
Hybrid Edge Computing

Enable Processing of Sensitive Data in Mobile Edge
Computing Scenarios

Andreas Reiter

Dipl.-Ing. Andreas Reiter Bakk.techn.

Hybrid Edge Computing

Enable Processing of Sensitive Data in Mobile Edge
Computing Scenarios

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Institute of Applied Information Processing and Communications

Faculty of Computer Science and Biomedical Engineering

Graz, September 2017

Dipl.-Ing. Andreas Reiter Bakk.techn.

Hybrid Edge Computing

Enable Processing of Sensitive Data in Mobile Edge
Computing Scenarios

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht an der

Technischen Universität Graz

Betreuer

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie

Fakultät für Informatik und Biomedizinische Technik

Graz, September 2017

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe.

Abstract

In recent years, mobile-device distribution was skyrocketing, even with multiple devices per user.
Mobile devices are equipped with increasingly powerful hardware components, also enabling execution
of computationally intensive applications. However, it turns out that battery development cannot keep up
with the developments of the semiconductor industry. This leaves users in the situation that they need to
recharge their devices multiple times a day if utilising the devices’ full potentials.

It is a well accepted and proven fact that offloading computations can help in saving energy and
even have positive impacts on the overall performance. Existing, well-established solutions to this prob-
lem force mobile devices and applications into rigid structures without considering or reacting to their
environmental parameters. State-of-the-art solutions at least try to add dynamic mechanisms on the appli-
cation side but remain static on the server side. Furthermore, it turns out that data security and protecting
users’ privacy only play minor roles in existing approaches. Therefore, whole groups of users, with strict
security requirements are unable to make use of offloading technologies.

This thesis removes these restrictions. A threat model serves as a solid foundation to identify se-
curity gaps and misconceptions in existing offloading frameworks and approaches. The first impression
that existing frameworks do not consider data security aspects can be confirmed. Currently established
models are unable to provide the mandatory security properties. The findings of these research results
in the main contribution of this thesis - a novel mobile-first processing model: Hybrid Mobile Edge
Computing (HMEC). The model breaks with centralised structures and enables offloading to different
devices, using different communication technologies, without relying on single management endpoints.
It enables a continuous operation and high degree of fail-safety. Still, the data controllers remain in full
control of their data.

The security concepts of HMEC are built on solid foundations. The author of this thesis was in
charge of leading research and development of a data security governance model targeted at federated
cloud environments as part of the EU SUNFISH project. Due to structural and functional commonalities
of federated cloud environments and mobile cloud computing processing models, it was self-evident to
transform relevant parts of the governance architecture to the mobile world. Therefore, the overall HMEC
processing model as well as the security concepts were validated by broadly exposing and presenting
them to relevant scientific communities. The transformation and adaptation of federated cloud computing
concepts allows to reuse already existing infrastructures and knowledge, XACML as a de-facto standard
in data security policy languages is just one example. The proposed models and implementations are
backed by thorough evaluations targeting the energy- and performance-saving effects as well as security
aspects.

Summarising, the HMEC processing model enables computational offloading where sensitive data
is involved. Still, data controllers remain in full control of their data and involved workflows. This
solid security foundation qualifies the model to act as a baseline for future developments in the sector of
mobile cloud computing.

Kurzfassung

Aktuelle Entwicklungen im Bereich von Mobile Computing werden von der immer weiteren Ver-
breitung von mobilen Geräten vorangetrieben. Mobile Geräte werden von Jahr zu Jahr leistungsfähiger
und sind mittlerweile sogar in der Lage Applikationen mit hohen CPU Anforderungen auszuführen. Es
hat sich jedoch gezeigt, dass die Entwicklungen am Akkusektor langsamer voranschreiten, als die Ent-
wicklung der restlichen Hardware. Unter Volllast hat die Hardware einen steigenden Energiebedarf, der
von den verbauten Energiequellen nicht bereitgestellt werden kann. Dies versetzt die Benutzer in die
Lage, dass ihre mobilen Geräte mehrfach täglich neu geladen werden müssen, wenn die gesamte Palette
der verfügbaren Funktionalität ausgereizt wird.

Um dem entgegen zu wirken wurde das Computational Offloading entwickelt, das dazu beiträgt
Energie zu sparen und sogar die Performance verbessert. Bestehende Systeme wenden allerdings sehr
starre Lösungsansätze an, ohne Umgebungsparameter miteinzubeziehen. Der letzte Stand der Technik
ermöglicht zumindest Clientseitige dynamische Entscheidungen, führt diesen Ansatz auf der Gegenseite
aber nicht fort. Das größte Manko zeichnet sich aber im Bereich der Datensicherheit und des Schutzes
der Privatsphäre von Benutzern ab. Diese Aspekte spielen derzeit nur eine untergeordnete Rolle. Dieses
Vorgehen schließt ganze Benutzergruppen, die großen Wert auf Datensicherheit legen, aus.

Das Ziel dieser Arbeit ist es, die aktuell sehr limitierende Situation erheblich zu verbessen. Als
Ausgangspunkt fungiert eine fundierte Bedrohungsanalyse mit dem Fokus auf die Mobile Computing
Domäne um Schwachstellen in bestehenden Systemen aufzudecken. Die anfänglichen Befürchtungen,
dass bestehende Lösungen Aspekte der Datensicherheit nicht berücksichtigen wurden dadurch bestätigt.
Bestehende Ansätze sind nicht in der Lage die gewünschten sicherheitsrelevanten Eigenschaften bereit-
zustellen. Dies resultiert im Hauptbeitrag dieser Arbeit - ein neuartiges Ausführungsmodell, ausgerichtet
auf mobile Applikationen: Hybrid Mobile Edge Computing (HMEC). In diesem Modell werden Bezüge
zu zentralen Komponenten vermieden. Aufgaben können auf verschiedenste Geräte unter Verwendung
von unterschiedlichen Kommunikationstechnologien ausgelagert werden, ohne dabei auf zentrale Ver-
waltungskomponenten angewiesen zu sein. Dies ermöglicht einen durchgehenden Betrieb und erhöht die
Fehlersicherheit erheblich.

Die Sicherheitskonzepte des HMEC Modells bauen auf einer soliden Basis auf. Der Verfasser dieser
Arbeit war federführend bei Forschung und Entwicklung eines ”Data Security Governance Models“ für
föderierte Cloudumgebungen als Teil des EU SUNFISH Projekts. Durch strukturelle und funktionelle
Gemeinsamkeiten der föderierten Cloudumgebung und des HMEC Modells, war es naheliegend relevan-
te Teile des föderierten Cloudansatzen in die mobile Welt zu transferieren. Die solide Basis, aber auch das
transferierte Modell, wurde daher einer breiten wissenschaftlichen Diskussion unterzogen. Außerdem
erlaubt die Transformation des Modells die Wiederverwendbarkeit von bereits bestehenden Infrastruktu-
ren, sowie von bereits breit verfügbarem Wissen. XACML, als quasi Standard bezüglich Data Security
Policy Languages ist hierbei nur ein Beispiel. Die entwickelten Modelle und Umsetzungen werden durch
eine gründliche Evaluierung bezüglich Verbesserungen im Energieverbrauch, Performancesteigerungen,
aber auch mit Blick auf Sicherheitsaspekte untermauert.

Das HMEC Modell, als Resultat dieser Arbeit, erlaubt es somit rechenintensive Aufgaben auszula-
gern, auch wenn sensible Daten involviert sind. Die Datenverantwortlichen behalten die volle Kontrolle
über ihre Daten, sowie die involvierten Workflows. Die solide Basis des Modells, auch in Bezug auf
Sicherheitsaspekte, qualifiziert das Modell um auch für zukünftige Entwicklungen im Mobile Cloud
Computing Bereich als solider Unterbau herangezogen zu werden.

Contents

Contents iv

List of Figures vi

List of Tables vii

List of Listings ix

I Problem Definition 1

1 Introduction 3

1.1 Motivation . 3

1.2 Methodology . 4

1.3 Contribution . 6

1.4 Outline . 7

2 Cloud Computing and Related Concepts 9

2.1 Grid Computing . 9

2.2 Cloud Computing . 11

2.3 Mobile Edge Computing . 13

2.4 Chapter Conclusions . 16

3 The Evolution of Hybrid Mobile Edge Computing 17

3.1 Cyber Foraging . 17

3.2 Mobile Cloud Computing (MCC) . 19

3.3 Hybrid Mobile Edge Computing (HMEC) . 20

3.4 Verifiable Computing . 21

4 Part I Conclusions 23

i

II A Security Assessment Framework for (Hybrid) Mobile Cloud/Edge Computing
Frameworks 25

5 Existing (H)MCC Frameworks 27

5.1 MAUI . 28

5.2 CloneCloud . 29

5.3 Cuckoo . 30

5.4 ThinkAir . 32

5.5 TANGO . 33

5.6 mCloud . 34

5.7 Chapter Conclusions . 35

6 Security Assessment 37

6.1 Security Assessment Catalogue . 37

6.1.1 Assets and Threats . 37

6.1.2 Security Requirements . 39

6.2 Evaluation of Existing Frameworks . 42

6.2.1 R1 - Access Control . 42

6.2.2 R2 - No single-points-of-failure . 42

6.2.3 R3 - Usage of multiple communication technologies 43

6.2.4 R4 - Resource’s integrity assurance on technical level 43

6.2.5 R5 - Complete task isolation . 43

6.2.6 R6 - Non-repudiation . 44

6.2.7 R7 - Protection against resource over-consumption 44

7 Part II Conclusions 45

III A Novel HMEC Approach 47

8 A Re-usable HMEC Architecture and Solution 49

8.1 Current Approaches . 50

8.1.1 Partitioning Models . 50

8.1.2 Offloading Techniques . 51

8.1.3 Current Architectures . 52

8.2 Design Principles . 54

8.3 Evolved Flexible Architecture . 55

8.3.1 Client Architecture . 56

8.3.2 Server Architecture . 59

8.3.3 Flexible Network Infrastructure . 62

8.4 Chapter Conclusions . 66

ii

9 Implementation 67
9.1 Operation Environment . 68
9.2 Offloading Framework . 69

9.2.1 Implementation-focused Architecture . 70
9.2.2 POWER - A Dart-based Offloading Framework 73
9.2.3 Compile-Time Transformer . 76
9.2.4 Repositories . 77
9.2.5 Communication Technologies . 77

9.2.5.1 Decentralized Peer-to-Peer Framework in Web Environments 78
9.2.5.2 Super Node-based Peer-to-Peer Framework 79

9.2.6 Isolation . 81
9.2.6.1 Isolation on Mobile Devices . 81
9.2.6.2 Isolation on Dedicated Computing Units 82

9.2.7 Realisation . 82
9.3 Framework Evaluations . 84

9.3.1 Test Setup . 85
9.3.2 Energy Consumption Evaluations . 86
9.3.3 Performance Impact Evaluations . 87

9.4 Chapter Conclusions . 90

10 Part III Conclusions 91

IV Trust, Security and Privacy 93

11 Processing Sensitive Data 95
11.1 Extensible Access Control Markup Language and Enforcement (XACML) 96

11.1.1 Policy Language . 96
11.1.2 Enforcement Model . 98

11.2 SUNFISH Data Security Approaches . 100
11.3 Chapter Conclusions . 102

12 Enable HMEC to Operate on Sensitive Data 103
12.1 Enhancing the Enforcement Infrastructure . 103

12.1.1 Requirements on the Policy Language and Evaluation Infrastructure 104
12.1.2 HMEC Tailored Policy Language . 105

12.1.2.1 R 1 - Flexible Specification of Targeted Input Data 105
12.1.2.2 R 2 - Allowed Offloading Targets . 106
12.1.2.3 R 3 - Evaluation Result Caching . 108
12.1.2.4 HMEC Optimisations . 109
12.1.2.5 R 4 - Cryptographic Binding to Trusted Policy Decision Infrastructures 112

12.1.3 Device Attestation Methods . 113
12.1.3.1 MDM- and Certificate-based Solutions 113
12.1.3.2 Google Safetynet-based Solution . 115

iii

12.1.3.3 Intel SGX-based Solution . 117

12.2 Trust Model . 119

12.3 Implementation . 121

12.3.1 Enrolment Process . 121

12.3.2 Policy-aware Annotation . 122

12.4 Performance Evaluation . 124

12.4.1 Policy Evaluation Performance at the PDP . 124

12.4.2 Policy Caching Performance Evaluation . 126

12.5 European General Data Protection Regulation . 127

12.6 Example Scenario: Applications Operating on Personal Data 130

12.6.1 Image Processing Application . 130

12.6.2 Structured Data Processing Application . 132

12.7 Chapter Conclusions . 134

13 Conclusions and Future Work 135

V Appendices 137

A Peer-to-Peer Networks 139

Bibliography 141

iv

List of Figures

1.1 Overview of the followed methodology . 5

2.1 NIST cloud computing reference architecture [Lui et al., 2011] 12
2.2 Fog computing overview [Luan et al., 2016] . 14
2.3 High-level MEC architecture . 15

3.1 Research areas in the pervasive computing domain [Satyanarayanan, 2001] 18
3.2 Mobile Cloud Computing overview . 19
3.3 Hybrid Mobile Edge Computing overview [Reiter, Prünster and Zefferer, 2017] 20

5.1 MAUI highlevel architecture [Cuervo et al., 2010] . 29
5.2 CloneCloud highlevel architecture [Chun et al., 2011] 30
5.3 Cuckoo model [Kemp et al., 2012] . 32
5.4 ThinkAir architecture overview [Kosta et al., 2012] . 33
5.5 mCloud overview [Zhou et al., 2015] . 34

8.1 Current Mobile Cloud Computing (MCC) Architectures 53
8.2 Profiler enhancements . 56
8.3 Decision subsystem enhancements . 57
8.4 Offloading integration enhancements . 58
8.5 Background computing unit discovery . 58
8.6 Proposed evolved and flexible client-side architecture 59
8.7 Server architecture starting point . 60
8.8 Hypervisor and cost model for the server side . 60
8.9 Hypervisor and cost model for the server side . 61
8.10 Sandboxed execution environment . 61
8.11 Application repositories . 62
8.12 Proposed evolved and flexible server-side architecture 62
8.13 Client-Server communication . 63
8.14 Client-Cloud communication . 63
8.15 Schematic peer-to-peer communication . 64

9.1 Consolidated client and server architecture . 69
9.2 Implementation architecture . 71
9.3 Resource discovery and assessment background task 72

v

9.4 Dart event loop . 74

9.5 Illustration of unmodified and modified execution flows 74

9.6 Sequence diagram of the offloading process . 75

9.7 WebRTC concept [Reiter and Zefferer, 2016] . 78

9.8 Super node based Peer-to-Peer (P2P) framework approach 80

9.9 Decentralised coordination network deployment . 81

9.10 POWER-server mode on Android in application mode 83

9.11 POWER-server mode on Windows in browser mode . 84

9.12 POWER-enabled application on Android in application mode 84

9.13 POWER-enabled application on Windows in application mode 85

9.14 Energy consumption and performance impact test setup [Reiter and Zefferer, 2016] . . . 86

9.15 Energy consumption evaluation using the performance profile stacked by component [Re-
iter and Zefferer, 2016] . 87

9.16 Energy consumption evaluation using the energy saving profile stacked by compon-
ent [Reiter and Zefferer, 2016] . 88

9.17 Raytracer performance for rendering a 256 pixels by 256 pixels image [Reiter and Zef-
ferer, 2016] . 88

9.18 Raytracer performance for rendering a 512 pixels by 512 pixels image [Reiter and Zef-
ferer, 2016] . 89

9.19 PBKDF2 performance graph on logarithmic scale [Reiter and Zefferer, 2016] 90

11.1 XACML entities . 96

11.2 XACML enforcement data flows[OASIS, 2013] . 99

11.3 SUNFISH enforcement model . 100

11.4 SUNFISH example interaction . 101

12.1 XACML integration into HMEC frameworks . 104

12.2 MDM overview, based on the work of Rhee et al. [2013] 114

12.3 HMEC MDM integration . 115

12.4 HMEC SafetyNet integration . 116

12.5 Typical SGX remote attestation flow . 118

12.6 Trust model . 119

12.7 Sequence diagram of the offloading process . 123

12.8 Policy evaluation test setup . 125

12.9 XACML policy evaluation performance . 127

A.1 Concept of structured P2P networks based on distributed hash tables [Reiter, 2015] . . . 140

vi

List of Tables

2.1 NIST Cloud Computing Reference Architecture actor definition [Lui et al., 2011] 13

2.2 Key differences of cloud- and edge computing [Luan et al., 2016] 14

5.1 Distribution of Android platform versions [Google, 2017] 31

6.1 Threat-Asset assignment . 40

6.2 Requirement-Threat assignment . 41

6.3 Security requirements evaluation of existing frameworks 44

8.1 Overview of utilised offloading technique of the analysed frameworks 52

8.2 Requirements coverage on architectural level . 66

9.1 Realised capabilities of provided implementation . 83

12.1 XACML policy evaluation performance results . 126

12.2 Average evaluation time of a single cached policy in milliseconds 128

vii

viii

List of Listings

8.1 Typical route between two hosts on the Internet . 64
9.1 Applying the marker attribute to a method . 73
9.2 Result after parsing and processing the marker attribute 77
9.3 HTML iframe syntax . 81
9.4 HTML File API usage . 82
11.1 XACML sample policy . 97
12.1 XACML target matching on a specific attribute value 106
12.2 XACML obligation specifying no trust related requirements 106
12.3 XACML obligation specifying specific nodes to be used for execution 107
12.4 Example data structure containing sensitive data . 107
12.5 XACML obligation specifying a masking operation . 108
12.6 XACML obligation specifying a time-based validity constraint 108
12.7 XACML obligation specifying a content-based validity constraint 109
12.8 XACML attribute represenation in XML [OASIS, 2014] 110
12.9 XACML attribute representation in JSON [OASIS, 2014] 110
12.10Use case specific decision request language . 111
12.11Use case specific decision response language . 111
12.12JWT structure . 112
12.13Illustration of the signed JSON Web Token (JWT) response 113
12.14Basic offloading framework annotation . 122
12.15Policy-aware annotation . 122
12.16Image processing application - method elibigle for offloading 131
12.17Image processing application - policy-aware annotation 131
12.18Data processing application - XACML policy to restrict execution to explicitly trusted

nodes . 131
12.19Data processing application - data structure . 132
12.20Data processing application - XACML policy to evict unnecessary data 133

ix

x

List of Acronyms

ABAC Attribute-based Access Control

AFS Andrew File System

BYOD Bring Your Own Device

CC Cloud Computing

DFS Distributed File System

DHT Distributed Hash Table

DTS Data Transformation Services

ETSI European Telecommunications Standards Institute

GDPR General Data Protection Regulation

GPFS General Parallel File System

HMCC Hybrid Mobile Cloud Computing

HMEC Hybrid Mobile Edge Computing

IaaS Infrastructure-as-a-Service

ICE Interactive Connectivity Establishment

IPC Inter-process Communication

JSON JavaScript Object Notation

JWT JSON Web Token

LTE Long Term Evolution

MAC Message Authentication Code

MCC Mobile Cloud Computing

MDM Mobile Device Management

MEC Mobile Edge Computing

NAT Network Address Translation

NFS Network File System

NIST National Institute of Standards and Technology

xi

P2P Peer-to-Peer

PaaS Platform-as-a-Service

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PRP Policy Retrieval Point

QoS Quality of Service

RAN Radio Access Network

RBAC Role-based Access Control

RTT Round-trip-time

SaaS Software-as-a-Service

SGX Software Guard Extensions

STUN Session Traversal Utilities for NAT

TLS Transport Layer Security

TURN Traversal Using Relay NAT

UMTS Universal Mobile Telecommunication System

WebRTC Web Real-Time Communication

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

xii

Part I

Problem Definition

1

Chapter 1

Introduction

Decades ago, IT outsourcing was big business [J.-n. Lee et al., 2003]. In the early days, outsourcing was
realised using time-sharing and processing services. At this time computers were large and maintenance
intensive. Therefore, the operation was left to service bureaus, system houses, or other professional firms.
With the introduction of affordable personal computers, the outsourcing business vanished and shifted to
vertical integration approaches. Since then, IT was considered an in-house function. Each organisation
operated their information systems based on standard equipment available in the market but assembled
to customised environments. Later, outsourcing was revitalised, but not for contract programming or
specific services. The outsourcing industry shifted to system integrations including complex technolo-
gies like network management and communications, covering the whole operation of on-site facilities
including IT personnel. These outsourcing technologies evolved over the recent years and resulted in
completely outsourced corporations and environments with the ability to scale their computing resources
dynamically according to the current needs.

These approaches and technologies are focussed on corporations and service providers to offer seam-
less operations and scalability for services. The users’ needs are only considered second. Especially with
massive mobile device usage, feature rich and computationally intensive mobile applications, users de-
mand long battery lifetime and seamless operation, regardless of their current environment. This requires
dynamically adapting approaches, which makes use of different computing resource types.

This thesis develops approaches to achieve the same advantages as corporations have today to out-
source their IT infrastructure and services but for mobile device users. New mobile application execution
models are developed and evaluated with a strong focus on data security. In this chapter, the motivation
and methodology followed by this thesis are described, as well as a detailed view on the contributions
and structure of the document is provided.

1.1 Motivation

In the recent years, the usage of mobile devices, such as smartphones and tablets, outperformed the usage
of desktop computers. Classic desktop computer applications are migrated to mobile device applications
with heavy impacts on user experience and data security. Today, two major approaches are used to
migrate applications.

1. On-device execution: Applications are developed with a majority of their application logic in the
application package, executed on the device. Certainly, applications will use external services and
will not operate isolated, but processing the input data is performed on the mobile device.

2. Cloud (-assisted) execution: Cloud computing acts as an enabling technology in the sector of
mobile computing. In cloud-assisted scenarios, applications are separated into parts executed in

3

4 1. Introduction

the cloud and parts executed locally. Well-defined interfaces enable a seamless interaction be-
tween those parts. A practical approach is to execute computationally intensive application parts
in the cloud and even increase the user experience on the mobile device, under optimal conditions.
Pushing this approach forward can give cloud computing even more responsibilities. In scenarios
where the cloud executes the whole application, mobile devices only act as thin clients displaying
the interfaces to the user and providing the relevant user input.

Both ways are obviously valid approaches to provide applications on mobile devices. Their practicability
depends on the application characteristics. The increasing available computational power of mobile
devices even enables computationally intensive applications to be executed on mobile devices with the
downside of decreasing battery lifetime. Coughlin [2015] provides an analysis of currently prevalent
energy sources for mobile devices and their evolution. The semiconductor’s price-performance ratio still
sticks to Moore’s law, battery performance and price, in contrast, does not improve at the same rate.
According to his analysis and estimations [Coughlin, 2015], energy density has been doubling every
ten years. Transistor density, in contrast, has been roughly doubling every 18 months. This situation
results in a clear gap between application migration to mobile devices with high computational and
energy demands, and the available battery technologies. The second approach, cloud-assisted execution,
eliminates these issue by outsourcing computations to cloud computing resources. This approach works
great under optimal environmental conditions but fails or decreases user experience in cases like:

• Low bandwidth connection conditions to the cloud computing resource.

• High latencies due to bad Internet connectivity.

• High roaming costs.

Existing approaches and corresponding frameworks provide valuable contributions but mostly fol-
low a static approach. They exclusively link devices to single computing resources, giving the mobile
device no chance to dynamically react to changing environments. Furthermore, the practicability is of-
ten hindered by lock-ins to specific platforms, operating systems, or operating system versions. More
flexible ways are required to provide the optimal experience for users and maintain their battery lifetime.
Due to their static nature, existing approaches and frameworks only considered data security second and
limit their contributions to pre-established trust relationships. Flexible systems are subject to greater
attack surfaces, and pre-establishing trust relationship is not a viable solution. Dynamic approaches are
required, also regarding data security to protect users’ data and computations.

1.2 Methodology

The foundation for yielding novel research results is a deep understanding of the state-of-the-art as well as
gaining awareness of research gaps. Concerning mobile cloud computing and related fields of research,
lots of valuable contributions are available. These researches mostly concern client-side techniques for
application analysis. The absence of data security considerations and dynamic approaches is striking.
To substantiate this observation a threat model is developed, covering the peculiarities of dynamically
executed mobile applications. The threat model acts as the foundation for the definition of security
requirements. It follows a well-established threat modelling approach defining the target of evaluation
with corresponding assumptions and identifying assets. Threat agents and threats are identified which
put the assets in danger. The result is a security requirement catalogue, which is evaluated against
a representative set of existing frameworks. This analysis confirms the first impression that existing
solutions do not focus on security related aspects. The catalogue enables to identify gaps in existing
architectures regarding security-awareness, also on a functional level.

1.2. Methodology 5

The identified gaps and an abstract architecture of current approaches serve as the baseline for re-
search activities to improve current models, closing the gaps and already considering data security on the
architectural level. The result of this research is a novel mobile-focused processing model: Hybrid Mo-
bile Edge Computing (HMEC). Using the security requirement catalogue as a foundation, data security
plays a major role during research on the HMEC processing model. The utilised systematic approach,
starting from analysing existing frameworks, identifying the gaps and creating a security requirements
catalogue, yields a thorough data security model. The potentials of the processing model are highlighted
and backed by a full-featured implementation, as well as corresponding evaluations. Technologies are
identified which enable a security-aware and efficient implementation. The author of this thesis was in
charge of leading research on a data security governance model for federated cloud environments in a
European project setup. This model is transferred to the mobile world and tightly integrated with the
HMEC processing model.

Part 4

Threat model

definition

Security requirements

definition

Analysis of existing

frameworks

Identification of gaps in

existing architectures

Development of evolved

architecture

Identification and analysis

of enabling technologies

Implementation and

evaluation

Development of models for

secure data processing

Implementation and

evaluation

Identification and analysis

of enabling technologies

Part 2

Part 3

Figure 1.1: Overview of the followed methodology

Figure 1.1 shows the structured process model and the dependencies between the performed actions.
Furthermore, the actions are arranged according to their affiliation to the parts in this thesis. The illus-
tration shows the abstract goal of this thesis: evolve current mobile cloud computing approaches and
enable a more dynamic usage, still increasing security-awareness to enable operation on sensitive data,
if required.

6 1. Introduction

1.3 Contribution

The research on the topics related to this thesis can be separated into two large clusters. The first cluster
considers mobile application execution models. A security assessment framework is developed, and ex-
isting approaches and frameworks are evaluated [Reiter and Zefferer, 2015a]. The identified flaws pave
the way and influence the development of new approaches and architectures in this regard [Reiter and
Zefferer, 2015b; Reiter and Zefferer, 2016]. Enabling technologies and possible extensions are scruti-
nised in [Reiter, 2015]. The security and trust related parts have a strong connection to the European
H2020 SUNFISH project. In this project, the current state-of-the-art regarding cloud federations is anal-
ysed, focusing on security aspects. Based on this analysis an information sharing governance model is
developed [Suzic and Reiter, 2016]. The findings of this model are successfully transformed from the
domain of federated clouds to the domain of mobile application execution in distributed and federated
environments [Reiter, 2017]. An additional security and impact analysis are performed for enabling
technologies [Reiter and Marsalek, 2017]. A complete view of the problem description together with
a sound solution, considering all relevant aspects from both clusters was published in [Reiter, Prünster,
and Zefferer, 2017].

In the following, a listing of relevant publications in chronological order is provided, all with sub-
stantial contribution to the topic:

Andreas Reiter [2015]. “Enabling Secure Communication over Existing Peer-to-Peer Frameworks”.
2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing
(2015), pages 575–582. ISSN 1066-6192. doi:10.1109/PDP.2015.10. http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=7092777

[Reiter, 2015]

Andreas Reiter and Thomas Zefferer [2015a]. “Paving the Way for Security in Cloud-Based Mobile
Augmentation Systems”. In: 3rd IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (IEEE Mobile Cloud 2015). 2015, pages 89–98. ISBN 978-1-4799-8977-5. doi:10.
1109/MobileCloud.2015.12. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7130873

[Reiter and Zefferer, 2015a]

Andreas Reiter and Thomas Zefferer [2015b]. “POWER: A cloud-based mobile augmentation approach
for web- and cross-platform applications”. 2015 IEEE 4th International Conference on Cloud Network-
ing, CloudNet 2015 (2015), pages 226–231. doi:10.1109/CloudNet.2015.7335313

[Reiter and Zefferer, 2015b]

Andreas Reiter and Thomas Zefferer [2016]. “Flexible and Secure Resource Sharing for Mobile Aug-
mentation Systems”. 2016 4th IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud) (2016), pages 31–40. doi:10 . 1109 / MobileCloud . 2016 . 8. http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474403

[Reiter and Zefferer, 2016]

Bojan Suzic and Andreas Reiter [2016]. “Towards Secure Collaboration in Federated Cloud Environ-
ments”. Workshop on Security, Privacy, and Identity Management in the Cloud (2016)

[Suzic and Reiter, 2016]

Andreas Reiter [2017]. “Secure Policy-based Device-to-Device Offloading for Mobile Applications”.
In: 32nd ACM Symposium on Applied Computing. In Press, 2017. ISBN 9781450344869

[Reiter, 2017]

http://worldcatlibraries.org/wcpa/issn/1066-6192
http://dx.doi.org/10.1109/PDP.2015.10
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7092777
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7092777
http://www.amazon.com/exec/obidos/ASIN/978-1-4799-8977-5/keithandrewshcic
http://dx.doi.org/10.1109/MobileCloud.2015.12
http://dx.doi.org/10.1109/MobileCloud.2015.12
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7130873
http://dx.doi.org/10.1109/CloudNet.2015.7335313
http://dx.doi.org/10.1109/MobileCloud.2016.8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474403
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474403
http://www.amazon.com/exec/obidos/ASIN/9781450344869/keithandrewshcic

1.4. Outline 7

Andreas Reiter and Alexander Marsalek [2017]. “WebRTC: Your Privacy is at Risk”. 32nd ACM Sym-
posium on Applied Computing In press (2017)

[Reiter and Marsalek, 2017]

Andreas Reiter, Bernd Prünster, and Thomas Zefferer [2017]. “Hybrid Mobile Edge Computing: Un-
leashing the Full Potential of Edge Computing in Mobile Device Use Cases”. In: 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid). In Press, 2017

[Reiter, Prünster, and Zefferer, 2017]

1.4 Outline

This thesis is structured according to the defined methodology and follows a bottom-up approach. The
thesis is structured in five major parts. Each part provides a considerable contribution, together forming
a sound picture.

Part I settles the scene for this thesis providing an overall problem description. Furthermore, relevant
baseline approaches, technologies, and mobile application execution models are described. On a tech-
nological level, grid computing is described as an enabling baseline technology and its development to
today’s prevalent cloud computing. Cloud computing is highlighted from a user’s point-of-view, focus-
ing on the service aspects of cloud computing. Additionally, a novel technology, mobile edge computing,
is introduced, targeted at the needs of today’s mobile device users. Besides the technological foundation,
mobile application execution models targeted at a flexible and dynamic execution of mobile execution
are considered and their weaknesses are highlighted. The first part is concluded with the proposal of an
extended execution model, focussed on mobile device users and taking into account all available baseline
technologies. Part I highlights the needs to research in the direction of dynamic and flexible application
execution.

Part II of this thesis contributes by analysing existing frameworks and developing a security assess-
ment catalogue to assess the handling of sensitive data and computations of frameworks. The security as-
sessment catalogue is the result of a threat modelling process according to well-established and accepted
means. The resulting catalogue is then assessed against existing frameworks and essentially influences
the further architectural development.

Part III continues on an architectural level. First, a common architecture is derived from existing
frameworks and weaknesses are identified. A new improved architecture specification is derived, consid-
ering the weaknesses identified up to this point. The conducted performance and energy impact analyses,
based on a full featured implementation, show the potentials of this approach.

Part IV completely focusses on trust, security and privacy issues. A governance approach is defined to
protect users’ data and computations. On a technical level, assessment approaches are analysed to assess
the trustworthiness of remote computing units. Furthermore, their integration strategies are discussed.

Part V provides other, relevant and required background knowledge. The outcome of this thesis is a
new model to execute mobile applications in an energy saving and performance enhancing way.

8 1. Introduction

Chapter 2

Cloud Computing and Related Concepts

Cloud computing is subject to various definitions, the overall goal of this chapter is to settle a solid defi-
nition, valid in the context of this thesis. Nowadays cloud computing is used as a buzzword to illustrate
properties like endless scalability regarding processing power and memory, and a service oriented be-
haviour without focussing on the details. Providers introduce cloud computing as a novel innovation but
do not mention the technology’s roots.

In this chapter, the baseline technology of cloud computing is introduced in Section 2.1, and the evo-
lution of today’s cloud computing. Following in Section 2.2, a common definition of cloud computing is
introduced and their usages in different fields, including backends for mobile applications. In Section 2.3
the next evolutionary step of cloud-supported applications is introduced. Mobile edge computing is
particularly focused on mobile devices and enables incorporation of the user’s context.

2.1 Grid Computing

Grid computing means different things to different entities, therefore a variety of definitions exists in
literature. This thesis uses the definition from Jacob et al. [2005] as its baseline but brings it into relation
with other concepts.

Grid computing can be considered as one solution to solve problems in a distributed manner. The
term Grid can be traced back to the initial idea of organising computers in a power grid-like structure.
Users just have to plug into their wall sockets and use the provided functionality, without agonising
about the provisioning or other details. Although this initial vision has never been commercially realised
in its full extent in the domain of grid computing, it enables to identify the technological foundation. In
the end, the key values of grid computing are in the underlying distributed computing technologies to
enable a cross-organisational resource sharing. This is enabled by using virtualisation across platforms
and architectures by using open standards. These technologies facilitate virtualisation at different levels:
Starting from single systems, over storage and network, to whole enterprises. Hence, a grid is a collection
of entities contributing their resources of different types, waiting for jobs to execute. The contributed
resources can have various types. The two most prominent are computing cycles and storage:

Computing cycles are the primary contribution. Computing power is provided to the grid, differing in
architecture, speed and memory. Contributed computing power can only be utilised if a matching usage
model is provided. Three fundamental approaches have emerged:

• An application is completely run in the grid on one of the offered machines.

• An application, which requires multiple runs on different datasets, is executed in parallel on various
machines.

9

10 2. Cloud Computing and Related Concepts

• An application offers ways to split its work into separate jobs, which are executed in parallel on
different processors.

In grid computing, scalability is the measure of all things. As Jacob et al. [2005] state, the execution of
an optimally scalable application only takes half the time if twice as many processors are available. In
most cases, there is a logical upper limit in splitting to separate jobs.

Storage contributions are also a commonly shared grid resource type, also referred to as data grids.
Leaving CPU caches and volatile memory aside, shared hard disk space can be used e.g. to increase ca-
pacity, performance, and reliability. These properties are driven by sophisticated distributed file systems
like the Andrew File System (AFS)1, Distributed File System (DFS)2, Network File System (NFS) [She-
pler et al., 2003], and General Parallel File System (GPFS) [Schmuck and Haskin, 2002]. They enable to
span single file systems across multiple machines. Users refer to files in an ordinary way, without explic-
itly knowing the exact machine where the file is located. More advanced file systems e.g. automatically
duplicate data at multiple sites to prevent data loss, provide increased reliability and performance.

Besides these two major resource types, others are often referred to as: communication bandwidth,
software, or specific hardware. Still, computing cycles and storage are the predominant resource types
and are most important for the further considerations in this thesis.

With grid computing and grid-enabled applications in place, the following benefits could manifest
according to Jacob et al. [2005]:

• Exploiting underutilised resources: Grid computing provides a framework to provide underutilised
resources to the grid and make use of other’s resources in peak times. This does not only apply to
computational grids, where grid-aware applications are executed on different machines, but also to
data grids. Many machines have free disk space, which could be provided to others using a data
grid.

• Parallel CPU capacity: Applications, providing the capabilities to split their computationally in-
tensive tasks into many small tasks can ideally make use of the massive parallelism in grid comput-
ing. Barriers exist in transforming applications to grid-enabled applications. Usually, algorithms
have an upper limit for splitting into separate tasks, or can only be split into dependent tasks. These
limits influence the performance gains due to parallelisation in a negative way.

• Virtual resources: Due to the virtualisation of resources, sharing across a wide audience is achieved.
It is not limited to computational resources, but also datasets, specialised hardware, or software (in
a software license sharing model).

• Resource balancing: Grids can serve to absorb unexpected activity peaks in a load balancing
manner. Even in a fully utilised grid, an absorption is possible through task prioritisation.

• Reliability: By scheduling the same self-contained task to multiple machines at the same time, and
make a decision about the correct results, incorrect behaving nodes can be detected.

• Management: All the possible benefits, in essence, enable a smooth manageability of resources
and paves the way to get rid of rigid resource assignments to single groups and therefore save
costs.

Researchers developed countless systems following the grid computing paradigms, accessible by all
their consortium members like TeraGrid [Beckman, 2005] and Open Science Grid [Pordes et al., 2007].
Domain specific grids like caBIG [Fenstermacher et al., 2005] focused on cancer research, which also
makes use of the grid data sharing capabilities, Earth System Grid [Bernholdt et al., 2005] focused on

1http://pages.cs.wisc.edu/~remzi/OSTEP/dist-afs.pdf
2https://technet.microsoft.com/en-us/library/cc753479(v=ws.10).aspx

http://pages.cs.wisc.edu/~remzi/OSTEP/dist-afs.pdf
https://technet.microsoft.com/en-us/library/cc753479(v=ws.10).aspx

2.2. Cloud Computing 11

climate research and also general grid frameworks like EGEE [Laure et al., 2004] were developed. But,
according to Foster et al. [2008], a commercial breakthrough was not achieved. No commercial grid
providers emerged. Still, grid computing serves as the technological foundation for superior approaches.

2.2 Cloud Computing

The challenge of finding a clear definition of grid computing, continuous in the domain of cloud com-
puting. This fact is also highlighted by the National Institute of Standards and Technology (NIST) with
providing a survey over a plethora of available cloud computing reference models from different view-
points [NIST, 2011].

From an abstract point-of-view, this thesis adheres to the definition of Foster et al. [2008]:

A large-scale distributed computing paradigm that is driven by economies of scale, in which
a pool of abstracted, virtualised, dynamically-scalable, managed computing power, storage,
platforms, and services are delivered on demand to external customers over the Internet.
[Foster et al., 2008]

This definition has a clear overlapping with the definition of grid computing in Chapter 2.1. Grid comput-
ing provides the necessary backbone technology. Hence, cloud computing evolved out of grid computing
but shifts its focus from providing compute and storage resources to providing more abstract resources.
To a certain extent, cloud computing provides a business model for the grid computing backbone, in
terms of metered resources or services. Basically, grid- and cloud computing follow identical visions:
“...reduce the cost of computing, increase reliability, and increase flexibility by transforming computers
from something that we buy and operate ourselves to something that is operated by a third party.”[Foster
et al., 2008]. But cloud computing is, in contrast, extensively using virtualisation technology, with global
commercial companies in place building and maintaining large-scale systems containing massive loads
of computers.

Foster et al. [2008] identified key factors, differentiating cloud computing from grid computing. Re-
garding the business model in cloud computing, users pay on a consumption basis like consumption
time of processors and amount of stored data for a given timeframe. In the available (scientific) grid
computing infrastructures, the usage of available grid computing power is tightly connected with partic-
ular research projects. Projects have to request processing power, requiring proposals to get hands on
the requested resources. Another major difference concerns the resource management and programming
model. Grids are dedicated to batch processing jobs. A user might, for example, submit a job which
runs for 60 minutes on 100 processors. The scheduler then waits until 100 processors are available and
executes the job for the given time. In a cloud computing environment, all applications/users operate at
the same time, also enabling the execution of latency sensitive applications with an appropriate Quality
of Service (QoS)-aware scheduler in place.

Keeping these key aspects in mind and prepared with the understanding of various cloud computing
reference architectures, from different viewpoints and highlighting the key aspects [NIST, 2011], the
NIST developed a more generic reference architecture [Lui et al., 2011], illustrated in Figure 2.1. This
work will not reproduce the whole specification but will briefly introduce the involved actors and then
focus on the orchestration model, as the most relevant topic for the further work on this thesis. The
reference architecture defines five actors involved in the provisioning and operation of cloud services
Cloud Consumer, Cloud Provider, Cloud Carrier, Cloud Auditor and Cloud Broker with their definitions
in Table 2.1. These definitions again highlight the service-oriented nature of the overall cloud computing
model. The actors work in close collaboration to provide consumers with their demanded services and
also monitor their operational parameters, as well as performance and security of the implementation.
More important in the context of this thesis is the service orchestration, which serves the cloud providers

12 2. Cloud Computing and Related Concepts

Figure 2.1: NIST cloud computing reference architecture [Lui et al., 2011]

to arrange and coordinate their resources to, finally, serve consumers their services. Orchestration follows
a three-layered model for the final composition.

The Service Layer defines interfaces for the consumers. Three major service models have evolved:

• Infrastructure-as-a-Service (IaaS) provides fundamental functions like processing power, storage
space, or networks capabilities. Consumers can use these provided resources to run arbitrary
software. The prime example of IaaS is the acquisition of virtual machines for arbitrary tasks.

• Platform-as-a-Service (PaaS) provides a higher abstraction level than IaaS and enables to deploy
applications, created using cloud provider supported programming languages. In contrast to IaaS,
the consumer has no control over the underlying infrastructure. The prime example for PaaS is the
deployment of web-based services by just uploading the application package, without exclusively
setting up the operation environment.

• Software-as-a-Service (SaaS) goes one step beyond PaaS and only allows the consumer to use
provided applications. The prime examples of SaaS are web-based applications like e-mail clients
or online word processors.

The realisation of the defined service models can be dependent but also independent of each other. The
PaaS model implementation could be built on top of IaaS and SaaS could be built on top of PaaS. Still,
standalone realisations are possible. The impact of choosing one service model over the other for the con-
sumer and provider are differences in their responsibilities. In a SaaS scenario, the cloud provider has full
responsibility of deploying, configuring, updating and maintaining operation including automatic scaling
according to the demands of consumers. For IaaS in contrast, the cloud provider acquires the (physical)
resources like processing power, storage and network. The operation, updating and scaling of deployed
services is up to the consumer. This process may again involve requesting new IaaS resources from the
cloud provider, but responsibilities are shifted to the consumer. In a PaaS scenario, the cloud provider is
responsible for a middleware layer like software execution stack, or databases. Still, the consumer has
control over certain operation environmental properties but usually no control of the infrastructure level.

The Resource Abstraction and Control Layer provides an abstraction of the physical layer to the up-
per layers. It manages access to physical resources by using software abstractions of physical hardware.

2.3. Mobile Edge Computing 13

Table 2.1: NIST Cloud Computing Reference Architecture actor definition [Lui et al., 2011]

Actor Definition
Cloud Consumer A person or organisation that maintains a business

relationship with, and uses service from, Cloud
Providers.

Cloud Provider A person, organisation, or entity responsible for
making a service available to interested parties.

Cloud Auditor A party that can conduct independent assessments of
cloud services, information system operations, per-
formance and security of the cloud implementation.

Cloud Broker An entity that manages the use, performance and de-
livery of cloud services, and negotiates relationships
between Cloud Providers and Cloud Consumers.

Cloud Carrier An intermediary that provides connectivity and
transport of cloud services from Cloud Providers to
Cloud Consumers.

This involves the usage of software components like hypervisors, virtual machines, virtual storage, and
other virtualisation concepts. As illustrated by the mentioned components, heavy usage of virtualisation
is a common implementation strategy for this component. Still, the model does not restrict the usage
of other strategies. Usage control, metering, and access control is provided by the control aspect of this
layer.

The lowest layer, the Physical Resource Layer, contains the physical, non-virtualised, CPU, storage,
and network components but also facility components required for their operation like air conditioning,
power supply and external communication facilities. The nested representation in Figure 2.1 does not
only show the high-level composition of single layers but also refers to layer interdependencies by their
stacked representation.

With this targeted introduction to cloud computing, a clear connection to the related grid computing
concept was drawn. Both concepts follow similar goals. Grid computing tries to reach the vision by
sharing available resources with others in a power grid like structure and strongly adhering to the resource
sharing, which might be one reason why grid computing never made it into the commercial market.
Cloud computing, in contrast, shifts its focus from providing resources, to providing services, which
automatically evolved to great business opportunities. Today, cloud computing is already present for
several years, still successful and evolving but facing new challenges especially from the mobile sector.

2.3 Mobile Edge Computing

Researchers already noticed the upcoming new challenges regarding mobile users. Mobile device users
demand more processing power at the tip of their hands also usable for interactive operations. The
crux about interactivity is not providing massive loads of processing power, as it is the case in grid-
and cloud computing, but also reducing the latency from the mobile devices to the computing units
to a minimum. Edge- or fog computing, in general, is a new concept targeting these issues. It adds
another resource layer to the cloud computing concept in the proximity of the users, therefore having
low latencies. Due to the proximity to the user, fog computing also enables the consideration of user
relevant context information. Luan et al. [2016] illustrate fog computing as shown in Figure 2.2. Edge
computing is not meant to replace cloud computing but can be considered as a mobile device focused
extension. It differentiates from cloud computing as illustrated in Table 2.2. The fog computing concept

14 2. Cloud Computing and Related Concepts

Internet

Fog servers at

different locations

Mobile Fog Cloud

Near Far
Distance to user

Figure 2.2: Fog computing overview [Luan et al., 2016]

Table 2.2: Key differences of cloud- and edge computing [Luan et al., 2016]

Fog Computing Cloud Computing
Target User Mobile users General Internet users

Service Type Limited localised information services
related to specific deployment loca-
tions

Global information collected from
worldwide

Hardware Limited storage, compute power and
wireless interface

Ample and scalable storage space and
compute power

Distance to
Users

In the physical proximity and commu-
nicate through single-hop wireless con-
nection

Faraway from users and communicate
through IP networks

Working En-
vironment

Outdoor or indoor Warehouse-size building with air con-
ditioning systems

Deployment Centralised or distributed in regional
areas by local business (local telecom-
munication vendor, shopping mall re-
tailer, etc.)

Centralised and maintained by Ama-
zon, Google, Microsoft, etc.

is meant to provide the initial idea without really diving into details of the implementation. The concept
was picked up by the European Telecommunications Standards Institute (ETSI) and transformed into a
technical specification [ETSI, 2016a; ETSI, 2016b; ETSI, 2017]. The general fog computing concept
foresees a communication with the fog provided resources using local technologies like Wifi or Bluetooth
but also using 4G and 5G networks. Mobile Edge Computing (MEC) in contrast, is completely tied to
telecommunication providers and their deployed 4G and 5G communication technologies. On the one
hand, this is a narrowing approach, on the other hand, it enables a detailed and technical specification of
the capabilities, use cases, and used techniques.

An overview of the architecture defined by ETSI [ETSI, 2016b; Hu et al., 2015] is shown in Fig-
ure 2.3 and illustrated in the following. From an abstract point of view, applications installed on users’
devices (user application) can request the instantiation of MEC applications on the MEC infrastructure.
The user application is then able to use the MEC application-provided functionality. In their reference ar-
chitecture, the authors differentiate between system- and host level. The system level acts as the contact
point for user applications, whereas the host level represents the backbone and combines components

2.3. Mobile Edge Computing 15

regarding the organisation of available computing resources. The authors of the MEC architecture define
several logical entities:

• The Mobile Edge Host provides the storage, compute, and network resources for mobile edge
applications by relying on virtualisation technology and hosts the mobile edge platform.

• The Mobile Edge Platform represents the hosting environment for mobile edge applications to
offer their services, as well as discover and consume other services.

• Mobile Edge Applications run on the virtualised environment using virtual machine technology
provided by the mobile edge host, ready to be used by user applications.

• The management components acquire virtualised hardware and instantiate the virtual machines.
Furthermore, they manage the lifecycle of mobile edge applications and inform the system level
components of important occurred events.

Virtualisation infrastructure

Mobile edge host

Mobile edge
platform

ME
app

ME
app

O
th

er
 M

E
C
 h

os
t

Mobile edge
host level

management

Mobile edge system level management

UserS
ys

te
m

 l
ev

el
H

os
t

le
ve

l

Figure 2.3: High-level MEC architecture

The anatomy of use cases for MEC to be realised as mobile edge application [ETSI, 2015] have
the requirements for cloud computing supported backends but with low latencies from the user applica-
tion to the computing units. Furthermore, applications gain additional possibilities by having access to
contextual information for the user via the 5G access nodes. Prime use cases include the following:

• Connected Cars: The communication between cars on the road for the purpose of transmitting
hazard warnings can be improved by using mobile edge applications. In this case MEC offers its
proximity capabilities and analyses data received from cars, as well as roadside sensors and warns
passengers if incidents are detected.

• Video Analysis: MEC can offer video analysis applications for surveillance cameras. This prevents
slow and inaccurate analysis at the source and bandwidth demanding uploads to cloud computing
centres.

• Augmented Reality: With the augmented reality technique, points of interest can be enhanced
with useful information on a user’s mobile device. This is a highly localised and latency sensitive
process and requires exact positioning. Therefore, is best suited to be mapped to MEC enabled
applications.

16 2. Cloud Computing and Related Concepts

This brief introduction clearly shows the power of involving proximate computing resources and the
positive effect of decentralisation concerning possible applications, as well as enhanced user experience.

2.4 Chapter Conclusions

In this chapter, a clear path from the first large-scale distributed systems, following the grid computing
paradigm, to today’s cloud computing and MEC environments is shown. The baseline technology for
today’s systems still has its ancestors in the grid computing domain. Nevertheless, grid computing never
achieved broad commercial success, due to the absence of a suitable business model. By relieving the
focus on sharing low-level resource and instead concentrating on services at different abstraction levels,
cloud computing is still a large commercial success.

Recently it was discovered that the semi-centralised structured cloud computing is not capable of
optimally serving the ever increasing demands of mobile device users, mainly due to high latencies. MEC
targets this issue by providing architectures and frameworks for a decentralised cloud-like environment
in the proximity of the users’ devices. This novel paradigm is tightly connected to telecommunication
providers and their already existing dense Radio Access Network (RAN). MEC is capable of adding
great value to applications concerning contextual information, user experience due to reduced latency,
and reliability. Still, from a computing point-of-view the differences from MEC to cloud computing are
limited. As it is the case in cloud computing, MEC requires to statically and explicitly define interfaces
between parts executed using MEC and applications executed on users’ devices. Basically, MEC shifts
the semi-central deployment of cloud services close to the user.

Chapter 3

The Evolution of Hybrid Mobile Edge Com-
puting

In the previous Chapter 2 the evolution of today’s prevalent cloud computing technique is illustrated, and
a changing environment towards mobile devices is anticipated and quickly approaching. The technical
realisation of MEC is a novel contribution in the sector of cloud- and distributed computing but the
importance of low latencies and the concept of using proximate computing power was already discovered
several years ago. A major issue of MEC manifests in a massive overhead for software developers
to make use of this new technology. Mobile edge applications need to be explicitly separated from
applications running on the mobile devices. This results in a static and enforced application partitioning
into locally (on the mobile device) and remotely (as a mobile edge application) executed parts. More
flexible execution models are required to optimally adapt to the rising mobile device usage paradigms.

Research in this direction has already been performed long before the concept of MEC was devel-
oped, is still active and is more relevant than ever. In this chapter, approaches to enhance the capabilities
of mobile devices with resources, like storage or computing resources, are discussed. Furthermore, their
connection and future importance to MEC is highlighted.

3.1 Cyber Foraging

Cyber foraging represents a concept to dynamically enhance resource constrained devices with comput-
ing resources from other, more powerful devices. Satyanarayanan [2001] first described this concept
as a solution to some of the challenges of the pervasive computing paradigm. Pervasive or ubiquitous
computing targets at the fusion of human users and their omnipresent mobile devices. Users receive
assistance and useful information from their devices, but the devices remain invisible and do not push
into the foreground. The pervasive computing paradigm depends on other fields of research but also
opens new research areas. A visualisation and identification of the relevant research areas from Satya-
narayanan [2001] and their relations are shown in Figure 3.1. Pervasive computing, in particular, opens
the following high-level research areas to the community:

• Smart spaces: Smart spaces are enclosed areas like meetings rooms. The effective usage of smart
spaces includes automatic adjustment of light according to the users’ requirements or different
behaviour of software depending on where the user is currently located.

• Invisibility: In an ideal pervasive computing setting, devices completely disappear from the users’
consciousness and remain invisible.

• Localised scalability: With a growing acceptance and sophistication of smart spaces, the number
of interactions increases and higher bandwidths are demanded. This issue is increased with the

17

18 3. The Evolution of Hybrid Mobile Edge Computing

presence of multiple users. Therefore, scalability in the users’ surrounding is key for pervasive
computing.

• Uneven conditioning: The introduction of novel technologies takes time, especially in the begin-
ning, to reach a critical mass of early adopters. The rate of penetration, as well as the quality of
the equipped smart spaces, will greatly vary. Maintaining a user’s pervasive environment requires
ways and techniques to mitigate the effects of unavailable smart spaces.

Remote communication

Fault tolerance

High availability

Remote information access

Distributed security

Distributed

systems

Mobile

computing

Pervasive

computing

Mobile networking

Mobile information access

Adaptive applications

Energy-aware systems

Location sensitivity
Smart spaces

Invisibility

Localized scalability

Uneven conditioning

Figure 3.1: Research areas in the pervasive computing domain [Satyanarayanan, 2001]

Furthermore, Satyanarayanan [2001] developed two scenarios which show the potentials of pervasive
computing. The technological building blocks were already available at that time. Still, the scenario
sounded like a story from a future world. The scenarios introduce Aura, a pervasive computing system,
with the ability to act pro-actively by correctly identifying a user’s intent, self-tuning by adjusting to
the user’s environment and involving smart spaces and other equipment to seamlessly move applications
between devices and computers. The surprising result is that all the required technologies are already
there. They need to be combined to overcome the main obstacle, a massive data analytical challenge.
Another result is the identification of requirements on the used mobile devices: they need to get smaller,
lighter, and require an extended battery lifetime to utilise the full potentials of the pervasive computing
paradigm.

Developing smaller and lighter mobile devices has the obvious effect of reduced computing resources
for an equal technological level. Cyber foraging is a concept to counter these losses by dynamically
augmenting a mobile device’s computing resources with other available computing resources. This will
include an exploitation of smart spaces at different sites. The authors envision a typical scenario as
follows:

• Once entering a new neighbourhood, potential candidates are identified using a suitable commu-
nication technology.

• The application area is negotiated with the identified computing resources.

• Does a particular computing resource only act as a cache or high-bandwidth gateway to the Internet
or does it even allow to execute arbitrary application code in application offloading scenarios?

This approach raises many questions and requires extensive research in different areas. The following is
only an indicative listing of some major fields of research: How does the discovery process work? How

3.2. Mobile Cloud Computing (MCC) 19

to establish trust with the identified computing resources? How much time is required by computing
resources to provide an application-compatible execution environment and how can it be improved?
How to scale the smart spaces approach?

The authors do not provide any solutions to the identified issues at that time but raise critical questions
and motivate a whole new research area. The overall concepts are not a novel contribution: distributed-,
mobile-, and pervasive computing were known before. They are brought into the emerging smartphone
sector. The concept was picked up by Goyal and Carter [2004] and Lewis et al. [2014]. They provide
solutions for a fraction of the raised challenges and issues, also mixing the concept with recent inno-
vations like Cloud Computing (CC). The security issues are only scratched on the surface and limit to
end-to-end security with already established trust relationships. From today’s point-of-view most parts
of the original vision are already realised but using different techniques. Today, scalability is reached
by exploiting CC, with new techniques like MEC in the pipeline. The original vision of smart spaces
is not realised yet, but the resulting functionality can still be provided. Google and Apple are the major
players on the smartphone market with high penetration rates. Recording the habits, data and location of
users, combined with machine learning approaches, allows them to accurately predict users’ intentions
and provide useful context information like:

• Provide automatic weather forecasts.

• Estimated time for a user to arrive at its destination, without explicitly entering its destination.

• Automatically remind users about upcoming events like ”leave now to catch your flight“ or ”start
now to be on time at your appointment“ even considering the preferred transportation.

The visions are actually not reached using the cyber foraging paradigm but by using the semi-central CC
approach, which is further elaborated in Chapter 3.2. The vision of cyber foraging, including its smart
spaces and local scalability property, is still up-to-date. A possible approach which again picks up this
paradigm is MEC from Chapter 2.3.

3.2 Mobile Cloud Computing (MCC)

MCC acts as an enabling technology for the pervasive computing vision as provided by Satyanarayanan
[2001]. In the sector of MCC and CC in general, terms are often mixed up. Therefore, a clear definition
is required. Particularly MCC is often mistaken for cyber foraging and other related technologies. In
this thesis, MCC is defined following the illustration in Figure 3.2 and according to Fernando, Loke, and
Rahayu [2012]. Remote resource-rich servers run an application, where mobile devices act as thin clients
over the available Internet connection. The realisations can have different shapes and represents a trade-
off between available computing resources and flexibility concerning the availability of an application if
the cloud is not in reach.

Cloud(Thin) Mobile Device

A
p
p
lic

at
io

n
 A

PI

Backend
service

Local application
logic

Remote API
connector

Application

Remote calls

Figure 3.2: Mobile Cloud Computing overview

The commodity of all realisations is the static partitioning of applications regarding the locally and
remotely executed parts. Interfaces between local and remote parts are statically defined in the develop-
ment process. Considering a mobile voice recognition application, where voice samples are uploaded to

20 3. The Evolution of Hybrid Mobile Edge Computing

a remote service deployed in the cloud for analysis and the analysis results are sent back. In this case, the
mobile device just records the samples without any analysis logic. Voice recognition is a computation-
ally intensive operation. Offloading this operation to external computing units is a clever strategy to save
energy on the mobile device and speed up the operation. The downside is a dependency on the cloud
service. Without the service, the application is not operating at all.

The MCC approach has a clear connection to CC in general, but CC is much more than MCC.
It is the specific use case what makes the difference from CC to MCC. Backend services (primarily)
for mobile applications with scalability features can be considered as MCC from a mobile device’s
perspective. Thereby, it is irrelevant how services are deployed: IaaS, PaaS, or SaaS. From a pervasive
computing perspective, MCC can be seen as an intermediate step between the cyber foraging vision and
the realisation using the HMEC approach.

To draw a complete picture of the MCC technique, a second approach needs to be introduced. Al-
though this thesis refers to the above definition of MCC, existing frameworks occasionally link to MCC
as a more advanced service enabling a dynamic offloading of application logic. Applications are still
partitioned into locally and remotely executed application parts but, in contrast to the approach described
above, the whole application logic is also included in the mobile application. This enables to dynami-
cally decide if particular application parts should be executed locally or remotely under current mobile
device conditions. The dynamic decision enables the operation of MCC applications in scenarios where
no cloud connection is available but also raises major questions regarding security.

Due to the connection of CC and MCC, the security issues are also inherited. Security issues of
MCC are strongly related to security issues in the HMEC domain, therefore are scrutinised throughout
this thesis.

3.3 Hybrid Mobile Edge Computing (HMEC)

HMEC is introduced by Reiter, Prünster, and Zefferer [2017] with a strong connection to MCC and
Hybrid Mobile Cloud Computing (HMCC) [Abolfazli, Gani, and Chen, 2015]. HMCC can be consid-
ered as an intermediate step between MCC and the proposed HMEC model, also considering a device’s
surrounding up to a limited extent and still heavily relying on CC infrastructures. HMEC realises the
original vision of cyber foraging concerning the computing resource usage by combining the concepts of
CC, MEC, MCC and mixing in some ideas from HMCC. Today, telecommunication providers are om-
nipresent which is proposed to be exploited by MEC. MEC envisions to deploy computational resources
at the telecommunication base stations to be used by mobile edge-enabled applications. Applications
executed on mobile devices are prepared to work with mobile edge application counterparts, deployed
on the MEC infrastructure. In fact, this concept works analogue to MCC with mobile edge applications
dynamically deployed close to the mobile device. HMEC, in contrast, refrains from defining new pro-

Figure 3.3: Hybrid Mobile Edge Computing overview [Reiter, Prünster, and Zefferer, 2017]

3.4. Verifiable Computing 21

gramming models. Still, it targets at a broad usability of available computing resources on mobile devices
and does not exclusively tie the resource usage to telecommunication providers. A HMEC overview is
provided in Figure 3.3. If supported, telecommunication providers’ base stations could play a major role
in the discovery process of computational resources but HMEC does not depend on them. The concrete
functionality and inner workings of this concept is developed in this thesis, acting as one of the main
contributions. Overall, the concept enables to realise the introduced smart spaces vision and beyond.
Locally available computing resources can be used by mobile devices to enhance their computing power
and save energy. In case no free local computing capacity is available, the system enables to fall-back
to global CC units or to a local only operation. To have a clear view about the available computing
resources, a clever organisation of computing units is required. This multi-levelled approach requires
flexible applications, capable of dynamically switching their execution or to an available computing unit.

Flexibility also comes at a certain price. Approaches following the previous MCC model only have
a single computing resource where executions take place, representing a small and controllable attack
surface. Executing on different computing units also poses a large attack surface. Frameworks need to
assure that users’ data and computations are kept safe.

3.4 Verifiable Computing

A different field of research, currently being highly active, is the field of verifiable computing. It does not
target (like MCC and HMCC) the distribution of tasks to other computational resources but focuses on
how to ensure that a client device receives the correct result from an offloaded computation. Yu, Yan, and
Vasilakos [2017] provide a survey and current state of the research in the field of verifiable computing.
The problem with current schemes in this field of research can be summarised as the following:

• Schemes are only efficient for a limited set of function in certain classes.

• Some schemes rely on complex cryptographic primitives like fully homomorphic encryption schemes
and have high computation efforts. [Catalano and Fiore, 2013; Yan, Yu, and Ding, 2017] Efficiency
is key when operating on resource-constrained mobile devices.

• Another key aspect about verifiable computing schemes is their applicability to already existing
applications. Considering existing MCC and HMCC frameworks as illustrated in the following
chapters, minimal or no effort is required to enable offloading of already existing applications.
Verifiable computing approaches require a particular representation of functions considered for
offloading. The approach introduced by Gennaro, Gentry, and Parno [2010] requires functions
to be available as boolean circuits, an additional pre-processing step. Pinochhio [Parno et al.,
2013], to name another example, is closer to being a practical solution in terms of performance,
but requires quadratic programs [Gennaro, Gentry, Parno, and Raykova, 2013] for execution.

This thesis focuses on applicability and achieving security goals using infrastructure, architectural and
technical means. Still, verifiable computing is considered as an interesting and promising field of re-
search for future developments.

22 3. The Evolution of Hybrid Mobile Edge Computing

Chapter 4

Part I Conclusions

Currently, two relatively disjunct research areas can be observed. On the one hand distributed computa-
tion models like grid computing were evolved to a service and customer oriented CC paradigm, on the
other hand researchers focussed on developing mobile application execution models to enable a flexible
and dynamic execution in a mobile centric world. The goal of these execution models is to keep up
with users’ demands. The utilisation of mobile device has massively increased, also for business related
tasks, affecting the battery lifetime of mobile devices. The defined execution models aim at offloading
computationally intensive tasks to resource rich computing units with an energy-saving effect but also
positive performance impact on the mobile devices.

MEC is the first approach so far trying to close the gap between these research areas. The MEC
solutions makes use of the already existing infrastructure of telecommunication providers but make trade-
offs at the mobile application execution models:

• The MEC model is tied to the telecommunication company-provided infrastructures. This does
not represent a valid realisation of smart spaces.

• The flexibility of MEC is hindered by not integrating with other available computing resources. Al-
though MEC, as defined by ETSI, supports seamless mobile device handovers from one telecom-
munication domain to another, other resource types like classic CC or custom user specific re-
sources are not utilised.

• Mobile device applications following the MEC model are always composed of a user application
executed on the mobile device, and mobile edge applications executed on the MEC infrastructure.
This approach hinders a dynamic decision regarding a local or remote execution of particular
application parts, based on a device’s environment.

With the introduction of HMEC these weaknesses are sorted out. HMEC deployments could make
use of available telecommunication infrastructures but do not depend on their availability. Furthermore,
it enables the usage of different resource types like CC-provided resources, custom user resources, or
proximate resources. MEC contributes to the HMEC model as an invaluable resource provider. Without
considering the technical realisation and possible technical limitations at this stage, HMEC serves as an
enabling technology to realise the vision of smart spaces.

The gained flexibility comes at a price. Substantial obstacles need to be overcome, summarised at a
high abstraction level in the following listing:

• Trust and Security: The existing, relatively static mobile application execution models only consid-
ered trust and security as a side note, limiting their contribution to employing end-to-end security
techniques with pre-established trust relationships. Using a more flexible and dynamic approach

23

24 4. Part I Conclusions

also increases the importance for state-of-the-art and dynamic security mechanisms. Users need
confidence that their processed data is safe and not exposed to unauthorised parties.

• General Architecture: Grid computing and CC only have loose or multiple architecture definitions.
For MEC, in contrast, ETSI defines a detailed architecture. HMEC, as a novel model, does not
have a uniform architecture definition yet.

• Interoperability: Due to the wide spectrum of considered resource types, HMEC has to deal with
different architectures and operating systems. For a seamless user experience HMEC needs to be
available on all platforms, also cross-platforms.

These identified high level issues are scrutinised in the remainder of this thesis and concepts, models,
architectures, and implementations are developed.

Part II

A Security Assessment Framework for
(Hybrid) Mobile Cloud/Edge Computing

Frameworks

25

Chapter 5

Existing (H)MCC Frameworks

The borders between the concepts of MCC and HMCC are floating. Only very few existing frameworks
are considered as true hybrid. Still, this does not render MCC frameworks or frameworks following a
different approach less essential for the development and improvement of HMCC approaches. There-
fore, this chapter provides an overview of frameworks relevant for enhancing the HMCC approach. The
relevancy of frameworks is determined by their scientific significance and their provided innovative fac-
tor. Nevertheless, to maintain a certain level of comparability, a similar technological level is required.
In contrast to Chapter 3, where the underlying high-level models are introduced, this chapter focuses
on concrete, representative frameworks. They are presented here to a level which enables (a) a secu-
rity focused evaluation in Chapter 6, and (b) the identification of reusable technologies for the process
of further improving HMCC. The following is a listing of frameworks introduced in this chapter, also
providing motivations about the selection of each particular framework:

• MAUI [Cuervo et al., 2010] is the first concrete implementation targeted at a new device class,
smart devices. It enables to dynamically offload computationally intensive parts of an application
to remote cloud-supported computing units but requires changes on the source code level. It acts
as the baseline for most later researches in this area.

• CloneCloud [Chun et al., 2011] also enables offloading of computationally intensive application
parts but operates on unchanged applications without requiring access to the source code.

• Cuckoo [Kemp et al., 2012] enables to integrate multiple implementations for the same task, tar-
geted at different architectures and environments. This way the targeted computing unit can be
better utilised, in case an optimised implementation is available.

• ThinkAir [Kosta et al., 2012] builds on MAUI and CloneCloud and adds scalability by enabling an
on-demand start-up and shut-down of virtual machines in the cloud, as the application demands
more or fewer resources.

• TANGO [Gordon et al., 2015] identifies weaknesses in the partitioning process, resulting in partic-
ular characteristics of offloaded applications like a high computational load for tasks. The authors
propose a new approach, not relying on a static partitioning, but dynamically switching between
multiple executed replicas.

• mCloud [Zhou et al., 2015] shifts the anticipated unrealistic operation environment of previous
frameworks to more realistic scenarios by also considering nearby devices and not statically bind-
ing to single cloud-supported computing units.

This chapter continues on the analysis carried out by Reiter and Zefferer [2015a]. The analysis of the
frameworks in [Reiter and Zefferer, 2015a] is extended and enhanced with required details. Frameworks,

27

28 5. Existing (H)MCC Frameworks

which are not considered relevant in the context of this thesis are omitted. Furthermore, new frameworks
are analysed, following the same approach.

5.1 MAUI

MAUI has been introduced by Cuervo et al. [2010] with the primary goal of offloading computations
to save energy. It uses a method-level offloading approach and hence provides fine-grained outsourcing
opportunities. Methods that can be offloaded are marked as remotable by applying source-code level
annotations. These annotations are extracted at runtime and the execution is dynamically intercepted.
An optimisation framework is utilised to decide if a method should be offloaded under current conditions
such as available connectivity, Round-trip-time (RTT), or effort required to transfer the currently required
state of the application. To enable these transparent interceptions, MAUI is limited to managed code
environments, specifically to the Microsoft .NET environment.

MAUI’s high-level architecture is illustrated in Figure 5.1. It is separated into client and server
components, but with very similar behaviour. The executed application, which is also available on the
server, is attached to the MAUI runtime module. The runtime module performs the required steps to
delegate the execution to a remote server or performs the execution locally. The following components
are involved:

• The first component, which is not part of the runtime module, is the annotation system. The
annotation system enables the application developer to perform a suggested partitioning of the
application into parts considered for offloaded execution and parts where the execution needs to be
performed locally.

• The Profiler component works in close collaboration with the Solver component. The Profiler
component collects profiling data on (a) device level: the estimated energy consumption for a
given method, (b) program level: transfer requirements for each method, runtime duration, CPU
cycles, and (c) network level: RTT, bandwidth, packet-loss. This profiling data is fed into the
Solver component.

• The Solver component is, due to its complexity, split between the server and the client. The actual
decision is made at the server. Based on the collected data, a model was developed to decide if a
remote execution is beneficial.

• The Proxy components perform the actual offloading process. They are generated during compi-
lation of the application, considering the remotable methods. Required data is transferred to the
server, instantiated, executed, and the result is transferred back.

• The MAUI Controller supervises all actions and performs other relevant activities like authentica-
tion.

Design decisions were made for the MAUI prototype to support offloading to different architectures.
Smartphones, for example, operate on ARM CPUs, desktop computers, in contrast, mainly use Intel
x86 compatible CPUs. To make the offloading operations interoperable, MAUI limits to managed code
environments and does not allow offloading of native calls. If the connection to the MAUI server is lost
during an offloading operation, the framework restarts the process locally, resulting in a short delay only.

MAUI mainly focuses on the offloading part and ignores details on how to manage or combine avail-
able resources. The smartphone has a static connection to the MAUI server. The most interesting aspect
of MAUI is its simplicity. No prior knowledge is required to make use of this framework. Only few inter-
nals need to be known by the developer to improve the execution of applications using MAUI. Although
MAUI focuses on the .NET programming language, it can easily be adapted to other programming lan-
guages. Unfortunately, the .NET framework is still not very popular on mobile devices and basically

5.2. CloneCloud 29

Smartphone MAUI Server

MAUI Controller

App

MAUI runtime
MAUI runtime

App Client
proxy

Server
proxy

Profiler

Solver

Profiler

Solver

Figure 5.1: MAUI highlevel architecture [Cuervo et al., 2010]

restricted to the Windows Phone platform. Although there are ways to execute .NET applications also
on other platforms, it is not very popular at the moment and may not be of interest for platform ven-
dors. Mobile devices do not only differ regarding their architecture but also concerning their operating
systems. Mobile device operation systems developed in the direction to support only a very limited set
of programming languages. These programming languages are often attached to a whole ecosystem and
community, e.g. Android applications are best developed using the Java programming language. MAUI
is operating on the source code level, therefore porting to different programming languages, supported
by mobile operating systems, is required to achieve a broad compatibility. This results in different silo
solutions requiring a compatible execution environment. Therefore, they are not compatible with each
other.

Regarding security, MAUI relies on a pre-established trust relationship. This perfectly fits into the
goal of MAUI to focus on the offloading technology but leaves a large gap in terms of security.

5.2 CloneCloud

CloneCloud is introduced by Chun et al. [2011] with the goal of offloading tasks to platform clones
in the cloud. A minimisation of the energy consumption on the mobile device and an optimisation of
the execution time is envisaged. The primary motivation for the authors to focus on this topic was the
situation in the cloud computing sector at this time, and is still valid today. Bringing a rich application to
mobile devices is a demanding task and tends to be inflexible: either an application is written as a huge
monolithic blob and performs all the tasks on the mobile device, or is statically split using a traditional
client-server approach moving the computationally intensive parts to the cloud. The chosen separation
might be optimal for one mobile device and environmental condition set, but not optimal for another one.

These issues are addressed by CloneCloud, enabling an operation on unmodified Android applica-
tions. The CloneCloud system modifies existing applications and allows a dynamic migration of whole
application threads to remote systems. The remaining application logic keeps executing on the mobile
device while an application thread is offloaded, but blocks once access to state of the offloaded thread is
required. If the thread completed execution on the remote host, the generated state is merged back into
the mobile application and can be accessed by other threads.

In the case of CloneCloud, the partitioning of applications is an offline process, performed prior to
the application deployment. CloneCloud features a static analyser and a dynamic profiler. Based on a set
of execution conditions (network characteristic, CPU speed, and energy consumption) the static analyser

30 5. Existing (H)MCC Frameworks

yields partitions to optimise the application for execution time or energy consumption. This process is
performed for several different condition parameters, resulting in a partition database. Furthermore, the
dynamic profiler collects data, used to create a cost model. The data is generated by invoking the profiler
in multiple executions of the application, using randomly generated input data.

At runtime one of the recorded partitions is picked, according to anticipated condition parameters.
The partition is implemented in the application binary by inserting special VM instructions, acting as mi-
gration and re-integration instructions. A high-level architecture of the CloneCloud system is illustrated
in Figure 5.2: The Migrator component on the smartphone catches the inserted migration instructions
with the goal of moving the execution to a remote server. Therefore, the Migrator collects the whole
state of the target thread and passes it on to the Node Manager for data transfer. The Node Manager
has a static set of potential remote cloud computing units, matches this set with the available partitions
and transfers the state to the selected remote system. At the remote system, the data is passed on to the
Migrator of a newly allocated process, and the capture process is reversed to resume the thread. The
Migrator on the remote side catches the re-integration instruction and performs the identical migration
process back to the smartphone.

Smartphone

Host System

Clone VM

Hardware

Operating System Operating System

Virtual Hardware

Application VM
Application VM

Application
Application

Migrator

Runtime

Migrator

RuntimeN
od

e-
M

an
ag

er

N
od

e-
M

an
ag

er

Figure 5.2: CloneCloud highlevel architecture [Chun et al., 2011]

The prototype introduced by Chun et al. [2011] is based on Java and Android. Therefore, it is
theoretically able to operate on every available application. The migration and reintegration points are
induced using special Java-VM commands. Therefore, for the framework to run, it is necessary to
provide a modified Android version. No modified executable will run on unmodified versions of Android.
Table 5.1 lists the current distribution of deployed Android versions, according to Google [2017]. As the
distributions of currently used versions of Android is heavily scattered from version 2.3 to 7.1, it is
unlikely that this technology will be used in practice. It requires a modified Android version on each
deployed device.

From a security standpoint, CloneCloud is still in its infancy. CloneCloud focuses on improving the
technical offloading foundation. Although the approach is capable of using multiple computing units, the
node manager at the remote system acts as a trust anchor for mobile devices. A trust relationship with
the node manager needs to be established prior to the application enrolment.

5.3 Cuckoo

Kemp et al. [2012] propose Cuckoo, an offloading framework for smartphones. Cuckoo does not aim
at providing seamless operation for existing applications, but makes use of the natural partitioning of
Android applications. Android applications are composed of the following fundamental components:

5.3. Cuckoo 31

Table 5.1: Distribution of Android platform versions [Google, 2017]

Version Codename API Distribution
2.3.3 - 2.3.7 Gingerbread 10 1.0%

4.0.3 - 4.0.4 Ice Cream Sandwich 15 1.0%

4.1.x
Jelly Bean

16 4.0%
4.2.x 17 5.7%
4.3 18 1.6%

4.4 KitKat 19 21.9%

5.0
Lollipop

21 9.8%
5.1 22 23.1%

6.0 Marshmallow 23 30.7%

7.0
Nougat

24 0.9%
7.1 25 0.3%

• Activities act as entry points for interacting with the user, and only do basic computations with
low CPU utilisation. By blocking an activity, the user interface is blocked and gives the user the
impression of an unresponsive application.

• Services in contrast do not provide user interfaces and are meant to perform long running oper-
ations and heavy computations. Activities can establish a binding to services and communicate
through Inter-process Communication (IPC) using pre defined interfaces.

• Content Providers manage shared data sets. If a content provider gives its permission, other appli-
cations can modify data. Content providers are not elaborated in detail here, because they do not
have a direct relevance for the offloading framework.

• Broadcast Receivers enable to deliver out-of-band events to applications, not contained in the
normal program flow. Again, they are not elaborated in detail here, because they do not have a
direct relevance for the offloading framework.

This natural separation between computational intensive and user interface parts of an application, with
already well-defined interfaces, is exploited by the Cuckoo framework. The goal of the Cuckoo frame-
work is to provide local and remote execution capabilities, but enabling custom implementations for
different remote computing units to respect their peculiarities. During the build process, the Cuckoo
framework hooks into the service API and adds a decision logic, whether to execute a service call locally
or remotely. Currently, a basic decision logic is used: remote execution is always preferred. The offload-
ing process is controlled by a resource manager, where all available computing units need to be registered
beforehand. The application package deployed on the smartphone contains the complete code for local
execution and different remote execution targets. On execution of a service call, the Cuckoo framework
and resource manager decide if offloading should be performed, and transports the application logic and
program data to the remote computing unit for execution.

The Cuckoo framework uses an interesting approach, which can easily be deployed to many An-
droid applications. Providing different implementations for different architectures and environments is
an elegant solution to get the best out of each computing unit. Nevertheless, this potentially requires a
lot implementation effort. Furthermore, this approach is completely tied to native Android applications.
This approach cannot be adapted for different operating systems or different programming models. Ad-
ditionally, security capabilities are again limited to pre-established trust relationship, where each single
device needs to trust all available resource managers.

32 5. Existing (H)MCC Frameworks

Smartphone

Service

Activity

API

Cuckoo hook

Local program logic

Remote program
logic

R
es

ou
rc

e-
M

an
ag

er
Remote Computing Unit

Remote program
logic

API

Service

Figure 5.3: Cuckoo model [Kemp et al., 2012]

5.4 ThinkAir

Kosta et al. [2012] introduce the ThinkAir framework as an improvement of MAUI’s and CloneCloud’s
concepts. Their main goals and novel contribution in the sector of application offloading is twofold:
(a) They aim at providing an efficient way to perform on-demand resource allocation in the cloud,
and (b) exploit parallelism by dynamically creating and destroying virtual machines. ThinkAir is de-
signed based on four major principles:

• Dynamic adoption to changing environments: Offloading frameworks mainly target resource-
constrained mobile devices, therefore frameworks need to dynamically adapt to changes in the
environment.

• Ease of use for developers: In principal, the framework should be transparent to the application
developers, without requiring developers to know the inner details of the offloading framework.

• Performance improvement through cloud computing: ThinkAir’s main goal is to improve the per-
formance and minimise the energy consumption of mobile applications on mobile devices.

• Dynamic scaling of computational power: The offloading framework needs to be able to react to
changing computational requirements of mobile applications.

This results in an architecture as illustrated in Figure 5.4. ThinkAir provides a pre-partitioning mech-
anism, similar to the approach used by MAUI, and introduces an additional compilation step, which
generates code for the remote execution. A proxy mechanism allows the Execution Controller to inter-
cept method calls which could potentially be offloaded.

Once the Execution Controller intercepts a call, it decides based on the available profiling information
if it is beneficial to offload a call:

• Historic execution times acquired by the Program Profiler are used to assess future execution times
and get an accurate estimation.

• Data on consumed energy of past executions, collected by the Device Profiler is also considered
in the decision. Offloading only takes place if a decrease in energy consumption is anticipated.

5.5. TANGO 33

• Depending on offloading goals, decisions are based on weighting execution times and energy con-
sumption.

• Cost of the consumed cloud resources can also be a factor considered in the decision.

If the final decision is to offload a call, Java reflection is used to transform the relevant application state
to the application server.

Smartphone Application Server (Cloud Environment)

Application

ThinkAir Framework

Primary Server

ThinkAir

Secondary Server

Application
Framework

Figure 5.4: ThinkAir architecture overview [Kosta et al., 2012]

The Application Server can be considered as a cloud environment composed of multiple virtual
machines. The Primary Server is always active, with a Client Handler waiting for incoming connections
and accepting offloading requests. Once offloading requests are received, Secondary Servers are started
on demand, which perform the work and return the result.

ThinkAir eliminates scalability limitations of previous approaches, still a major overhead due to the
dynamic provisioning of virtual machines remains. From a security perspective, this approach is predes-
tined for pre-establishing a trust relationship with the Primary Server. The Primary Server enjoys ulti-
mate trust of the mobile device and is responsible to assess the trustworthiness of the Secondary Servers.
This approach is reasonable in the ThinkAir scenario but does not serve more dynamic procedures.

5.5 TANGO

Gordon et al. [2015] identify deficiencies in the current model used by offloading frameworks. Due to
their partitioning-based approach, offloading frameworks have the challenging task of accurately pre-
dicting the runtime of application parts. The success of offloading frameworks inherently depends on an
accurate estimation. Therefore, Gordon et al. [2015] propose the TANGO framework, which follows an
improved approach to increase the user-perceived mobile device performance.

TANGO proposes an offloading model based on replication instead of performing partitioning. Using
replication, an application is simultaneously executed on the client and the server. At every point in
time, one of the replicas is leading and takes over the part of performing computations and network
communication, as well as displaying content to the user. Their approach to improve user-perceived
performance is based on five main techniques:

• Each of the replicas is capable of sending output directly to the user. If, for example, a remote
replica is in control, it can send the generated output to the user’s screen, even though the local
replica has not reached this state yet.

• Deterministic replay approaches are used to ensure that all replicas produce the same output. Non-
deterministic events are logged by the currently leading replica, and are used for replay on other
replicas.

34 5. Existing (H)MCC Frameworks

• Using TANGO, the logging of non-deterministic events is spread among different computers. Es-
pecially when dealing with mobile applications, some input sources (e.g. user input or GPS data)
are tied to the local device, whereas network input and output may be logged at a remote server.

• To reduce the required log operations of non-deterministic events, TANGO replicates I/O sources,
data storage functionality, file system, and databases.

• In contrast to other replication-based systems, TANGO allows the leader role to float between
replicas, also called flip-flop replication.

TANGO targets at unmodified interactive applications for the Android platform using the Dalvik
VM. The ultimate goal of TANGO is the improvement of user-perceived performance. An indicator
for the performance, is the required time from user input to the expected user interface feedback. For
some sample applications, the authors achieved a latency reduction of more than 60%. The energy
consumption in contrast nearly remains at the same level for most test cases.

The authors follow an interesting and new approach, still it suffers from the similar issues than
partition-based systems like high connection latencies and limited bandwidth. Due to the fact that flip-
flop replication requires to synchronise multiple replicas, the vital reduction of energy consumption on
mobile devices seems out of reach. The authors put their focus on the novel offloading approach and do
not consider security aspects.

5.6 mCloud

Zhou et al. [2015] introduce the mCloud framework, where the focus is not completely put on applica-
tion partitioning and offloading technique. For partitioning, they use a similar source-level annotation
approach as the previously introduced MAUI and ThinkAir framework. mCloud operates on Java for An-
droid and dynamically captures annotated offloading candidates using Java reflection. These approaches
were already elaborated in this chapter.

Cloud

Computing resources
Client

Proximate devices

Figure 5.5: mCloud overview [Zhou et al., 2015]

As illustrated in Figure 5.5, the novelty of mCloud is the inclusion of cloud computing units and
nearby available computing power. For cloud computing units, a central registry is setup where clients
can acquire available computing units. To discover nearby resources, the client sets up an ad-hoc net-
work, to enable a discovery of other mobile devices. Once other devices are detected, ad-hoc connections
are formed and the client device can use the other devices for its offloading operations.

Although massive savings in energy consumption are achieved, this approach imposes multiple is-
sues. As the authors discovered, nearby mobile devices change frequently and therefore the approach
requires numerous renegotiations of the ad-hoc networks. Furthermore, standard smartphones are not ca-
pable of settings up an ad-hoc network and being connected to another wifi network. This results in the

5.7. Chapter Conclusions 35

situation that client smartphones are tied to their 3G or 4G connections with potentially higher latencies
and lower throughput.

From a security perspective, mCloud requires sophisticated and dynamic approaches, matching its
dynamic computing resource acquisition but security is not considered by the authors.

5.7 Chapter Conclusions

In this chapter, frameworks relevant for the HMEC approach were introduced and discussed. The selec-
tion of frameworks was inspired by their novelty and scientific significance. Analysing these frameworks
shows the following issues very clearly.

Existing frameworks are constrained regarding their operational environment. Most of the frame-
works are tailored to specific operating systems or even specific operating system versions. The current
diversity on the mobile device market is not reflected in the representative set of offloading frameworks.
Every single framework targets the Android operating system; not a single framework is capable of
offloading on iOS devices, which also have a remarkable market share.

From a security point-of-view, most of the frameworks do not consider security aspects at all. This
is impacted by the fact that a majority of the existing frameworks do not provide a sufficient level of
flexibility and do not react to changing environments in a dynamic way. mCloud, as the only framework
with a dynamic computing resource allocation strategy, also requires an equally dynamic approach of
assessing the trustworthiness of the available devices. For frameworks with a static binding to their
offloading computing units, a pre-established trust relationship to computing units is sufficient.

Considering the current state of existing frameworks, they are not ready to operate on sensitive data or
perform sensitive computations. In the following chapter a security assessment framework is developed
which enables to perform a systematic evaluation of the current state of existing frameworks as well as
their potentials and provides guidelines towards privacy and data security aware extensions.

36 5. Existing (H)MCC Frameworks

Chapter 6

Security Assessment

The state-of-the-art in the field of MCC, HMCC, and HMEC does not contain a solid security baseline.
Existing approaches put their efforts on enabling technologies, leaving security aspects behind. In a
broader context, distributed computing is not a recent innovation but clearly differs from the concepts
of MCC, HMCC, and HMEC. Therefore, a step back is necessary and requirements need to be derived
from related and enabling technologies.

In this chapter, a set of security-related requirements is derived in Section 6.1 from security-related
research in the topic of cloud computing and grid computing, acting as key enabling technologies. Adap-
tations are required to reflect the changed context of the technology. Furthermore, MCC, HMCC, and
HMEC demand the definition of security-related requirements from two perspectives: from a user’s per-
spective to protect sensitive user data and computations, and from a resource provider’s perspective to
protect its offered resources. With the derived catalogue of security-related requirements the introduced
frameworks from Chapter 5 are evaluated regarding their adherence to this catalogue in Section 6.2.

6.1 Security Assessment Catalogue

In this section a requirement catalogue is defined which enables, by assessing the adherence of frame-
works to the requirements, to determine the data privacy awareness and suitability to execute computa-
tions on sensitive data. Requirements are derived from literature for related technologies and are based
on a threat model analysis. This results in requirements where parts are very similar to the requirements
of general cloud computing; others can be traced back to traditional IT systems. This section starts by
identifying important assets and threats of HMCC systems and continues countering these threats by
defining requirements to mitigate these threats, also by pulling requirements from related researches into
the context of HMCC.

6.1.1 Assets and Threats

Researches by Rong, Nguyen, and Jaatun [2012] and Ryan [2013] identify general cloud computing
security challenges, also relevant for the more generic context of distributed computing:

• Access to data: The cloud provider usually has full access to the data, hence full responsibilities
regarding integrity and confidentiality.

• Location of data: Big players are acting globally, operating their data centres around the globe.
Data and computations can be moved by the operator, according to certain agreements, freely.
Cloud providers optimise their operations according to costs of operation. Within the agreed bor-
ders, users usually do not have tracing capabilities.

37

38 6. Security Assessment

• Multi-tenancy: Generally, cloud services are built for scalability, therefore are targeted to serve
multiple users and user groups. Users need to trust the cloud provider to have protection mecha-
nisms in place to isolate different users and their data from each other.

• Monitoring and logging: Logging is an important aspects of every service. Especially with the
growing amount of applications migrated to the cloud, operators require up-to-date logging infor-
mation. This goes hand in hand with multi-tenancy: Log output will likely also contain sensitive
information, which again stresses the need for decent isolation between different user’s and differ-
ent service’s data.

• Cloud-related standardisations: Standardisations gain popularity. They enable users to assess
different aspects of cloud computing offers. On a technical level, a majority of the providers only
support applications which are developed particularly for one specific platform (vendor lock-in).

Armed with this background knowledge of cloud computing and the already broad understanding of
MCC and HMCC systems the assets can be identified. All further considerations are conducted with the
following assumptions in mind:

• AS1: The user’s device is assumed trusted, otherwise no guarantees can be made.

• AS2: The communication channels are authenticated, integrity protected and do not reveal data to
third parties.

HMCC does not follow a strict client-server model, still for each interaction a clear separation can be
determined. Therefore, a separation between client and server assets is appropriate (client assets are
marked with C, server assets with S):

• A1C - Sensitive data: Data containing private or confidential parts can be considered as sensitive
data. Operating on sensitive data is fundamental for most applications and is transported to remote
computing units during the offloading operations.

• A2C - Sensitive computation: Computations that result in sensitive data, or computations with a
sensitive computation logic, are considered as sensitive computations. In the course of offloading
computations, also sensitive computations are offloaded to remote computing units.

• A3C - Availability of offloading services: This asset refers to the availability of the offloading
services to the users. The offloading mechanism only provides added value if computing units are
available and reachable.

• A1S - Availability of provided resources: Computing units offer different types of their available
resources like computational power, storage, or specialised hardware. The available resources,
regardless of their types, are limited.

• A2S - Resource integrity: The offered resources are used to process the offloaded tasks. The
integrity, in this case, refers to the correct behaviour of the resources, e.g. saved data has not been
modified, or computational results match locally performed computations.

• A3S - Sensitive computational results: Results of computations again may contain sensitive data,
regardless of the input data’s sensitivity.

• A4S - Logging data: Monitoring data produced during processing offloaded tasks may contain
sensitive data and information not meant for disclosure.

Analysing these assets reveals the following threats/attack scenarios. A mapping of threats to the corre-
sponding assets is provided in Table 6.1.

6.1. Security Assessment Catalogue 39

• T1 - Fraudulent computing unit provider discloses sensitive data and computations: A fraudu-
lent provider is operating a computing unit and has access to offloaded sensitive data, as well as
sensitive computations. The provider is able to disclose the sensitive data and computation logic.

• T2 - Infected computing unit discloses sensitive data and computations: A computing unit is
operated by an honest provider, but the infrastructure has been infected by an attacker. The attacker
has access to offloaded sensitive data, as well as sensitive computation logic and is able to disclose
this information.

• T3 - Offloading of malicious code to disclose sensitive data and computations: A fraudulent user
offloads malicious code to a target computing unit and gains the ability to leak sensitive data and
computation logic of other users/applications running on the same computing unit.

• T4 - Loss of Internet connectivity: Without, or with bad connectivity to the offloading computing
units, the availability of the offloading services cannot be provided.

• T5 - Attacker powers off single connection point: By relying on single connection points, attackers
can negatively affect the availability of the provided computing resources and the general avail-
ability of the offloading services.

• T6 - Resource over-consumption by fraudulent code: Fraudulent offloaded code may over-consume
the provided computing resources and negatively impact their availability for other users.

• T7 - Fraudulent computing unit provider compromises resource’s integrity: A fraudulent resource
provider has compromised its provided resources’ integrity. No resource integrity guarantees can
be made.

• T8 - Resource’s integrity is compromised due to infection: A computing unit is operated by an
honest provider, but the infrastructure has been infected by an attacker. The attacker gains the
ability to compromise the integrity of the provided resources.

• T9 - Fraudulent computing unit provider discloses computation results: A fraudulent provider is
operating a computing unit and has access to sensitive computation results. The provider is able to
disclose this data.

• T10 - Infected computing unit discloses sensitive computation results: A computing unit is oper-
ated by an honest provider, but the infrastructure has been infected by an attacker. The attacker
has access to sensitive computation results and is able to disclose this information.

• T11 - Untrustworthy administrators with access to log files: Untrustworthy computing units ad-
ministrators with access to log files are able to disclose potentially sensitive information contained
in log files.

• T12 - Compromised computing unit gives attacker access to log files: A compromised computing
unit enables an attacker to gain access to potentially sensitive information. The attacker may
disclose this information.

Backed by this analysis, the next chapter 6.1.2 continues on defining countermeasures, to be available
in sustainable frameworks.

6.1.2 Security Requirements

From the identified threats and security challenges of cloud computing, the security requirements cata-
logue is derived. The derivation for HMCC/HMEC and MCC systems is based on the identified security

40 6. Security Assessment

A1C A2C A3C A1S A2S A3S A4S

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

Table 6.1: Threat-Asset assignment

requirements of Iankoulova [2011] and Höner [2013], composing an in-depth literature review of avail-
able scientific material, and the previously discussed cloud computing security challenges. The require-
ments are intentionally kept on an abstract level to avoid influencing the technical realisation in a later
stage. To a certain extent, the cloud computing security requirements also apply to HMCC/HMEC sys-
tems. The definitions are changed to fit into the HMCC/HMEC context, requirements are added where
gaps are identified.

For the HMCC/HMEC use case, the cloud computing environment needs to be extended. HMCC/HMEC
does not only utilise CC-provided resources, but also computing units in the user’s proximity (other mo-
bile devices or cloudlets), and computing units under control of the user (home computers). From a
device’s perspective, these resources can be seen as another type of cloud resource, but without any prior
knowledge regarding the operator. Due to these similarities, a majority of the cloud computing related
security requirements as defined by Höner [2013] and Iankoulova [2011] also apply to HMCC/HMEC
systems without any changes:

• R1 - Access Control: In the context of HMCC/HMEC, access control mechanisms can be con-
sidered as the enabler on a technical level, for organisational protection mechanisms. Resource
providers need secure ways to limit the users to a certain set of authenticated users. This should
not limit resource providers to offer open computing units, but enables the operation of private
computing units limited to groups of users with a trust relationship with particular providers. Al-
though this is not a technical solution to counter fraudulent providers or infected computing units,
it enables the usage of pre-established trust relationships.

• R2 - No single-points-of-failure: A high availability can only be provided in the absence of single-
points-of-failure. In MCC or similar infrastructures, a prevalent single-point-of-failure is the con-
nection to the offloading computing unit. Frameworks should not exclusively rely on the availabil-
ity of Internet connectivity, where possible. Furthermore, single e.g. coordination servers need to
be avoided.

• R3 - Usage of multiple communication technologies: To increase the fail-safety, frameworks
should use different available communication technologies. This includes the Internet, but also
local technologies considering the surrounding of the user like Wifi and Bluetooth.

• R4 - Resource’s integrity assurance on technical level: Integrity in general refers to data con-
sistency over its whole life cycle. In the context of HMEC, computing unit integrity means that

6.1. Security Assessment Catalogue 41

computing units execute offloaded code without applying any modifications, and return the correct
result. The resource provider could modify the offloaded code unnoticed by the user. The modi-
fied code could then introduce a different behaviour or return erroneous results. As modifications
could be applied remotely they are hardly detectable. To mitigate the risk of compromised re-
source integrity on a technical level, attestation methods need to be included in HMEC solutions,
to remotely assure that a given computing unit is in a known good state and operating as expected.
These assurance methods mitigate the risk induced by fraudulent providers, as well as due to the
infection by other attackers using malicious code.

• R5 - Complete task isolation: In cloud computing, storage is often used to backup or synchronise
users’ data between multiple devices. This also involves sensitive data. In a HMEC context, the
cloud providers generally do not deal with this kind of data. However, computing units execute
parts of an application that potentially contains sensitive data or computations. It is more complex
to extract relevant data, but the data potentially also contains highly sensitive information.

Depending on the used offloading approach, the system per se has different isolation levels between
different users. For virtual machine based approaches, where each virtual machine is dedicated to
a single user or even a single application instance of a particular user, high isolation levels can be
provided without further measures. The attacker would need to find a security flaw in the virtual-
machine hypervisor. To better utilise the available computing resources, a system may share a
single virtual machine and execution environment across different users and applications. Without
applying further protection mechanisms like sandboxing, data and computations may be accessible
to different users and applications operated in the same environment. These approaches mitigate
the risk imposed by the offloading of malicious code to disclose sensitive data. Furthermore, it
complicates the disclosure of data in the case of infected computing units.

• R6 - Non-repudiation: By providing the non-repudiation property, a client cannot deny that it
issued a particular message, and the computing units can be sure about the issuer. Only the issuer
is in charge of the required private information to produce authenticated messages. In the HMEC
context it is important that computing units can unambiguously link requests to particular issuers.
Computing units may expose sensitive information, as a result of sensitive computations, to the
clients. This mitigates the risk of exposing sensitive data to unauthorised users.

• R7 - Protection against resource over-consumption: Providers need to protect their provided re-
sources by either analysing the submitted tasks, or by rendering the execution unattractive for
malicious user (e.g. applying a cost model).

The effectiveness of the defined countermeasures on the identified threats are defined in Table 6.2.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

R1

R2

R3

R4

R5

R6

R7

Table 6.2: Requirement-Threat assignment

The seven security requirements defined in this section will be used to systematically assess security
capabilities of the introduced HMCC frameworks.

42 6. Security Assessment

6.2 Evaluation of Existing Frameworks

In this section, the security assessment catalogue as defined in Section 6.1 is evaluated against the in-
troduced, existing frameworks. For classic cloud services, where cloud providers are used as storage
providers, properties like integrity and confidentiality can be guaranteed by utilising client-side encryp-
tion and protection mechanisms, availability on the other hand is achieved using replication techniques.
In case the cloud service does also process data, the situation gets more complex. One promising ap-
proach to meet defined security requirements is the use of fully homomorphic encryption. This crypto-
graphic concept enables operations on encrypted data. Other solutions require the provision of the used
encryption key to the cloud-service provider, providing no gains in security.

HMCC/HMEC is completely focused on data processing. Therefore, additional measures are re-
quired to fulfil the defined security requirements. Hence, the capabilities of current HMCC frameworks
are assessed regarding their adherence to the security requirements catalogue. A summary of this assess-
ment is provided in Table 6.3. The table encodes assessment results with the help of three different sym-
bols: "3" for requirements which are completely fulfilled, "7" for requirements which are not fulfilled,
and "∼" for requirements which are partly fulfilled or could be fulfilled based on the documentation. If
table cells are left blank, the requirement has no relevancy for the framework.

6.2.1 R1 - Access Control

Applying access control, computing units can control which clients are allowed to use the computing
unit. Granting or denying access could be based on one or multiple of the following properties:

• User’s identity

• Device’s identity

• Device’s location

• Device’s assessed trust level

These properties have a dynamic character, hence may change during operation. This requires computing
units to dynamically evaluate access requests and react to changing environments. The introduction of the
frameworks shows a clear focus on technological aspects and improving the state-of-the-art regarding the
offloading techniques. Most of the frameworks have a static binding to their computing unit, initialised
at deployment. Although this approach could be considered as access control, it fails in adhering to basic
dynamic requirements. The access control specification at the computing units should be detached from
any program logic and should enable referencing the mentioned parameters and beyond.

6.2.2 R2 - No single-points-of-failure

Reliability can only be provided by systems that do not have a single-point-of-failure and feature fallback
mechanisms. MAUI, CloneCloud, and TANGO perform a static binding before the application is enrolled
to the target devices. This represents a completely static approach and does not consider the dynamic
nature of mobile operational environments.

Cuckoo is, conceptually, not bound to a single computing unit. A resource manager keeps track of
available computing units and assigns tasks to suitable computing units. Still, the setup and registration of
computing units at the resource manager is a manual process. ThinkAir separates the available computing
units in a primary server and secondary servers. The primary server keeps track of available secondary
servers and their utilisation. A primary server dynamically starts and stops secondary servers where the
offloaded tasks are executed. Hence, without the primary server, the whole system is not usable. mCloud

6.2. Evaluation of Existing Frameworks 43

follows a similar approach regarding its remote cloud resources. A central registry is setup, which keeps
track of all available computing units. Clients can acquire computing units from the registry. This suffers
from the same issues than ThinkAir’s approach. Without a registry, the system cannot be used. Besides
discovering resources from the central repository, mCloud also discovers nearby computing units like
cloudlets and other mobile devices via Wifi technology. mCloud is the only existing approach utilising
different communication technologies, still, the registry acts as a single weak point interfacing with the
computing resources.

The key to reliability is the avoidance of single-points-of-failure. If a system totally relies on central
registries or control instances, the reliability of the whole system is compromised by single weak links.

6.2.3 R3 - Usage of multiple communication technologies

The usage of multiple communication technologies enables to increase the availability of the system. All
frameworks, except mCloud, exclusively rely on Internet connectivity, therefore their operability depends
on the availability of a proper Internet connectivity. mCloud also considers nearby devices, eliminating
the communication channel as the single-point-of-failure.

In a HMEC environment, the following strategy is pursued to increase reliability, independent of
available Internet connectivity:

• Provide functionality over the Internet when connectivity to powerful remote resources is available.

• Provide functionality by exploiting nearby devices with local communication means (WiFi, Blue-
tooth) to avoid service unavailability in offline scenarios.

Assuring full operability in both scenarios precludes the use of a central and coordinating server. To
assure full operability in offline scenarios, the resource-constrained device needs to be aware of available
resources at any time during execution. This, in turn, increases complexity for the local device.

6.2.4 R4 - Resource’s integrity assurance on technical level

The requirement for integrity refers to the execution of unmodified offloaded code. In fact, users cannot
verify if the correct code is executed on the remote computing unit. Only the TANGO framework slightly
considers this issue. Execution in TANGO does not follow a partitioning-based approach but uses process
replication. The framework is not limited to two replicas and can, in principle, be extended to an arbitrary
number of replicas, acting as fail-safe replicas. All replicas can then consent on one result, ruling out
biased results. Currently, the framework and its evaluation are focused on user-perceived latency and
energy usage, fail-safety is more considered as a theoretical concept.

None of the other frameworks considers this issue. The solution of TANGO is specific to the frame-
work. A user has two ways to mitigate the risk of using dishonest remote computing units. Either the
user assures to be in sole control of the computing unit, or special means are utilised to assure the trust-
worthiness of the resource and its operator. Technical solutions include remote attestation procedures
that enable the state verification of computing units. Other approaches could include the execution of the
offloaded parts in trusted areas.

6.2.5 R5 - Complete task isolation

In contrast to the requirement for integrity, isolation focuses on the data and sensitive information pro-
vided by the user. Task isolation is not directly tackled by the existing offloading frameworks but has
a high dependence on the utilised offloading method and utilisation of computing resources by multiple
users. If computing units are exclusively bound to mobile devices or application instances, the potential

44 6. Security Assessment

of leaking data is minimised. This especially is the case for CloneCloud and ThinkAir. This does not
foster an ideal resource utilisation but enables optimal data protection. Frameworks utilising late and
dynamic computing unit binding require further considerations. None of the examined frameworks, be-
sides mCloud, feature a late and dynamic computing unit binding. The mCloud framework does not take
any considerations in this regard.

6.2.6 R6 - Non-repudiation

For productive services, the non-repudiation property is important to not reveal sensitive data of one user
to another. This issue is not directly tackled by any of the described frameworks but again is only relevant
if multiple users refer to the same computing unit. All frameworks, besides mCloud, exclusively bind
their computing units to mobile devices, therefore non-repudiation for dynamic environments is out of
their scope. Also mCloud, with its proximity enabled approach, does not feature methods to ensure the
non-repudiation property.

6.2.7 R7 - Protection against resource over-consumption

All requirements discussed so far mainly tackled issues affecting users and the security of their personal
data. This requirement, in contrast, focuses on the offered resources of providers. Regardless if frame-
works are statically bound to computing units or linked dynamically, in both scenarios users may offload
tasks and execute fraudulent activities, or may consume all available resources to their full extent. Again,
due to the prevalent static binding of existing frameworks and putting the focus on offloading methods,
protection mechanisms against over-consumption are not considered so far. Analysing this requirement
reveals that the fulfilment can take place on different levels:

• On a technical level one approach to prevent misuse of provided computing units is the analysis of
offloaded tasks. Still, this is deemed to be an computationally intensive task.

• On an organisational level, users could establish trust relationships with each other and with
providers on the one hand and make misuse unattractive for attackers by e.g. requiring micro
payments for resource utilisation on the other hand.

Table 6.3: Security requirements evaluation of existing frameworks, using the following symbols:
"3" for requirements which are completely fulfilled, "7" for requirements which are
not fulfilled, "∼" for requirements which are partly fulfilled or could be fulfilled based
on the documentation, empty fields indicate that a requirement does not apply to the
corresponding framework

MAUI CloneCloud Cuckoo ThinkAir TANGO mCloud

R1 7 7 7 7 7 7

R2 7 7 7 7 7 ∼

R3 7 7 7 7 ∼ 7

R4 3 3 3 3 3 7

R5 7

R6 7 7 7 7 7 7

R7 7 7 7 7 7 7

Chapter 7

Part II Conclusions

This part of the thesis starts with the introduction of several offloading frameworks. Various approaches
are available to the scientific community, but only a fraction provides novel and scientific relevant contri-
butions. The relevancy of frameworks is assessed by their novelty and scientific contribution at the time
of publishing. This selection procedure results in a list of six frameworks, examined in detail. In parallel,
a security assessment catalogue is produced to evaluate the sensitive data-awareness of HMCC/HMEC
frameworks. The development of the catalogue follows well-established methods of defining threat mod-
els including security requirements. For the derivation of requirements, a practical relevance is ensured
by logically deriving them from related technologies like cloud computing and distributed computing
in general. The resulting catalogue is a tool for security assessors to evaluate frameworks and guides
developers through the process of specifying and designing new solutions.

The evaluation of the security requirements catalogue on the existing frameworks reveals that a ma-
jority of the frameworks focuses on technical and implementation aspects like partitioning or offloading
techniques. Data security in HMCC/HMEC systems is still in its infancy and requires in-depth consid-
erations. Furthermore, the analysis reveals that all frameworks are locked to specific execution envi-
ronments, not considering interoperability and cross-platform aspects. Additionally, a majority of the
frameworks misses offloading opportunities by adhering to a strict computing unit selection process and
not considering nearby computing units for a more dynamic and flexible setup.

These three major discoveries, the lack of interoperability, flexibility and the missing focus on data
security, is the driving force of this thesis. The consequences of these discoveries manifest for applica-
tions operating on sensitive data and especially corporation controlled devices with applications operat-
ing on sensitive data. Corporations require complete control of the data flows. Parts of their data may
only be processed on-site, others may also be processed by trusted external computing units. Frameworks
that cannot provide security guarantees hinder the usage in these scenarios. Still, corporate environments
offer many opportunities with large fields of computationally intensive applications to be exploited by
HMEC solutions. The advancements achieved by the HMEC technology manifest in a progressive pen-
etration of mobile devices, hence increased flexibility and computational capabilities, also in the daily
work on sensitive data.

The contributions of this part, the threat model and security requirements catalogue, can also act
as the baseline for other developments in this field of research. They can help in the analysis and im-
provement of the data security awareness and privacy protection mechanisms of existing frameworks in
the same way than it is applied in the following chapters. The outcomes of this part steer the further
work on this thesis and codetermine the structure. The remaining main contributions of this thesis pick
up the identified prevailing weaknesses in interoperability, flexibility and data security and enhance the
state-of-the-art. In Part III the focus is put on the interoperability and flexibility issue. A more flexi-
ble architecture is required to respect flexibility requirements from scratch, already on an architectural
level. This architecture requires anchors, where different data security enabling approaches can attach.

45

46 7. Part II Conclusions

The enhanced architecture and model is derived from the findings and security requirements catalogue
in this part. Although the architecture has major differences to previous approaches, a broad reusability
of already existing components is achieved. Isolated technical aspects like the offloading and partition-
ing approaches, as well as the integration in the application, are not reinvented and are reused to a high
degree. In practice, the different available approaches can equally be combined with the new architecture.

The interoperability issue cannot be solely solved on the architectural level. The implementation
of the proposed architecture in Part III goes beyond a concept implementation and takes new paths.
The interoperability issue is solved by focusing on technologies which are available on all major mo-
bile devices’ operating systems and architectures. Compared to native techniques, these approaches are
constrained in their capabilities. Ways need to be developed to overcome these barriers.

Data security and privacy protection mechanisms are then detailed in Part IV. They seamlessly plug
into the architecture and increase the offloading flexibility. Techniques are developed and integrated
to enable the usage of third party devices in sensitive data processing use cases. Furthermore, explicit
control of data flows by data owners is enabled by integrating with policy environments.

The overall outcome of this thesis is a novel processing model: Hybrid Mobile Edge Computing
(HMEC) including a reference architecture and implementation, founded on a solid threat model and
designed according to the security requirements. The solution can act as a baseline for future researches
and developments in this sector.

Part III

A Novel HMEC Approach

47

Chapter 8

A Re-usable HMEC Architecture and So-
lution

People are more and more migrating their daily work from desktop computers to mobile devices. The
usage of mobile devices first outranked desktop systems in 20111 with the effect that more complex and
energy intensive applications are executed on mobile devices. This results in users demanding extended
battery lifetimes. Currently deployed solutions are MCC solutions where distant clouds offer services
for applications to perform their pre-defined tasks: Save data in the cloud to virtually extend the device’s
local storage, upload an image for processing, calculate routes, or whatever one can think of.

This approach always suffers from high latencies, compared to local resources. Fernando, Loke,
and Rahayu [2012] highlight that a close collaboration between proximate devices could enable new use
cases and make existing use cases more efficient due to low latency connections:

• Image processing/natural language processing: As an example, the authors use an OCR operation
which requires a lot of processing power. The mobile device is not capable of performing the
operation. The user could connect to a remote server or search for nearby devices interested in
participating in the calculation. There may also be other devices nearby, interested in the same
image being processed. Using the remote server might be subject to high roaming costs and high
latency.

• Crowd computing: Combine the data from multiple devices nearby to get a complete view. The
authors take the example of video captures from multiple angles of the same event, resulting in a
video with different perspectives.

• Sharing GPS/Internet data: To save energy, a group of nearby people could share their GPS data,
so only a single device needs to have GPS activated. The same applies to data transferred from the
Internet. If multiple nearby devices request the same piece of data, only one needs to download it
and can share it locally.

Currently, existing frameworks are very restricted in this regard. They interpret MCC only as a tight
collaboration between mobile devices and distant cloud services. Thus, they miss use case opportunities
and are not as efficient as they could be. In this chapter, an architectural view of a reusable HMEC
solution is proposed. After defining the requirements on a reusable HMEC architecture, an abstracted
view on the current state of architectures from well-known and analysed frameworks is presented.

The methodology followed in this chapter is defined as the following:

• First, identify the strengths and weaknesses of existing architectures.

1http://www.canalys.com/newsroom/smart-phones- overtake-client-pcs-2011

49

50 8. A Re-usable HMEC Architecture and Solution

• Second, combine the strength and existing approaches with new technologies to eliminate the
drawbacks.

• Third, evolve an architecture which is not targeted at specific frameworks.

8.1 Current Approaches

A majority of the existing MCC frameworks and solutions focus on the issue of what should be con-
sidered for offloading under which conditions and how the offloading should be performed technically.
The question of what to offload under which conditions is answered multiple times, resulting in differ-
ent partitioning models as introduced in Section 8.1.1. The technical details about how to perform the
offloading process also results in a few models as illustrated in Secion 8.1.2.

8.1.1 Partitioning Models

Partitioning models provide means to determine which parts of an application should be executed in an
offloaded mode and which parts should be executed locally. The models can make use of offline analysis
before the application is deployed or on-the-fly during the execution of the application. Generally, on-
the-fly approaches offer increased flexibility, whereas offline approaches are more static and are generally
unable to adapt to changing environments.

An automatic offline application-partitioning model is introduced by Chun et al. [2011] targeted at
minimising total execution time or at minimising the energy consumption on the mobile device. An
offline analyser inspects a binary application and identifies candidates for migration and re-integration
points in the application. Their analyser adheres to three fundamental properties:

(a) Methods that access specific features of a machine must be pinned to the machine.

(b) Methods that share native state must be collocated at the same machine.

(c) Nested migration must be prevented.

The profiler then profiles the application methods with random input data on the mobile device and
on the computing unit in the cloud. The optimisation solver decides which method calls should be
offloaded, based on the collected data for each supported optimisation profile (e.g. optimise energy
consumption or optimise application run-time). From an implementation perspective, using this approach
additional instructions are inserted into the binary to represent the migration and re-integration points.
These instructions need to be handled by the operating system, which might require modifications.

A different approach is introduced by Cuervo et al. [2010]. They follow an online approach where
the initial partitioning is performed by the application developer. The developer annotates methods
which should be considered for offloading during the runtime of the application. At runtime, the profiler
decides if offloading is beneficial based on three factors: (1) smartphone’s energy consumption charac-
teristic, (2) runtime and resource needs of the particular method, and (3) network characteristics such
as bandwidth, latency, and packet loss. Estimating the runtime of methods is based on the runtime of
past executions. The solver then uses the collected data to solve the optimisation problem that determines
which method should be executed locally and remotely, comparable to the optimisation solver introduced
in the former approach. From an implementation perspective, this approach does not require awareness
of the operating system, it can purely be handled by the application and the offloading framework.

8.1. Current Approaches 51

8.1.2 Offloading Techniques

Offloading techniques refer to the means used to (a) migrate the execution of an application to a remote
computing unit, and (b) to the concrete execution model used on the remote side. Reiter and Zefferer
[2015a] refer to three distinct offloading approaches:

1. Virtual Machine Based Approaches
Virtual machine (VM) based approaches, as described by Chun et al. [2011], aim to
provide a runtime environment, which is similar and compatible to the environment
of the resource-constrained device. Following this approach, the VM can execute un-
changed mobile-device applications, lowering the required development effort and en-
abling a fast and broad rollout. The disadvantages of this approach are obvious. First,
a vast amount of different virtual machine images reflecting different hardware and
operating-system combinations is required. Second, for efficiency reasons, a VM will
only be started when required, which results in a few seconds delay for the user. Third,
all applications need to be available at the resource provider’s side or need to be up-
loaded, which again results in a delay. Finally, the VMs consume a non-negligible
amount of resources, which may even exceed the resources required by the applica-
tion. In general, VM-based approaches are hence inappropriate in most cases.

2. Class- or Method-Based Concepts
As described by Cuervo et al. [2010], class or method based concepts provide a more
fine-grained approach and focus on the offloading of classes or methods instead of en-
tire applications. Before methods are invoked, it is decided, if the method is executed
locally or remotely. Depending on the utilised programming language, it may not be re-
quired to provide a compatible execution environment. Using managed programming
languages (for example the Java programming language or the .NET environment), it
is possible to transfer the current state of an application to another machine, which may
be running a different operating system. Class or method based concepts require more
support from the developer, but in return eliminate delays induced by the VM-based
approach. These concepts might also require the mobile device to upload parts of the
application to the offloading target. However, by using smart extraction of the relevant
application parts, it is possible to minimise the size of these data.

3. Object-Based Concepts
Object-based concepts as proposed by Sinha and Kulkarni [2011] extend the class-
based approach to an even more-fine grained level. Sinha and Kulkarni [2011] intro-
duce object-based concepts by means of the concrete example of an image-manipulation
software, where a certain class is used to apply different effects. With a class-based
approach, this class would always be offloaded to the same target, or would always run
locally. Utilising the object based approach, the system bases the offloading decision
on the prediction of the required computational effort for one specific instance of a
class, i.e. an object. This way, different instances of the same class can be offloaded to
different targets.

[Reiter and Zefferer, 2015a]

A recent novel approach relying on process replication is introduced by Gordon et al. [2015]. It
provides a completely different execution model and is listed here for completeness. Following this
model, an application is executed on different replicas, with one leading replica displaying results to the
user. The whole data is generated on each replica, therefore communication effort is minimised. Still,
this approach does not fit to the overall goal of this thesis to reduce energy consumption.

52 8. A Re-usable HMEC Architecture and Solution

Table 8.1: Overview of utilised offloading technique of the analysed frameworks

VM
-b

as
ed

ap
pr

oa
ch

Clas
s-

or
m

eth
od

-

ba
se

d
ap

pr
oa

ch

Rep
lic

at
ion

-b
as

ed

ap
pr

oa
ch

Obj
ec

t-b
as

ed

ap
pr

oa
ch

MAUI · 3 · ·

CloneCloud 3 · · ·

ThinkAir 3 · · ·

Cuckoo · 3 · ·

TANGO · · 3 ·

mCloud 3 · · ·

Virtual machine-based approaches require the least integration effort in applications, and may even
be applied to unchanged applications. Nevertheless, the approach relies on the availability of virtual
machines with nearly equal characteristics as the client device. Furthermore, it requires a vast amount of
resources to start one virtual machine per client device, or even one virtual machine per client application.
Object-based concepts, on the other hand, are able to apply a fine-grained offload control mechanisms on
source-code level. This seems more flexible than the method-based approach. Actually, by introducing a
decision engine, which can decide on a call-by-call basis if offloading should be performed, the method-
based approach becomes even more flexible and provides even more fine graininess.

Looking at the existing frameworks reveals that most of the existing frameworks are based on the
virtual machine-based approach as highlighted in Table 8.1. As discussed above, virtual machine-based
approaches require vast amounts of memory to represent a majority of the available devices and their
different configurations. This drives the need to research in other directions and discover other, more
efficient approaches.

8.1.3 Current Architectures

As described by Reiter and Zefferer [2016] and based on the findings in this chapter, general building
blocks and a general architecture is extracted. The architecture maps to the overall functionality of the
analysed frameworks, some peculiarities may not be covered without impacting the functionality of the
frameworks. The architecture is shown in Figure 8.1. It is separated in two parts, the offloading client
framework, executed on the client-side, and the remote side. Still, the focus of most implementations
clearly lies on the client-side. Frameworks differentiate between four components:

• The Profiler provides performance values for different contexts. An Application Profiler is used
to estimate the runtime of the currently analysed part of the application. Application profilers may
operate online, while the application is actually executed, or offline, where performance values are
calculated in advance. The Context Profiler provides performance values for the current execution
context. Depending on the used framework, the context profiler may gather values like available

8.1. Current Approaches 53

Figure 8.1: Current MCC Architectures

bandwidth, latency to the remote computing resource(s), battery status, or current CPU utilisation.
A Profile Store is attached to the profiler where results can be stored for later reference.

• The Decision Subsystem involves a Decision Engine and a Cost Model. The goal of the decision
subsystem is to get a final choice whether a method call should be offloaded or executed locally.
The decision engine gathers the performance values from the profiler. These values are applied to
the cost model to get a final decision. The definition, if an offloading operation is beneficial, is
done by the cost model. Cost models can focus on increasing performance, on minimising energy
consumption on the mobile device or provide a well-balanced variant as a combination of both.

• The Offloading Engine performs the actual offloading operation on a technical level. Depending
on the utilised offloading technique, as described in Chapter 8.1.2, the offloading engine needs to
perform synchronisation of the local and remote environment. Finally, control is transferred to the
remote side. The results are re-integrated in the local application when available.

• The Communication Module acts as the key component in communication with the remote side. It
establishes the connection to the computing unit used for the offloading operation and enables the
transfer of offloading requests, as well as the reception of responses.

These components are coordinated to enhance the user experience of mobile applications. Neverthe-
less, the existing approaches have major issues in security, flexibility, efficiency and interoperability. The
security of existing frameworks is analysed in Chapter 6. Flexibility and efficiency are closely related.
As Figure 8.1 illustrates, the communication module communicates with a single cloud-based comput-
ing unit (or pre-defined set of CC units). If no connection to this computing unit is available, the whole
system does not work anymore.

In the CloneCloud approach [Chun et al., 2011] the cloud computing unit is statically bound to
the application at compile time. In the case of bad connection conditions to the computing unit, the
framework can advice to not execute remotely and is stuck with local execution. Similar considerations
apply to ThinkAir [Kosta et al., 2012], although it is more dynamic in terms of allowing parallel execution
in multiple VMs, there is still a single master-cloud service as a single-point-of-failure. Cuckoo [Kemp et
al., 2012] tries to remove these limitations by introducing a resource manager, which distributes the work
on different workers, deployed at different locations. Still, manual registration is required. Goyal and
Carter [2004] consider the fact that surrogates could be run on different types of devices, but still rely on
VM technology. The ultimate drawbacks of full-fledged device VMs are the high memory requirements
and long setup times. The size of a single device VM starts at hundreds of megabytes and can go up to
several gigabytes. Furthermore, device VMs need to be close to the feature-set of the original device in
terms of used operating system version, execution environment, or supported libraries. Ha et al. [2013]
try to counter this issue by proposing a dynamic VM synthesis for dedicated devices and use cases. The

54 8. A Re-usable HMEC Architecture and Solution

results of their work show that synthesising a dedicated VM takes up to several seconds or even minutes.
In mCloud [Zhou et al., 2015] a hybrid concept is introduced where also local computing units are
considered. For cloud offloading, Android VMs are started in the cloud, for offloading to other devices,
offloaded code is directly executed on the Dalvik VM on the target device.

Beside the mCloud approach, which breaks out of the described architecture in terms of connectiv-
ity, all frameworks rely on static connections to their (mostly) cloud-based computing units. This works
great where reliable Internet connections are available, but a constant and fast connection is required.
As Cuervo et al. [2010] highlight, increasing the RTT from 10ms to 25ms for code offloading opera-
tions with 10kB almost doubles the energy consumption. With increasing RTT the energy consumption
increases linearly. Definitely, mobile Internet connectivity is getting better, but still does not fulfil the
strict performance requirements for HMCC/HMEC frameworks. A study by Horsmanheimo, Maskey,
and Tuomimäki [2014] concerning the feasibility of utilising Universal Mobile Telecommunication Sys-
tem (UMTS) and Long Term Evolution (LTE) for smart grid applications reveals that UMTS is exposed
to large latency variations in peak hours with RTT values above 100ms. LTE RTT values are stable at
the moment, but the authors claim that this may be due to the still low penetration of LTE.

Another issue is the interoperability of the frameworks between different device-vendors and op-
erating systems. Although not an architectural issue in its nature, it still is impacted by architectural
choices. Code offloading of native applications requires a computational unit which can at least execute
the offloaded code. The execution environment should be as close to the original execution environment
as possible. Most of the frameworks focus on Android-based devices equipped with a Dalvik VM or
even require a modified operating system version to catch the migration and re-integration instructions.
This rules out all other players like iOS, Windows Phone and smaller initiatives like Ubuntu Phone2.
Techniques and approaches developed for Android and its Dalvik VM might not be applicable for other
environments.

To summarise the findings of this chapter, existing frameworks interpret application offloading only
as a tight collaboration between mobile devices and provided cloud resources. Minimising latency is key
for offloading frameworks to improve the performance of applications. This is currently hindered by the
fact that (a) most existing offloading approaches use virtual machine-based approaches with long setup
times and are often strictly connected with a single CC unit. Therefore, existing approaches have clear
gaps in terms of flexibility and efficiency. Furthermore, existing frameworks are completely focused
on single execution environments and single architectures, with some even requiring modified operating
systems versions. Therefore, a clear gap in interoperability exists.

8.2 Design Principles

In this chapter, the overall goals of the architectural enhancement process are defined, based on the
previously identified gaps. Besides the security-related requirements, which are mainly considered in
Part IV of this thesis, weaknesses were identified in the previous chapter. Furthermore, MCC shows
a tight connection to CC, therefore design principles of CC systems can be translated into the MCC
context.

As it is the case with CC, MCC operates using different delivery models:

• IaaS in CC can be compared to acquiring a complete external device clone where applications are
executed in parallel (compare with CloneCloud from Section 5). This model can be referred to as
MIaaS.

• PaaS in CC can be compared to source code level application-offloading in MCC, where single,
computational intensive parts of an application are offloaded to an acquired computing unit. This
model can be referred to as MPaaS.

2http://www.ubuntu.com/phone

http://www.ubuntu.com/phone

8.3. Evolved Flexible Architecture 55

• There is no direct counterpart of SaaS in CC for MCC environments, but the closest are services
operated for mobile devices to perform dedicated tasks.

Matching the gaps discovered in Section 8.1 with the introduced delivery models reveals that large parts
of the inflexibility come from relying on MIaaS. IaaS in the context of CC gives a lot of flexibility and
does not constrain the user. It enables the realisation of very different systems and solutions and provides
users properties like scalability, pay-as-you-go, and efficiency. IaaS and MIaaS require a consistent set
of available computing resources. This is not an issue in a CC environment, but is not available in a
dynamic and loosely coupled HMCC/HMEC environment. The MCC counterpart for SaaS on the other
hand already is too narrowed in its approach. SaaS is targeted at providing a specific solution, serving
software solutions from the cloud such as document processing, e-mail applications, or access to online
storage.

Therefore, MPaaS is the perfect abstraction level to base HMCC/HMEC environments on. CC envi-
ronments, computing units close to the user, and lightweight devices in the user’s proximity can equally
offer a platform to be used by applications to offload their computations. This decision basically rules
out heavyweight virtual machine-based solutions and enables the usage of lightweight solutions, where
only fractions of an application are offloaded.

This, in contrast to the MIaaS approach, raises the issue of interoperability. The various available
environments like Android, iOS or Windows use different programming environments. An application
written in a Java variant, as used for native Android applications, cannot be executed on a device using
iOS or Windows. Still, the ultimate goal is to provide a system which makes use of devices, or more
generally, of available computing units, regardless of their operating system or hardware architecture.
Interoperability beyond operating systems and device architectures enables a deployment and usage on
many devices, which drives the adoption rate. With increased adoption rates, scalability is increased in
parallel, due to more available computing units.

These observations and choices results in the following requirements on an improved architecture and
implementation. The flexibility of MCC systems is increased by not tying offloading frameworks and
applications to single cloud-based computing units. Opening different platforms to the system requires
a flexible organisation of the available computing units, as well as an offloading approach which is
not targeted at single programming languages or architectures. Security is another important aspect,
with a separate dedicated Part IV in this thesis. The requirements can be summarised as Lightweight,
Interoperability, and Flexibility:

• Lightweight: The framework should follow a lightweight offloading approach without requiring a
constant set of available computing units.

• Interoperable: The framework should enable usage on all major mobile (Android, iOS) and major
desktop (Windows and Linux) operating systems, regardless of the utilised hardware architecture.

• Flexible: The framework should enable the seamless usage of different computing unit classes and
is in charge of deciding whether to use a particular computing unit.

8.3 Evolved Flexible Architecture

In this chapter, the discoveries made in the previous chapters 8.1 and 8.2 are processed to develop an
architecture which counters identified flaws on the architectural level but also reuses existing concepts
where possible. The targeted implementations are not MCC solutions only, but also more dynamic setups
where other computers and also other mobile devices are integrated into the system.

To ensure a clear arrangement and good understanding, the client-side and server-side architectures
are separated. The evolved client-side architecture is illustrated in Chapter 8.3.1, whereas the server-side

56 8. A Re-usable HMEC Architecture and Solution

architecture is illustrated in Chapter 8.3.2. In current architectures, the server-side is often described very
loosely. This work focuses on providing a complete solution, focusing on the client- and server-side. To
be clear about the designation, the terms client and server are not bound to specific devices in the system.
A device acting as the active part initiating an offloading operation is the client, the offloading target is
the server. The terms are only fixed for a single interaction. A device acting as a client in one interaction
could act as a server in another interaction. The following chapters describe a more detailed version of
the architecture as introduced by Reiter and Zefferer [2016].

In Chapter 8.3.3 different approaches are discussed to interconnect nodes. At first, this might seem
like an implementation aspect, but architectural and topological choices already have major impacts on
the flexibility of resulting systems.

8.3.1 Client Architecture

In this chapter, an enhanced client architecture is developed, targeting the discovered gaps of existing
architectures. This includes the high-level functional requirements from Chapter 8.2 as well as security
requirements from Part II. Not all security requirements can be considered on the architectural level and
need to be considered in detail in the implementation section and in Part IV.

The requirements for a lightweight and flexible approach are the driving forces to add dynamic
approaches in the enhanced architecture. As illustrated in Figure 8.2a and Figure 8.2b, profilers need to
follow a more dynamic approach. Current architectures often rely on static analysis phases, performed
before the application deployment. This restricts the offloading framework to a limited set of profiles,
which need to fit in the current context. This is an appropriate approach for current frameworks. Due to
their static binding, the possible cases are limited. Following a dynamic offloading approach also requires
dynamically collected profiling data of the executed application. Dynamic refers to information collected
at run-time, and later being used to improve the decision process. The dynamic profile store keeps track
of collected profiling information at runtime and provides this information to other components in the
system to reach a final offloading decision. This does not restrict the static analysis of applications prior
their deployment but emphasises the importance of a dynamic component in the decision process.

(a) Current architecture

Dynamic
Applicaiton

Profiler

Dynamic
Context
Profiler

Dynamic
Profile Store

(b) Enhanced architecture

Figure 8.2: Profiler enhancements

Continuing on the flexibility requirement, current offloading frameworks and their applications are
configured to serve a single designated purpose through the implementation of a cost model as illustrated
in Figure 8.3a. Cost models describe the objective of an offloading operation. Currently, the following
models are prevalent:

• Using the Performance Model, offloaded parts are remotely executed to increase the performance
of the offloaded application and the whole client device. The performance model may also par-
allelise independent tasks to different computing units to simulate a device capable of executing
multiple threads simultaneously. The performance model does not necessarily come with energy
savings when comparing certain time slots, but only for savings regarding single tasks. Given a

8.3. Evolved Flexible Architecture 57

task that takes 200ms to execute directly on the device, and only 20ms on an external computing
unit using the performance model. The device can now schedule 10 tasks in the same time com-
pared to device-only execution. Summing up the energy consumptions of the offloading operations
may exceed the energy consumption of a single task executed on the device. However, tasks are
performed faster, and a better user experience is provided.

• The Energy Saving Model on the other hand does not aim at increasing the performance, but only at
lowering the energy consumption of an application without impacting the performance. Using this
model the computing units used for offloading mimic the performance of the client device. This
brings a maximum on energy savings. Again consider a task that takes 200ms to process on the
client device. In an offloaded scenario using the energy saving model, the task still takes 200ms,
but the device only has to invest some energy for the offloading operations. Again considering
the energy consumption of the 200ms time frame, it is decreased to a minimum as only a single
offloading operation takes place.

Cost models in today’s frameworks use a fixed balancing of these approaches. The decision engine is ex-
tended to support multiple cost models as illustrated in Figure 8.3b. Users require a balanced procedure,
making use of both approaches with changing requirements over time. The approaches can get weighted
based on collected context parameters. One strategy could be, as an example, to balance the performance
and energy model with 70/30 as long as the battery is above 50% and then gradually start increasing the
impact of the energy model or driving the decision based on user choices.

A further introduced model is Feature-based Offloading. Using this approach, the application and
offloading framework make use of features not available on the client device but on a dedicated comput-
ing unit. Assuming an application that performs operations on smartcards, which are likely not available
on mobile devices. One motivation for offloading is to enable operations on particular smartcards, by
offloading the methods to preselected and authenticated computing units with attached smartcards. Of
course, this requires strong mutual authentication, so both parties can be sure that only authorised client
devices can use the smartcard, and client devices can be sure to use the correct smartcard. The com-
puting unit will most likely be operated in a user-controlled environment. This approach can be applied
to different problems, involving hardware limitations or attached hardware which is not available for
particular classes of devices.

(a) Current architecture (b) Enhanced architecture

Figure 8.3: Decision subsystem enhancements

The above enhancements do obviously not contribute to fulfilling the security requirements in the
system. As shown in Figure 8.4a and Figure 8.4b, compared to current architectures, a Trust Mediator
is introduced in the enhanced architecture to fulfil the client-side parts of the security requirements. The
trust mediator assists the decision engine in selecting appropriate computing units. Implementations
need to introduce a way for developers or need to use tools to determine the required level of trust for a
particular offloading request. The trust mediator matches the required trust level with the assessed trust
level of computing units. At this level, only a distinction between trusted computing units and untrusted
computing units is made. Trusted computing units could be units which are operated in user controlled
environments, whereas untrusted environments could be untrusted devices or untrusted public cloud
providers. This distinction is important because untrusted computing units will more likely be available.
Not taking untrusted computing units into account at all leaves out many opportunities to improve the

58 8. A Re-usable HMEC Architecture and Solution

overall performance of applications and constrained devices. On the other hand, it needs to be assured
that tasks operating on sensitive data are only processed on computing units trusted by the user. A more
fine-grained and extended solution is presented in Part IV of this thesis.

(a) Current architecture (b) Enhanced architecture

Figure 8.4: Offloading integration enhancements

The shortcoming of existing frameworks regarding a lightweight and flexible approach are also tar-
geted by the introduction of a background task for the discovery of available computing units, illustrated
in Figure 8.5. The component keeps track of available computing units suited for the user’s offloading
operations. This includes distant computing units operated in the cloud, as well as proximate computing
units. The concrete discovery process changes with the utilised interconnection strategy and technology.
An optimal implementation always has a set of ready to use computing units, connected via different
communication technologies and without a single coordination server or contact point. Under these con-
ditions, the component does not only contribute to providing a lightweight and flexible solution but also
contributes to the fulfilment of security requirements:

• R2 - No single-points-of-failure: Although the component cannot fulfil this requirement on its own,
it provides a major contribution by enabling the distribution of offloading requests to different,
already discovered, computing units.

• R3 - Usage of multiple communication technologies: The background discovery component pro-
vides an abstraction for the available computing units. The technology used to communicate with
the computing unit is insignificant. Again, the component acts as an enabler to fulfil this security
requirement. Still, contributions from other components are required and need to be aligned.

Network access

Figure 8.5: Background computing unit discovery

The consolidated client-side architecture, including the communication technology abstraction, is
shown in Figure 8.6. The architecture for each of the computing units, acting as a server, is described in
Chapter 8.3.2. Besides the already discussed enhancements, the most obvious improvement seen when
comparing Figure 8.6 with the abstraction of current architectures in Figure 8.1 is the introduction of
a flexible network infrastructure where computing units can log-in and offer their available computing
power to other users, or connect to request assistance with computations. Removing the static cloud con-
nection from previous approaches and enforcing a dynamic approach provides more flexibility in result-
ing systems. Furthermore, the network infrastructure acts as the backbone of the whole framework and

8.3. Evolved Flexible Architecture 59

Application

Dynamic
Application

Profiler

Dynamic
Context
Profiler

Dynamic
Profile Store

Background computing unit
discovery and assessment Offloading Engine

Figure 8.6: Proposed evolved and flexible client-side architecture

provides the required functionality to fulfil the security requirements R2 - No single points-of-failure and
R3 - Usage of multiple communication technologies on a conceptual basis. Details about the techniques
used for the integration of multiple nodes in the system and on how to discover relevant computing units
are discussed in Chapter 8.3.3, a realisation of this proposal is provided as part of the implementation in
Chapter 9.

This enhanced architecture aims at deployments and implementations making use of different types
of computing resources in a dynamic way. Therefore, implementations will have to deal with frequent
joining and leaving of computing units in the network. Computing units may qualify as legitimate at one
point in time, but may not be eligible a few moments later. The architecture does not aim at including
constantly available computing units only, but also those with a more dynamic availability pattern. This
behaviour is supported by the flexible network infrastructure and by the background task.

8.3.2 Server Architecture

This chapter focuses on developing a server-side architecture, adhering to the high-level functional re-
quirements from Chapter 8.2. Furthermore, the architecture development process is driven by the security
related requirements from Part II. The terms server and client are only valid for a single interaction. In
real world use cases, a device or computing unit may act as a client (requesting assistance) or server
(providing assistance) exclusively or even in parallel. However, for developing the architecture, client
and server are treated as two separate concepts. Existing frameworks only loosely define the server side.
They focus on technical aspects of partitioning and offloading methods. Single computing units are likely
being used by multiple clients at the same time. Without a properly defined server architecture, including
security measures, client’s data and processes are at risk of being exposed to other clients or untrusted
administrators.

As a starting point, a straight forward server-side architecture, as illustrated in Figure 8.7 is assumed.
This architecture does not map to all existing frameworks but represents their key aspects:

• Current frameworks statically bind clients to particular servers before deployment, or manually at
runtime.

• In most cases, this results in computing units which are exclusively bound to one client. Therefore,
no additional isolation mechanisms are applied.

• The application logic, required to run the offloaded parts, either is pre-deployed on the computing
units or is attached to the offloading request.

60 8. A Re-usable HMEC Architecture and Solution

Offloading Server Framework /
Cloud Computing Unit

Incoming request from
statically bound client

Pre-equipped application

Service part of offloading engine

Offloading executor

Figure 8.7: Server architecture starting point

This architecture obviously fails on all of the defined functional and security related requirements. Flexi-
bility and lightness are hindered by the presence of a static binding to clients. Interoperability is hindered
due to the exclusive focus on cloud computing units. Security requirements, as the analysis in Part II
illustrates, are not considered.

To be able to apply a step-by-step methodology, similar to the approach used to develop the client
architecture in Chapter 8.3.1, the functional requirements need to be transformed to the server context.
The lightness requirement transfers to the organisation of available computing units and is mainly con-
sidered by the client side and network infrastructure of the system. The flexibility requirement transfers
to the run-time binding capabilities of the framework to computing units. This goes hand-in-hand with
a multi-user support and proper scheduling of the resources. Interoperability goes hand-in-hand with the
lightness requirement. Heavyweight solutions, requiring considerable configuration, are not suited for
deployment on mobile devices. In addition, interoperability clearly is an implementation aspect.

To enable the usage in multi-user environments, the framework requires a controlling instance. As
illustrated in Figure 8.8, a Hypervisor acts as the controlling instance and keeps track of all the executed
tasks. In today’s environments, the term Hypervisor has a strong connection to virtualised environments.
In fact, it is comparable to Hypervisors in virtualised environments regarding their duties, but the re-
alisation is not tied to virtualisation technologies. To target the security requirement R7 - Protection
against resource over-consumption, the Cost Model and Context Profiler are introduced in the system.
The Cost Model component on the server-side is working analogously to the cost model component on
the client-side. It enables to define usage characteristics of particular computing units. The cost model
enables to define a maximum number of simultaneously executed offloading tasks, maximum utilised
CPU power, maximum used memory, or maximum consumed bandwidth. Using this approach operators
can configure their computing units in a way that other tasks and processes on the computing unit are
not disturbed or limited in their functionality. The Context Profiler component supports the defined cost
model by providing accurate measurements of the current status of the computing unit in terms of pro-
viding current CPU utilisation, memory usage, or bandwidth usage. Based on this collected information,
the Hypervisor can decide if new offloading tasks can be accepted, and how much computing, memory,
and bandwidth resources are available for new tasks.

Figure 8.8: Hypervisor and cost model for the server side

8.3. Evolved Flexible Architecture 61

Additional security enhancements are applied to target R1 - Access Control and R4 - Resource’s in-
tegrity assurance. The introduced components are illustrated in Figure 8.9. The Hypervisor component
acts as the central point of contact of the architecture. R1 - Access Control is targeted by introducing a
Access Control component associated with a Trust Store which is under control of the computing unit
operator. The Trust Store is not tied to a specific technology but could be realised using a certificate-
based trust store. This way, the computing unit operator can control the allowed entities or provide a
public available computing unit. Due to the direct relation between the Hypervisor component and the
Access Control component, the Access Control component can even define entity-specific environments,
with different capabilities. The Trust Mediator component targets the R4 - Resource’s integrity assur-
ance requirement. It acts as the counterpart to the Trust Mediator component in the client architecture.
Depending on the used technologies and platforms a set of attestation methods is available that can be
triggered by the client framework to ensure the trustworthiness of a computing unit. Concrete methods
and implementations are discussed in Part IV.

Trust MediatorHypervisorAccess Control

Trust Store

Computing Unit
Attestation Methods

Figure 8.9: Hypervisor and cost model for the server side

The heart of the server architecture is the component where the actual execution takes place, as illus-
trated in Figure 8.10. At first, there are only minor differences compared to the baseline architecture in
Figure 8.7 but actually it targets two requirements. Compared to the baseline architecture, the enhanced
architecture provides an abstraction for the application retrieval to overcome the issue of pre-deployed
applications and increase the flexibility of the system. Application retrieval is based on public or private
application repositories, shown in Figure 8.11. They contain the relevant application packages globally
accessible or for a pre-selected audience. Using this approach, computing units can be used for various
applications without the need to do any pre-deployment. Furthermore, sandboxing of the tasks targets

Sandboxed environment

Figure 8.10: Sandboxed execution environment

security requirement R5 - Complete task isolation. Sandboxing prohibits that different offloaded tasks
have access to each other’s data. In virtual machine-based approaches, this is provided by the hypervisor,
for other approaches, different measures need to be in place. Android systems, for example, make use
of Linux provided measures, where each application gets assigned a unique user ID. Each file on the file
system is protected by only allowing the owner of a file to read and write. Therefore, other applications,
executed as another user, cannot access the data of other applications.[Faruki et al., 2015; Enck, Ongtang,
and McDaniel, 2009]

Consolidating this development results in the server side architecture as illustrated in Figure 8.12.
This architecture does intentionally not impose any restrictions on the utilised technologies and enables
implementation for server environments as well as light implementations targeted at mobile devices.
The key improvements of this architecture, compared to existing frameworks are consolidated in the
following:

62 8. A Re-usable HMEC Architecture and Solution

Figure 8.11: Application repositories

• Introduction of a server-side hypervisor, cost model and context profiler that keep track of the
available resources.

• Using a sandboxed environment for the task executions to protect users’ data.

• Introduction of an abstraction for the application retrieval to avoid pre-deployment of applications
on computing units.

• Integration with the client-side by using a flexible network infrastructure.

In Chapter 9, a proof-of-concept implementation exploiting the full potentials of the architecture is pro-
vided. The implementation is equally targeted at mobile devices and server environments and still getting
the best of both worlds.

Trust Mediator

Sandboxed environment

C
om

m
un

ic
at

io
n

 M
od

ul
e

A
cc

es
s

C
on

tr
ol

Trust Store

Computing Unit
Attestation Methods

Figure 8.12: Proposed evolved and flexible server-side architecture

8.3.3 Flexible Network Infrastructure

In Chapter 8.3.1 and Chapter 8.3.2 a flexibly structured network of computing units is introduced, without
going into the details of how this could be realised on the architectural and technical level. Given two
nodes A and B with the intention of communicating with each other. Basically, from a high abstraction
level, this intention can be reduced to two different approaches: communicating via a third party or
directly communicating with each other. A direct connection between each of the devices would be
reasonable but would require network configuration each time a client enters or leaves a network. The
following listing compares the currently prevalent approaches:

• The first approach is the usual approach in today’s Internet infrastructures. Client-server structured
approaches (illustrated in Figure 8.13) are a simple way of connecting multiple nodes. A single
server acts as the central point for all communications and processes all incoming requests. This

8.3. Evolved Flexible Architecture 63

approach might work in a small local scope but does not scale to a global environment where large
amounts of clients use a single server.

Server

Internet

Client

Client

Client

Figure 8.13: Client-Server communication

• An improved approach is a client-cloud approach (illustrated in Figure 8.14), where the single
server is replaced by a scalable cloud infrastructure to solve the scaling issue. Load balancers
are responsible to evenly distribute the incoming requests to the available units. From a high
abstraction level, the client-cloud approach looks similar to the client-server approach, but client-
cloud provides horizontal scaling capabilities out-of-the-box, hence is more powerful.

Cloud

Internet

Client

Client

Client

Load balancer
Server

Server

Server

Server

Figure 8.14: Client-Cloud communication

In theory, these approaches can also be used to interconnect and organise available computing nodes
for offloading frameworks. At least the client-cloud approach is definitely capable of providing enough
computing power and bandwidth. Nevertheless, outside of controlled environments, single servers and
even geographically distributed cloud setups are subject to large latency variations due to unstable mobile
device uplinks. Therefore, an alternative is required. Also the security analysis in Part II yields a similar
result with the requirements R2 - No single-points-of-failure and R3 - Usage of multiple communication
technologies. Both cannot be fulfilled with today’s prevalent client-server and client-cloud approaches.

P2P networks aim at the sweet spot between centralised server/cloud infrastructures and direct com-
munication approaches. P2P infrastructures do not require central management points and are self-
organising. Still, they enable each participant to communicate with each other and often also support
in building direct connections between clients (also called peers in the P2P universe). A schematic rep-
resentation of P2P networks is provided in Figure 8.15. It does not represent one specific type of P2P
network but represents the key aspects. Compared to the previous approaches, the underlying communi-
cation technologies are not limited to the Internet. Furthermore, clients and servers are equal entities in
the network without requiring management components. This targets the security requirements R2 and
R3 and is elaborated in Chapter 9. For the application in offloading frameworks this means that local P2P
coordination points could be set up (e.g. reachable via Wifi) and only minimal transfer with the outside
world is required. Therefore, P2P networks are considered as the most flexible and best approach in the
field of HMCC/HMEC.

64 8. A Re-usable HMEC Architecture and Solution

Client

Client

Client
Server

Client

Server

Figure 8.15: Schematic peer-to-peer communication

P2P networks are well known in the research community, and various frameworks are available.
Hence, the remainder of this chapter focuses on analysing the key responsibilities of P2P networks on
HMCC/HMEC systems. Low latencies to the utilised computing units is the ultimate requirement in
MCC systems [Cuervo et al., 2010]. With higher latencies, the advantages of MCC approaches are
eliminated. A brief introduction of the P2P network technology is provided in Appendix A to the extent
as required for this thesis. In summary, the main benefit of P2P networks is that all participants in the
network can be reached, regardless if direct connections to the target peers are possible. As a result,
any information saved on nodes participating in the P2P network can be retrieved by any other node.
In contrast to client-server-based approaches, they do not require local setup and are generally self-
organising. Nevertheless, the flexibility of P2P networks does not come free of charge.

Client-server models are generally operating on TCP level to establish a connection between com-
puters. This connection passes multiple infrastructure components (like routers) on its way to the target
computer. Listing 8.1 shows the route from TU Graz’ internal network to Google’s well-known public
DNS server. The crux of this listing is the number of hops between the origin and the target host. All
intermediate hosts in Listing 8.1 are specialised and optimised for providing maximum throughput and
minimal latency, still, eleven intermediate nodes are required to reach the target host. The number of
hops depends on the Internet provider’s infrastructure and access points to the backbone networks. A
publication from the year 2000 by Begtašević and Mieghem [2000] concludes at an average hop count on
the Internet of 15 to 16 hops. This, for sure, does not reflect the situation today. Further considerations
in this chapter assume an average hop count of 12 as also shown in Listing 8.1.

1 1 ms <1 ms 1 ms 1 0 . 2 7 . 1 5 2 . 1
2 <1 ms <1 ms <1 ms 1 9 2 . 1 6 8 . 0 . 1
3 1 ms <1 ms <1 ms 1 2 9 . 2 7 . 2 0 0 . 1 6 1
4 1 ms <1 ms 1 ms 1 2 9 . 2 7 . 2 5 2 . 7 7
5 1 ms 3 ms 1 ms t e n g i g a b i t e t h e r n e t 5 −3. g r a z 1 . aco . n e t

[1 9 3 . 1 7 1 . 2 1 . 4 1]
6 4 ms 4 ms 4 ms v lan321 . wien1 . aco . n e t [1 9 3 . 1 7 1 . 1 5 . 1 7]
7 5 ms 5 ms 4 ms bundle −e t h e r −1−70. c o r e 1 . aco . n e t [1 9 3 . 1 7 1 . 2 3 . 9 8]
8 9 ms 6 ms 7 ms r98−bm . c e s n e t . cz [1 9 5 . 1 1 3 . 1 7 9 . 1 4 9]
9 16 ms 14 ms 13 ms 1 9 5 . 1 1 3 . 2 3 5 . 1 0 9

10 12 ms 12 ms 12 ms r2−r93 . c e s n e t . cz [1 9 5 . 1 1 3 . 1 5 7 . 7 0]
11 12 ms 12 ms 12 ms 2 0 9 . 8 5 . 2 5 1 . 1 3 3
12 12 ms 12 ms 12 ms google −p u b l i c −dns−a . g oo g l e . com [8 . 8 . 8 . 8]

Listing 8.1: Typical route between two hosts on the Internet

P2P networks are also called overlay networks because they add another routeing layer on top of the In-
ternet infrastructure. Participants in a P2P network could be ordinary computers or even mobile devices.
They are not optimised for throughput or latency but, as an integral part of the P2P network, they may be
used by other nodes to route request to the destination. Considering the Chord [Stoica et al., 2001] P2P
network, where each routeing request is routed through approximately 1

2 log2 N (N refers to the number

8.3. Evolved Flexible Architecture 65

of participating nodes in the network) other nodes. For 10000 nodes in the P2P network, this results in
about seven hops (refer to Equation 8.1) in the overlay P2P network.

1
2

log2 10000 = 6.6 (8.1)

Breaking this down to the IP level means that for each hop in the overlay network, 12 hops are required
on IP level. Using the example from above, where a single routeing operation in the overlay network
takes seven overlay-network hops, results in 84 hops on IP level, to route a single request.

With these considerations in mind, it is clear that P2P networks are not suitable to carry out the
complete communication in HMEC systems. Instead of replacing low-level communication means the
P2P network can act as decentralised connection service, which enables the discovery of other nodes.
Furthermore, it provides assistance in establishing a direct low-latency connection (loosely adhering to
the Interactive Connectivity Establishment (ICE) [Rosenberg, 2010] approach):

• A node needs to determine if it can receive direct connections or if a firewall or Network Address
Translation (NAT) gateway is blocking connections. For this purpose, other nodes can try to
connect.

• If no direct connection is possible, other nodes can act as gateways, similar to the role of TURN [Mahy,
Matthews, and Rosenberg, 2010] servers in the ICE [Rosenberg, 2010] approach.

• As a fallback, the P2P network can still be used for the whole communication, but the offloading
framework needs to consider the relatively high latency compared to direct connections.

• During the connection establishment process, the parallel P2P channel acts as a signalling channel
to transmit relevant connection information like IP address, port number, or used gateways.

This analysis clearly defines the role of P2P networks in HMEC systems. They can be used as a fail-safe
and distributed management entity and assist in the connection process of clients (assistance requesters)
and computing units (assistance providers). All entities are equal parts of the network and can switch
between requesting and providing entities.

A remaining issue is the discovery of relevant nodes. In the context of HMEC, relevant is defined
as having a low latency in a direct connection scenario. To discover nodes with low latencies, different
approaches can be adapted.

The most basic approach is to discover nodes randomly and assess their connectivity properties
during the connection establishment procedure. This approach works in a network where the bigger part
is composed of high performance and dedicated computing units with high bandwidth and low latency
connections. In a network with many mobile devices or devices with bad connections, this approach
generates a much higher overhead. Another approach is proposed by Y. Lee et al. [2008] and is based
on the observation that geographically proximate nodes tend to have lower latencies. Nevertheless, only
the geographic proximity of two nodes does not guarantee a low latency, but is suited as a filter on
a list of nodes. An improved approach is introduced by Agarwal and Lorch [2009] called Htrae as a
hybrid between the geolocation-based approach and a network coordinate system. The estimated RTT
determined using the geolocation-based approach is used as a starting point and is mapped to coordinates
in a virtual space. The distance between two coordinates is the estimation for their RTT. The coordinates
are then moved in the virtual space based on actual observations to replicate the measured RTT values.

These are two possible baseline approaches to find relevant nodes without any requirements on the
deployment structure. This work introduces a lightweight and more sophisticated approach, targeted at
the mobile device landscape, but requiring certain deployment characteristics. The approach is intro-
duced and illustrated in Chapter 9.2.5.2.

66 8. A Re-usable HMEC Architecture and Solution

8.4 Chapter Conclusions

In this chapter, an improved HMEC architecture, considering the client- and the server-side, as well as
approaches on interconnecting participating computing units, was developed. The methodology followed
was to get an abstract view on existing frameworks and architectures and develop strategies using novel
technologies to fill the identified gaps. The starting point for the development of these architectures
is the analysis of existing frameworks on the one hand, and the defined security requirements on the
other hand. Step-by-step, the requirements are considered by enhancing and extending the baseline
architectures. Table 8.2 shows that this approach enabled to achieve a broad requirements coverage,
already on the architectural level. It shows the major architectural enhancements on top and the defined
high-level functional and security requirements on the left. Grey fields indicate that the component on
top contributes to fulfilling the requirement on the left. Of course, each of the enhanced components on
architectural level requires a corresponding implementation.

As an example, the interoperability requirement mainly is an implementation aspect. Still, the dy-
namic profiler contributes to the fulfilment of the requirement by adapting the analysis and decision on
the offloading operation to the current system. Furthermore, application repositories enable to keep a
small footprint for server environments by retrieving applications as required and also enable deploy-
ment on mobile devices. The flexible network infrastructure enables to interconnect mobile devices and
dedicated servers in local and wide area scenarios. Hence, it fosters the interoperability between different
architectures, devices types, and operating systems. Still, interoperability on implementation level is key.

Dynamic
profiler

Multiple cost
models

Trust mediator
Background

discovery
Hypervisor/
cost model

Access control Trust mediator
Sandboxed

task execution
Application
repositories

Network
infrastructure

Lightness

Flexibility

Interoperability

R1 - Access Control

R2 - No single points-of-failure

R3 - Usage of multiple
communication technologies

R4 - Resource's integrity
assurance on technical level

R5 - Complete task isolation

R6 - Non-repudiation

R7 - Protection against
resource over-consumption

Client architecture Server architecture

H
ig

h-
le

ve
l f

un
ct

io
na

l
re

qu
ire

m
en

ts
Se

cu
rit

y
re

qu
ire

m
en

ts

Table 8.2: Requirements coverage on architectural level

The result makes use of existing building blocks like the profiler and decision engine, refines and
redefines these building blocks and also inherently improves the definition of complete framework com-
ponents like the server-side components. The developed architectures are a clear enhancement beyond
the state-of-the-art. To a large extent, they close the gaps related to lightness, flexibility, interoperability,
and security-awareness on the architectural level. This taps new fields of application for HMEC solu-
tions. This architecture acts as the foundation for all further considerations regarding the implementation
and evaluation, but also when it comes to detailed security extensions in Part IV of this thesis.

Chapter 9

Implementation

The weak spot of existing solutions, from an implementation’s point-of-view, is their focus on the frame-
work’s client side and only considering selected topics. The implementation, based on the architecture
defined in Chapter 8, scrutinises on both the client-side, based on Chapter 8.3.1 and the server-side, based
on Chapter 8.3.2, with the goal to analyse and evaluate the approaches from both perspectives.

The requirements on architectural level, summarised as lightweight, interoperable, and flexible, have
clear mappings to targets on implementation level:

• A lightweight offloading system is reached by organising the available computing units in a de-
centralised manner, without relying on single computing units. This goes hand-in-hand with the
fine-grained system to specify which parts of an application should be considered for application
offloading.

• Flexibility is achieved by enabling a run-time binding to available computing units, also consider-
ing current device and connection conditions.

• Interoperability is assured by not focussing on single programming environments for particular
ecosystems, but by relying on programming languages which are equally compatible with all major
environments.

• Use cases, where processing of sensitive data is involved, require additional measures. They can
be implemented by providing explicit control of the devices used for offloading, as well as explicit
control of the data flows in an offloading scenario. Security is discussed in detail in Part IV of this
thesis.

Other key aspects of MCC, like the general offloading approach or task scheduling are already well
established and proven in existing frameworks. To achieve a broad distribution and acceptance of the
developed offloading framework, interoperability is key. Interoperability enables to use e.g. computing
units running on iOS to accept offloading requests from Android devices. In general, this is a major
obstacle of other frameworks. The goal is to support all common mobile- and desktop-devices, with a
single implementation.

Currently, applications developed using web-technologies are the only applications with a broad
support on various devices even running on different hardware architectures. Creating an offloading-
framework based on web-technologies enables offloading for online web-applications, but also offline
applications created using cross-platform frameworks like Apache Cordova1.

A new class of programming languages uses JavaScript as intermediate language. Programs are
developed in a higher-level programming language, and are compiled to efficient JavaScript source-code.

1https://cordova.apache.org/

67

https://cordova.apache.org/

68 9. Implementation

This approach is e.g. used by Microsoft supported TypeScript2 or Google supported Dart3 programming
languages. TypeScript does not define a complete new syntax. It is based on the ES-64 recommendations
and provides a compiler to ES-3, ES-5 and ES-6. Google in contrast, with their Dart approach, defines
a whole new syntax and provides a Dart-to-JavaScript compiler to create ES-5 compatible JavaScript
source code. The advantage of Dart is that recently the use cases of Dart were extended beyond web-
based applications and native command-line environment support. Compiled to JavaScript, Dart code
can be used to create Apache Cordova applications, but additionally, with Flutter5, native-Dart can be
used to create high-performance mobile applications targeting iOS and Android devices. This makes the
Dart programming language very attractive to create an offloading framework.

9.1 Operation Environment

This chapter settles the scene for the offloading framework by defining the boundaries of the environment.
It is not feasible to create frameworks which cover the whole landscape of available applications and
devices and still sticking to properties like interoperability with a single implementation. Therefore,
an implementation requires clear constraints on the environment where it should operate and which
applications are targeted. In the previous chapter it was elaborated on the widespread use of web- and
related technologies. In this chapter the environment is specified in detail, together with concrete types
of applications.

Due to the widespread use cases, this offloading framework will be the first targeting the Dart pro-
gramming language. Therefore, it can be used in classical web-environments and in Dart specific use
cases:

• Web-application created using Dart: For web-applications, Dart is an alternative to JavaScript,
and still can fully interoperate with JavaScript libraries. The framework will not be capable of
offloading calls to JavaScript code. To maintain interoperability between devices and different
environments, only Dart code will be supported.

• Cross-platform applications created using Dart: Cross-platform applications, created using web-
technologies, are executed in web-views on mobile devices. Web-views are browser instances,
embedded in a native application. Therefore, they are equally capable of using the full available
feature-set. Plugins enable access to native platform features.

• Native applications running in the Dart virtual-machine: The Dart VM is an execution envi-
ronment where native Dart applications can be executed without converting the applications to
JavaScript.

• Cross-platform applications using Flutter: Flutter can be used to create Dart-based cross-platform
mobile applications without converting to native applications and without involving web views, by
running a high-performance Dart-VM on each mobile device.

To enable the offloading framework in applications, changes on the source-code level are required
as described in Chapter 9.2. Therefore, the offloading improvements cannot be applied to unchanged
applications. It may be possible to create add-ons which transparently apply the framework to e.g.
existing web-applications but this is not the primary goal of this thesis and is considered as future work.

Beside the operation environment, available technologies are an important aspect. Technologies
enable the realisation of properties like flexible communication and interoperability. Therefore, a solid
set of baseline technologies is elaborated in the following:

2https://www.typescriptlang.org/
3https://www.dartlang.org
4http://www.ecma-international.org/ecma-262/6.0/
5https://flutter.io/

https://www.typescriptlang.org/
https://www.dartlang.org
http://www.ecma-international.org/ecma-262/6.0/
https://flutter.io/

9.2. Offloading Framework 69

• For web-environments, support for ECMAScript-5 is required. For native Dart environments,
support for core dart libraries is required.

• To enable a flexible communication, without being tied to strict client-server models, enabling
technologies are required. Clearly, Web Real-Time Communication (WebRTC)6 is the technology
of choice if available. Still, WebRTC has not reached a broad availability beyond web-browser en-
vironments yet. As an alternative, support for WebSockets [Fette and Melnikov, 2011] is required.

• Collaboration between different nodes always involves cryptographic operations. Therefore, a
hardware-supported implementation of cryptographic primitives should be available. In web-
browser environments this is provided with the support for the WebCryptoAPI7, in native Dart
environments wrappers to native device implementation should exist.

Based on these technologies a sustainable framework is developed and evaluated in the following chap-
ters, which adheres to the defined constraints and works in the boundaries of the operation environment.

9.2 Offloading Framework

This chapter elaborates on the developed Dart-based offloading framework. The framework is based on
the architectures developed in Chapter 8. On the architectural level, a separation was introduced between
the client- and server-architectures. This is a logical step and fosters the understanding of the unique
components of the framework. Nevertheless, the concept of HMEC does not foresee a clear separa-
tion between client and server components. Therefore, as a first step the client and server separation

Application

Dynamic
Application

Profiler

Dynamic
Context
Profiler

Dynamic
Profile Store

A
ccess C

ontrol

Computing Unit
Attestation Methods

Offloading Engine

Trust Mediator Hypervisor

Background computing unit
discovery and assessment Local Executor

Trust Store

Offloading Client/Server Framework Architecture

Figure 9.1: Consolidated client and server architecture

is consolidated into a single architectural representation shown in Figure 9.1. The result is an archi-
tecture which is already closer to the actual implementation architecture, where components occurring
on the client and on the server side can be reused. Compared to the separated architectural view, the

6https://tools.ietf.org/html/rfc6455
7http://www.w3.org/TR/WebCryptoAPI/

https://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/WebCryptoAPI/

70 9. Implementation

complexity is substantially increased. Still, this is a necessary step for the development of the imple-
mentation architecture and to achieve the required levels of interoperability and flexibility. Hence, the
implementation-focused architecture and the implementation also do not preserve this strict client-server
separation. Concrete links to the consolidated architecture are established. The following chapters elab-
orate on the translation of these concepts to an actual HMEC framework implementation by starting at
an implementation-focused architecture, which provides a technology-focused view on the consolidated
architecture, and then elaborating on the different implementation aspects of the HMEC framework.

9.2.1 Implementation-focused Architecture

For the development of the implementation-focused architecture, the operation environment from Chap-
ter 9.1 was considered, as well as the fact that interconnecting nodes using P2P networks is the most
efficient and flexible way. On architectural level, the focus lies on identifying the different components
and determining the relation between the components. The implementation-focused architecture already
considers suitable technologies and provides a more detailed view on the concrete implementation. This
development process also includes the consolidation of components, if possible, to maintain simple com-
ponent surfaces. The five components, identified on architectural level, act as a starting point: Offloading
Engine, Trust Mediator, Decision Subsystem, Communication Module, and Profiler. They have distinct
responsibilities with many connections to other components.

The Hypervisor has a strong relation to the Offloading Engine. It actually acts as the central connec-
tion point for incoming offloading requests. The Hypervisor has equal responsibilities compared to the
Offloading Engine. Therefore, it is integrated with the Offloading Engine component. The Computing
Unit Attestation Methods enhance the Trust Mediator with methods to determine the trust level of local
or remote computing units. Clearly, they have a direct relation to the Trust Mediator component and
are integrated without impacts on the external dependencies of the Trust Mediator. The Access Control
component has a one-to-one relationship with the Trust Store. Actually the Trust Mediator may also
contain a Trust Store component as part of one of the attestation methods. Therefore, the Access Control
component is also integrated into the Trust Mediator. The node discovery task is integrated with the
Communication Module because it already hosts all communication related sub-components.

Figure 9.2 illustrates the technological-enhanced architecture. The six distinct blocks can briefly be
described as the following:

• The Offloading Engine component acts as the coordination point in the framework and performs
the actual technical offloading process, as well as accepts incoming offloading requests from re-
questing nodes.

• The Profiler component collects application and device profile values and provides these values to
other components.

• The Decision Subsystem evaluates if a particular task should be offloaded or executed locally based
on the provided profiling values, as well as connected P2P performance values.

• The Communication Module discovers and manages computing units for the framework and pro-
vides a communication link to other computing units. Furthermore, the Communication Module
gathers performance values of the connected P2P nodes.

• The Security Subsystem enables on the one hand to establish trusted end-to-end connection from
one computing unit to another and is capable of assessing the trustworthiness of the local and
remote computing nodes. This enables the framework to selectively offload to trusted computing
nodes.

• The Dart-based Application embeds the framework using means as described in the remainder of
this chapter.

9.2. Offloading Framework 71

Dynamic

Applicaiton

Profiler

Dynamic

Context

Profiler

Profiler value
storage

Performance

Profile

Energy-saving

Profile

Offloading Engine

Remote Execution

Adapter

Local Execution

Adapter

Task Executor

Communication Module

P2P Pool

P2P Node

Monitor

P2P Bootstrapper

Node Discovery

P2P Node

Decentralised

Signalling Service

Communication

Manager

Performance
Value Store

Storage with available
computing units

Trust Mediator

Trust Store

Access Control

Assess based on

attestation services

Assess Security Remote Adapter

Intel SGX

MDM

Google Safetynet
Assess based on

trust store

Hypervisor

Cost Models

Application Retrieval

Dart-based Application

Decision

Engine

Figure 9.2: Implementation architecture

The heart of the framework is the Offloading Engine. It has two modes of operation: (a) applications
use the Offloading Engine to offload remotely executable tasks, and (b) the Hypervisor listens for incom-
ing offloading requests issued by other nodes. Both cases use the same components, but the Hypervisor
skips the decision process for incoming requests. The Hypervisor mode also includes sandboxing of the
offloaded tasks. Details of different sandboxing approaches are discussed in Chapter 9.2.6. The Offload-
ing Engine intercepts calls to remotely executable tasks of the application and decides if a particular task
should be executed locally or remotely. For local executions the offloading engine invokes the Local Ex-
ecution Adapter, which executes the task locally and returns the calculated result. For remote executions,
the task is delegated to the Remote Execution Adapter which migrates the task to one of the available
computing units, with respect to the security requirements of the particular task.

The Trust Mediator and the introduced means to control the security requirements of particular tasks
are introduced in Part IV of this thesis in detail. Overall, the Trust Mediator component offers trust store
based access control for the Hypervisor component and attestation mechanism integration for the local
device, as well as an adapter to assess remote computing units.

The Communication Module is the central communication interface to the P2P network. It manages
the available and discovered computing units and is consisting of multiple P2P related sub-components.
The P2P Pool always keeps connections to a configurable amount of computing units. These computing
units are selected based on a calculated score of their current performance values. Furthermore, the P2P
Node Monitor keeps track of the available computing units and constantly measures their availability
and performance values. The P2P Node is an abstraction of the peer’s communication interface and
is used for seamless communication throughout the framework. If a node is not available anymore, or
does not meet the performance requirements any longer, it is dropped and a new node is acquired. The
discovery and constant monitoring of available computing units is performed by a separate background
task. This task is automatically scheduled during the instantiation of the framework. The overall goal of
this approach is to always have a list of high-performance computing units waiting for offloading tasks.
The activity diagram of the background discovery and assessment task is illustrated in Figure 9.3 and
follows the below procedure:

1. Check if all properties are met (size of computing unit repository, maximum latency). If properties
are not met, continue with Step 2.

72 9. Implementation

2. Discover new computing units using the P2P network with signalling-server assistance.

3. Try to establish a direct connection to the discovered computing unit. If a direct connection is not
possible, continue with Step 2.

4. Determine the current latency to the computing unit and queue it into the resource repository.

5. Request an end-to-end-secured connection to assess the trust level of the computing unit if re-
quested.

In addition, the framework continuously gathers latency values from connected peers in order to react to
slow resources and changing network conditions. The framework aims at resource-constrained mobile
devices with potentially unstable network connections. In these environments it is observed that latency
can increase rapidly for a single measurement, and be back at normal level for the next measurement.
Therefore, the last few collected latency measurements are kept and the median value is used. This way,
single outliers do not trigger expensive discovery and direct connection procedures.

Figure 9.3: Resource discovery and assessment background task

The developed P2P network approach is not meant to be used for the whole communication, but
to discover suitable computing nodes and establish a direct connection to minimise latency. For this
purpose the Communication Module offers multiple components. The Communication Manager coordi-
nates the associated P2P relevant sub-components. The P2P Bootstrapper sets-up and joins the network.
The Node Discovery sub-component enables the discovery of nearby and suitable computing nodes,
participating in the network. The Decentralised Signalling Service sub-component enables to establish
secure direct connections to other, discovered computing nodes. To establish a trust relationship between
the connected computing nodes, the Trust Mediator provides measures to assess the trustworthiness of
remote nodes.

The Profiler component constantly profiles the devices’ context values and observes the application
execution of local and offloaded tasks. It saves the gathered values to the Profiler Value Storage which
again refines the decision process. The Decision Subsystem considers the defined cost models and eval-
uates the collected profiler values, as well as performance values of discovered remote nodes. Based on
these values it decides if the execution should take place locally or remotely and proposes a comput-
ing unit. The cost models are also relevant for the Hypervisor mode to control the amount of locally
consumed resources.

At the bottom of Figure 9.2, the applications is plugged-in. This could either be an application
making use of the offloading framework, and occasionally requesting assistance from other computing
units, or could be a server application, which initialises the offloading framework in Hypervisor mode.
Basically, an application can also make use of both execution modes, depending on the cost models
used by the application. Acting as both, client and server, only makes sense in feature-based offloading
scenarios, where single devices offer features not available on other devices.

9.2. Offloading Framework 73

9.2.2 POWER - A Dart-based Offloading Framework

POWER [Reiter and Zefferer, 2015b] is developed to validate and prove the feasibility of the architectures
on implementation level. It is based on the Dart programming language. Dart makes use of several
concepts, which can be re-used to enhance the implementation and solve common problems of HMEC
and MCC frameworks.

• Pub package manager: The pub package manager, is a repository used for managing dependen-
cies of applications during development. For deployment, packages are collected into a single,
application-specific repository. In the HMEC use case the challenge persists to get the source of
tasks (and its dependencies) to the selected remote computing units. Basically two options were
examined: (a) one option is to transfer the source of tasks in their offloading request, with the
risk of impacting performance substantially for large tasks, and (b) another option is to use a pub
package manager like mechanism, where only identifiers are transferred and the computing unit
downloads the source from public or private repositories. The mechanisms are detailed in Chap-
ter 9.2.4.

• Transformers: Transformers are small Dart applications attached to the build process. They offer
built-in methods for e.g. source code pre-processing. Dart transformers are used to enable the
developer to only loosely couple the application to the offloading framework, by applying annota-
tions to the source code at development time. At compile time, the annotations are processed by
the transformer and coupled with the concrete offloading framework. The transformer approach is
detailed in Chapter 9.2.3.

The offloading framework uses a plug-in approach to easily enhance applications with computa-
tional resources from other computing units. The overall structure of the offloading framework follows
the architecture as defined in Figure 9.2. Dart is focused at an asynchronous programming model, syn-
chronous operations are also supported but developers are strongly encouraged to use the asynchronous
model. Using this programming model, a method returns immediately without the actual computation
result, but with a promise to provide the value in the future. Once the result is available the application
is notified. In the meantime, the application can continue and probably schedule more tasks, or wait for
specific promises to provide their values.

The flow of processing tasks in Dart is illustrated in Figure 9.4. Two queues where tasks are sched-
uled exist, whereas the microtask queue is used for prioritised tasks and the event queue is used for
ordinary tasks, scheduled by the user or events from the environment. With the instantiation of a new
asynchronous promise return value, and an associated computation, a new entry is added to the event
queue and is scheduled for later execution by the Dart framework. This processing model is predes-
tined for an integration with offloading frameworks because the event queue already contains parts of the
application in form of tasks.

To achieve this level of integration, the framework uses the method-based offloading approach, but
due to its modularity it can easily be extended to also support a class-based approach. POWER uses the
Dart-provided annotation system to mark tasks of applications which should be considered for offloading
by the framework. In the simplest case, an annotation is applied without providing any attributes as
shown in Listing 9.1. Due to the asynchronous programming model, it is irrelevant for the application
flow where a computation takes place. The result just needs to be available at the created asynchronous
promise once the computation finished.

@OffloadMe ()
F u t u r e method () {
<code >

}

Listing 9.1: Applying the marker attribute to a method

74 9. Implementation

Start Dart
application

Execute main()
Microtask queue

empty?
Event queue empty?

Dispatch and
execute task from
microtask queue

No

Yes

Dispatch and
execute task from

event queue
No

End

Microtask queue

...

Event queue

...

Figure 9.4: Dart event loop

Only applying annotations to tasks has no influence on the processing of the application or the appli-
cation flow yet. Transformations of the source code are required to automatically invoke and transform
control to the offloading engine. The concrete implementation of these transformations are subject of
Chapter 9.2.3. For the rest of this chapter it is assumed that the offloading engine is invoked and control
is transformed to the POWER framework if annotated methods are invoked.

The offloading engine, as the application-side entrypoint to the framework, offers interfaces which
takes a reference to the offloading candiate in terms of application ID, method ID and a function/method-
pointer, to directly call a method locally. An unmodified local and a modified remote execution flow is
shown in Figure 9.5a and Figure 9.5b. An asynchronous method is called which performs some kind
of computation. With the completion of the calculation, also the issued promise resolves to a concrete
value. In a local execution scenario the flow is clear and straight forward. In an offloaded scenario, the
original call to the calculation is interrupted, the calculation is migrated to another computing unit and
finally the original calculation routine is executed there. After completion the results are passed to the
initiating computing node, and are reintegrated into the application.

User Application

Call sample method
(not offloaded)

sample()

Return result
(complete promise)

.

.

.

.

.

.

(a) Unmodified execution flow

User Application

Call sample method
(offloaded)

Return result
(complete promise)

.

.

.

.

.

.

Offloading
Resource

Initiate offloading
process

Remotely run
sample()

Return result

(b) Modified execution flow induced by
the transformer

Figure 9.5: Illustration of unmodified and modified execution flows

A more detailed view of the components involved in the offloading process is shown in Figure 9.6.
The offloading engine is called by the application with the request to execute a specific task. First the
offloading engine decides, with the help of the decision engine, if offloading is beneficial. Cuervo et al.
[2010] estimate the execution time of a particular task, by basing their decision on past execution times
of the same task. They do not consider the impact on the execution time of different input values. Still,

9.2. Offloading Framework 75

they found the approach sufficient and with virtually no impact on the overall performance for mobile
applications. This approach is enhanced by also considering the provided input data. If a task is called
more than once with the same input data, a more accurate estimation of the execution time can be made.
If no profiling information is available at all, the decision engine requests and measures a local execution,
to get a solid baseline. With profiling information available, the framework selects one of the available
computing units and starts with the offloading operation. Furthermore, the decision engine is prepared
to evaluate security requirements of tasks, and matches the security requirements with trust levels of
computing units as introduced in Part IV of this thesis.

alt

Application
Offloading

engine
Decision
engine

Profiler

Execute offloading candidate
Is offloading beneficial?

Check for existance of
performance/profiling
information

No profiling information
available

Profiling information
available

Do profiling
Profile
(local execution)

Return result and profiling information

Record profiling
information

Return result

Get profiling information

Get security requirements

Match used profile with
performance values and
available computing units

Return offload decision

Execute (offloaded or local)
based on offload decision

Record profiling information

Return result

Figure 9.6: Sequence diagram of the offloading process

For offloaded executions so-called “execution-profiles” are introduced: the high-performance profile
and energy-saving profile. Both influence the offloading decision process. Using the high-performance
profile, the performance of the device is maximised by basing the offloading decision on Equation 9.1,
containing the following values:

• Tlocal denotes the local execution time coming from the profiling information.

• Tlatency is the latency to the selected computing unit.

• Tpreparation is the predicted time, required to transfer the necessary state and input parameters to
the computing unit. The estimation is based on continuously recorded performance values of the
computing unit.

• Tremote denotes the predicted execution time on the remote computing unit. This value is based on
historic execution times. It can only be roughly estimated, but tests of Cuervo et al. [2010] show

76 9. Implementation

that most methods have similar execution patterns, independent on the concrete provided values,
at least in current mobile applications.

Tlocal > Tlatency + Tpreparation + Tremote (9.1)

If multiple computing units are available, the equation is evaluated for all available computing units, to
minimise the execution time.

The energy-saving profile, in contrast, mimics the performance of the local device and maximises bat-
tery lifetime. Offloading computational intensive tasks still consumes energy, but as seen in Chapter 9.3,
offloading and maintaining the performance of the device causes high savings in energy consumption.
Therefore, the offloading decision is based on Equation 9.2. The evaluation and selection of available
computing units is similar to the evaluation process of the performance profile. During the evaluation,
one additional parameter Twait is involved. It is used to block the executed task, and maintain the per-
formance of the device. For the performance profile Twait = 0, the execution would result in a better
performance, but also in a higher energy consumption compared to the energy-saving profile.

Tlocal = Tlatency + Tpreparation + Tremote + Twait (9.2)

9.2.3 Compile-Time Transformer

Following the previous chapters, there is no tight connection between the application and the offloading
framework. The applied annotations have no impact on the runtime of the application, and can still be
executed without applying the offloading approach. The only changes the application developer needs to
apply are annotations to tasks which should be considered for offloading.

The Dart environment offers a concept called transformers. They pre-process all the source code
files of an application. A typical transformer for web-applications is, for example, to produce a minified
version of a JavaScript library or to combine all the used CSS files into a single file. To integrate the
POWER framework into applications by just applying annotations, a transformer is developed to tightly
couple the concrete implementation with the targeted application. The transformer analyses the source
code and processes all annotated parts of the application. The output of the transformer is twofold. The
original source code is modified to get an application flow as described in Figure 9.5b and Figure 9.6,
furthermore a unique ID is assigned to unambiguously communicate the offloaded task to remote com-
puting units. This enables the offloading engine to take control of the application flow and migrate the
execution to another computing node if required. This only relates to the client side of the operation. For
the server side of an offloading operation, the source code of the particular tasks, identified by the unique
ID as assigned during compilation, is required for a successful execution. Moreover, the server side can
be executed on dedicated Dart computing units, but also in web environments. Therefore, the tasks are
required as Dart source code and converted to JavaScript source code. All these files are prepared by the
compile-time transformer.

Technically, the transformer performs the following transformations, considering a simple example
as shown in Listing 9.1. Applying the transformer on the application creates a statically available instance
of the offloading framework engine, which is initialised at program start-up. It discovers and keeps track
of available computing units automatically. The result of the transformation for one single method is
shown in Listing 9.2. The original method is encapsulated and an execute call involving the offloading
engine is added. The execute call contains a pointer to the original method to enable an efficient local
execution, arguments, the assigned unique method ID, the original path to the source file, a unique
package ID also generated during compilation and the package name of the Dart package. Furthermore,
the engine accepts the hash of the source code for the considered part. This way, the server can verify
that the retrieved code is unchanged. With this information in hand, the remote offloading engine can
uniquely acquire and pre-load the sources for a specific task and calculate its result on request.

9.2. Offloading Framework 77

F u t u r e myMethod () {
v a r m= () { <your code here > } ;
re turn e n g i n e . e x e c u t e (m, [] , " sample " , " example / example . d a r t " ,

" samplePackage −0 . 0 . 1 " , " samplePackage " , SHA256(< Dar t s o u r c e code >) ,
SHA256(< J a v a S c r i p t s o u r c e code >)) ;

}

Listing 9.2: Result after parsing and processing the marker attribute

9.2.4 Repositories

The Dart programming language and its Pub8 application is designed around the paradigm that all the
packages can be retrieved from a central repository. To publish new packages, or new versions of an
already existing package, the uploader needs to authenticate using its Google account. The uploader
of the initial version, has control over the particular project, and decides who is allowed to upload new
versions of the package. These approaches are enhanced to support HMEC scenarios.

Each application and each unique task of an application considered for offloading gets assigned a
unique ID by the compile-time transformer. The source of each task can be downloaded from a central
repository. Although central does not necessary mean that all operated servers need to use the same
repository. During the actual offloading operation, the server downloads the corresponding files from the
repository and compares the received SHA256 hash of the source code, with the actual SHA256 hash of
the downloaded source code, applies the current state of the application as received from the client, and
executes the task. Using this methods neither the clients nor the servers need to do any complex code
analysis for dependency detection during run-time. All dependencies are resolved at compile time and
are included in the downloaded file.

Different types of offloading servers have different requirements. Browser environments are not
capable of executing Dart code and command-line environments are not capable of executing JavaScript
code. Therefore, the repository offers both, the Dart application and the already transformed JavaScript
application. The repository accepts connections via standard HTTP means, therefore is subject to the
cross-origin limitation of web-applications. Thus, repository implementations need to apply the Cross
Origin Resource Sharing (CORS)9 paradigm to enable a cross origin usage of the repository.

To access the package repository it is differentiated between accessing the Dart application and the
transformed JavaScript application. A mirror of the complete Dart application, including all its de-
pendencies, is accessible using the following URL schema: https://url-to-repository/package-repo/
<package-id>/. For JavaScript each task is served as a separate file, identified by its ID according to the
following schema: https://url-to-repository/package-repo/<package-id>/js/<offload-id>.js.

9.2.5 Communication Technologies

Advancing the conceptual level to an implementation level introduces new constraints from the operation
environment and requires to clearly define the expected key aspects of the communication technology.
The communication technologies help in fulfilling the key goals of achieving a lightweight and flexible
solution:

• A decentralised approach avoids single points of failure and also enables operation even without
an Internet connection.

• Due to the nature of HMEC systems, computing units are frequently leaving and joining the net-
work. A decentralised P2P approach adapts to these behaviour and scales accordingly.

8https://pub.dartlang.org/
9http://www.w3.org/TR/cors/

https://url-to-repository/package-repo/<package-id>/
https://url-to-repository/package-repo/<package-id>/
https://url-to-repository/package-repo/<package-id>/js/<offload-id>.js
https://pub.dartlang.org/
http://www.w3.org/TR/cors/

78 9. Implementation

• Suitable nodes, with low latency and high performance values, need to be discoverable easily.
Available nodes are organised in a P2P like structure which enables a decentralised discovery
process.

Various technologies are available which enable a realisation given the defined operation environment
from Chapter 9.1. Classical web technologies such as client-server HTTP or AJAX are ruled out due to
their inflexibilities. Classic client-server HTTP follows a strict request-response terminology. Calling a
web page issues multiple HTTP requests, the server afterwards has no way of contacting the client. AJAX
is an improvement in terms of flexibility and enables applications running in the browser to dynamically
issue further requests. This way, web applications can simulate a server to client communication by
constantly polling the server for updates. Furthermore, AJAX is constrained by the same-origin-policy10

that only allows AJAX requests to the same scheme, host and port combination as the web application
was requested from. Although workarounds are available [Saiedian and Broyle, 2011] to circumvent
the same-origin-policy, they are still constrained by only having client-server connectivity and no direct
client to client connectivity at all.

Beside these classical web technologies, new web technologies like WebSockets [Fette and Mel-
nikov, 2011] and WebRTC11 are available which fit into the defined constraints and provide the required
capabilities. Based on these technologies, the following chapters introduce two distinct approaches on
how to build a communication layer, suitable for HMEC use cases and respecting the defined operation
environment.

9.2.5.1 Decentralized Peer-to-Peer Framework in Web Environments

The first approach is completely based on the utilisation of WebRTC. WebRTC, as illustrated in Fig-
ure 9.7, is a new web technology which allows two clients, for example browsers, to directly communi-
cate with each other without requiring an intermediate server. It uses technologies to circumvent NAT
gateways with the support of Session Traversal Utilities for NAT (STUN) server and also provides con-
nectivity if no direct connection is possible by using Traversal Using Relay NAT (TURN) servers. The
limitation of WebRTC is that a separate signalling channel is required to exchange initial connection
informations. This signalling channel can for example be realised using AJAX to one or multiple coor-
dination servers. WebRTC is already used in various scenarios: Swarmify12 uses WebRTC to create a

Exc
ha

ng
e c

on
ne

cti
on

 in
for

mati
on

Exchange connection information

TURN server TURN server

STUN serverSTUN server
TCP/UDP TCP/UDP

TCP/UDP

TCP/UDP TCP/UDP

Signalling channel

Figure 9.7: WebRTC concept [Reiter and Zefferer, 2016]

10https://www.w3.org/Security/wiki/Same_Origin_Policy
11https://www.w3.org/TR/webrtc/

https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/TR/webrtc/

9.2. Offloading Framework 79

distributed client-powered content delivery network, the recent Linux version of Skype13 uses the audio
and video capabilities of WebRTC, and the system developed by Burgstaller et al. [2016] uses WebRTC
as an anonymous communication layer.

In this chapter, WebRTC is used to provide the foundation to build and extend a P2P framework
with capabilities as required by HMEC systems. The implementation is based on the work of Dias
[2015]. He introduces a WebRTC-based distributed hash table (DHT). It is the first implementation
using pure web technologies. Using this approach, all nodes (e.g. browsers) can communicate with each
other, without requiring a direct connection, and without requiring any server infrastructure once the
connection is established. It uses WebRTC as its direct node to node transport mechanism, nevertheless
it requires a central rendezvous point to exchange connection information for their initial connection.
Due to limitations the central point cannot be omitted.

In the WebRTC-explorer system, as proposed by Dias [2015], each node has several up- and down-
link connections to known nodes. Each node is assigned a random 48bit ID and the connections to other
nodes are arranged according to this ID. To route a packet through the network, a node sends it to a
known node with the closest ID. If the node exists and is integrated in the network, it will receive the
packet on the shortest possible path.

This early implementation approach was advanced in different directions. The rendezvous point is
extended to also act as a resource manager. All nodes register at the rendezvous point with the ability to
attach attributes to the registration request. Nodes which require additional computational power, query
the resource manager and receive a list of potential resource providers. To find the best performing
computing unit in terms of latency, a geo-location based approach is foreseen, where nodes close to the
requester’s geographic location are returned. This already results in low RTT values [Y. Lee et al., 2008]
in many cases. A further extension applied is the support for transparent end-to-end security. Using the
forge14 library the TLS protocol is invoked. Trust is established through a local trust store, where end
user certificates are stored. The trust store is provided as part of the application. A full-fledged certificate
validation and revocation checking is not possible from within the browser environment, without support
from external systems.

The extended WebRTC-explorer can be considered as overlay network and furthermore was extended
to also act as a decentralised rendezvous point. This way, once a connection to the overlay network is
established, no central servers are required to directly connect two nodes. Still, the end-to-end security
transparently operates on overlay network connections and on direct connections. Using this approach,
nodes enter the overlay network via a centralised rendezvous infrastructure, but operate in a decentralised
manner afterwards.

Due to design decisions in the WebRTC specification, it is not possible to completely remove the de-
pendencies to central components and still only rely on the WebRTC technology. Therefore, an improved
approach in terms of reliability, but with enhanced dependencies is introduced in Chapter 9.2.5.2.

9.2.5.2 Super Node-based Peer-to-Peer Framework

As shown throughout this work, P2P networks are best suited to fulfil the requirements of HMEC frame-
works on the communication technology. The previous chapter highlights, that trade-offs between re-
quirements and the realisation need to be accepted due to technical constraints. With the previous ap-
proach it was discovered that web-technologies do not allow to completely eliminate centralised compo-
nents. With the approach solely based on WebRTC, a signalling channel connected to rendezvous points
always needs to be available. Furthermore, integrating mobile devices into the coordination P2P network
is dicey due to their unreliable availability and their deviations in latency.

12https://swarmify.com/
13https://community.skype.com/t5/Linux/Skype-for-Linux-Alpha-and-calling-on-Chrome-amp-Chromebooks/td-p/4434299
14https://github.com/digitalbazaar/forge

https://swarmify.com/
https://community.skype.com/t5/Linux/Skype-for-Linux-Alpha-and-calling-on-Chrome-amp-Chromebooks/td-p/4434299
https://github.com/digitalbazaar/forge

80 9. Implementation

Coordination network

Figure 9.8: Super node based P2P framework approach

One way to improve this situation is to decentralise the coordination network by using a P2P network
made of super-nodes, as illustrated in Figure 9.8. Super-nodes are nodes with a good connectivity, low
latency and high availability. It is a well known concept and, for example, is also employed by older
versions of the Skype messenger [Baset and Schulzrinne, 2006], before it was switched to a cloud-based
system. Each mobile device can have connections to one or multiple super-nodes. In contrast to the
previous approach, the mobile devices are not part of the super-node network, therefore mobile devices
are not subject to deviating latencies in the overlay network. The establishment of direct connections
between the mobile devices is comparable to the previous approach, with the advantage that multiple
access nodes to the coordination network can be set-up, for example close to crowded places, still, the
access nodes are interconnected in terms of computing unit discovery.

The coordination network is built for easy deployment using the Java programming language and
instantiating the TomP2P [TomP2P, 2014] framework. TomP2P is a robust Java-based Distributed Hash
Table (DHT) implementation with advanced features like NAT hole punching. Mobile devices use Web-
Sockets [Fette and Melnikov, 2011] to build a connection to the coordination network, and register their
availability and connection information. They can choose to accept incoming WebSocket connections,
or setup a WebRTC endpoint. For WebSocket endpoints, URL and certificate information is saved in the
coordination network. For WebRTC endpoints, the coordination network is used as a signalling channel
to initiate and establish the WebRTC connection.

From a high abstraction level it seems to be a step back regarding flexibility and fail-safety. In fact,
the duties on the mobile devices are relieved and dependencies are removed:

• Mobile devices only need a single connection to the coordination network. In the previous ap-
proach at least a centralised signalling channel and other mobile devices acting as access nodes
were required for the initial connection to the P2P overlay network.

• Mobile devices are not responsible for routeing requests, therefore latency of the overall overlay
network does not depend on the connection conditions of single mobile nodes in the network.

Best practice for the deployment of this approach, as illustrated in Figure 9.9, is to move single access
nodes of the coordination network close to the mobile devices, but also provide global access nodes, to
enable connectivity for other, not latency sensitive computing units. This deployment approach also
tackles the issue of finding geographically proximate nodes. Each access node is connected to proximate
nodes, finding other computing units is then reduced to selecting available nodes of the same access
node. Still, the capabilities to use computing units from other access nodes is maintained, due to the
interconnection of the coordination network in a P2P manner.

9.2. Offloading Framework 81

Site Y

Site X
Global access

node

Figure 9.9: Decentralised coordination network deployment

9.2.6 Isolation

One aspect not tackled so far is the isolation of multiple executions from different users on the computing
units. In this case isolation basically aims at two goals:

1. Protect assets of the computing unit owner, such as data or components of the computing unit,
from unauthorised access by the offloaded applications.

2. Protect the offloaded computation and data from access by the owner of the computing unit.

The server-side of the offloading framework is realised using two distinct approaches, which require
different isolation solutions highlighted in the following chapters.

9.2.6.1 Isolation on Mobile Devices

On mobile devices operated as offloading servers, offloaded applications are executed in web views.
Web views are web browsers which can be embedded in native applications on the mobile device and
still provide all features and security mechanisms of web environments. Offloading servers on mobile
devices are running as top level applications in web views. A single offloading server can accept multiple
offloading requests simultaneously, still they are not allowed to access each other’s data or the device
owner’s data.

The device owner’s assets are already well protected by employing the web view. No unauthorised
access to the device owner’s data is possible. To also protect the offloading operations, each operation
is launched in a separate iframe15. Basically, spawning a new iframe is straight forward, as illustrated in
Listing 9.3, by adding an iframe element to the DOM-tree of the root frame.

< i f r a m e i d=" o f f l o a d i n g i d " s r c ="URL t o t h e s o u r c e code ">

</ i f r ame >

Listing 9.3: HTML iframe syntax

15https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe

https://developer.mozilla.org/en/docs/Web/HTML/Element/iframe

82 9. Implementation

The issue with this approach is that the source code, executed in the iframe, can only be specified as an
URL, but the source code is downloaded from one of the repositories and finally assembled to JavaScript
on the server device. Therefore, a dynamic URL needs to be created, which resolves to the modified
JavaScript source code. This is achieved using the HTML File API16 as illustrated in Listing 9.4. The
result of this operation is a URL of the form blob:BLOB_URL/UUID, which is a unique URL for each
call to this method. This URL can be used as the source URL for the created iframe.

v a r s r c U r l = URL. c rea t eObjec tURL (new Blob ([s r c])) ;

Listing 9.4: HTML File API usage

Another characteristic of iframes is that they act like a separate web environment instance, and can only
communicate with the main application (the parent frame) through a defined and controlled channel
using postMessage17. This communication channel is used to transfer the initial data and arguments to
the offloaded application part, and to transfer the results to the parent frame. This way each executed
offloading operation is executed in an isolated environment.

9.2.6.2 Isolation on Dedicated Computing Units

On dedicated computing units used for offloading, separate processes are started for each offloading op-
eration. On unprotected systems, these processes basically can access all files and resources. Depending
on the used operating system different measures need to be applied.

Recent versions of the Windows operating system support AppContainers18 which can be used to
activate isolation capabilities. Commercial products also exist, which hook into the operating system and
introduce an intermediate layer to capture relevant system calls. On Linux operating systems, sandboxing
techniques are more advanced and integrated into the system. By executing processes as a restricted
user, the application already has small chances of harming the system. More sophisticated solutions like
AppArmor19 or firejail20 enable to specify on an application basis, allowed actions, and what applications
are allowed to see on the system. For even higher isolation levels, virtualisation techniques like KVM
can be used to start a virtualised environment and launch the application in the virtualised environment.

9.2.7 Realisation

The implementation is not only in a concept phase, but utilises the full potentials of the environment.
Screenshots of selected scenarios are illustrated in this chapter. First, to illustrate the broad applicability
for different devices and vendors, the supported and realised technologies are listed.

Focussing on mobile devices, there is no need to differentiate between different architectures. For
POWER, support for web technologies like WebSockets and WebRTC is essential. Therefore, a distinc-
tion between web technology-enabled platforms and not-yet-enabled platforms is required. Currently
only Android provides the necessary feature-set, iOS is still missing support for WebRTC. The realisa-
tion can take different shapes: It can execute in the browser, using web-based cross-platform frameworks
like Apache Cordova or use Dart-based cross-platform frameworks like Flutter. Another possibility,
which is not considered by the implementation, is providing a native application with an embedded Dart
compiler or virtual machine. On desktop systems, similar possibilities exist regardless of the utilised
operating system or architecture: It can execute in the browser, using cross-platform frameworks like

16https://www.w3.org/TR/FileAPI/
17https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
18https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx
19http://wiki.apparmor.net
20https://firejail.wordpress.com/

https://www.w3.org/TR/FileAPI/
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx
http://wiki.apparmor.net
https://firejail.wordpress.com/

9.2. Offloading Framework 83

Electron21 or Chrome applications. On desktop systems, as well as on server systems without a graph-
ical user interface, POWER can directly be executed using the Dart VM command line. A summary of
these realised capabilities is provided in Table 9.1.

Browser
Web technology-based

cross-platform
frameworks

Dart-based cross-
platform frameworks

Native Browser
Cross-platform

frameworks
Chrome application Dart VM

Support provided by current
implementation

Considered but not featured by
current implementation

Not considered/out-of-scope

Mobile web-technology enabled platforms Desktop/Server Platform

Table 9.1: Realised capabilities of provided implementation

The following Figure 9.10 and Figure 9.11 illustrate the different shapes of POWER in server mode.
The figures only show a fraction of the possible realisation. A complete picture is shown in Table 9.1.
On Android, POWER is operated as a standalone application and is connected to one of the coordina-
tion nodes, waiting for incoming offloading requests. On the desktop environment, POWER is directly
launched from the browser, fulfilling the same purpose. The different user interface representations il-
lustrate the adaptability. Depending on the user’s requirements different levels of details can be shown
to the user. Security aspects and enabling technologies are discussed in Part IV of this thesis, still as a

Figure 9.10: POWER-server mode on Android in application mode

baseline the application automatically generates a public-private RSA key pair, used to authenticate at
other devices. The client ID is derived from a user’s public key (in the default case). This way, a user can
verify if he really is connected to the device with a specific client ID, if the public key was exchanged be-
forehand. This is enabled by displaying a QR code containing the public key to be scanned by e.g. client
devices. The command-line version targeted at server environments without graphical user interfaces are
not illustrated here. They basically offer the information as a text-based version.

On the other side of the spectrum are the client applications, requesting computational power from
the network. Figure 9.12 and Figure 9.13 illustrate two representations of the PBKDF2 application,
also used as part of the performance evaluation in Chapter 9.3. The application performs the PBKDF2
algorithm with user provided attributes. Optionally, a node for the offloaded execution can be specified.
In Part IV measures are specified to outsource this decision to trusted authorities. The utilisation of the
framework is completely transparent to the user. It tries to establish a connection to one of the proximate
computing units, acquired via the coordination network, and outsources the computation. This again
does not represent all realised possibilities. They are listed in Table 9.1. Also command-line applications,

21https://electron.atom.io/

https://electron.atom.io/

84 9. Implementation

Figure 9.11: POWER-server mode on Windows in browser mode

operating on the Dart VM, can offload their computations, maintaining the same properties for the user,
like complete transparency.

Figure 9.12: POWER-enabled application on Android in application mode

9.3 Framework Evaluations

In this section the POWER framework is evaluated in terms of energy consumption and performance
improvements. The evaluations are published in [Reiter and Zefferer, 2016]. For the evaluations, the key
aspects of two applications are executed in an offloaded way:

• A raytrace application used to render images.

9.3. Framework Evaluations 85

Figure 9.13: POWER-enabled application on Windows in application mode

• An application making use of PBKDF2, a password-based key derivation function.

For the energy consumption evaluation, the raytracer application is used to clearly show the impact on the
different mobile device components. The performance evaluation is performed using both applications.
The evaluations solely focus on energy and performance impacts of the offloading process, without going
into detail on the used communication technologies as introduced in Chapter 9.2.5. Regardless of the
used technique, the final result is always the same: Mobile devices and computing units are directly
interconnected, either using WebRTC or using WebSockets. Tests showed that the impact of the concrete
used approach can be neglected.

These evaluations show the impact, compared to local executions, of applying the offloading frame-
work to applications in terms of energy consumption and performance. Providing a comparison to previ-
ous frameworks following a very different execution model (e.g. MCC) is problematic in multiple ways.
To get meaningful results an equal technological basis is required. Existing frameworks are tailored to
specific environments, operating systems and programming languages. The proposed realisation pro-
vides flexibility in terms of the execution environment and operating system. For the implementation,
a programming language is chosen that is available on a majority of the target platforms. The tenor of
this thesis is to focus on MCC/HMCC/HMEC improvements in the field of security, flexibility and in-
teroperability enabling a re-usability of the technological foundation contributed by other frameworks,
especially in terms of client side offloading techniques. Therefore, due to the limited expressiveness of
comparing performance and energy consumption improvement results of existing frameworks with the
proposed approach, the comparison in intentionally omitted.

9.3.1 Test Setup

The test setup, used for the evaluations, is illustrated in Figure 9.14. The test setup comprises three
computing units, whereas two are directly accessible via public IP addresses, and one is behind a NAT
where no incoming connections are allowed. A STUN/TURN server is deployed to allow a reliable dis-
covery of a server’s public IP address and to enable relayed connections. The evaluations are performed
using multiple resource constrained devices, which require assistance from computing units: Different
Android 5 devices were used as mobile device platforms, furthermore Windows and Linux PCs running
the applications in Firefox and Chrome were evaluated. Other mobile platforms like iOS and Windows

86 9. Implementation

Phone are still constrained in their support for the used new web technologies, therefore an evaluation
was not possible.

Web socket based
signalling service

STUN/TURN server

Resource
constrained devices

High latency
connection

Low latency
connection

Offloading resources

Figure 9.14: Energy consumption and performance impact test setup [Reiter and Zefferer, 2016]

9.3.2 Energy Consumption Evaluations

High energy consumption is one of the main drawbacks of today’s mobile devices. Running applications
with high performance requirements on the mobile device draws a lot of energy and inherently reduces
battery lifetime with the result that users need to charge their phones multiple times a day on heavy
usage. This chapter highlights the achieved energy consumption improvements by applying the proposed
HMEC framework.

This evaluation is only relevant for battery powered devices and therefore is only performed on
the mobile device. In contrast to the performance evaluation, the connectivity aspect is added to the
evaluation. As the evaluation will show, it makes a significant difference which technology is used to
interconnect devices (3G or Wifi). To measure the energy consumption for mobile devices multiple
approaches can be used:

• Hardware-based approaches directly attach analysers between the mobile device and its battery,
but have significant drawbacks in mobility.

• Model-based approaches, as proposed by Zhang et al. [2010], can be used to generate software
models to estimate the power consumption of mobile devices. Unfortunately, models greatly differ
between different mobile device models.

• Recent Android versions record battery-related events, which can be analysed with the battery-
historian tool22. This allows to reconstruct a battery consumption estimation on application and
component level.

The energy consumption evaluations rely on the battery-historian approach, as it seems to be the most
flexible. To get accurate results, the mobile device was set to a known state before the evaluation: battery
was fully charged, screen left on at the lowest brightness level, all synchronisation services, GPS and
other background tasks were deactivated.

The evaluations are performed using the raytracer application with the performance profile and en-
ergy saving profile. Both profiles were evaluated with computing units remotely connected via Wifi
connections with low latencies and via 3G connections with latencies around 220ms. The expectations
on the results can be summarised as follows:

22https://github.com/google/battery-historian

https://github.com/google/battery-historian

9.3. Framework Evaluations 87

local

remote (Wifi)

remote (3G)0

5

10

15 13.63

9.88

13.04

B
at

te
ry

co
ns

um
pt

io
n

pe
rh

ou
ri

n
%

other screen wifi 3G application

Figure 9.15: Energy consumption evaluation using the performance profile stacked by compo-
nent [Reiter and Zefferer, 2016]

• Each device has a baseline energy consumption of applications and services running in the back-
ground. This energy consumption is not influenced by the offloading framework.

• Due to ever increasing screen sizes, it is expected that the mobile device’s screen is the largest
energy consumer.

• It is expected, as research already shows [Cuervo et al., 2010] that offloading via 3G connections
requires considerable more energy than offloading via Wifi.

• It is anticipated that the performance profile will not save energy, but the energy consumption shifts
from the application to the communication technology.

The results for the performance profile are shown in Figure 9.15. Each vertical bar shows the major
energy consumers for this test run. In the case of local execution, it is shown that the screen is one of
the main energy consumers. The primary goal of the performance profile is to make vast improvements
in performance without considering energy consumption. Still, beside performance improvements, the
results show tremendous improvements in energy consumption too. Using the Wifi connection and
this specific application, the energy consumption per hour was more than cut in half, including energy
consumption of the Wifi component. The 3G connection requires considerable more energy, still energy
consumption was reduced. These energy consumption values already include energy consumed by the
framework and all background tasks introduced by the framework. The expectations apply in terms of
baseline energy consumption, screen energy consumption, and the energy consumption gap between 3G-
based and Wifi-based offloading. Regarding the overall energy consumption, the results even outperform
the expectations. The offloading operations have a lower energy consumption than anticipated (even in
the 3G case) and achieve remarkable energy saving effects.

The evaluation results obtained using the energy saving profile are shown in Figure 9.16. Using the
energy saving profile, the overall energy consumption of the application was cut from 7.1% per hour for
local executions to 0.3% per hour for offloaded executions using the Wifi connection and 1.16% per hour
for offloaded executions using the 3G connection. The expectations also apply for the energy-saving use
case, the application’s energy consumption can be minimised tremendously.

9.3.3 Performance Impact Evaluations

The impact on the performance of employing the POWER framework is analysed based on two applica-
tions:

88 9. Implementation

local

remote (Wifi)

remote (3G)0

5

10

15 13.63

7.01 7.45

B
at

te
ry

co
ns

um
pt

io
n

pe
rh

ou
ri

n
%

other screen wifi 3G application

Figure 9.16: Energy consumption evaluation using the energy saving profile stacked by compo-
nent [Reiter and Zefferer, 2016]

• A raytracer application is modified to offload the computation of individual scenes to remote com-
puting nodes.

• A PBKDF2 application is modified to offload the password derivation to trusted (refer to Part IV
of this thesis) computing nodes. The strength of keys, derived from passwords is heavily impacted
by the number of performed iterations which is limited on mobile devices.

Chrome 42 on Linux

Firefox 40 on Linux

Firefox 40 on Windows

Chrome 45 on Windows

Chrome 45 on Android
0

2,000

4,000

6,000

8,000

E
xe

cu
tio

n
tim

e
in

m
s

Local execution Remote execution
Optimised remote execution Parallel remote execution

Figure 9.17: Raytracer performance for rendering a 256 pixels by 256 pixels image [Reiter and
Zefferer, 2016]

The raytracer application does not utilise any optimisations from the field of 3D graphics. It depends
on a scene description as input parameters, and returns the rendered bitmap. The following information
needs to be transferred to the remote side on offloading: The scene and application state information is
encoded in about 1165 bytes (depending on the actual provided information), compressing this informa-
tion can shrink it to about 631 bytes. The scenes were rendered to bitmaps comprising 65535 pixels and
262144 pixels. The results were obtained by rendering the same image 200 times and calculating the
average required time. To minimise the impact of latencies, the devices were connected with low latency

9.3. Framework Evaluations 89

Chrome 42 on Linux

Firefox 40 on Linux

Firefox 40 on Windows

Chrome 45 on Windows

Chrome 45 on Android
0

10,000

20,000

30,000

E
xe

cu
tio

n
tim

e
in

m
s

Local execution Remote execution unmodified
Remote execution optimised Remote execution parallelised

Figure 9.18: Raytracer performance for rendering a 512 pixels by 512 pixels image [Reiter and
Zefferer, 2016]

(single digit) Wifi connections. The expectations on the framework in this regard can only be formulated
on an abstract level: enable to increase the performance of mobile applications. Actually, in this dynamic
environment, the execution performance depends on various factors like connection latency, connection
bandwidth, available processing power of the computing unit, and suitability of a particular application
to apply the offloading framework. Actually, the framework is built in a way to plug in different offload-
ing profilers and decision engines, hence, the goal is not to compete on a profiler or decision engine
level with e.g. MAUI [Cuervo et al., 2010] or ThinkAir [Kosta et al., 2012], but enable to extend these
frameworks with enhanced security features. The plug-able structure enables to reuse already existing
concepts.

The results for the 65535 pixels rendering process are shown in Figure 9.17. As illustrated, local only
executions can take up to 8000ms on Chrome for Android, which makes this kind of application unusable.
Without applying any optimisations to the application, the execution time was already reduced by about
30% to 5500ms. The application is developed in the Dart programming language, and the computing
units are dedicated units which directly execute Dart code. This explains the performance gains for
desktop environments, because the utilised browsers are only executing the transformed JavaScript code.

The next step was to slightly optimise the application. Currently, the application returns a blunt list of
pixels. Just by encoding the returned picture as PNG further reduced the execution time to 1140ms. This
is a performance gain of more than 700% compared to the original local execution. To further improve
the results, the execution was parallelised, by rendering multiple parts of the image at different locations
and consolidating the image locally. As it turned out, the introduced overhead for the local consolidation
overwhelmed the performance gains of the parallel execution.

Similar performance gains can be observed for the 262144 pixels image in Figure 9.18. On mobile
devices the execution time was reduced from more than 30 seconds to 1950ms.

The evaluation of the PBKDF2 applications requires a trusted offloading computing unit. To get a
realistic scenario the computing unit behind the NAT was considered as home computer, trusted by the
user. Generally, there are no common guidelines on the number of iterations, to achieve a sufficient level
of security. A rule of thumb is to select a number of iterations which takes about one second to compute
on the target device. It is clear that this number will be lower on mobile devices than on dedicated
computing units. Therefore, the goal of employing HMEC in this use case is to increase the overall
security. Performance values were collected for 1000, 10000, and 100000 iterations. The results are
shown in Figure 9.19. The defined rule of thumb is only satisfied by desktop browser for up to 10000
iterations with local executions. Mobile browsers already need 3253ms in the local execution scenario

90 9. Implementation

Desktop Chrome 45

Desktop Firefox 40

Chrome 45 on Android (Wifi)

Chrome 45 on Android (3G)

102

103

104

105

E
xe

cu
tio

n
tim

e
in

m
s

Local execution 1000 iterations Local execution 10000 iterations
Local execution 100000 iterations Remote execution 1000 iterations
Remote execution 10000 iterations Remote execution 100000 iterations

Figure 9.19: PBKDF2 performance graph on logarithmic scale [Reiter and Zefferer, 2016]

for 1000 iterations. By employing the offloading approach, 100000 PBKDF2 iterations can be performed
in mobile device browsers in just 1426ms.

9.4 Chapter Conclusions

In this chapter an implementation was developed based on the refined architecture from Chapter 8 to
prove its feasibility and capabilities. The requirements and goals as defined in the architectural phase are
translated to clear targets on the implementation level, still following the central theme of achieving a
lightweight, flexible, and interoperable solution. To closely follow these targets, the boundaries of the en-
vironment have been scrutinised. It is not feasible to create a solution which covers the whole landscape
of available applications, devices and architectures, and still stick to the central theme. Therefore, the
operation environment was defined and aims at the sweet spot between reaching the defined targets and
being compatible with existing applications: At its current stage the framework does not focus on native
applications of any platform, but concentrates on applications built on web technologies like web appli-
cations or native-like cross platform applications. The implementation focuses on filling the identified
gaps, instead of reinventing already established and well-researched topics.

The implementation is evaluated with a focus on the energy consumption and performance impact of
the solution. Although the results are depending on the concrete application and its structure, the achiev-
able improvements are clearly shown. For the applications under test, the overall energy consumption
was more than cut in half. Using the performance profile, still notable energy savings were achieved, and
also performance improvements of up to 700% for selected applications.

This implementation serves as the baseline for a gradual extension and improvement regarding users’
privacy and security in the following Part IV of this thesis.

Chapter 10

Part III Conclusions

Due to the increasing migration of daily tasks from desktop computers to mobile devices like smart-
phones and tablets, users’ demands are increasing in terms of processing power and battery lifetime. the
current predominant situation either requires users to recharge their mobile devices multiple times a day
on heavy load, or rely on cloud services. For interactive, latency sensitive applications a high bandwidth
and low latency Internet connection is required. Furthermore, cloud services often only serve predefined
tasks like save data or perform pre-agreed calculations. A more flexible approach is required to react to
changing environments like the current battery level, connection status or current location.

Current approaches to improve the situation enable applications to determine parts at runtime or at
compile time, which could be executed remotely, also referred to as offloaded execution. Evaluations
of these existing approaches show that, under ideal environmental conditions, high energy savings and
vast performance improvements can be achieved. This is just a first step towards a complete solutions.
Existing solutions are often statically linked to single cloud solutions and therefore the profit of applying
offloading technologies is limited.

This part of the thesis starts by identifying the still existing gap from existing approaches to solutions.
Several gaps and final goals are identified: lightweight, flexible, and interoperable. An architecture
which fills the identified gaps is developed, also taking the already existing approaches into account. The
architecture specifically takes into account a high fluctuation of computing units used for the offloading
operation and their organisation. To prove the feasibility of the architecture, a solution is developed based
on the enhanced architecture. Unlike existing approaches, it does not only allow dedicated computing
units, but enables all participating nodes to consume and provide computational power in the system.
The computing units are organised in a P2P like structure, where multiple approaches were evaluated
to find the most adequate in the defined operation environment. The evaluation results show that both,
energy savings and vast performance improvements are possible, also without relying on statically linked
and prepared cloud services.

The developed solution realises the envisioned fulfilment of the defined security requirements. This
implementation serves as the first approach realising a dynamic offloading approach, which considers
all the defined high-level functional requirements. The missing links to finally consider the security
requirements, not only on architectural level, are discussed in the following Part IV.

91

92 10. Part III Conclusions

Part IV

Trust, Security and Privacy

93

Chapter 11

Processing Sensitive Data

The previous parts of this thesis established a sound model defining an improved architecture based on
analysing existing offloading frameworks, providing an implementation based on this architecture, and
evaluating the solution. The evaluations clearly focussed on two key aspects of offloading frameworks:
energy saving effects and performance impacts. Those are indisputable important aspects of HMEC
frameworks.

Up till now, users with the requirement of protecting their privacy of processed data and workflows
were unable to make use of HMCC/HMEC concepts. Already existing frameworks focus on technical
procedures and algorithms concerning the offloading operation: How to identify parts of an application
which should be considered for offloading, how to perform the offloading process on a technical level,
and how to decide if offloading is beneficial under given device and environmental conditions. Security
aspects are not considered by any of the analysed frameworks in Part II of this thesis.

This chapter settles the scene to establish a trust model for HMEC frameworks by (a) identifying
the users requiring protection of their privacy and data and (b) introducing privacy protection and trust
establishing means from other, related domains. Following this chapter, the overall goal of this part is to
transfer the introduced and already well-established means to the domain of HMEC.

Two different user groups of HMEC frameworks can be identified:

• Private users: In the recent years, even large amounts of private users gained data security and
data protection awareness. Many private users understand that revealing their private data to un-
trusted entities is a risk, and data may be sold to third parties for e.g. targeted advertising cam-
paigns. Even large and well-established companies analyse private data to generate profit (e.g.
Google Gmail1 just to name one example). However, applications targeting private users often
do not involve personal data, like gaming applications. Still, computing units should behave as
expected, but no data can get lost in this case.

• Corporate users: A different picture is drawn for corporate use cases and users. Corporation-
managed applications have always access to corporation data, corporation workflows, or the cor-
poration network. Corporations need full control of the processing entities in terms of particularly
selecting single allowed nodes or whole providers. Furthermore, different tasks might process data
with different levels of confidentiality which should also influence the selection of the computing
unit.

Many corporations already have systems in place to control accesses to corporation controlled end-
points or from corporation controlled applications to outside endpoints. Extensible Access Control
Markup Language (XACML) [OASIS, 2013] is the de-facto standard language in the industry to de-
fine access control policies following an Attribute-based Access Control (ABAC) approach. XACML is

1https://www.theguardian.com/technology/2014/apr/15/gmail-scans-all-emails-new-google-terms-clarify

95

https://www.theguardian.com/technology/2014/apr/15/gmail-scans-all-emails-new-google-terms-clarify

96 11. Processing Sensitive Data

defined in an open way and actually can be used in various different scenarios. The remainder of this
chapter is dedicated to provide the required details on the XACML technology as well as state-of-the-art
approaches of enforcing the defined policies in Chapter 11.1. These approaches foresee an explicit inte-
gration of the enforcement infrastructures into service providers and service consumers. This was picked
up by the H2020 SUNFISH2 project and was extended in the direction of data usage control, fostering a
transparent integration of the enforcement infrastructure in existing and new applications. An overview
of this extended enforcement infrastructure and the contributions are discussed in Chapter 11.2.

11.1 Extensible Access Control Markup Language and Enforcement
(XACML)

XACML is a security policy language developed and maintained by the OASIS3 consortium. On the
one hand it defines a policy language model to express a multitude of different security requirements, on
the other hand, it defines conceptual entities to guide developers on how to actually integrate the defined
concepts. In the following sections, a concise overview of these concepts is provided.

11.1.1 Policy Language

XACML specifies a format to provide policies in Extensible Markup Language (XML) format. The goal
of specifying and enforcing policies is to get a decision if a certain action is allowed. With policy lan-
guages, this authorisation is decoupled from the actual program logic, enabling a centralised management
of authorisations and adaptations without modifying application logic.

PolicySet

Policy

Rule

Obligation

Condition Effect

Advice

Figure 11.1: XACML entities

To achieve this, XACML is based on an ABAC approach. Policies are based on the comparison
of provided attribute values, to the values (or variables) embedded in the policies. The comparison
functions can be defined flexibly, referring to values of the provided context, the environment, or can
even be completely customised. Due to the flexibility of the ABAC approach, a profile was defined to

2http://www.sunfishproject.eu
3https://www.oasis-open.org

http://www.sunfishproject.eu
https://www.oasis-open.org

11.1. Extensible Access Control Markup Language and Enforcement (XACML) 97

also map Role-based Access Control (RBAC)4 approaches to XACML. XACML fosters reusability of
the defined policies by enabling to link between them. In the specification the basic entities Rule, Policy
and PolicySet are defined. Each entity has a unique identifier for reference. The relations between these
entities are illustrated in Figure 11.1. Rule entities are the most atomic units and provide the actual
authorisation logic. The policy entity, in contrast, combines multiple rules for evaluation by the XACML
engine. The policy set entity again combines multiple policies (and other policy sets). This way, policies
and policy sets can be cross-referenced, avoiding multiple definitions of the same elementary policies.

At the lowest level, the rule-level, each entity additionally defines the effect of a matching policy
by either explicitly permitting or denying access. Moreover, conditions can be added to exactly define
matching policies. At the policy level, two more entities, obligations and advices, can be defined. They
can be used to define obligatory or optional actions to be performed at policy enforcement.

This multi-levelled approach enables a fine-grained specification of policies and a clear hierarchical
structure, but also leads to inconsistencies and corner cases like no matching policies and multiple poli-
cies yielding different results. To combine the evaluation results of multiple rules, policies, or policy
sets, XACML defines combination algorithms to specify how to deal with different results. In case no
matching policies are defined a dedicated result value NotApplicable is defined. Particular combining
algorithms can define further constraints on the policies. In case they are not satisfied the evaluation can
result in the value Indeterminate.

The following Listing 11.1 provides a simple policy example, showing the overall structure of
XACML policies. To improve the readability, XML namespaces and prefixes are removed and all rules
are embedded into the root entity without using the reference capabilities. The policy matches on re-
quests where the service attribute has the value ExampleService with the goal to only allow access from
9 am to 6 pm. The policy contains two rules:

• The first rule DefaultDeny denies all accesses.

• The second rule evaluates an environment variable containing the current time of the day and only
permits access from 9am to 6pm.

During evaluation, the first rule always evaluates to Deny and the second rule evaluates to Permit or Deny
depending on the current time of the day. Finally, it is up to the combining algorithm to decide how to
combine the rule evaluation results. In this particular example, access is denied per se and only allowed
in certain scenarios. Therefore, a rule allowing access needs to overwrite the denied access.

< P o l i c y P o l i c y I d =" SamplePo l i cy1 "
RuleCombiningAlgId=" . . . : r u l e −combining−a l g o r i t h m : pe rmi t −o v e r r i d e s ">

<T a r g e t>
<AnyOf>

<AllOf>

<Match MatchId=" . . . : f u n c t i o n : s t r i n g −e q u a l ">

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

ExampleSe rv i ce< / A t t r i b u t e V a l u e >

< A t t r i b u t e D e s i g n a t o r
A t t r i b u t e I d =" . . . : a t t r i b u t e : i d "
C a t e g o r y=" . . . : a t t r i b u t e −c a t e g o r y : s e r v i c e "
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g "
Mus tBePresen t=" t r u e " / >

< / Match>

< / AllOf>

< / AnyOf>
< / T a r g e t>
<Rule E f f e c t =" Deny " R u l e I d=" Defau l tDeny ">

<T a r g e t / >

4https://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html

https://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html

98 11. Processing Sensitive Data

< / Rule>

<Rule E f f e c t =" P e r m i t " Ru l e I d=" 9 t o 6 ">

<C o n d i t i o n>

<Apply F u n c t i o n I d=" . . . : f u n c t i o n : and ">

<Apply F u n c t i o n I d=" . . . : f u n c t i o n : t ime−g r e a t e r − t h a n ">

<Apply F u n c t i o n I d=" . . . : f u n c t i o n : t ime−one−and−on ly ">

< A t t r i b u t e D e s i g n a t o r
A t t r i b u t e I d =" . . . : e n v i r o n m e n t : c u r r e n t − t ime "
C a t e g o r y=" . . . : a t t r i b u t e −c a t e g o r y : e n v i r o n m e n t "
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# t ime "
Mus tBePresen t=" t r u e " / >

< / Apply>

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# t ime ">0 9 : 0 0 : 0 0 Z< /

A t t r i b u t e V a l u e >

< / Apply>

<Apply F u n c t i o n I d=" . . . : f u n c t i o n : t ime− l e s s − t h a n ">

<Apply F u n c t i o n I d=" . . . : f u n c t i o n : t ime−one−and−on ly ">

< A t t r i b u t e D e s i g n a t o r
A t t r i b u t e I d =" . . . : e n v i r o n m e n t : c u r r e n t − t ime "
C a t e g o r y=" . . . : a t t r i b u t e −c a t e g o r y : e n v i r o n m e n t "
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# t ime "
Mus tBePresen t=" t r u e " / >

< / Apply>

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# t ime ">1 8 : 0 0 : 0 0 Z< /

A t t r i b u t e V a l u e >

< / Apply>

< / Apply>

< / C o n d i t i o n>

< / Rule>

< / P o l i c y>

Listing 11.1: XACML sample policy

By further hierarchically structuring the rules, policies, and policy sets, also the combination algo-
rithms are hierarchical structured and enable a high re-usability of the defined policies. As an example:
the 9to6 rule could be modelled as a separate policy, and could be used by different policy sets to enable
access from 9 am to 6 pm, by only providing the reference to the defined policy.

11.1.2 Enforcement Model

The adherence to security needs requires two fundamental obstacles to overcome in the first place: A
definition language to express security requirements and means for their enforcement. A big picture and
the basic workings of the policy definition language is provided in Chapter 11.1. Besides, the XACML
specification also defines entities and models on how to enforce the defined policies. The following
abstract entities are defined, with their interactions as illustrated in Figure 11.2:

• The Policy Administration Point (PAP) manages the available policies and offers interfaces to
retrieve them.

• The Policy Information Point (PIP) acts as a source for additional attributes required in the pol-
icy evaluation process, e.g. additional environmental parameters, additional information of the
accessed resource, or the accessors.

• The Policy Decision Point (PDP) loads the available policies and evaluates policy decision requests
against the current set of policies. In case policies are referring to not provided attributes, they are
requested from the PIP.

11.1. Extensible Access Control Markup Language and Enforcement (XACML) 99

• The Policy Enforcement Point (PEP) acts as the application entry point and issues policy decision
requests to the PDP and later on enforces the received decision responses.

PEPAccess requestor Obligation service

Context handler ResourcePDP

PAP

Subjects

PIP Environment

1. Policy

2. access request

3. request 12. response

13. obligations

4. request notification

5. attribute queries

10. attributes

11. response context

6. attribute
query

8. attribute

9. resource
content

7c. resource attributes

7b. environment attributes

7a. subject attributes

Figure 11.2: XACML enforcement data flows[OASIS, 2013]

The XACML specification only provides interfaces for the PDP. The other components are loosely
defined on an interaction level, without going into detail on the actual used formats, protocols, or tech-
nologies. In Figure 11.2 it is assumed that the PAP already contains all relevant policies. The numbers
in the figure illustrate the sequence in the startup, evaluation, and enforcement phase. They correspond
to the numbers in the following listing:

(1) At initialisation of the XACML components the PDP has access to all the defined policies at the
PAP. Either the PDP loads all available policies at startup, or the PAP provides an interface where
policies can be retrieved selectively.

(2) An external entity is requesting access to a resource at the PEP. The PEP can be realised as a
separate component, or as in integral part of applications. The XACML specification leaves the
concrete realisation open to implementers.

(3) The PEP sends an access request to the context handler and may already include attributes describ-
ing the subject, resource, action, environment, or custom attributes.

(4) The context handler is an intermediate entity translating the decision requests format to the XACML
conform format and interfaces with the PIP to collect missing attributes. It then sends the trans-
formed XACML conform request to the PDP.

(5 - 10) The PDP identifies and requests attributes required for policy identification and evaluation from
the context handler. The context handler identifies the source of requested attributes and returns
the attributes.

(11 - 12) The PDP evaluates the policy decision request against the retrieved policies and attributes and
returns the result to the context handler, which translates the decision back to the PEP supported
format.

(13) The PEP applies the contained obligations and advices and returns the decision to the requester.

100 11. Processing Sensitive Data

Using these baseline approaches, a data security enforcement framework can be specified fulfilling
the requirements of various applications. Overall, XACML is very loosely specified and requires re-
definition and detailing for particular use cases. The enforcement approaches and techniques are not
specified at all. The specification only mentions the existence of enforcement components, but without
providing any details on best practices.

11.2 SUNFISH Data Security Approaches

The H2020 SUNFISH project5 aims at developing and integrating software that enables secure cloud
federation as required by the Public Sector. This requires the definition and realisation of a sound en-
forcement model and the extension of XACML to also enable a data usage control, beyond authorisation.
A requirement from use case owners concerning the data security enforcement models was to enable the
re-usability of already existing applications, without explicitly integrating XACML entities but still ben-
efiting from the defined approaches.

Compartment X

Shared Compartment

Compartment Y

PEP

PAP
PDP PIP

PRP

PEP PEP PIP

PIP

DTS

DTS

DTS

Services /
Applications

Services /
Applications

Services /
Applications

Figure 11.3: SUNFISH enforcement model

Existing XACML implementations realise the authorisation logic (PDP), a corresponding policy
store (PAP), and define ways of gathering additional attributes. The PEP implementation is left to appli-
cation integrators, by intention. This requires XACML awareness of services and application and explicit
interactions to the XACML infrastructure as foreseen by the specification. To fit into the SUNFISH ap-
proach a redefinition and detailing of the enforcement model is required as illustrated in Figure 11.3 and
published by Suzic and Reiter [2016] with the goal of also giving legacy applications the benefits of
XACML.

The SUNFISH data security enforcement model is based on different security compartments. Each
compartment contains relevant parts of the XACML enforcement infrastructure. Each compartment can
be used to host service and applications. The shared compartment is used to host the XACML core
components like the PAP, PDP, and PIP instance. The Policy Retrieval Point (PRP) is a spin-off of the
PAP to highlight the separation between policy retrieval and policy administration. Furthermore, each
compartment contains so-called Data Transformation Services (DTS) which apply transformations like

5http://www.sunfishproject.eu/

11.2. SUNFISH Data Security Approaches 101

encryption, data masking, or anonymisation on transferred data. The crux is the PEP at the edge of each
compartment, which guards the access originating in its compartment and coming to its compartment.

The PEP is implemented as a transparent gateway or proxy which inspects all the traffic and transpar-
ently evaluates policies. The policies are, as intended by XACML, defined based on attributes. Therefore,
the PEP is required to extract attributes describing the data flow without forwarding the complete data
to the PDP. If access is permitted by the PDP, the PEP transparently connects to the destination service,
which again is intercepted by the PEP in the destination compartment.

Data usage control is not directly foreseen by XACML. With a clear enforcement model as defined in
the SUNFISH project, it is clear how data flows through the system. Using this information, data usage
control mechanisms are defined based on the obligation mechanism of XACML. Obligations enable
policy creators to execute defined actions at the PEP. The extensions applied in the SUNFISH project
enable to define obligations to apply data transformations on request and response data, supported by
the DTS. The DTS abstracts tasks like key management for encryption and data masking, and takes this
burden off the PEP and the application.

APP_X PEP PEP PDP SVC_YPEP

Compartment X Shared Compartment Compartment Y

1

2

3

4

5

6

7

8

9

10

11

Figure 11.4: SUNFISH example interaction

Figure 11.4 illustrates a simplified interaction between an application and a service. The figure only
shows the request phase, but the response is handled analogously. The application APP_X is deployed in
Compartment X, whereas the service SVC_Y is deployed in Compartment Y. The Shared Compartment
contains all the XACML core components. The figure only highlights the enforcement flow, flows like
gathering additional attributes are omitted. The numbers in the figure correspond to the following process
description:

(1) APP_X issues a request to SVC_Y. The request is intercepted by the PEP at the edge of the origin
compartment.

(2 - 3) Based on the application-provided data, like target host, endpoint, payload, request type, user,
origin compartment, target compartment, current compartment, and other meta-data, a XACML
decision request is assembled and sent to the PDP. The decision request maps all discovered
characteristics to XACML attributes identified by category and attribute identifiers.

(4 - 5) The PDP gathers relevant policies, resolves missing attributes and evaluates the decision request.
The resulting decision response is sent back to the PEP in the origin compartment.

102 11. Processing Sensitive Data

(6) The PEP enforces the provided obligations. In case of a negative PDP response the request is
cancelled and an error is returned to APP_X, otherwise the request is forwarded to SVC_Y.

(7 - 10) The request again is intercepted by the PEP in the target compartment and actions analogous to
steps (2 - 6) are executed.

(11) Finally the request is forwarded to SVC_Y.

Besides providing pure authorisation and blocking whole compartments from accessing a deployed ser-
vice, this approach enables e.g. in step (5) to apply data transformations. Considering SVC_Y as an
analytic service which only needs access to parts of the provided data, one could create policies which
require the PEP in Compartment X to mask sensitive data before passing the compartment borders. This
way, only the relevant data is transmitted to Compartment Y which decreases the risk of sensitive data
disclosure.

If sensitive data is not allowed to be processed outside private cloud borders, this approach still en-
ables operations on uncritical data with automatic data masking, encryption, or other data transformation
methods. Furthermore, multiple private cloud providers could dedicate computing resources to a spe-
cial compartment where high-security hurdles need to be overcome. This approach enables to federate
multiple private clouds and still respect data security requirements of data owners.

11.3 Chapter Conclusions

In this chapter, the basics of the de-facto standard in data security policy languages, XACML, were
introduced. XACML defines a hierarchical approach for developing data security policies and fosters
reusability. Beside a policy language, the XACML specification also defines abstract approaches to
policy evaluation and enforcement, the latter only being very vaguely. In fact, the specification requires
each application or service entity to either explicitly interact with custom enforcement components or to
include large parts of the enforcement logic. This is picked up by the H2020 SUNFISH project using the
example of private cloud federations for the Public Sector. The top requirement is to also support legacy
applications without requiring a complete re-implementation. This heavily inspired the development of
the enforcement architecture. The result is a compartment-based approach, where access to services and
application deployed inside a compartment is guarded by PEPs at the edge of each compartment. The
duties of the PEPs were extended, compared to the XACML specification. The PEP not only acts as an
external enforcement point but as an enforcement gateway with full control over the data flows. This
enables the usage of private cloud federations, also for services operating on sensitive data. The author
of this thesis was in charge of the SUNFISH work package, where the SUNFISH governance model was
developed. While SUNFISH was a collaborative research project, he is the main author of the governance
model. He derived the model based on the requirements of the specified use case, coordinated different
partners and finally guided the development process. All components from the enforcement model were
realised connected to multiple DTSs (data masking, anonymisation, and secure multiparty computation).
Furthermore, three real-world use cases from different partners across Europe were transformed to use
the SUNFISH model.

In this chapter, no obvious link to HMEC was provided, but an approach from a related domain is
highlighted. The following chapter will show how XACML in general and the approaches developed in
the SUNFISH project are related to HMEC and how they can be re-used to increase data security and
privacy in HMEC use cases.

Chapter 12

Enable HMEC to Operate on Sensitive Data

Private users and especially corporations have strong requirements on the privacy and confidentiality
of processed data. Existing offloading frameworks and solutions do not consider security issues at all
and focus on implementation aspects. This chapter focuses on establishing means to enable usage of
HMEC in scenarios where data security is among the top priorities. In Chapter 11 two user groups,
private users and corporate user, were established. It is shown that both user groups have different
preconditions. Therefore, user group dependent means are available to establish a security- and privacy-
aware HMEC framework. In this chapter, the developed SUNFISH security model is translated to the use
case of HMEC with the goal of fostering re-usability of already available infrastructures and identifying
similarities with the SUNFISH defined enforcement infrastructure, but still making use of advantages
introduced by HMEC frameworks. This chapter is based on the following publication [Reiter, 2017].

12.1 Enhancing the Enforcement Infrastructure

A typical HMEC use case for corporations could manifest as follows: A corporation is deploying an
application with computational expensive parts to their employee’s mobile devices. The application pro-
cesses sensitive data which must not be exposed to third parties. One characteristic of this application
might be a requirement for frequent interactions between the application and the computationally expen-
sive part. A classic approach to realise this application includes providing a service in the corporation’s
private cloud, which can be accessed by corporate managed devices.

The designated goal is to achieve a system where defined HMEC means can be used as illustrated in
Part III of this thesis. Still, the corporation or user remains in full control of its data and can explicitly
allow or deny offloading operations based on factors like offloading destination, processed data, or current
location of the user. This list of factors should be expandable to allow a variety of applications with
different requirements.

Abstracting this typical use case reveals a similar structure as defined in the SUNFISH project. Each
mobile device, a local computing unit, or cloud computing unit can be considered as a separate com-
partment. Compartments in the SUNFISH universe encapsulate services and applications with similar
data security requirements. Accesses outside its compartment are protected by the PEP, which contacts
the core policy framework for policy evaluation and enforces the received decisions. Converted to the
HMEC universe, this means that each framework instance has a lightweight embedded PEP, commu-
nicating with the company controlled policy evaluation infrastructure as illustrated in Figure 12.1. The
SUNFISH architecture is tailored to XACML as the de-facto standard in data security policy languages,
but can easily be adapted to other policy languages.

The main policy related components in the shared compartment stay unchanged. A HMEC Adapter
is added to translate between the HMEC required framework and the policy enforcement infrastructure

103

104 12. Enable HMEC to Operate on Sensitive Data

Shared compartment

HMEC
adapter

PAP PDP

PIP

PRP

HMCC
framework

PE
P

Application

Mobile device/computing unit -
separate compartment

HMCC
framework

PE
P

Application

Mobile device -
separate compartment

Offloading
requests

Figure 12.1: XACML integration into HMEC frameworks

provided format. Details about the requirements on the policy language, the HMEC Adapter and its
protocols are provided in the following sections.

12.1.1 Requirements on the Policy Language and Evaluation Infrastructure

The XACML specification defines a very flexible data security policy language, suitable for different
scenarios. This open specification requires guidance for specific use cases. In this section, require-
ments on the HMEC tailored policy language are derived from the high-level requirements as defined in
Chapter 8.2: lightweight, flexible, and interoperable.

To make use of the full potentials of the HMEC approach and fulfil the requirements for a lightweight
and flexible approach, it is required that mobile devices stay in complete control of the offloading opera-
tion and only use the XACML decision infrastructure infrequently to acquire allowed actions. As it is the
case in the SUNFISH approach, the PEP issues a request to the policy decision engine and describes the
processed data without transferring the whole datasets. Therefore, the first requirement can be defined
as:

R 1 Policies need a flexible way of specifying the targeted input data range.

To not disturb the HMEC operation and unnecessarily mitigate the performance and energy saving gains,
the actual offloading operation still remains in full control of the client device and adheres to the defined
requirement on flexibility. Still, policies need to control, to a certain extend, which computing units are
allowed to be used for a particular operation:

R 2 Policies need to be able to specify nodes, eligible for the offloading operation in a general way.
Concrete nodes available at runtime are not known.

12.1. Enhancing the Enforcement Infrastructure 105

The policy evaluation infrastructure can be considered as a single-point-of-failure. Although this can
be mitigated with distributed and fail-safe deployments, Part III of this thesis shows that (a) latency
at end user devices is subject to high fluctuations due to unpredictable environmental conditions, and
(b) the success of offloading frameworks highly depends on keeping latencies low. As the evaluation in
Chapter 12.4 will show, policy evaluation is only subject to low latencies, but issuing decision requests
for every offloading operation will render the system unusable. Furthermore, adherence to the defined
requirement on flexibility needs to be respected. Therefore, the functionality of the framework needs to
be maintained, also in case connectivity to the evaluation infrastructure is interrupted:

R 3 Caching of policy decisions needs to be enabled. A sophisticated caching mechanism should enable
a time-based caching, as well as a limited local re-evaluation of a policy decision.

The policy evaluation platform is a critical infrastructure with full control of the offloading process.
Therefore, assurance is required that communication only takes place with trusted endpoints:

R 4 Policy decisions need to be cryptographically bound to a trusted policy decision infrastructure to
prohibit forged decision responses.

The requirement on interoperability is respected in two ways. Although this section is tailored to
XACML as the de-facto standard in data security policy languages, the requirements and architecture
can easily be adapted to other languages. XACML applies a general enforcement model which maps to
other enforcement models. Interoperability on mobile devices’ side is already provided by the defined
operation environment from Chapter 9.1. The enforcement point running on the mobile device also needs
to fit into this operation environment and therefore comes with interoperability properties as defined.

12.1.2 HMEC Tailored Policy Language

In general, the term policy language can be considered as an umbrella term defining languages for the
following purposes:

• A language and format for defining policies,

• for issuing policy evaluation requests, and

• for receiving the policy evaluation results.

XACML provides a solution by defining a policy definition language, a decision request language and a
decision response language. The goal of this chapter is to introduce the developed XACML extensions to
fulfil the defined requirements from Section 12.1.1 and to propose optimisations targeted specifically at
the HMEC use case. The proposed optimisations are fully integrated with the POWER implementation
from Part III of this thesis. During research on this topic, the re-usability aspect was always kept in mind.
Existing and already deployed policy enforcement infrastructures (primarily XACML infrastructures)
need to be re-used. The following chapters will show (a) the fulfilment of the defined requirements
by baseline XACML implementations and (b) further improvement and optimisation steps specifically
targeted at the HMEC use case.

12.1.2.1 R 1 - Flexible Specification of Targeted Input Data

The fulfilment of R 1 is already provided by the baseline XACML specification, and basically is the
prime example of adding targets and conditions to XACML policies and rules. A basic example of
specifying targets in XACML is provided in Listing 12.1. The target matches for all source_address
parameters with the specified value. Various comparison functions are offered by the XACML specifi-
cation, targeted at all different available data types. Still, evaluations on particular parameter can only

106 12. Enable HMEC to Operate on Sensitive Data

be applied if their value is provided to the policy decision infrastructure. Therefore, a tight collaboration
between the application developers and policy creators is required. Technical aspects on the realisation
are discussed in Chapter 12.3.

. . .
<T a r g e t>

<AnyOf>
<AllOf>

<Match MatchId=" . . . : f u n c t i o n : s t r i n g −e q u a l ">

< A t t r i b u t e D e s i g n a t o r
C a t e g o r y=" urn : power : 1 . 0 : p a r a m e t e r s "
A t t r i b u t e I d =" s o u r c e _ a d d r e s s "
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g "
Mus tBePresen t=" f a l s e " / >

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

1 0 . 2 7 . 1 5 2 . 1 5 3< / A t t r i b u t e V a l u e >

< / Match>

< / AllOf>

< / AnyOf>
< / T a r g e t>
. . .

Listing 12.1: XACML target matching on a specific attribute value

12.1.2.2 R 2 - Allowed Offloading Targets

With the fulfilment of R 2, controlling the allowed execution targets is possible. Generally, the computing
units available at runtime are not known to the policy creators or can only be estimated. Therefore, policy
creators are able to specify the allowed computing units in multiple ways. For the operation on uncritical
data and processes, policy creators can enable offloading to all computing nodes, without evaluating
their trustworthiness. For the operation on critical and sensitive data, policy creators can either directly
specify allowed nodes (e.g. under control of trusted entities), or specify the requirement to pass attestation
methods, as specified in Chapter 12.1.3. This requires a tight cooperation of the deployed applications
and the policy evaluation infrastructure. In XACML this can logically and syntactically be mapped to
the obligation mechanism. Listing 12.2 illustrates the simplest mapping of NO_REQUIREMENT to an
obligation.

. . .
< O b l i g a t i o n E x p r e s s i o n

O b l i g a t i o n I d =" urn : power : 1 . 0 : o b l i g a t i o n : e x e c u t i o n −mode "
F u l f i l l O n =" P e r m i t ">

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : e x e c u t i o n −mode ">

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">NO_REQUIREMENT< /

A t t r i b u t e V a l u e >

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< / O b l i g a t i o n E x p r e s s i o n>

. . .

Listing 12.2: XACML obligation specifying no trust related requirements

Other valid values are TRUSTED and SPECIFIC. TRUSTED instructs the target application to perform
an attestation of the trustworthiness of the current device state. An integration flow is illustrated in Chap-
ter 12.1.3. SPECIFIC only allows execution on pre-defined computing nodes, specified as illustrated in
Listing 12.3. Besides the execution mode, a set of allowed endpoints is added as a separate attribute,

12.1. Enhancing the Enforcement Infrastructure 107

also containing a link to their identity e.g. in the form of providing a certificate fingerprint used by this
particular endpoint.

. . .
< O b l i g a t i o n E x p r e s s i o n

O b l i g a t i o n I d =" urn : power : 1 . 0 : o b l i g a t i o n : e x e c u t i o n −mode "
F u l f i l l O n =" P e r m i t ">

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : e x e c u t i o n −mode ">

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">SPECIFIC< / A t t r i b u t e V a l u e >

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : node ">

<Apply F u n c t i o n I d=" urn : o a s i s : names : t c : xacml : 1 . 0 : f u n c t i o n : s t r i n g −bag ">

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

{" e n d p o i n t " : " c l i e n t 1 " , " i d e n t i t y " : " [CERT−FINGERPRINT] " }
< / A t t r i b u t e V a l u e >

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

{" e n d p o i n t " : " c l i e n t 2 " , " i d e n t i t y " : " [CERT−FINGERPRINT] " }
< / A t t r i b u t e V a l u e >

< / Apply>

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< / O b l i g a t i o n E x p r e s s i o n >

. . .

Listing 12.3: XACML obligation specifying specific nodes to be used for execution

The previously described mechanisms enable to define particular nodes where offloading is allowed. Still,
in most environments, many of the surrounding devices will have an undetermined trust state, hence will
not be eligible for offloading sensitive tasks. This fact basically cannot be changed without considering
the anatomy of tasks. Some tasks may actually operate on sensitive data, whereas others may just accept
sensitive data embedded in data structures, but may never use it. Taking a simple illustrative task which
sums up the amount field of the data structure as shown in Listing 12.4. The credit-card information and
last name can be considered as sensitive information, but actually, is never used by the task, still only
offloading to trusted computing nodes is allowed.

{
" p u r c h a s e s " : [

{ " f i r s t n a m e " : " John " ,
" l a s t n a m e " : " Doe " ,
" c r e d i t c a r d " : " 1234−5678−1234−5678 " ,
" amount " : 500 . 00 } , . . .

]
}

Listing 12.4: Example data structure containing sensitive data

This is tackled by introducing client-side data transformation obligations. These obligations require a
preprocessing of selected arguments, using a specified data transformation mechanism on the client side
before the offloading process is initiated. Listing 12.5 illustrates a regular expression-based masking obli-
gation. The obligation instructs the client application to apply asterisks on argument arg1, for matching
parts of the specified regular expression. In the listed example, the regular expression matches all, but the
last group of standard credit card numbers. Various obligations can be defined matching different data
structures and protect sensitive data. After masking, the data structure should not contain any sensitive
data and can be offloaded to untrusted computing units, provided that the offloaded task does not require
access to the masked sensitive data.

108 12. Enable HMEC to Operate on Sensitive Data

. . .
< O b l i g a t i o n E x p r e s s i o n

O b l i g a t i o n I d =" urn : power : 1 . 0 : c l i e n t − o b l i g a t i o n : regex − a s t e r i s k −masking "
F u l f i l l O n =" P e r m i t ">

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : c l i e n t − o b l i g a t i o n : a rgument : argument−name ">

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

a rg1< / A t t r i b u t e V a l u e >

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : c l i e n t − o b l i g a t i o n : a rgument : r e g e x ">

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

(\ d [−]*?) {9 ,12}
< / A t t r i b u t e V a l u e >

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< / O b l i g a t i o n E x p r e s s i o n>

. . .

Listing 12.5: XACML obligation specifying a masking operation

12.1.2.3 R 3 - Evaluation Result Caching

The methods and techniques presented in this work propose a decentralisation of components using
HMEC approaches. Including centralised policy evaluation structures, vital for the operation of the
solution, is again a step towards centralisation and has negative impacts on the overall performance of
the framework as illustrated in Chapter 12.4. Therefore, minimisation of the impacts on performance
and availability is required. This is achieved by keeping the dependencies on the centralised policy
evaluation infrastructure low. Policy evaluation decisions are stored and re-evaluated locally. Only in
case no valid cached policy decisions are available, the policy evaluation infrastructure is contacted. The
caching of policy evaluation decisions can be controlled by the policy creators via two aspects mapped
to obligations. They can also be combined within single policies:

• Time-based validity constraints as illustrated in Listing 12.6. The illustrated obligation allows a
client side usage of decision responses for one hour after being issued.

. . .
< O b l i g a t i o n E x p r e s s i o n

O b l i g a t i o n I d =" urn : power : 1 . 0 : o b l i g a t i o n : v a l i d i t y "
F u l f i l l O n =" P e r m i t ">

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : v a l i d i t y ">

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r ">3600< /

A t t r i b u t e V a l u e >

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< / O b l i g a t i o n E x p r e s s i o n >

. . .

Listing 12.6: XACML obligation specifying a time-based validity constraint

• Content-based validity constraints as illustrated in Listing 12.7 enable the specification of input
data ranges, where the policy decision stays valid. Parameters are checked on the client-side if they
match in the defined constraints and allow reusing the acquired decision responses. The constraints
are specified using JSON Predicates1. Parameters and context data required for the execution are
mapped to a JSON structure and are matched against the defined constraints. JSON predicates

1https://tools.ietf.org/id/draft-snell-json-test-01.html

https://tools.ietf.org/id/draft-snell-json-test-01.html

12.1. Enhancing the Enforcement Infrastructure 109

then enable to build logical combinations of different match operators. The illustrated example
references the value of parameter arg1 with /parameter-values/arg1 and checks if the parameter
has the value value1. Various predicates, e.g. boolean operations, operations on numbers, or
matching against regular expressions are available and can easily be extended to match complex
structures.

. . .
< O b l i g a t i o n E x p r e s s i o n

O b l i g a t i o n I d =" urn : power : 1 . 0 : o b l i g a t i o n : v a l i d i t y "
F u l f i l l O n =" P e r m i t ">

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : c o n s t r a i n t ">

< A t t r i b u t e V a l u e DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

{
" op " : " and " ,
" a p p l y " : [

{
" op " : " t e s t " ,
" p a t h " : " / p a r a m e t e r −v a l u e s / a rg1 " ,
" v a l u e " : " v a l u e 1 "

} ,
{

" op " : " l e s s " ,
" p a t h " : " / p a r a m e t e r −v a l u e s / a rg2 " ,
" v a l u e " : 5

}]
}
< / A t t r i b u t e V a l u e >

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< / O b l i g a t i o n E x p r e s s i o n >

. . .

Listing 12.7: XACML obligation specifying a content-based validity constraint

These measures enable caching and reusing of acquired policy decisions on the client-side, without
contacting the policy evaluation infrastructure, therefore reducing the dependencies on centralised in-
frastructure and decreasing the latency of each single offloading request. The impacts of these measures
are shown in Chapter 12.4.

12.1.2.4 HMEC Optimisations

XACML and XML, in general, are very verbose languages, serving all possible use cases. Addition-
ally, XML requires a lot of parsing effort compared to lightweight approaches like JavaScript Object
Notation (JSON). JSON improves human readability of plain data but decreases the expressiveness. As
highlighted by Lin et al. [2012] as well as by Nurseitov et al. [2009], parsing JSON content is faster
compared to parsing XML and consumes less resources. Therefore, for targeted use cases with clear
boundaries and where strict timely constraints apply, it is more efficient to define a targeted language
using JSON. Still, existing technologies and already deployed solutions should remain usable and pol-
icy creators should still be able to use their familiar tools. Therefore, the HMEC Adapter component,
as illustrated in Figure 12.1, was introduced. This component acts as a translation gateway between
the verbose XACML decision request/response language and the lightweight JSON based language as
introduced in this chapter.

An appendix to the XACML specification already defines a JSON profile [OASIS, 2014] for the in-
teractions between PEP and PDP. Besides the increased parsing effort, XML structures have an increased
length compared to JSON structures according to Sumaray and Makki [2012]. These observations do

110 12. Enable HMEC to Operate on Sensitive Data

not hold for the XACML JSON profile because XACML is targeted at XML and makes heavy use of
features like XML namespaces [Bray et al., 2009] and XPath [Robie, Dyck, and Spiegel, 2017]. To
maintain the functionality, a translation to the corresponding format is required. The problem is illus-
trated in the following two listings 12.8 and 12.9, showing the transmission of an attribute from the PEP
to the PDP embedded in a decision request (not shown). Due to the various utilised namespaces and
XPath selectors, the attribute representation can only be decreased from 404 bytes to 375 bytes in size,
excluding not required whitespaces.

< A t t r i b u t e xmlns=" urn : o a s i s : names : t c : xacml : 3 . 0 : c o r e : schema : wd−17 "
A t t r i b u t e I d =" urn : o a s i s : names : t c : xacml : 3 . 0 : c o n t e n t − s e l e c t o r ">

< A t t r i b u t e V a l u e xmlns : md=" urn : example : med : schemas : r e c o r d "
XPathCa tegory=" urn : o a s i s : names : t c : xacml : 3 . 0 : a t t r i b u t e −c a t e g o r y : r e s o u r c e "
DataType=" urn : o a s i s : names : t c : xacml : 3 . 0 : da t a − t y p e : x p a t h E x p r e s s i o n ">md : r e c o r d / md :

p a t i e n t / md : p a t i e n t D o B< / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

Listing 12.8: XACML attribute represenation in XML [OASIS, 2014]

{
" A t t r i b u t e " : {

" A t t r i b u t e I d " : " u rn : o a s i s : names : t c : xacml : 3 . 0 : c o n t e n t − s e l e c t o r " ,
" DataType " : " x p a t h E x p r e s s i o n " ,
" Value " : {

" XPathCa tegory " :
" u rn : o a s i s : names : t c : xacml : 3 . 0 : a t t r i b u t e −c a t e g o r y : r e s o u r c e " ,

" Namespaces " : [
{ " Namespace " : " u rn : o a s i s : names : t c : xacml : 3 . 0 : c o r e : schema : wd−17 " } ,
{ " P r e f i x " : "md" ,

" Namespace " : " u rn : example : med : schemas : r e c o r d " }
] ,
" XPath " : "md : r e c o r d / md : p a t i e n t / md : p a t i e n t D o B "

}}}

Listing 12.9: XACML attribute representation in JSON [OASIS, 2014]

Therefore, to minimise the transported data sizes, a use case specific language is required. Large parts of
the request/response language can be introduced for general use cases. Still, adaptations are required for
concrete target use cases. The remainder of this chapter introduces a language targeted at the framework
as proposed in Part III of this thesis. Use case specific parts are highlighted. The following Listing 12.10
illustrates a simple decision request example generated by client applications on mobile devices. The
bold parts are specific to the selected use case and require adaptation. The decision request needs to
describe an offloaded task as specific as required, but should not contain unnecessary data. This results
in a tight cooperation between implementation aspects as highlighted in Chapter 12.3 and the concrete
optimised decision request/response language. A minified version (unnecessary whitespaces removed)
of an exemplary JSON-based decision request has a length of 271 bytes, whereas the minified version
of the corresponding XACML decision request in XML format (not shown) has a total length of 1755
bytes, which corresponds to nearly 85% savings in size.

The request language can be separated in three major parts, illustrated by the colours blue, red, and
green:

• Fields highlighted in blue are related to uniquely identifying single requests. An ID is randomly
generated on each request, and matches the ID in the corresponding response.

• Fields highlighted in red identify the task to be executed. In the context of the introduced HMEC
framework a task is uniquely identified by its package (or application-) name and version, as well

12.1. Enhancing the Enforcement Infrastructure 111

as a method name in the application scope. This enables policy creators to clearly separate policies
by application, without unwanted interference between policies of different applications.

• Fields highlighted in green specify the context of the planned task execution, like parameters and
other arguments to the task. These parameters can be used by policy creators to further constrain
the applicability of policies and control the caching mechanisms.

{
" i d " : " [r e q u e s t − i d] " ,
"package−name" : " [package−name] " ,
" a p p l i c a t i o n −v e r s i o n " : " [a p p l i c a t i o n −v e r s i o n] " ,
"method−name" : " [method−name] " ,
" cookie −v a l u e s " : {

" co ok ie 1" : " co ok ie va lue 1" ,
" co ok ie 2" : " co ok ie va lue 2"

} ,
" p a r a m e t e r −v a l u e s " : {

" a r g 1 " : " v a l u e 1 " ,
" a r g 3 " : [1 , { " complex " : " v a l u e " }]

}
}

Listing 12.10: Use case specific decision request language

In contrast to the decision request, the decision response, as illustrated in Listing 12.11, does not contain
use case targeted fields and is kept on a generic level. Still, a similar separation in three major parts can
be applied:

• Fields highlighted in blue are again related to identifying the response and build a connection to
the corresponding request. The contained ID matches the request ID.

• Fields highlighted in red specify nodes allowed to be used for the offloading operation, as well as
obligations to be fulfilled. This is a lightweight translation of the means defined in Section 12.1.2.2
to the optimised format. The allowed nodes and obligations are tightly connected. Obligations
can be flagged as mandatory to only allow offloading to the specified computing units given the
obligation has been fulfilled.

• Fields highlighted in green control the caching and re-usability of the decision response and are a
lightweight translation of the means defined in Section 12.1.2.3 to the optimised format.

{
" i d " : " [r e q u e s t − i d] " ,
" r e q u e s t " : " [l i n k _ t o _ r e q u e s t] " ,
" e x e c u t i o n −mode " : " s p e c i f i c " ,
" nodes " : [{

" e n d p o i n t " : " c l i e n t 1 " ,
" i d e n t i t y " : " [i d e n t i t y e . g . c e r t i f i c a t e f i n g e r p r i n t] " } ,
{
" e n d p o i n t " : " c l i e n t 2 " ,
" i d e n t i t y " : " [i d e n t i t y e . g . c e r t i f i c a t e f i n g e r p r i n t] " }] ,

" o b l i g a t i o n s " : [
{

" t r a n s f o r m a t i o n " : " regex −masking " ,
" r e q u i r e d " : t r u e ,
" p a r a m e t e r s " : {
" r e g e x " : " (\ \ d [−] * ?) {9 , 12} " ,
" argument−name " : " a r g 1 "

112 12. Enable HMEC to Operate on Sensitive Data

}}]
" v a l i d i t y " : {

" c u r r e n t − t ime " : " 2017−01−27T15 : 42 : 44+0100 " ,
" v a l i d − f o r " : 3600 ,
" c o n s t r a i n t s " : [
{ " op " : " and " , " a p p l y " : [

{ " op " : " t e s t " , " p a t h " : " / p a r a m e t e r −v a l u e s / a r g 1 " , " v a l u e " : " v a l u e 1 " } ,
{ " op " : " l e s s " , " p a t h " : " / p a r a m e t e r −v a l u e s / a r g 2 " , " v a l u e " : 5}] } "

] }
}

Listing 12.11: Use case specific decision response language

These introduced techniques allow the most efficient transport of task descriptions, for the purpose
of determining the allowed offloading targets to a corporate/user controlled policy decision environment
and enable a broad re-usability of acquired decisions. Additionally, the HMEC adapter can augment
incoming request with additional context information to enable a context-aware definition of policies:

• Location data: Based on the incoming IP information, approximate geographic location informa-
tion can be added.

• VPN data: Information regarding the VPN connectivity can be added and can even be cross-
checked with available VPN gateways.

• On premise: Add information if devices are located on-site and e.g. connected to a local wireless
network.

Based on this information, policies can be further detailed to enable a more efficient usage of available
computing units and a seamless user experience.

12.1.2.5 R 4 - Cryptographic Binding to Trusted Policy Decision Infrastructures

Besides transport security aspects, policy decision environments require a cryptographic binding of the
issued decisions to the trusted policy decision infrastructure. The XACML specification refers to using
XML signatures [Bartel et al., 2008] for this purpose. This, of course, is no longer a valid technology for
the optimised JSON-based format. A lightweight signature solution for JSON exists, called JWT [Jones,
Bradler, and Sakimura, 2015]. The compact JWT representation is an URL safe header, payload, and
signature representation in the following format:

<h e a d e r d a t a Base 64URL encoded >.< p a y l o a d d a t a Base 64URL encoded >.< s i g n a t u r e Base 64
URL encoded >

Listing 12.12: JWT structure

The decoded header data represent a JSON structure specifying the used algorithm, the actually signed
content, and the signature according to the defined algorithms.

To establish a cryptographic binding between the policy decision environment and the application
executed on a mobile device, the mobile application is equipped with the public key of the enforcement
infrastructure at the time of enrolment. The HMEC adapter wraps the decision response in a JWT
structure and attaches a signature, as illustrated in Listing 12.13. This signature needs to be checked by
the client application. Besides the cryptographic binding, the response is bound to the corresponding
request by (a) including the unique request ID for replay protection and (b) enabling to establish a link
to the concrete origin request in the request field. This request field contains the SHA-256 hash of the
originally issued request payload, to ensure the integrity of the evaluated request.

12.1. Enhancing the Enforcement Infrastructure 113

eyJhbGciOiJSUzI 1 NiJ 9 . eyJpZCI 6 [. . .] Ol tdfQ .X5 e 4 epNjJbw [. . .]w8 OcIe 9−WlTr_aZU

Listing 12.13: Illustration of the signed JWT response

These means fulfil the requirement R 4 and protect client applications from unauthorised modifica-
tions of the issued request, as well as provide a cryptographic binding to the policy decision environment.
This binding then enables to delegate the offloading decision process.

12.1.3 Device Attestation Methods

This chapter tackles the problem of determining if a particular computing unit can be considered as
trusted and envisions a deep integration with the means as described in Chapter 12.1.2.2. Device or
platform attestation is key for offloaded tasks operating on sensitive data. Data controllers need assurance
that the executing platform is trusted and sensitive data is not leaked to untrusted third parties. This can
be achieved using organisational or technical measures. The described device attestation mechanisms are
technical measures to ensure a trusted state of a device, platform, or more generally, of the environment.
Effectively, device attestation methods are enablers for computational offloading involving sensitive data.
Without considering a concrete technological solution, two integration models can be developed. These
models differ in terms of where the assessment takes place:

• Policy Decision Environment: The policy decision environment anyhow acts as a trusted entity
in the system, an enriched environment might even be part of the P2P communication network,
thus can also directly contact single nodes. Performing the attestation at the policy decision envi-
ronment increases the efficiency because attestations only need to be performed once, regardless
which device is requesting the offloading operation. This includes that mobile devices need to
suggest computing units in their proximity for attestation. The allowed nodes are then transported
using the SPECIFIC identifier to the mobile device.

• Mobile Device: Policy decision environments can also delegate the attestation process to the mo-
bile device, which is necessary for environments where no stable connection to the policy decision
environment is available, or they are not capable of performing the assessment. Overall, this results
in more assessments compared to the prior approach but is a further step towards a decentralised
approach.

Both methods are considered by the developed HMEC decision request/response language, either by
transferring concrete computing unit identifiers and their used certificates (SPECIFIC computing units),
or by just referring to TRUSTED computing units, and delegating the assessment to the mobile devices. In
the following, approaches are considered enabling a remote mobile device and computing unit attestation
regarding their trust state.

For the POWER framework implementation in Chapter 9.2 two communication technologies were
used. The implementation using the decentralised P2P framework provides a full-featured certificate-
based attestation implementation. For the other attestation methods as described in the following chap-
ters, the focus was not put on the implementation aspect but on integration strategies with the certificate-
based approach.

12.1.3.1 MDM- and Certificate-based Solutions

Mobile Device Management (MDM) is a way of centrally managing mobile devices and targets at pro-
tecting the data on the devices. Rhee et al. [2013] elaborate a threat model for MDM systems and
identified possible attacks. Figure 12.2 shows a simplified architecture, as used by Rhee et al. [2013] for
their work. Basically, a MDM solution consists of four essential components:

114 12. Enable HMEC to Operate on Sensitive Data

• The MDM agent is an application executed on the mobile device. It collects data relevant for
assessing the state of a mobile device and sends it to the MDM server for analysis. Furthermore,
it executes actions requested by the MDM server. Possible actions include enterprise application
management, remotely wipe the device, update the system configuration like adding certificates,
and disable or enable certain features of the device like Bluetooth, GPS, or camera.

• The MDM server is the heart of a MDM solution. It manages all registered devices and their
associated configuration. Furthermore, it assesses, based on data received from the MDM agent,
if a mobile device is in a legitimate state. The assessment may also be shared between the MDM
agent and the MDM server but this can be considered as a detailed implementation aspect out of
scope of this paragraph.

• The MDM management console is an administrator-focused application for configuration, where
all the possible actions can be triggered.

• The MDM relay server acts as a gateway between servers deployed in the internal enterprise envi-
ronment and mobile devices in the field, connected via the Internet.

Enterprise Environment

Mobile Device

Mobile
Application

MDM Agent

Perimeter Network

MDM Relay Server

Internal Network

MDM Server MDM Management
Console

Figure 12.2: MDM overview, based on the work of Rhee et al. [2013]

The description above makes it clear that MDM solutions are only suited for corporations includ-
ing Bring Your Own Device (BYOD) scenarios. HMEC frameworks can profit from MDM solutions
by delegating the trustworthiness assessment. This only works if offloading takes place on corporation
controlled devices. This definitely renders a valid use case in corporate environments with strict data
protection requirements. Integrating multiple corporations with different MDM solutions still is a com-
plex task. Therefore, an integration strategy is presented here, which boils down MDM solutions to
certificate-based solutions. The integration of certificate-based solutions, in turn, is straight forward.
The mobile device or computing unit used for offloading authenticates at the user’s mobile device us-
ing its certificate issued by a potentially trusted entity. Depending on the integration model, either the
policy evaluation infrastructure or the mobile device performs a certificate validation and checks if the
trustworthiness of the certificate issuer matches the required trust level.

This leaves the open point of how devices get their trusted certificates. Analysing the situation
reveals a three-staged process involving the MDM solution and continuous monitoring as illustrated in
Figure 12.3. In the initialisation phase, the MDM server is equipped with the policies in force, the MDM
agent is installed on devices and is coupled with the MDM server. The policies express requirements on
(depending on the capabilities or the concrete MDM solution):

• lock screen security like the complexity of passwords or allowed types of lock-screen passcodes,

• full device encryption,

12.1. Enhancing the Enforcement Infrastructure 115

• allowed features of the device like bluetooth, camera, or voice assistants,

• allowed software

• allowed operating systems and allowed operating system versions.

The reporting phase is a continuous process on the mobile device where the adherence to defined policies
is validated. This process is carried out between the MDM agent and the MDM server. The MDM agent
reports configuration data and device statistics to the MDM server, which then evaluates the conformance
to defined policies. Once a device is compliant, the MDM server provisions a certificate to be used
for offloading operations. Still, the reporting phase continuous. If a non-conformance is detected, the
device’s certificate needs to be revoked and removed from the device.

Target offloading device
with MDM Agent

MDM Relay
Server

MDM
Server

MDM Management
Console (controlled by

administrator)

In
it

ia
liz

at
io

n Enrolment &
configuration data

R
ep

or
ti

n
g

Reporting of device's state

Evaluation of
device's state

Continous process

Changed device state

A
p

pl
ic

at
io

n
of

ce

rt
if

ic
at

e

Install
certificate
on device

Issue certificate for
target device reflecting the
devices trustworthiness

Figure 12.3: HMEC MDM integration

This way, corporations with different MDM solutions can establish trust relationships, and cooperate
regarding resource usage without diving into the very details and particularities of all different MDM
solutions.

12.1.3.2 Google Safetynet-based Solution

Mobile devices offer good isolation between applications. If security mechanisms of recent mobile de-
vices are used, applications can protect their data in a way that no other entities can access the data:
applications do not have access to other application’s data and can use device-provided secure elements
to store sensitive data or perform critical cryptographic operations. The SafetyNet API2 is a service
included in Google’s Play services, thus available on all recent Android releases which enables the attes-
tation of a device. A positive result strongly indicates that no one tampered with the device, the device is
not rooted and application isolation can be guaranteed.

The SafetyNet attestation approach relies on two components: The closed source snet service is
constantly running in the background on the mobile device. It periodically collects relevant data and
reports this data to Google servers. There is no confirmed public information available which data
Google considers as relevant, but based on this data Google performs server-side analysis and can tell if
the device currently is in a non-tampered state. The snet service is not part of any APK file, it directly

2https://www.cigital.com/blog/using-safetynet-api/

116 12. Enable HMEC to Operate on Sensitive Data

connects to Google servers and downloads a binary package if an update is required. This is a very
flexible approach and enables frequent updates, without going through the Google Play Store. The
second part is the attestation API, accessible via the Google Play Services. It enables to request an
attestation statement, which represents a signed statement about the current state of the device based on
the gathered data.

The attestation result is a JWT signed JSON structure and contains the following information:

• A unique nonce generated on the client device as sent in the attestation request,

• the APK package name of the requesting package,

• hash of the certificate used for signing the requesting application,

• hash of the requesting APK, and

• an indicator if the device passed the tamper check.

User's
device

Target offloading
device

Google's
SafetyNet

Webservice

1. create nonce

2. request attestation
with nonce 3. SafetyNet attestion

request with nonce

4. Return signed SafetyNet
attestation result 5. Return SafetyNet

attestation result to user's device

6. check if nonce in
 response matches
generated nonce

7. Verification of the attestation response signature using Google's verification API

Google's
Verification

API

8. Signature
verification

9. Return verification result

Figure 12.4: HMEC SafetyNet integration

In fact, this approach is very similar to the MDM based approach, without the capability to customise
the policies. Therefore, to make use of this approach, a direct integration is necessary as illustrated in
Figure 12.4 involving the following steps:

1. The user’s device creates a random nonce, so it can map the received attestation response to the
particular request clearly.

2. The target offloading device is contacted through a provided communication channel.

3. The target device issues a SafetyNet attestation request to the attestation web service, including
the nonce as generated by the user’s device.

4. The generated attestation response is forwarded to the user’s device.

5. The user’s device checks if the nonce in the response matches the created nonce from the first step.
If they do not match, the attestation process fails.

12.1. Enhancing the Enforcement Infrastructure 117

6. To verify the validity of the signature of the attestation response, a verification request is sent to
Google’s verification API.

7. Based on the verification result and the status of the attestation, the user’s device decides if the
target device meets the requirements.

This approach is the counterpart of MDM-based solutions for private users. A major issue of both
technologies, the MDM and Safetynet approach, is their reliance on software-only methods. Therefore,
security guarantees are not valid for rooted devices. On a rooted device, the MDM agent and the snet
service can be tricked into reporting faulty values, resulting in a positive attestation result.

12.1.3.3 Intel SGX-based Solution

Intel introduced the Software Guard Extensions (SGX) [Anati et al., 2013] recently, which enable the
creation and execution of protected software containers, also called enclaves. It is out of the scope of this
thesis to go into the very details of this technology, but a complete explanation is provided by Costan
and Devadas [2016]. Enclaves are small parts of applications, for example, single functions processing
sensitive data. The crux with Intel’s SGX is that the operating system, hypervisors, or any other software
running on the system are unable to influence or inspect the execution of the enclave. Enclaves are
protected by hardware-enforced access control policies, and the trusted computing base is reduced to
the CPU, its hardware logic, microcode and a pre-provisioned SGX-enabled software component used
for attestation. This represents a tremendous improvement compared to today’s situation given SGX’
modularity. Intel added special CPU instructions to create, load, and measure secure enclaves to ensure
their integrity and enable the attestation of provisioned enclaves. Attestation is the process of ensuring
that enclaves have been deployed correctly and are not modified. Furthermore, a trusted pre-provisioned
enclave is added to enable remote attestation of the initial state of a provisioned enclave. Intel SGX
makes a clear distinction between intra-enclave attestation and inter-platform or remote attestation. Intra-
enclave attestation is based on symmetric cryptography and can only be verified on the same platform,
whereas remote attestation involves public-key cryptography.

A typical remote attestation flow for SGX-enabled applications is illustrated in Figure 12.5. Here,
a high-level overview of the procedure is provided, different attestation methods can be implemented
on top of Intel’s SGX. A SGX-enabled application is always separated into a trusted application, to be
deployed in an enclave, and an untrusted application which launches the enclave executed on an untrusted
operating system. The remote client is an entity with the intention to securely transport sensitive data to
the application running in the enclave. The quoting enclave is a pre-provisioned enclave with access to
signature credentials, verifiable by third party verification services. The goal of this remote attestation
procedure is (a) to be sure that an unmodified application version is running in the enclave, and (b) that
the remote client has a secured transport channel to the application running in the enclave. The following
steps comprise a typical SGX-enabled attestation flow:

1. An untrusted application is executed on an untrusted operating system. It initialises and starts
an SGX enclave using the added SGX CPU instructions. This also calculates a cryptographic
measurement of the enclave after initialisation for later reference.

2. An external client wants to ensure that the enclave was initialised correctly and issues an attestation
request to the untrusted application.

3. The untrusted application requests an intra-enclave attestation.

4. The intra-enclave attestation contains, besides the initial state of the application, user defined data
to establish a secure communication channel. Therefore, an ephemeral public-private key pair is
generated.

118 12. Enable HMEC to Operate on Sensitive Data

Remote client
Untrusted
application

Application
running in enclave

Quoting enclave
SGX-enabled
environment

1. Provision application

2. Request attestation of
application in enclave 3. Request intra-platform attestation

4. Create

ephemeral key

5. Create intra-platform

attestation

6. Return intra-platform attestation

7. Request inter-platform attestation based in intra-platform attestation

8. Verify intra-platform

attestation

9. Create signed inter-

platform attestation

10. Return inter-platform attestation
11. Return inter-platform attestation

12. Verify remote

attestation

Figure 12.5: Typical SGX remote attestation flow

5. The attestation is created using the SGX EREPORT instruction, containing the initialisation state
of the enclave and the provided user data. The attestation is cryptographically protected using a
Message Authentication Code (MAC) with a key only accessible to the EREPORT instruction and
the trusted quoting enclave.

6. The cryptographically protected attestation is returned to the untrusted application.

7. Next, the untrusted application requests an inter-platform attestation at the pre-provisioned quoting
enclave.

8. The quoting enclave also has access to the MAC key and verifies the attestation result.

9. Once the verification has completed, the MAC is replaced with a signature created using a device
specific private asymmetric key.

10. The enhanced attestation result is returned to the untrusted application.

11. The untrusted application returns the attestation to the calling remote client.

12. The remote client now needs to verify the attestation and used key using a third party service.

After the attestation procedure completes, the remote client can use the ephemeral public key, embedded
in the attestation to securely communicate with the application running in the enclave. Furthermore, it
can be sure, as long as the CPU manufacturer is trusted, that the application running in the enclave has
not been modified and that no one can tamper this application.

For the integration of Intel SGX in HMEC frameworks, the application running in the enclave is
a full-fledged computing node accepting offloading operations, and the untrusted application acts as a
bootstrap application. This approach is currently hindered by several limitations of Intel’s SGX in its
current release like dynamic memory allocation, direct IO access, and only limited exception handling.

12.2. Trust Model 119

Nevertheless, Baumann, Peinado, and Hunt [2014] introduce a system called Haven. With Haven, they
achieved to run legacy applications like Microsoft SQL Server and the Apache Webserver in an enclave.
They are running a thin operating system layer in each enclave where the unmodified applications operate
on. However, they reached the limits of SGX and proposed changes for the coming iterations of the
specification. Their implementation is currently not available, as it requires source code level access to
the Windows operating system kernel. Therefore, at the moment, this approach remains in a theoretical
state. For the concrete integration, two approaches are conceivable. Each device could perform the
remote attestation flow and verify retrieved attestation results on its own. This could result in a massive
load of attestation requests. A more realistic integration model is to, again, boil down the application
of SGX enabled computing units to the certificate-based approach. In this case, a trusted third party is
required to perform all the remote attestations of SGX enabled computing units. Once the attestation
is completed successfully, a certificate is issued and securely sent to the computing unit running in the
enclave. This certificate is then used to authenticate against devices requesting offloading operations.

12.2 Trust Model

In this chapter, the trust model is introduced with its different trust states and the possible transitions
between the different states. The trust transitions refer to the assigned trust levels of each component and
their interactions with other components to determine their trust level. Through the interaction with other
components, and with attestation mechanisms and protocols in place, components with an undetermined
trust level can be evaluated. The source for the development of this trust model are the assessment meth-
ods from Chapter 12.1.3.1, Chapter 12.1.3.2, and Chapter 12.1.3.3. All described attestation methods,
except the Safetynet approach, can be boiled down to using certificates. This is important concerning
practical application of these methods. Therefore, to get a complete view of the trust mode and trust
propagation, two trust assessment methods are considered, the SafetyNet approach and a certificate-
based approach, as they are fundamentally different. Evaluating these two methods provides the full
spectrum of assessment methods.

The trust model of this work is illustrated in Figure 12.6. It consists of three different trust levels:

HMCC adapterPDP

1.1

Ultimate trust

External trust
authority

Potentially
untrusted devices

User s device

Target
device 1

Trust store

Target
device 2

Google SafetyNet
attestation/

verification service 1.2

1.3
1.5

Target
device 1

2.1

2.2

Target
device 2

2.3

1.4

Figure 12.6: Trust model

• The ultimate trust level is assigned to the core policy decision components and the user’s device,
which typically is under corporation’s control. In BYOD scenarios the corporation needs to assure
that devices are under MDM control. These components act as trust anchors in the system. The
trust level of other components is derived from their decisions also including delegated decisions
as it is the case for MDM based solutions.

• The external trust authority level is assigned to approaches like the SafetyNet services. Other

120 12. Enable HMEC to Operate on Sensitive Data

related services can equally be assigned at this level or at higher levels. Depending on the corpo-
ration’s policies, the external trust level might be equal to the ultimate trust level.

• The potentially untrusted devices level contains all other devices which might be untrusted, or
might be in another trust level after assertion. This level also contains devices not under control of
the corporation or tampered devices.

A more fine-grained classification can always be introduced at the data owner by creating policies accord-
ingly. Still, these three levels represent a natural trust level selection. The policy evaluation environment
is in full control of evaluating the data security policies and needs to be fully trusted. The same applies to
the user’s device. In HMEC scenarios, the application on the user’s device is usually equipped with the
complete application logic. If the purpose of this application is to process sensitive data, the user’s device
also needs to be fully trusted. For other devices, policy creators can make more fine-grained decisions
to offload certain parts only to specific devices, as illustrated in Section 12.1.2.2. This also enables a
distinction between different external trust authorities like Safetynet and different MDM solutions. Still,
for evaluation and highlighting the trust propagation, it is adequate to combine them on a single level
for external trust authorities. The remaining group of devices and computing units are those, where the
evaluation results in a negative outcome, and the devices which have not been evaluated yet. Still, as long
as they are not evaluated, they are potentially untrusted and can only be used for uncritical operations, or
not at all.

Figure 12.6 contains the relevant interactions of the two described trust assessment use-cases indi-
cated by 1.x (trust assessment using the SafetyNet approach) and 2.x (trust assessment using certificates).
The following listings describe the necessary steps to determine the trust state of computing units:

(1.1) The user’s device connects to the HMEC adapter. The HMEC adapter authenticates using HTTPS
(or similar technologies), and the user’s device verifies if the host is trusted by verifying the HMEC
adapter’s certificate against its trust store. At this point the application on the user’s device can
rely on the confidentiality, integrity and authenticity of the transmission channel to the terminat-
ing endpoint. Policy evaluation components might be protected by e.g. firewalls terminating the
secured connection. Therefore, all policy decisions are explicitly signed by the HMEC adapter.

The application on the user’s device then acquires a HMEC adapter signed decision result. The
signature is checked against an application-embedded set of certificates on the user’s device. A
positive validation result ensures that the device acquired a legit decision response.

(1.2) It is assumed that the acquired results indicate that a TRUSTED device is required for offloading,
which can be assessed using the Safetynet attestation service. The user’s device finds Target de-
vice 1 with Safetynet capabilities in its surrounding, and sends an attestation request including a
fresh random nonce.

(1.3) The request is received by the currently untrusted device and is further dispatched to the attestation
service.

(1.4) The attestation takes place as described in Section 12.1.3.2 and the issuing device receives the
result.

(1.5) Supposed a positive attestation result was received, it is up to the data owner to define if Safetynet
is considered as fully trusted or may only be used for certain operations. In any case, the trust level
of Target device 1 is increased to the level of Safetynet.

The described trust assessment workflow follows the decentralised paradigm adhered in this work. This
gives the advantage of being independent of centralised infrastructures in large parts but also requires to
potentially perform massive amounts of attestations. Actually, the same procedure can also be performed

12.3. Implementation 121

by the policy evaluation infrastructure, which adds more dependence on centralised infrastructures, but
definitely enables reusing previously acquired attestation results across multiple devices.

For the trust assessment based on certificates, a similar trust propagation workflow can be drawn:

(2.1) The first step is analogous to the first use case. In this scenario the policy creators have two
distinct possibilities: (a) the policy enforcement infrastructure already provides a pre selected list
of possible computing units, or (b) the result allows the usage of TRUSTED nodes, based on a set of
transmitted or pre-shared issuer certificates. Both possibilities are highlighted in Section 12.1.2.2
and 12.1.2.4.

(2.2) The application then contacts one of the shared computing units, establishes a connection and
either matches the target device’s certificate (e.g. acknowledged using Transport Layer Security
(TLS) with client authentication) with the provided certificate (certificate pinning), or performs a
certificate validation to match the issuers with one of the trusted issuer certificates.

(2.3) If the verification and validation completes with a positive result, the target device is trusted, at
least for offloading a particular task.

This approach again enables a more centralised approach, relying on the policy decision environment to
provide end user certificates, and a more decentralised approach, where the policy decision infrastructure
only provides a generic answer. Overall, this workflow is tightly connected with the usage of an external
policy decision infrastructure. This is a common environment in corporate use cases, but not available
to private users. Chapter 12.3 highlights the policy infrastructure integration into the proposed HMEC
framework. This integration also provides ways to hard code simple policies into the application, yielding
a simple trust requirement for a specific task. The certificate-based approach enables to manually add
trusted nodes for private use cases, e.g. manually adding a user’s notebook or home computer, and still
make use of this security-enhanced approach without employing policy decision environments.

12.3 Implementation

This chapter focuses on the required client-side extensions to the POWER framework as proposed in
Chapter 9 to realise the introduced measures to operate on sensitive data in HMEC use cases. These
extensions rely on the existence of a trusted policy evaluation environment, with policies targeted at
the specifically executed application on the user’s device. Furthermore, a secure enrolment process is
required, where (a) the application is bound to one or multiple trusted policy evaluation environments and
(b) organisational policies are put into force, to entitle trusted computing unit assessment methods. This
chapter provides insights to one possible implementation of the trust mediator, introduced as fundamental
part of the architecture in Part III of this thesis.

12.3.1 Enrolment Process

The enrolment process describes necessary steps to be performed before a developed application oper-
ating on sensitive data can be used on corporate devices and make use of the HMEC approaches. This
involves the definition of policies on different levels, as well as (mutually) binding the application to the
policy infrastructures.

Organisational policies need to be defined to apply results of data classifications and risk modelling
on the application. This topic is out of the scope of this thesis, but data controllers need to decide, prior
enrolment, which of the available device and computing unit attestation methods provide a sufficient
level of security. This decision is, for example, influenced by the impact of data loss and the impact of
false computation results in the workflow.

122 12. Enable HMEC to Operate on Sensitive Data

The operational policies in contrast, describe, on a task level, which operation is allowed to be
executed in an offloaded case. This already considers the processed data, the device’s environment and
the trustworthiness of potential offloading targets. Enrolment of the application on the users’ devices
without defining operational policies results in completely disabling the HMEC capabilities.

As last step, the policy evaluation environment configuration needs to be embedded in the application.
This configuration provides a mapping from a friendly name to the access credentials of the environment.
Furthermore, this includes public key material or certificates to verify the integrity and authenticity of
issued policy decision responses.

12.3.2 Policy-aware Annotation

The assessment methods and their possible integration in HMEC workflows were already elaborated
in Section 12.1.3. The missing link, to form a complete picture, is the interaction of an application
developer with the trust mediator and, as a consequence, with the policy evaluation infrastructure.

The first step is the introduction of policy-aware annotations as an extension to the basic annotations.
The starting point is illustrated in Listing 12.14.

@OffloadMe ()
F u t u r e method () {
<code > }

Listing 12.14: Basic offloading framework annotation

This instructs the framework and connected components to consider the method as a candidate for of-
floading as discussed in detail in Part III. The annotation needs to be extended to instruct the offloading
framework to (a) invoke the trust mediator component and (b) communicate all potentially necessary
data for reference during the policy creation and evaluation process. Therefore, the extended annotation
needs to provide the ability to specify the following parameters:

• Specify parameters and context data to be transferred to the policy decision environment.

• Specification of a decision point to use.

• Specification of a unique name, where on one hand the policy creators, and on the other hand the
policy cache can refer to.

This results in an extended annotation for the POWER framework as shown in Listing 12.15. Due to its
web-based nature and method-based approach, data to be transported can be specified regarding method
parameter names, as well as cookie names. The identification of the designated policy decision envi-
ronment is provided via a decisionPoint identifier. This identifier can be resolved to access credentials
via an application embedded configuration, added during the enrolment process. In addition, decision-
PointUnreachable defines a strategy in case the designated decision environment is not reachable. In the
example, only local execution is allowed, but execution could also be completely denied or only allow
execution on certain nodes. Finally, a unique name for identifying this task needs to be provided.

@Off loadWithPol ic ies (
pa r ame te r sToSend : [’ arg1 ’ , ’ arg2 ’ , ’ arg3 ’] ,
cook iesToSend : [’ cook ie −name1 ’] ,
d e c i s i o n P o i n t : ’ r o o t ’ ,
d e c i s i o n P o i n t U n r e a c h a b l e : ’ l o c a l ’ ,
methodName : ’ o f f l o a d W i t h P o l i c i e s ’)

F u t u r e o f f l o a d W i t h P o l i c i e s (arg1 , arg2 , { a rg3 : " t e s t " }) {
<code > }

Listing 12.15: Policy-aware annotation

12.3. Implementation 123

Comparing these extensions to the definition of policies and the defined policy-evaluation-result
caching, including the embedded constraints, clearly shows the match between added annotations and
how a task’s data are transformed to HMEC adapter format and transported to the policy evaluation
environment. The following sequence diagram in Figure 12.7 shows a complete cycle starting from
application enrolment, over application initialisation, to the actual execution of a certain task, with and
without the usage of the policy evaluation cache. To get a complete picture, already discussed interactions
like profiling, computing unit discovery, or the concrete device attestations are not included in detail and
are kept on an abstract level.

A
pp

lication
O

ffload
ing

en
gin

e
D

ecisio
n

en
gin

e
P

olicy de
cisio

n

en
viron

m
en

t

Execute offlo
adin

g ca
nd

id
ate

Is o
ffloa

ding be
neficial?

C
he

ck for e
xista

nce o
f

p
erfo

rm
ance/p

ro
filing

in
fo

rm
atio

n

R
eturn

 o
ffload

 d
ecision

Execute (o
ffload

ed
 o

r lo
cal)

b
ased

 o
n offlo

ad
 d

ecision

R
eturn

 resu
lt

D
e

vice
A

tte
statio

n
A

d
m

in
istrator

Enrolment

A
p

ply o
rga

nizatio
nal p

olicie
s

A
p

ply o
rga

nizatio
nal p

olicie
s

Em
be

d app
lication

 con
figuratio

n

B
uild

 ap
p

licatio
n

p
ackage

D
eplo

y
ap

plication
 to

d

evice(s)

C
re

ate
/ad

d op
eratio

nal p
o

licie
s

Application initialization

Initialize
ap

plication

con
figu

ratio
n

Initialize offlo
ad

in
g en

gin
e

Sta
rt com

p
utin

g
u

nit disco
very

C
on

stan
tly p

erfo
rm

e
d

in ba
ckgro

u
nd

D
iscover

com
pu

ting
 u

nits

A
ssess trust leve

l o
f co

m
p

u
ting un

it

Execution

Extract data as e
m

b
ed

ded

in
 a

nn
otatio

n and
 create

d
ecisio

n
 req

ue
st

Issu
e p

o
licy d

ecision
 req

u
est to po

licy evalu
atio

n en
viro

n
m

e
nt

Evaluate po
licy d

ecisio
n

cach
e to

 find
 cached

d

ecisio
n

s

o
pt

In case
 n

o cach
ed

d
ecisio

n
s are fo

un
d

Evaluate
req

ue
st

return
 signed

 decisio
n

V
alid

ate
 p

olicy d
ecisio

n

signatu
re

 an
d up

d
ate

cach
e

o
pt

In case
 o

bligatio
n

s
are in

clud
ed

 in th
e

d
ecisio

n
 resp

o
nse

V
alid

ate
 p

olicy d
ecisio

n

signatu
re

 an
d up

d
ate

cach
e

M
atch

 legitim
ate

com
pu

ting
 u

nits w
ith

cach

e, o
r estab

lish ne
w

con

ne
ctio

n

Figure 12.7: Sequence diagram of the offloading process

124 12. Enable HMEC to Operate on Sensitive Data

The sequence diagram is separated into three major parts:

• During the enrolment, the environment and application is prepared. This includes adding organ-
isational and operational policies to the policy decision environment. On the application’s side,
configuration data is added, and a package is built before being deployed on the user’s device.

• In the application initialisation phase, the application is started on the user’s device and starts dis-
covering nearby computing units. Depending on the allowed device and computing unit attestation
methods, the trustworthiness is determined.

• The execution phase is extended starting from Chapter 9. First a decision request is built according
to the defined HMEC format, based on the policy-aware annotation added for the particular task.
Next a decision response is acquired, either from the decision response cache, or directly from
the policy evaluation environment. After a suitable computing unit was matched to the decision,
obligations are enforced and the execution takes place.

The diagram does not go into the very details of each step, as they are already provided in the correspond-
ing section. It rather aims at providing a complete picture of the developed solution and the integration
of policy environments especially.

12.4 Performance Evaluation

To evaluate the induced performance overhead of the added policy evaluation capabilities, two policy-
related evaluation sets are performed:

• In the first performance-related evaluation the required time to evaluate policies in a standard
policy evaluation environment setup is measured.

• In the second evaluation the required time to evaluate cached policies is determined. This evalu-
ation is based on the extended POWER framework as highlighted throughout Chapter 12.3. Still,
evaluations are kept on a general level and stay valid also in other environments.

The overall impact on the performance and energy consumption are already discussed in Part III of this
thesis and are still valid for policy enabled applications. Performance values determined in this chapter,
represent a trade-off between security and performance.

12.4.1 Policy Evaluation Performance at the PDP

The evaluation time of a single request dispatched to the HMEC adapter is a crucial value. High values
render HMEC unusable, low values still may have an impact and need to be mitigated by using the dis-
cussed advanced caching mechanisms. In this first evaluation, the required time to evaluate policies when
requests are dispatched to the policy decision infrastructure is examined. Here, the HMEC framework
and mobile device are removed from the scenario to get an unbiased evaluation result.

The test setup comprises of an Amazon EC2 m4.2xlarge and c4.2xlarge instance running the 64-bit
version of Ubuntu 14.04 LTS. The m4 instance type is a general purpose instance, whereas the c4 instance
type is a data-processing-optimised instance. The use of EC2 instances enables a direct comparison of the
execution times with other architectures or other approaches. The evaluation is executed on a modified
Apache OpenAZ3 XACML policy environment, also used as the baseline in several commercial products.
The test setup is illustrated in Figure 12.8. The workflow is as follows:

3https://github.com/apache/incubator-openaz

12.4. Performance Evaluation 125

HMEC-Adapter PIP

PDPPRP

1

8

7

5

6
9

2

3

4

Request

Figure 12.8: Policy evaluation test setup

1. The policy evaluation request is submitted to the HMEC adapter.

2. The HMEC adapter converts the HMEC requests to a XACML conform decision request and
contacts the PIP for relevant environment information.

3. The PIP returns corporation dependent environment information like: location of the user, VPN
connection state, or on-site presence.

4. The HMEC adapter then enhances the decision request with the received attributes and sends it to
the PDP for evaluation.

5. The PDP queries the PRP for matching policies.

6. The PRP determines the matching policies and returns them to the PDP.

7. The PDP may again contact the PIP in case attributes are not resolved yet.

8. The PIP enhances the received request with the required attributes and returns them.

9. The PDP performs the decision process, and returns the decision to the HMEC adapter.

10. The HMEC adapter converts the response to the introduced HMEC format and returns the decision
to the client device.

The expected runtime can be estimated by scrutinising on the involved components. The number of
policies is considered as the relevant variable in the system, therefore the key factor in influencing the
policy evaluation performance. Hence, assessing components with respect to the number of involved
policies gives a runtime estimation - n refers to the number of policies:

• HMEC Adapter: The HMEC adapter is a converter from one format to another. Its runtime only
depends on the incoming request or outgoing response and is not affected by the number policies.
Hence, it has a constant time complexity O(1) with respect to the number of policies.

• PRP: The PRP needs to return a set of policies eligible on the specified request. Therefore, it
needs to walk through all policies and evaluate their applicability. Hence, the PRP has a linear
time complexity O(n) with respect to the number of policies.

• PIP: The PIP can be seen as a database, where additional attributes can be requested. Without
considering a concrete PIP implementation it’s hard to provide an accurate estimation. A common
implementation for PIPs is based on relational databases. In this case, lookups do not depend on
the number of policies but on the number of attributes in total. As a simplification it is assumed
that each policy has a constant set of attributes, therefore a direct correlation between number of
total attributes and number of policies exist.

The particular time complexity in relational databases depends on the concrete implementation.
As a general guideline it can be assumed that a full table scan (touching each single row) has a

126 12. Enable HMEC to Operate on Sensitive Data

complexity of O(n). Putting appropriate indices on the tables results in a constant to logarithmic
time complexity (e.g. organising the index in a B-tree), hence assuming O(log n).

• PDP: The PDP evaluates the policies retrieved from the PRP. The PRP is only capable of do-
ing a pre-selection of the matching policies and does not perform attribute resolution or complex
condition evaluation. Therefore, in the worst case, the PRP returns the whole set of available poli-
cies. Hence, the PDP has a lower bound time complexity of O(n). Still, for each policy the PDP
potentially needs to resolve attributes using the PIP, to verify if a particular policy is matching
the request. This results in an overall time complexity of the PDP (and already considering the
interactions with PIP) of O(n · log n).

This results in an expected time complexity as illustrated in Equation 12.1, already neglecting constant
time complexity:

T (n) = O(n · log n) (12.1)

Following the workflow defined above, the evaluation time for a single policy decision request is
recorded for a PRP containing 100, 1000, 10000, and 20000 policies. Real-world use cases deal with tens
or hundreds of policies, but also recording corner cases, reveals properties like robustness and scalability
of the system. The results of the evaluation are illustrated as a box plot in Figure 12.9 and in tabular
representation in in Table 12.1. Results obtained using the m4 instance are labelled with m, results
obtained using the c4 instance are labelled with c. At first, it can be observed that the used instance

100 policies 1000 policies 10000 policies 20000 policies

m 107ms 272ms 1912ms 3995ms

c 88ms 212ms 1663ms 3373ms

Table 12.1: XACML policy evaluation performance results

type only plays a marginal role for the performance. Compared to the expected runtime complexity of
O(n · log n), the evaluation results show a nearly linear time complexity development. This is perfectly in
line with the expectations, as the evaluation setup does not require the estimated number of PIP requests.
The exemplary policies do not reference unidentified attributes and therefore do not require PIP requests.
Excluding PIP requests increases the expressiveness of the evaluation results.

Without policy decision caching enabled this renders applications unusable: Each offloaded task
would be delayed by at least additional 88ms.

12.4.2 Policy Caching Performance Evaluation

To evaluate and demonstrate the power of policy caching the average time required to retrieve and match
a cached policy is determined. The average evaluation time of a single policy is calculated as an average
of evaluating the same policy 100 times. Furthermore, the evaluation considers policies containing data
constraints and policies without data constraints.

The evaluation setup comprises of Android and desktop environments. As it was the case in the
performance and energy consumption evaluation in Part III, the disparities of different Android devices
can be neglected. The devices are running the policy-enabled POWER framework.

The device accessing the cached policies can, in contrast to the general policy evaluation infrastruc-
ture, structure the policy cache very efficiently. This results in only a few or single cached policies which
need to be checked. As an example: each policy-enabled application part considered for offloading has a
unique ID, if policies are structured according to this ID, it is a simple task to rule out most of the cached

12.5. European General Data Protection Regulation 127

10
0m 10

0c
10
00
m

10
00
c

10
00
0m

10
00
0c

20
00
0m

20
00
0c

0s

1s

2s

3s

4s

5s

Figure 12.9: XACML policy evaluation performance

policies without even evaluating them in detail. The results are illustrated in Table 12.2. They show the
average evaluation time of a single cached policy, with and without embedded constraints.

With policy decision caching and enabling advanced validity constraints, only the first run of an
offloaded task is delayed. All subsequent executions are not delayed. Therefore, for policy-enabled ap-
plications, caching and enabling validity constraints is a vital feature.

12.5 European General Data Protection Regulation

The European General Data Protection Regulation (GDPR) [European Parliament and the Council of
the European Union, 2016] represents a regulation targeting at the protection of EU citizens’ personal
data as well as the harmonisation of regulations in Europe. It acts as a replacement for the former
data protection directive [European Parliament and the Council of the European Union, 1995]. This
chapter aims at highlighting the role and relevance of the GDPR for the HMEC processing model and
the proposed security mechanisms. Tools and measures provided by the model can be seen as enabling
technologies for the implementation of the GDPR but always require an in-depth consideration of the
concrete application and the processed data.

The GDPR contains a collection of definitions and obligations for entities including controllers and
processors on organisational, but also on technical level. It goes beyond the scope of this thesis to
discuss the whole regulation in detail, still the fundamental definitions are important for the following
considerations and established links to the HMEC processing model. The GDPR targets the protection

128 12. Enable HMEC to Operate on Sensitive Data

Table 12.2: Average evaluation time of a single cached policy in milliseconds

Android Desktop

Test set without
constraints

1.71 0.32

Test set with
predicates

3.95 1.43

of personal data related to natural persons, stating Article 2 of the regulation:

(1) This Regulation applies to the processing of personal data wholly or partly by auto-
mated means and to the processing other than by automated means of personal data
which form part of a filing system or are intended to form part of a filing system.

[European Parliament and the Council of the European Union, 2016]

Hence the definition of personal data in Article 4 is an important aspect:

(1) ‘personal data’ means any information relating to an identified or identifiable natural
person (‘data subject’); an identifiable natural person is one who can be identified,
directly or indirectly, in particular by reference to an identifier such as a name, an
identification number, location data, an online identifier or to one or more factors
specific to the physical, physiological, genetic, mental, economic, cultural or social
identity of that natural person;

[European Parliament and the Council of the European Union, 2016]

Given an application employing the HMEC processing model, and operating on personal data, the ap-
plication is subject to the GDPR. Thus, also the offloading framework as an enabler for the HMEC
processing model is subject to the GDPR. The regulation differentiates between two relevant distinct
entities in Article 4: controller and processor

(7) ‘controller’ means the natural or legal person, public authority, agency or other body
which, alone or jointly with others, determines the purposes and means of the process-
ing of personal data; where the purposes and means of such processing are determined
by Union or Member State law, the controller or the specific criteria for its nomination
may be provided for by Union or Member State law;

(8) ‘processor’ means a natural or legal person, public authority, agency or other body
which processes personal data on behalf of the controller;

[European Parliament and the Council of the European Union, 2016]

Controllers hence determine the nature of processed data. In case personal data is processed the GDPR
applies. In the context of HMEC, computing units act as processors. The duties of controllers and pro-
cessors remain unchanged, but HMEC is able to provide enabling technologies. According to Article
24, the controller is responsible to act according to the GDPR and needs to be able to demonstrate that
processing is performed in accordance. Therefore, the controller is in charge of selecting appropriate
computing units (processors) and establish legal contracts with processors. This process needs to be per-
formed on a per-use case basis and cannot be performed on a general offloading framework level. Hence

12.5. European General Data Protection Regulation 129

the framework cannot relieve the duties off the controller. Still, the framework supports the controller in
the implementation phase by providing the attestation capabilities as introduced in Chapter 12.1.3 and
highlighted in Chapter 12.6. Using data security policies, controllers can restrict offloading to an agreed
set of computing units. It is up to the controller to select appropriate attestation methods. In the simplest
case, a certificate-based approach uniquely identifies pre-agreed computing units.

The GDPR is very relevant for the HMEC processing model but is unable to solve organisational
obligations or act as a drop-in component for GDPR compliance. The following articles, also contain-
ing technical measures and obligations, are most relevant in the scope of the HMEC processing model.
These considerations only target at the HMEC framework as part of an application, as the main contri-
bution of this thesis. Measures of the proposed HMEC model and realisation are outlined to support the
implementation of the GDPR on a per-use case basis:

• Article 5 - Principles relating to processing of personal data: Article 5 settles the scene for pro-
cessing personal data and defines the basic principles like ’lawfulness‘, ’fairness and transparency‘,
’purpose limitation‘, ’data minimisation‘, ’accuracy‘, ’storage limitation‘ and ’integrity and con-
fidentiality‘. Furthermore, it is clarified that the controller is responsible for the compliance with
the regulation. Actually, Article 5 is not directly related to the HMEC processing model, but com-
municates the clear requirement that the controller needs full control of the workflow, data, and
utilised computing units. This property is achieved with the proposed model and implementation.

• Article 17 - Right to erasure (‘right to be forgotten’): The data subject can request the erasure of
personal data under the conditions as defined in Article 17.

Because the HMEC framework potentially processes personal data, which might be requested to
be erased, this article is relevant for the HMEC framework. Actually, the HMEC framework does
not contain a data storage. Data is passed to the framework and distributed to agreed computing
units. No permanent data storage exists, it is only kept in memory for a single offloading operation.

• Article 18 - Right to restriction of processing: The proposed implementation might process per-
sonal data, subject to processing restrictions. As defined in Article 5 and Article 24, the controller
is in charge of ensuring compliance with the regulation and needs to communicate these restric-
tions, in the form of data security policies, to the offloading framework. This way the HMEC
implementation supports the controller in fulfilling the restrictions.

• Article 25 - Data protection by design and by default: Article 25 is respected by the HMEC
processing model and implementation in several ways.

– Default settings do not allow offloaded computations. In scenarios where personal data is
processed, the controller needs to take action before computational offloading is allowed.
The framework adheres to the defined policies for specific tasks. In case no policies are
defined, a fallback, non-offloaded execution takes place.

– Controlled by the data security policies, data transformations can be applied transparently
before computational offloading takes place. Encryption, data masking, or anonymisation
can be employed to fulfil GDPR requirements on data minimisation and pseudonymisation.

This analysis shows a clear relation of the HMEC processing model to the GDPR. Although the
framework cannot act as a drop-in component to ensure compliance, it offers tools to support controllers
in adhering to the GDPR. Still, controllers need to evaluate on a per-use case basis the required measures
to be applied on the personal data. The proposed HMEC processing model and implementation support
the controller by providing adequate technical measures to protect users’ personal data.

130 12. Enable HMEC to Operate on Sensitive Data

12.6 Example Scenario: Applications Operating on Personal Data

At this point in this thesis all contributions are discussed and the gained advantages are highlighted.
To top the contributions off, this chapter takes exemplary applications, which potentially operate on
personal data and shows the possibilities of the framework to adhere to data privacy protection rules, but
still offload computations. The selected applications serve the purpose of highlighting the required steps
to migrate a standalone application to a computational offloading-enabled application. Each migration
process involves one or more of the following actors. Considering the migration of applications operating
on personal data as the goal of this chapter, all of them are involved:

• Controller(s): An application might process personal data from different controllers. Controllers
are responsible to protect the personal data according their data protection directive in force. In
context of the application migration, data controllers are responsible to provide data security poli-
cies. These policies implement the adherence to the data protection rules.

• Application Developer: The application developer is in charge of including the offloading frame-
work into the application and separating the application parts suited for computational offloading
from the locally executed application parts. Furthermore, the application developer assigns unique
identifiers used during data security policy creation to specifically address data sets.

• Infrastructure Operator: The infrastructure operator provides the necessary policy decision infras-
tructure, which can be referred by the application. For maximum flexibility this infrastructure is
provided externally (e.g. as part of a corporation’s infrastructure) but can also be embedded in the
application.

On a high abstraction level, the following steps are involved in migrating an existing application, in
square brackets the involved actor is denoted:

1. [Controller] - Determine processed personal data sets.

2. [Application Developer] - Include offloading framework and determine parts eligible for offloaded
execution.

3. [Application Developer] - Enable data security policy evaluation and enforcement for application
parts that process personal data sets, as determined beforehand.

4. [Controller] - Create data security policies implementing the data protection rules.

5. [Infrastructure Operator] - Publish data security policies to policy decision infrastructure.

To illustrate the process, two exemplary applications are selected: an image processing application and
a data processing application operating on structured data sets.

12.6.1 Image Processing Application

Assuming an image processing application, which takes pictures e.g. from the local camera, with the
ability to apply different modifications or effects on the image. The application developer wants to
migrate the application to an offloading-enabled application. In this case the application developer and
controller is represented by a single entity. Actually, no personal data is directly involved, but images
taken with the user’s camera can be categorised as sensitive information. Users may not want their images
being processed on public clouds or other untrusted devices. The controller only defines that operations
on images require trusted computing units, the decision if a particular computing unit is trustworthy is
still up to the user. The application developer/controller categorises data and creates corresponding data
security policies, the concrete offloading target is still in hands of the user. The following illustrates the
performed steps in more detail following the prior defined notation:

12.6. Example Scenario: Applications Operating on Personal Data 131

1. [Controller] - The controller identifies the processed images as sensitive data which are not al-
lowed to be processed on untrusted computing units.

2. [Application Developer] - The application developer includes the offloading framework and opti-
mises identified methods to best suit to the framework. This includes: migrating to asynchronous
methods, removing static variable dependencies and optimising the passed arguments (only pass-
ing necessary arguments and keeping the offloading operation small in size). This results in meth-
ods with a footprint as illustrated in Listing 12.16 or similar.

F u t u r e a p p l y E f f e c t (e f f e c t S e l e c t o r , image , p a r a m e t e r s) {
<code >

}

Listing 12.16: Image processing application - method elibigle for offloading

3. [Application Developer] - At this stage the application is ready for integration with the offloading
framework and its policy decision/enforcement capabilities, hence the introduced annotation is
applied. Due to this annotation the policy enforcement is automatically invoked on execution and
a suitable computing unit for offloading is selected based on the policy decision. The applied
annotation is illustrated in Listing 12.17. The annotation enables to create policies to constrain the
selection of computing units.

@Off loadWithPol ic ies (
pa r ame te r sToSend : [’ e f f e c t S e l e c t o r ’] ,
cook iesToSend : [] ,
d e c i s i o n P o i n t : ’ r o o t ’ ,
d e c i s i o n P o i n t U n r e a c h a b l e : ’ l o c a l ’ ,
methodName : ’ a p p l y E f f e c t ’)

F u t u r e a p p l y E f f e c t (e f f e c t S e l e c t o r , image , p a r a m e t e r s) {
<code >

}

Listing 12.17: Image processing application - policy-aware annotation

4. [Controller] - As the next step, the controller can now create concrete data security policies re-
stricting the selection of computing units based on the provided attributes. A controller needs
to establish legal contracts with computing units (processors) beforehand to ensure compliance
with data protection rules. For this example, as illustrated in Listing 12.18, no parameter-based
restrictions are applied. Execution is only allowed on a specific node with the provided identity
information. This policy can also be extended to enable execution on any trusted computing node
(assessed using the methods described in Chapter 12.1.3), which is then substituted by the client
application.

< P o l i c y P o l i c y I d =" I m a g e P r o c e s s i n g _ a p p l y E f f e c t "
RuleCombiningAlgId=" . . . : r u l e −combining− a l g o r i t h m : deny−o v e r r i d e s ">

<T a r g e t / >

<Rule E f f e c t =" P e r m i t " R u l e I d=" A l l o w O f f l o a d i n g T o T r u s t e d E n t i t i e s ">

<T a r g e t / >

< O b l i g a t i o n E x p r e s s i o n s >

< O b l i g a t i o n E x p r e s s i o n
O b l i g a t i o n I d =" urn : power : 1 . 0 : o b l i g a t i o n : e x e c u t i o n −mode "
F u l f i l l O n =" P e r m i t ">

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : e x e c u t i o n −mode ">

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

132 12. Enable HMEC to Operate on Sensitive Data

SPECIFIC< / A t t r i b u t e V a l u e >

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n
A t t r i b u t e I d =" urn : power : 1 . 0 : node ">

<Apply
F u n c t i o n I d=" urn : o a s i s : names : t c : xacml : 1 . 0 : f u n c t i o n : s t r i n g −bag ">

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

{" e n d p o i n t " : " c l i e n t 1 " , " i d e n t i t y " : " [CERT−FINGERPRINT] " }
< / A t t r i b u t e V a l u e >

< / Apply>

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< / O b l i g a t i o n E x p r e s s i o n >

< / O b l i g a t i o n E x p r e s s i o n s >

< / Rule>

< / P o l i c y>

Listing 12.18: Data processing application - XACML policy to restrict execution to
explicitly trusted nodes

5. [Infrastructure Operator] - In the last step the policy is published to the policy infrastructure,
which is external to the device or even embedded in the client application.

These measures and extensions enable to operate this image processing application in an offloaded sce-
nario and still protect the user’s sensitive data.

12.6.2 Structured Data Processing Application

The second example represents an application operating on structured data sets. It focuses on the personal
data aspects and on measures for controllers to protect it. Assuming a simplified application, processing
data sets according to the schema defined in Listing 12.19, with the goal to e.g. calculate statistics on the
data set.

[{ " f i r s t n a m e " : " . . . " ,
" l a s t n a m e " : " . . . " ,
" a d d r e s s " : " . . . " ,
" c i t y " : " . . . " ,
" p u r c h a s e _ t o t a l " : " . . . " } , . . .]

Listing 12.19: Data processing application - data structure

The data set clearly contains personal data, therefore the data controller is in charge of protecting the
data, still the application should be migrated to an offloading-enabled application. Following the same
process as defined in Chapter 12.6 different results are achieved because the policies can be created
targeting single properties of the processed data set:

1. [Controller] - The controller identifies relevant fields in the data structure as personal data. Con-
trollers need to protect personal data according the rules defined in the GDPR.

2. - 3. [Application Developer] - Again the application developer includes the offloading framework and
applies optimisations as well as annotations as illustrated in Chapter 12.6.1.

4. [Controller] - The next step for the controller is to create data security policies that implement the
data protection rules. In this step, the controller should minimise the criticality of the transferred
data to a minimum and enforce offloaded execution on trusted computing nodes. As a simple
example, targeted at the example data scheme, the following can be introduced: Each data entry

12.6. Example Scenario: Applications Operating on Personal Data 133

represents a single customer’s purchase. Given an offloading-enabled method that calculates the
overall mean purchase volume, only a single field of the dataset is required. Still, common (and
reasonable) practice is, to pass the whole data structure. In offloaded execution scenarios, remote
computing units have access to the whole data set, but actually only require access to a small frac-
tion. Listing 12.20 illustrates the automatic eviction of unnecessary field values and minimising
the transferred critical data (constraints on allowed execution nodes are omitted here, but are il-
lustrated in Listing 12.18). The relevant path for the eviction in the JSON structure is specified
in JSON predicate syntax and gets executed on the client side before offloading to a remote com-
puting unit. Therefore, the remote computing unit only receives the data set with the required
information.

< P o l i c y P o l i c y I d =" D a t a P r o c e s s i n g _ e v i c t P e r o n a l D a t a "
RuleCombiningAlgId=" . . . : r u l e −combining− a l g o r i t h m : deny−o v e r r i d e s ">

<T a r g e t / >

<Rule E f f e c t =" P e r m i t " R u l e I d=" A l l o w O f f l o a d i n g T o T r u s t e d E n t i t i e s ">

<T a r g e t / >

< O b l i g a t i o n E x p r e s s i o n s >

< O b l i g a t i o n E x p r e s s i o n
O b l i g a t i o n I d =" urn : power : 1 . 0 : c l i e n t − o b l i g a t i o n : j son − e v i c t "
F u l f i l l O n =" P e r m i t ">

< A t t r i b u t e A s s i g n m e n t E x p r e s s i o n A t t r i b u t e I d =" urn : power : 1 . 0 : c l i e n t −
o b l i g a t i o n : a rgument : j son −p a t h ">

<Apply
F u n c t i o n I d=" urn : o a s i s : names : t c : xacml : 1 . 0 : f u n c t i o n : s t r i n g −bag ">

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

/ f i r s t n a m e < / A t t r i b u t e V a l u e >

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

/ l a s t n a m e< / A t t r i b u t e V a l u e >

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

/ a d d r e s s< / A t t r i b u t e V a l u e >

< A t t r i b u t e V a l u e
DataType=" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">

/ c i t y < / A t t r i b u t e V a l u e >

< / Apply>

< / A t t r i b u t e A s s i g n m e n t E x p r e s s i o n>

< / O b l i g a t i o n E x p r e s s i o n >

< / O b l i g a t i o n E x p r e s s i o n s >

< / Rule>

< / P o l i c y>

Listing 12.20: Data processing application - XACML policy to evict unnecessary data

Other strategies are possible like data masking and anonymisation based on regular expressions,
tokenisation, also in a format preserving way, or complete removal of unnecessary fields from the
data sets.

5. [Infrastructure Operator] - In the last step the policy is published to the policy infrastructure,
which is external to the device or even embedded in the client application.

The described policy-based approach enables to use existing application logic and represent different use
cases. Targeting the data security policy to the particular use case allows to always provide the optimal
solution, in terms of protecting users’ personal data. The downside of this targeted approach is that a
close collaboration between the controller and application developer is required.

134 12. Enable HMEC to Operate on Sensitive Data

12.7 Chapter Conclusions

In this chapter, a clear link was established between the compartmentalised approaches to process sen-
sitive data in (federated) cloud environments and the HMEC approaches. The author of this thesis is
the main contributor to the governance model and on the service integration part of the EU SUNFISH
project. The SUNFISH governance model obviously serves different domains than HMEC but they have
many commonalities. These commonalities are exploited by transforming the federated cloud comput-
ing processing model of SUNFISH to the mobile computing world and reusing techniques in the HMEC
approach. Furthermore, new challenges are illustrated and solutions are discussed, like the trustworthy
assessment of nearby devices and their integration in policy languages. Although no implementation
except for the certificate-based approach is provided, clear integration strategies are developed for all
attestation techniques. The original SUNFISH approach is developed with XACML in mind to fit into
corporation’s current environments. For the HMEC adaptation a lightweight and use case targeted alter-
native for the decision request and response language is proposed to respect the needs of mobile devices
but still enable re-usage of existing infrastructures. A different approach could be to define new policy
languages and approaches from scratch, which requires users and corporations to provide a separate envi-
ronment side-by-side with their already existing policy decision and enforcement infrastructure. Still, the
defined approaches are only loosely coupled to the concrete policy language and also allow alternative
implementations.

By glueing all discussed parts together and providing an integration into the POWER framework,
a performance impact analysis is performed. The outcome shows that, although the integration with
policy evaluation infrastructures is a step towards centralisation, it is a feasible solution when combined
with advanced caching mechanism. The analysis of the GDPR concerning the HMEC processing model
and the example scenarios on migrating existing applications clearly show that application developers,
administrators, and policy creators need to work hand-in-hand to (a) optimally protect sensitive data, and
(b) get the most out of the HMEC approach.

Chapter 13

Conclusions and Future Work

Over the last years, mobile device usage has increased extensively. Mobile devices have become, and
are still becoming, more powerful and also enable the execution of computationally intensive applica-
tions. Users soon have discovered that mobile devices are limited regarding their available battery power.
Making full use of mobile devices’ computational potentials has high energy demands and requires to
recharge batteries multiple times a day. Industry’s solution to this problem is the absolute commitment
to cloud computing. Services, deployed in the cloud, are used by mobile devices to store their data and
outsource heavy computations using pre-defined interfaces. This approach has major drawbacks regard-
ing flexibility, fail-safety, and data security. Although cloud computing centres have high availability
guarantees, the mobile device’s Internet connection acts as the weak link. Given a suitable data plan
is available, outsourcing heavy computations to the cloud is a suitable solution but has limiting factors,
unable to address the needs of future mobile device users.

Researchers in the field of mobile cloud computing converge from a different angle and try to solve
the problem using more dynamic approaches. They focus on the application development process and
give applications the chance to decide when it is beneficial to use remotely deployed services under
current device and environmental conditions. Still, the results only scratch the surface and are tailored
to cloud computing and single mobile device platforms. Furthermore, data security and data protection
aspects need to be considered in detail to also enable usage for applications operating on sensitive and
personal data.

As a first contribution, a threat model is developed based on systematically analysing existing frame-
works, resulting in a security requirement catalogue targeted at mobile cloud computing processing mod-
els. The evaluation of the security requirements against existing frameworks confirms the first impression
that existing frameworks do not consider data security aspects. Therefore, besides contributing a thor-
ough threat model targeting mobile cloud computing, the awareness of data security and data protection
gaps in existing computational offloading frameworks is raised. Scrutinising on existing frameworks’ ar-
chitectures reveals a clear focus on client-side functional aspects of offloading frameworks like: optimis-
ing the offloading approach or inventing novel partitioning and scheduling algorithms. The server-side is
often underspecified and underdeveloped.

The following contributions in this thesis have hence been targeted at removing restrictions from
other mobile cloud computing processing models, like the limitation to cloud computing and single
mobile device platforms, which results in a novel mobile-first processing model: Hybrid Mobile Edge
Computing (HMEC). This model enables to write mobile applications with the ability to dynamically
offload computations to other computing units in the mobile device’s surrounding or other available
computing units (also located in the cloud) and provides a holistic solution. Actually, using the HMEC
processing model, the borders between client and server are blurred. All nodes are equal participants of
a network, some offering and some consuming computational power. HMEC does not aim at replacing
cloud computing but it can be seen as a parallel field of research and development, especially providing

135

136 13. Conclusions and Future Work

an alternative processing model for mobile applications. Evaluation results show that this processing
model has tremendous energy-saving potentials and vast possible performance gains. Although HMEC
considers data security and data protection on architectural level, detailed considerations are required.

Data security and data protection is a sensitive topic and requires in-depth analysis, also considering
ideas and approaches from different, relevant domains. The author of this thesis was leading the research
and development of a data security governance model targeted at federated cloud environments as part of
the EU SUNFISH project. The crux of this governance model is the separation of a federation into secu-
rity compartments, to group services with similar requirements on data security and data protection. Data
transfers between the different compartments are controlled by data security policies. The data security
policies can completely allow or deny specific operations, but also fine grained decisions are possible.
Data transformation services can be employed to selectively encrypt, mask or anonymise particular data
fields. In the context of this thesis, clear similarities between the federated cloud and the HMEC pro-
cessing model are discovered. Hence, it is a logical step to transform the governance model targeted at
cloud federations to the mobile world. The integration with the HMEC processing model yields valuable
security properties: Although HMEC removes centralised infrastructures, data controllers remain in full
control of their data and process flows. Data security policies, in a federated cloud setup as well as in
a mobile application HMEC setup can be expressed in XACML syntax, a de-facto standard in the field
of data security policy languages. The support for XACML enables operators to re-use their already
existing XACML infrastructures and knowledge in a new, mobile-focused environment. The HMEC
concept as well as its security foundations, in the context of federated clouds as well as focussed on the
transformation to the mobile world, have been exposed to a broad scientific discussion.

A cornerstone and enabler of the HMEC processing model is the deep integration of attestation
methods in HMEC’s security concept. Modern devices and platforms offer mechanisms to encapsulate
executed applications from each other, but also from the owner of the device or platform. The goal of
attestation methods is to verify that these shielding and protection mechanisms are still intact, and no
one tampered with the device or platform. This way, HMEC is capable of offloading computations, even
operating on sensitive data, to unknown devices if attestation succeeds. This gives HMEC an advan-
tage compared to previous processing models and enables usage of many different devices, even in the
surrounding of the user. Furthermore, European’s General Data Protection Regulation (GDPR), which
comes into force in May 2018, entails a ”privacy by design“ requirement on data controllers, imposing
the obligation to implement appropriate technical and organisational measures to protect personal data.
HMEC offers the necessary tools to implement these obligations on a per-application basis, on top of
data security policies and comply with the regulation, even for computational offloading.

The proposed approaches and solutions are, by far, not the end of the road. As the technologi-
cal development advances, more sophisticated attestation approaches will be available which need an
in-depth consideration. The current implementation relies on the developer to identify parts of the ap-
plication that should be considered for remote execution. Automatic identification would be preferable
but requires more research focussed on the analysis phase. Furthermore, the current solution established
interoperability by relying on web technologies, which are not suited for all classes of mobile applica-
tions. Maintaining interoperability but still enabling development in a platform’s native programming
language surely is preferable. Focusing on other developments and related fields of research, the threat
model and security requirements catalogue remains valid. After all, research and new developments
should be focussed on the users and on protecting their privacy and personal data in accordance with the
GDPR.

Part V

Appendices

137

Appendix A

Peer-to-Peer Networks

This appendix provides a brief introduction to Peer-to-Peer (P2P) networks to the extent as required for
understanding the developed models and processes. P2P networks enable to build a network among
nodes, where each node can communicate with all other nodes, regardless if they have a direct connec-
tion. One characteristic of P2P networks is that they generally do not have a central management point
and therefore do not have a central-point-of-failure. The entities in P2P networks can be categorised as
nodes and resources. Nodes represent the participating clients in a network, whereas resources can be
considered as services deployed in the network, or data stored in the network. Various different flavors
of P2P networks exist. Reiter [2015] provides a categorisation of P2P networks into unstructured and
structured networks.

Unstructured networks are considered as the first generation of P2P frameworks. Using this type of
network, nodes randomly connect to a pre-defined number of existing peers without taking into account
the structure of the network. Other peers are discovered by flooding the network with discovery requests,
and further connections are built to random nodes in the network. The unstructured approach also con-
tinues on the resource level. Each node can offer resources, but other nodes need to flood the network
with search requests to discover the resources. This results in a massive amount of broadcasted search
requests throughout the whole network. Mapping the topology of an unstructured P2P network to a tree
could result in a highly unbalanced tree negatively impacting performance in the network. An unbal-
anced tree affects the connectivity in the network and may result in a situation where peers may not be
aware of the shared resources of a distant node. Anyhow, unstructured P2P networks were successfully
used for a long time for file-sharing. The Gnutella1 network, for example, uses an unstructured approach.

Structured P2P networks are the next improved generation. In contrast to unstructured networks,
structured networks follow a well-defined algorithm to maintain the topology of the network. Further-
more, resources are deeply integrated into the network and each node at least is aware of the resources
provided by its neighbor nodes. One implementation concept to realise structured P2P networks is based
on DHTs. Basically, DHTs provide a key-value mapping like local hash tables but distributed over the
whole network.

DHTs make a distinction between node IDs and key IDs but are in the same address space. Both are
unique but serve a different purpose. The key IDs act, like in a local hash table scenario, as an identifier
to retrieve a previously saved value or to save a new value. Node IDs uniquely identify a single node
where actual values are stored. The DHT implementation provides a mapping mechanism to determine
on which nodes a particular key-value pair is stored. Chord [Stoica et al., 2001] uses this approach to
realise a scalable P2P lookup service. In the Chord approach, nodes are distributed in the address space
by hashing a node’s IP address and are arranged in a circle. Key IDs are placed in the same address
space. Each node is responsible for all key IDs greater than the node ID of its predecessor but smaller or

1https://courses.cs.washington.edu/courses/cse522/05au/gnutella_protocol_0.4.pdf

139

https://courses.cs.washington.edu/courses/cse522/05au/gnutella_protocol_0.4.pdf

140 A. Peer-to-Peer Networks

equal to the local node ID. This way a key distribution over all nodes is achieved. Other, slightly different
approaches like Pastry [Rowstron and Druschel, 2001; Lua et al., 2005] or CAN [Lua et al., 2005] differ
in the details of assigning node IDs and in finding routes to nodes in charge of a specified key ID.

Figure A.1 illustrates the basic concept of DHTs. The numbered circles can equally be key IDs or
node IDs, whereas the number illustrates the unique ID and the arrows between the circles illustrate
established connections. The DHT is partitioned into several areas, illustrated as shaded areas, where the
information of multiple IDs is cumulated. Each node in a certain area saves the whole information of its
area to increase availability and redundancy. The connections are used for routing requests. Due to the
structure of the P2P network, a request is sent to the connection with the closest ID. To foster simplicity,
Figure A.1 shows a very basic example, where each node only has two neighbor connections, real-world
implementations will add more connections to distant nodes to decrease hop count. A typical routing
algorithm in this type of network can be sketched as follows:

1. Extract target ID of the incoming request.

2. Check if the local node or one of the local resource IDs matches incoming target ID. If nothing is
found continue with next step.

3. Iterate through all connected nodes and find the one with the closest ID.

4. If the distance from target ID to closest ID is larger than the distance from local ID to target ID
cancel processing, the ID was not found.

5. Send request to closest node.

In contrast to unstructured networks, a hop counter is not required in structured P2P networks, because
the distance to the target ID is decreased in every step and therefore already visited nodes are not consid-
ered multiple times. The routing performance is increased with distributing the established connections
to distant and near nodes in the network.

11

2

3

4

5

6

IDs 1 - 2

ID
s
3

- 4

ID
s 3

 - 4

Figure A.1: Concept of structured P2P networks based on distributed hash tables [Reiter, 2015]

Bibliography

Abolfazli, Saeid, Abdullah Gani, and Min Chen [2015]. “HMCC: A Hybrid Mobile Cloud Computing
Framework Exploiting Heterogeneous Resources”. In: 2015 3rd IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering. 2015, pages 157–162. ISBN 978-1-4799-8977-
5. doi:10 .1109 /MobileCloud .2015 .28. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=7130881 (cited on page 20).

Agarwal, Sharad and Jacob R. Lorch [2009]. “Matchmaking for online games and other latency-sensitive
P2P systems”. ACM SIGCOMM Computer Communication Review 39.4 (2009), page 315. ISSN

01464833. doi:10.1145/1594977.1592605 (cited on page 65).

Anati, Ittai, Shay Gueron, Simon Johnson, and Vincent Scarlata [2013]. “Innovative Technology for CPU
Based Attestation and Sealing”. HASP - Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy (2013), pages 1–7. doi:10.1.1.405.8266 (cited
on page 117).

Bartel, Mark, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon [2008]. XML Signature Syntax
and Processing (Second Edition). 2008. https://www.w3.org/TR/xmldsig-core/ (cited on page 112).

Baset, Salman A. and Henning G. Schulzrinne [2006]. “An analysis of the Skype peer-to-peer internet
telephony protocol”. In: Proceedings of IEEE INFOCOM. 2006. ISBN 1424402212. doi:10.1109/

INFOCOM.2006.312. arXiv: 0412017 [cs] (cited on page 80).

Baumann, Andrew, Marcus Peinado, and Galen Hunt [2014]. “Shielding Applications from an Untrusted
Cloud with Haven”. Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (2014), pages 267–283. ISSN 0734-2071. doi:10.1145/2799647. http://dl.acm.org/
citation.cfm?id=2685048.2685070 (cited on page 119).

Beckman, Peter H [2005]. “Building the TeraGrid.” Philosophical transactions. Series A, Mathematical,
physical, and engineering sciences 363.1833 (2005), pages 1715–28. ISSN 1364-503X. doi:10.1098/

rsta.2005.1602. http://www.ncbi.nlm.nih.gov/pubmed/16099743 (cited on page 10).

Begtašević, F and P Van Mieghem [2000]. “Measurements of the Hopcount in Internet” (2000), pages 1–
12 (cited on page 64).

Bernholdt, David, Shishir Bharathi, David Brown, Kasidit Chanchio, Meili Chen, Ann Chervenak, Luca
Cinquini, Bob Drach, Ian Foster, Peter Fox, Jose Garcia, Carl Kesselman, Rob Markel, Don Middle-
ton, Veronika Nefedova, Line Pouchard, Arie Shoshani, Alex Sim, Gary Strand, and Dean Williams
[2005]. “The Earth System Grid: Supporting the next generation of climate modeling research”. Pro-
ceedings of the IEEE 93.3 (2005), pages 485–495. ISSN 00189219. doi:10 . 1109 / JPROC . 2004 .
842745. arXiv: 0712.2262 (cited on page 10).

Bray, Tim, Dave Hollander, Andrew Layman, Richard Tobin, and Henry S. Thompson [2009]. Names-
paces in XML 1.0 (Third Edition). 2009. http://www.w3.org/TR/2009/REC-xml-names-20091208/ (cited
on page 110).

141

http://www.amazon.com/exec/obidos/ASIN/978-1-4799-8977-5/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/978-1-4799-8977-5/keithandrewshcic
http://dx.doi.org/10.1109/MobileCloud.2015.28
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7130881
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7130881
http://worldcatlibraries.org/wcpa/issn/01464833
http://dx.doi.org/10.1145/1594977.1592605
http://dx.doi.org/10.1.1.405.8266
https://www.w3.org/TR/xmldsig-core/
http://www.amazon.com/exec/obidos/ASIN/1424402212/keithandrewshcic
http://dx.doi.org/10.1109/INFOCOM.2006.312
http://dx.doi.org/10.1109/INFOCOM.2006.312
http://arxiv.org/abs/0412017
http://worldcatlibraries.org/wcpa/issn/0734-2071
http://dx.doi.org/10.1145/2799647
http://dl.acm.org/citation.cfm?id=2685048.2685070
http://dl.acm.org/citation.cfm?id=2685048.2685070
http://worldcatlibraries.org/wcpa/issn/1364-503X
http://dx.doi.org/10.1098/rsta.2005.1602
http://dx.doi.org/10.1098/rsta.2005.1602
http://www.ncbi.nlm.nih.gov/pubmed/16099743
http://worldcatlibraries.org/wcpa/issn/00189219
http://dx.doi.org/10.1109/JPROC.2004.842745
http://dx.doi.org/10.1109/JPROC.2004.842745
http://arxiv.org/abs/0712.2262
http://www.w3.org/TR/2009/REC-xml-names-20091208/

142 Bibliography

Burgstaller, Florian, Andreas Derler, Stefan Kern, Gabriel Schanner, and Andreas Reiter [2016]. “Anony-
mous Communication in the Browser via Onion-Routing”. Proceedings - 2015 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2015 (2016), pages 260–
267. doi:10.1109/3PGCIC.2015.22 (cited on page 79).

Catalano, Dario and Dario Fiore [2013]. “Practical Homomorphic MACs for Arithmetic Circuits”. In:
EUROCRYPT 2013. 2013, pages 336–352 (cited on page 21).

Chun, Byung-Gon, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti [2011]. “Clonecloud:
Elastic Execution Between Mobile Device and Cloud”. In: Proceedings of the sixth conference on
Computer systems. 2011, pages 301–314. ISBN 9781450306348. http://dl.acm.org/ft%7B%5C_
%7Dgateway.cfm?id=1966473%7B%5C&%7Dtype=pdf (cited on pages 27, 29, 30, 50, 51, 53).

Costan, Victor and Srinivas Devadas [2016]. “Intel SGX Explained”. Cryptology ePrint Archive, Report
2016/086 (2016) (cited on page 117).

Coughlin, Tom [2015]. “A Moore’s Law for Mobile Energy”. IEEE Consumer Electronics Magazine 4.1
(2015), pages 74–82 (cited on page 4).

Cuervo, Eduardo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Saroiu Stefan, Ranveer Chan-
dra, and Bahl Paramvir [2010]. “MAUI : Making Smartphones Last Longer with Code Offload”. In:
Proceedings of the 8th international conference on Mobile systems, applications, and services. Vol-
ume 17. 2010, pages 49–62. ISBN 9781605589855. http://dl.acm.org/citation.cfm?id=1814441
(cited on pages 27–29, 50, 51, 54, 64, 74, 75, 87, 89).

Dias, David [2015]. “browserCloud.js - A federated community cloud served by a P2P overlay network
on top of the web platform”. Master Thesis. INESC-ID Lisbon, 2015. https://github.com/diasdavid/
thesis.browserCloud.js/blob/master/document.pdf (cited on page 79).

Enck, William, Machigar Ongtang, and Patrick McDaniel [2009]. “Understanding Android Security”.
IEEE Security and Privacy 7 (2009), pages 50–57. ISSN 1540-7993. doi:10.1109 /MSP.2009.26.
arXiv: 1512.00567 (cited on page 61).

ETSI [2015]. “ETSI GS MEC-IEG 004 - Mobile Edge Computing (MEC); Service Scenarios” (2015)
(cited on page 15).

ETSI [2016a]. “ETSI GS MEC 002 - Mobile Edge Computing (MEC); Technical Requirements” (2016).
http://www.etsi.org/standards-search (cited on page 14).

ETSI [2016b]. “ETSI GS MEC 003 - Mobile Edge Computing (MEC); Framework and Reference Ar-
chitecture” (2016) (cited on page 14).

ETSI [2017]. “ETSI GS MEC-IEG 006 - Mobile Edge Computing; Market Acceleration; MEC Metrics
Best Practice and Guidelines” (2017) (cited on page 14).

European Parliament and the Council of the European Union [1995]. “Directive 95/46/EC of the Euro-
pean Parliament and of the Council of 24 October 1995 on the protection of individuals with regard
to the processing of personal data and on the free movement of such data”. Official Journal of the
European Union L 281 (1995). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
31995L0046:EN:HTML (cited on page 127).

European Parliament and the Council of the European Union [2016]. “Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation)”. Official Journal of the European Union
L119 (2016) (cited on pages 127, 128).

http://dx.doi.org/10.1109/3PGCIC.2015.22
http://www.amazon.com/exec/obidos/ASIN/9781450306348/keithandrewshcic
http://dl.acm.org/ft%7B%5C_%7Dgateway.cfm?id=1966473%7B%5C&%7Dtype=pdf
http://dl.acm.org/ft%7B%5C_%7Dgateway.cfm?id=1966473%7B%5C&%7Dtype=pdf
http://www.amazon.com/exec/obidos/ASIN/9781605589855/keithandrewshcic
http://dl.acm.org/citation.cfm?id=1814441
https://github.com/diasdavid/thesis.browserCloud.js/blob/master/document.pdf
https://github.com/diasdavid/thesis.browserCloud.js/blob/master/document.pdf
http://worldcatlibraries.org/wcpa/issn/1540-7993
http://dx.doi.org/10.1109/MSP.2009.26
http://arxiv.org/abs/1512.00567
http://www.etsi.org/standards-search
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML

Bibliography 143

Faruki, Parvez, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti, and
Muttukrishnan Rajarajan [2015]. “Android Security: A Survey of Issues, Malware Penetration, and
Defenses”. IEEE Communications Surveys & Tutorials 17.2 (2015), pages 998–1022. ISSN 1553-
877X. doi:10.1109/COMST.2014.2386139. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6999911 (cited on page 61).

Fenstermacher, David, Craig Street, Tara McSherry, Vishal Nayak, Casey Overby, and Michael Feldman
[2005]. “The Cancer Biomedical Informatics Grid (caBIGTM).” Conference proceedings of the IEEE
Engineering in Medicine and Biology Society 27 (2005), pages 743–746. ISSN 1557-170X. doi:10.
1109/IEMBS.2005.1616521 (cited on page 10).

Fernando, Niroshinie, Seng W. Loke, and Wenny Rahayu [2012]. “Mobile cloud computing: A survey”.
Future Generation Computer Systems 29.1 (2012), pages 84–106. ISSN 0167739X. doi:10.1016/j.
future.2012.05.023. http://dx.doi.org/10.1016/j.future.2012.05.023 (cited on pages 19, 49).

Fette, I. and A. Melnikov [2011]. The WebSocket Protocol. Technical report. RFC 6455, RFC Editor,
2011. https://www.rfc-editor.org/info/rfc6455 (cited on pages 69, 78, 80).

Foster, Ian, Yong Zhao, Ioan Raicu, and Shiyong Lu [2008]. “Cloud computing and grid computing 360-
degree compared”. Grid Computing Environments Workshop 2008 (GCE ’08) (2008), pages 1–10.
doi:10.1109/GCE.2008.4738445. arXiv: 0901.0131. http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4738445 (cited on page 11).

Gennaro, Rosario, Craig Gentry, and Bryan Parno [2010]. “Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers”. Advances in Cryptology–CRYPTO (2010), pages 465–
482. ISSN 03029743. doi:10.1007/978-3-642-14623-7_25 (cited on page 21).

Gennaro, Rosario, Craig Gentry, Bryan Parno, and Mariana Raykova [2013]. “Quadratic Span Programs
and Succinct NIZKs without PCPs”. 1017660 (2013), pages 626–645 (cited on page 21).

Google [2017]. Android Platform Versions; Accessed on 19.2. 2017. https://developer.android.com/
about/dashboards/index.html (cited on pages 30, 31).

Gordon, Mark S, David Ke Hong, Peter M Chen, Jason Flinn, Scott Mahlke, and Zhuoqing Morley
Mao [2015]. “TANGO: Accelerating Mobile Applications through Flip-Flop Replication”. GetMo-
bile 19.3 (2015), pages 10–13 (cited on pages 27, 33, 51).

Goyal, Sachin and John Carter [2004]. “A Lightweight Secure Cyber Foraging Infrastructure for Resource-
Constrained Devices”. In: Proceedings of the Sixth IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA 2004). 6. 2004 (cited on pages 19, 53).

Ha, Kiryong, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe, and Mahadev Satyanarayanan
[2013]. “Just-in-Time Provisioning for Cyber Foraging” (2013), pages 153–166 (cited on page 53).

Höner, Patrick [2013]. “Cloud Computing Security Requirements and Solutions : a Systematic Literature
Review” (2013) (cited on page 40).

Horsmanheimo, Seppo, Niwas Maskey, and Lotta Tuomimäki [2014]. “Feasibility study of utilizing
mobile communications for smart grid applications in urban area” (2014), pages 446–451 (cited on
page 54).

Hu, Yun Chao, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young [2015]. “Mobile Edge
Computing - A key technology towards 5G”. ETSI White Paper 11 (2015). http://www.etsi.org/
images/files/ETSIWhitePapers/etsi%7B%5C_%7Dwp11%7B%5C_%7Dmec%7B%5C_%7Da%7B%5C_%7Dkey%7B%5C_

%7Dtechnology%7B%5C_%7Dtowards%7B%5C_%7D5g.pdf (cited on page 14).

Iankoulova, Iliana [2011]. “Cloud Computing Security Requirements : a Systematic Review” (2011)
(cited on page 40).

http://worldcatlibraries.org/wcpa/issn/1553-877X
http://worldcatlibraries.org/wcpa/issn/1553-877X
http://dx.doi.org/10.1109/COMST.2014.2386139
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6999911
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6999911
http://worldcatlibraries.org/wcpa/issn/1557-170X
http://dx.doi.org/10.1109/IEMBS.2005.1616521
http://dx.doi.org/10.1109/IEMBS.2005.1616521
http://worldcatlibraries.org/wcpa/issn/0167739X
http://dx.doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/10.1016/j.future.2012.05.023
http://dx.doi.org/10.1016/j.future.2012.05.023
https://www.rfc-editor.org/info/rfc6455
http://dx.doi.org/10.1109/GCE.2008.4738445
http://arxiv.org/abs/0901.0131
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4738445
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4738445
http://worldcatlibraries.org/wcpa/issn/03029743
http://dx.doi.org/10.1007/978-3-642-14623-7_25
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://www.etsi.org/images/files/ETSIWhitePapers/etsi%7B%5C_%7Dwp11%7B%5C_%7Dmec%7B%5C_%7Da%7B%5C_%7Dkey%7B%5C_%7Dtechnology%7B%5C_%7Dtowards%7B%5C_%7D5g.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/etsi%7B%5C_%7Dwp11%7B%5C_%7Dmec%7B%5C_%7Da%7B%5C_%7Dkey%7B%5C_%7Dtechnology%7B%5C_%7Dtowards%7B%5C_%7D5g.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/etsi%7B%5C_%7Dwp11%7B%5C_%7Dmec%7B%5C_%7Da%7B%5C_%7Dkey%7B%5C_%7Dtechnology%7B%5C_%7Dtowards%7B%5C_%7D5g.pdf

144 Bibliography

Jacob, Bart, Michael Brown, Kentaro Fukui, and Nihar Trivedi [2005]. Introduction to Grid Computing.
First Edit. IBM, 2005, page 262. ISBN 9780738494005. http://www.redbooks.ibm.com/abstracts/
sg246778.html?Open (cited on pages 9, 10).

Jones, Michael, John Bradler, and Nat Sakimura [2015]. JSON Web Token (JWT). Technical report. RFC
Editor, 2015. doi:2070-1721. http://www.rfc-editor.org/rfc/rfc7519.txt (cited on page 112).

Kemp, Roelof, Nicholas Palmer, Thilo Kielmann, and Henri Bal [2012]. “Cuckoo: a computation of-
floading framework for smartphones”. In: Mobile Computing, Applications, and Services. Second
International ICST Conference, MobiCASE 2010. 2012, pages 59–79. http://www.springerlink.com/
index/U6777405301NP063.pdf (cited on pages 27, 30, 32, 53).

Kosta, Sokol, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang [2012]. “ThinkAir: Dy-
namic resource allocation and parallel execution in the cloud for mobile code offloading”. In: 2012
Proceedings IEEE INFOCOM. Ieee, Mar. 2012, pages 945–953. ISBN 978-1-4673-0775-8. doi:10.
1109/INFCOM.2012.6195845. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6195845 (cited on pages 27, 32, 33, 53, 89).

Laure, Erwin, F. Hemmer, A. Aimar, M. Barroso, P. Buncic, A. Di Meglio, L. Guy, P. Kunszt, S. Beco, F.
Pacini, F. Prelz, M. Sgaravatto, A Edlund, O. Mulmo, D. Groep, S.M. Fisher, and M. Livny [2004].
“Middleware for the next generation Grid infrastructure”. Proceedings of the International Con-
ference on Computing in High Energy and Nuclear Physics (CHEP’04) (2004), pages 826–830.
doi:10.5170/CERN-2005-002.826 (cited on page 11).

Lee, Jae-nam, Minh Q Huynh, Ron Chi-Wai Kwok, and Shih-ming Pi [2003]. “IT outsourcing evolution:
past, present, and future”. Communications of the ACM 46.5 (2003), pages 84–89. ISSN 00010782.
doi:10.1145/769800.769807 (cited on page 3).

Lee, Youngki, Sharad Agarwal, Chris Butcher, and Jitu Padhye [2008]. “Measurement and estimation of
network QoS among peer Xbox 360 game players”. Lecture Notes in Computer Science 4979 LNCS
(2008), pages 41–50. ISSN 03029743. doi:10.1007/978-3-540-79232-1{_}5 (cited on pages 65, 79).

Lewis, Grace A., Sebastian Echeverría, Soumya Simanta, Ben Bradshaw, and James Root [2014]. “Cloudlet-
Based Cyber-Foraging for Mobile Systems in Resource-Constrained Edge Environments”. In: Pro-
ceedings of the 36th International Conference on Software Engineering. 2014, pages 412–415. ISBN

9781450327688 (cited on page 19).

Lin, Boci, Yan Chen, Xu Chen, and Yingying Yu [2012]. “Comparison between JSON and XML in
Applications Based on AJAX”. Proceedings - 2012 International Conference on Computer Science
and Service System (2012), pages 1174–1177. doi:10.1109/CSSS.2012.297 (cited on page 109).

Lua, Eng Keong, Jon Crowcroft, Pias Marcelo, Ravi Sharma, and Lim Steven [2005]. “A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes”. IEEE Communications Surveys & Tutorials
(2005), pages 72–93. ISSN 14388871. doi:10.2196/jmir.1752 (cited on page 140).

Luan, Tom H., Longxiang Gao, Zhi Li, Yang Xiang, Guiyi We, and Limin Sun [2016]. “Fog Comput-
ing: Focusing on Mobile Users at the Edge”. eprint arXiv:1502.01815v3 (2016), pages 1–11. ISSN

10848045. doi:10.1016/j.jnca.2015.02.002. arXiv: 1502.01815. http://arxiv.org/abs/1502.01815
(cited on pages 13, 14).

Lui, F, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badget, and D. Leaf [2011]. “NIST Cloud Computing
Reference Architecture: Recommendations of the National Institute of Standards and Technology”.
NIST Special Publication 500-292 (2011). doi:500-299 (cited on pages 11–13).

Mahy, Y, P Matthews, and J Rosenberg [2010]. Traversal Using Relays around NAT (TURN): Relay
Extensions to Session Traversal Utilities for NAT (STUN). 2010. https://tools.ietf.org/html/
rfc5766 (cited on page 65).

http://www.amazon.com/exec/obidos/ASIN/9780738494005/keithandrewshcic
http://www.redbooks.ibm.com/abstracts/sg246778.html?Open
http://www.redbooks.ibm.com/abstracts/sg246778.html?Open
http://dx.doi.org/2070-1721
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.springerlink.com/index/U6777405301NP063.pdf
http://www.springerlink.com/index/U6777405301NP063.pdf
http://www.amazon.com/exec/obidos/ASIN/978-1-4673-0775-8/keithandrewshcic
http://dx.doi.org/10.1109/INFCOM.2012.6195845
http://dx.doi.org/10.1109/INFCOM.2012.6195845
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6195845
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6195845
http://dx.doi.org/10.5170/CERN-2005-002.826
http://worldcatlibraries.org/wcpa/issn/00010782
http://dx.doi.org/10.1145/769800.769807
http://worldcatlibraries.org/wcpa/issn/03029743
http://dx.doi.org/10.1007/978-3-540-79232-1{_}5
http://www.amazon.com/exec/obidos/ASIN/9781450327688/keithandrewshcic
http://dx.doi.org/10.1109/CSSS.2012.297
http://worldcatlibraries.org/wcpa/issn/14388871
http://dx.doi.org/10.2196/jmir.1752
http://worldcatlibraries.org/wcpa/issn/10848045
http://dx.doi.org/10.1016/j.jnca.2015.02.002
http://arxiv.org/abs/1502.01815
http://arxiv.org/abs/1502.01815
http://dx.doi.org/500-299
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766

Bibliography 145

NIST [2011]. “Cloud Architecture Reference Models: A Survey”. Document NIST CCRATWG 004
(2011) (cited on page 11).

Nurseitov, Nurzhan, Michael Paulson, Randall Reynolds, and Clemente Izurieta [2009]. “Comparison
of JSON and XML Data Interchange Formats: A Case Study”. Caine (2009), pages 157–162. http:
//www.cs.montana.edu/izurieta/pubs/caine2009.pdf (cited on page 109).

OASIS [2013]. eXtensible Access Control Markup Language (XACML) Version 3.0. 2013. http://docs.
oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html (cited on pages 95, 99).

OASIS [2014]. JSON Profile of XACML 3.0 Version 1.0. 2014. http://docs.oasis-open.org/xacml/
xacml-json-http/v1.0/xacml-json-http-v1.0.html (cited on pages ix, 109, 110).

Parno, Bryan, Jon Howell, Craig Gentry, and Mariana Raykova [2013]. “Pinocchio: Nearly practical
verifiable computation”. Proceedings - IEEE Symposium on Security and Privacy (2013), pages 238–
252. ISSN 10816011. doi:10.1109/SP.2013.47 (cited on page 21).

Pordes, Ruth, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy, Paul Avery, Kent
Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob Gardner, Mike Wilde, Alan Blatecky,
John McGee, and Rob Quick [2007]. “The open science grid”. Journal of Physics: Conference Series
78 (2007), page 012057. ISSN 1742-6588. doi:10.1088/1742-6596/78/1/012057 (cited on page 10).

Reiter, Andreas [2015]. “Enabling Secure Communication over Existing Peer-to-Peer Frameworks”.
2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Pro-
cessing (2015), pages 575–582. ISSN 1066-6192. doi:10.1109/PDP.2015.10. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7092777 (cited on pages 6, 139, 140).

Reiter, Andreas [2017]. “Secure Policy-based Device-to-Device Offloading for Mobile Applications”.
In: 32nd ACM Symposium on Applied Computing. In Press, 2017. ISBN 9781450344869 (cited on
pages 6, 103).

Reiter, Andreas and Alexander Marsalek [2017]. “WebRTC: Your Privacy is at Risk”. 32nd ACM Sym-
posium on Applied Computing In press (2017) (cited on pages 6, 7).

Reiter, Andreas, Bernd Prünster, and Thomas Zefferer [2017]. “Hybrid Mobile Edge Computing: Un-
leashing the Full Potential of Edge Computing in Mobile Device Use Cases”. In: 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid). In Press, 2017 (cited on
pages 6, 7, 20).

Reiter, Andreas and Thomas Zefferer [2015a]. “Paving the Way for Security in Cloud-Based Mobile
Augmentation Systems”. In: 3rd IEEE International Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (IEEE Mobile Cloud 2015). 2015, pages 89–98. ISBN 978-1-4799-8977-5.
doi:10.1109/MobileCloud.2015.12. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=
7130873 (cited on pages 6, 27, 51).

Reiter, Andreas and Thomas Zefferer [2015b]. “POWER: A cloud-based mobile augmentation approach
for web- and cross-platform applications”. 2015 IEEE 4th International Conference on Cloud Net-
working, CloudNet 2015 (2015), pages 226–231. doi:10.1109/CloudNet.2015.7335313 (cited on
pages 6, 73).

Reiter, Andreas and Thomas Zefferer [2016]. “Flexible and Secure Resource Sharing for Mobile Aug-
mentation Systems”. 2016 4th IEEE International Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (MobileCloud) (2016), pages 31–40. doi:10 .1109 /MobileCloud .2016 .8.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474403 (cited on pages 6, 52, 56,
78, 84, 86–90).

http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.html
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.html
http://worldcatlibraries.org/wcpa/issn/10816011
http://dx.doi.org/10.1109/SP.2013.47
http://worldcatlibraries.org/wcpa/issn/1742-6588
http://dx.doi.org/10.1088/1742-6596/78/1/012057
http://worldcatlibraries.org/wcpa/issn/1066-6192
http://dx.doi.org/10.1109/PDP.2015.10
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7092777
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7092777
http://www.amazon.com/exec/obidos/ASIN/9781450344869/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/978-1-4799-8977-5/keithandrewshcic
http://dx.doi.org/10.1109/MobileCloud.2015.12
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7130873
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7130873
http://dx.doi.org/10.1109/CloudNet.2015.7335313
http://dx.doi.org/10.1109/MobileCloud.2016.8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474403

146 Bibliography

Rhee, Keunwoo, Dongho Won, Sang Woon Jang, Sooyoung Chae, and Sangwoo Park [2013]. “Threat
modeling of a mobile device management system for secure smart work”. Electronic Commerce
Research 13.3 (2013), pages 243–256. ISSN 13895753. doi:10.1007/s10660-013-9121-4 (cited on
pages 113, 114).

Robie, Jonathan, Michael Dyck, and Josh Spiegel [2017]. XML Path Language (XPath). 2017. https:
//www.w3.org/TR/2017/PR-xpath-31-20170117/ (cited on page 110).

Rong, Chunming, Son T. Nguyen, and Martin Gilje Jaatun [2012]. “Beyond lightning: A survey on
security challenges in cloud computing”. Computers & Electrical Engineering 39.1 (Jan. 2012),
pages 47–54. ISSN 00457906. doi:10 . 1016 / j . compeleceng . 2012 . 04 . 015. http://linkinghub.
elsevier.com/retrieve/pii/S0045790612000870 (cited on page 37).

Rosenberg, J [2010]. Interactive Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer Protocols. Technical report. 2010. https://tools.ietf.
org/html/rfc5245 (cited on page 65).

Rowstron, Antony and Peter Druschel [2001]. “Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems”. Middleware 2001 2218.November 2001 (2001),
pages 329–350. ISSN 03029743. doi:10 . 1007 / 3 - 540 - 45518 - 3. http://www.springerlink.com/
index/10.1007/3-540-45518-3 (cited on page 140).

Ryan, Mark D. [2013]. “Cloud computing security: The scientific challenge, and a survey of solutions”.
Journal of Systems and Software 86.9 (Sept. 2013), pages 2263–2268. ISSN 01641212. doi:10.1016/

j.jss.2012.12.025. http://www.sciencedirect.com/science/article/pii/S0164121212003378 (cited on
page 37).

Saiedian, Hossein and Dan Broyle [2011]. “Security vulnerabilities in the same-origin policy: Implica-
tions and alternatives”. IEEE Computer Society 44.9 (2011), pages 29–36. ISSN 00189162. doi:10.
1109/MC.2011.226 (cited on page 78).

Satyanarayanan, Mahadev [2001]. “Pervasice Computing: Vision and Challenges”. IEEE Personal Com-
munications (2001), pages 10–17 (cited on pages 17–19).

Schmuck, F and R Haskin [2002]. “GPFS: A Shared-Disk File System for Large Computing Clusters”.
Proceedings of the First USENIX Conference on File and Storage Technologies January (2002),
pages 231–244. http://portal.acm.org/citation.cfm?id=1083349 (cited on page 10).

Shepler, Spencer, Mike Eisler, David Robinson, Brent Callaghan, Robert Thurlow, David Noveck, and
Carl Beame [2003]. Network File System (NFS) Version 4 Protocol. Technical report. RFC Editor,
2003. http://www.rfc-editor.orf/rfc/rfc3530.txt (cited on page 10).

Sinha, Kanad and Milind Kulkarni [2011]. “Techniques for Fine-Grained, Multi-site Computation Of-
floading”. 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(May 2011), pages 184–194. doi:10.1109/CCGrid.2011.69. http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5948609 (cited on page 51).

Stoica, Ion, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan [2001]. “Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications”. Conference on Applications,
technologies, architectures, and protocols for computer communications (SIGCOMM ’01) (2001),
pages 149–160. ISSN 01464833. doi:10.1145/383059.383071. http://portal.acm.org/citation.
cfm?doid=383059.383071 (cited on pages 64, 139).

Sumaray, Audie and S. Kami Makki [2012]. “A Comparison of Data Serialization Formats for Optimal
Efficiency on a Mobile Platform”. Proceedings of the 6th International Conference on Ubiquitous
Information Management and Communication 8.4 (2012), page 1. ISSN 1559-1131. doi:10.1145 /

1281700.1281707. http://dl.acm.org/citation.cfm?id=2184810 (cited on page 109).

http://worldcatlibraries.org/wcpa/issn/13895753
http://dx.doi.org/10.1007/s10660-013-9121-4
https://www.w3.org/TR/2017/PR-xpath-31-20170117/
https://www.w3.org/TR/2017/PR-xpath-31-20170117/
http://worldcatlibraries.org/wcpa/issn/00457906
http://dx.doi.org/10.1016/j.compeleceng.2012.04.015
http://linkinghub.elsevier.com/retrieve/pii/S0045790612000870
http://linkinghub.elsevier.com/retrieve/pii/S0045790612000870
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5245
http://worldcatlibraries.org/wcpa/issn/03029743
http://dx.doi.org/10.1007/3-540-45518-3
http://www.springerlink.com/index/10.1007/3-540-45518-3
http://www.springerlink.com/index/10.1007/3-540-45518-3
http://worldcatlibraries.org/wcpa/issn/01641212
http://dx.doi.org/10.1016/j.jss.2012.12.025
http://dx.doi.org/10.1016/j.jss.2012.12.025
http://www.sciencedirect.com/science/article/pii/S0164121212003378
http://worldcatlibraries.org/wcpa/issn/00189162
http://dx.doi.org/10.1109/MC.2011.226
http://dx.doi.org/10.1109/MC.2011.226
http://portal.acm.org/citation.cfm?id=1083349
http://www.rfc-editor.orf/rfc/rfc3530.txt
http://dx.doi.org/10.1109/CCGrid.2011.69
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5948609
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5948609
http://worldcatlibraries.org/wcpa/issn/01464833
http://dx.doi.org/10.1145/383059.383071
http://portal.acm.org/citation.cfm?doid=383059.383071
http://portal.acm.org/citation.cfm?doid=383059.383071
http://worldcatlibraries.org/wcpa/issn/1559-1131
http://dx.doi.org/10.1145/1281700.1281707
http://dx.doi.org/10.1145/1281700.1281707
http://dl.acm.org/citation.cfm?id=2184810

Bibliography 147

Suzic, Bojan and Andreas Reiter [2016]. “Towards Secure Collaboration in Federated Cloud Environ-
ments”. Workshop on Security, Privacy, and Identity Management in the Cloud (2016) (cited on
pages 6, 100).

TomP2P [2014]. TomP2P: A P2P-based high performance key-value pair storage library. 2014. http:
//tomp2p.net (cited on page 80).

Yan, Zheng, Xixun Yu, and Wenxiu Ding [2017]. “Context-aware verifiable cloud computing”. IEEE
Access 5 (2017), pages 2211–2227. ISSN 21693536. doi:10.1109/ACCESS.2017.2666839 (cited on
page 21).

Yu, Xixun, Zheng Yan, and Athanasios V. Vasilakos [2017]. “A Survey of Verifiable Computation”. Mo-
bile Networks and Applications 22.3 (2017), pages 438–453. ISSN 15728153. doi:10.1007/s11036-
017-0872-3 (cited on page 21).

Zhang, Lide, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Z Morley Mao, and Lei
Yang [2010]. “Accurate Online Power Estimation and Automatic Battery Behavior Based Power
Model Generation for Smartphones”. Proceedings of the eighth IEEE/ACM/IFIP international con-
ference on Hardware/software codesign and system synthesis (2010), pages 105–114 (cited on page 86).

Zhou, Bowen, Amir Vahid Dastjerdi, Rodrigo N Calheiros, Satish Narayana Srirama, and Rajkumar
Buyya [2015]. “mCloud: A Context-aware Offloading Framework for Heterogeneous Mobile Cloud”.
1374.c (2015), pages 1–14. doi:10.1109/TSC.2015.2511002 (cited on pages 27, 34, 54).

http://tomp2p.net
http://tomp2p.net
http://worldcatlibraries.org/wcpa/issn/21693536
http://dx.doi.org/10.1109/ACCESS.2017.2666839
http://worldcatlibraries.org/wcpa/issn/15728153
http://dx.doi.org/10.1007/s11036-017-0872-3
http://dx.doi.org/10.1007/s11036-017-0872-3
http://dx.doi.org/10.1109/TSC.2015.2511002

	Contents
	List of Figures
	List of Tables
	List of Listings
	I Problem Definition
	1 Introduction
	1.1 Motivation
	1.2 Methodology
	1.3 Contribution
	1.4 Outline

	2 Cloud Computing and Related Concepts
	2.1 Grid Computing
	2.2 Cloud Computing
	2.3 Mobile Edge Computing
	2.4 Chapter Conclusions

	3 The Evolution of Hybrid Mobile Edge Computing
	3.1 Cyber Foraging
	3.2 Mobile Cloud Computing (MCC)
	3.3 Hybrid Mobile Edge Computing (HMEC)
	3.4 Verifiable Computing

	4 Part I Conclusions

	II A Security Assessment Framework for (Hybrid) Mobile Cloud/Edge Computing Frameworks
	5 Existing (H)MCC Frameworks
	5.1 MAUI
	5.2 CloneCloud
	5.3 Cuckoo
	5.4 ThinkAir
	5.5 TANGO
	5.6 mCloud
	5.7 Chapter Conclusions

	6 Security Assessment
	6.1 Security Assessment Catalogue
	6.1.1 Assets and Threats
	6.1.2 Security Requirements

	6.2 Evaluation of Existing Frameworks
	6.2.1 R1 - Access Control
	6.2.2 R2 - No single-points-of-failure
	6.2.3 R3 - Usage of multiple communication technologies
	6.2.4 R4 - Resource's integrity assurance on technical level
	6.2.5 R5 - Complete task isolation
	6.2.6 R6 - Non-repudiation
	6.2.7 R7 - Protection against resource over-consumption

	7 Part II Conclusions

	III A Novel HMEC Approach
	8 A Re-usable HMEC Architecture and Solution
	8.1 Current Approaches
	8.1.1 Partitioning Models
	8.1.2 Offloading Techniques
	8.1.3 Current Architectures

	8.2 Design Principles
	8.3 Evolved Flexible Architecture
	8.3.1 Client Architecture
	8.3.2 Server Architecture
	8.3.3 Flexible Network Infrastructure

	8.4 Chapter Conclusions

	9 Implementation
	9.1 Operation Environment
	9.2 Offloading Framework
	9.2.1 Implementation-focused Architecture
	9.2.2 POWER - A Dart-based Offloading Framework
	9.2.3 Compile-Time Transformer
	9.2.4 Repositories
	9.2.5 Communication Technologies
	9.2.5.1 Decentralized Peer-to-Peer Framework in Web Environments
	9.2.5.2 Super Node-based Peer-to-Peer Framework

	9.2.6 Isolation
	9.2.6.1 Isolation on Mobile Devices
	9.2.6.2 Isolation on Dedicated Computing Units

	9.2.7 Realisation

	9.3 Framework Evaluations
	9.3.1 Test Setup
	9.3.2 Energy Consumption Evaluations
	9.3.3 Performance Impact Evaluations

	9.4 Chapter Conclusions

	10 Part III Conclusions

	IV Trust, Security and Privacy
	11 Processing Sensitive Data
	11.1 Extensible Access Control Markup Language and Enforcement (XACML)
	11.1.1 Policy Language
	11.1.2 Enforcement Model

	11.2 SUNFISH Data Security Approaches
	11.3 Chapter Conclusions

	12 Enable HMEC to Operate on Sensitive Data
	12.1 Enhancing the Enforcement Infrastructure
	12.1.1 Requirements on the Policy Language and Evaluation Infrastructure
	12.1.2 HMEC Tailored Policy Language
	12.1.2.1 R 1 - Flexible Specification of Targeted Input Data
	12.1.2.2 R 2 - Allowed Offloading Targets
	12.1.2.3 R 3 - Evaluation Result Caching
	12.1.2.4 HMEC Optimisations
	12.1.2.5 R 4 - Cryptographic Binding to Trusted Policy Decision Infrastructures

	12.1.3 Device Attestation Methods
	12.1.3.1 MDM- and Certificate-based Solutions
	12.1.3.2 Google Safetynet-based Solution
	12.1.3.3 Intel SGX-based Solution

	12.2 Trust Model
	12.3 Implementation
	12.3.1 Enrolment Process
	12.3.2 Policy-aware Annotation

	12.4 Performance Evaluation
	12.4.1 Policy Evaluation Performance at the PDP
	12.4.2 Policy Caching Performance Evaluation

	12.5 European General Data Protection Regulation
	12.6 Example Scenario: Applications Operating on Personal Data
	12.6.1 Image Processing Application
	12.6.2 Structured Data Processing Application

	12.7 Chapter Conclusions

	13 Conclusions and Future Work

	V Appendices
	A Peer-to-Peer Networks
	Bibliography

		2017-09-07T16:18:23+0200
	Andreas Reiter
	Signaturpruefung unter http://www.signaturpruefung.gv.at

