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Abstract

The iron losses in an electrical machine represent a large portion of the total losses
having thereby essential influence on the efficiency. Without any measurements the
iron losses cannot be described as simple analytically as the copper losses . If no
measurement data are provided, approximation-based methods have to be used.
The aim of this thesis is to find, implement and verify suitable iron loss calcu-
lation methods, for fractional horse power drives. At the beginning, a thorough
literature research gives an overview on different iron loss calculation methods.
Reaching from simple Steinmetz-based methods to measurement-based approaches
to physico-mathematical methods. As the next step, two selected iron loss calcu-
lation procedures are explained in detail. The first one, the improved generalized
Steinmetz equation (iGSE), is a Steinmetz-based approach and requires Steinmetz
parameters only, which can easily be determined from the iron loss curves of the
data sheet when needed. The second method, the loss surface approach, determines
a loss surface in the B-dB

dt room from measurements, which represents the material
behavior. Although the loss surface approach is a bit more complex than the iGSE it
can also be used for materials where no data sheet is available or if the characteristics
of the material are changed due to the cutting process.
Subsequently, the two implemented iron loss calculation methods are tested for
different flux density distributions and the results are compared with each other.
Finally, it is discussed how to improve the methods accuracy and applicability.
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Zusammenfassung

Die Eisenverluste einer elektrischen Maschine stellen einen großen Anteil der ge-
samten Verluste dar und beeinflussen somit maßgeblich den Wirkungsgrad. Im
Gegensatz zu den Kupferverlusten, lassen sich die Eisenverluste nicht so einfach
analytisch bestimmen und es muss daher auf Näherungsverfahren oder messtech-
nisch gestützte Methoden zurückgegriffen werden.
Diese Arbeit beschäftigt sich damit, für Kleinmotoren geeignet erscheinende Bestim-
mungsmethoden zu finden, zu implementieren und zu testen. Zu Beginn steht eine
Literarturrecherche in der der Bogen von einfachen Steinmetz basierten Ansätzen,
über messtechnische bis hin zu aufwändigen physikalisch mathematischen Model-
len gespannt wird. Im nächsten Schritt werden die zwei gewählten Verfahren näher
erläutert. Das erste, die improved generalized Steinmetz equation (iGSE), ist ein auf der
Steinmetzformel beruhender Ansatz. Dieser benötigt nur die Steinmetzparameter,
die sich leicht aus den Verlustkurven im Datenblatt bestimmen lassen. Das zweite
Verfahren, das loss surface Verfahren, bestimmt die Verluste mit Hilfe einer Oberfläche
im B-dB

dt Raum welche das Materialverhalten repräsentiert. Diese Oberfläche muss
messtechnisch aufgenommen werden. Somit ist diese Methode etwas aufwändiger
als die iGSE, kann allerdings auch für Materialien eingesetzt werden, für die kein
Datenblatt vorhanden ist oder deren Eigenschaften durch die Bearbeitung verändert
wurden.
Anschließend werden die zwei implementierten Verfahren mit verschiedenen Fluss-
dichteverläufen messtechnisch überprüft und miteinander verglichen. Abschließend
werden noch die zukünftigen Schritte, um die Genauigkeit und Anwendbarkeit der
Modelle zu verbessern, diskutiert.
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Chapter 1

Short overview of iron loss models

1.1 Introduction

In more and more applications of daily life small scale drives are used. Whereby the
trend towards permanent magnet brushless direct current drives, so called BLDC-
drives, is increasing. Domestic appliances, fans, small pumps and actuators in
automobiles are only a few areas of usage. Since the number of applications is rising,
the number of BLDC- drives is also rising and due to the increasing environmental
awareness of the customers, an increase in efficiency of these drives is essential.
Cooper losses and iron losses are the two biggest losses in such machines [1]. The
cooper losses are relatively easy to calculate with PCu = I2

·RCu, when the frequency
is so low that high frequency effects can be neglected. The estimation of the iron
losses needs a little more effort. The aim of this thesis is to identify and implement
iron loss calculation methods, which seem suitable for small scale drives and have a
good trade off between accuracy and complexity. In this section a brief description
of the considered iron loss models is given. Iron loss calculation is an important part
of the efficiency enhancement of electric drives. Hence many teams in the world
are involved in the enormous research effort, so the results are constantly changing.
Therefore, this overview does not claim completeness.

1.2 Steinmetz based models

Charles Proteus Steinmetz presented his work on the calculation of losses in magnetic
materials 1892 at a meeting of the American Institute of Engineers (AIEE) in New
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Chapter 1 Short overview of iron loss models

York. From this empirical formula the losses per unite volume are calculated [2]:

pv = ηB̂1.6. (1.1)

pv . . . losses during a complete cycle of magnetization
η . . . material constant
B̂ . . . peak value of the flux density

(1.1) does not contain any frequency dependence. However to honour his funda-
mental work on iron losses, (1.2) the currently used equation has been named after
Steinmetz

pv = k f αB̂β. (1.2)

k, α and β . . . material constants - Steinmetz parameters
f . . . frequency of magnetization

(1.2) is only valid for sinusoidal excitation and a limited frequency and flux density
range. In modern applications the occurring flux distribution is far from sinusoidal.
Due its simplicity it would be desirable to find a way how to use a form of this
equation applicable to non sinusoidal waveforms. Many different Steinmetz based
approaches have been developed in the past, but there a two things they all have in
common.

• The Steinmetz parameters are for use in the SI- system, so the frequency must
be used in Hz and the flux density in T, the calculated iron losses are in W

m3 .

• The hysteresis curve is getting wider with increasing frequency, so also the
losses increase. The parameter alpha tries to describe this circumstance, but
this only works for a limited frequency range. Therefore, the choice of the
parameter set has big influence on the result and so one set should be only
used for a certain frequncy range, such as it is done in Section 2.5.

2



1.2 Steinmetz based models

1.2.1 Modified Steinmetz Equation - MSE

A first approach to calculate core losses caused by non sinusoidal waveforms is the
so called "Modified Steinmetz Equation". In [3], based on the work of Walter Röcker,
et al., it was shown that the losses depend rather on dM

dt than on the frequency of
the externally applied field, where dM

dt is the rate of change of the magnetization and
so it is proportional to dB

dt . In [4] Dürnbaum introduces a method to calculate an
equivalent frequency feq for an arbitrary waveform. The sinusoidal flux distribution
with feq produces the same losses than the considered signal. With the normalization
constant 2

(∆Bπ)2 the equivalent frequency can be calculated as follows [5]

feq =
2

(∆Bπ)2

T∫
0

(
dB
dt

)2

dt. (1.3)

feq . . . equivalent frequency

To use this frequency in the Steinmetz equation, it has to be adapted. In its original
form it calculates a power loss per unit volume, if both sides are multiplied with
the period duration, the energy dissipated in a complete cycle of magnetization is
obtained.

T =
1
f

(1.4)

ev = pvT = pv
1
f

= k f α
1
f

B̂β = k f α−1B̂β (1.5)

(1.5) calculates an energy, with the magnetization rate it becomes a power again

pv =
(
k f α−1

eq B̂β
)

fr. (1.6)

fr . . . magnetization frequency

With the Modified Steinmetz Equation a simple approach is given for iron loss
calculation with an arbitrary flux density waveform. The drawback of this method

3



Chapter 1 Short overview of iron loss models

is, that in most cases, the calculated iron losses are too small and the lack in accuracy
rises with increasing amplitude of higher harmonics. In addition, the losses are a
discontinuous function of a continuous change of the waveform parameters [6].

1.2.2 Generalized Steinmetz Equation - GSE

The "Generalized Steinmetz Equation" was developed under the assumption, that
the losses are a single valued function of the instant flux density B(t) and the rate of
change dB(t)

dt

pv = f
(

dB(t)
dt

,B(t)
)

. (1.7)

With the help of the GSE the instantaneous losses can be calculated as follows

pv(t) = k1

∣∣∣∣∣dB(t)
dt

∣∣∣∣∣α |B(t)|β−α . (1.8)

Here k1 differs from the constant used in the before mentioned forms of the Stein-
metz equation and can be expressed as

k1 =
k

(2π)α−1
∫ 2π

0
|cos(Θ)|α |sin(Θ)|β−1 dΘ

. (1.9)

The mean value over the time period T is

p̄v =
1
T

∫
T

k1

∣∣∣∣∣dB(t)
dt

∣∣∣∣∣α |B(t)|β−α dt. (1.10)

This form of the Steinmetz equation would not work when α > β, because the iron
losses would get infinite. For some materials α could get larger than β, so (1.10) can
not be used for these materials [7]. The assumption that the losses only depend on
instantaneous values of the flux density ignores the time history of the flux density
waveform and could cause reasons for inaccuracy. The iGSE tries to overcome this
drawback, by considering not only instantaneous values [6].

4



1.2 Steinmetz based models

1.2.3 improved Generalized Steinmetz Equation - iGSE

By using ∆B instead of B(t) (1.10)becomes [6]

p̄v =
1
T

∫
T

ki

∣∣∣∣∣dB(t)
dt

∣∣∣∣∣α (∆B)β−α dt. (1.11)

The factor ki can be determined from the Steinmetz parameters with

ki =
k

(2π)α−1
2π∫
0
|cos(Θ)|α 2β−αdΘ

. (1.12)

A further increase in accuracy is achieved by decomposing the flux density waveform
in one major loop and a number of minor loops, corresponding to the waveform. The
flux density distribution has not to include minor loops, for a detailed description
see Section 2.2. Then, the losses for every single loop are calculated with (1.11). The
total losses are given by the weighted sum of the single loops

p̄tot =
∑

i

p̄i
Ti

T
. (1.13)

1.2.4 Natural Steinmetz Extension - NSE

This is a very similar approach to the iGSE and was developed by a different team
at the same time. The losses, averaged over one period, can be calculated with [8]

p̄v =
(
∆B
2

)β−α kN

T

T∫
0

∣∣∣∣∣dB
dt

∣∣∣∣∣α dt. (1.14)

The constant kN is given by

kN =
k

(2π)α−1
2π∫
0
|cos(Θ)|α dΘ

. (1.15)

5



Chapter 1 Short overview of iron loss models

The main application area for the NSE are triangular flux density wave forms, as
they appear very often with rectangular switching processes in power electronics
[9]. Such a flux density waveform has no minor loops, see Section 2.2. Thus the
decomposition of the waveform is omitted.

1.2.5 improved improved Generalized Steinmetz Equation - i2GSE

Referring to the iGSE, in sections of the flux density waveform with constant flux,
the iron losses should be zero, because the dB

dt - term gets zero, see Figure 1.1. Mea-
surements have shown that this is not true and with increasing frequency of the
flux density waveform the error increases too. In [10] this effect is linked with a so
called relaxation processes. The H- and the B fields are shifted in time, thus if the
externally applied field on a specimen has become constant, in the specimen domain
wall movements and other processes are going on, to reach the new equilibrium. In
this time the domain walls are moving in such a way that the occupy the state of the
lowest energy. Through this movement losses occur, although the applied field is not
changing any more. The movement of the domain walls is only one process which
leads to the described losses, an exhaustive consideration would be misplaced here
and the interested reader is refereed to [11] or [12]. To take these losses into account,
the iGSE is expanded by one term, the so called excess loss term [10]

Figure 1.1: Trapezoidal flux density and its time derivative.
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1.2 Steinmetz based models

p̄v =
1
T

T∫
0

ki

∣∣∣∣∣dB
dt

∣∣∣∣∣α (∆B)β−α dt +

n∑
l=1

pr,l︸︷︷︸
Excess loss term

(1.16)

pr,l =
1
T

kr

∣∣∣∣∣dB(t-)
dt

∣∣∣∣∣αr

(∆B)βr

(
1 − e−

t1
τ

)
. (1.17)

pr,l . . . losses caused by the relaxation processes
kr, αr and βr . . . material constants

dB(t-)
dt . . . derivation of the flux density before the switching
τ . . . time constant for the relaxation process
n . . . number of phases with constant flux
t1 . . . duration of the phase with constant flux

kr, αr, βr and τ are material constants which have to be determined by additional
measurements. Note that these parameters are not identical to the normal Steinmetz
parameters. ki is calculated as for the iGSE, with (1.12). The relaxation processes can
be described with an e- function and so the losses do not increase remarkably even
if t1 > 5τ is valid. For low frequencies the relaxation processes can be neglected, so
the i2GSE is mainly used in power electronic applications.

1.2.6 Other Steinmetz based methods

Other Steinmetz based methods have been presented in the literature, many of
them only apply for a special case. Others use correction factors to take influences
such as higher harmonics or saturation into account and hence require very accurate
knowledge of the system and a higher data input. Therefore, they are not considered
here.

7



Chapter 1 Short overview of iron loss models

1.3 Loss surface model

This approach assumes that the material behaviour is exactly known if B and dB
dt are

known. Therefore, a surface in the B- dB
dt room is derived from measurements. Both

H or H dB
dt (the instantaneous losses) can be described from this surface. To generate

the surface, measurements with an Epstein frame, or with toroidal specimens and
a measurement bank as described in [13], are necessary. A good choice for the flux
density waveform, with which the measurements are taken, are triangular ones,
because they have a constant

∣∣∣dB
dt

∣∣∣. Therefore, every measurement with a certain
frequency provides values for a fixed positive and negative constant dB

dt . For the
evaluation of the measurement data, either the whole or the half surface could be
considered, by evaluating the whole curve or only the ascending or descending
branches, because (1.18) is valid [14]

pv

(
B(t),

dB(t)
dt

)
= pv

(
−B(t),−

dB(t)
dt

)
. (1.18)

When (1.18) is used, the size of the file in which the loss surface is stored, is halved.
Also the computational time for the calculation of the iron losses could be reduced,
depending on the interpolation method used. In [15] and [16] the described surface
represents the field strength H for every B(t)-dB(t)

dt data pair. With this information
hysteresis loops can be generated and then the losses per magnetization cycle can
be calculated. If a power should be calculated, the iron loss energy has to be divide
by the time needed for one magnetization cycle. This procedure has the advantage
that no parameters are required from manufacturer and for a wide flux density and
frequency range data are available. In addition even the degradation of the material,
due to the cutting process which changes the parameters, can be taken into account,
if specimens widths are chosen to catch structures in the final application. This
advantages comes with the prices of the measurements which has to be carried out
by the user himself.

8



1.4 Loss separation approach

1.4 Loss separation approach

In [17], as cited in [9] or in [18], Jordan introduced the loss separation approach. He
divided the losses in hysteresis loss term and a eddy current loss term

pv = ph + pe = khB̂2 + ke

(
f B̂

)2
. (1.19)

ph . . . hysteresis losses
pe . . . eddy current losses

kh and ke . . . material constants

This simply approach delivers inadequate results for contemporary applications
with novel materials, but based on this work, Bertotti expanded the formula with
the so called excess loss term [19]. With it he tried to take the difference between the
experiments and the forecast into account

pv = ph + pe + pex = kh f B̂2 + ke

(
f B̂

)2
+ kex

(
f B̂

) 3
2 . (1.20)

pex . . . excess losses
kex . . . material constant

If (1.20) is divided by the frequency f it becomes

pv

f
= wv = wh + we + wex = khB̂2 + keB̂2 f + kexB̂

3
2 f

1
2 (1.21)

and so it describes the single losses which occur for one period of the flux density B
with the frequency f . The evolution of the single losses as a function of the frequency
is shown in Figure 1.2 [20].

With increasing frequency the hysteresis losses stay constant, but the dynamic
losses, the sum of the eddy current and excess losses, increase. This fact must be
considered in applications where the iron is exposed to flux densities with high
frequencies. Such it is the case when frequency inverters are used or where the flux
density has a high content of harmonics because it is not sinusoidal anymore.

9



Chapter 1 Short overview of iron loss models

Figure 1.2: Single losses as a function of the frequency [20].

1.5 Physically based methods

Beside the empirical approaches, which are mainly used for engineering purposes,
also physically based approaches has been developed. These models are able to
describe the material behaviour very well, but with increasing accuracy also the
calculation time increases and in most cases they use more parameters than the
empirical ones. One thing they have in common is that they describe the hysteresis
loop in a mathematical way. So they try to reproduce the hysteresis behaviour. The
losses which arise during the change of magnetization could be calculated with the
BH integral

eh =

∫
HdB. (1.22)

This integral equals the enclosed area of the hysteresis loop and has the dimension
of energy per volume. The power loss is calculated by multiplying (1.22) with the
frequency of magnetization

pv = fr

∫
HdB. (1.23)

10



1.5 Physically based methods

1.5.1 Preisach model

This model was published in 1935 by F. Preisach [21]. The principle is based on the
representation of the complex form of the hysteresis loop by the weighted superpo-
sition of many so called Preisach hysterons (HR). Figure 1.3 shows the relationship
between the in- and output of such a hysteron. The output can only be −1 or 1
respectively. If the upper switching threshold α is exceeded from a level below α,
the output takes the high state. If the input falls below the lower switching thresh-
old β, the output takes the low state. If the input is in between the two switching
thresholds, the output retains its previous state.

Figure 1.3: Hysterion with the switching thresholds α and β.

By parallel connecting many hysterons and weighting their outputs, the magnetic
behaviour of the material is described.

Each hysteron has its own switching thresholds. The function, which calculates
the weighting factors µx(αx, βx), is called weighting function or Preisach function.
With an increasing number of hysterons the loss behaviour can be described with
increasing accuracy, when n finally goes to infinity, the discrete hysteresis loop
becomes a continuous one. The output of the whole system can be determined by

11



Chapter 1 Short overview of iron loss models

Figure 1.4: Parallel connection of single hysterons [21].

the integral

O(t) =

∫ ∫
α≥β

µ(α, β)Oα,β(t0,n0)I(t)dαdβ. (1.24)

The Preisach model is able to describe also other systems where hysteresis is
involved, so in Figure 1.4 the input is called I(t) and the output O(t) respectively.
Considering magnetic systems, the input is the magnetic field and the output the
magnetization of the material. The model considered until now only describes
static hysteresis, the rate of change is neglected. Some Preisach based approaches
to include the changing behaviour for higher frequencies, have been proposed in
literature such as [21] or [22].
One approach, as shown in [21], is to introduce a dependency of the weighting
function µ(α, β) on the rate of change of the output dO(t)

dt . So 1.24 gets

O(t) =

∫ ∫
α≥β

µ

(
α, β,

dO(t)
dt

)
Oα,β(t0,n0)I(t)dαdβ. (1.25)

12



1.5 Physically based methods

1.5.2 Jiles Atherton model

This model describes the material behaviour with a differential equation, where a
Langevin function is used. This special function has the form as shown in (1.26)

L(x) = coth(x) −
1
x

. (1.26)

The anhysteretic magnetization is the magnetization which occurs when the ma-
terial shows no hysteresis behaviour and can be described by the so called initial
magnetisation curve. This special waveform can be approximated with the Langevin
function [23]. The differential equation to calculate the magnetization is stated below
[24]

Man = Ms

[
coth

(H + αM
a

)
−

a
H + αM

]
(1.27)

dM
dH

= (1 − c)
Man −M

kδ − α(Man −M)
+ c

dMan

dH
. (1.28)

Man . . . anhysteretic magnetization
Ms . . . saturation magnetization

a, α, c and k . . . material parameters

The material parameters a and α influence the shape of the hysteresis loop, k and c
affect the width and Ms the height. δ is the sign

(
dH
dt

)
function, it distinguishes between

the ascending branch
(
sign

(
dH
dt

)
= 1

)
and the descending branch

(
sign

(
dH
dt

)
= −1

)
[25]. The Jiles Atherton model in this form can lead to insufficient results when
distorted hysteresis loops (asymmetrical excitation) are involved. In [24] a procedure
is shown how to expand the Jiles Atherton model in such a way that also the distorted
hysteresis loops and the changing behaviour with increasing frequency can be taken
into account. The approach is to express the single parameters as a function of the
magnetic field. This can be done in different ways, the relationship between the
parameters and the magnetic field can be a linear one, a gaussian one or as in [24]
a combination of a constant and a excitation dependent factor. The drawback of the
approach in [24] is that, ten instead of five parameters have to be determined, but it
delivers accurate results.
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Chapter 1 Short overview of iron loss models

1.6 Conclusion

In this chapter a short overview of the considered iron loss models was given. These
includes simple empirical approaches, such as the Steinmetz based ones, as well as
complex physical models, e.g., the expanded Jiles Atherton model from [24], where
ten parameters have to be determined. For a more comprehensive overview, refer-
ence is made to [9]. Special attention has to paid on calculation time and the effort for
the determination of the parameters. Thus, for this work FEM based methods and
magnetic circuit methods are not considered. Although the literature research was
performed thorough, it was not possible to find anything suitable which complies
with the requirements for complex waveforms and the possibility to consider the
processing of the used iron in fractional horse power motors. So the iGSE and the
loss surface approach were chosen. Both methods are able to deal with complex
waveforms as the appear with BLDC- drives. The iGSE is a simple model which
only needs the parameters from the data sheet of the used material. The loss surface
approach is a good choice, as it allows implicitly considering the cutting process
that may alter the parameters of the data sheets and can be applied if no data sheets
exist. Both with this Steinmetz based method and with the measurement based
method a tool is designed and implemented for calculating the iron losses which
overs advantages of other methods concerning non sinusoidal waveforms. Table 1.1
shows an overview of the different iron loss models and their characteristics, it is
based mainly on the table in [9] and should give an overview about the advantages
and disadvantages of the single models.

14



1.6
C

onclusion

Iron loss model Complex waveforms Material prior knowledge Accuracy Literature

Steinmetz Equation - small low [2]

Modified Steinmetz Equation + small low - medium [5]

Generalized Steinmetz Equation - medium low - medium [7], [6]

Improved Generalized
+ medium low-medium [6]

Steinmetz Equation

Natural Steinmetz Extension + medium low - medium [8]

Improved improved Generalized
+ high medium [6]

Steinmetz Equation

Loss separation model - medium medium [17]∗, [19]

Classical Preisach model + high good [21], [22]

Jiles- Atherton model + high good [25], [24]

Loss surface model + high medium - good
[13], [14],
[15], [16]

∗:as cited in [9] or in [18]

Table 1.1: Extended version of the table in [9].
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Chapter 2

Iron loss calculation with the iGSE

2.1 Introduction

In this Chapter the improved generalized Steinmetz equation (iGSE) is introduced,
as the name suggests, this approach is based on the Steinmetz formula. To overcome
the drawback of the original equation, that only sinusoidal flux density waveforms
can be calculated, also the dependency of dB

dt is taken into account. It is not tried
to find an equivalent frequency, which causes the same losses, as it is done by the
modified Steinmetz equation (MSE). The iGSE separates the flux density waveform
in its main- and subloops, for every single loop the losses are calculated and in the
end a weighted sum is used. Another big advantage is that this approach is only
based on Steinmetz parameters, which can be estimated very easily from the loss
curves provided by the manufacturer of the iron.

2.2 Nested loop algorithm

As shown in [6], the flux density over the time has to be separated in its main- and
subloops. It is possible that the minorloops also contain subloops, this nesting can
achieve any level, so the algorithm has to be capable to detect subloops at any nested
level. To realize this separation, an algorithm was implemented in MATLAB, the
fundamental principle is described in [6]. The authors of [6] provide their MATLAB
code but tests with different signals showed inaccuracies, so an own version was
implemented. In principle the process can be divided in the following steps

• Separation of the waveform in an ascending and a descending branch. The
ascending branch reaches from the global minimum to the global maximum.
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Chapter 2 Iron loss calculation with the iGSE

The same is valid for the descending branch, from the maximum to the min-
imum. If the function has more than one maximum or minimum it can be
chosen freely which points are taken for the division. In general, one of the
branches will not be in the waveform in one piece, one part will be at the end
of the period and the other one will be at the beginning.

• Separation of the main- and subloops. A subloop in the ascending branch
starts when the value of the next point is smaller than the value of the actual
point. It ends when the waveform reaches the value it had before the start of
the subloop. For the descending branch the subloop starts when the waveform
increases. An example for a first level subloop is shown in Figure 2.1. The
two subloops are plotted in red. If these are removed from the waveform the
mainloop in blue remains.

• Check if the subloops contain any minor loops. If this is the case apply the first
two steps on the subloops. These steps are repeated as long as there are minor
loops in the subloops.

Figure 2.1: First level subloop.
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2.2 Nested loop algorithm

An example for a second level subloop is shown in Figure 2.2. As in Figure 2.1,
the mainloop is plotted in blue and the subloops, now including minor loops, are
marked in red. For the sake of clarity the first level subloops and their decomposition
is shown with an offset.

Figure 2.2: Second level subloop.

In Figure 2.3 a signal with one subloop in the rising branch and one subloop in
the falling branch of the flux density waveform and their affiliation in the hysteresis
loop is shown. It can be seen, that a subloop in the flux density over time leads to a
minor loop in the hysteresis loop.

The user’s input is verified for mistakes which could lead to errors during the
calculation, but not if the input is meaningful. The iGSE is for the iron loss calculation
caused by a closed hysteresis loop. So the user has to verify if the waveform of B(t)
represents a closed loop and only contains one period.
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Chapter 2 Iron loss calculation with the iGSE

Figure 2.3: Nested loops in the hysteresis loop.

2.3 Equations

In this section the equations which are used to calculate the iron losses with the iGSE
are stated. If the main- and all the subloops are separated from the waveform of the
flux density, the losses caused by every single loop can be calculated with (2.1) [6]

p̄v =
1
T

∫
T

ki

∣∣∣∣∣dB(t)
dt

∣∣∣∣∣α (∆B)β−α dt, (2.1)

where the factor ki is

ki =
k

(2π)α−1
2π∫
0
|cos(Θ)|α 2β−αdΘ

. (2.2)

The total losses of the given waveform are obtained from the sum of every single
weighted loop. The weighting factor takes into account, that the period of the single
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loops is not as long as the period of the original waveform

p̄tot =
∑

i

p̄i
Ti

T
. (2.3)

2.4 Verification based on simple signals

The implemented algorithm was verified by analytic signals, because a cross check
can be done by hand easily. It should be checked if the algorithm separates the main-
and the subloops and if it calculates the iron losses correctly.

2.4.1 Testsignal 1 - Combined triangular signal

The first signal is shown in Figure 2.1, the frequency is 100 Hz and the amplitude
1 T. This simple signal allows it to check if the algorithm detects the subloops and
calculates the iron losses right. The first subloop extends from 1.25 ms to 2.5 ms
and the second one from 8.125 ms to 9.375 ms, the rest of the waveform belongs
to the mainloop. If the Steinmetz parameters are known, the iron losses could be
calculated. For test purposes it is assumed that the material is N87, because the
parameters are known from [26]

Steinmetz parameters - N87

α 1.25

β 2.46

k 15.9

Table 2.1: Parameters for N87 [26].

These parameters are for use in the SI- system, this must be considered in further
calculations to get the right results. In Figure 2.4 the mainloop of the signal is shown.

The mainloop’s period duration

Tmain = 10.625 ms − 3.125 ms = 7.5 ms. (2.4)
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Chapter 2 Iron loss calculation with the iGSE

Figure 2.4: Mainloop of the testsignal.

The mainloop is triangular, so dB
dt = ∆B

∆t is valid

dBmain

dt
=

−1 T − 1 T
6.875 ms − 3.125 ms

= −533.3
T
s

. (2.5)

For the further calculation only the absolute value of dB
dt is of interest and it is the

same for the ascending and descending branch∣∣∣∣∣dBmain

dt

∣∣∣∣∣ = 533.3
T
s

. (2.6)

To calculate the losses of the mainloop the peak to peak flux density ∆Bmain of the
mainloop and the factor ki have to be determined

∆Bmain = Bmain, max − Bmain, min = 1 T − (−1 T) = 2 T (2.7)
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2.4 Verification based on simple signals

ki =
k

(2π)α−1
∫ 2π

0
|cos(Θ)|α 2β−αdΘ

=

=
15.9

(2π)1.25−1
∫ 2π

0
|cos(Θ)|1.25 22.46−1.25dΘ

= 1.1659.
(2.8)

With these informations the losses caused by the mainloop can be estimated by

p̄v, main =
1

Tmain

∫
Tmain

ki

∣∣∣∣∣dB(t)
dt

∣∣∣∣∣α (∆B)β−α dt =

=
1

7.5 ms

7.5 ms∫
t=0

1.1659 · 533.31.25
· 22.46−1.25dt = 6.9123

kW
m3 .

(2.9)

Figure 2.5 shows one exemplary subloop

Figure 2.5: Subloop of the signal.

The durations of booth subloops are equal and only the absolute value of dB
dt is of

interest, so only one subloop has to be calculated, the result can be multiplied by 2.
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Chapter 2 Iron loss calculation with the iGSE

The procedure is the same as for the mainloop, so only the results are stated.

Tsub = 1.25 ms (2.10)

∣∣∣∣∣dBsub

dt

∣∣∣∣∣ = 533.3
T
s

(2.11)

∆Bsub =
1
3

T (2.12)

p̄v, sub = 790.79
W
m3 (2.13)

The contributions of the single losses are summed up to obtain the total losses

p̄tot =
∑

i

p̄i
Ti

T
=

1
10 ms

(
6.9123

kW
m3 7.5 ms + 2 · 790.79

W
m3 1.25 ms

)
=

= 5.3819
kW
m3 .

(2.14)

Comparison

MATLAB analytic

5.3823 kW
m3 5.3819 kW

m3

Table 2.2: Comparison of the results for the first testsignal.

The difference between the two results is marginal and the error is due to rounding
in the calculation by hand.
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2.4 Verification based on simple signals

2.4.2 Testsignal 2 - Sinusoidal Signal

The previous verification was done before the Steinmetz parameters for the used
material were known, so the N87 parameters were used. The next two calculations
use the parameters for isovac 250-35 A, these parameters are determined in Section
2.5. The next considered signal is a sine with a frequency of 500 Hz and an amplitude
of 1100 mT. This flux density waveform contains no subloops, but the losses are
known from the data sheet and so it can be verified if they are calculated correctly.

Figure 2.6: Sinusoidal signal with a frequency
of 500 Hz and an amplitude of 1100 mT.

For this amplitude and frequency the following parameters are used

isovac 250-35 A parameters for 500 Hz

k 7.9

α 1.6

β 2.6

Table 2.3: Parameters for isovac 250-35 A at 500 Hz.
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The factor ki with is given with

ki =
k

(2π)α−1
∫ 2π

0
|cos(Θ)|α 2β−αdΘ

=

=
7.9

(2π)1.6−1
∫ 2π

0
|cos(Θ)|1.6 22.6−1.6dΘ

= 0.3939.
(2.15)

B(t) is sinusoidal, so dB
dt is cosinusoidal∣∣∣∣∣dB

dt

∣∣∣∣∣ =

∣∣∣∣∣ d
dt

(1100 mT sin(ωt))
∣∣∣∣∣ = |1100 mT cos(ωt)ω| . (2.16)

With the peak to peak flux density

∆B = 2 · 1100 mT = 2200 mT (2.17)

the iron losses can be determined

p̄v =
1
T

∫
T

ki

∣∣∣∣∣dB(t)
dt

∣∣∣∣∣α (∆B)β−α dt =

=
1

2 ms

2 ms∫
t=0

0.3939
∣∣∣1100 · 10−3 cos(2π500 · t)2π500

∣∣∣1.6 · 2.22.6−1.6dt =

= 210.67
kW
m3 .

(2.18)

Comparison

MATLAB analytic

210.85 kW
m3 210.67 kW

m3

Table 2.4: Comparison of the results for the second testsignal in kW
m3 .

It can be seen that the difference between the result of the MATLAB program
and the analytic calculation is very small and can be explained by the fact that the
automated calculation uses time discrete values to approximate the flux density
distribution and the Steinmetz equation is an approximation formula. To compare
the calculated losses with the losses given in the data sheet, the specific losses in W

kg
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2.4 Verification based on simple signals

have to be transferred to W
m3 . To do so the density of the material ρ is needed, it is

given in the data sheet with ρ = 7.6 g
cm3 = 7600 kg

m3 [27]

p̄ W
kg

=
p̄ kW

m3

ρ kg
m3

=
210.85 kW

m3

7.6 · 103 kg
m3

= 27.74
W
kg

. (2.19)

Comparison

MATLAB Datasheet

27.74 W
kg 27.70 W

kg

Table 2.5: Comparison of the results for the second testsignal in W
kg with the data

sheet [27].

A very good match of the result with the data sheet could be found. The iGSE
uses the Steinmetz parameters to calculate the iron losses, due to the fact that these
parameters describe only an approximation of the real flux density distribution, the
results will only be as good as this approximation. Section 2.5 compares the real
waveform and the approximation.
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2.4.3 Testsignal 3 - Approximation of a yoke flux density

The function of the algorithm was tested with a trapezoidal flux density waveform
which is often used for BLDC commutation. To calculate the waveform analytically,
it was approximated by a trapezoidal one.

Figure 2.7: Trapezoidal approximation for the flux density in the yoke.

Due to the dB
dt term in the loss formula of the iGSE, only the two edges of the

approximated signal contribute to the iron losses, the slope for the ascending and
the descending branch is the same∣∣∣∣∣dB

dt

∣∣∣∣∣ =

∣∣∣∣∣ −0.2406T − 0.2406T
23.15 · 10−4s − 2.778 · 10−4s

∣∣∣∣∣ = 236.21
T
s

. (2.20)

∆B is given with

∆B = 0.2406 T − (−0.2406 T) = 0.4812 T. (2.21)

The duration of the signal is

T = 0.01667 s. (2.22)

This period equals a frequency of approximately 60 Hz, so the parameters of Table
2.6 were used
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isovac 250-35 A parameters for 60 Hz

k 43.5

α 1.3

β 2.1

Table 2.6: Parameters for isovac 250-35 A at 60 Hz

The duration of the mainloop is

Tmain = 40.744 · 10−4 s. (2.23)

The factor ki is given with

ki =
k

(2π)α−1
∫ 2π

0
|cos(Θ)|α 2β−αdΘ

=

=
43.5

(2π)1.3−1
∫ 2π

0
|cos(Θ)|1.3 22.1−1.3dΘ

= 3.92.
(2.24)

With (2.2)

p̄v =
1
T

∫
T

ki

∣∣∣∣∣dB(t)
dt

∣∣∣∣∣α (∆B)β−α dt =

=
1

40.744 · 10−4 s

40.744 · 10−4 s∫
t=0

3.92 · 236.211.3
· 0.48122.1−1.3dt =

= 2657.26
W
m3

(2.25)

and (2.3) the total losses are

p̄tot =
∑

i

p̄i
Ti

T
=

40.744 · 10−4 s
0.01667 s

· 2657.26
W
m3 = 649.475

W
m3 . (2.26)
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Comparison

approximation - MATLAB approximation - analytic exact waveform - MATLAB

649.19 W
m3 649.48 W

m3 702.58 W
m3

Table 2.7: Comparison of the results for testsignal 3.

As shown in Table 2.7, the losses calculated with MATLAB and the losses calcu-
lated analytically, fit very well. Additionally to the two results for the approximated
curve, the result of the implemented MATLAB algorithm and the exact waveform
is shown. With an error of about 8 %, the result of the approximation is in the same
range as the exact curve. Of course a smaller error would be preferable, but the
approximation should not deliver exact results, it only should proof the plausibility
of the MATLAB algorithm.

2.5 Brute force parameter fit

To apply Steinmetz based methods the Steinmetz parameters have to be known.
The considered drives are all made of the electrical steel isovac 250-35 A from
voestalpine. In the data sheet only the losses over the magnetic polarisation of the
material, for different sinusoidal excitations at different frequencies, are given, so the
parameters have to be determined. The Steinmetz parameters vary with frequency
and flux density and are not stated. So if the Steinmetz parameters are of interest,
the user has to determine them by himself with the relevant data from the data sheet.
Because only one sort of electric steel is used, no great effort was made to make the
algorithm for the determination of the parameters very efficient. A simple brute
force algorithm was used, which searches for the best set of parameters over a wide
range. The following table shows an excerpt of the data sheet for a frequency of
60Hz.
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2.5 Brute force parameter fit

60 Hz

Nr. J H Ps µr

− mT A
m

W
kg -

1 600 47 0.44 10911

2 650 50 0.51 11145

3 700 53 0.58 11294

Table 2.8: Excerpt of the table for 60 Hz from the data sheet [27].

Such a table is given in the data sheet for frequencies of 50, 60, 200, 400, 500, 600,
700, 800 and 1000 Hz. Based on these data, one set of parameters was generated for
every single frequency. To use the data from the data sheet they have to be adapted,
because the losses are given in W

kg and the Steinmetz equation calculates the losses in
W
m3 . The density of the material is given with ρ = 7.60 g

cm3 = 7600 kg
m3 , so

p̄ W
m3

=
p̄ W

kg

ρ kg
m3

. (2.27)

The Steinmetz equation uses the flux density and not the given magnetic polari-
sation. The flux density and the polarisation are linked via

B = µ0H + J. (2.28)

B . . . magnetic flux density in the material
µ0 . . . vacuum permeability
H . . . magnetic field strength
J . . . magnetic polarisation of the material

The Steinmetz parameters determined via the brute force algorithm, for the dif-
ferent frequencies, are stated in Table 2.9
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One set of parameters per frequency

Nr. f k α β

− Hz - - -

1 50 43.4 1.3 2.1

2 60 43.5 1.3 2.1

3 200 42.5 1.3 2.4

4 400 27 1.4 2.5

5 500 7.9 1.6 2.6

6 600 31.4 1.4 2.2

7 700 31.9 1.4 2.3

8 800 32.5 1.4 2.4

9 1000 35.4 1.4 2.4

Table 2.9: One set of Steinmetz parameters per frequency.

In Figure 2.8 the waveforms achieved by the parameters and the Steinmetz equa-
tion are compared to the data from the data sheet.

Figure 2.8: Comparison with one set of Steinmetz parameters.
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2.5 Brute force parameter fit

As can be seen, the match, especially at low and high flux densities, is not very
good. To obtain better results the flux density range of every frequency is divided
to three equidistant parts, for every part an own set of Steinmetz parameters is
determined, providing three sets of parameters for one frequency. Table 2.10 shows
the results.

In Figure 2.9 the waveforms which are achieved with three sets of parameters per
frequency and the Steinmetz equation are shown.

Figure 2.9: Comparison with three sets of Steinmetz parameters.
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Three sets of parameters per frequency

f B k α β

Hz T - - -

50
0.15 - 0.7001 25.2 1.4 1.6

0.7001 - 1.2502 27.3 1.4 1.9
1.2502 - 1.7666 28 1.4 2.2

60
0.15 - 0.7001 37.3 1.3 1.6

0.7001 - 1.2502 40.4 1.3 1.9
1.2502 - 1.7666 27.5 1.4 2.2

200
0.15 - 0.7001 14 1.5 1.6

0.7001 - 1.2502 44.7 1.3 1.9
1.2502 - 1.7646 40.5 1.3 2.5

400
0.1 - 0.6501 13.5 1.5 1.6

0.6501 - 1.2002 28.1 1.4 1.9
1.2002 - 1.7656 43.1 1.3 2.8

500
0.1 - 0.6501 47 1.3 1.6

0.6501 - 1.2002 8.4 1.6 2
1.2002 - 1.7616 13.5 1.5 2.8

600
0.4001 - 0.7501 28.5 1.4 1.8
0.7501 - 1.1502 30 1.4 2
1.1502 - 1.5029 3.9 1.7 2.8

700
0.4001 - 0.7501 28.8 1.4 1.8
0.7501 - 1.1502 30.9 1.4 2.1
1.1502 - 1.5028 13.9 1.5 2.9

800
0.4501 - 0.8002 15.8 1.5 1.9
0.8002 - 1.1503 32.1 1.4 2.2
1.1503 - 1.5028 3.8 1.7 2.9

1000
0.4001 - 0.7502 32.4 1.4 1.9
0.7502 - 1.1503 17.4 1.5 2.2
1.1503 - 1.5028 15.5 1.5 2.9

Table 2.10: Three sets of Steinmetz parameters per frequency.
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2.6 Conclusion

Figure 2.10 shows the comparison of the results with one set of parameters, three
sets of parameters and the curve of the data sheet at a frequency of 700 Hz.

Figure 2.10: Comparison at 700 Hz.

2.6 Conclusion

The iGSE is a Steinmetz based method, so only the Steinmetz parameters and the flux
density distribution are needed. The parameters can be determined very easily from
the values from the data sheet, so no measurements are necessary for the application
of these iron loss calculation method. A further increase to accuracy was achieved
by dividing the flux density range of every frequency in three equidistantly parts.
The nested loop algorithm works well and does detect subloops. In Chapter 4 the
measured iron losses and the result of the iGSE are compared. This comparison
shows a quiet good agreement of the predicted losses and the measurements.
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Chapter 3

Loss surface model

3.1 Introduction

In this chapter the second procedure for iron loss calculation is introduced. Many
works have discussed this theme, such as [16], [14], [15], [28], [29] and [30]. The ap-
proaches respectively the applications differ slightly from each other. For example
in [15] and [16] the losses are separated in a static and a dynamic part. The static
contribution can be modelled with any static hysteresis model, whereas the dynamic
losses are modelled with the loss surface. [14] and [30] describe the whole behaviour
of the material with the loss surface, eliminating the need for a static hysteresis
model. Another distinctive feature is the physical quantity, which is represented by
the z- axis. It can be used for the field strength H or the instantaneous specific losses
pspec.

The model developed and implemented here, describes the static and dynamic
losses, for sake of simplicity, in one model. Additionally the z- axis represents the
instantaneous specific losses pspec [14].

3.2 Principle idea

The principle idea of the loss surface approach is, that when the instantaneous value
of the flux density and the time derivative are known, the losses are clearly defined.
So the losses are a function of B(t) and dB(t)

dt

pspec = f
(
B(t),

dB(t)
dt

)
. (3.1)
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Chapter 3 Loss surface model

So a surface is spanned in the B(t)- dB(t)
dt room, from which the name is derived

Figure 3.1 shows such a surface for the material isovac 800-65 A

Figure 3.1: Loss surface for isovac 800-35A.

The red dots are supporting points derived from a measurement with an Epstein
frame, the points for the mesh are calculated via a thin plate spline interpolation.
With an arbitrary flux density waveform and the time derivative of it, it is possible,
for every single time step, to determine the specific losses with help of the loss
surface, so also the waveform of the iron loss power is known. With

Pmean =
1
T

T∫
0

pspec(t)dt (3.2)

the mean power per period can be calculated for the given flux density distribution.
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3.3 Measurement waveform

3.3 Measurement waveform

The whole measurements were carried out, as far as possible, in agreement with
the standard IEC 60404-2 „Magnetische Werkstoffe Teil 2: Verfahren zur Bestim-
mung der magnetischen Eigenschaften von Elektroblech und -band mit Hilfe eines
Epsteinrahmens“ [31]. To present the surface in the B(t)- dB(t)

dt room, appropriate mea-
surements have to be made. To support the surface well and interpolate between
the points easier, the measurement points should be distributed as evenly as possi-
ble. With triangular flux density waveforms with different frequencies this could be
achieved, because they have constant absolute values for dB

dt for different values of B.
These flux density waveforms lead to a shape of the secondary voltage of the Epstein
frame which does not comply with the standard, but they allow deriving the loss
surface from measurements. With sinusoidal voltages in the secondary winding, so
also with sinusoidal flux densities, a large number of measurements have to be done,
to support the loss surface well. Sinusoidal waveforms deliver supporting points
located on an ellipse, because the flux density is sinusoidal and the time derivative
is cosinusoidal with a different amplitude.

Figure 3.2: Supporting points for one sinusoidal flux density with B = 1 T and
f = 10 Hz.
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Figure 3.3 shows the supporting points for different measurements with sinusoidal
flux densities. The amplitudes of the flux densities are 0.5 T, 1 T and 1.5 T, as can be
seen on the vertexes of the ellipses. The frequencies are 10 Hz, 30 Hz and 50 Hz. For
every amplitude all frequencies are measured. With increasing frequency the semi
axes of the ellipses in the dB

dt - direction extend, but the vertexes stay the same. It
can be seen clearly that at some locations the measurement points are accumulating,
whereas other regions are not supported, so a uniform distribution of the supporting
points with a low number of measurements would be challenging. Another problem
would be that some B- dB

dt combinations would require curve parameters (u, f ) that
cannot be determined with the measurement setup.

Figure 3.3: Supporting points for sinusoidal flux densities.

For these reasons, the supporting points were determined using a triangular flux
density wave form. In the following picture the distribution of the measurement
points for two triangular signals, with the same amplitude and different frequencies,
in the B- dB

dt plane are shown.
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3.3 Measurement waveform

Figure 3.4: Supporting points for triangular flux densities.

Figure 3.5 shows a triangular flux density waveform with an amplitude A and the
period T.

Figure 3.5: Triangular flux density waveform.

For triangular flux density waveforms

dB
dt

=
∆B
∆t

(3.3)

is valid. The time derivative for the ascending and the descending branch has
the same absolute value. With T = 1

f and the amplitude of the flux density the
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relationship of the time derivative gets∣∣∣∣∣dB
dt

∣∣∣∣∣ =
∆B
∆t

=
2A

T
2

=
4A

1
f

= 4A f . (3.4)

With (3.4) the frequency, for a desired value of dB
dt and a fixed value for A, can be

easily calculate. Because of

Φ =
1
N

∫
u(t)dt (3.5)

and

B =
Φ

Afe
(3.6)

a rectangular voltage has to be used to achieve a triangular flux density. In Figure
3.6 the voltage of the primary winding and the resulting flux density at a frequency
of 300 Hz are shown.

Figure 3.6: Primary voltage and flux density for 300 Hz.
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3.4 Measurement setup

3.4 Measurement setup

To obtain reproducible results attention was payed to built up a measurement setup
in accordance with the standard IEC 60404-2 "Magnetische Werkstoffe Teil 2: Ver-
fahren zur Bestimmung der magnetischen Eigenschaften von Elektroblech und -band
mit Hilfe eines Epsteinrahmens" [31]. Because of the special characteristics of the
loss surface approach, the measuring process and the evaluation of the measurement
data differs slightly from the procedure in the standard
The main differences were:

• To determine the loss surface, a non sinusoidal waveform of the flux density
was used, see Section 3.3.

• The readings were evaluated differently than in the standard, because instan-
taneous values were needed but the target of the standard are parameters of
the waveform such as the effective or peak value. For example the iron losses,
if they are calculated as in the standard, the result is the mean value of the iron
losses for one period of the flux density waveform. But for the loss surface
approach the instantaneous losses are needed.

In Figure 3.7 the block diagramm of the measurement setup is shown

Figure 3.7: Block diagram of the measurement setup.

On the HBM data recorder a workbench was created, by loading this workbench
all settings, like the filter setup, the usage of the different channels, some real time
calculations and so on were set automatically. The following figure shows a photo
of the measurement setup in the laboratory, the power amplifier cannot be seen in
the picture.
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Figure 3.8: Used measurement setup.

3.4.1 Measurement equipment

In Table 3.1 an overview of the used devices is given.

3.4.2 Measurement process

To obtain the data every single measurement was carried out after a fixed procedure.
Before the first measurement the specimen was demagnetized, to guarantee J0 = 0.

• Set the frequency.

• Slowly increase the amplitude of the rectangular primary voltage till the current
and so the magnetic field strength reach a previously defined value.

• Take the measurement and store the result.

• Slowly decrease the amplitude so that the specimen is demagnetized.

• With every measurement the iron losses heat up the specimen. If the next
measurement could lead to a temperature which is not permissible, wait until
the temperature has fallen far enough for the next measurement.
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3.4 Measurement setup

Scale
Sartorius

Entris 6202 i-1s

Specimen
Voest alpine

isovac 270-35A
32 pieces, l = 305 mm, b = 30 mm, m = 0.77752 kg

Epstein frame
Brockhaus measurements

700 windings primary and secondary

Power amplifier
Spitzenberger + Spies

Three phase mains simulation system
DM 1500/PAS

Current sensor
LEM

IT 60-S
Ultrastab

Load resistor
Steinbeis Transferzentrum

Elas
HBR10

Data recorder
HBM

Portable data recorder
Gen 3i

Signal conditioner Status 1600T

Thermocouple Typ K

Data evaluation
Personal computer
MATLAB R2014b

Table 3.1: Used measurement devices.

45



Chapter 3 Loss surface model

3.4.3 Internal controller

The Epstein frame is a transformer in no load condition, so the voltage and the flux
density are related with each other via (3.5) and (3.6). So it is desirable to control the
secondary voltage of the Epstein frame. The used power amplifier provides a linear
voltage controller to compensate the supply line voltage drop. For the feedback of
the voltage, which should be controlled, a sense line is used. Initially, this controller
was used to control the secondary voltage.

Sense line on the secondary side

In Figure 3.9 and Figure 3.10 the voltages and the current waveform for a frequency
of 50 HZ are shown when the secondary voltage is controlled.

Figure 3.9: Primary and secondary voltage for 50 Hz with sense line on the
secondary side.
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3.4 Measurement setup

Figure 3.10: Primary current for 50 Hz with sense line on the secondary side.

Considering only the voltages the controller seems to work well, but the minimum
and maximum peak value of the current differ about 0.5 A from each other. So this
setup leads to a mean value in the current, although the coupling mode of the power
amplifier was set to AC. This offset would alter the measurements. Figure 3.11 and
Figure 3.12 show the measured waveforms when the internal controller is used to
control the secondary voltage at a frequency of 500 Hz.

Figure 3.11: Primary and secondary voltage for 500 Hz with sense line on the
secondary side.
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Figure 3.12: Primary current for 500 Hz with sense line on the secondary side.

Considering the voltages it seems that the controller is too slow to reach the desired
waveform on the secondary side. Also the before mentioned offset in the current
appears.

Sense line on the output of the power amplifier

Figure 3.13 and Figure 3.14 show the waveforms for 50 Hz, when the sense line is
connected to the output of the power amplifier.

Figure 3.13: Primary and secondary voltage for 50 Hz with sense line on the output
of the power amplifier.
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3.4 Measurement setup

Figure 3.14: Primary current for 50 Hz with sense line on the output of the power
amplifier.

The offset in the current is gone but the secondary voltage has not the desired
waveform any more.

Figure 3.15 and Figure 3.16 show the waveforms for a frequency of 500 Hz with
the sense line connected to the output of the power amplifier.

Figure 3.15: Primary and secondary voltage for 500 Hz with sense line on the
output of the power amplifier.
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Figure 3.16: Primary current for 500 Hz with sense line on the output of the power
amplifier.

The primary voltage is sinusoidal again and the offset in the current is gone.

Conclusion

Summarizing the results of these measurements, the internal controller should not be
used to control the secondary voltage, because of the appearing offset in the current
and it seems that it is too slow to work well at higher frequencies. In addition a
request has revealed that the use of the internal voltage controller on the secondary
side of the Epstein frame is prohibited by the manufacturer. Therefore, for further
measurements the sense line was always connected to the output of the power
amplifier.
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3.5 Calculations

3.5 Calculations

The measurement setup shown in Section 3.4 does not allow measuring the magnetic
field strength and the flux density directly, so they have to be derived from the
measured quantities. With Ampere’s law, the magnetic path length and the number
of primary windings of the Epstein frame, the magnetic field strength H is calculated

H =
N1i

l
. (3.7)

The Epstein frame represents a transformer in the no load condition with compen-
sated air flux. That means if no specimens are in the Epstein frame, the voltage in
the secondary winding is zero. So with an Epstein frame the magnetic polarisation
is measured. The polarisation and the voltage in the secondary winding are linked
via (3.8)

J =
1

N2Afe

∫
u2dt + J0. (3.8)

Because the specimen is demagnetized before the measurement J0 = 0. The cross
section of the iron Afe can be calculated with (3.9) [31]

Afe =
m

4ρl
. (3.9)

In electric drives the quantity of interest is the magnetic flux density and not the
polarisation and so the air flux also has to be taken into account

B = µ0H + J. (3.10)

With the flux density over the time it is possible to determine the time derivative
dB
dt and with the field strength H the specific losses [14].

pspec = H
dB
dt

. (3.11)

The quantities B, dB
dt and pspec are the coordinates for the supporting points of the

loss surface. With these points and a suitable interpolation method the losses for
any arbitrary flux density waveform can be calculated.
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All measurements were taken with a sample rate of 2 Ms
s . The measurement noise

was eliminated by a moving mean filter. The highest measured frequency was
600 Hz, with the used sample rate this gives about 3333 samples per period, so that
means that every measured frequency would give 2 · 106

f
S

period . When the number of
supporting points for the loss surface increases, also the computational time and the
demand for storage rises, so the number of supporting points per frequency was
limited. The filtered and downsampled data were used to generate the supporting
points of the loss surface.

3.6 Evaluation of the measurement results

As mentioned before, the Epstein frame is a transformer in no load condition, so
the secondary current is zero and therefore the voltage at the secondary winding is
equal to the voltage at the inductivity Lh.

Figure 3.17: Equivalent circuit of the Epstein frame.

So the equivalent circuit diagram simplifies to:

Figure 3.18: Simplified equivalent circuit of the Epstein frame.
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3.6 Evaluation of the measurement results

For nonsinusoidal waveforms the power can be calculated as follows

Pmean =
1
T

t1+T∫
t=t1

i(t)u(t)dt. (3.12)

The specific iron losses are derived from the secondary voltage, the primary current
and the magnetic active volume

pfe, mean =
1

TlmA

t1+T∫
t=t1

i1(t)u2(t)dt. (3.13)

pfe, mean . . . specific iron losses in W
m3

lm . . . magnetic path length lm = 0.94m
A . . . cross section of the specimen in m2

With (3.13) the iron losses in the magnetic active volume are calculated from
measured values and hence it can be used as a tool to verify the results of the two
introduced iron loss models.

3.6.1 Measurement accuracy

The measured iron losses, which are the supporting points for the loss surface, are
not measured directly, they are derived from several measured quantities. Each mea-
surement is subject to a certain error and contributes to the total error. The Epstein
frame has a compensation winding, so not the flux density B, but the polarisation J
is measured. Equation (3.10) shows the connection between the flux density and the
polarisation. The maximum contribution of the µ0H- term to the flux density is in the
range of a few mT, but would lead to a second order time derivative of the current
in the formula for the complete error. The approximation of the second order time
derivative via the difference quotient could lead to results, which are not reliable
any more, as it is the case here. For future measurements ring shaped specimen
without a compensation winding will be used and so the flux density is measured,
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see Section 5.2. So for sake of simplicity the µ0H- term in (3.10) is neglected, so (3.8)
becomes

B =
1

N2Afe

∫
u2dt + B0. (3.14)

Again B0 is, due to the demagnetization, zero. (3.11) shows that the iron losses
are a function of the time derivative of the flux density dB

dt and the field strength H.
(3.14) rewritten gives the time derivative of the flux density

dB
dt

=
u2

N2Afe
. (3.15)

With (3.7), N1 = N2 and (3.9) the instantaneous iron losses can be written as

p = H
dB
dt

=
4ρ
lm

u2li
m

. (3.16)

ρ . . . density of the material
lm . . . effective magnetic path length
u2 . . . voltage in the secondary winding of the Epstein frame
l . . . length of the iron strips
i . . . current in the primary winding

m . . . total mass of the iron

The density of the material ρ is given by the manufacturer in the data sheet and
the magnetic length lm is given in the standard IEC 60404-2 „Magnetische Werkstoffe
Teil 2: Verfahren zur Bestimmung der magnetischen Eigenschaften von Elektroblech
und -band mit Hilfe eines Epsteinrahmens“ [31], so these two quantities are assumed
as constant, without any influence on the measurement error. To calculate the worst
case error the following formula can be used

∆y(x1, . . . , xn) =

n∑
i=1

∣∣∣∣∣ ∂y
∂xi

∣∣∣∣∣∆xi. (3.17)

∆y . . . total error of the calculated size y
x1, . . . , xn . . . measurement sizes from which y is derived

∆xi . . . error of the single measurement sizes
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3.7 Interpolation

The sizes u2, i, l and m have influence on the measurement error, so ∆p becomes

∆p =
4ρ
lm

(∣∣∣∣∣ li
m

∣∣∣∣∣∆u2 +

∣∣∣∣∣u2l
m

∣∣∣∣∣∆i +

∣∣∣∣∣u2i
m

∣∣∣∣∣∆l +

∣∣∣∣∣u2li
m2

∣∣∣∣∣∆m
)

. (3.18)

With (3.18) it is possible to estimate the maximal error, when all single errors
occur with their full strength and in such a way that they all act in one direction.
The occurrence of such a scenario is unlikely, so in general the measurement error
can be assumed smaller than the maximal possible error ∆p. To give the calculated
maximum measurement error a meaning, it is related to the maximum absolute value
of the iron loss power for each measurement. So for all values from the measurement
at 50 Hz the reference value is the maximum absolute value of the iron loss power
at this frequency

e = 100 ·
∆p

pmax, abs( fmeas)
. (3.19)

e . . . error in %
∆p . . . total error for one measurement point

pmax, abs( fmeas) . . . maximum absolute value of the measured
power at the considered frequency

With a maximum for the error with about 3 % and a mean value of 1.5 % the
measurement setup is supposed to be reliable. Of course these values are only for
one certain measurement, for an other measurement the values of the errors will
change, but they should be in the same range.

3.7 Interpolation

It is impossible to record all B- dB
dt combinations, which could occur in the region

of interest, so a suitable method for interpolation has to be found. For this rea-
son two techniques from the family of distance based interpolation methods were
considered, the inverse distance weighted interpolation (IDWI) and the thin plate
spline interpolation (TPSI). In the family of these interpolation methods all, or only
a certain number of measurement points, influence the result. The influence of a
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specific measurement point on the interpolation depends on its distance to the point
of interest.

3.7.1 Inverse distance weighted interpolation - IDWI

For the inverse distance weighted interpolation the value at any point is given with
[32]

ẑ(xo) =

k∑
i=1

λiz(xi) (3.20)

where the coefficient λi is given with

λi =

1
dp

io

k∑
i=1

1
dp

io

. (3.21)

ẑ(xo) . . . value at the point of interest x0

k . . . number of considered points
z(xi) . . . value at the measurement point xi

p . . . exponent to control the influence of the single points
dio . . . distance between point xo and the point xi

The exponent p controls the influence of the single points on the result. The lower
p the more uniformly every single point contributes to the result. With increasing p
the influence of points, that are far way from the point of interest, is decreasing. It is
also possible to restrict the number of points which have influence on the result, for
this there are two possibilities:

• Fixed radius: A fixed radius is defined and all points within this radius influ-
ence the calculation.

• Fixed number of points: The number of points which influence the result is
defined, so only the k nearest points are considered.
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3.7 Interpolation

With the second method, k = 4 and p = 0.1 the following surface is obtained:

Figure 3.19: Surface for the IDWI with n = 4 and p = 0.1.

The data for this surface are from a Simulink model of a transformer with a sat-
urable core. The parameters p and n were chosen deliberately poorly to show the
problems which could occur with the IDWI and for a better view only half of the pos-
itive derivatives of the flux densities are presented. The inverse distance weighted
interpolation is a method where the surface is not forced to fit the measured points
and it also has no smooth shape. It is clear that with a more suitable set of parameters
these effects could be reduced, but they would never disappear completely and the
parameters have to be determined iteratively. An additional effect, not visible in Fig-
ure 3.19 but likely to appear, are the so called bull eyes. These are circular artefacts,
which have the same value, around the measurement points. To avoid the problems
of the IDWI the thin plate spline interpolation was considered subsequently.

3.7.2 Thin plate spline interpolation - TPSI

The thin plate spline interpolation is an interpolation method based on a radial basis
function, this is a function which only depends on the distance of the origin. The
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thin plate spline is described as follows

y(r) = r2ln(r). (3.22)

This curve shape describes the position of a thin metal sheet or rubber membrane.
So it is tried to find a surface which goes exactly through the given points and takes
the state of the lowest energy in between, thus bending as little as possible in the
intermediate spaces. Bending as little as possible means that the bending energy is
minimized. For the interpolation a thin plate spline is placed on every measurement
point and with the weighted sum of all these splines, the values of the surface at an
arbitrary position can be determined. Described in a mathematical way [33]

s(xi) = fi i = 1, 2, . . . ,n (3.23)

V(s) =

∫
R2

(
∂2s(x)
∂x2

)2

+ 2
(
∂2s(x)
∂x∂y

)2

+

(
∂2s(x)
∂y2

)2

dx. (3.24)

s(xi) . . . value of the surface at the point xi

n . . . number of measurement points
fi . . . given supporting point

V(s) . . . bending energy, which should be minimized
x and y . . . components of x

The surface which fulfils these requirements is given with the thin plate spline via
(3.25)

s(x) =

n∑
i=1

λi

∣∣∣∣∣∣x − xi

∣∣∣∣∣∣2 ln
∣∣∣∣∣∣x − xi

∣∣∣∣∣∣ + c0 + c1x + c2y x ∈ R2. (3.25)

x . . . point of interest
λi . . . weighting factor for every single thin plate spline∣∣∣∣∣∣a∣∣∣∣∣∣ . . . Euclidean norm of a

c0, c1 and c2 . . . global parameters
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3.7 Interpolation

Thereby the coefficients λ have to meet the following

n∑
i=1

λi =

n∑
i=1

λixi =

n∑
i=1

λiyi = 0. (3.26)

The above mentioned requirements can be rewritten in the following system of
equations

Φ P
PT 0

 λc
 =

 f

0

 . (3.27)

Φ . . . n × n; with the elements
∣∣∣∣∣∣∣∣xi − xj

∣∣∣∣∣∣∣∣2 ln
∣∣∣∣∣∣∣∣xi − xj

∣∣∣∣∣∣∣∣ : i, j = 1, 2 . . . ,n

P . . . n × 3; with the rows (1 xi yi)
λ . . . n × 1; vector with the weighting factors
c . . . 3 × 1; c0, c1 and c2

f . . . n × 1; supporting points from the measurement

The matrix of this equation system is nonsingular, therefore with a unique solution
and so with a unique surface. Solve the equation system forλ and c and subsequently
evaluate (3.25) on the desired positions the following surface is obtained for the
material isovac 270-35A and a specimen width of 30 mm, again the red dots are the
supporting points and the mesh is the interpolated surface.

It can be seen that the surface coincides with the measurement points, according
to 3.23 and the distinctive discontinuities, which could occur with the IDWI (see
Figure 3.19), are gone. An other big advantage is that no parameters have to be
tuned manually.
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Figure 3.20: TPSI surface for isovac 270-35A.

3.8 Considerations regarding the Epstein frame

The magnetic ideal specimen would be a toroidal core with a constant cross section
and constant magnetic properties along the circumference. These specimens have to
be wound by hand and so it takes some time to prepare them for the measurements.
In the industry the wish for a faster procedure lead to the Epstein measurements, in
1940 the 25cm Epstein frame was introduced. The currently applicable standard for
these measurements is IEC 60404-2 „Magnetische Werkstoffe Teil 2: Verfahren zur
Bestimmung der magnetischen Eigenschaften von Elektroblech und -band mit Hilfe
eines Epsteinrahmens“ [31], here the measurement setup and process are described.
This setup has a few drawbacks that could affect the results depending on the flux
density range, in which the measurements are taken [34].

• The cross section is not uniform.

• There are sharp edges for the flux in the corners, so the flux distribution is not
uniform.
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3.8 Considerations regarding the Epstein frame

• Due to the nonuniformities of the cross section and the flux distribution the
magnetic path length is set to 0.94 m.

• The preparation of the Epstein set influences the magnetic properties of the
material. Depending on the used procedure to prepare the Epstein set, e.g.
punching or laser cutting, the material properties on the edges are deterio-
rated, so higher losses occur. [35] This influence is very distinctive when grain
oriented steel is used. So if grain oriented steel is used, the Epstein set has to
be annealed before measurements are taken, to reduce this influence at least
partially. If there was any internal stress in the original sheet, it cannot be
detected, due to the annealing. [36]

Despite these drawbacks, the Epstein frame is still a very often used approach to
determine the magnetic behaviour of electric steel. In the following figure the basic
structure of an Epstein frame is shown [20].

Figure 3.21: Basic structure of an Epstein frame [20].

The iron is stacked as it is shown in Figure 3.22. The primary winding and the
secondary winding surround the stripes at every leg, where the secondary winding,
which is the measurement winding, is the inner one. The primary winding is needed
to build up the magnetic field, to which the iron is exposed and is located in the
outer layer.
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3.8.1 Effective magnetic path length

Due to the evaluation of the measurements with the agreed path length of 0.94 m, a
systematic error is made. For the 25cm Epstein frame the magnetic path length was
set to 0.94 m under the following consideration [34].

Figure 3.22: Magnetic path length of the Epstein frame.

The stripes are stacked in the Epstein frame in such a way, that they overlap in
the corners, so the cross section in the corners is twice as large as in the legs. With
the assumption, that the specimen has linear behaviour, the path in the edges is
weighted with the factor 0.5, resulting in

lm = 4 · (250mm − 30mm) + 4 ·
30mm

2
= 0.94m. (3.28)

When the flux density increases and so the material behaviour becomes non linear,
the assumption with the weighting factor for the corners is not valid any longer. A
simple approach to correct the effective magnetic path length as a function of the

62
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state of the material is shown in [37]

lmµ = ll +
µl

2µc
lc (3.29)

where µl = µ
(
Ĵ
)

and µc = µ
(

Ĵ
2

)
.

lmµ . . . effective magnetic path length
ll . . . magnetic path length in the legs
lc . . . magnetic path length in the corners

µl, µc . . . permeability of the legs respectively of the corners

So for the 25 cm- Epstein frame

lmµ = 880 mm +
µl

µc
60 mm. (3.30)

These constraints and the demand for a faster procedure lead to the single sheet
tester, which is often used by the manufacturers of electric steel nowadays. Due to
the fact that the single sheet tester is a big and heavy device and there is a great
treasure of experience for the Epstein frame, the Epstein frame is still used in many
laboratories. A comparison of the two testing systems is given in [37].

3.9 Conclusion

The loss surface approach is a measurement based approach, so it is a bit more
complex to obtain the needed data for it compared to the iGSE. This disadvantage
is compensated by the fact that influences like the cutting process can be taken
into account. The used measurement setup contains an Epstein frame, which leads
to some disadvantages, as shown in Section 3.8, to overcome these, ring shaped
specimen should be used in future. Although an Epstein frame is used and no
controller was implemented to control the shape of the flux density, the results are
very satisfying, see Table 4.2. The discrepancies at low dB

dt , as can be seen in Figure
4.5, should become smaller when the before mentioned controller is used. So the loss
surface approach can be regarded as good tool for the iron loss estimation with any
flux density waveform. Some additional work should allow solving the mentioned
problems with the loss surface approach.
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Chapter 4

Comparison of the iGSE and the loss
surface approach

4.1 Introduction

In this chapter the two described iron loss models are compared to each other. For this
reason measurements were made with the Epstein frame, three different waveforms
and specimens of the material isovac 270-35 A. The iron losses were calculated via
(3.13) and served as reference for the comparison with the modelled iron losses.

4.2 Waveforms

With the used measurement setup it was only possible to specify the primary voltage
and so indirectly the flux density in the specimen. The following table shows the
harmonics and the phase angles of the single harmonics for the three used voltage
waveforms, which were applied on the primary side of the Epstein frame.
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Waveform Harmonics Amplitude Phase

- - % ◦

1 1 100 0

2
1 100 0
3 50 0
5 10 180

3
1 100 0
3 30 180

Table 4.1: Primary voltage forms.

All voltage forms were measured at 50 Hz, 150 Hz, 250 Hz and 500 Hz frequency.
The amplitude of the signal was chosen in a way, that the maximum of the current was
approximately 2 A and so the maximum of the flux density was about 1.5 T. Figure
4.1 shows exemplary the composition of voltage waveform 2 in Table 4.1. Figures
4.2 to 4.4 show the measured primary voltage and the calculated flux density, all for
a frequency of 150 Hz.

Figure 4.1: Decomposition of waveform 2 of Table 4.1.
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4.2 Waveforms

Figure 4.2: First waveform of Table 4.1.

Figure 4.3: Second waveform of Table 4.1.
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Figure 4.4: Third waveform of Table 4.1.

4.3 Results

The following table shows the results of the measurements and the calculated iron
losses. As mentioned before the measured iron losses served as reference for the
comparison. The error is calculated as follows

error = 100 ·
pfe, calc − pfe, meas

pfe, meas
. (4.1)

4.3.1 Results of the iGSE

To be able to use the iGSE, the Steinmetz parameters of the material have to be
known. They were estimated for the used material as shown in Section 2.5 from the
data provided of the manufacturer [38].
The iGSE does not calculate the instantaneous losses such as the loss surface ap-
proach, it only gives the total iron losses for one period of a certain flux density
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Waveform f pfe, meas pfe, iGSE error pfe, LS error
- Hz W

m3
W
m3 % W

m3 %

1

50 21893 21492 −1.8 21934 0.2
150 90263 93178 3.2 87774 −2.8
250 186414 190622 2.3 185390 −0.6
500 533573 591931 10.9 534086 0.1

2

50 20938 20176 −3.6 20404 −2.6
150 83778 86714 3.5 85694 2.3
250 174873 177727 1.6 177852 1.7
500 501873 554132 10.4 515575 2.7

3

50 22319 22107 −1 21895 −1.9
150 95128 98653 3.7 96412 1.3
250 203800 202257 −0.8 205427 0.8
500 520897 513432 −1.4 526429 1.1

Table 4.2: Comparison of the results.

waveform. So it is not possible to compare the measured iron loss curve with a cal-
culated one, but it seems that the error is smaller for signals where the flux density
has regions with a low dB

dt , where the
∣∣∣ dB

dt

∣∣∣α term in (2.1)is smaller. Another reason for
the difference in the measurement results could be that the manufacturer of the used
iron uses a single sheet tester to gain the data for the data sheet and the measure-
ments were carried out with an Epstein frame. According to [37] the results of the
Epstein frame and the single sheet tester differ, especially for higher flux densities.
Nevertheless the results agree within an acceptable range.

4.3.2 Results of the loss surface approach

In Figure 4.5 dB
dt and B, each normalized on their maximum value, such as the

measured iron losses and the via the loss surface approach calculated losses, both
normalized on the measured iron losses, are shown. As can be seen, the two loss
curves fit very well, the biggest discrepancies occur for high values of B and low
dB
dt . These points are located in the area of the loss surface, where one part raises
very quickly in the positive direction and one part falls very rapidly in the negative
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Figure 4.5: Normalized curve shapes of the third waveform.

one, such as it can be seen in Figure 3.1 or in Figure 3.20. For supporting points
at low dB

dt values, measurements with low frequencies are needed. As shown in
Figure 5.1 the shapes of the waveforms for low frequencies do not match with the
desired measurement waveforms, because no controller was implemented. The
used waveforms at low frequencies have a flat top, so a nearly constant B and a dB

dt

which is very small. So measurement points, which should be distributed evenly
over the B- dB

dt plane, accumulate in the before mentioned area of the surface, where
one part raises very quickly in the positive direction and one part falls very rapidly
in the negative one. The used radial basis function interpolation forces the surface to
go through the measured supporting points, so the surface looks in these regions a
bit wrinkled. This is also reflected in the calculated iron losses when the parameters
of the considered flux density are in these regions, a small change in the coordinates
results in a big change in the iron losses and so the above mentioned discrepancies
occur. So it is recommended to design a controller, to control the shape of the flux
density waveforms, take the measurements for the loss surface and compute the iron
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losses again.
Figure 4.6 shows the resulting curve shapes for the third waveform and a frequency

of 500 Hz. Table 4.2 shows an error of only 1.1 % but considering Figure 4.6 more
closely shows that the predicted and measured losses do not match very accurately
for high absolute values of dB

dt . The reason why the error is very small, is that for
positive values of dB

dt the predicted iron losses are higher than the measured losses
and for negative values of dB

dt the losses are lower, so in average the error is very
small.

Figure 4.6: Normalized curve shapes of the third waveform at 500 Hz.

Normally when the loss surface approach is used to estimate the iron losses, no
measurements are available to compare the results. So only signals with parameters,
which are within the measured loss surface, should be used. As seen in Figure 4.6,
waveforms which exceed the loss surface can lead to deviations. Figure 4.7 shows
the supporting points of the loss surface in blue and the points of the third waveform
with 500 Hz in red. Comparing Figure 4.6 and Figure 4.7 the biggest discrepancies
occur for the parts, when the parameters of the flux density are in regions where
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there are no supporting points of the loss surface. So if B or dB
dt of the flux density

waveform exceed the loss surface, a warning is issued and the user can decide
whether he trusts the result, when the parameters of the flux density waveform only
exceed the loss surface a little bit, or discard it when the parameters exceed the loss
surface too much, such as in Figure 4.7.

Figure 4.7: Points of the loss surface and the third signal at 500 Hz in the B- dB
dt plane.

When the parameters of the desired flux density waveform are within the loss
surface, the loss surface approach shows a good accordance with the measurement
results. The error for waveforms with parameters which exceed the loss surface
could also be very small, but for the reasons mentioned before, the user should
decide from case to case if the results are reliable.
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4.4 Conclusion

The aim of this thesis was to find and implement iron loss calculation methods.
After a widespread literature research the improved generalized Steinmetz equation
(iGSE) and the loss surface approach were chosen. As the comparison of the two
iron loss calculation methods shows, both work well and give a good approximation
of the iron losses for a known flux density distribution. The iGSE does not need any
measurements, when a data sheet is available and the Steinmetz parameters can
be determined as shown in Section 2.5, but it only gives the absolute value of the
iron losses. Whereas the loss surface approach delivers also the waveform of the
iron losses over time, if it is from interest. As can be seen in Figure 4.7 supporting
points for the loss surface at higher values of dB

dt would be preferable. With the used
power amplifier and the Epstein frame with a high number of windings, it was not
possible to achieve the desired parameters of the flux density waveform, because the
available power amplifier does not deliver the higher voltages as required. When
ring shaped specimens are used, the number of windings can be chosen in a way
that the desired parameters can be achieved, see (3.14) and (3.15). So it should be
possible to support the loss surface in a wider range with measurement points.
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Chapter 5

Outlook and further steps

5.1 Iterative learning control - ILC

The measurements to obtain the data for the loss surface were taken with a rect-
angular voltage shape, so a triangular flux density was the consequence. All mea-
surements were taken without any control or correction of the voltage, respectively
the flux density, because the design and implementation of a controller would be
beyond the scope of this thesis. So especially for low frequencies, the shape of the
resulting flux density differed from the desired one. The waveforms for a frequency
of 10 Hz are shown in Figure 5.1.

Figure 5.1: Voltage and flux density waveforms.
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The shape of the flux density differs from the desired one. To obtain the desired
shape of the flux density the primary voltage must be changed in an appropriate
way, so a controller should be implemented. Because of the nonlinearity and the
hysteresis behaviour of the iron, a linear controller would not work, so an other
controller strategy must be used. Time is not a critical factor in this case, so also
a slow controller could be used, as long as no quantity reaches a value which
causes damage to a device of the used measurement setup. Additionally there
are no constraints which would make a repetitive operation of the Epstein frame
impossible. So iterative learning control (ILC) seems to be suitable for this task. The
simplified control strategy is described in the following steps:

1. Estimate the initial waveform of the manipulated variable.

2. Apply the waveform on the controlled system.

3. Record the waveform of the control variable.

4. Calculate the the new waveform of the manipulated variable.

5. Repeat steps 2 to 4 until the error of the control variable is within an acceptable
range.

A simple control law for the fourth step is given with

ui+1 = ui + K · ei. (5.1)

ui+1 . . . input of the system for the next iteration
i . . . number of the iteration

ui . . . actual input of the system
K . . . gain factor
ei . . . error during the ith iteration
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5.1.1 Desired distribution of the flux density

In Section 3.3 it was shown why triangular waveforms of the flux density are a
appropriate choice to obtain the data for the loss surface. An ideal triangular wave-
form has a jump in its derivative and so would lead to an ideal square voltage in the
secondary winding of the Epstein frame. With the limited bandwidth of the mea-
surement setup such a waveform would not be manageable and the discontinuity
could lead to problems for the control algorithm. So a waveform of the flux density
which has a constant dB

dt section by section and also no jump in its derivative would
be preferable. These considerations lead to a triangular waveform which merges to
a parabola on their tops, such as in the Figure 5.2.

Figure 5.2: Waveform for the desired flux density.

The induced voltage in the secondary winding is the time derivative of the flux
density, as can be seen in the Figure 5.3, there is no jump in the voltage so the
rectangular transforms to a trapezoidal waveform.
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Figure 5.3: Start voltage waveform.

To create these waveform a MATLAB script was written, this script needs three
parameters. The desired value of dB

dt , the maximum value of the flux density Bmax

(at P2 in Figure 5.2) and the value of the flux density, where straight merges in the
parabola, B1 (at P1). The flux density in the linear region is given via

B(t) = k · t + d. (5.2)

Its time derivative is

dB
dt

= k. (5.3)

Since the time derivative is known, the first parameter k is known. Due to the fact
that B(t = 0) = 0 d is also 0, so t1 can be determined with

t1 =
B1

k
. (5.4)

The parabola can be described with

B(t) = a · t2 + b · t + c. (5.5)
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Again its time derivative

dB
dt

= 2a · t + b. (5.6)

In P1 the B and dB
dt values of the straight and the parabola need to be the same, so

5.7 is valid

k = 2at1 + b

B1 = at2
1 + bt1 + c.

(5.7)

At P2 the flux density waveform has its maximum, so dB
dt = 0 and B(t2) = Bmax are

valid

0 = 2at2 + b

Bmax = at2
2 + bt2 + c.

(5.8)

With these relations the parameters t2, c, a and b can be determined

t2 =
1
k

(2Bmax − B1) (5.9)

c = Bmax +
kt2

2

2(t1 − t2)
(5.10)

a =
k

2(t1 − t2)
(5.11)

b = −2at2. (5.12)

Due to symmetry reasons

t3 = 2t2 − t1. (5.13)
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From point P3 until the flux density distribution reaches 0 again, B(t) can be
described with

B(t) = −kt + t3k + B1. (5.14)

Because of the odd symmetry the second half wave is given with

B(−t) = −B(t). (5.15)

With this flux density waveform and the assumption of linear material behaviour,
the start voltage for the ILC can be calculated with

u1 = NA
dB
dt

. (5.16)

A waveform like this can be seen in Figure 5.3.

5.2 Ring shaped specimen

The measurements for the loss surface approach were carried out with a measure-
ment setup based on an Epstein frame. As shown in Section 3.8.1 some disadvan-
tages of the Epstein frame result from its construction and the assumptions which are
made. To overcome these drawbacks measurements with ring shaped specimen of
the material of interest should be made. This specimen form has several advantages
compared to the Epstein frame:

• The whole specimen is magnetic active mass. The magnetic active mass for
the Epstein frame has to be determined with ma = lm

4l m, where lm is the agreed
magnetic path length of 0.94 m, l is the length of the single strips of the specimen
and m the whole mass of all specimens [31].

• The cross section is constant over the circumference [34]

• There are no sharp edges for the flux [34]

• In [14] it is stated that the ratio of the inner diameter to the outer diameter of
the specimen should not remain under 0.8, lfe can be assumed with a very small
error as shown in (5.17) and so no correction of the path length as in Section
3.8.1 is necessary.
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5.2 Ring shaped specimen

• The different cutting techniques have influence on the material properties [35].
If the size of the specimen match the dimensions of the single parts of the
magnetic circuit of the considered drive and they are processed as the iron used
in the drives, also the influence of the used cutting process can be considered.

The Epstein frame has a fixed number of windings, not so the ring specimen, so
the number of windings has to be chosen in a way that they are appropriate for the
used power source and measurement device. With an increasing number of primary
windings the current decreases for a fixed magnetic field strength, but due to the fact
that more windings are linked with the flux, the voltage, which has to be applied, is
increasing. The induced voltage on the secondary side is influenced by the number
of secondary windings, so the voltage range of the measurement device and the
waveform of the flux density are the most important factors for the choice of the
number of secondary windings. There is no compensation winding for the air flux,
so the induced voltage in the secondary winding is linked with the flux density and
not with the polarisation, such as it is the case with the Epstein frame. The mean
length of the field lines can be calculated with [14]

lfe =
do + di

2
π. (5.17)

The magnetic field strength for a measured current can be calculated with (3.7).
As mentioned before there is no compensation winding and the flux density can be
calculated with the voltage in the secondary winding with

B =
1

N2Afe

∫
u2dt + B0. (5.18)

When the specimen is demagnetized before the measurement B0 is 0. The evalu-
ation of the measurement data for the loss surface is pretty much the same as with
the measurement with the Epstein frame. The only difference is that the ring shaped
specimen has no compensation winding and so also the air flux contributes to the
induced voltage in the secondary winding, see (3.8) and (5.18).

5.2.1 FEM simulations for the ring shaped specimen

The simple geometry of the ring shaped specimen is easy to model in a FEM program.
For some FEM programs it is not possible to choose the method or the used data,
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which describe the iron, for the iron loss calculation, so the measurements on the
ring shaped specimen can be used in different ways.

• The FEM program can be used to calculate the iron losses in the ring shaped
specimen and so another tool for the verification of the two implemented iron
loss calculation methods is given.

• It is possible to verify the ability of the iron loss calculation tool of the FEM
program with the measurements on the ring shaped specimen, whether it can
handle complex waveforms.

5.3 Conclusion

The aim of this thesis was to find and implement iron loss calculation methods for
fractional horsepower motors. For this task the iGSE and the loss surface approach
were chosen, in Chapter 4 it is shown that both work well. With a bit additional
work, as shown in Chapter 5, the tool for the iron loss calculation could be integrated
in the existing models of the fractional horsepower electric motors. The new iron
loss models should make the motor models more accurate without the protracted
need for FEM simulations.
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