PM(0, T )

PM(0, t)
P x(0, t, x(0))
P x(0, T, x(0))

For the proofs of the above statements see [5, Chapter 3.8].
Translated to our case, and assuming that the current market term structure
is fitted, this leads to

ϕ(t) = ϕCIR(t) = fM(0, t)− fCIR(0, t),

where, because of (3.3.2) and (3.1.5),

fCIR(0, t) = 2kθ(eth − 1)
2h+ (k + h)(eth − 1) + x0

4h2eth

(2h+ (k + h)(eth − 1))2 , (3.5.1)

with h =
√
k2 + 2σ2. The bond price is thus given by

P (t, T ) = Ā(t, T )e−B(t,T )r(t),

Ā(t, T ) = PM(0, T )A(0, t) exp(−B(0, t)x0)
PM(0, t)A(0, T ) exp(−B(0, T )x0)A(t, T )eB(t,T )ϕCIR ,

(3.5.2)

where B(t, T ) and A(t, T ) are as in the standard CIR model. This also im-
plies that the CIR++ is also an ATS model.
In all models presented in this chapter, caps/floors and swaptions have an-
alytical pricing formulas. The interested reader is referred to [5, Chapter 2
and 3].



Chapter 4

G2++ - The two-factor
Gaussian model

This chapter will introduce the G2++ model and carry out an in-depth
analysis of its properties. It can be seen as a summary of [5, Chapter 4], where
it was first proposed in this manner by Damiano Brigo & Fabio Mercurio.
Therefore, the results and most of the proofs in this chapter will closely follow
their approach.
As already mentioned at the beginning of this thesis, the motivation for
choosing to put special emphasis on the G2++ model lies in the fact that
it used in Germany for simulation of market scenarios in order to divide
tariffs of retirement provision into risk-reward categories. The motivation
for using two-factor models instead of one-factor models in general can be
illustrated by the following example. Consider an arbitrary one factor model
presented in the previous chapter. All of them were so-called ATS models,
and therefore the continuously compounded spot rate prevailing at time t
could be expressed as follows:

R(t, T ) = − lnP (t, T )
T − t

= − lnA(t, T )
T − t

+ B(t, T )
T − t

r(t) =: a(t, T ) + b(t, T )r(t).

43
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Consider those rates at time t for two different maturities T1 and T2. Then,

Corr(R(t, T1), R(t, T2))

= Cov(a(t, T1) + b(t, T1)r(t), a(t, T2) + b(t, T2)r(t))√
V ar(a(t, T1) + b(t, T1)r(t))V ar(a(t, T2) + b(t, T2)r(t))

= b(t, T1)b(t, T2)V ar(r(t))√
b(t, T1)2V ar(r(t))b(t, T2)2V ar(r(t))

= 1.

This means, that the interest rates for all maturities are perfectly correlated.
Consequently, if there is a shock to the initial point of the term-structure,
the whole curve will be shifted in the same manner and direction. This is un-
realistic, since interest rates usually feature non-perfect correlation. As long
as a financial product only depends on the interest rate for a single maturity,
this is not a problem. However, as soon as a payoff depends on two or more
rates with different maturities, one-factor models are not able to reproduce
a realistic correlation structure.
In the G2++ model, the rates can be expressed as an affine transforma-
tion of the two processes x and y, whose driving Brownian motions have
instantaneous correlation ρ, i.e., dW1(t)W2(t) = ρdt and whose dynamics
will be introduced shortly. The correlation between two rates with different
maturities can then be shown to equal

Corr(R(t, T1), R(t, T2))

= Corr (bx(t, T1)x(t) + by(t, T1)y(t), bx(t, T2)x(t) + by(t, T2)y(t)) ,

which is in general not equal to 1 and depends on the correlation of x and
y and therefore in part also on ρ. This adds a level of flexibility to the
correlation structure of the model. As will be shown later, ρ < 0 allows
for a humped shape in the volatility structure of the instantaneous forward
rates, which according to Brigo & Mercurio is a desired feature in an interest
rate model. This will be discussed in more detail in the last section of this
chapter.
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4.1 General setting and properties

Let (r(t))t≥0 be the instantaneous short rate process. Let (x(t))t≥0 and
(y(t))t≥0 also be stochastic processes and ϕ a real-valued deterministic func-
tion in time. The dynamics of r(t) in the G2++ model under the risk-neutral
measure Q are given by

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0

dx(t) = −ax(t)dt+ σdW1(t), x(0) = 0

dy(t) = −by(t)dt+ ηdW2(t), y(0) = 0,

(4.1.1)

where r0, a, b, σ, η ∈ R+ and (W1,W2) is a two-dimensional Brownian motion
with instantaneous correlation ρ, i.e., dW1dW2 = ρdt, with ρ ∈ [−1, 1]. As
an immediate consequence of this definition ϕ(0) = r0 holds.

Proposition 4.1.1. For all s < t, the following holds

r(t) =x(s)e−a(t−s) + y(s)e−b(t−s)

+ σ
∫ t

s
e−a(t−u)dW1(u) + η

∫ t

s
e−b(t−u)dW2(u) + ϕ(t). (4.1.2)

In particular, for s = 0,

r(t) = σ
∫ t

0
e−a(t−u)dW1(u) + η

∫ t

0
e−b(t−u)dW2(u) + ϕ(t).

Proof. Consider the process
{
ea(t−s)x(t), t > s

}
. Using the known rules of

stochastic integration,

d(ea(t−s)x(t)) = ea(t−s)dx(t) + aea(t−s)x(t)dt

= −ea(t−s)ax(t)dt+ ea(t−s)σdW1(t) + aea(t−s)x(t)dt

= ea(t−s)σdW1(t).
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Writing the above expression in integral form yields

ea(t−s)x(t) = x(s) + σ
∫ t

s
ea(u−s)dW1(u)

⇔ x(t) = x(s)e−a(t−s) + σ
∫ t

s
ea(u−s)e−a(t−s)dW1(u)

= x(s)e−a(t−s) + σ
∫ t

s
e−a(t−u)dW1(u).

Performing the analogous steps on
{
eb(t−s)y(t), t > s

}
yields

y(t) = y(s)e−b(t−s) + η
∫ t

s
e−b(t−u)dW2(u).

Combining both completes the proof.

Let Ft be the sigma-field generated by the process (x, y) up to time t, then
the following corollary can be stated.

Corollary 4.1.2. The process r(t) conditional on Fs is normally distributed,
with mean and variance as follows:

E[rt|Fs] = x(s)e−a(t−s) + y(s)e−b(t−s) + ϕ(t) (4.1.3)

V ar[rt|Fs] = σ2

2a [1− e−2a(t−s)] + η2

2b [1− e−2b(t−s)] + 2ρ ση

a+ b
[1− e−(a+b)(t−s)].

(4.1.4)

Proof. Because of Lemma 3.2.1, only the non-random terms in (4.1.2) do
not vanish, which yields (4.1.3). Using the Itô isometry and the well-known
identity V ar(X) = E(X2)−E(X)2, which in our case reduces to V ar(X) =
E(X2), gives

V ar[σ
∫ t

s
e−a(t−u)dW1(u)|Fs] = E[σ2

∫ t

s
e−2a(t−u)du|Fs]

= σ2
∫ t

s
e−2a(t−u)du = σ2 1

2ae
−2a(t−u)

∣∣∣t
s

= σ2 1
2a [1− e−2a(t−s)].



4.1. GENERAL SETTING AND PROPERTIES 47

Analogously,

V ar[η
∫ t

s
e−b(t−u)dW2(u)|Fs] = η2 1

2b [1− e−2b(t−s)].

Furthermore,

Cov[σ
∫ t

s
e−a(t−u)dW1(u),η

∫ t

s
e−b(t−u)dW2(u)|Fs] =

= E[σ
∫ t

s
e−a(t−u)dW1(u) · η

∫ t

s
e−b(t−u)dW2(u)|Fs]

= E[ση
∫ t

s
e−a(t−u)e−b(t−u)dW1dW2|Fs]

= E[ση
∫ t

s
e−a(t−u)e−b(t−u)ρdt|Fs]

= ρση
∫ t

s
e−(a+b)(t−u)dt

= ρσηe−(a+b)(t−u)
∣∣∣t
s

= ρ
ση

a+ b
[1− e−(a+b)(t−s)].

Using the well-known formula V ar(X+Y ) = V ar(X)+V ar(Y )+2Cov(X, Y )
and the fact that non-random expressions have variance zero yields (4.1.4).

For simulation purposes, it is convenient to rewrite x and y in terms of
independent Brownian motions W̄1 and W̄2 as follows:

dx(t) = −ax(t)dt+ σdW̄1(t),

dy(t) = −by(t)dt+ ηρdW̄1(t) + η
√

1− ρ2dW̄2(t),

where W1 = W̄1 and W2 = ρW̄1 +
√

1− ρ2W̄2(t), which after integration
looks like

r(t) =x(s)e−a(t−s) + y(s)e−b(t−s) + σ
∫ t

s
e−a(t−u)dW̄1(u)

+ ηρ
∫ t

s
e−b(t−u)dW̄1(u) + η

√
1− ρ2

∫ t

s
e−b(t−u)dW̄2(u) + ϕ(t).
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4.2 Pricing a T-Bond

Now, one can price a zero-coupon bond P (t, T ), yielding unit value at ma-
turity, by using the formula

P (t, T ) = E[e−
∫ T
t
r(s)ds|Ft].

Before one can derive an explicit formula in the G2++ model, a lemma is
needed. The lemma and the subsequent theorem closely follow [5, Chapter
4.2.2].

Lemma 4.2.1. The random variable

I(t, T ) =
∫ T

t
[x(u) + y(u)]du

conditional on Ft is normally distributed, with

E[I(t, T )|Ft] =1− e−a(T−t)

a
x(t) + 1− e−b(T−t)

b
y(t) =: M(t, T ) (4.2.1)

V ar[I(t, T )|Ft] =σ
2

a2

[
T − t+ 2

a
e−a(T−t) − 1

2ae
−2a(T−t) − 3

2a

]
+ η2

b2

[
T − t+ 2

b
e−b(T−t) − 1

2be
−2b(T−t) − 3

2b

]
(4.2.2)

+ 2ρση
ab

[
T − t+ e−a(T−t) − 1

a
+ e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

]
=:V (t, T )

being the corresponding mean and variance.

Proof. Using the stochastic version of integration by parts, d(XtYt) = XtdYt+
YtdXt + d[X, Y ]t for semimartingales X, Y , leads to

∫ T

t
x(u)du = Tx(T )− tx(t)−

∫ T

t
udx(u) =

∫ T

t
(T − u)dx(u)︸ ︷︷ ︸

=:(I)

+(T − t)x(t),

since the quadratic variation part vanishes because Xu = u is deterministic.
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Inserting the definition of dx(u) and x(u) subsequently, one arrives at

(I) = −a
∫ T

t
(T − u)x(u)du︸ ︷︷ ︸

(II)

+σ
∫ T

t
(T − u)dW1(u)

and

(II) = −ax(t)
∫ T

t
(T − u)e−a(u−t)du︸ ︷︷ ︸

(III)

+ (−a)σ
∫ T

t
(T − u)

∫ u

t
e−a(u−s)dW1(s)du︸ ︷︷ ︸

(IV )

.

Further, by usual integration by parts,

(III) = x(t)(T − u)e−a(u−t)
∣∣∣T
t

+ x(t)
∫ T

t
e−a(u−t)du

= −x(t)(T − t) + x(t)e
−a(u−t)

−a
∣∣∣T
t

= −x(t)(T − t)− x(t)e
−a(T−t) − 1

a
.

Then, by another application of stochastic integration by parts,

(IV ) =− aσ
∫ T

t
(T − u)e−au

∫ u

t
easdW1(s)du

=− aσ
[(∫ u

t
(T − v)e−avdv

∫ u

t
easdW1(s)

) ∣∣∣T
t

−
(∫ T

t

∫ u

t
(T − v)e−avdv

)
d
(∫ u

t
easdW1(s)

)]

=− aσ
[(∫ T

t
(T − v)e−avdv

)(∫ T

t
eaudW1(u)

)

−
∫ T

t

(∫ u

t
(T − v)e−avdv

)
eaudW1(u)

]
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=− aσ
[(∫ T

t

(∫ T

t
(T − v)e−avdv

)
eaudW1(u)

)

−
∫ T

t

(∫ u

t
(T − v)e−avdv

)
eaudW1(u)

]

=− aσ
[∫ T

t

(∫ T

u
(T − v)e−avdv

)
eaudW1(u)

]

=− aσ
[∫ T

t

(
(T − u)e−au

a
+ e−aT − e−au

a2

)
eaudW1(u)

]

=− σ
[∫ T

t

(
(T − u) + e−a(T−u) − 1

a

)
dW1(u)

]
.

Altogether this yields, thanks to some cancellations,
∫ T

t
x(u)du = (III) + (IV ) + σ

∫ T

t
(T − u)dW1(u) + (T − t)x(t)

= x(t)1− e−a(T−t)

a
+ σ

a

∫ T

t

(
1− e−a(T−u)

)
dW1(u) (4.2.3)

The exact same calculation can be done for y(u), leading to

∫ T

t
y(u)du = y(t)1− e−b(T−t)

b
+ η

b

∫ T

t

(
1− e−b(T−u)

)
dW2(u) (4.2.4)

Lemma 3.2.1 once again implies both that (4.2.3) and (4.2.4) are normally
distributed expressions and therefore (4.2.1) holds.
As far as the conditional variance is concerned, (4.2.3) and (4.2.4) combined
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with the Itô isometry is the way to go, yielding

V ar[I(t, T )|Ft] =V ar
[∫ T

t
x(u)du+

∫ T

t
y(u)du

∣∣∣∣∣Ft
]

=V ar
[
x(t)1− e−a(T−t)

a
+ σ

a

∫ T

t

(
1− e−a(T−u)

)
dW1(u)

+y(t)1− e−b(T−t)
b

+ η

b

∫ T

t

(
1− e−b(T−u)

)
dW2(u)|Ft

]

=V ar
[
σ

a

∫ T

t

(
1− e−a(T−u)

)
dW1(u)

+ η

b

∫ T

t

(
1− e−b(T−u)

)
dW2(u)|Ft

]

=σ
2

a2

∫ T

t

(
1− e−a(T−u)

)2
du+ η2

b2

∫ T

t

(
1− e−b(T−u)

)2
du

+ 2ρση
ab

∫ T

t

(
1− e−a(T−u)

) (
1− e−b(T−u)

)
du. (4.2.5)

Straightforward integration of (4.2.5) leads to the lengthy expression (4.2.2)
and thus concludes the proof.

With the aid of the preceding lemma, one can explicitly calculate the zero-
coupon bond price within the G2++ model:

Theorem 4.2.2. The price of the zero-coupon bond with unit face value
P(t,T) is given by

P (t, T ) = exp
(
−
∫ T

t
ϕ(u)du−M(t, T ) + 1

2V (t, T )
)
. (4.2.6)

Proof. Using the fact that ϕ is deterministic, the distributional properties
of I(t, T ) stated in Lemma 4.2.1 and the well-known form of the moment-
generating function of a normally distributed random variable, namelyMX(t) =
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exp(E[X]t+ t2

2 V ar[X]), one gets

P (t, T ) = E
[
exp

(
−
∫ T

t
r(u)du

) ∣∣∣∣∣Ft
]

= E
[
exp

(
−
∫ T

t
x(u) + y(u) + ϕ(u)du

) ∣∣∣∣∣Ft
]

= E
[
exp

(
−
∫ T

t
x(u) + y(u)du

)
exp

(∫ T

t
ϕ(u)du

) ∣∣∣∣∣Ft
]

= e
∫ T
t
ϕ(u)duE

[
exp

(
−
∫ T

t
x(u) + y(u)du

)
|Ft
]

= e
∫ T
t
ϕ(u)duMI(t,T )(−1) = e

∫ T
t
ϕ(u)du exp

(
−M(t, T ) + 1

2V (t, T )
)

= exp
(
−
∫ T

t
ϕ(u)du−M(t, T ) + 1

2V (t, T )
)
.

Assume now that T 7→ PM(0, T ), i.e., the the term-structure of bond prices
currently observed in the market, is a sufficiently smooth function in T ,
in a sense that the corresponding instantaneous forward rate fM(0, T ) =
− ∂
∂T

ln(PM(0, T )) is well-defined. Then, one can state the following corollary
to Theorem 4.2.2.

Corollary 4.2.3. The following statements are equivalent:

(i) The currently observed term-structure of discount factors is fitted by
the G2++ model, i.e., PM(0, T ) = P (0, T ) ∀T ,

(ii)

ϕ(T ) =fM(0, T ) + σ2

2a2

(
1− e−aT

)2
+ η2

2b2

(
1− e−bT

)2

+ ρ
ση

ab

(
1− e−aT

) (
1− e−bT

)
∀T,

(iii)

exp
(
−
∫ T

t
ϕ(u)du

)
= PM(0, T )

PM(0, t) exp
(
−1

2[V (0, T )− V (0, t)]
)

∀T.

Proof. (i)⇔(ii): Since x(0) = y(0) = 0 by assumption, also M(0, T ) = 0
holds. Plugging in the bond price formula from Theorem 4.2.2 in (i) yields



4.2. PRICING A T-BOND 53

for all T :

PM(0, T ) = exp
(
−
∫ T

0
ϕ(u)du+ 1

2V (0, T )
)

(*)

⇔ ∂

∂T
ln(PM(0, T )) = ∂

∂T

(
−
∫ T

0
ϕ(u)du+ 1

2V (0, T )
)

⇔ ϕ(T ) (∗∗)= fM(0, T )

+ 1
2
∂

∂T

[
2ρση
ab

∫ T

0

(
1− e−a(T−u)

) (
1− e−b(T−u)

)
du

+ σ2

a2

∫ T

0

(
1− e−a(T−u)

)2
du+ η2

b2

∫ T

0

(
1− e−b(T−u)

)2
du

]
,

where at (**) identity (4.2.5) was used. Applying the Leibniz integral rule
now leads to (ii).
(i)⇔(iii):

exp
(
−
∫ T

t
ϕ(u)du

)
= exp

(
−
∫ T

0
ϕ(u)du

)
exp

(∫ t

0
ϕ(u)du

)
(∗)= PM(0, T ) exp

(
−1

2V (0, T )
)(

PM(0, t) exp
(
−1

2V (0, t)
))−1

= PM(0, T )
PM(0, t) exp

(
−1

2V (0, T ) + 1
2V (0, t)

)
,

which is equivalent to (iii). (ii)⇔(iii) follows immediately from (i)⇔(ii) and
(i)⇔(iii).

And immediate consequence of Corollary 4.2.3 is that

P (t, T ) = exp
(
−
∫ T

t
ϕ(u)du

)
exp

(
−M(t, T ) + 1

2V (t, T )
)

= PM(0, T )
PM(0, t) exp

(
−1

2[V (0, T )− V (0, t)]
)

exp
(
−M(t, T ) + 1

2V (t, T )
)

= PM(0, T )
PM(0, t) exp

(1
2[V (t, T )− V (0, T ) + V (0, t)]−M(t, T )

)
.

(4.2.7)

This expression is interesting because it shows that in order to calculate the
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bond prices, one only needs to know the market bond prices PM(0, T ) at the
desired maturities. On the one hand, this keeps interpolation limited, and on
the other hand, it does not involve deriving the function ϕ. This is important,
because that would, according to Corollary 4.2.3, involve deriving the current
instantaneous forward observed on the market. That in turn would require
the derivative of the function PM(0, T ), which for non-observable maturities
needs to be interpolated, and thus may lead to approximations to a certain
extent. However, if a financial product depends on the entire or parts of the
path of the interest rate r(t), calculating ϕ is still inevitable.
Assuming the G2++ model is fitted to the current market bond price curve,
one can explicitly state the expected instantaneous short rate at time t.
Applying (4.1.3) and (4.1.4) for s = 0 and (*) yields

µr(t) :=E[r(t)] = fM(0, t) + σ2

2 a
2
(
1− e−at

)2
+ η2

2b2

(
1− e−bt

)2

+ ρ
ση

ab

(
1− e−at

) (
1− e−bt

)
σ2
r(t) :=V ar[r(t)] = σ2

2a [1− e−2at] + η2

2b [1− e−2bt] + 2ρ ση

a+ b
[1− e−(a+b)t].

4.3 Pricing derivatives within the G2++ Model

Recall that the interest rate dynamics within the G2++ model are as follows:

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0

dx(t) = −ax(t)dt+ σdW1(t), x(0) = 0

dy(t) = −by(t)dt+ ηdW2(t), y(0) = 0,

where r0, a, b, σ, η ∈ R+ and (W1,W2) is a two-dimensional Brownian Motion
with instantaneous correlation ρ, i.e., dW1dW2 = ρdt, with ρ ∈ [−1, 1]. The
deterministic function ϕ is used to fit the model to the initial term-structure
of discount factors T 7→ PM(0, T ).
In this section the price for a European option with maturity T and strike
priceK with an underlying S-bond and subsequently the prices of caplets/caps
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will be derived. The price of the former at time t and S > T in case of a call
is given by (cf. Chapter 2.3)

ZBC(t, T, S,K) = E
[
e−
∫ T
t
r(s)ds(P (T, S)−K)+

∣∣∣∣Ft] .
To obtain an explicit expression for this expectation, a change of measure is
needed. For fixed T , the T -forward measure QT is introduced by setting the
Radon-Nikodym derivative to (cf. (2.3.7))

dQT

dQ
:= B(0)P (T, T )

B(T )P (0, T )

=
exp

(
−
∫ T

0 ϕ(u)du−
∫ T

0 x(u) + y(u)du
)

P (0, T )

= exp
(
−1

2V (0, T )−
∫ T

0
x(u) + y(u)du

)
.

One can show (for details see [5, Lemma 4.2.2]) that the processes x(t) and
y(t) under QT are given by

x(t) = x(s)e−a(t−s) −MT
x (s, t) + σ

∫ t

s
e−a(t−u)dW T

1 (u)

y(t) = y(s)e−b(t−s) −MT
y (s, t) + η

∫ t

s
e−b(t−u)dW T

2 (u),

for s ≤ t ≤ T , where W T
1 and W T

2 are Brownian motions under QT with
d[W T

1 ,W
T
2 ]t = ρdt and MT

x (s, t) and MT
y (s, t)1 are deterministic expressions

depending on the model parameters. This means, that x(t) and y(t) con-
ditional on Fs are normally distributed and consequently, r(t) follows also
a normal distribution. Knowing this, the following theorem can be stated
(both theorem and proof closely follow [5, Chapter 4.2.4])

1

MT
x (s, t) =

(
σ2

a2 + ρ
ση

ab

)(
1− e−a(t−s)

)
−

σ2

2a2

(
e−a(T−t) − e−a(T+t−2s)

)
−

ρση

b(a+ b)
(
e−b(T−t) − e−bT−at+(a+b)s

)
MT
y (s, t) =

(
η2

b2
+ ρ

ση

ab

)(
1− e−b(t−s)

)
−

η2

2b2
(
e−b(T−t) − e−b(T+t−2s)

)
−

ρση

b(a+ b)
(
e−a(T−t) − e−aT−bt+(a+b)s

)
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Theorem 4.3.1. A European call option with maturity T , strike K and an
underlying S-bond with unit face value satisfies the following pricing formula
within the G2++ model:

ZBC(t, T, S,K) =P (t, S)Φ
 ln

(
P (t,S)
KP (t,T )

)
Σ(t, T, S) + 1

2Σ(t, T, S)


− P (t, T )KΦ
 ln

(
P (t,S)
KP (t,T )

)
Σ(t, T, S) −

1
2Σ(t, T, S)

 ,
where

Σ(t, T, S)2 = σ2

2a3

(
1− e−a(S−T )

)2 (
1− e−2a(T−t)

)
+ η2

2b3

(
1− e−b(S−T )

)2 (
1− e−2b(T−t)

)
+ 2ρ ση

ab(a+ b)
(
1− e−a(S−T )

) (
1− e−b(S−T )

) (
1− e−(a+b)(T−t)

)
.

Proof. It was shown earlier in (2.3.10) that under QT the considered call
option can be priced by

ZBC(t, T, S,K) = P (t, T )ET
[
(P (T, S)−K)+

∣∣∣Ft] . (4.3.1)

Applying the logarithm to (4.2.7) yields

lnP (T, S) = ln
(
PM(0, S)
PM(0, T )

)
+ 1

2[V (T, S)− V (0, S) + V (0, T )]

− 1− e−a(S−T )

a
x(T )− 1− e−b(S−T )

b
y(T ).

Due to the above mentioned fact that x(t) and y(t) are normally distributed
under QT , the same holds for lnP (T, S) conditional on Ft, namely with mean

Mp = ln
(
PM(0, S)
PM(0, T )

)
+ 1

2[V (T, S)− V (0, S) + V (0, T )]

− 1− e−a(S−T )

a
ET [x(T )|Ft]−

1− e−b(S−T )

b
ET [y(T )|Ft]

and variance Σ(t, T, S)2. The expression for Σ(t, T, S)2 can be derived by a
calculation almost analogous to the one in the proof of Corollary 4.1.2. The
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expectation in (4.3.1) thus equals

∫ ∞
−∞

1√
2πΣ(t, T, S)

(ez −K)+e
− 1

2
(z−Mp)2

Σ(t,T,S)2 dz

=
∫ ∞

ln(K)

1√
2πΣ(t, T, S)

(ez −K)e−
1
2

(z−Mp)2

Σ(t,T,S)2 dz

=
∫ ∞

ln(K)−Mp
Σ(t,T,S)

1√
2π
eMp+vΣ(t,T,S)e−

1
2v

2
dv −K

∫ ∞
ln(K)−Mp
Σ(t,T,S)

1√
2π
e−

1
2v

2
dv

= eMp+ 1
2 Σ(t,T,S)2

∫ ∞
ln(K)−Mp
Σ(t,T,S)

1√
2π
e−

1
2 (v−Σ(t,T,S))2

dv −K
∫ ∞

ln(K)−Mp
Σ(t,T,S)

1√
2π
e−

1
2v

2
dv

= eMp+ 1
2 Σ(t,T,S)2

[
Φ (∞)− Φ

(
ln(K)−Mp − Σ(t, T, S)2

Σ(t, T, S)

)]

−K
[
Φ (∞)− Φ

(
ln(K)−Mp

Σ(t, T, S)

)]

= eMp+ 1
2 Σ(t,T,S)2Φ

(
− ln(K) +Mp + Σ(t, T, S)2

Σ(t, T, S)

)
−KΦ

(
− ln(K) +Mp

Σ(t, T, S)

)
.

Using the fact that P (t,S)
P (t,T ) is a martingale under QT and the moment-generating

function of the normal distribution lead to

P (t, S)
P (t, T ) = EQT [P (T, S) | Ft] = EQT

[
elnP (T,S)

∣∣∣Ft] = eMp+ 1
2 Σ(t,T,S)2

,

which is equivalent to

Mp = ln P (t, S)
P (t, T ) −

1
2Σ(t, T, S)2.
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Putting everything together concludes the proof:

ZBC(t, T, S,K) = P (t, T )ET
[
(P (T, S)−K)+

∣∣∣Ft]

=P (t, T )

P (t, S)
P (t, T )Φ

− ln(K) + ln P (t,S)
P (t,T ) −

1
2Σ(t, T, S)2 + Σ(t, T, S)2

Σ(t, T, S)



−KΦ

− ln(K) + ln P (t,S)
P (t,T ) −

1
2Σ(t, T, S)2

Σ(t, T, S)




=P (t, S)Φ
 ln

(
P (t,S)
KP (t,T )

)
Σ(t, T, S) + 1

2Σ(t, T, S)


− P (t, T )KΦ
 ln

(
P (t,S)
KP (t,T )

)
Σ(t, T, S) −

1
2Σ(t, T, S)

 .

Remark:2 Because of the put-call parity ZBC(t, T, S,K) + KP (t, T ) =
2 For an arbitrary face value N of the underlying S-bond the formulas generalize to

ZBC(t, T, S,N,K) =NP (t, S)Φ

 ln
(
NP (t,S)
KP (t,T )

)
Σ(t, T, S) + 1

2Σ(t, T, S)


− P (t, T )KΦ

 ln
(
NP (t,S)
KP (t,T )

)
Σ(t, T, S) − 1

2Σ(t, T, S)

 ,

ZBP(t, T, S,N,K) =−NP (t, S)Φ

 ln
(
KP (t,T )
NP (t,S)

)
Σ(t, T, S) − 1

2Σ(t, T, S)


+ P (t, T )KΦ

 ln
(
KP (t,T )
NP (t,S)

)
Σ(t, T, S) + 1

2Σ(t, T, S)


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ZBP(t, T, S,K) + P (t, S), the put price is given by

ZBP(t, T, S,K) =− P (t, S)Φ
 ln

(
KP (t,T )
P (t,S)

)
Σ(t, T, S) −

1
2Σ(t, T, S)


+ P (t, T )KΦ

 ln
(
KP (t,T )
P (t,S)

)
Σ(t, T, S) + 1

2Σ(t, T, S)
 .

As derived in Chapter (2.3), the price of a caplet with reset date T1, settle-
ment date T2, strike K, nominal N and underlying simply compounded rate
L(t, T ) = 1

T−t

(
1

P (t,T ) − 1
)

equals

Cpl(t, T1, T2, N,X) = ZBP(t, T1, T2, N
′, N),

N ′ = N(1 +X(T2 − T1)),

which within the G2++ model translates to

Cpl(t, T1, T2, N,X) =−N ′P (t, T2)Φ
 ln

(
NP (t,T )
N ′P (t,T2)

)
Σ(t, T1, T2) −

1
2Σ(t, T1, T2)


+ P (t, T1)NΦ

 ln
(
NP (t,T1)
N ′P (t,T2)

)
Σ(t, T1, T2) + 1

2Σ(t, T1, T2)
 .

As the cap price is the sum of the underlying caplet prices, the cap prices
are given by

Cap(t, T , τ, N,X) =
n∑
i=1

−N(1 +Xτi)P (t, Ti)Φ
 ln

(
P (t,Ti−1)

(1+Xτi)P (t,Ti)

)
Σ(t, Ti−1, Ti)

− 1
2Σ(t, Ti−1, TI)


+P (t, Ti−1)NΦ

 ln
(

P (t,Ti−1)
(1+Xτi)P (t,Ti)

)
Σ(t, Ti−1, Ti)

+ 1
2Σ(t, Ti−1, TI)

 , (4.3.2)

where T = {T0, T1, · · · , Tn} denotes the set of all relevant dates and τ =
{τ1, · · · , τn} with τi = Ti − Ti−1 are the involved time intervals.
The corresponding floor/floorlet prices can be derived by formulas (2.3.14)
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and (2.3.12). Swaption prices within the G2++ model are a little more work
and are given by a numerically computable integral. For the exact expressions
and their derivations, the interested reader is again referred to [5, Chapter
4.2].

4.4 Connection to the Hull-White two-factor
model

In the chapter about one-factor models, the Hull-White extension of the
Vasicek model was investigated. There also exists a corresponding two-factor
model, which under the risk-neutral measure follows the dynamics

dr(t) = [θ(t) + u(t)− ār(t)]dt+ σ1dW1(t), r(0) = r0

du(t) = −b̄u(t)dt+ σ2dW2(t), u(0) = 0,

where the Brownian motions are correlated by dW1dW2 = ρ̄dt and r0, ā, b̄, σ1, σ2 >

0 and −1 ≤ ρ̄ ≤ 1 are constants. This means, that the mean-reversion level
is a stochastic process. The function θ is deterministic and used to fit the
model to the current term structure. On first sight, the connection to the
G2++ model is not clear. However, it can be shown that the two models
are analogies of each other. We assume a > b, the case b < a can be treated
in the same way. Starting from the G2++ model, (4.1.1), one arrives at the
two-factor Hull-White by setting the parameters as follows:

ā = a, b̄ = b,

σ1 =
√
σ2 + η2 + 2ρση, σ2 = η(a− b),

ρ̄ = σρ+ η√
σ2 + η2 + 2ρση

, θ(t) = dϕ(t)
dt

+ aϕ(t).
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On the other hand, starting from the two factor Hull-White model, one can
obtain the G2++ model by the following choice of parameters:

a = ā, b = b̄,

σ = σ3 :=

√√√√σ2
1 + σ2

2

(ā− b̄)2
+ 2ρ̄ σ1σ2

b̄− ā
, η = σ4 := σ2

ā− b̄
,

ρ = σ1ρ̄− σ4

σ3
, ϕ(t) = r0e

−āt +
∫ t

0
θ(v)e−ā(t−v)dv.

For details on how to derive this, see [5, Chapter 4.2.5].

4.5 Volatility structures and calibration

In this section, the volatility structure corresponding to short rate models will
be investigated. Volatility structures are of great importance for calibration
of short rate models, in particular the G2++ model, which will be dealt with
later on in this chapter. The particular volatilities considered in this chapter
will be caplet and cap volatilities, although one could also consider swaption
volatilities. It should be mentioned, that a lot of definitions and procedures
in this section are dependent on the possibility of using Black’s cap formula.
However, in the current market environment, where negative interest rates
are very common, Black’s formula in its original form cannot be applied and
one therefore needs to use different approaches.
Market cap volatilities are implicitly defined as the parameter σα,β, which,
plugged into Black’s cap formula (2.2.1), yields the current market price. Tα
is the first reset date, Tβ the last settlement date. To recall, Black’s cap
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formula is given by

CapBlack(0, T , τ, N,K, σα,β)

= N
β∑

i=α+1
P (0, Ti)τiBl(K,F (0, Ti−1, Ti), vi, 1),

Bl(K,F, v, ω) = FωΦ(ωd1(K,F, v))−KωΦ(ωd2(K,F, v)),

d1(K,F, v) =
ln
(
F
K

)
+ v2

2

v
,

d2(K,F, v) =
ln
(
F
K

)
− v2

2

v
,

vi = σα,β
√
Ti−1,

where Φ denotes that CDF of the standard normal distribution and σα,β

are quoted on the market. It is worth noting, that it is assumed that all
caplets contributing to the cap have the same volatility. When considering
caplet volatilities, different volatilities are allowed, even when being part
of the same cap. As far as caplet volatilities are concerned, the market also
knows a further definition. Look at a caplet with reset date T and settlement
date T + τ , where τ usually equals three or six months, and underlying rate
F (t, T, T + τ) (which is of the form dF (t, T, T + τ) = (· · · )dt + σ(t, T, T +
τ)F (t, T, T + τ)dWt), then the caplet volatility is given by

v2
T−caplet := 1

T

∫ T

0
d[lnF (t, T, T + τ)] = 1

T

∫ T

0
σ(t, T, T + τ)2dt,

where σ(t, T, T + τ) is the percentage instantaneous volatility of the un-
derlying rate F (t, T, T + τ)3. Since the σ(t, T, T + τ) are deterministic in

3

The percentage instantaneous volatility of a process Yt is defined as the quantity σ(t) in

dYt = (· · · )dt+ σ(t)YtdWt.

The absolute instantaneous volatility of a process Yt is defined as the quantity σ(t) in

dYt = (· · · )dt+ σ(t)dWt.
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Black’s model, so are the caplet volatilities. According to Brigo & Mercu-
rio [5], in practice, the term structure of volatilities defined by the function
T −→ vT−caplet often has a humped shape, which a good model should be
able to reproduce. If the above definition is simply translated to arbitrary
short rate models, i.e.,

vT−caplet :=
√

1
T

∫ T

0
σ(t, T, T + τ)2dt, 4

problems can arise. In the G2++ model amongst others, σ(t, T, T + τ) are
not deterministic, as one can see after some tedious calculations by using
Itô’s formula for the expression

d lnF (t, T, T + τ) = d ln
(

P (t, T )
P (t, T + τ) − 1

)
,

and consequently vT−caplet are stochastic as well. Since stochastic volatilities
are of little use for calibration, one needs to find a different approach. To
make the volatilities deterministic, an implied volatility approach is used.
Within the model, consider an at-the money caplet, i.e., the strike rate K
equals the forward rate F , with reset date T and settlement date T +τ . This
is a function depending on the model parameters. The idea of calculating
the price within the model CplMODEL(0, T, T + τ, F (0, T, T + τ)) and then
inverting the Black formula for the same caplet with respect to the volatility,
motivates the following definition:

Definition 4.5.1 (Model-implied T-caplet volatility). The quantity vMODEL
T−caplet ,

which solves the equation

P (0, T + τ)τF (0, T, T + τ)
2Φ

vMODEL
T−caplet

√
T

2

− 1


= CplMODEL(0, T, T + τ, F (0, T, T + τ)),

where the left-hand side corresponds to the Black caplet formula
4 vT−caplet defined like this is called model-intrinsic T-caplet volatility.
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CplBlack(0, T , τ, 1, F (0, T, T +τ), vMODEL
T−caplet ) in (2.2.3), is called model-implied

T-caplet volatility.

Remark: The slightly different structure of the left-hand side of the above
equation and (2.2.3) is because of simplifications arising due to the caplet
being at-the-money.
For a given model, the map T 7→ vMODEL

T−caplet is called term structure of caplet
volatilities. Similarly, though with a little more notation, implied cap volatil-
ities can be defined. Let {Tα, · · · , Tβ−1} be reset dates and {Tα+1, · · · , Tβ}
settlement dates. Define Ti = {Tα, · · · , Ti} and τ̄i = {τα+1, · · · , τi}, where
τj = Tj − Tj−1. Then the implied Ti-cap volatility is the solution vMODEL

Ti−cap of
the equation

i∑
j=α+1

P (0, Tj)τjBl
(
Sα,β(0), F (0, Tj−1, Tj), vMODEL

Ti−cap

√
Tj−1

)
= CapMODEL(0, Ti, τ̄i, Sα,β(0)), (4.5.1)

where the forward swap rate Sα,β(0) enters the equation because the cap is
at-the-money. Analogously to above, the map T 7→ vMODEL

Ti−cap is called term
structure of cap volatilities for a given model.
As far as the humped shape mentioned above is concerned, practice in a
lot of instances shows a connection between the volatility term structure and
the absolute instantaneous volatilities of instantaneous forward rates σf (t, T )
(defined as in footnote 3 with Yt = f(t, T )). More specifically, according to
[5], one can usually observe the following.

• If there are no humps in T 7→ σf (t, T ), there are at most small humps
in T 7→ vMODEL

T−caplet .

• If there are humps in T 7→ σf (t, T ), large humps in T 7→ vMODEL
T−caplet are

possible.

In case of the G2++ model, we can explicitly compute σf (t, T ). To make
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computations more convenient later on, the following notation is introduced:

A(t, T ) : = PM(0, T )
PM(0, t) exp

(1
2[V (t, T )− V (0, T ) + V (0, t)]

)
,

B(z, t, T ) : = 1− e−z(T−t)
z

.

Then, the bond price formula (4.2.7) can be rewritten to

P (t, T ) = A(t, T ) exp (−B(a, t, T )x(t)−B(b, t, T )y(t))

and the instantaneous forward rate is given by

f(t, T ) = −∂ lnP (t, T )
∂T

= − ∂

∂T
ln(A(t, T )) + ∂

∂T
B(a, t, T )x(t) + ∂

∂T
B(b, t, T )y(t).

Using Itô’s formula to derive above expression yields

df(t, T ) = −d
(
∂

∂T
ln(A(t, T ))

)
+ x(t)d

(
∂

∂T
B(a, t, T )

)
+ ∂

∂T
B(a, t, T )dx(t)

+ y(t)d
(
∂

∂T
B(b, t, T )

)
+ ∂

∂T
B(b, t, T )dy(t)

= (· · · ) 5dt+ ∂

∂T
B(a, t, T )σdW1(t) + ∂

∂T
B(b, t, T )ηdW2(t),

which leads to

σf (t, T ) =

=

√√√√( ∂

∂T
B(a, t, T )σ

)2

+
(
∂

∂T
B(b, t, T )η

)2

+ 2ρση ∂

∂T
B(a, t, T ) ∂

∂T
B(b, t, T )

=
√
σ2e−2a(T−t) + η2e−2a(T−t) + 2ρσηe−(a+b)(T−t).

5It is easily seen that (· · · ) corresponds to the expression

− ∂2

∂t∂T
ln(A(t, T )) + x(t) ∂2

∂t∂T
B(a, t, T ) + y(t) ∂2

∂t∂T
B(b, t, T )

− ax(t) ∂
∂T

B(a, t, T )− by(t) ∂
∂T

B(b, t, T )
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Looking closely at this expression, one can notice two things: On the one
hand, for ρ < 0, a suitable choice of model parameters allows for a humped
shape of T 7→ σf (t, T ). On the other hand, for ρ > 0 the function T 7→
σf (t, T ) does not display humps for any choice of parameters, since each term
of the sum is decreasing for T > t and therefore T 7→ σf (t, T ) is decreasing
for T > t as well.
A very important question remains: How is the G2++ model calibrated
to real market data? Since the model is already assumed to be fitted to
the market bond curve by choosing ϕ in a particular way, further input
parameters are needed. Using Black cap volatilities and their model implied
counterparts introduced in this chapter is one possible option. Assume that
the cap volatilities vMTi for maturities Ti, i = 1, · · · , n are quoted by the
market. In this case, the maturities are the last settlement dates and the
caplets constituting each cap have usually 6-month period, except for the
one-year cap, which typically has a period of three months. The two main
ways to calibrate an interest rate model to cap volatilities are the following:

(i) Minimize the sum of squares of the model and market cap price percent-

age differences, i.e., min
β

∑n
i=1

(
CapG2++

Ti
−CapMTi

CapMTi

)2
, where the market cap

prices are calculated using Black’s cap formula (2.2.1) and the ones of
the G2++ model by (4.3.2). β = (a, b, σ, η, ρ) is the parameter vector.

(ii) Minimize the sum of squares of the model and market cap volatil-

ity percentage differences, i.e., min
β

∑n
i=1

(
vG2++
Ti

−vMTi
vMTi

)2
. In order to do

that, the model-implied cap volatilities defined earlier in this section
by (4.5.1) need to be calculated for every choice of parameters.

As already mentioned at the beginning of the chapter, in the current negative-
interest rate environment, caps can often not be quoted by Black volatilities,
since Black’s cap formula is not applicable. However, if actual market prices
can be directly observed, one can still use procedure (i) described above to
calibrate the G2++ model, since there is no need to calculate the prices from
Black volatilities in that case. Alternatively, one can calibrate the model with
the help of swaption volatilities.
Cap volatilities in the above way are currently not quoted on the market
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due to negative yields for short maturities as seen in Figure 2.1 and it was
unfortunately not possible to retrieve current prices for caps. Therefore the
data of [5, Chapter 4.2.7] is going to be used. The data is very outdated and
market conditions today are entirely different to the ones then. However, for
the purpose of illustrating the calibration procedure, the data is still suitable.
The cap volatilities and maturities are shown in Table 4.1.

Maturity (years) Black volatilities Model implied volatilities
1 0.152 0.15199
2 0.162 0.16216
3 0.164 0.16332
4 0.163 0.16295
5 0.1605 0.16127
7 0.1555 0.15551
10 0.1475 0.14741
15 0.135 0.13483
20 0.126 0.12594

Table 4.1: At-the-money Euro cap volatilities on February 13th, 2001 and
the corresponding G2++ model implied volatilities

Squared cap price percentage differences were minimized, as in procedure (i)
above. Concerning the actual implementation of the calibration, the Matlab
function lsqnonlin was used for the minimization and the function fzero to
calculate the implied volatilities. The parameters resulting from the calibra-
tion are as follows:

a = 0.655945396082945, b = 0.111131575629247,

σ = 0.007520300732930, η = 0.013125262945609

ρ = −0.965745104235053.

The calibrated parameters differ slightly from the ones obtained by Brigo &
Mercurio in [5, Chapter 4.2.7], which can be seen below:

a = 0.5430, b = 0.0757, σ = 0.0058, η = 0.0117, ρ = −0.9914.

Two reasons could be responsible for this: Firstly, the yield curve was not ex-
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Figure 4.1: Market vs model-implied ATM cap prices (notional=100)

plicitly given, but could only be estimated by the graph they provided in [5,
Chapter 1.3]. Secondly, they used a different and more sophisticated method
to perform the minimization. But even with Matlab’s in-built lsqnonlin
function, which only performs local-minimization, the market prices and
volatilities can be replicated very accurately, as can be seen in Figure 4.1
and Table 4.1.
Figure 4.2 shows sample paths of the calibrated G2++ process with the
parameters above as well as the deterministic shift ϕ.

Remark: At the end of this chapter, a very important remark has to be
made. The G2++ model was developed by Brigo & Mercurio before the
global financial crisis. In those times, a single interest rate curve was used
for discounting and for calculating forward rates when looking at interest rate
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derivatives, since the so-called basis spread, i.e., spreads between IBOR rates
of different tenors as well as OIS-rates, was negligible. However, the interest
rate landscape changed in the course of the crisis, which led to significant
spreads between EURIBOR rates with different tenors as well as EURIBOR-
OIS spreads. Therefore, the market practice shifted towards a multi-curve
framework. This means that additionally to a risk-free curve based on OIS-
rates used for the discounting of future cash flows, (risky) yield curves based
on the EURIBOR are stripped from the market for each tenor to derive the
forward EURIBOR rates needed to valuate interest rate derivatives.
All that said, since a big part of this thesis focuses on the original G2++
model, and to the author’s knowledge no extension of the G2++ model to
the multi-curve framework with the same analytical tractability has yet been
developed, the single-curve framework has still been adopted throughout
this thesis. All the results, from pricing formulas of interest derivatives to
calibration methods, are based on this assumption. Furthermore, if interest
rate models are only used for market consistent valuation and not for trading,
the single-curve framework might still be sufficient. Nevertheless, it should
be brought to the reader’s attention that in today’s market environment, this
presents a significant limitation to the model.
For the interest reader, a very good and easily-comprehensible overview of
the differences of the single and multi-curve approach can be found in [3].
More on bootstrapping techniques within the multi- curve framework can be
found in [1]. Further literature related to that topic include [2] and [14].



Chapter 5

Default risk

Up till now, it was assumed that the bond issuer is non-defaultable. This
means that the principal is always paid at maturity, mathematically speaking
P (T, T ) = 1. A natural question which arises is: What if there is the risk
of default of the bond issuer during the lifetime of a bond? This risk might
be negligible for treasury bonds of economically sound countries. However,
for corporate bonds this risk exists and needs to be addressed. In that case,
the holder of the bond deserves compensation for this risk in form of a lower
price, which is equivalent to a higher yield. This chapter will deal with this
topic.
There are different approaches to this topic. One could assess credit risk by
looking at the rating of a corporation, issued by rating agencies like Moody’s,
Fitch or Standard & Poors. The default probability for a special rating class
could then be determined by dividing the number of corporations in that
rating class which defaulted within a certain timespan by the cardinality of
that rating class. One could also use the so-called structural approach, which
goes back to Merton [23, 1974]. There, default is defined by the inability of
a company to reimburse the bond holders, i.e., the liabilities exceeding the
market value of its assets, at maturity T . Those two approaches are not
going to be investigated in detail in this chapter, for further reading see for
example [7, Chapter 3].
The emphasis in this chapter is going to be put on the so-called ”intensity-

71



72 CHAPTER 5. DEFAULT RISK

based” approach, where the evolution of the default probabilities matters
rather then the exact event of default. The main source of this chapter is
[12, Chapter 12.3], and therefore the proofs to all the following results up
to Proposition 5.1.7 closely follow the approach presented there. An almost
identical approach with slight differences in some of the proofs is used in [22,
Chapter 5]. Further sources include [15, Chapters 5,6] and [9].

5.1 Intensity-based approach

5.1.1 Theoretical basis

Let (Ω,A,F ,P) be a fixed probability space, where F = (Ft)t≥0 is a filtration
fulfilling the usual conditions. Ft is the sigma-field describing the information
available on the market up to time t. Let the default time τ be a Ft-stopping
time. Then, the default indicator process Ht = 1{τ≤t} is right-continuous
and adapted to Ft. Let Ht = σ(Hs|s ≤ t) be the sigma-field generated by
H. Further, assume there is a sub-filtration G = (Gt)t≥0 ⊂ F , such that
Ft = Gt ∨ Ht. i.e., Gt contains all information except the default times.
For example, Gt could be generated by a multi-dimensional driving process
Xt. It is assumed that all default-free economic factors, such as the risk-free
interest rate, are processes adapted to G. From the definition of G, intuition
says that, given τ > t, elements of Ft are observable in Gt, which is formalized
by the following lemma.

Lemma 5.1.1. Let A ∈ Ft. Then, there exist B ∈ Gt, such that

A ∩ {τ > t} = B ∩ {τ > t} (5.1.1)

holds.

Proof. Define

F∗t = {A ∈ Ft|∃B ∈ Gt : A ∩ {τ > t} = B ∩ {τ > t}}.

What needs to be shown is that Ft ⊂ F∗t . Gt ⊂ F∗t follows from choosing
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B = A. Since A ∈ Ht equals either ∅, Ω or a set of the form {τ > s} or
{τ ≤ s} for some s ≤ t, the intersection A ∩ {τ > t} equals either ∅ or
{τ > t}. Choosing B to be either ∅ or Ω implies Ht ⊂ F∗t , which altogether
means (Gt∪Ht) ⊂ F∗t . Since Ft is the smallest sigma-field containing Gt and
Ht and it is easily seen that F∗t itself is a sigma-field , Ft ⊂ F∗t follows, which
concludes the proof.

From now on, the following assumption will be made:
(A1): The probability, given Gt, for no default up to time t, equals

P[τ > t|Gt] = e−
∫ t

0 λ(s)ds,

for a non-negative (Gt)-progressive process λ.
Since the sum of probabilities of complementary events conditional on the
same sigma-field equals one, this assumption means that the conditional
default probability P[τ ≤ t|Gt] < 1. Since P[τ ≤ t|Ft] = Ht, this means in
particular that Gt ( Ft. Consequently, τ is not a stopping time for (Gt). The
following lemma connects the conditional expectations of a random variable
w.r.t. to Ft and Gt.

Lemma 5.1.2. Let Y be a non-negative random variable. Then, for all
t ≥ 0,

E
[
1{τ>t}Y

∣∣∣Ft] = 1{τ>t}e
∫ t

0 λ(s)dsE
[
1{τ>t}Y

∣∣∣Gt] .
Proof. Because of Lemma 5.1.1, for a fixed A ∈ Ft one can choose a B ∈ Gt
with (5.1.1). This, combined with the definition of the conditional expecta-
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tion, leads to
∫
A
1{τ>t}Y P[τ > t|Gt]dP =

∫
A∩{τ>t}

Y P[τ > t|Gt]dP

=
∫
B∩{τ>t}

Y P[τ > t|Gt]dP

=
∫
B
1{τ>t}Y P[τ > t|Gt]dP

=
∫
B
1{τ>t}Y E[1{τ>t}|Gt]dP

=
∫
B
E[1{τ>t}Y E[1{τ>t}|Gt]|Gt]dP

=
∫
B
E[1{τ>t}Y |Gt]E[1{τ>t}|Gt]dP

=
∫
B
E[1{τ>t}E[1{τ>t}Y |Gt]|Gt]dP

=
∫
B
1{τ>t}E[1{τ>t}Y |Gt]dP

=
∫
A
1{τ>t}E[1{τ>t}Y |Gt]dP.

Since τ is a Ft-stopping time, {τ > t} = {τ ≤ t}c ∈ Ft. Because A ∈ Ft was
arbitrary, the definition of the conditional expectation yields

E[1{τ>t}Y P[τ > t|Gt]|Ft] = 1{τ>t}E[1{τ>t}Y |Gt]

⇔ E[1{τ>t}Y |Ft] = 1{τ>t}e
∫ t

0 λ(s)dsE[1{τ>t}Y |Ft].

With the help of the previous lemma, one can express the conditional default
probabilities w.r.t. Ft, which is very important.

Lemma 5.1.3. For t ≤ T

P[τ > T |Ft] = 1{τ>t}E[e−
∫ T
t
λ(s)ds|Gt]

P[t < τ ≤ T |Ft] = 1{τ>t}E[1− e−
∫ T
t
λ(s)ds|Gt]

holds. Furthermore, L(t) = 1{τ>t}e
∫ t

0 λ(s)ds is a Ft-martingale.
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Proof. With the help of Lemma 5.1.2 and the relation 1{τ>T}1{τ>t} = 1{τ>T}

P[τ > T |Ft] = E
[
1{τ>T}

∣∣∣Ft] = E
[
1{τ>T}1{τ>t}

∣∣∣Ft]
= 1{τ>t}e

∫ t
0 λ(s)dsE

[
1{τ>T}

∣∣∣Gt]
= 1{τ>t}e

∫ t
0 λ(s)dsE

[
E[1{τ>T}|GT ]

∣∣∣Gt]
= 1{τ>t}e

∫ t
0 λ(s)dsE [P[τ > T |GT ] | Gt]

= 1{τ>t}e
∫ t

0 λ(s)dsE
[
e−
∫ T

0 λ(s)ds
∣∣∣∣Gt]

= 1{τ>t}E[e−
∫ T
t
λ(s)ds|Gt],

and since τ is a Ft-stopping time

P[t < τ ≤ T |Ft] = 1− P[τ > T |Ft]− P[τ ≤ t|Ft]

= 1− 1{τ>t}E[e−
∫ T
t
λ(s)ds|Gt]− (1− 1{τ>t})

= 1{τ>t}E
[
1− e−

∫ T
t
λ(s)ds|Gt

]
.

To verify the martingale property, consider

E[L(T )|Ft] = E[1{τ>T}e
∫ T

0 λ(s)ds|Ft]

= E[1{τ>t}1{τ>T}e
∫ T

0 λ(s)ds|Ft]

= 1{τ>t}e
∫ t

0 λ(s)dsE
[
1{τ>T}e

∫ T
0 λ(s)ds

∣∣∣∣Gt]
= 1{τ>t}e

∫ t
0 λ(s)dsE[E[1{τ>T}|GT ]e

∫ T
0 λ(s)ds︸ ︷︷ ︸

1

|Gt] = L(t).

The previous lemma also gives an interpretation to the process λ. Replacing
T with ∆t in a first-order Taylor expansion gives P[t < τ ≤ t + ∆t|Ft] =
1{τ>t}λ(t)∆t, i.e., λ(t) can be considered as the intensity of default within a
small time interval [t, t+ ∆t] given survival up to time t.
Before further assumptions are made, an interesting result is going to be
stated:
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Proposition 5.1.4. The process

Nt = Ht −
∫ t

0
λ(s)1{τ>s}ds

is an F-martingale,

Proof. Using Lemma 5.1.2, the tower property of conditional expectations
and assumption (A1), one can observe the following:

∫ T

t
E[λ(s)1{τ>s}|Ft]ds =

∫ T

t
E[λ(s)1{τ>s}1{τ>t}|Ft]ds

=
∫ T

t
1{τ>t}e

∫ t
0 λ(u)duE[λ(s)1{τ>s}|Gt]ds

=
∫ T

t
1{τ>t}e

∫ t
0 λ(u)duE[λ(s)

e
−
∫ s

0
λ(u)du︷ ︸︸ ︷

E[1{τ>s}|Gs] |Gt]ds

= 1{τ>t}

∫ T

t
E[λ(s)e−

∫ s
t
λ(u)du|Gt]ds

= 1{τ>t}E
[∫ T

t
− ∂

∂s
e−
∫ s
t
λ(u)duds

∣∣∣∣∣Gt
]

= 1{τ>t}E
[
1− e−

∫ T
t
λ(u)du

∣∣∣∣Gt] (5.1.2)

For t ≤ T , using Lemmata 5.1.2 and 5.1.3 and the auxiliary calculations
above leads to

E[NT |Ft] = E[1{τ≤T}|Ft]−
∫ t

0
λ(s)1{τ>s}ds− E

[∫ T

t
λ(s)1{τ>s}ds

∣∣∣∣∣Ft
]

= 1− E[1{τ>T}|Ft]−
∫ t

0
λ(s)1{τ>s}ds−

∫ T

t
E[λ(s)1{τ>s}|Ft]ds

= 1− 1{τ>t}E[e−
∫ T
t
λ(u)du|Gt]−

∫ t

0
λ(s)1{τ>s}ds− 1{τ>t}E

[
1− e−

∫ T
t
λ(u)du

∣∣∣∣Gt]
= 1− 1{τ>t} −

∫ t

0
λ(s)1{τ>s}ds = Nt

This result opens another possibility to calculate the default probabilities of
Lemma 5.1.3. Since the process H is obviously a (Ft)-submartingale and uni-
formly integrable, the Doob-Meyer decomposition theorem says that there
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exists a unique, non-decreasing (Ft)-predictable process A, called the com-
pensator process, such that Nt = Ht − At. Since the previous lemma states
exactly such a decomposition, the uniqueness of the compensator process
yields At =

∫ t
0 λ(s)ds. Since Nt is a martingale, one gets

E[NT |Ft] = Nt

⇔ E[HT |Ft]− E[AT |Ft] = Ht − At
⇔ P(τ ≤ T |Ft) = 1{τ≤t} + E[AT − At|Ft].

Plugging in the special form of A in our case and using (5.1.2) eventually
yields the equalities of Lemma 5.1.3.
In order to construct a default risk model later on, the following assumption
will be made from now on:
(A2): For t ≥ 0 and G∞ = σ(Gt : t ∈ R+), the following holds

P[τ > t|G∞] = P[τ > t|Gt].

The next lemma characterizes assumption (A2):

Lemma 5.1.5. Following statements are equivalent:

(i) A2 holds.
(ii) E[X|Ft] = E[X|Gt] for all bounded, G∞-measurable random variables

X.
(iii) If the process X is a G-martingale, it is also an F-martingale.

Proof. (i)⇔ (ii): Fix arbitrary A ∈ Gt, u ≤ t and a bounded, G∞-measurable
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random variable X and define:

I :=
∫
A∩{τ>u}

XdP =
∫
A
E[X1{τ>u}|G∞]dP

=
∫
A
XE[1{τ>u}|G∞]dP =

∫
A
XP[{τ > u}|G∞]dP,

J :=
∫
A∩{τ>u}

E[X|Gt]dP =
∫
A
1{τ>u}E[X|Gt]dP

=
∫
A
E[1{τ>u}E[X|Gt]|Gt]dP =

∫
A
E[X|Gt]E[1{τ>u}|Gt]dP

=
∫
A
E[XE[1{τ>u}|Gt]|Gt]dP =

∫
A
XE[1{τ>u}|Gt]dP

=
∫
A
XP[{τ > u}|Gt]dP.

Assume (i) holds. Then, looking at the last expressions in the definition
of I and J respectively yields I = J . Now assume (ii) holds. Because
A ∩ {τ > u} ∈ Ft, the definition of the conditional expectation implies
I = J . Assume conversely I = J . Since sets of the form A ∩ {τ > u}
generate Ft, equality

∫
A∩{τ>t}XdP =

∫
A∩{τ>t} E[X|Gt]dP implies (ii). Setting

X ≡ 1 implies (i).
(ii)⇔(iii): Assume (ii) holds. Let X be a (Gt)-martingale. Then, Xt is
Gt-measurable and therefore also G∞ and Ft-measurable. Since for t ≤ T

Xt = E[XT |Gt]
(ii)= E[XT |Ft],

X is also an (Ft)-martingale, concluding the ”if” direction of the claim.
Now assume (iii) holds and let X be a bounded, G∞-measurable random
variable. Define Xt := E[X|Gt]. Since X is bounded, Xt is obviously a
bounded, uniformly integrable G-martingale. Then, due to the martingale
convergence theorem, lim

t→∞
Xt = X∞ exists and is the unique, G∞-measurable

random variable with the property Xt = E[X∞|Gt]. Since X also fulfils that
property, X = X∞ holds. Because of (iii), X is also a bounded, uniformly
integrable F -martingale, so E[X|Gt] = Xt = E[X∞|Ft] = E[X|Ft], which
proves (ii) and also concludes the entire proof.

The following lemma motivates the construction of an intensity based-model.
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Lemma 5.1.6. Define Λ(t) =
∫ t
0 λ(s)ds. If Λ(∞) = ∞ holds, Λ(τ) is an

exponential random variable with parameter 1 independent of G∞.

Proof. Since λ is non-negative, Λ is non-decreasing and, since it is an integral,
continuous. Consequently, Λ(R+) = R+, which means it is surjective and one
can define the G∞-measurable right-inverse by

g(s) = inf{t|Λ(t) > s}.

Due to continuity and the non-decreasing property of Λ one gets Λ(g(s)) = s

and Λ(t) > s⇔ t > g(s). Consequently

P[Λ(τ) < s|G∞] = 1− P[Λ(τ) > s|G∞] = 1− P[τ > g(s)|G∞]
(A2)= 1− P[τ > g(s)|Gg(s)]

(A1)= 1− e−Λ(g(s)) = 1− e−s,

which is exactly the cumulative distribution function of the exponential dis-
tribution with parameter 1.

5.1.2 Construction of a defaultable model

With all the necessary theoretical results in place, one can now construct a
model which fulfils conditions (A1) and (A2). Starting point is a sigma-
field F and a filtration (Gt)t≥0, which satisfies the usual conditions, such that
G∞ ⊂ F . Furthermore, let there be a non-negative G-progressive process λ
with

∫ t

0
λ(s)ds <∞

almost surely for all t ∈ R+. Additionally, let Z be a exponential variable
with parameter 1, i.e., P(Z > t) = e−t, which is independent of G∞. Define
a non-negative, possibly infinite, stopping time by

τ := inf
{
t

∣∣∣∣ ∫ t

0
λ(s)ds ≥ Z

}
.
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One can now show that (A1) and (A2) hold in one calculation. Z being
independent of G∞ yields

P[τ > t|G∞] = P
[
Z >

∫ t

0
λ(s)ds

∣∣∣∣G∞] = e−
∫ t

0 λ(s)ds.

Applying the tower property of the conditional expectation eventually gives

P[τ > t|Gt] = e−
∫ t

0 λ(s)ds,

hence (A1) and (A2) are satisfied. Finally, define Ht = 1{τ≤t}, Ht =
σ(Hs|s ≤ t) and Ft := Gt ∨Ht.

5.1.3 Computing default probabilities and pricing with
default risk

Up till now, all results were stated w.r.t. to the physical measure P. As
it is known, for pricing, a risk-neutral measure is needed. Since in general,
assumptions (A1) and (A2) are not preserved under an equivalent change
of measure (for details, see [12, Chapter 12.3.4]), one needs to explicitly
assume that (A1) and (A2) are satisfied for a measure Q ∼ P. Furthermore
it is supposed that there exists a process r and a non-negative process λQ,
both being (Gt)-progressive, which represent the interest rate and intensity
respectively, with

∫ t

0
|r(s)|+ λQ(s)ds <∞ Q− a.s..

Default probabilities
Recall the formula for the conditional default probability

Q[τ > T |Ft] = 1{τ>T}E[e−
∫ T
t
λ(s)ds|Gt].

One could decide to use one of the positive stochastic processes used for
interest rate modelling, such as the CIR or CIR++ model, to describe the
dynamics of the process λQ, where the process W (t), which drives the ran-
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dom shocks, is assumed to be a Brownian motion w.r.t. to G. Then, the
conditional expectation in the expression above is equal to the bond price,
and is therefore explicitly given. In mathematical terms

Q[τ ≤ T |Ft] =

1− PMODEL(t, T ), τ > t,

1, else.

In the case of CIR and CIR++, PMODEL(t, T ) corresponds to (3.3.2) and
(3.5.2) respectively.
The goal is to determine the price of a defaultable bond under different
recovery assumptions, namely zero recovery and recovery of market value. It
is also possible to assume a partial recovery at default or at maturity of the
bond, but these cases are not going to be dealt with in this thesis.

Pricing with zero recovery
Zero recovery means that, in the event of default, the bond becomes worthless
and no payment at all is made. The payoff of this bond at maturity T is
1{τ>T}. Because of the results stated in Chapter 2.3, the no-arbitrage price
at time t is given by

P̄ (t, T ) = EQ

[
e−
∫ T
t
r(s)ds

1{τ>T}

∣∣∣∣Ft] .
Using the theoretical framework established in the previous section, espe-
cially Lemma 5.1.2, the above expression can be simplified to

P̄ (t, T ) = EQ

[
e−
∫ T
t
r(s)ds

1{τ>T}1{τ>t}

∣∣∣∣Ft]
= 1{τ>t}e

∫ t
0 λ

Q(s)dsEQ

[
e−
∫ T
t
r(s)ds

1{τ>T}

∣∣∣∣Gt]
= 1{τ>t}e

∫ t
0 λ

Q(s)dsEQ

[
e−
∫ T
t
r(s)dsEQ

[
1{τ>T}

∣∣∣GT ] ∣∣∣∣Gt]
= 1{τ>t}e

∫ t
0 λ

Q(s)dsEQ

[
e−
∫ T
t
r(s)dse−

∫ T
0 λQ(s)ds

∣∣∣∣Gt]
= 1{τ>t}EQ

[
e−
∫ T
t
r(s)+λQ(s)ds

∣∣∣∣Gt] . (5.1.3)
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This means that in the zero recovery case, a defaultable bond can be priced
by discounting by the sum of the risk-free rate r and a spread λQ. For
certain dynamics of r and λQ, one can just apply the theory developed in the
chapters on interest rate models, which can be seen in the following example:

Proposition 5.1.7. Assume the interest rate dynamics are given by a Cox-
Ingersoll-Ross process, i.e.,

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dW (t), r(0) = r0,

with r0, k, θ, σ > 0, where W (t) is a Brownian motion w.r.t. to (Q,Gt). Let
λQ = c0 + c1r(t) be an affine function in r(t) with non-negative constants
c0, c1. Then the zero-recovery defaultable bond price at time t with maturity
T is given by

P̄ (t, T ) = 1{τ>t}Ā(t, T )e−B̄(t,T )r(t),

where

Ā(t, T ) = e−c0(T−t)
(

2h exp (1
2(k + h)(T − t))

2h+ (k + h)(exp {(T − t)h} − 1)

) 2kθ(1+c1)
σ2

,

B̄(t, T ) = (1 + c1) 2 (exp {(T − t)h} − 1)
2h+ (k + h)(exp {(T − t)h} − 1) ,

h =
√
k2 + 2(1 + c1)σ2.

Proof. Inserting the model into the general bond price formula yields

P̄ (t, T ) = 1{τ>t}EQ

[
e−
∫ T
t
r(s)+λQ(s)ds

∣∣∣∣Gt]
= 1{τ>t}EQ

[
e−
∫ T
t
c0+(1+c1)r(t)ds

∣∣∣∣Gt]
= 1{τ>t}e

−
∫ T
t
c0dsEQ

[
e−
∫ T
t

(1+c1)r(t)ds
∣∣∣∣Gt]

= 1{τ>t}e
−c0(T−t)EQ

[
e−
∫ T
t
r̄(t)ds

∣∣∣∣Gt] . (∗)
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Since

d(1 + c1)r(t) = k((1 + c1)θ − (1 + c1)r(t))dt+ (1 + c1)σ
√
r(t)dW (t)

⇔ dr̄(t) = k((1 + c1)θ − r̄(t))dt+
√

(1 + c1)σ
√
r̄(t)dW (t),

r̄(t) is also a CIR process, just with parameters k̄ = k, θ̄ = θ(1 + c1), σ̄ =√
(1 + c1)σ, which means that the expectation in (∗) is nothing else than the

default-free bond price of the CIR process r̄(t). Therefore, one can use the
explicit formula (3.3.2), which immediately proofs the claim.

Pricing with recovery of market value
In a lot of cases, even if a company defaults, a claim does not become com-
pletely worthless. Therefore, a pricing formula under the recovery of market
value assumption will be derived in this section. The derivation is based on
the works of Duffie & Singleton [9].
Consider a defaultable claim with terminal payoff X. Assume that upon
default, the claim holder receives a payment X ′. The price of that claim at
time t, assuming default has not yet occurred, equals

Vt := EQ

[
1{τ>T}e

−
∫ T
t
r(s)dsX + 1{τ≤T}e

−
∫ τ
t
r(s)dsX ′

∣∣∣∣Ft] ,
and is assumed to be continuous. Further, it will be postulated, that X ′ =
(1 − L)Vτ−, i.e., upon default the claim pays a fraction of its market value
just before default occured. L ∈ [0, 1] represents the fractional loss given
default and Vτ− = lims↗τ Vs. Under mild conditions (see [9]),

Vt = EQ

[
exp

(
−
∫ T

t
rs + λQs Lds

)
X

∣∣∣∣∣Ft
]

(5.1.4)

holds. This means, that the claim is priced as in the default-free case, except
that discounting happens with respect to an additional credit spread λQs L to
the interest rate rt. Consequently, after choosing suitable models for r and
λQ, the same methods of simulation can be performed as in the default-free
case to price contingent claims.
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To proof this formula in a somewhat informal way, recall Proposition 5.1.4,
which states that the dynamics of the default indicator process Ht can be
written as

dHt = λQt (1−Ht)dt+ dNt,

where Nt is a martingale with respect to F under the risk-neutral measure
Q. Let further dVt = αtdt + dMt be the Doob-Meyer decomposition of Vt,
where Mt is another martingale under Q. A priori, αt does not need to be
absolutely continuous, but in the course of our reasoning it will be shown
that indeed it is. Let Gt be the discounted gain process of the claim, i.e.,

Gt = exp
(
−
∫ t

0
rsds

)
Vt(1−Ht) +

∫ t

0
exp

(
−
∫ s

0
rudu

)
(1− L)Vs−dHs.

where the first expression represents the discounted price of the claim and
the second stands for the discounted payoff if default occurs. Using Itô’s
formula yields:

dGt = − exp
(
−
∫ t

0
rsds

)
rtVt(1−Ht)dt+ exp

(
−
∫ t

0
rsds

)
(1−Ht)dVt

+ exp
(
−
∫ t

0
rsds

)
Vtd(1−Ht) + exp

(
−
∫ t

0
rsds

)
(1− L)Vt−dHt,

since all the covariation/quadratic variation terms except [V ]t are zero, be-
cause 1 − Ht and exp

(
−
∫ t
0 rsds

)
are of finite variation. However, [V ]t is

irrelevant, since ∂2

∂v2f(t, v, h) = ∂2

∂v2 exp
(
−
∫ t

0 rsds
)
v(1 − h) = 0. Inserting

the expressions for dHt and dVt leads to

dGt = − exp
(
−
∫ t

0
rsds

) [
rtVt(1−Ht)− (1−Ht)αt + Vt(1−Ht)λQt

−(1− L)Vt(1−Ht)λQt
]
dt

+ exp
(
−
∫ t

0
rsds

)
[(1−Ht)dMt − VtdNt + (1− L)VtdNt]︸ ︷︷ ︸

dM∗t

,
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where Vt− = Vt holds because of the continuity assumption and M∗
t is a mar-

tingale under Q, because it is the sum of stochastic integrals with respect to
martingales, where the integrands are L1-integrable. Since the gains process
is a martingale and the Doob-Meyer decomposition is unique, the drift needs
to be zero, i.e. (rtVt−αt +LVtλ

Q
t )(1−Ht) = 0. Since t < τ , the second term

equals one, which implies

0 = rtVt − αt + LλQt

αt = Vt(rt + LλQt ).

Since under the risk-neutral measure, drift and risk-free rate need to coincide,
discounting for the defaultable claim has to be done by rt + LλQt , which
mathematically speaking yields our conjecture (5.1.4).

5.2 Credit default swaps

One way of calibrating the intensity process λQ to the market, is to use credit
default swap (CDS) data. Therefore, this chapter is devoted to this kind of
financial contracts. The upcoming formulas are not going to be derived in
great detail, so the interested reader is therefore referred to [6, Chapter 21.1,
21.3 , 22.3], on which also the notation and structure is based.
A credit default swap (CDS) is a derivative which protects against the the
event of default. The protection buyer (A) agrees to make regular payments,
so called premiums, to the protection seller (B), which in return agrees to
make a single (deterministic) payment, which here will be called loss given
default L, to the buyer in case of the default of a reference obligor (C).
Under which conditions (C) is considered to be defaulted needs to be specified
in the contract, and is definitely not limited to bankruptcy or liquidation.
The regular payments are usually denoted by basis points with respect to
the notional amount. Contrary to a credit insurance, (A) does not need
to be a creditor of the (C). This means that a CDS can not only be used
for hedging purposes, but also for speculation, which makes it potentially
dangerous. Incidentally, these contracts contributed to the emergence of the
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global financial crisis in 2008.
To put the definition above into mathematical terms, let Ta be the starting
date of the contract and Ta+1, · · · , Tb the dates where premium payment
rates R are made. The usual time span between two payment dates is three
months. These financial obligations of (A) are called the premium leg of the
CDS. In case of default at time Ta < τ ≤ Tb, premium payments stop and (B)
is obliged to pay the amount L to (A). This is called the protection leg of the
CDS. Let Tβ(t) be the next payment date following t, i.e., t ∈ [Tβ(t)−1, Tβ(t)).
Then, as seen from (B), the discounted value process of the CDS at time t
is given by

ΠCDSa,b(t) := 1{τ>t}

(
e−
∫ τ
t
rsds(τ − Tβ(t)−1)R1{Ta<τ<Tb}

+
b∑

i=a+1
e−
∫ Ti
t

rsdsαiR1{τ≥Ti} − 1{Ta<τ≤Tb}e
−
∫ τ
t
rsdsL

 , (5.2.1)

where αi = Ti − Ti−1. For pricing purposes, recall that the stochastic
framework still consists of a filtered probability space (Ω,A,F ,Q), where
F = (Ft)t≥0 denotes the filtration of the complete market information, the
filtration G = (Gt)t≥0 ⊂ F contains all non default-related information and
Q is the risk-neutral probability measure. Denote the price of a CDS at time
t with input data as above with

CDSa,b(t, R, L) := EQ

[
ΠCDSa,b(t)

∣∣∣Ft]
Lemma 5.1.2 together with (5.2.1) yields

CDSa,b(t, R, L) = 1{τ>t}

Q(τ > t|Gt)
EQ

[
ΠCDSa,b(t)

∣∣∣Gt]
= 1{τ>t}

Q(τ > t|Gt)
EQ

[
1{τ>t}

(
e−
∫ τ
t
rsds(τ − Tβ(t)−1)R1{Ta<τ<Tb}

+
b∑

i=a+1
e−
∫ Ti
t

rsdsαiR1{τ≥Ti} − 1{Ta<τ≤Tb}e
−
∫ τ
t
rsdsL

 ∣∣∣∣∣∣Gt

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= 1{τ>t}

Q(τ > t|Gt)

(
REQ

[
1{τ>t}e

−
∫ τ
t
rsds(τ − Tβ(t)−1)1{Ta<τ<Tb}

∣∣∣∣Gt]

+
b∑

i=a+1
αiREQ

[
e−
∫ Ti
t

rsds
1{τ≥Ti}

∣∣∣∣Gt]

− LEQ

[
1{τ>t}1{Ta<τ≤Tb}e

−
∫ τ
t
rsds

∣∣∣∣Gt]) .
The CDS forward rate Ra,b(t) is now defined as the rate which satisfies
CDSa,b(t, Ra,b(t), L) = 0. It is important to note that on the market, CDS
contracts are quoted by those CDS forward rates. As the quotes represent
the regular premium payments, the higher this rate is, the less creditworthy
the market considers the particular company. Assuming now that interest
rate and default are independent, one can derive valuation formulas for the
premium and protection leg at time zero which just depend on R,L, the
initial bond curve and the initial survival probabilities. The premium leg
formula is given by

PremLega,b(R,P (0, ·),Q(τ > ·)) =R
(
−
∫ Tb

Ta
P (0, t)(τ − Tβ(t)−1)d{Q(τ > t)}t

+
b∑

i=a+1
P (0, Ti)αiQ(τ > Ti)

 ,
where the integral is a Stieltjes integral in the survival probabilities (for the
derivation see [6, Chapter 21.3] . The protection leg formula looks as follows:

ProtLega,b(L, P (0, ·),Q(τ > ·)) = −L
∫ Tb

Ta
P (0, t)d{Q(τ > t)}t.

For the exact derivation see [6, Chapter 21.3]. Given the CDS forward rates
RM

0,b(0) observed on the market for different maturities Tb, it is possible to
iteratively strip survival probabilities from the market by solving

PremLeg0,b(RM
0,b(0), P (0, ·),Q(τ > ·)) = ProtLeg0,b(L, P (0, ·),Q(τ > ·)).

(5.2.2)
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For example, if the available maturities are {1y, 3y, 5y}, first solve (5.2.2) for
Tb = 1y to get the implied survival probabilities for t ≤ 1y. Then, insert
them in (5.2.2) for Tb = 2y to retrieve Q(τ ≥ t) for 1 < t ≤ 2 and so on.
A priori, this method is model independent. In the given setting, assuming
(A1), Q(τ > t) = e−

∫ t
0 λ

Q
s ds holds. This leads to the following special case of

above formulas:

CDSa,b(0, R, L,Γ(·)) =PremLega,b(R,P (0, ·),Γ(·))− ProtLega,b(L, P (0, ·),Γ(·))

=R
∫ Tb

Ta
P (0, t)(Tβ(t)−1 − t)de−Γ(t) +

b∑
i=a+1

P (0, Ti)αie−Γ(Ti)


+ L

(∫ Tb

Ta
P (0, t)de−Γ(t)

)
, (5.2.3)

where Γ(t) =
∫ t

0 λ
Q
s ds. To be able to strip survival probabilities, a deter-

ministic setup is in order. Let λQt = λi, t ∈ [Ti−1, Ti), λi ∈ R+ be piecewise
constant (they could also be assumed to be piecewise linear). Plugging this
in (5.2.3) yields

CDSa,b(0, R, L,Γ(·))

=R
b∑

i=a+1
λi

∫ Ti

Ti−1
exp

− i−1∑
j=1

λj(Tj − Tj−1)− λi(t− Ti−1)
P (0, t)(t− Ti−1)dt

+R
b∑

i=a+1
P (0, Ti)αie−Γ(Ti)

− L
b∑

i=a+1
λi

∫ Ti

Ti−1
exp

− i−1∑
j=1

λj(Tj − Tj−1)− λi(t− Ti−1)
P (0, t)dt.

As before, by inserting the observed CDS rates RM
0,b(0) in the formula above,

the λi and therefore the survival probabilities can be iteratively stripped
from the market. If, as usual, the time span between Ti is three months
and maturities are available yearly, in a first step CDS0,1(0, RM

0,1(0), L, {λ1 =
λ2 = λ3 = λ4}) = 0 is solved, and in each further step, four new λi can be
calculated.
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5.3 Specific model choice and practical exam-
ple

In this last section, some specific choices for modelling the interest rate and
the intensity process are going to be made. At the end, a small practical
example will illustrate some of the theoretical results.
The presented calibration procedure for the CIR++ model was proposed by
[6, Chapter 22.7]. The same stochastic framework as in the above sections of
this chapter is assumed, i.e., (A1) and (A2) are satisfied for a risk-neutral
measure Q ∼ P. Furthermore, there exists an interest rate process r and a
non-negative intensity process λQ, both being (Gt)-progressive, with

∫ t

0
|r(s)|+ λQ(s)ds <∞ Q− a.s..

5.3.1 Model choice and calibration methods

The interest rate dynamics follow the G2++ model, i.e.

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0

dx(t) = −ax(t)dt+ σdW1(t), x(0) = 0

dy(t) = −by(t)dt+ ηdW2(t), y(0) = 0,

(5.3.1)

where r0, a, b, σ, η ∈ R+ and (W1,W2) is a two-dimensional Brownian motion
with instantaneous correlation ρ ∈ [−1, 1], i.e., dW1dW2 = ρdt. The deter-
ministic function ϕ is used to fit the model to the current term-structure of
discount factors observed on the market.
Since the intensity process λ(t) needs to be positive, it will be modelled by
a CIR++ process, i.e.,

λ(t) = z(t) + ψ(t),

dz(t) = k(θ − z(t))dt+ ν
√
z(t)dW3(t), z(0) = z0,
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with z0, k, θ, ν > 0. The process stays positive for 2kθ > ν2 and ψ(t) ≥ 0.
The interest rate process and intensity process can of course be correlated,
for example by the instantaneous correlations ρ1,3, ρ2,3 ∈ [−1, 1] between the
involved Brownian motions, i.e., dWidW3 = ρi,3dt, i = 1, 2. This would
result in an instantaneous correlation between r and λ of

ρ̄ = σρ1,3 + ηρ2,3√
σ2 + η2 + 2σηρ

.

Since the method for stripping the survival probabilities requires the corre-
lation between the interest rate and the intensity to be zero, this assumption
is also necessary for this calibration procedure presented below. However,
Brigo & Mercurio showed in [6, Chapter 22.7], that the influence of the cor-
relation on CDS prices is negligible, so that one can first calibrate the model
assuming that no correlation is present and then set it to a value of one’s
choice. Be it how it may, in the following ρ1,3, ρ2,3 = 0 is going to be assumed,
so that r and λ are independent.
The deterministic function ψ is going to be used to calibrate the CIR++
model to the market survival probabilities Q(τ > t)M = e−ΓM (t), where
ΓM(t) =

∫ t
0 λ

M
s ds = ∑β(t)−1

i=1 (Ti − Ti−1)λMi + (t − Tβ(t)−1)λMβ(t). The piece-
wise constant intensities λMt = λMi , t ∈ [Ti−1, Ti), λi ∈ R+ are stripped from
the market by applying the procedure described at the end of the previous
Chapter 5.2. To do this, Q(τ > t)CIR = e−ΓM (t) must hold. This leads to

e−ΓM (t) = EQ
[
exp(−

∫ t

0
z(s) + ψ(s)ds)

]
⇔ e−ΓM (t) = exp(−

∫ t

0
ψ(s)ds)EQ

[
exp(−

∫ t

0
z(s)ds)

]
⇔ e−ΓM (t) = exp(−

∫ t

0
ψ(s)ds)PCIR(0, t)

⇔
∫ t

0
ψ(s)ds = ΓM(t) + lnPCIR(0, t) (5.3.2)

⇔ ψ(t) = λM(t)− fCIR(0, t), (5.3.3)
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where PCIR(t, T ) = A(t, T )e−B(t,T )z(t) andA(t, T ), B(t, T ) are given by (3.3.2)
and fCIR(0, t)1 is given by (3.5.1).
Since the choice of the deterministic shift according to (5.3.3) ensures that the
CIR++ model matches the survival probabilities stripped from the market,
the parameter vector β = {k, θ, ν, z0} can still be chosen. When considering
interest rate models, the parameters can be calibrated to the cap/swaption
volatilities observed on the market. Applying that to intensity models, one
could calibrate the vector β to some kind of CDS options. However, as
pointed out in [7, Chapter 5], single-name CDS options are not liquid enough
in the market, which makes them unsuitable for calibration purposes at the
moment. Therefore, in [6, Chapter 22] the following, somewhat heuristic,
approach is suggested: Choose β such that Ψ(t) :=

∫ T
0 ψ(s; β)ds is positive

and increasing (to make sure that the CIR++ process stays positive), and
such that it minimizes

∫ T
0 ψ(s; β)2ds. In that way, one can find the parame-

ters for the underlying CIR process zβ, which is closest to the corresponding
calibrated CIR++ process and therefore closest to the CDS data observed
on the market. This is also the approach which will be used in the upcoming
example. However, it is worth mentioning that there are other approaches:
In [7, Chapter 5] for example, parameters are chosen such that the implied
volatilies of hypothetical CDS options yield possibly reasonable values.
Finally, one can state the defaultable bond prices within this framework. Un-
der the assumption of zero recovery and using (5.1.3), the defaultable T -bond

1 In the given case:

A(t, T ) =
[

2h exp
( 1

2 (k + h)(T − t)
)

2h+ (k + h)(exp {(T − t)h} − 1)

] 2kθ
ν2

,

B(t, T ) = 2 (exp {(T − t)h} − 1)
2h+ (k + h)(exp {(T − t)h} − 1) ,

fCIR(0, t) = 2kθ(eth − 1)
2h+ (k + h)(eth − 1) + z0

4h2eth

(2h+ (k + h)(eth − 1))2

h =
√
k2 + 2ν2,
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price at t = 0 is given by

P̄ (0, T ) = EQ

[
e−
∫ T

0 r(s)+λQ(s)ds
]

= EQ

[
e−
∫ T

0 r(s)ds
]
EQ

[
e−
∫ T

0 λQ(s)ds
]

= PG2++(0, T )Q(τ > T ). (5.3.4)

This means that to price a defaultable bond within this framework, one only
needs to multiply the default-free bond price by the survival probability,
which is a very intuitive result. Since the interest rate was calibrated to the
initial term-structure and the intensity to the survival probabilities, (5.3.4)
simplifies to

P̄ (0, T ) = PM(0, T )e−ΓM (t).

If recovery of market value with fractional loss given default L ∈ [0, 1] is
assumed, (5.1.4) with X ≡ 1 (bond pays 1 at maturity) leads to

P̄RMV (0, T ) = EQ

[
e−
∫ T

0 r(s)ds
]
EQ

[
e−
∫ T

0 LλQ(s)ds
]

= PG2++(0, T )PCIR++(0, T ; β̄),

where the second factor of the result is the bond price in the CIR++ model
with parameter vector β̄ = {k, Lθ,

√
Lν, Lz0} and deterministic shift ψ̄ = Lψ.

The formula for the CIR++ bond-price is given by (3.5.2).
Finally, it is worth mentioning, that the specific choice of the G2++ model
for the interest rate and the CIR++ model for the intensity does not produce
a known distribution for the expression

∫ T
t r(s) + λQ(s)ds. Therefore, it is

not possible to calculate expectations such as (5.1.3) or (5.1.4) explicitly if
r(t) and λQ(t) are correlated. Consequently, if there is non-zero correlation,
one needs to use simulation to determine the prices of contingent claims.

5.3.2 Market data and application

In this last section, current market data will be used to illustrate the strip-
ping and calibration procedures from the previous section. Unfortunately,
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as already mentioned in Chapter 4.5, no current market data for cap prices
could be acquired. Since it was desirable to at least fit the G2++ model to
the initial yield curve seen in Figure 2.1, dummy-data had to be used for
the cap prices. To not choose the data completely arbitrarily, the cap prices
in Table 5.1, calculated from the cap volatilities and the yield curve in [11,
Chapter 2], were taken.

Maturity (years) Cap prices Maturity (years) Cap prices
1 0.02281 9 4.90252
2 0.11092 10 5.93530
3 0.30154 12 8.02445
4 0.69595 15 10.93077
5 1.29645 20 14.81939
6 2.04150 25 18.27075
7 2.92555 30 21.37741
8 3.87695

Table 5.1: At-the-money euro cap prices calculated from data in [11, Chapter
2] with notional=100

The data was retrieved in August 2014, when the interest rates were not
yet negative, but already really low, about 0.7 percentage points above the
current yield curve for all maturities. The data might therefore be a little
closer to the actual values than the data of Brigo & Mercurio. Nevertheless,
Figure 5.4 still serves a purely illustratory purpose. However, the rest of the
figures are consistent with the market, as the yield curve and the CDS data
is actual market data.
Calibration to the dummy cap prices resulted in the following parameters:

a = 0.796545671517210, b = 0.985476920923802,

σ = 0.293508841864317, η = 0.345431709490712

ρ = −0.998852525708897.
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The CDS data consists of senior2 and subordinated CDS MID-quotes of the
reinsurance company Munich Re. It was retrieved from the Thomson Reuters
Datastream. MID-quotes are the mean of the bid and the ask CDS quotes.
As mentioned in Chapter 5.2, when speaking of CDS-quotes, one always
refers to the CDS forward rate R0,b(0), where b is the maturity, which in this
case ranges from half a year to 30 years and can be seen in Table 5.2.

Maturity (years) Munich Re senior Munich Re subordinated
0.5 2.57 18.59
1 6.61 22.45
2 11.63 33.92
3 17.46999 45.39
4 22.50999 60.62999
5 28.37999 74.28
7 41.23999 94.09999
10 51.37999 108.79
20 62.53999 124.9
30 66.00999 129.84

Table 5.2: Senior and subordinated CDS MID-quotes (basis points) of Mu-
nich Re on July 31st, 2017 (Source: Thomson Reuters Datastream).

Since senior debt has priority over subordinated debt, senior CDS quotes are
much lower. Survival probabilities can now be stripped from the given CDS
quotes as described at the end of Chapter 5.2. The recovery rate, Rec = 1−L,
for senior CDS is assumed to be 40 percent, which is also used by [6] and
according to [19] is the standard value. The standard value for the recovery
rate of subordinated CDS is 20 percent. The results are shown in Figure
5.1(a) and Figure 5.1(b).
The survival probabilities might seem low for a solid company like Munich
Re and it might seem odd to have different survival probabilities for the
same company. The reason for this is, that the event of default does not just
comprise bankruptcy or liquidation, but all events of default specified in the
CDS contract. Those contractual default events can range from bankruptcy

2In case of default, so-called senior debt has priority over so-called subordinated debt,
i.e., it is paid first when a company is bankrupt or liquitated.
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to mere delayed repayment. Therefore, those survival probabilities should be
interpreted as the likelihood of the occurrence of a default event within the
specific CDS contract from which they were stripped.
The next step is to calibrate the data to a CIR++ process with the param-
eter vector β = {k, θ, ν, z0}, such that Ψ(t) :=

∫ T
0 ψ(s; β)ds is positive and

increasing, and such that it minimizes
∫ T

0 ψ(s; β)2ds, as described in Chapter
5.3.1. The parameters were calibrated to the senior CDS quotes using the
Matlab function fmincon, which determines the minimum of a constrained
non-linear multi-variable function, and resulted in the parameters

k = 0.051494646843855, θ = 0.013409534075701,

ν = 0.022655209530356, z0 = 1.031332641842782× 10−4.

It is worth noting, that in this case, the Feller condition is just barely sat-
isfied. However, even if the calibration results violated the Feller condition,
the resulting CIR++ process would still be strictly positive, because the
calibration procedure makes sure that the shift is strictly positive. The cor-
responding shift ψ and integrated shift Ψ are shown in Figure 5.2 and a
sample path of the resulting CIR++ process as well as its underlying CIR
process in Figure 5.3. To avoid confusion, notice that those two figures fea-
ture different end points on the right of the time axis. As one can see, the
CIR++ process reaches values up to 1, 5%, which in the current interest rate
environment can be considered quite a large spread.
Since both the G2++ process and the CIR++ process are now fully specified,
one can compare the risk-free rate r(t) with the interest rate with added
spread r(t) + λQ(t), which is used for discounting in the defaultable case.
Figure 5.4 shows a sample path of this scenario. As already mentioned, the
spread is not insignificant, but the G2++ path is still not suitable for any
kind of interpretation, since dummy cap prices were used for the calibration.

Using (5.3.4) yields a zero-recovery defaultable bond price term-structure,
which is shown in Figure 5.5 compared to the risk-free bond curve obtained
corresponding to the risk free term-structure. As expected, the defaultable
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bond prices are always lower than the default-free ones, since (survival) prob-
abilities are always less than or equal to one. As bond prices correspond to
discount factors, values greater than one might seem unusual. However, this
is explained by the negative interest rates for shorter maturities in the yield
curve seen in Figure 2.1.



Chapter 6

Conclusion

In the course of this thesis, the world of interest rate models was explored.
The basics of interest rate theory and the historically important models of
Vasicek, of Cox, Ingersoll & Ross, and of Hull& White as well as extensions
to fit the currently observed term-structure, like the CIR++, were examined
in a brief and compact fashion.
Due to the inability of one-factor models to address correlation between in-
terest rates of different maturities, the two-factor G2++ model developed
by Brigo & Mercurio in [5, 2001], consisting of two correlated stochastic
processes and a deterministic shift to fit the current term-structure, was
analysed in detail. Pricing formulas for interest rate derivatives were derived
and methods for calibration to the market presented and implemented. One
of the lessons learned in that context was, unfortunately, that it can prove
to be very difficult to obtain the relevant market data in some cases.
Finally, the risk of default was incorporated in the form of an intensity-based
approach, where a stochastic intensity process is assumed to drive the default
probability. The stochastic setup within which the assumptions were made
was fairly simple. The more interesting it was to see, that a lot of theory
developed for interest rates turned out to be very useful also in the presence
of default risk. For example, assuming zero recovery, the defaultable bond
prices are simply the product of the risk-less bond prices and the survival
probability of the bond issuer, if the interest rate and the intensity processes
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are assumed to be uncorrelated, which is a very intuitive result.
Somewhat surprising was the fact that calibrating a model to the market is
not always as straightforward as one might think. In the interest rate case,
the calibration procedure makes perfect sense, since market data is used
without any additional assumptions, even if different data then presented in
this thesis needs to be used in the current market environment due to Black
cap volatilities often not being quoted. However, in the intensity process
case, where the CIR++ model was chosen, the calibration procedure seems
somewhat heuristic. On the one hand, intensities need to be assumed to be
deterministic (piecewise constant or piecewise linear) in order to even fit the
stochastic intensity model to the CDS-quotes observed on the market. On
the other hand, as there is a lack of liquidity in additional market data such
as CDS-options, their is no real possibility to calibrate the parameters in
a straightforward way, which leads to procedures seeming to be somewhat
arbitrary. This poses the question, if this is all there is, or if the proprietary
models developed and used by big financial institutions around the world
contain more sophisticated approaches.



Appendix A

Stochastic differential equations

In the appendix some results about the existence and uniqueness of solutions
of time-homogeneous diffusion processes are going to be stated. In the course
of the constructive proof, it will also be verified that the Euler-Maruyama
method has order of convergence 1

2 . Lastly, the positivity of a CIR process
fulfilling the Feller condition is going to be shown. The appendix is closely
following [26], though not all proofs are going to be carried out in full detail.
For further reading on the topic [28, Chapter 5] is recommended, which
uses the same arguments to proof uniqueness, but a different approach for
existence.
Let (Ω,A,F ,P) be a filtered probability space, where the filtration F satisfies
the usual conditions and let W be a d-dimensional Brownian motion w.r.t.
to this probability space. Consider the stochastic differential equation (SDE)

dX(t) = µ(Xt)dt+ σ(Xt)dW (t), X0 = Z. (A.0.1)

µ : Rk → Rk and σ : Rk → Rk×d are continuous functions and Z is a k-
dimensional, F0-measurable random vector. A process X, which is adapted
to the natural filtration generated by W and fulfils

X(t) = Z +
∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dW (s) ∀t ≥ 0, (A.0.2)
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is called strong solution of the SDE (A.0.1). The following theorem states
necessary conditions for the existence and uniqueness of such a solution.

Theorem A.0.1. If there is a scalar K such that µ and σ satisfy

|µ(x)− µ(y)| < K|x− y|, |σ(x)− σ(y)| < K|x− y| ∀x, y ∈ Rk, (A.0.3)

i.e., µ and σ are Lipschitz, and E[|Z|2] <∞ holds, then there exists a strong
solution X to (A.0.1) (up to stochastic indistinguishability). Additionally,
E[sup0≤s≤t |Xs| <∞] holds.

Proof. Let πn = {0 = tn0 < · · · < tnkn = T} be a partition of the interval
[0, T ] with norm ||πn|| = sup1≤l≤kn |tnl − tnl−1|. The Euler-Maruyama method
for numerically solving SDEs is defined by

Xn
0 := Z

Xn
t := Xn

tn
k

+ µ(Xn
tn
k
)(t− tnk) + σ(Xn

tn
k
)(Wt −Wtn

k
), (tnk < t ≤ tnk+1).

(A.0.4)

Since all the expressions in the definition are continuous and adapted, Xn is
as well. For t ∈ [tnk , tnk+1), let ηn(t) := tnk be the left end point of the interval.
Then, by definition of the stochastic integral, (A.0.4) can be rewritten as

Xn
t := Z +

∫ t

0
µ(Xn

ηn(u))du+
∫ t

0
σ(Xn

ηn(u))dW (u), 0 ≤ t ≤ T.

Let L2
T := {X|X is adapted, continuous and ||X||T < ∞} and ||X||T :=√

E[supt≤T |Xt|2]. It can be shown that (L2
T , ||X||T ) is a complete normed

space, so that it is sufficient to prove that (Xn)n≥1 is a Cauchy sequence,
which converges to a solution of (A.0.2) as ||πn|| goes to zero. The following
three inequalities are needed:

||Xn||T ≤ C1(T ), (A.0.5)

E
[
|Xn

t −Xn
ηn(t)|2

]
≤ C2(T )||πn|| ∀t ≤ T, (A.0.6)

||Xn −Xm||T ≤ C3(T )
√

(||πn||+ ||πm||), (A.0.7)
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where Ck(T ), k = 1, 2, 3 are constants only depending on T, µ, σ and Z. The
details of their derivations are omitted, but it should be mentioned that the
ingredients include Cauchy’s inequality, Doob’s martingale inequality, the
Itô isometry, Gronwall’s Lemma1 as well as the fact that global Lipschitz
continuity implies at most linear growth. (A.0.5) implies that Xn is in LT2

and (A.0.7) that it is a Cauchy sequence w.r.t. the norm ||X||T . Since
(L2

T , ||X||T ) is complete, Xn converges to a limit process X ∈ L2
T . It is going

to be shown that X fulfils SDE (A.0.2). The same ingredients as above as
well as the inequality (x+ y)2 ≤ 2(x2 + y2) are used to justify the following
steps:

E
[
sup
t≤T
|Xt − Z −

∫ t

0
µ(Xs)ds−

∫ t

0
σ(Xs)dW (s)|2

]

≤ E
[
sup
t≤T

(
|Xt −Xn|+ |Xn + Z −

∫ t

0
µ(Xs)ds−

∫ t

0
σ(Xs)dW (s)|

)2]

≤ E
[
sup
t≤T

2|Xt −Xn|2 + 2|Xn + Z −
∫ t

0
µ(Xs)ds−

∫ t

0
σ(Xs)dW (s)|2

]

≤ 2||X −Xn||2T + 2E
[
sup
t≤T
|
∫ t

0
µ(Xn

ηn(s))− µ(Xs)ds+
∫ t

0
σ(Xn

ηn(s))− σ(Xs)dW (s)|2
]

≤ 2||X −Xn||2T + 4E
[
sup
t≤T
|
∫ t

0
µ(Xn

ηn(s))− µ(Xs)ds|2 + |
∫ t

0
σ(Xn

ηn(s))− σ(Xs)dW (s)|2
]

≤ 2||X −Xn||2T + 4
(
E
[
T
∫ T

0
|µ(Xn

ηn(s))− µ(Xs)|2ds
]

+ 4E
[∫ T

0
|σ(Xn

ηn(s))− σ(Xs)|2ds
])

≤ 2||X −Xn||2T + 4(T + 4)K2
∫ T

0
E
[
|Xn

ηn(s) −Xs|2
]
ds

≤ 2||X −Xn||2T + 4(T + 4)K2TC2(T )||πn||.

Because of (A.0.6) and Xn converging to X, the right-hand side goes to zero
as ||πn|| goes to zero, which concludes the proof of the existence of a strong
solution. Letting ||πm|| go to zero in (A.0.7) shows that the Euler-Maruyama
method converges with order 1

2 .
Uniqueness is shown in a similar way. Assume X and X ′ to be two different

1Gronwall’s Lemma states: If f : [0, T ] → R is continuous and f(t) ≤ a + b
∫ t

0 f(u)du
holds for some a, b ∈ R and all t ≤ T , then f(t) ≤ aebt also holds.
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solutions to (A.0.2). Then, by the same methods as above,

||X −X ′||2t ≤ (2T + 8)K2
∫ t

0
||X −X ′||2udu,

holds. Applying Gronwall’s Lemma yields ||X − X ′||T = 0 and therefore
X = X ′, which proves the uniqueness of the solution.

Consider now a CIR-process

dr(t) = k(θ − r(t))dt+ σ
√
|r(t)|dW (t), r(0) = r0,

with r0, k, θ, σ > 0, where W (t) is a Brownian motion w.r.t. to (P,Ft). Since
µ(r) = k(θ−r) is Lipschitz continuous and σ(r) = σ

√
|r| fulfils |σ(x)−σ(y)| ≤

K max(|x − y|1/2, |x − y|), there exists a unique solution to the SDE above
(this result can be proven in a similar, yet slightly more complicated way
than A.0.1). To show non-negativity of the solution as well as positivity in
case of 2kθ > σ2, some further results of stochastic calculus are needed.

Theorem A.0.2 (Without proof). Let X be a squared Bessel process of
dimension ν ∈ R, i.e., the unique strong solution of the following SDE:

dXt = νdt+ 2
√
|Xt|dWt X0 = x0,

where x0 ∈ R and W is a one-dimensional Brownian motion. Then, if
x0 ≥ 0:

(i) If γ ≥ 0, then X ≥ 0.
(ii) If γ ≥ 2, then X > 0.

almost surely holds.

Theorem A.0.3. Let r be a CIR process and τ(t) = σ2

4k (ekt − 1) a time-
transformation. Then, r(t) = e−ktYτ(t), where Y is a squared Bessel process
of dimension ν = 4kθ

σ2 .
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Proof. Let Ut = ektr(t) and Yt := Uτ−1(t), where τ−1(t) = 1
k

ln(1 + 4k
σ2 t) is the

inverse time transformation to τ(t). Itô’s formula yields:

dUt = kUtdt+ ektdr(t) = kUtdt+ ekt(k(θ − r(t))dt+ σ
√
|r(t)|dW (t))

= ektkθdt+ σ
√
ekt|Ut|dW (t).

Since Y0 = U0,

Yt = Y0 + kθ
∫ τ−1(t)

0
eksds+ σ

∫ τ−1(t)

0

√
eks|Us|dW (s).

The first integral is a standard Riemann integral with value θ(ekτ−1(t)− 1) =
νt. Using the stochastic substitution rule 2 with the substitution s = τ−1(u)
leads to

σ
∫ τ−1(t)

0

√
eks|Us|dW (s) = σ

∫ t

0

√
ekτ−1(u)|Yu|

√
(τ−1)′(u)dW ∗(u)

= σ
∫ t

0

√√√√u(1 + 4k
σ2

)
|Yu|

2
σ

√√√√ 1(
1 + 4k

σ2

)
u
dW ∗(u)

= 2
∫ t

0

√
|Yu|dW ∗(u)

Combining both shows that

dYt = νdt+ 2
√
|Yt|dW ∗(t),

i.e., Y is a Bessel process of dimension ν > 0. Further, e−ktYτ(t) = e−ktUt =
r(t), which proves the claim.

Since r0 > 0 by definition, Theorem A.0.3(i) implies that the CIR process is
automatically non-negative. If further 2kθ > σ2, then ν = 4kθ

σ2 > 2, so that
2Let τ be a differentiable deterministic time transformation with positive derivative

and Y an integrable stochastic process. Then, there exists a Brownian motion W ∗ (w.r.t
to the time-transformed filtration F∗), such that the following holds:∫ τ(t)

0
YsdWs =

∫ t

0
Yτ(t)

√
τ ′(u)dW ∗(u),
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TheoremA.0.3(ii) implies positivity of a CIR process satisfying the Feller
condition.
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