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Abstract

Massive Open Online Courses (MOOCs) rapidly stirred up hype and interest
in recent years. Advocates of this technology appreciate the possibility to
enroll in massive online classes, with no need of physical presence, particular
knowledge, nor high economic means. However, MOOCs suffer from low
completion rates; a large number of people enroll, but only a few individuals
complete a course. The high attrition of these systems is perceived by the
Online Learning community as one of the most compelling issues.

In this thesis, we analyze MOOCs from two different platforms offered with
various modalities. Specifically, we employ machine learning techniques,
such as Support Vector Machines (SVM) and Boosted Decision Trees, to
classify users as either Completers or Dropouts. Furthermore, we experiment
with system-to-system and multisystem settings and verify to which extent
different systems and domains can be analyzed with a general approach.
Moreover, we evaluate the features used in our analysis to identify those
that better predict whether users are likely to drop out.

Our results show that detecting dropouts across different systems is a
tractable problem. Besides, we discover unique properties of both systems
that affect the accuracy of the classification task. Furthermore, we identify
the features of our model that best help us to classify users into completers
and dropouts. We firmly believe that our presented work represents a solid
foundation and stepping-stone towards more detailed analysis of attrition
and user behavior in MOOCs.

iv



Kurzfassung

Massive Open Online Courses (MOOCs) haben in den letzten Jahren sehr
schnell an Relevanz und Interesse gewonnen. BefürworterInnen dieser Tech-
nologie schätzen die Möglichkeit an sogenannten ”massive online classes”
teilzunehmen, ohne Ortsgebundenheit, ohne spezielle Vorkenntnisse oder
finanzielle Hürden. Dennoch weisen MOOCs geringe Abschlussraten auf;
eine Großzahl von Menschen schreibt sich in Kurse ein, aber nur wenige
dieser nehmen auch erfolgreich bis zum Ende teil. Die hohe Ausfallrate
dieser Systeme wird von der Online Learning Community als eine der
größten Herausforderungen gesehen.

In dieser Arbeit analysieren wir MOOCs von zwei verschiedenen Plattfor-
men in verschiedenen Szenarien. Wir verwenden maschinelles Lernen, wie
Support Vector Machines (SVM) und Boosted Decision Trees, um UserInnen
als ”Completers” und ”Dropouts” zu klassifizieren. Weiter erforschen wir
system-to-system und multisystem Szenarien um darzustellen, in welchem
Ausmaß verschiedene Systeme und Domains mit einem einheitlichen Ver-
fahren analysiert werden können. Ebenso bewerten wir die in der Analyse
verwendeten Faktoren, um darzustellen, mit welchen dieser sich eine Klas-
sifizierung am sichersten vornehmen lässt.

Unsere Ergebnisse zeigen, dass das Aufspüren von potenziellen ”Dropouts”
über verschiedene Systeme hinweg eine machbare Herausforderung darstellt.
Ausserdem erschließen wir spezielle Eigenschaften beider Systeme, die die
Genauigkeit der Klassifizierungsmaßnahme beeinflussen. Aus den Ergeb-
nissen streichen wir jene Faktoren unseres Modelles hervor, welche für
die Einteilung in ”Completers” und ”Dropouts” am besten funktionieren.
Wir gehen davon aus, dass die vorliegende Arbeit ein Fundament und
einen Meilenstein in der fortlaufenden Analyse der Ausfallrate und des
UserInnen-Verhaltens in MOOCs darstellt.
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1 Introduction

Massive Open Online Course (MOOC) is a relatively recent phenomenon
of online education. MOOCs promise to offer free-of-charge or low-cost
university-level learning contents in the form of online courses to a multi-
tude of individuals, overcoming the geographical barriers by exploiting the
penetrability of the Internet.
In the fall of 2011, Stanford University offered three courses that catalyzed
the buzz around MOOCs [19, 70]. Students of Stanford University could
take these classes for credits. Simultaneously, these courses were mirrored
through the Stanford website and made freely available as no-credit courses
for individuals outside of the university. The response was enormous, with
over 200,000 enrolments from more than 190 countries.
The success of these courses led to the development of ad hoc platforms
that universities could use to publish their MOOCs; 2012 saw the debut of
Udacity1, Coursera2 and edX 3, later referred to as the ”Big-Three” of online
education [61]. Consequently, MOOCs received such a big media coverage
and interest from higher education institutions and education professionals
that 2012 was dubbed the ”Year of the MOOC” [17, 51, 69].
The era of MOOCs started, and it has not ended yet. From the roughly 100

MOOCs existing in 2012, the number of courses available reached more
than 6,800 with more than 700 universities worldwide involved in creating
and offering MOOCs to a total number of enrolled individuals as high as 58

million as of the end of 2016 [56]. Prognosis for the coming years estimates
a compound growth rate (CAGR) for MOOCs of 36%, which will make
MOOCs an 8.5 billion USD industry by 2020. Since the invention of the
printing press some 480 years ago, there has not been any innovation in the

1https://www.udacity.com/
2https://www.coursera.org/
3https://www.edx.org/
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1 Introduction

educational area with a comparable growth [54].
These numbers testify how the MOOCs movement hasn’t stopped yet and
is still growing.

1.1 The Limitations and Challenges of MOOCs

MOOCs hit the world of online learning as a tsunami of change [45] and
initially gathered a lot of enthusiasm and advocates among education pro-
fessionals and institutions. MOOCs have been praised for the dimension
of the crowd they manage to reach, which allows such environments to
deliver knowledge even in remote places and to individuals that cannot
afford traditional university high education.
However, the more MOOCs were offered and used the more their flaws
and drawbacks became clearer, further entrenching the stigma surrounding
these systems. One of the most compelling issues of MOOCs is their high at-
trition rate. Regardless of the particular system considered, MOOCs usually
experience attrition rates of 90% [34, 46], meaning that most of the users
that initially enroll in a MOOC end up not completing the course. These
users are referred to as Non Completers (in contraposition to the Completers,
those users that successfully pass a MOOC), Disengager or Dropouts [43].
Dropout in MOOCs has been linked to various aspects, including user’s
motivation to enroll and their expectations [5, 25, 28, 38, 40], a lack of social
interactions that leads to a sense of isolation [37, 50], and no penalty for
dropping out among others [73].
All of these aspects combined complicate the analysis of online courses.
Understanding the internal dynamics of MOOCs and the behavior of the
users is a complex task. Even if the traditional metrics of higher education
attrition and dropout rates could be misleading when applied to MOOCs
[20, 48], it is widely agreed that an improvement of the overall dropout rates,
a deeper understanding of reasons that lead users to abandon MOOCs and
at what time such a drop out happens are directions that research should
focus on [74].
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1 Introduction

1.2 Approach & Research Questions

This work focuses on the analysis of MOOCs logs using machine learning
techniques, with the goal of constructing a model for the prediction of
Dropouts. The questions this research aims to answer are two-fold.

First, we classify users as Completers or Dropouts focusing on the initial
stage of MOOCs. For example, we collect information from the first days
after the start of a MOOC or consider an absolute number of user inter-
actions with the system and try to predict whether users will succeed in
the MOOCs. Alternatively, we classify the users considering the number
of interactions (in percentage) with the MOOC and how much time they
spend on it.
Specifically, we conduct these experiments for each MOOC in our datasets,
and we inspect if considering more days or number of interactions influ-
ences the accuracy of the classification.
The final premise of this thesis is to investigate similarities and differences
between MOOCs of the same system and verify how well we can predict
dropouts at an early stage of MOOCs.

Second, this work also aims at analyzing logs of MOOCs coming from
different sources. Intuitively, MOOCs with different domains, scopes, goals,
and audiences lead to different course structures and organizations.
Specifically, we analyze MOOCs organized according to a well-defined
schedule with deadlines for assignments, submissions, and exams (fixed
schedule) and MOOCs that do not have deadlines where the registered
users can interact at their own pace (self-paced).
Additionally, the portal or website on which a MOOC is available also car-
ries peculiarities due to design settings and system constraints that further
increase the heterogeneity of courses. Due to these differences, analyzing
MOOCs from various sources is a challenging task. For example, informa-
tion existing for one system may be irrelevant or even not available at all for
another system.
Despite the particularity of each course and system, all MOOCs suffer from
high dropout rates [34]. This shared issue is the driving factor for a more
homogeneous and rigorous analysis that targets and includes MOOCs from

3



1 Introduction

various sources. To investigate this aspect, we consider MOOCs from dif-
ferent systems to find analogies that can help build up a baseline for an
analysis of MOOCs at a multisystem level.
The joint study of different systems, together with the analysis and eval-
uation of the used features, is the second research question of the here
presented work.

1.3 Impact

Correctly separating the completers from the dropouts allows for a precise
class profiling, which offers further details about the different behaviors of
the users in MOOCs. Furthermore, once the potential dropouts are iden-
tified, course administrators have the chance to intervene in real-time to
help them and keep those at risk of fail users engaged. For example, ad-
ministrators of MOOCs could directly reach out to these potential dropouts
to understand their difficulties and, thus, provide specialized help where
needed.
Alternatively, for MOOCs that include group activities, it would be reason-
able to pair up these potential dropouts with better performing users. With
this approach, the presence of strongly motivated users could benefit the
potential dropouts, virtually boosting their motivation and engagement in
the course. Overall this approach could also provide users the possibility
to compare their methods with their peers, thus offering a fast channel for
self-assessments and promoting peer-to-peer help. Therefore, peer-to-peer
collaboration also represents a way to diminish the amount of work of
instructors in favor of a more open and social learning experience, which
could directly influence users’ success.
Moreover, techniques for early detection of dropouts could be embedded
in existing systems to create real-time autonomous models able to identify
users at risk of failing during the initial part of MOOCs. Such models could
be used to automatically contact these potential dropouts (for example by
sending emails or showing notification in their personal page).
Furthermore, this would be a tremendously powerful tool in the hands of
instructors, who would have information about the set of at-risk users at
a point in time when this indication is still valuable. In fact, the sooner
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1 Introduction

indications about the soon-to-be dropouts are available, the more time is
left for instructors to intervene and potentially prevent those dropouts.

1.4 Thesis Outline

The rest of this thesis is structured in 6 chapters. After the introduction,
Chapter 2 features an overview of the state of the art of research in MOOCs.
Chapter 3 describes the analyzed systems, their considered datasets and
explains and motivates the proposed experiments. Chapter 4 presents the
results of the experiments. Chapter 5 focuses on the understanding and
justification of the obtained results. Finally, Chapter 6 concludes the work
by answering the research questions and outlining future works.

1.5 Contributions

All the experiments presented in this thesis have been designed, set up and
performed completely by the author. The discussion and explanation of the
obtained results have been done in collaboration with Denis Helic, Simon
Walk, Christian Gütl, Rocael Hernandez and Vanessa Chang.
Particularly, initial results and experiments on a part of the dataset of Uni-
versidad Galileo have been accepted and presented at eMOOCs 2016 [68].
Results of attrition analysis on an extended set of MOOCs of Universidad
Galileo have been published and presented at the 6th International Work-
shop on Learning Technology for Education challenges (LTEC 2017) [66].
Experiments on Curtin University’s datasets and the combination of datasets
from Universidad Galileo and Curtin University have been accepted and
were presented at the European Conference on Technology Enhanced Learn-
ing (EC-TEL 2017) [67].
This thesis is based on the experience gained from these previous works
and further extends on the obtained results.
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2 Related Work

This chapter presents an overview of the relevant literature to the study
and analysis of MOOCs, and it is logically organized into two parts. In the
first section, we discuss research that investigated and analyzed MOOCs
trying to understand the point of view of the users. The second section
covers research tasked with predicting users participation in MOOCs, with
an emphasis on dropout detection and mitigating practices.

2.1 Analysis of MOOCs

These works try to grasp a better understanding of the learning process in
MOOCs. Notably, the considered aspects include reasons for users to enroll,
their expectations, goals, and motivation towards the MOOC that might
cause users to drop out eventually.

The Funnel of Participation is a well-trusted model to describe users engage-
ment process in online learning scenarios. Originally proposed by Clow [14],
it is one of the very first standards that has been introduced to characterize
the interactions of users with web-based courses environment. Therefore,
many subsequent works have expanded upon this initial model. It is in-
spired by the Purchase Funnel Model, widely used in marketing and sales
contexts.
The process in which users enroll, interact and progress in a MOOC is
described in 4 phases; Awareness—potential learners become aware of the
existence of a MOOC; Registration—those interested in the course sign up
for it; Activity—enrolled users engage in typical MOOC’s learning activities;
Progress—the action of remaining active and engaged until the end of the
course.

6
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Each of these phases is characterized by a certain quota of users who lose
interest and eventually abandon the MOOC. This phenomenon is called
Attrition and the percentage of users that fail to complete a course and drop
out is denoted as Dropout rate. Although being a relatively simple model,
the Funnel of Participation has been widely accepted for its simplicity and
flexibility.

The works presented in Gütl et al. [25] and Guetl et al. [22] introduced
the Attrition Model for Open Learning Environment Setting (AMOES), a more
detailed version of the Funnel of Participation intended for a deeper under-
standing of the reasons for Attrition.
The authors analyzed a 4-week MOOC offered by Universidad Galileo in
Guatemala, characterized by a dropout rate of 92%. At the end of this
MOOC, a survey was sent out to all users who failed to complete the course
successfully. The purpose of the survey was to gather feedback from the
users about their experience and opinions regarding the MOOC.
The analysis of users’ answers led the authors to propose their AMOES
model, which divides the Attrition into Unhealthy and Healthy. Healthy
Attrition represents users that no longer have interest to progress through
the course. Under this umbrella the authors further individuated 3 differ-
ent classes of users: Exploring User, Content Learner and Restricted Learner.
Exploring Users are those who subscribe driven by curiosity about a new
learning environment rather than a pure desire to complete a certain course.
In the same way, Content Learners are users interested only in particular
topics offered during the course. Therefore, they can take advantage of the
free access and no-entry barrier policies of the MOOC to gain the desired
knowledge. Finally, Restricted Learners represent users that exhibit an audit
behavior and do not seem to have a strong interest in any particular topic
of the MOOC.
For these reasons, the authors did not perceive the Healthy Attrition as a
negative factor, but rather a consequence strictly related to the very nature
of MOOCs. On the other hand, Unhealthy Attrition represents users that,
although willing to complete a MOOC, fail to do so. Reasons for this could
be both external and internal. External factors include users’ work and job
commitments and limitation of technologies, while internal ones could be,
for example, an absence of support and poor organization of the course,
as well as a lack of prerequisite knowledge and the inability of the users

7
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to correctly engage in the forum and organize their time. The authors con-
cluded that Healthy Attrition is the most urgent issue when it comes down
to lowering the dropout rates.

Kizilcec et al. [39] investigated a set of three computer science MOOCs,
by analyzing assessment and video interactions and classified the learners
using k-means clustering approach.
The authors identified four classes of learners: Completing, Auditing, Dis-
engaging and Sampling. Completing are those learners who completed the
majority of assignments or, at least, attempted to do so. Auditing users are
those who engaged mostly by watching videos rather than solving assign-
ments. Learners classified as Disengaging exhibited an engaging style similar
to the Completing at the beginning of the course, but with a steady decrease
in the number of interactions, the more time passed. Sampling learners were
those who watched video lectures for a short period, either at the beginning
of the MOOC or when it was already underway.

The authors in Anderson et al. [3] classified users from three successive
offerings of a Machine Learning course and from three consecutive offerings
of a Probabilistic Graphical Models course, for a total of six MOOCs all offered
on Coursera.
Their approach included the analysis of two main activities, viewing a
lecture and hand in assignments. These two aspects were blended in a
so-called assignment fraction, which indicated the percentage of assignments
interactions over the sum of viewing lectures and assignment activities. The
authors analyzed the distribution of this variable and depicted five classes
of engagement style: Solvers, Viewers, Collectors, Bystanders and All-rounders.
Besides, the authors verified how the users from each of these classes
participated in forum discussions and conducted an experiment involving
the award of badges for forum activities. Their results indicated how a
system of badges could directly affect the overall user activities.

Coffrin et al. [15] analyzed a set of two MOOCs offered by the University of
Melbourne.
The first one, Principle of Macroeconomics, was an eight-week course with
minimal prerequisites. During each week, users had to watch videos and
respond to a set of quizzes, three of which contributing to users’ final grade
and the remaining five being for practice purposes only. Furthermore, users

8
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had to write an essay on one of the topics covered during the course and
review and grade the essays of three other users.
The other MOOC, Discrete Optimization, was a graduate level course, which
required the registered users to have a strong background in computer
science. With a duration of nine weeks, it was organized in a self-paced
manner, with the complete assignments and lectures already available from
the first week. In this case, seven programming assignments with unlimited
attempts would constitute the final grade of the users.
A discussion forum was present for both MOOCs. Principle of Macroeco-
nomics had a completion rate of 4.33%, while the one of Discrete Optimiza-
tion was of 3.5%. The authors studied the behavior of the users with a linear
regression model.
Considering the interactions from the first two weeks only, they individ-
uated three classes of learners; Auditors—users who watch videos in a
particular week but do not participate in any assessment; Active—users
that participate in an assessment during a particular week; Qualified—users
who watch a video or participate in an assessment and obtain marks higher
than 60% in both assignments from the first two weeks.
Particularly, the authors showed that completion rates of Qualified users are
higher than the one calculated over the whole users. The authors inferred
that Qualified users were those learners with prior knowledge on the topics,
which helped them to achieve high scores already in the assignments from
the initial weeks.
Moreover, the authors focused on weekly assignments and video interaction
transactions and represented these by State Transition Diagrams. They con-
cluded that the State Transition Diagrams highlighted certain similarities
between the same classes of users among the two considered MOOCs.

In Teusner et al. [63] the authors analyzed three successive re-runs of
the MOOC In-Memory Data Management (IMDM), developed by the Hasso
Plattner Institute of Potsdam and available on the onpenHPli platform1.
These re-runs were offered between 2012 and 2014, held in English and
targeted academics and learners with a business background. Each re-run
spanned over six weeks and included a final exam for a positive grade.
More than 13,000 users enrolled in the first two interactions of the course,
whose contents barely differed. The third re-run attracted more than 9,000

1https://openpli.org/
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participants. Besides, the content of this third offering was updated and
enhanced according to the feedback received from the users of the initial
two runs of the MOOC. Notably, around 60% of the video underwent some
editing, while part of the learning units was reshaped to ease and increase
their readability.
The authors verified that using a stable material for successive re-runs
required less effort for content creators but was enough to attract a wider
audience. The authors also suggested that the sooner users’ feedback is
addressed and introduced to model and design the course, the higher their
effects on user engagement are during the rest of the course.

A review of the available literature in MOOCs is presented in Hew and
Cheung [27]. The authors analyzed more than twenty different research
works on MOOCs, characterized by a variable number of participants and
offered with different contexts and systems.
The authors also presented a summary of the perspectives of users and
instructors. Motivations for users to enroll in a MOOC were mainly out of
curiosity about such environment, desire to extend their knowledge and
personal challenge. The authors denoted unclear course materials, lack of
support and incentive and other personal obligations or priorities as the
most common reasons for users to drop out.
The challenges of teaching MOOCs for the instructors included lack of
user participation in the online forum and users’ feedback. The quality of
education provided by MOOCs and the accuracy of assessments of user
learning emerged as two of the main pressing issues that still had to be
resolved.

2.2 Prediction of user participation

In order to mitigate the number of dropouts of a course, it is necessary to
distinguish those users more at risk of failing. The sooner it is possible to
identify this set of users, the more time there is to take countermeasures
to prevent them from turning into dropouts. Mostly, these classification
tasks rely on the analysis of logs of user interactions by data mining tech-
niques. These are an emerging alternative to traditional methods of analyses
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such as surveys, questionnaires, and interviews, which are increasingly
time-consuming the larger the surveyed population is and are, therefore,
impractical for most scenarios.

Authors in Jiang et al. [33] analyzed a four-week MOOC offered on Coursera
by the University of California (UCI) called The Preparation for Introductory
Biology. The course was thought for incoming first-year students enrolling
in the Biological Science Major and consisted of three units. Each of these
included short videos, up to four multiple-choice quizzes as well as peer
assessment modules.
The authors analyzed users’ social interaction and assignments perfor-
mances to train a logistic regression model. Namely, the set of features
included the average quiz score, the number of completed peer assessments,
the social network degree of users and whether users were undeclared
majors, meaning users had to attend an entire year of biology and chemistry
classes before being eligible to enroll in the major.
The authors reported that first-week assignment scores were a reliable indi-
cator of users’ performance. Furthermore, getting a Distinction certificate
was positively correlated with the level of social interaction of the users.

Balakrishnan and Coetzee [4] tried to predict the likelihood users would
drop out in the following week using Hidden Markov Models and an
ensemble stacking approach similar to the one described in Xing et al. [72].
Furthermore, they aimed to individuate patterns in student behaviors.
Their dataset consisted of a single MOOC offered by Berkeley University on
the edX platform, called Software as a Service. This course lasted six weeks and
consisted of eleven lectures, each including several videos, programming
homework, and graded multiple-choice quizzes. The course also included a
basic discussion forum.
The authors used features such as the percentage of total available videos
watched, the number of threads viewed, the number of posts made on the
forum, and the number of times the Progress Page was visited.
Their results offered insight into users’ interaction style and how this related
to the probability of dropping out of the MOOC. For example, the authors
found that users who frequently checked the Progress Page and watched
more than 50% of the available videos were less likely to abandon the course.
This information could be used by instructors to suggest changes in the
interaction behaviors of those users who are at risk of failing.
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Boyer and Veeramachaneni [8] experimented with the prediction of users
that will drop out in a real-time scenario. For their experiments, they an-
alyzed a set of three different offerings of the same MOOC (Circuits and
Electronics) offered by MIT on edX.
By employing a variable amount of interactions, the authors tried to predict
users who would drop out. Their model was based on a rolling window
concept, whose size represented the amount of information (in their set-
tings, the number of weeks) from the past to include when making a new
prediction.
The results of this work suggested that a small window size could yield, in
some cases, outcomes comparable to those obtained with a window size
that included the whole available history.

In Guruler et al. [24] the authors attempted to classify users with the help
of a Microsoft Decision Tree (MDT). This classifier was used to obtain a
ranking of the features, thus gaining more insights about their relations and
relative importance.
The authors used a set of twenty-four features, which included dimensions
related to the family’s living conditions and financial status, high school
information and university’s entrance exam placement.
Their results indicated some degree of correlation between certain features,
such as the family’s income and the type of academic registration.

Similar studies undertaken by colleagues and I [68] have depicted dropout
prediction over a set of five MOOCs. Each MOOC lasted eight weeks and
was offered by Universidad Galileo in Guatemala on an own e-learning
portal.
Initially, we attempted to classify users on each MOOC singularly and,
afterward, employed a unique dataset as a combination of the five courses’
logs to detect dropouts. We conducted the experiments using k-means and
Support Vector Machines (SVM) classifiers.
Our set of features included session’s information (e.g., the total number of
requests per session, average sessions’ length, average number of requests
per day) and the amount of time of interaction with each available tool of
the course. We also experimented with the same features but computed on
the first half of the MOOCs only (four initial weeks) and conducted the
experiments using different combinations of features alternatively.
In our results, SVM always outperformed k-means, and we noticed im-
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provement in the prediction scores when using particular combinations of
features.

Successively [66], we analyzed an extended dataset of 11 MOOCs offered
from Universidad Galileo in Guatemala. In this work, we attempted to
detect dropouts on a weekly basis using cumulative features. The features
we used included general information, such as the number of active days
and the average number of interactions per day, the total session length in
second. Furthermore, we also extracted features by counting the number of
times users interacted with each of the available tools the system offered. We
used SVM to run an experiment for each week of duration of the MOOCs
and evaluated the results using per-class and average Precision, Retention
and F1 Score.
We obtained results in line with those from our initial work, with an av-
eraged F1 Score higher than 0.85 for more than the six weeks considered.
Furthermore, we tried to classify users according to the Attrition Model for
Open Learning Environment Setting (AMOES) proposed by Guetl et al. [22].
Specifically, we used SVM and attempted to classify users into Completers,
Healthy Attrition, and Unhealthy Attrition. However, we obtained an F1

Score lower than 0.7 for both Healthy Attrition and Unhealthy Attrition
class, indicating some flaws and possible improvement in the proposed
model and approach.

In our most recent work [67], we analyzed MOOCs from two different
systems. Specifically, we used a set of MOOCs of Universidad Galileo offered
on their own portal Telescopio and a set of MOOCs of Curtin University
available on the edX website. The two systems differed concerning intended
audience, the number of enrolled users and the modalities these MOOCs
were offered. Specifically, MOOCs of Universidad Galileo were designed in
a synchronous mode, while those from Curtin University were proposed in
a self-paced mode.
We attempted to detect dropouts and analyzed the features of our model
in a multisystem setting. We identified a set of features that always were
the ones with the highest scores and obtained accuracy greater than 0.7
already when using the initial 20 interactions of each user. Furthermore, the
accuracy of the classifier was always higher than 0.7 when we analyzed the
initial days following the user’s first interaction.
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3 Datasets and Experimental
Setup

As a first step, we introduce the considered MOOCs. Specifically, we describe
and characterize the MOOCs from Universidad Galileo and the ones from
Curtin University. Following the steps of the Knowledge Discovery Process
[1], we preprocess the original data and derive the set of features from
it. Further, we motivate and introduce the per-system and multisystem
experiments. Finally, we present and describe the two classifiers that we use
for our experiments: Support Vector Machine (SVM) and Boosted Decision
Trees.

3.1 Datasets

3.1.1 Universidad Galileo

Universidad Galileo is a university located in Guatemala City in South
America. Before joining edX in May 2016, the university offered online
courses on their own e-learning portal Telescopio1 (built upon the .LRN
open source software2). The MOOCs we consider were offered on this plat-
form between 2013 and 2014.
The dataset from Universidad Galileo includes logs from 11 different
MOOCs, each differing in topic, audience and learning goals. These MOOCs
are briefly described in Table 3.1. All these MOOCs have a fixed schedule;

1http://telescopio.galileo.edu/
2http://www.dotlrn.org/
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throughout the duration of the MOOCs, users have to pass various assess-
ments in the form of weekly activities and quizzes. Moreover, a final exam
concludes each course. Eventually, some MOOCs (the more technical ones)
also require users to hand in a course project (programming assignment).
The final grade is the average of the weekly assignment scores, the project
score, and the user’s final exam score. Weekly quizzes can be employed
by the users as self-assessment. These, although not mandatory in order to
get a positive final grade, are highly suggested. Each of the MOOCs also
implements a discussion forum, where users can ask questions, clarifica-
tions and discuss the topics considered during the course. All assignments
and final exams for each MOOC have submission deadlines that have to
be respected by the users. Although users can still organize their learning
schedule autonomously, these settings impose a certain pace.
In order to collect feedback after the end of each MOOC, a survey is sent

out by email to all users who do not manage to complete the course with a
positive grade. The survey is intended to help system administrators and
instructors of MOOCs to gather information about user opinions on the
course. Particularly, the questions cover preferential aspects such as user

Table 3.1: Universidad Galileo MOOCs description. We consider a total of eleven different
MOOCs. Three MOOCs are re-runs of the same course and are listed only once
under Cloud Based Learning (CBL). The details for these re-runs are reported
in 3.2. The first column lists the name for each MOOC (translated from Spanish),
together with its abbreviation between brackets. In the second column, we give a
short description of the topic the courses focus on. The range of topics is wide
and goes from technical ones, as in the case of Android (AND), to more general
and practical ones, as for example Medical Emergencies (ME). The third column
indicates the particular audience the MOOCs were thought for and offered to.
Most of the MOOCs were not designed for students but targeted at Professionals
and Teachers.

MOOC Content Target

Android (AND) Introduction to mobile apps for Android development Students
Authoring tools for E-Learning (AEL) Tools for design of interactive virtual courses Professionals, Teachers
Client Attention (CA) Professional customer service Professionals
Cloud Based Learning (CBL) Cloud computing principles applied to education Professionals, Teachers
Community Manager (CM) Professional management skills and promotion on the web Professionals
Digital Interactive TV (DITV) Theory of interactive applications for digital TV Professionals
Introduction to E-Learning (EL) Content developing for online fruition Professionals, Teachers
Medical Emergencies (ME) First aid basics No specific target
User Experience (UE) Design and implementation of UI Students
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satisfaction with the MOOCs, perception of the course’s offer and reasons
for users to enroll and drop out. Additionally, these answers are used to
create a classification model to investigate and describe reasons for attrition
[22, 25].
However, only part of the users who received the survey returned it filled
out. The percentage of the users that send back the completed survey varies
between 40% (Cloud Based Learning (CBL)) to 81% (Medical Emergencies (ME)).
For the purposes of this work, we consider two classes of users: Completers
and Dropouts.
It is necessary to note, that due to the structure of the logs, information
about those users who abandoned the course and did not click on the
survey link are not available, and, therefore, we do not consider these users.
Likewise, the log files only include interactions posterior to the MOOCs’
enrollment phase. Therefore, users who enrolled in a MOOC but never

Table 3.2: Universidad Galileo MOOCs characteristics. After the MOOCs name, the Enroll-
ments column represents the total number of users registered to the MOOC and
the Users one accounts for those who had at least one interaction available in
the logs. Completers and Dropouts columns represent respectively the number of
users who successfully completed the course and those who did not succeed to
do so. The column Dropout Rate reports the relative rate computed in relation
to the Users column and the absolute rate in relation to the Enrollments column
between brackets. Even considering only the active users, the dropout rates
(except for three MOOCs) are always higher than 50%, reaching up to 87% in
one case. When the whole number of enrolled users is considered, these rates
increase dramatically and are always higher than 90%, in line with the values
from the literature. The last three columns report the average interactions per
user and for each class. From these columns, we see that for all the considered
MOOCs the Completers on average, always engage more than the Dropouts.

Average Interactions
MOOC Title Enrollments Users Completers Dropouts Dropout Rate Global Completers Dropouts

Android (AND) 8852 583 77 506 87% (99%) 433 1597 260

Authoring tools for E-Learning (AEL) 1679 255 101 154 60% (94%) 722 1401 279

Client Attention (CA) 2915 89 60 29 33% (98%) 394 510 154

Cloud Based Learning (CBL) 2055 274 121 153 56% (94%) 2353 4423 747

Community Manager (CM) 9145 811 320 491 60% (97%) 850 1760 268

Digital Interactive TV (DITV) 847 117 63 54 46% (93%) 999 1582 319

Introduction to E-learning (EL) 2141 239 81 158 66% (96%) 1623 3804 545

Medical Emergencies (ME) 2112 118 49 69 59% (98%) 1671 3172 606

User Experience (UE) 2150 182 62 120 66% (97%) 499 1137 170

Web Tools and Educational Applications (WTEA) 1350 176 99 77 44% (93%) 265 369 131

Web Tools in the Classroom (WTC) 2045 313 131 182 58% (94%) 1044 2078 299

Total 35291 3157 1164 1993 64% (97%) 987 1985 343
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interacted with it, do not appear in any of these logs and are not considered
in this work.
For a more comprehensive overview, Table 3.2 summarizes the different
types of users within each of the MOOCs and at a global system level.
The entries Web tools and educational applications (WTEA) and Web tools in
the classroom (WTC) represent a subsequent offering (re-run) of the MOOC
Cloud Based Learning (CBL). Despite the different names, their contents and
audiences do not differ, and, therefore, we list these three MOOCs only once
in Table 3.1 as Cloud Based Learning (CBL).
The structure of the log files is the same among all different MOOCs. In
each file, each row describes a single interaction of a user with the MOOC
and consists of the following five fields:

• User Id: a system internal identifier to uniquely identify a user within
the system (int)
• Origin URL: the URL from which the request originated (string)
• Request URL: the URL that was requested (string)
• Timestamp: the date and time at which the request happened (string

in the form DD-MM-YY HH:MM:SS)
• Tool: indicates the type of the requested resource (string)

While the first four fields do not require any particular explanation, some
clarification is needed for the Tool field. This field is a mapping from the
Request URL to the type of resource that was requested. The list of all
available Tools includes the following:

• Assessment: it is used for self-assessment mostly. It can be of two
types: online quizzes and surveys (the latter being the most used one);
• Assignment: link to the assignments page. This page contains a list of

assignments with their descriptions. Assignments can be of various
types, including tasks, projects, participation, etc.;
• Calendar: a page that contains the calendar of the MOOCs;
• Course Board: a page that includes a per-week description of the

discussed topics;
• Course Members: a page that includes the list of tutors, instructors,

and experts that are involved in the MOOC;
• Diploma: a page that contains the requirements to obtain the MOOC’s

certificate;
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• Eduwiki: educational wiki for .LRN;
• Evaluation: a tool used to upload, download or view the list of tasks

of the MOOC. Furthermore, it also displays information about users’
total and partial grades;
• FAQs: a page with the list of Frequently Asked Questions;
• File storage: a page including all the files, documents, and resources

available for the course;
• Forum: a link to the discussion forum of the MOOC;
• Hangouts: a page that contains the summary of the hangouts done

during the course;
• Learning content: access to the content uploaded by the instructors.

The contents can include different resources such as videos, audio,
mind maps, images, etc.;
• Members: a page that lists all enrolled users of the MOOC;
• News: a page that contains all the course’s news;
• One-Community & Page-Num: an internal page of the MOOC;
• Peer evaluation: used to make student peer review;
• Requirements: a page containing the technical requirements (if any)

to enroll in a MOOC;
• Twitter: a page that lists all the tweets related to the course;
• Wiki: link to the MOOCs wiki;

The Tool Forum only indicates a user clicking on the link to the forum.
Interactions that happened within the discussion forum are saved in a
separate log file, which consists of the following fields:

• Forum id: a unique identifier for each interaction (int);
• Creation date: the date and time at which the interaction happened

(string in the form DD-MM-YY HH:MM:SS);
• Type: one of answer, comment or question. Question represents the

creation of a new thread, while comment and answer indicate replies to
an already existing thread (string);
• Tags: tags provided by the user (string);
• Parent id: if null it indicates a new topic (thus the type will be question),

otherwise it indicates the Forum id to which it refers (int or null);
• Character count: count of the characters of the post, HTML formatting

included (int);
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• Title: the title given by the user to the thread, null for comment and
answer (string or null);
• Body: the content of the posted message (string);
• User id: unique identifier of the user the interaction refers to (int);
• Staff: either t for teacher and admin posts, or f for students (string)

As a first step, we preprocess all the log files. We discard rows with meaning-
less or missing fields. Meaningless fields include, for example, interactions
with wrongly encoded Tool, Timestamp or User Id. Missing fields are
mostly User id and more rarely Timestamp and Tool. As it is not possible
to recover a missing or wrongly encoded User Id or Timestamp we simply
have to drop the corresponding entry in the log file. However, these interac-
tions represent a small percentage of the total interactions and their removal
has no strong implications for our analysis.
Second, we remove rows corresponding to certain interactions such as, for
example, loading of images or CSS files. These interactions are of no interest
as they are not actions of users but rather browser requests for resources to
the server. Moreover, we also skip User Id appearing in both Completers
and Dropouts log files. In the forums, we remove every interaction from
staff members and keep only interactions from users, whose User Id also
appears in the main log file.
After these basic cleaning steps, we blend all these files into a single one
obtaining a file for each MOOC. Each of these files consists of the fields
Timestamp, User Id, and Tool. For interactions within the forum logs, we
set the Tool as one of answer, comment or question, while for interactions
from the other files we keep the corresponding Tool. Furthermore, we add
a field Class to label users as either Completers or Dropouts. As a general
setting, we identify Completers by a Class value of one and Dropouts by
zero.

3.1.2 Curtin University

Curtin University is located in the city of Perth (Western Australia). It joined
and started to create online courses on the edX platform in 2015

3. Initially,
3The discussion refers to the at-the-time-of-analysis version of edX. Since edX is

continuously being developed and enchanted, some concepts might slightly differ in the
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Curtin University made a set of two MOOCs available and extended it with
two more MOOCs during 2016. Moreover, Curtin University also makes use
of re-runs for some courses, which are offered several times a year.
The analyzed dataset consists of the first offering of a MOOC that, for conve-
nience, will be called MOOCC1 and its re-run, identified as MOOCC2)4. As
with Universidad Galileo, Table 3.3 provides an overview of the considered
MOOCs. In contrast to the logs from Universidad Galileo, the ones from
Curtin University also include enrollment interactions. Therefore, for this
system, the Users column coincides with the Enrollments one, which is
omitted. Similarly, we also omit the relative dropout rate. We give a detailed
overview of the structure of the logs in Section 3.1.2.
Each of these MOOCs is characterized by an initial time window during

which the course is available for enrollment only (enrollment phase), and a
second time window lasting from the MOOC’s official start date until its
official end date (running phase). All the considered MOOCs from Curtin
University are self-paced; on the start date, the course content and materials
are uploaded and become available to all enrolled users who can engage
with the system at their own pace. Enrollments are possible anytime and
mainly two modes are supported: audit and verified. Enrollment in audit
mode is free of charge, but no certificate is issued after successful completion

Table 3.3: Curtin University MOOCs characteristics. After the MOOCs name, the Users
column represents the total number of users registered to the MOOC. Completers
and Dropouts columns represent the number of users who completed the course
and those who did not succeed to do so respectively. The column Dropout Rate
represents the percentage of registered users who did not complete the MOOC.
For both MOOCs, we have rates higher than 90%. The last three columns report
the average interactions per user globally and for each class. We can see that on
average the Completers engage more than the Dropouts.

Average Interactions
MOOC Title Users Completers Dropouts Dropout Rate Global Completers Dropouts

MOOCC1 21948 1500 20448 93% 93 683 49

MOOCC2 10368 208 10160 98% 58 760 44

Total 32316 1708 30608 95% 76 722 47

future. The latest available documentation can be found at http://docs.edx.org/
4The real names of the MOOCs have been removed as requested by Curtin University.
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of the MOOC. However, audit users can switch to verified mode, which
includes a certificate of completion of the course, anytime upon payment of
a certain amount of money.
After the official end of the course, a MOOC can either remain closed for
enrollment or enter in Archive Mode. This later modality, still allows users
to enroll, browse through course materials, join forum discussions and any
other activities usually available within the course. However, interactions
happening after the official end date, will in no case allow a user to get a
certificate. Therefore, users can request a certificate only if they manage to
obtain a positive grade at any time before the official end of the course.
A user eligible for a certificate can request it by clicking on a dedicated
Obtain the certificate button, which becomes available once the MOOC has
been completed. Since there is no time limit to request a certificate, users
may request certificates with a particular delay (even months). In this case,
the interactions relative to the action of asking for a certificate has a delayed
timestamp, potentially even later than the MOOC’s end date. Due to this
reason, we filter out the following interactions:

• the only considered enrollment interactions are those taking place
before the official end of the course. Therefore, we drop enrollments
of users when the course is in Archive mode;
• we consider certificates regardless of their timestamps. In fact, these

always indicate users who completed the course before its end, regard-
less of the timestamp they exhibit;
• we consider all other interactions only if they take place before the

official end of the course

The structure used by edX to manage the course structure and progress
includes several files and SQL tables. Therefore, the next section offers some
detailed explanation about the logs and the way we processed them.

edX logs

Each partner university of edX can, at anytime, request and download
the logs of their MOOCs. These logs consist of an Event folder, a set of
SQL dumps of the database and JSON files. The Event folder includes all
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interactions coming from any of the MOOCs from the university, organized
as daily files. Due to this setting, every file in the Event folder is generated
once and never updated with interactions after its date.
On the other hand, the SQL dumps consist of separate tables for each of
the MOOCs offered by the university. These SQL tables contain the latest
status of users’ progress, and, therefore, are constantly updated to reflect
any change. For example, when a user gets a certificate the relative table
is updated consequently. The courseware JSON file, which is used to save
users’ progress within the course, represents another example. When a
user begins to solve a problem of a particular course’s section but does not
complete it, the status of the problem for this user is stored in this file. In
the future, when and if the user will progress within the same problem,
the corresponding entry in the table is updated consequently to map the
current status.
The available set of instruments and resources that edX offers to shape and
manage a course is referred to as events and includes twenty-one different
tools. Each event comprises a set of subevents, which describe the particular
interactions that take place. In the case of Curtin University’s MOOCs, the
set of used tools includes the following:

• Enrollment: includes course enrollment and unenrollment, as well as
upgrade from audit to verified;
• Course Navigation: events happening on the main page of the course,

such as clicks on links and tabs or selections of portion of text;
• Video Interactions: video related events, such as show or hide cap-

tions, pause of a video, change of a video speed, etc.;
• Problems: interactions related to solving and correcting course as-

sessment. It includes events such as verification of the given answer,
grading of the answer, display of hints and so on;
• Bookmark: users can create bookmarks to a particular course unit

for an easier access at a later time. It includes add, view or delete of
bookmarks events;
• Discussion Forum: typical forum interactions such as adding a com-

ment, creating a new thread or searching within the forum discussions
and posts;
• Poll and Survey: voting and viewing of the results of polls and surveys

events;
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• Certificate: includes certificate creation, sharing of the certificate on a
social media website and clicks on the shared certificate link (which
points back to the main page of the course on the edX website)

Besides the usual data cleaning tasks (removal of empty or malformed
inputs) and the previously mentioned constraints, we need some extra
preprocessing steps to prepare logs of Curtin University.

edX and Curtin’s staff interactions. Event logs contain all type of interac-
tions that take place in the MOOCs, regardless if those originated from users,
staff members (referred to as Course Team Members in the documentation)
or members of edX. Since the focus of the experiments is on the users, we
filtered out the interactions from Course Team Members.
Removal of edX staff is easily carried out, as these have an admin flag set in
the table listing all users of a MOOC. However, this is not the case for the
remaining staff members (i.e., the professors and instructors that manage
the MOOCs and the discussion forum). To correctly remove their set of in-
teractions, we have to take particular attention regarding Enrollment events.
Registration of users happens in two different modalities: either users reg-
ister themselves by clicking on the Enroll button on the course main page
or a Course Team Member can enroll one or more users at the same time,
a procedure called batch enrollment. Registrations done through the latter
have the Course Team Member as the initiator that performs the batch
enrollment. We kept these interactions but substitute the original id of the
initiator with the ones of the users that were enrolled. This way, we do not
discard any user. Despite this situation, the remaining interactions from
staff members do not present any particular problem and, therefore, we
simply drop them.

Invalid username and user id. Some interactions in the logs can have a
null or empty username or user id. This happens, for example, when the
system logs out users because their session is expired. As it is not possible
to associate these to the initiator users, we removed these entries from the
logs.

Unmapped user id. After enrollment, an obfuscated id is generated and
assigned to the newly enrolled user, and the mapping username-obfuscated
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id is saved into an SQL table5. However, interactions from authenticated
and not authenticated users who just browse the course main page without
enrolling in the course, are also saved in the logs without obfuscated id. As
these users are neither Completers nor Dropouts, we do not consider these
interactions for our experiments.

Unmapped interactions. Besides the documented set of possible events,
the logs might sometimes include some undocumented interactions. Such
undocumented interactions could be due to, for example, updates to the
edX platform, which suppressed specific events while the MOOC was still
on-going. Since edX does not support such events any longer and no further
information is available about them, we simply remove these interactions.

Duplicated interactions from different sources. Each of the available events
is described by a precise set of fields. The set of fields varies from event to
event but several common fields are always present. For example, the event
source can be one of server, browser or mobile.
Interactions with browser and mobile as event source indicate actions of users
that take place in a browser or in the edX mobile application respectively
and are referred to as Explicit Actions. On the other hand, interactions with
server as event source represent server responses to users’ actions and are
referred to as Implicit Actions.
Overall, some events always trigger Implicit Actions, while others can trigger
a combination of Implicit and Explicit Actions. Particularly, it can happen that
in response to an Explicit Action performed by the users (e.g. a click), the
system triggers one or more Implicit Actions that are also saved in the logs.
These Implicit Actions are not user interactions, rather they reflect server side
actions.
For practical reasons, for events that only trigger either Explicit or Implicit
Actions, we do not discard anything. Nonetheless, for events that can trigger
both kind of actions we discard all Implicit Actions and keep the Explicit
Actions only.

5Obfuscate ids are used by edX to provide anonymous logs for research purposes.
However, Curtin University agreements with edX did not include the delivery of already ob-
fuscated data. We performed the obfuscation of the ids and any other sensitive information
following edX guidelines.
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After the described preprocessing step, the interactions in the cleaned data
set for Curtin University include the fields User Id, Timestamp, Event,
and Class. A Class field with value zero indicates Dropouts, while a one
indicates Completers.

3.1.3 Multisystem

We perform two types of experiments in a multisystem scenario.
First, we seek to predict dropouts of one system using information from
another system. Second, we want to predict dropouts among different
systems using mixed information coming from these same systems. To
conduct these experiments, we construct some extra datasets.
Particularly, we create a first dataset by merging all users from the MOOCs
of Universidad Galileo. We process this dataset in the same way we process
each single MOOC from this system (see Section 3.1.1) and we describe
each user using the fields Timestamp, User Id, Tool and Class and call this
dataset Galileo.
Likewise, we merge the users from both MOOCs of Curtin University into
a single dataset and process it accordingly (see Section 3.1.2). Interactions
of this dataset include the fields User Id, Timestamp, Event, and Class. We
call this second dataset Curtin. We use Curtin and Galileo datasets to perform
system-to-system dropouts prediction.
Finally, we construct a third dataset by merging the datasets Curtin and
Galileo into a single one. Particularly, we rename the Event field of Curtin
before the merge, and we obtain a dataset that includes the fields User Id,
Timestamp, Tool, and Class. We call this new dataset MIX, and we use it
for the multisystem dropouts prediction experiments.

3.2 Datasets Processing

After the cleaning of the datasets from both systems, as described in the
Chapters 3.1.2 and 3.1.1, we process the data and transform it into the right
format for the classification task. We apply these steps to each MOOC of
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each system in the same way, and we describe all of them together in the
following subsections.

3.2.1 Feature Extraction

As a first step, we translate the interactions in our dataset into a format
suitable for the classification task.Specifically, we analyze the interactions
and extract a set of features, which are going to be the input for our machine
learning algorithms.
Each feature represents an aspect of the dataset that we want to consider
when predicting if a user will drop out or not. To construct our set of
features, we first sort the interactions in chronological order according to
their timestamp. Further, we use this sorted list of interactions to create
user sessions. We define a session in relation to an idle time during which a
user is not active [7]. Time sorted interactions whose timestamp difference
is lower than the specified inactivity window, are part of the same session.
Otherwise, if the difference between their timestamps is greater than the in-
activity window, we create a new session, and the later interaction becomes
the first one of this new session.
We repeat this process for each user and process all their interactions.
Throughout this work, when creating user sessions, we always use an inac-
tivity window of thirty minutes, which is a common choice thoughtfully
used by many other systems; for example, this is the standard idle time for
session also employed by Google [62, 52].
These per-user sessions represent our starting point to calculate the follow-
ing set of time-based features for each user:

• Sessions: total number of sessions;
• Requests: total number of requests;
• Days: total number of days in which a user interacts at least once with

the MOOC;
• Active Time: the total amount of time a user is active. We calculate it

as the sum of the duration of each session of the user;
• Session Length: an averaged measure, which we calculate as Active

time divided by Sessions;
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• Timespan Clicks: an averaged measure, which we calculate as the
sum of the per-session average time between two consecutive clicks
divided by Sessions;
• Session Requests: the average number of requests per session, which

we calculate as Requests divided by Sessions;
• Active Days Requests: the average number of requests per day, which

we calculate as Requests divided by Days

Furthermore, we also construct features considering the Tool available
for each system. For each Tool, we count how many requests for each
user refer to that Tool. It is worth taking into consideration that the set
of Tool of the two systems does not intersect. This is not an issue for
the experiments on single MOOCs, but it has some consequences for the
multisystem experiments as described in Section 3.3.2.

With our experiments, we want to improve our understanding of how the
users engage with the MOOCs. Furthermore, we seek to gain insights on
the very initial phase of each course, as we want to understand whether
initial interactions are indicative of the users’ behavior in subsequent parts
of a MOOC.
In this regard, we have to be careful and consider the system’s differences
when deciding on a features extraction strategy. Particularly, all MOOCs
from Universidad Galileo have a fixed calendar with hard deadlines for
assignments submissions and exams. On the other hand, Curtin University’s
MOOCs are self-paced, defined only by the start and end date.
Due to these differences, we define four distinct feature extraction ap-
proaches: Initial absolute interactions per user (Absolute), First seven days after
users first interaction (Days), Percentage of interactions per user (Percentage)
and Percentage of active time per user (Scaled Time). For practicality, we denote
and refer to each setting using their abbreviations.

Absolute. First, we investigate whether the initial interactions of the users
already indicate whether they will drop out or not in the future. In this
setting, we construct the features considering only an initial absolute number
of interactions for each user. Particularly, we consider 1 up to 100 absolute
initial interactions per user, with an increment of 10. Therefore, in this
approach, we conduct a total of ten experiments for each value of the
considered absolute interactions.
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Days. Second, we explore the engagement of the users during the first 7

days, starting with their first interaction, ignoring the official start of each
MOOC. For this setting, we create features ranging from 1 up to 7 days after
users’ first interaction, with a 1-day increasing step. Therefore, w means we
conduct a total of seven experiments with this approach.

Percentage. As a third approach, we analyze how increasing the percentage
of considered user interactions, affects the accuracy of the classification. To
do so, we compute the features from 1% up to 100% of total interactions per
user with an increment of 10%. With this approach, we run a total of ten
experiments.

Scaled Time. As a final setting, we inspect if considering a longer amount
of time influences the accuracy of the prediction. Therefore, we use an
increasing percentage of active time per user. This active time is defined
relatively for each user, without considering the MOOCs’ official start and
end date. Precisely, the start date is given by the timestamp of the first
interaction of users, while the end date corresponds to the timestamp of
their last interaction. That way, the focus is on the users real active time
rather than on the actual duration of the course. Again, we range from 1% to
100% of the per-user active time when extracting the features. We set a 10%
increasing step and conduct a total of ten experiments with this setting.

We extract features in a similar way for both systems. In fact, we create
features using only three information: the Timestamp associated with each
request, the type of action performed by the user (the field Tool for the
dataset of Universidad Galileo and the Event field for the dataset of Curtin
University) and the User Id of the user. As this information is usually
available for every log, we believe that our set of features can be easily
extracted also from other systems.

3.2.2 Feature Scaling

A common pre-processing step is to scale and standardize the features [58].
This procedure is particularly necessary for certain learning algorithms such
as K-Means and Support Vector Machines, which are not invariant under
affine transformations.
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For example, in the case of features with variances significative larger than
the others, these algorithms might be unable to correctly learn in the training
phase because the features with greater variance dominate over the other
features. [12, 18, 21]. In the case of SVM, scaling of the features also prevents
numerical problems when calculating kernel functions [31].
Practically, we consider each feature independently and scale it by mean
value removal and with a division by its standard deviation. Hence, the
distribution of each feature resembles a typical Gaussian distribution with
zero mean and unit variance.

3.2.3 Class Balancing

Another difference between the datasets from Curtin University and Uni-
versidad Galileo is the number of active users.
The eleven MOOCs from Universidad Galileo include a total of 3,157 active
users, while the two MOOCs from Curtin University have up to 32,316 en-
rolled users, with a ratio between the two systems of 1:10. Besides, MOOCs
of Curtin University also have a higher ratio of Completers-Dropouts than
MOOCs of Universidad Galileo.
For example, the MOOC MOOCC2 of Curtin University has a 1:48 ratio of
Completers-Dropouts with only 208 Completers over a total of 10,368 users.
The ratio for the other MOOC of Curtin University, MOOCC1, is similar
(1:13). On the other hand, the ratios of the MOOCs of Universidad Galileo
range between 1:1.4 for ME and 1:6 for AND.
The large difference in the number of users of each class needs particular
attention as it could create problems such as the Class Imbalance Problem (see
Guo et al. [23]). As a consequence, we do not use the constructed features
directly, but we first balance the class distribution so that the number of
users of both classes is equal.
The balancing of the classes is a widely-studied topic, which can be solved
using different techniques (see Japkowicz et al. [32] and He and Garcia [26]).
The general idea is to introduce some bias and obtain a ratio of 1:1 of the
classes. Intuitively this can be achieved with two basic approaches; either
by reducing the number of samples in the bigger class or by increasing the
number of samples in the smaller class. These two approaches are respec-
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tively called undersampling and oversampling.
Undersampling can be performed by randomly discarding some samples
from the bigger class until the size of the classes is equal. This simple
approach comes with several drawbacks. First of all, discarding samples
is generally not a good approach because the fewer data we use to train
a classifier, the less accurate the model that represents the distribution.
Furthermore, it could lead to situations in which the downsampled class
has more samples in the test set than in the training set (see Section 3.2.4).
The probability of these situations to occur is directly proportional to the
imbalance of the classes.
Oversampling works the other way around, by adding samples to the
smaller class until its dimension equals the one of the bigger class. The
advantage oversampling over undersampling is that no sample is discarded.
Thus, the constructed model is closer to the original dataset and, therefore,
more accurate.
The most intuitive way to oversample a class is by random oversampling;
we randomly pick and add samples to the smaller class until its number
of samples equals the one from the bigger class. Even though MOOCs
of Universidad Galileo do not have a class imbalance as high as those of
Curtin University, to have the most general approach possible, we apply
random oversampling to both systems. A more detailed analysis of the Class
Imbalance Problem and of other oversampling techniques can be found in
Weiss [71], He and Garcia [26] and Chawla et al. [13].

3.2.4 Training

The goal of a classifier can be summarized as a means to accurately classify
new unseen examples by learning from already available ones. Therefore,
the efficacy of the classifier is determined by how well it copes with the
classification of new examples. Practically, from the available data two sets
are created: a test set and a training set.
The training set is used by the classifier as initialization data to train a
model. A classifier learns from the training set and then the hold-out data,
which is represented by the test set, is used for performance evaluation.
Correctly splitting the data into these two sets is an important step.
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A first requirement is for the training set to contain at least one example
from each class. This is necessary as the number of classes, that a classifier
is trained on, implicitly determines the number of classes into which the
classifier predicts the examples in the test set.
Moreover, the split has to be done in a way that both sets accurately represent
the whole dataset. Clearly, there is a trade-off: we want to have as many
examples in the training set as possible to fit the classifier with a high
number of data. On the other hand, we also want the training set to be
maximized in its dimension to get a proper validation of the effectiveness
of the classification.
To reach both goals, we employ Cross Validation (CV). We split the data
into K different subsets or folds. For each of these folds, we use K-1 for
training and the remaining for testing the classification. With this procedure,
we measure K different performances and take their average as the final
measure. This approach ensures that each example is used both in the test
and in the training set at least once. Thus, we avoid overfitting and obtain a
more precise assessment of the machine learning algorithm.
There are different methods to create such a split, with the most common
ones being the following:

• K-Fold: split into K folds and, in turn, use K-1 folds as training set
and one as test set;
• Random split: randomly split the examples into two sets of a precise

size given as input;
• Stratified K-Fold: similar to K-Fold but in this case, the percentage of

examples of each class is preserved;
• Stratified random split: a combination of Random split and Stratified

K-Fold. It creates K folds by randomly picking examples and keeping
the percentage of examples of each class. The ratio between the training
and the test set is needed as input.

As an example, given a dataset of 100 users, 10 of which are Completers
and the remaining 90 are Dropouts (1:9 ratio) and k=10.
A K-fold split produces 10 folds each containing 10 examples and without
any constraints on the classes (theoretically, one fold could contain only
Completers or only Dropouts).
A Stratified K-Fold creates 10 folds each characterized by a 1:9 ratio between
the classes.
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A Stratified random split with a train size = 80% creates 10 folds each
composed of 18 Dropouts and 2 Completers. Practically, the training set
consists of 72 Dropouts and 8 Completers and the test set includes 18

Dropouts and 2 Completers, with both sets randomly picked.

For the experiments presented in this work, we always perform the split into
training and test set using a Stratified Shuffle Split approach. We set the
number of re-shuffling and splitting iterations (folds) to 10 and the training
size to 0.8. That is, we use 80% of the examples for the training set and the
remaining 20% for the test set, for which we predict the labels. Besides, we
use Stratified Shuffle Split to preserve the balance of the classes in both sets.
It can be argued that such strategy could fail to use all examples in both
training and test set alternatively (as, for instance, is always the case with a
Stratified K-Fold approach). Although this is theoretically correct, for sizable
datasets as in our scenario, a random split is still very likely to produce
different folds. However, to further ensure the adequacy of the settings,
we repeat the whole cross-validation process for a total of 20 rounds: for
each round, we create 10 different folds and construct training and test sets
accordingly. The round score is the average of the 10 folds, and the overall
score is the average of the 20 rounds.

3.2.5 Evaluation

Evaluating the performance of a classifier is a crucial part toward under-
standing how well the feature engineering and the classifier work. Evalua-
tion is the proven method to appropriately assess the performance of the
algorithm, to identify where the problems (if any) are and represents the
starting point for optimization techniques.
Metric functions are the first form of model evaluation. The result of a
classification experiment is a set of class labels for each of the examples in
the test set. These are called predicted values (classes) of the examples. In
contrast, the truth values of the examples represent the correct class they
belong to. By comparing the predicted with the true values, we can define
the following concepts for each class:
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• true positive (tp): number of examples that belong to the class and are
labeled correctly;
• false negative ( fn): number of examples that belong to the class but

are labeled incorrectly;
• true negative (tn): number of examples that do not belong to the class

and are labeled correctly;
• false positive ( fp): number of examples that to do not belong to the

class and are labeled incorrectly

We can summarize these quantities in the form of a Confusion Matrix. As
an example, for a dataset of 100 users, 10 of which are Completers and
the remaining 90 are Dropouts, as a result of a classification experiment,
the Confusion Matrix could look like the one in table 3.4. The Confusion
Matrix represents the starting point for the evaluation of the performance
of the classifier. In fact, any evaluation metric is simply a different way to
summarize the information contained in this matrix.
All these metrics assume values within the range [0, 1], where 0 indicates a
classifier that misclassifies all examples, and 1 represents a classifier that
correctly predicts all the examples. According to the characteristics of the
dataset and on the aspects that we want to investigate, we choose a suitable
measure. Since we are dealing with balanced datasets, we use accuracy and
baseline.
As each example is classified either correctly or incorrectly, an intuitive
way to evaluate the results is to count the number of correctly and incor-
rectly classified examples. Accuracy is nothing more than the total number
of correctly classified examples divided by the total number of examples
considered. Although being a rather simple measure, misleading in the case
of unbalanced classes, it works well with our settings.
On the other hand, the baseline can be understood as the accuracy of a

Table 3.4: Confusion Matrix. This matrix summarizes the result of the classification ex-
periment. In this example, the dataset consists of 100 users of which 10 are
Completers and 90 are Dropouts.

Predicted Class
Completers Dropouts

Right Class Completers 7 3

Dropouts 5 78
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dummy classifier, which is a classifier that labels examples by randomly
picking one or another class. Therefore, the baseline represents the proba-
bility of randomly picking the right class; in the case of balanced classes,
the baseline will be 0.5 when the classes are two, 0.33 for a scenario with
three classes and so on. For this reason, a good classifier is one that has an
accuracy higher than the baseline. If that is not the case, the classifier is no
better than randomly predicting examples.
We express all the results and plots presented in Chapter 4 in terms of these
two measures.

3.3 Experimental Setup

3.3.1 Single System

Generally, we want to be able to correctly detect potential Dropouts at a
moment in time close to the start of the MOOC. Such a prediction is a more
challenging task compared to using logs that cover the whole MOOC’s
duration. With a shorter amount of time, we have less information available
as input and the model built by our classifier might be less accurate. On
the other hand, early identification of at-risk users is a situation close to
real-world scenarios.
The correct detection of a set of potential Dropouts is more convenient
when we perform it shortly after the course start rather than towards its
end. The sooner this information is available, the more time instructors and
administrators have to take actions to keep these users on the right track
and prevent them from turning into Dropouts.
For these aforementioned reasons, we propose experiments that focus on
the early prediction of dropouts. Additionally, we also aim at better un-
derstanding our datasets and how the users interact with the system at
the beginning of MOOCs. Notably, we classify dropouts of each MOOC
from both systems independently, and we compute the features using the
four extraction approaches explained in Section 3.2.1. We conduct these
classification experiments using Support Vector Machines (SVM).

34



3 Datasets and Experimental Setup

Support Vector Machines

The basic concepts of Support Vector Machines (SVM) were introduced in
Vapnik [64] and Vapnik and Chervonenkis [65]. SVM is effective in high
dimensional spaces (that is when the examples are described by a high
number of features), can handle not linearly separable features and can
perform binary and multiclass classification.
In this thesis, we always refer to the binary case, mainly because the pro-
posed experiments have this setting. However, the introduced concepts also
apply to a multiclass scenario. Initially, we present the underlying concepts
in the case of linearly separable features. Although this situation is relatively
unusual when dealing with data from real-world scenarios, this formulation
is necessary to understand how SVM works. We also discuss the case of
nonlinear SVM. For convenience, we use plots in a two-dimensional space.
However, the dimensionality of these problems is always higher and is
decided by the number of features.
For example, concerning a MOOC and the process by which we can detect
the class of its users (dropouts or completers), we describe each of the users
with features such as ”number of post in the forum”, ”number of attempts
to solve a problem” and so on. If the number of features is only two, we can
represent those examples in a Cartesian plane where x is the first feature
and y is the second one as in Figure 3.1.
SVM is a class of methods whose task is to estimate a functional relationship
from a training set of examples described in terms of feature sets. Namely,
the formulation for SVM includes the following:

• input: a set of examples (x, y), where x1, x2, ..., xn are the features and
y = f (xi) is a function defined on the set of features. The cardinality
of the domain of f (x) defines the number of classes or labels;
• output: set of weights w1, w2, ..., wn for each feature, whose linear

combination predicts the label value y

In the example from Figure 3.1, we can see that a line easily separates
the classes. The same concept applies in the most general case of a higher
number of features and thus, a greater number of dimensions. In this case,
the separating line becomes a separating hyperplane. The way SVM classifies
examples follows the same idea.
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Figure 3.1: Users in a two-dimensional space. Each axis represents one of the considered
features. In this case, there are two classes, one plotted in red and the other in
green. This example is a simple representation, as each example is normally
described by a higher number of features, which machine learning algorithms
can easily handle.

Notably, SVM tries to solve the optimization problem of finding a unique
separating hyperplane that separates the two classes. In general, for any
set of points exist many (infinite) hyperplanes that separate them. SVM
finds the optimal one, which maximizes the distance from the nearest point
of each of the two classes. This distance (between the two closest points)
is called margin and the set of points of each class that lies on the margin
constitutes the support vector. Thus, the support vector is identified by a
hyperplane for each class, H0 and H1, that can be defined as

wTx + b = 0 (3.1)
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Figure 3.2: SVM optimal separating hyperplane. The optimal separating line is the one that
yields the wider margin from the support vectors H0 and H1.

Figure 3.2 illustrates these concepts in a 2-dimensional case. The distance
between the two hyperplanes H0 and H1 is given by 2

||w|| . Thus, to maximize
this distance means to minimize ||w||. The higher the margin between the
hyperplanes of the support vector, the clearer the separation of the classes.
For each of the classes, all points except those characterizing the support
vector have to be on the correct side of the margin. We can write this
constraint as {

wTxk + b ≥ +1, if yk = +1
wTxk + b ≤ −1, if yk = −1

(3.2)
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which we can rewrite as

yk(wTxk + b) ≥ 1, k = 1, ..., N (3.3)

This s a minimization problem in which the objective function is convex
defined and, therefore, the solution is easy to find.
However, in most real case applications, the set of example is not directly
linearly separable. For example, this happens when the distribution of the
two classes overlap and a linear decision boundary does not correctly sepa-
rate the examples of the two classes. In Figure 3.3 we show an example of
this situation.
In these cases, a linear SVM is bound to misclassify some examples. Intu-

itively, a simple ellipse will be a perfect decision boundary for the presented
example. This can be showed by considering a nonlinear SVM implemen-
tation. The idea is to model the decision boundary by introducing slack
variables that map the examples to a higher dimensional space in which
they are linearly separable.
Considering the decision boundary being the following ellipse

2(x− 3)2 + 5(y− 2)2 − 5 = 0 (3.4)

2x2 − 12x + 5y2 − 20y + 33 = 0 (3.5)

we can introduce the following variables

z1 = x (3.6)

z2 = x2 (3.7)

z3 = y (3.8)

z4 = y2 (3.9)

and obtain

2z2 − 12z1 + 5z4 − 20z3 + 33 = 0 (3.10)

The last equation is linearly separable in the transformed space. Basically, a
transformation φ is applied to obtain a linearly separable set of examples
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Figure 3.3: SVM nonlinear separable classes. Linear separation is unusual in real case
scenarios. When this is not the case, we have to take different approaches in
order to separate the set of examples of the classes. In this case, a linear function
as a hyperplane from the previous example is not able to correctly separate the
examples of the two classes. For this example, a quadratic function as an ellipse
correctly separates the examples.

which SVM can easily solve. Nonlinear SVM finds the optimal solution by
maximizing the dot product of the transformation
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φ(xi) · φ(xj) (3.11)

Generally, this transformation is always possible, as we can always approx-
imate the polynomial decision boundary into higher dimensions by the
addition of extra variables.
The advantage of this approach also represents its main disadvantage; the
higher the polynomial decision boundary, the more variables we must intro-
duce and, consequently, the computational complexity grows.
Moreover, if we have too few examples that are not linearly separable
and attempt this approximation, we might incur Overfitting; fitting too few
examples with an over-complicated function could introduce too many
constraints.
Concerning the previous example, imagine that new examples become
available and that, the new distribution looks like the one in Figure 3.4 In
this case, except for the two obvious outliers, we do not necessarily need a
nonlinear SVM to separate the classes correctly. A simple linear SVM can
perform the same task with fewer constraints. The nonlinear SVM adds
unnecessary dimensionality, and the model becomes too elaborate and too
specific. Thus, its predictive performances are poor, and that is why we
should avoid overfitting.
An alternative approach in the case of nonlinearly separable examples is the
so-called kernel trick, which exploits the similarities between data points. A
Kernel is a function that given two vectors xi and xj defined on RN, which
implicitly computes their inner product in a higher dimensional space RM

without the need of transforming the vectors into the new dimensional
space. Therefore, all dot product computations within the optimization
problem solved by SVM can be substituted by a kernel function K(xi, xj).
Thus, there is no need to compute the transformation itself, and there is no
need for extra memory or computation time, except for the calculation of
the kernel function itself.
This trick allows to quickly approximate the nonlinear decision boundaries
on a higher dimension’s domain when the features are not linearly separa-
ble. Although we can create a custom kernel function to model the similarity
between the examples, some standard off-the-shelf solutions already exist
as
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Figure 3.4: Overfitting. In this case, new examples are available, but the quadratic ellipse
we used before is not able to correctly separate them. A linear SVM can find a
line that correctly separates the examples except for the two outliers.

• polynomial:
K(Xi, Xj) = (Xi, Xj + c)d (3.12)

• radial basis function (RBF):

K(Xi, Xj) = e−
||Xi−Xj ||

2

2σ2 (3.13)
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Each of these kernel functions is defined in relation to certain parameters
that influence the shape of the decision boundary and, therefore, we have
to choose these parameters appropriately.
The polynomial kernel is defined in terms of its degree d, while σ is the
regulation parameter for the RBF kernel, and we can think of it as a variance
control. With RBF kernel we search the decision boundary using a combina-
tion of Gaussian distributions centered on the support vector. Small values
of γ will force a Gaussian distribution with a significant variance, meaning
that points that belong to the support vector have widespread influence; the
class assigned to points that are distant from the support vector will still be
largely affected by it.
On the other hand, the higher the value of γ, the more local the influence of
the support vector. Thinking of a typical Gaussian bell distribution, lower
values of γ produce a more pointed distribution, while higher values result
in a broader shape of the bell.
Furthermore, all the kernel functions (as well as the linear SVM) are also
influenced by a parameter C that represents a trade-off for misclassifications.
Practically, this parameter controls the margin of the separating hyperplane.
Large values of C force SVM to choose the smallest margin possible for the
separating hyperplane. Thus, it tries to separate as many examples as possi-
ble correctly. On the other hand, small values of C relax the classification
task, as SVM searches the optimal hyperplane with a larger margin and,
therefore, allows for more misclassifications.
All these configuration parameters heavily depend on the problem and
the domain. Also, correctly deciding whether to use linear SVM or make
use of one of the available kernels is not always easy to determine. Even if
we know the right kernel for a particular domain, we still need to set its
parameters correctly.
We can tune these parameters employing a Grid Search approach. This
method is basically a brute force search on a set of specified classifier pa-
rameters and values. Grid Search takes, as input, a dictionary of parameters
and a set of their values to be tested and returns their best combination.
The Grid Search approach requires more computation time but allows the
estimation of the best settings exhaustively and can be run in parallel to
decrease the needed computation time.
Practically, we perform Grid Search on each of the training sets for the
following variables and values:
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• C: (0.01, 1, 10, 100)
• kernel: (linear, polynomial, RBF)
• degree: (1, 2, 3)
• gamma: (0.01, 0.1, 1, 5)

Then, we can use the best combination to classify examples of the test set
and evaluate the performance of the classifier.

3.3.2 Multisystem

Domain-specific analyses and predictions are useful for various reasons.
They can give precise information about how a MOOC is offered and per-
ceived by its users.
For example, if during the initial weeks, a high percentage of registered
users leave the course or if the system records a low number of interactions,
the way the learning content is delivered is probably not optimal. Possible
causes might be a poorly developed User Interface (UI) or misleading and
hardly understandable course materials.
In the same way, administrators and content creators of MOOCs can get
information regarding which tools and modules are most used and which
are not considered at all.
However, analyzing MOOCs only in relation to the domain they belong
to fails to consider the big picture of E-learning, which includes ranges
of various courses for different and peculiar areas. It is true that to run
experiments correctly a model has to be created in relation to the underlying
domain, but maybe the problem is the domain definition itself.
Results of a system-dependent model hardly have an impact nor do they
provide results for different systems. This is undoubtedly a negative aspect
when, for example, comparing results from researchers. It can be unproduc-
tive to compare results from systems that are characterized by particular
constraints and defined on different features. A potential risk is for these re-
sults to be of value only for that particular domain or system, bringing only
slight improvements to the general understanding of the field of MOOCs
that the community has.
Despite the growing number of published work within this area, there are
no examples of testing and validating results from a particular domain
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across different systems and datasets. Additionally, there is a lack of litera-
ture that also covers the final step of the Knowledge Discovery process, the
validation phase.
Validation is a crucial task because, either by consolidation or refutation of
existing evidence, we can discover aspects that require further analysis and
clarifications.
Shifting the focus of experiments to a wider domain becomes particularly
meaningful when we want to consider problems shared among various
systems: no matter how different MOOCs are, they all struggle due to
high dropout rates. Being a common concern, we should approach it more
homogeneously.
Due to these reasons, we propose a second set of experiments in which we
investigate the two presented systems and their MOOCs together. We think
of this as a first attempt towards a homogeneous and multisystem model
for the analysis of such systems.

Analyzing and comparing different systems to each other homogeneously
requires some preliminary steps. Specifically, we need to qualify the ex-
amples from both datasets over the same set of features. Thus, we use
the intersection between the features of both datasets for our multisystem
classifier.
Moreover, both systems include information about the type of event that an
interaction triggers; the field Tool for Universidad Galileo and the event type
field for Curtin University. Although these fields could be used to increase
the number of common features of our model, a correct mapping is not
straightforward for various reasons.
Specifically, the granularity of the two fields is highly different; each of
Curtin University’s eight events is described in a detailed way by a set of
subevents. The overall number of these sums up to around one hundred and,
therefore, mapping each of these events to one of the eight tools available
for Universidad Galileo is not a trivial task.
Furthermore, it is not clear that such a mapping even exists. For example,
the tools File storage or Peer evaluation of Universidad Galileo are completely
missing within Curtin University’s system. Vice versa, the tools Bookmark or
Poll and Survey are not part of Universidad Galileo’s MOOCs.
Other tools of Curtin University such as Video Interactions represents re-
sources which are equally available for Universidad Galileo. However, the
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way interactions are described in the log of Universidad Galileo does not
allow us to distinguish interactions that refer to video interactions apart
from those that refer to audio or other components.
Due to these limitations, we completely drop the Tool information and focus
mostly on the time aspects of the interactions. The common set of features
consists of the following features (see Section 3.2.1): Sessions, Requests,
Days, Active Time, Session Length, Timespan Clicks, Session Requests
and Active Days Requests. We calculate each of these according to the four
metrics previously discussed.

We propose two settings; a system-to-system and a multisystem one.
In the system-to-system setting, we train a classifier with information from
Completers and Dropouts from one system and predict Dropouts from
the other system. Therefore, we conduct two experiments for this setting.
Initially, we use the Galileo dataset for training and the Curtin one for
prediction. Then, we switch the datasets and train our classifier on Curtin
to predict on Galileo. We call these two experiments Galileo on Curtin and
Curtin on Galileo respectively.
For the multisystem setting, we want to train the classifier with a mixture
of users from both systems and try to predict Dropouts on both systems. To
this end, we employ the MIX dataset and refer to this experiment as MIX.
As we are interested in identifying which are the most indicative features for
both domains, we use Boosted Decision Trees as a classifier. Boosted Decision
Trees can be used for prediction experiments, and they can return a ranking
of the features according to their importance for the classification task. In
this way, we aim to understand more about every feature’s importance and
their mutual combinations.

Boosted Decision Trees

Boosted Decision Trees are classifiers which can be used for both, regression
and prediction tasks. They build upon the same concept of a single Decision
Tree classifier and further improves the performance through Boosting
technique.
Basically, a Decision Tree is a flowchart used to illustrate the possible
outcomes of an event. It comprises nodes which are connected by edges.
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Figure 3.5: Decision Tree. It consists of a unique root node, internal node, and leaves. Each
edge is a test on a particular feature. The path from the root node to each leaf
gives the classification rule. We represent the root in blue, the internal nodes
in white and the leaves that correspond to Dropouts in red, while those of
Completers in green. In this example, a user with more than 10 interactions,
more than 5 forum posts and more than 4 problems solved is classified as
Completers.

The root of the tree is the only node having only outgoing edges. The
remaining nodes can be either internal or leaves. Internal nodes always have
exactly one ingoing edge and at least two outgoing edges. They represent
tests on a particular attribute. Leaves have only one ingoing edge and no
outgoing ones, and their values represent the taken decision.
Following the paths from the root node to each of the leaves, we obtain the
classification rule. Figure 3.5 shows an example of a Decision Tree.
The application of a Decision Tree for classification and regression tasks
is straightforward. Internal nodes define a test on one of the features, and
each of the outgoing edges of the nodes represents the possible values of the
targeted feature. The leaves contain either the class label or the probability
distribution over the classes.
In order to obtain a tree from a dataset, the approach is the following:

• calculate the best split criterion for each feature;
• from all the features, select the one with the best split criterion and

create two branches: examples failing the criterion go into one branch,
those passing it into the other one;
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• repeat these steps recursively on every produced branch until the
stopping criterion is reached.

This algorithm depends on two parameters that need to be defined; how to
find the best way to create new branches (split criterion) and the stopping
criterion.
Generally, the metrics used to find the best split measure the homogeneity
of the produced branches, the so-called node impurity; the more examples
of a single class a node contains, the purer it is. In other terms, the impurity
of a node is a measure of the reduction of uncertainty.
For example, if a split on a feature value yields a node containing only
Completers and another node containing both Completers and Dropouts,
the first node is pure while the second one as a certain impurity as it
includes examples of both classes. Therefore, when we select a feature for a
split, what we are searching for is a feature that produces branches with the
lowest node impurity.
One common metric to find the best feature is Information Gain (IG),
which is a measure based on the concept of entropy. Given a set of examples
S, a set of label L = 1, 2, ..., c in the number of classes C, and a probability
pi, ∀i ∈ L of the examples S belonging to the class i, we can define the
entropy of a node as:

H(S) = −
C

∑
i=1

pi log2 pi (3.14)

which in the case of only two classes (L = 0, 1) reduces to:

H(S) = −p0 log2 p0 − p1 log2 p1 (3.15)

We calculate the IG of a split for a feature f eat as the difference between
the entropy of the node H(S) and the weighted sum of the entropy of the
newly created nodes:

IG( f eat) = H(S)−
C

∑
i=1

Si

S
H(Si) (3.16)

47



3 Datasets and Experimental Setup

The best split is then the one which provides the highest information gain:

f eat∗ = argmax IG( f eat) (3.17)

As an example, suppose we have a dataset consisting of 3 Completers and 7

Dropouts described by the features Interactions (IT) and Problem Solved (PS)
as reported in Table 3.5 and plotted in Figure 3.6.
We indicate with IT1 the set of examples with a value IT < 10 and with IT2

those with a value IT > 10. In the same way, PS1 includes examples with
a value PS < 5, while examples with PS > 5 are in PS2. To decide which
of the two features to use for the split, we compute the entropy of the new
nodes produced by a split of each feature as follows

H(IT1) = 0 (3.18)

H(IT2) = −
1
8

log2(
1
8
)− 7

8
log2(

7
8
) = 0.544 (3.19)

H(PS1) = −
1
5

log2(
1
5
)− 4

5
log2(

4
5
) = 0.72 (3.20)

Table 3.5: Dataset and Features for Decision Tree. We have a total of ten users, of which
three are Completers and seven are Dropouts. For each user, we report the class
and the values for the features Interactions (IT) and Problem Solved (PS)

Class Interactions (IT) Problem Solved (PS)

Completers 14 10

Completers 16 8

Completers 9 3

Dropouts 2 1

Dropouts 4 4

Dropouts 9 2

Dropouts 5 3

Dropouts 3 7

Dropouts 3 10

Dropouts 6 6
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Figure 3.6: An example of a split for a Decision Tree. In this example, we plot the three
Completers in green and seven Dropouts in red with regard to the features
Interactions (IT) and Problem Solved (PS). Furthermore, we also indicate the
values of each feature at which we compute the split as dotted lines.

H(PS2) = −
2
5

log2(
2
5
)− 3

5
log2(

3
5
) = 0.972 (3.21)

With IT1, IT2, PS1, and PS2 as the sizes of the obtained splits and the entropy
H(S) of all examples computed as

H(S) = − 3
10

log2(
3
10

)− 7
10

log2(
7

10
) = 0.879 (3.22)
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the IG of the features is then:

IG(IT) = H(S)− IT1

S
H(IT1)−

IT2

S
H(IT2) = 0.79 (3.23)

IG(PS) = H(S)− PS1

S
H(PS1)−

PS2

S
H(PS2) = 0.03 (3.24)

The feature Interactions (IT) has the higher IG and, therefore, we select it
and create the new nodes accordingly.
The stopping criterion could include different aspects such as reaching a
fixed minimum leaf size or a maximal tree depth, insufficient improvements
when an additional split is done or when all examples from a node have
the same value and, thus, belong to the same class.
Decision Tree has certain advantages in comparison to other classifiers. First,
the results are easy to interpret and understand as they can also be plotted.
Furthermore, it can handle multivariate data and big datasets without
extensive pre-processing steps such as the normalization of features.
However, a single tree built from a dataset usually has not a lot of predictive
power, and we might not find the most suitable model.
We can improve the performance of a Decision Tree by so-called Ensemble
methods. Instead of using a single Decision Tree, we perturb the training
data and obtain several models. Then, we combine their outputs to get the
ensemble prediction. There are several possibilities to extend Decision Tree
through Ensemble methods.
As introduced in Breiman [9], with Bagging (Bootstrap aggregating), we
can uniformly sample a training Data D of size n in order to generate m
new training sets Di each of size n′ called bootstrap. By fitting each one
of these m bootstraps, we learn a model. This method lowers variance and
overfitting of the classifier. Plus, since the models are independent of each
other, we can compute them in parallel.
Random Forests were introduced in Ho [29] and then further developed in
Breiman [10]. This ensemble method is employed following a procedure
similar to Bagging. In this case, the idea is to further add randomization to
allow search on a larger function space. For example, instead of selecting at
each split the feature with the highest IG overall, we can randomly select
a subset of the features and pick the feature that maximizes the IG from
this subset. This extra randomization helps to handle larger datasets and
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also addresses the events of trees correlation. For example, if a few features
are already robust predictors, it is likely that they would always be selected
over most of the generated trees, thus becoming correlated.
Boosting is another ensemble method that helps to reduce bias and variance.
It is based on the concept of weak and strong learners. A weak learner is
a classifier which has better performance than a dummy one, but that is
poorly correlated with the true classification. On the other hand, a classifier
well-correlated with the true classification is called a strong learner. Whether
it is possible to transform a set of weak learners into a single strong learner
is a problem introduced in Kearns [35], in Kearns and Valiant [36] and later
solved in Schapire [55].
The idea is to reweigh training examples so that the next learned classifier
focuses on those examples that have been misclassified in the previous
models. Every time a new model is learned, misclassified examples get a
higher weight, while correctly classified ones get a lower weight. Therefore,
we cannot learn the models in parallel. Although susceptible to noise, this
method generally has good accuracy and is the one we also employ for our
multisystem experiments.
As in the case of SVM, we estimate some classifier parameters with a Grid
Search approach also with Boosted Decision Trees. In this case, we use the
following variables and values:

• max depth: (2, 6, 9, 12)
• subsample: (0.5, 1.0)
• colsample bytree: (0.9, 1.0)

max depth (default = 6) represents the maximum depth of a tree. If this
value is too high, we risk overfitting the model as this could learn relations
peculiar to the considered sample.
subsample (default = 1) represents the fraction of examples that are ran-
domly sampled for each tree. The lower this value, the more conservative
the classifier.
colsample bytree (default = 1) represents the fraction of features that we
randomly sample for each model.
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In this chapter, we present our dropout prediction results. It is organized
into three parts.
In the first section, we report the results for the MOOCs of Universidad
Galileo. The MOOCs are analyzed one by one using accuracy as the evalua-
tion metric. Furthermore, for each MOOC we report the results for all four
presented approaches Absolute, Days, Percentage and Scaled Time.
The second section is organized in the same way, and we present the results
for MOOCs of Curtin University. We report the results of the dropout classi-
fication for both MOOCs according to our four approaches.
In the third section, we consider the two systems together and present the
results of the three multisystem experiments. Also in this case, we show
the results of all multisystem experiments according to the four approaches
previously described.
A detailed interpretation and discussion of the obtained results will be
discussed in Chapter 5.

4.1 Single system experiments

4.1.1 Dropout prediction on Universidad Galileo

In Figure 4.1 we plot the accuracy (averaged over ten folds) for the dropout
classification experiments of the MOOCs of Universidad Galileo. Each
subfigure refers to one of the four proposed approaches for the construction
of the features. Therefore, the x-axis always represents a different dimension.
In Figure 4.1a it indicates the initial absolute interactions per user that we
consider in the prediction experiment. In Figure 4.1b it indicates the number
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Figure 4.1: Dropout prediction results for MOOCs of Universidad Galileo. Each subfigure
depicts the accuracy results for one of the approaches. Figure 4.1a refers to the
Absolute approach and its x-axis indicates the considered number of initial
absolute interactions per user. Figure 4.1b reports the results of the Days
approach, with the x-axis reporting the considered number of days from users’
first interaction. We show the results of the Percentage approach in Figure 4.1c,
whose x-axis represents the considered percentage of interactions per user. The
Figure 4.1d depicts the results of the Scaled Time approach. In this case, the
x-axis indicates the considered percentage of active time per user. The y-axis of
each figure indicates the accuracy and is always bounded between 0.4 and 1,
with the baseline plotted at 0.5. The accuracy of the MOOCs plotted in green is
increasing with respect to the considered approach, while those of the MOOCs
plotted in red is not.

53



4 Results

of days from users’ first interaction with the MOOC. The x-axis of Figure 4.1c
represents the percentage of total interactions considered per user, while the
x-axis in Figure 4.1d denotes the considered percentage of a user’s active
time for the prediction experiment.
For all these figures the y-axis represents the accuracy value that is bound
between 0.4 and 1. Moreover, we plot the baseline as a solid black horizontal
line at the accuracy value of 0.5. We denote each MOOC using a particular
marker that remains the same in every subfigure.
Furthermore, we distinguish MOOCs with an accuracy increasing with
respect to the specific metrics reported on the x-axis from those having
an accuracy profile that presents both decreases and increases instead.
Therefore, we plot the first group in green and the second group in red.

As shown in Figure 4.1a, with the Absolute approach, considering a higher
number of interactions does not necessarily increase the accuracy for all
MOOCs. There is a set of five MOOCs highlighted in green, whose accuracy
either steadily increases or remains stable after an initial growth.
Additionally, the accuracy of the second group of six MOOCs plotted in
red, do not seem to be directly related to the number of considered initial
absolute interactions per user.
Figure 4.1b reports the result for the Days approach. Again, we can split
the MOOCs into two groups. In total, six MOOCs plotted in green, have an
increase in accuracy the more days we consider. This increase of accuracy
is absent for the group of MOOCs highlighted in red, whose accuracy
decreases the more days analyzed.
When we examine the results from the Percentage approach, as shown in
Figure 4.1c, we notice a general increase in accuracy. Indeed, ten MOOCs out
of eleven show an increase in accuracy the greater percentage of interactions
per user taken into consideration. The only exception is the MOOC CA.
However, the accuracy of this MOOC increases when the percentages are
higher than 40%. WTEA is the MOOC with the overall lowest value of
accuracy, even if we consider all interactions per user.
We can observe similar results for the Scaled Time approach as Figure 4.1d
shows. Once again, WTEA is the MOOC with the lowest accuracy value
when the considered percentages of active time per user are higher than 30%.
The profile of CA becomes stable only when the considered percentages of
active time per user are higher than 30%.
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These results indicate that the Percentage approach is the one which yields
the highest accuracy results for all MOOCs. In this case, for each MOOC the
accuracy is higher than 0.7, including low percentages of users’ interactions.
With the Scaled Time approach, we see a constant increase in accuracy the
higher the considered percentages of active time per user.
The accuracy for the Absolute and the Days approaches have wider scopes,
ranging between 0.47 and 0.98 for Absolute and between 0.57 and 0.98 for
Days. For most of the MOOCs, these two approaches yield high accuracy
when classifying dropouts.

4.1.2 Dropout prediction on Curtin University

Figure 4.2 depicts the accuracy (averaged over ten folds) for the dropout
classification experiments over the MOOCs of Curtin University.
As with the results of Universidad Galileo, we dedicate a subfigure to
each of the four approaches we used to extract features. Therefore, the
x-axis represents the number of considered initial absolute interactions
per user in Figure 4.2a, the number of considered days from users’ first
interactions in Figure 4.2b; the considered percentages of total interactions
per user in Figure 4.2c; the considered percentage of active time per user in
Figure 4.2d.

From the results of the Absolute approach shown in Figure 4.2a, we notice
a constant increase of the accuracy for both MOOCs, which reaches the
highest value when we consider the first one hundred absolute interactions
per user. Specifically, already five absolute interactions are enough to obtain
an accuracy value of 0.8 for both MOOCs.
The Percentage approach, as shown in Figure 4.2c, is the one that yields the
highest accuracy for both MOOCs. Even for small percentages, the accuracy
values of both MOOCs are never lower than 0.93. In particular, for MOOCC2,
the accuracy is stable at 1 when the considered percentages of interactions
per user are higher than 5%. For MOOCC1 accuracy remains stable at 0.97

when the analyzed percentages of interactions per user are larger than 30%.
For the Scaled Time approach, as shown in Figure 4.2d, we obtain different
trends of accuracy for the two MOOCs. The accuracy of MOOCC1 steadily
increases in the percentage of users’ active time, and it is always higher
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Figure 4.2: Dropouts prediction results for MOOCs of Curtin University. In each subfigure,
we depict accuracy results of each approach. In Figure 4.2a we plot the results
of the Absolute approach, with the x-axis indicating the considered number of
initial absolute interactions per user. Figure 4.2b depicts the results of the Days
approach, with the x-axis indicating the considered number of days from users’
first interaction. We report the results of the Percentage approach in Figure 4.2c.
In this case, the x-axis indicates the considered percentage of interactions per
user. Figure 4.2d depicts the results of the Scaled Time with the x-axis listing
the considered percentages of active time per user. On the y-axis of each figure
we indicate the accuracy, which is always bounded between 0.4 and 1. We also
plot the baseline as a horizontal black line at 0.5. The accuracy of all MOOCs is
increasing with respect to the considered metric. Therefore, we plot all MOOCs
in green.
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than 0.92. The accuracy of MOOCC2 is also growing in the considered
percentage of active time per user, with only a slight decrease between 40%
and 50% of the analyzed percentage of active time per user. On the other
hand, between 1% and 40% and from 50% to 100% of users’ active time, the
accuracy increases.
The results for the Days approach, depicted in Figure 4.2b, differ from those
we obtain with the other approaches. In the case of MOOCC2 the accuracy
increases in the number of considered days, but only gets as high as 0.76

when we study the first seven days after users’ first interaction. On the
other hand, the accuracy of MOOCC1 is constant at 0.5 regardless of the
number of considered days. We believe there is a certain delay between the
first interaction of users and their remaining interactions that influences the
accuracy of the dropout prediction experiments for both MOOCs.

For the most part, we obtain high accuracy for the dropout prediction ex-
periments on the MOOCs of Curtin University for each of the proposed
approaches, except for the Days methodology.
Overall, dropout prediction experiments yield higher accuracy on Curtin
University’s MOOCs than on MOOCs of Universidad Galileo. The low accu-
racy we obtain with the Days approach might be related to the distribution
of interactions of users over time.

4.2 Multisystem experiments

4.2.1 Dropout prediction experiments

In Figure 4.3 we report the accuracy (averaged over ten folds) for the
multisystem dropout prediction experiments MIX and for the system-to-
system experiments Galileo on Curtin and Curtin on Galileo.
Once again, we show subfigure to each of the approaches that we proposed:
Figure 4.2a for Absolute, Figure 4.2b for Days, Figure 4.2c for Percentage
and Figure 4.2d for Scaled Time.

Among the considered approaches, we get the highest values of accuracy
for the MIX experiments. Moreover, it is the only experiment for which
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Figure 4.3: Dropout prediction results for Multisystem and System-to-System experiments.
Each subfigure depicts the accuracy results for one of the proposed approaches.
We show in Figure 4.3a the results of the Absolute approach and we indicate
on its x-axis the considered number of initial absolute interactions per user.
Figure 4.3b reports the results of the Days approach. The x-axis lists the number
of considered days from users’ first interaction. We depict the results of the
Percentage approach in Figure 4.3c and indicate the considered percentage of
interactions per user on the x-axis. We show the results of the Scaled Time
approach in Figure 4.3d, whose x-axis indicates the considered percentage of
active time per user. The y-axis of each figure indicates the accuracy and is
always bounded between 0.4 and 1, with the baseline plotted at 0.5. MOOCs
plotted in green have an increasing accuracy with respect to the considered
approach, while those MOOCs plotted in red do not.
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accuracy always increases. Indeed, the accuracy we obtain is consistently
higher than 0.7 except for the Days approach, where it is limited to 0.68.
With the Percentage approach we obtain an accuracy profile invariably
greater than 0.9, even when we consider low percentages of interaction per
user.
For the Absolute approach, the initial five absolute interactions per users
are enough to obtain an accuracy of 0.8, which increases for higher numbers
of considered initial absolute interactions per user.
We see a constant increase in accuracy with respect to the considered
percentage of active time per user also for the Scaled Time approach, whose
accuracy is never lower than 0.73.

On the other hand, the accuracy for the system-to-system dropout predic-
tion experiments Galileo on Curtin and Curtin on Galileo are generally low
and, mostly, close to the 0.5 value of the baseline.
The Absolute and Days approaches are the only considered methodologies
where we can measure a small increase in accuracy the higher the con-
sidered number of initial absolute interaction per user and the considered
number of day from users’ first interaction respectively.
For the Percentage and Scaled Time approaches we cannot identify how
accuracy evolves when we increase the considered percentage of interac-
tions per user and the percentage of active time per user. Notably, for the
Scaled Time approach, we observe for both Curtin on Galileo, and Galileo on
Curtin experiments lower values of the accuracy the higher the considered
percentages of active time per user.
The accuracy of the Percentage approach for the Galileo on Curtin experi-
ment also decreases for greater considered percentages of interaction per
user. However, the same method for the Curtin on Galileo experiment yields
an almost constant accuracy of 0.64.

Overall, system-to-system dropout prediction experiments Galileo on Curtin
and Curtin on Galileo, where we use information about one system to predict
dropouts in the other one, yield accuracy that outperforms the baseline.
On the other hand, we obtain higher accuracy results for multisystem
dropouts prediction experiment MIX, in which we use a dataset that in-
cludes information from both systems.
The only exception is the Days approach. We believe this one is influenced
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by the distribution of interactions of users with the MOOCs of Curtin
University.

4.2.2 Feature analysis for dropout prediction

In this section we report the scores of each of our features for the Absolute,
Days, Percentage and Scaled Time approaches in Table 4.1a-4.1d. Each of
the tables have the same structure; in the first column, we list the features
and report the scores of the features we used for the dropout prediction
experiments. In the remaining columns, we list the feature scores for the
system-to-system (Galileo on Curtin and Curtin on Galileo) and the multisys-
tem (MIX) dropout prediction experiments.
We want to compare how the score of each feature varies between the start
and the end of the MOOCs. Therefore, for each experiment, we list only the
scores of the features for initial, middle and final values of each approach.
Particularly, we report the scores for 5, 10, 50 and 100 considered initial
absolute interactions per user for the Absolute approach in Table 4.1a; 1,
3, 5 and 7 days from users’ first interaction for the Days approach in the
Table 4.1b; 5%, 10%, 50% and 100% of interactions per user for the Percent-
age approach in Table 4.1c; 5%, 10%, 50% and 100% of considered active
time per user for the Scaled Time approach in the Table 4.1d. We highlight
the three features with the highest score for each setting and experiment in
green.

We name the four features with the lowest score low-scoring features, in
contraposition with the three features with the highest score that we call
high-scoring features. Further, we notice that certain features always belong
to the same group among the different approaches and experiments.
For example, the feature Days is always a low-scoring feature in each of our
experiments. With a couple of exceptions for the Days (Galileo on Curtin first
5 days after users’ first interaction), Percentage (Curtin on Galileo with 100%
of considered interactions per user) and Scaled Time (Galileo on Curtin with
5% of considered active time per user) approaches, the feature Active Days
Requests always belongs to the group of features with low scores.
The feature Sessions also belongs to the low-scoring features for most ex-
periments, with an exception for the Percentage approach (Galileo on Curtin
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Table 4.1: Feature scores of multisystem and system-to-system experiments. The first
column in each table lists the features we used in the dropout prediction experi-
ments. The remaining columns list the feature scores for each experiment; Curtin
on Galileo, Galileo on Curtin and MIX. We focus on how the scores evolves from
the beginning until the end of the MOOCs and, therefore, we report the scores for
intial, middle and final values of each condisered approach. The three features
highlighted in green are the ones with the highest scores for each experiment
and value. The features Session Length, Timespan Clicks, Requests and Active Time
are the one with the highest scores almost for each setting. Days is always the
lowest-scoring feature. Active Days Requests and Sessions are rarely among the
high-scoring ones and have, generally, low scores.

(a) Absolute
Curtin on Galileo Galileo on Curtin MIX

Absolute Interactions 5 10 50 100 5 10 50 100 5 10 50 100

Days 0.96 0.64 1.36 0.76 0.30 0.56 0.78 0.92 39.94 35.31 66.94 30.51

Active Days Requests 0.10 0.56 0.54 0.76 0.12 0.10 0.40 0.80 3.78 22.65 17.95 52.32

Session Length 1.76 2.38 2.50 1.72 2.36 2.44 3.12 2.64 98.41 109.59 132.30 105.26

Timespan Clicks 1.50 1.84 2.44 2.32 1.22 1.10 1.68 1.64 82.43 74.08 121.53 87.51

Requests 2.86 2.88 2.46 3.48 0.84 1.00 1.22 1.46 147.83 142.78 128.37 181.62

Sessions 0.64 0.82 0.80 0.98 0.76 0.62 0.58 0.66 33.69 31.89 41.18 59.31

Active Time 3.06 3.10 2.02 2.48 4.64 4.06 3.64 3.74 147.20 168.66 121.02 132.76

(b) Days
Curtin on Galileo Galileo on Curtin MIX

Days 1 3 5 7 1 3 5 7 1 3 5 7

Days 9.70 18.67 29.07 45.47 13.70 31.50 23.67 19.13 14.10 18.83 27.64 42.39

Active Days Requests 101.20 68.40 67.27 65.83 55.70 111.13 101.10 97.63 87.61 70.25 79.83 66.34

Session Length 99.17 92.43 111.37 108.50 117.60 120.43 116.63 137.90 103.07 99.46 127.60 107.88

Timespan Clicks 107.43 132.63 128.43 115.87 109.40 113.53 98.73 113.53 122.25 130.45 125.76 125.19

Requests 136.37 151.10 135.50 134.67 119.67 102.07 114.53 108.83 122.48 139.00 124.74 131.22

Sessions 36.87 30.53 47.60 27.97 20.57 15.83 38.07 29.73 40.08 28.24 36.88 24.47

Active Time 120.33 132.10 113.30 133.73 136.77 120.37 95.97 94.43 132.62 135.20 110.66 136.10

(c) Percentage
Curtin on Galileo Galileo on Curtin MIX

Percentage 5% 10% 50% 100% 5% 10% 50% 100% 5% 10% 50% 100%

Days 32.10 36.15 48.85 41.55 35.45 33.65 42.15 61.90 31.32 36.78 53.36 58.92

Active Days Requests 52.90 59.15 79.30 86.8 85.85 94.30 84.70 73.50 55.27 58.475 74.02 80.25

Session Length 116.00 102.70 92.90 85.75 64.75 81.70 72.15 62.60 112.88 101.66 86.84 88.47

Timespan Clicks 102.50 75.80 92.90 85.75 96.25 102.20 70.70 80.80 91.60 59.57 79.75 74.49

Requests 222.25 218.65 222.10 212.85 138.35 152.75 165.85 132.75 226.19 232.07 236.85 207.79

Sessions 23.05 29.75 24.45 25.40 36.95 37.30 57.35 98.60 19.47 33.86 22.39 26.74

Active Time 112.10 127.30 105.60 130.15 127.20 100.15 72.85 42.60 123.14 119.29 96.27 114.82

(d) Scaled Time
Curtin on Galileo Galileo on Curtin MIX

Percentage 5% 10% 50% 100% 5% 10% 50% 100% 5% 10% 50% 100%

Days 27.75 54.40 56.95 41.50 38.40 57.95 44.50 63.30 54.25 80.03 69.62 57.61

Active Days Requests 83.25 80.00 73.75 84.70 102.50 65.15 53.90 75.20 79.51 70.39 78.00 81.06

Session Length 146.40 108.10 99.15 87.80 97.10 81.95 98.35 57.20 125.19 107.43 94.88 89.47

Timespan Clicks 110.15 102.85 111.25 71.35 58.10 72.75 36.65 77.40 82.16 88.71 105.70 74.16

Requests 102.60 140.50 169.35 212.00 106.90 118.15 154.45 138.35 113.15 130.13 169.60 209.95

Sessions 45.25 50.35 40.60 24.95 49.25 75.35 70.05 100.05 62.99 58.19 29.82 26.86

Active Time 122.15 113.50 117.80 130.20 105.95 102.65 65.75 38.70 112.20 109.63 106.66 115.37
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with 100% of considered interactions per user) and two exceptions for the
Scaled Time approach (Galileo on Curtin with 50% and 100% of considered
active time per user).
When we consider the results of the multisystem dropout prediction experi-
ment MIX we notice that the features Days, Active Days Requests and Sessions
are always low-scoring. On the contrary, the features Requests and Active
Time are always among the high-scoring features. Session length belongs to
the group of high-scoring features for Absolute, Percentage and Scaled
Time approaches. For the Days approach Timespan Clicks gets higher scores
than Session Length.

Generally, for the system-to-system dropout prediction experiments Galileo
on Curtin and Curtin on Galileo, we can not distinguish between low- and
high-scoring features as clearly as in the multisystem scenario. In particular,
there is no feature always belonging to the high-scoring group.
However, we notice that the features Session Length, Timespan Clicks, Requests
and Active Time belong to this group for most of the approaches and ex-
periments. Moreover, the feature Days is the only feature that consistently
scores low. This group also includes the features Active Days Requests and
Sessions for the Absolute approach as well.

4.3 Summary of results

We can summarize our results as follows:

• for MOOCs characterized by a fixed length and schedule as those of
Universidad Galileo, the Absolute and Days approaches yield mixed
results. Except for the MOOC AND, there is an upper limit for the
accuracy level that tends to stabilize the higher the considered initial
absolute interactions per user and days after the first interaction per
user. These situations are due to noise in the logs that influences the
initial part of the MOOCs of this system.
With the Percentage and Scaled Time approaches, the accuracy in-
creases accordingly with the considered dimension. However, we
recognize a peculiar accuracy profile for MOOCs CA and WTEA. We
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believe the settings, organization, and duration of these MOOCs differ
from those of the other MOOCs of Universidad Galileo.
• the high level of details of the logs of Curtin University has a strong

positive impact on the dropout prediction experiments. Particularly,
the self-paced MOOCs of this system exhibit high accuracy for the Ab-
solute, Percentage and Scaled Time approaches. As for Universidad
Galileo, the Percentage and Scaled Time approaches yield the highest
accuracy.
On the other hand, we obtain the lowest results concerning accu-
racy with the Days approach. We speculate that the distribution of
interactions during the initial days after the first interaction of users
is negatively skewed and this could have an adverse impact on the
accuracy of the dropout prediction experiment using this approach;
• the results of the multisystem and system-to-system experiments de-

note that different systems can be analyzed together. Generally, the
use of a mixed dataset, as in the case of the MIX experiment, yields
accuracy as high as 0.9 for all approaches except the Days one.
To train a classifier on data from one system to predict dropouts on
another system (as in Galileo on Curtin and Curtin on Galileo experi-
ments) has been proven to produce less reliable results than those of
which we were able to obtain with the MIX experiment.
Potential explanations for this observation could be a result of the
small set of features we used and the system differences, particularly,
the fixed length of MOOCs of Universidad Galileo in contrast with
the self-paced setting of Curtin University’s MOOCs.
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5.1 Influence of duration of MOOCs on accuracy

When analyzing the accuracy of the dropout prediction experiments on the
MOOCs of this system for the four proposed approaches, we notice that the
MOOCs AND, CA and WTEA have peculiar accuracy profiles.
First, AND is the MOOC with the highest accuracy, which always increases
and then stabilizes for each approach. Particularly, its accuracy is always
higher than 0.9, except for the Absolute approach when we consider less
than thirty initial absolute interactions per user. These results indicate that
analyzing up to thirty initial absolute interactions per user, with the con-
sidered features, the behaviors of Completers and Dropouts are too similar
for the classifiers to classify all users correctly. Therefore, this could also
indicate that the Dropouts might stop engaging with the course after an
initial phase in which they test the class and the learning environment.
Besides, from the results of the Percentage and Scaled Time approaches
we see that the accuracy profiles of the MOOCs CA and WTEA differ from
those of the other MOOCs. With the Percentage approach, the accuracies of
CA and WTEA are bounded between 0.73 and 0.9 and are always lower than
those from the rest of the MOOCs of this system. Moreover, the accuracy of
CA does not strictly increase with the considered percentage of interactions
per user.
We notice this same situation for this MOOC with the Scaled Time ap-
proach. In this case, its accuracy is higher than the rest of the MOOCs when
the considered percentage of active time per user is lower than 40%. In
contrast with the other MOOCs, the accuracy does not increase when we
consider higher percentages.
With the Scaled Time approach, WTEA has an accuracy profile similar to
those from the other MOOCs. Yet, its accuracy increases at a least significant

64



5 Discussion

09
/27

10
/04

10
/11

10
/18

10
/25

11
/01

Days

0

1000

2000

3000

4000

5000

6000

In
te

ra
ct

io
ns

Completer Dropout

(a) CA

09
/24

10
/01

10
/08

10
/15

10
/23

10
/30

11
/10

Days

0

1000

2000

3000

4000

5000

6000

7000

8000

In
te

ra
ct

io
ns

Completer Dropout

(b) WTEA

Figure 5.1: Per-class interactions for MOOCs CA and WTEA. For both Figures, the x-axis
indicates the date (every vertical line of the grid marks a day), while on the
y-axis we report the number of interactions. We plot the interactions of the
Completers in green and those from the Dropouts in red. Almost all interactions
of both classes happen only for twelve consecutive days.

rate for greater percentages, getting as high as 0.83 when using the total
percentage of active time per user. Interestingly, these MOOCs are the ones
with the highest accuracy (together with AND) for the Days approach.
From Table 3.2 (see Section 3.1.1) we also notice that these MOOCs are
among the three MOOCs with a dropout rate lower than 50%; CA is the
MOOC with the lowest number of active users (89) and the lowest dropout
rate (33%). WTEA has the second lowest dropout rate (44%) and has only
176 active users. Moreover, they have the lowest number of interactions per
user among the MOOCs of Universidad Galileo (394 for CA and 265 for
WTEA). DITV is the third MOOC with a dropout rate lower than 50% (46%),
has a total of 117 active users and an average of 999 interactions per user.
Despite the common official eight weeks duration of the MOOCs of this
system, we verify that the interactions in these MOOCs take place only for
twelve consecutive days. We plot the overall interactions per days over the
eight weeks duration for these MOOCs in Figure 5.1. Due to this situation,
the high accuracy for these MOOCs with the Days approach is understand-
able because a single day for both of these MOOCs represents a higher
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percentage of the overall time the users are active.
For the other approaches, the shorter duration of these MOOCs influences
the features similarly. Most of the features (see 3.2.1) are based on the
concept of user sessions. Shorter duration of a course signifies a shorter
amount of time for the users to interact and, potentially, a lower number of
overall user sessions and a low discrepancy between the number of sessions
of Completers and Dropouts. Therefore, we report the average number
of sessions for Dropouts and Completers for all MOOCs of Universidad
Galileo in Figure 5.2.

We see a clear distinction between the average number of sessions of CA and
WTEA and the remaining MOOCs. First, their average number of sessions
for the Completers is the lowest among all MOOCs. Second, the difference
between the average number of sessions of Completers and Dropouts is the
lowest as well; 10.88 for the Completers and 2.66 for the Dropouts of CA
and 9.71 and 6.6 respectively for Completers and Dropouts of WTEA.
As the features we use are based on the concept of sessions (see 3.2.1), when
the difference between the number of sessions of the two classes is as small
as in the case of these MOOCs, the whole set of features has little variance.
Thus, it becomes more complicated for SVM to detect the class users belong
to correctly.

5.2 Implication of later start of MOOCs

The accuracy for the remaining MOOCs with the Percentage and Scaled
Time approaches increases the higher the percentage of users’ interactions
and the percentage of users’ active time we consider. We do not see this
relation with the Absolute and Days approaches.
To investigate the reasons for this situation, we plot the distribution of
interactions of Completers and Dropouts over the duration of the course
for some MOOCs in Figure 5.3. Particularly, we plot the distributions of the
MOOC with the highest accuracy profile (AND) and compare it with three
MOOCs whose accuracy does not constantly increase for both Absolute
and Days approaches: AEL, DITV and ME.
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Figure 5.2: Per-class average number of sessions. We list on the x-axis the MOOCs of
Universidad Galileo, on the y-axis the average number of sessions, and we plot
Completers in green and Dropouts in red. For all MOOCs, the Completers have
higher averaged numbers of sessions than the Dropouts. However, for MOOCs
CA and WTEA, the difference between the two classes, is not as significant as
for the other MOOCs. This situation is likely due to the shorter duration of
these two MOOCs.

We see from Figure 5.3a that for AND, the initial day already accounts for
a considerable number of interactions. The other MOOCs are characterized
by a low number of interactions during the initial days and a burst in the
number of interactions afterward. This initial period with low interactions
consists of fifteen days for AEL, six days for DITV and seventeen days for
ME (Figures 5.3b, 5.3c, and 5.3d respectively).
However, the distribution of the interactions of Completers and Dropouts
during this initial period does not differ considerably, and they become
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Figure 5.3: Per-class interactions over MOOCs duration. The x-axis represents dates and the
y-axis the number of interactions. For each subfigure, we plot the Completers
in green and the Dropouts in red. We see that AND is characterized by a high
number of interactions during the initial days of the course (Figure 5.3a). The
MOOCs AEL and ME, as shown in Figure 5.3b and 5.3d are characterized by the
first fifteen and seventeen days respectively, during which the modest number
of overall interactions causes the two classes to have a similar distribution of
interactions. This situation leads to less precise classifications of the users. The
delay for the MOOC DITV, as shown in Figure 5.3c, includes almost the first
week of the course.
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distinguishable only after this time. We believe that there is a definite delay
of the actual start of the course for these MOOCs, which can happen, for
example, when the course is already open to users, but the material is
uploaded only with a delay of some days. Therefore, the initial days are
characterized by few interactions that increase in number once the material
is uploaded.
This particular situation explains the general low accuracies we obtain with
the Days approach; in the initial phase users interact with the MOOCs only
to verify if the course has started (that is, whether the material is already
available or not). Therefore, these interactions do not strictly represent user
engagement and, consequently, the features extracted from these interactions
do not reflect the differences between Completers and Dropouts.
Therefore, we conclude that the lower accuracy for some MOOCs using the
Absolute approach could be due to this situation.

5.3 Higher details of logs to increase accuracy of
the prediction

The accuracy of the self-paced MOOCs of Curtin University is higher than
those of Universidad Galileo for the majority of the approaches.
Particularly, with the Absolute and Scaled Time approaches the accuracy
of both MOOCs of this system increases the greater the considered initial
absolute interactions per user and considered percentage of active time per
user.
With the Percentage approach, the accuracy of both MOOCs is always
higher than 0.92 and it either grows slowly (MOOCC2) or remains stable
(MOOCC1). These discrepancies in accuracy between the two systems are
due to differences between the structures and organizations of the courses
of each system.
First, MOOCs of Curtin University are self-paced; when the course starts,
the entirety of course material, resources and problems are available to
the users, who are free to interact with the course at their own pace. This
implies that all interactions are representative of the users’ engagement style
(which is not the case for Universidad Galileo’s MOOCs, as explained in
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Section 5.1).
Second, there is a big difference in the average number of interactions
between the two systems. From Table 3.3 we see that the average number of
interactions per user of Curtin University system is 93 for MOOCC1 and
58 for MOOCC2. Therefore, when we experiment with five initial absolute
interactions per user with the Absolute approach we consider, on average,
5.38% for MOOCC1 and 8.62% for MOOCC2 of users’ overall interactions.
The MOOC with the highest percentage of Universidad Galileo is WTEA, in
which 5 interactions represents, on average, only 1.89% of each user overall
interactions. Thus, the initial interactions in the MOOCs of Curtin University
carry more information than those of Universidad Galileo’s MOOCs.
Third, the level of detail of the edX logs is higher than the one of Universidad
Galileo. As explained in Section 3.1.2, in the edX log, each available tool is
described in higher detail by subcategories, and we derive a feature from
each of them. As a result, Curtin University’s interactions include almost
hundred different tools, while those from Universidad Galileo comprise
only twenty different tools.
This high variety of tools translates into higher number of features, which
make it easier for the classifier to correctly identify and categorize users as
either Completers or Dropouts.
Taking a step forward, we further investigate these situations by listing the
most used tools for MOOCC1 in Table 5.1. We divide the tools/features
according to the group they belong to and compare experiments with
5, 10 and 100 number of initial absolute interactions per user. For each
experiment and class, the column % represents the percentage of the whole
interactions the feature accounts for. The AVG column indicates the number
of interactions per user averaged over the total number of users of the class.
We omit features with a percentage lower than 1%, which we indicate as
empty cells.
We see that most used tools with 5 interactions belong to Video and Main Page
Links components. The higher the number of initial absolute interactions
per user we consider, the more users engage with Video, Course Navigation,
and Problem components. Discussion Forum is scarcely used and mostly for
visualization purposes only.
Therefore, we conclude that for this system the initial absolute interactions
of users are strong indicators whether they will complete the course or not.
Moreover, there is a particular set of components (Video and Main Page Links)
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that strongly catalyze users’ attention.

5.4 Distribution of interactions of self-paced
MOOCs

The results of the Days approach represents an exception to the general
high accuracy that we obtain for MOOCs of Curtin University.
With this approach, MOOCC1 has a constant accuracy of 0.5, the baseline
value. The accuracy of MOOCC2 increases but with a slower pace compared
to the other approaches. We believe that a possible explanation for this is
represented by the Enrolment actions, which form part of Curtin Univer-
sity’s logs.
MOOCs of Curtin University are characterized by an initial time window of

Table 5.1: Distribution of absolute interactions for MOOCC1. The table depicts the most
used tools when we analyze 5, 50 and 100 initial absolute interactions per user.
For each feature, we report its percentage of the class interactions in column %
and the average requests per class in column AVG. The Video, Course Navigation,
and Main Page Links are the most used components by Completers and Dropouts.
The higher the considered number of initial absolute interactions per user, the
more the users interact with the Problem component, while Discussion Forum is
generally scarcely used.

Absolute Interactions
5 50 100

Completers Dropouts Completers Dropouts Completers Dropouts
Feature Group Feature % AVG % AVG % AVG % AVG % AVG % AVG

Course Navigation
Tab Selected 5 0.19 4 0.06 11 5.47 12 1.55 9 9.25 1 2.09

Next Tab Click 4 0.14 3 0.06 19 9.11 17 2.30 15 14.42 14 3.05

Previous Tab Click 1 0.48 1 0.11 1 0.95 1 0.19

Video

Video Loaded 21 0.77 20 0.33 10 4.85 11 1.53 10 9.71 11 2.27

Video Played 9 0.34 8 0.14 10 4.88 11 1.44 11 11.16 11 2.40

Video Paused 2 0.08 2 0.03 6 3.04 7 0.89 7 7.14 7 1.46

Video Stopped 4 1.77 4 0.53 4 4.02 4 0.83

Video Position Changed 2 1.90 2 0.38

Problem Problem Check 4 1.72 2 0.25 7 6.69 4 0.79

Problem Graded 3 1.67 2 0.24 7 6.63 4 0.79

Discussion Forum Visualize Thread 4 2.07 3 0.41 3 3.32 3 0.56

Visualize Forum Page 2 0.88 2 0.21 1 1.19 1 0.24

Main Page Links Home 35 1.31 37 0.61 6 2.76 7 1.01 4 3.66 5 1.16

Progress 5 0.18 3 0.05 2 0.78 1 0.17 2 1.86 13 0.29
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up to a couple of months during which the course is available for enrollment
only, and a second time window lasting from the MOOC’s official start date
until its official end date (See Section 3.1.2). Before the beginning of the
course, users have only the possibility to visit the MOOCs main page, which
contains a description of the course and its topics, but do not have access to
lecture notes and problems, which become available only during the second
time window.
This restriction on user’s ability to interact with the system causes the fea-
tures derived from it to be unable to distinguish between Completers and
Dropouts accurately. Furthermore, we verify that 8552 Dropouts (39% of all
users) from MOOCC1 and 4436 (almost 43% of all users) from MOOCC2
only interact once (Enrollment action) with the platform.
In this scenario, the classifier might correctly classify the users with only
one interaction with the system as dropouts, but it will misclassify dropouts
that interacted more than once with the system as completers. We speculate
that these dropouts with a single interaction with the system further worsen
the performance of our classifier.
By completely removing these users and re-running the experiments for the
Days approach, the accuracy of the predictions increases substantially. These
new results, depicted in Figure 5.4, are more in line with the ones from the
Absolute approach. When we consider only the first day after users’ initial
interaction we obtain an accuracy of almost 0.9 for both MOOCs.
These new results indicate that there are strong differences in the engage-
ment style of Completers and Dropouts, which are detectable already during
the initial phase of the courses. This conclusion was also foreshadowed by
the results of the Absolute approach, in which five initial absolute interac-
tions per user already yielded an accuracy of 0.8 for both MOOCs.

5.5 Limitations of system-to-system dropout
detection

When we conduct the multisystem dropout prediction experiment MIX,
we use half of the users from Curtin University and half of the users from
Universidad Galileo for training, and we evaluate the classifier by predicting
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Figure 5.4: Curtin University Days approach without enrollment actions. On the x-axis, we
list the number of days after the first interaction of users. The y-axis indicates
the accuracy with the baseline plotted in black at 0.5. We plot the MOOCs in
green as both their accuracies are increasing the more days from users’ first
interactions we analyze. Compared to the results of Figure 4.2b, we can see how
dropping users with only one interaction (the Enrollment action) increases the
accuracy of the prediction for both MOOCs, while considering only the first
day after the initial interaction of users yields an accuracy of 0.89 or higher for
both MOOCs.

the class of the remaining users. With this setting, we always obtain higher
accuracy than the ones of the system-to-system experiments Curtin on Galileo
and Galileo on Curtin.
As with the MIX experiment, the accuracy of the Days approach is relatively
lower when compared to those of the other approaches. We suppose that
this is due to the Enrollment actions that are part of the logs of Curtin
University.
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By removing users with only the Enrollment actions and re-running the
experiments, we obtain the results shown in Figure 5.5. Removing users
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Figure 5.5: Multisystem Days approach without enrollment actions. The x-axis indicates the
number of considered days (up to seven) from users first interaction. The y-axis
indicates the accuracy; it is bounded between 0.4 and 1, and the horizontal
black line at 0.5 is the baseline. All profiles are plotted in green as they are all
either increasing or stable the higher the number of considered days from the
user first interaction is. Compared to the results from Figure 4.3b there is an
increase in the accuracy for all three settings, with MIX benefiting the most
from the removal of Enrollment actions.

with only the Enrollment action increases the accuracy of the multisystem
dropouts prediction experiment MIX too. The accuracy constantly improves
with the number of days from the users’ first interaction that we consider.
The system-to-system experiments also benefit from the removal of these
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users. The accuracy increases with the number of considered days with only
a slight decrease for six and seven days for the Galileo on Curtin experiment.
Instead, for the Curtin on Galileo experiment, the accuracy always increases.
Generally, the results we obtain for the system-to-system experiments with
the other approaches are variable.
One potential explanation for this observation is the delayed start of some
MOOCs of Universidad Galileo (see Section 5.1) that introduces noise, which
leads to a worsening of the accuracy. The main approaches affected by this
situation include both the Absolute and Days ones.
Another possible explanation is a too small number of features that we use
in the multisystem and system-to-system experiments. The set of features
that we use consists of the seven features common to both systems. This
restricted set of features seems to be too small to correctly describe the
classes of users of the two completely different systems that we analyze in
this work.
We see this in the generally lower accuracy of the system-to-system dropouts
prediction experiments Curtin on Galileo and Galileo on Curtin. On the other
hand, this limitation does not interfere with the multisystem dropouts pre-
diction experiments MIX. For the MIX experiment, we create the training
set by selecting 80% of users of Universidad Galileo’s MOOCs and 80%
of users of MOOCs of Curtin University. The remaining 20% of users of
MOOCs of Universidad Galileo and 20% of users of Curtin University’s
MOOCs constitute the test set.
Therefore, we train the classifier with information about both systems, which
results in a more precise classification of the users in the test set. This yields
higher accuracy for the MIX experiment in all the approaches considered.
Furthermore, the dimensions of the training and test sets, particularly for
the Curtin on Galileo and Galileo on Curtin experiments, could cause potential
issues.
With the system-to-system experiments, we merge the MOOCs from each
system into the dataset Galileo and Curtin. Then, we use one dataset as a
training set and the other as a test set. Particularly, Galileo dataset includes
1,164 Completers and 1,993 Dropouts for a total of 3,157 users, while Curtin
counts for 32,316 users, of which 1,708 are Completers and the remaining
30,608 are Dropouts.
When we balance the number of users of each class (see 3.2.3) we obtain
a total of 3,986 in the Galileo dataset and 61,216 in the Curtin one, in both
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cases, half are Completers and half are Dropouts.
Thus, in the Galileo on Curtin experiment, we use only 6% of the users for
training and predict the class of the remaining 94%. Even by removing the
users with only one interaction from Curtin University’s logs only increases
the number of users in the training set up to 10%.
Therefore, the number of users in the training set is significantly lower than
the number of users in the test set, and we train the classifier on simply too
few examples.
However, when the percentages are inverted, as is the case of the Curtin on
Galileo experiment, the accuracy results are still generally low.
We conclude that there are strong differences between users from the differ-
ent systems that our features are not capturing. As previously mentioned,
the used set of features is likely too limited for these system-to-system
dropout prediction experiments.

5.6 Averaged aspects of sessions and their
importance

For each experiment, we attribute the three features with the highest scores
as high-scoring and the remaining features as low-scoring. The group of low-
scoring features for the Absolute, Percentage and Scaled Time approaches
includes the features Days, Active Days Requests and Sessions.
The MOOCs of Curtin University are self-paced and, therefore, offer more
flexibility to the users; as soon as the whole material is available, enrolled
users start to engage and can, theoretically, complete a MOOC even within
just a couple of days.
On the other hand, the MOOCs of Universidad Galileo include (weekly)
assignments and projects that are subject to fixed deadlines. Therefore, even
if users can still engage at their own pace these MOOCs still impose a
predefined schedule.
To examine this situation further, we report the number of average active
days per user with respect to the Completers and Dropouts class for all
MOOCs from both systems in Table 5.2. Completers of Curtin University’s
MOOCs are active on average between 11.50 and 12.77 days, while the
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Dropouts interact with the system between 2.15 and 2.24 days.
For MOOCs CA and WTEA of Universidad Galileo, Completers are active
between 5.70 and 6.77 days and the Dropouts between 1.83 and 2.23 days.
These MOOCs are the only two among those of Universidad Galileo with a
duration of twelve days only, while the others lasted for eight weeks (see
Section 5.1).
Users of remaining MOOCs of this system are active for more days. Specifi-
cally, Completers are active on average between 16.52 for (DITV) and 33.09

(AND) days. Dropouts interact on average between 4.19 (UE) and 6.11 (AND)
days.
Therefore, users of MOOCs of Universidad Galileo are always active for
more days than those of Curtin University’s MOOCs. This is true for both,
Completers and Dropouts. This can be a reason for Days to always be one of

Table 5.2: Per-class average active days. For each system (indicated in the first column) and
each of its MOOCs, the averaged numbers of active days for Completers and
Dropouts are indicated. The average is calculated with respect to the total number
of users of the particular class of the MOOC. An active day for a user represents
a day during which the user interacts at least once with the system. Users from
Galileo Universidad’s MOOCs have, on average, more active days than those
from Curtin University’s MOOCs. The only exceptions are the MOOCs CA and
WTEA, which have the lowest average number of active days for both classes.

System MOOC Completers Dropouts

Universidad Galileo

AND 33.09 6.11

AEL 20.93 5.19

CA 6.77 1.83

CBL 21.33 5.22

CM 28.57 5.23

DITV 16.52 4.26

EL 23.81 4.55

ME 20.06 5.29

UE 18.89 4.19

WTEA 5.70 2.23

WTC 23.02 4.53

Curtin University MOOCC1 11.50 2.24

MOOCC2 12.77 2.15
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the low-scoring features when we classify users from such different systems.
As Active Days Requests is a feature closely related to Days, it is, consequently,
a poor measure in such a scenario too.
The feature Sessions also belongs to the group of low-scoring features. How-
ever, the features that are strongly based on the concept of sessions such as
Timespan Clicks, Session Length, Session Requests and Active Time are mostly
among the high-scoring ones.
This indicates that the aspects that describe the behavior of the users during
a session relate closely to the class users belong to rather than the simple
total number of sessions that they have. This is particularly evident from
the score obtained for the multisystem dropout prediction experiment MIX.
On the other hand, for the system-to-system dropout prediction experiments
Curtin on Galileo and Galileo on Curtin the features that describe the behavior
during a session are not necessarily the ones with the highest scores as
in the multisystem experiments. This happens for the experiment Curtin
on Galileo with the Scaled Time approach and in the experiment Galileo on
Curtin with the Days approach.
These situations can be interpreted as a direct consequence of the settings

imposed on these experiments, in which the features that we constructed
have not always correctly identified Completers and Dropouts of the two
systems.
Therefore, it is possible that Completers and Dropouts of the MOOCs of

Table 5.3: Feature Scores of the Days multisystem and system-to-system experiments
without enrollments. In the first column, we list the considered features for the
dropout prediction experiments. For each of our experiments, we report the
scores for 1, 3, 5 and 7 days after the first interaction of users. For each column,
we highlight the three features with the highest score for that particular setting
in green. Session Length, Timespan Clicks, Requests and Active Time are the features
with highest scores, while Days, Active Days Requests and Sessions always have
low scores among the various experiments.

Curtin on Galileo Galileo on Curtin MIX

Days 1 3 5 7 1 3 5 7 1 3 5 7

Days 9.05 30.85 47.30 43.70 14.15 31.1 22.55 19.4 10.70 31.96 43.74 43.65

Active Days Requests 54.25 56.70 59.45 81.80 59.15 109.6 103.55 98.2 53.74 60.70 62.53 84.12

Session Length 126.20 133.80 110.30 123.60 118.55 123.40 118.5 136.05 120.15 133.97 112.8 129.93

Timespan Clicks 179.50 153.10 147.75 108.5 110.1 115.15 101.05 117.25 168.6 150.41 143.94 108.27

Requests 115.45 121.80 123.8 141.15 116.45 104.60 118.65 107.75 113.75 126.49 130.25 136.03

Sessions 34.2 34.90 28.2 36 19.4 16.20 39.05 28.3 37.11 31.29 33.37 37.80

Active Time 112.45 114.90 124.55 120.3 136.6 117.15 93.5 91.35 128.44 118.02 125.47 120.770
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Universidad Galileo and those of Curtin University’s MOOCs exhibit a
different engagement style.
Otherwise, when we train the classifiers using examples from both systems,
as can be seen in the multisystem experiments on the MIX dataset, we see
a precise distinction between the two groups of features, except with the
Days approach.
Particularly, for the multisystem dropouts prediction experiment MIX, the
feature Timespan Clicks generally has a higher score than Session Length.
This is also true for the system-to-system dropout prediction experiment
Curtin on Galileo, while for Galileo on Curtin the two groups of features are
less distinguishable, with up to five different features that belong to the
high-scoring ones.
This could be a consequence of the noise that the Enrolment actions intro-
duce (see Section 5.3). Re-running these experiments for the Days approach
by removing the Enrolment actions for the MOOCs of Curtin University
again, provides the results outlined in Table 5.3. In this case, the distinction
between high- and low-scoring features is clearer, with the features Days,
Active Days Requests and Sessions that always belonging to the low-scoring
group.
We obtained similar results also with other approaches, which confirms that
the distribution of interactions of users of MOOCs of Curtin University is
negatively skewed due to the Enrollment actions included in the logs of this
system.
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In this thesis, we experimented with dropout detection for MOOCs in sin-
gle and multisystem scenarios. In particular, we analyzed MOOCs of two
different systems: Universidad Galileo and Curtin University.
These systems and their MOOCs differed concerning the number of en-
rolled users, topics, intended audience and structure of the courses. Besides,
MOOCs of Universidad Galileo complied with a predefined timescale, with
deadlines for assignments and project submissions.
On the other hand, MOOCs of Curtin University allowed the users the
freedom to proceed through the course at their own speed. MOOCs of
this system followed a self-paced structure, with the entire course material
available from the very beginning of the course.
Initially, we predicted dropouts for each MOOC of each system indepen-
dently. Second, we merged all the MOOCs of the same domain in a unique
dataset and obtained two datasets, one for each system. We used these
datasets to predict dropouts in system-to-system and multisystem settings.
While doing so, we also analyzed which of the features of our model in-
fluenced the accuracy of the prediction the most, and we ranked them
accordingly.
Throughout the various experiments, we constructed features using different
approaches. In particular, we considered up to the first one hundred initial
absolute interactions per user (Absolute), up to the first seven days after the
first interaction of users (Days), a varying percentage of total interactions
per user (Percentage) and a varying percentage of total active time per user
(Scaled Time).

Results of MOOCs of Universidad Galileo exhibited a high level of accuracy
for the Percentage and Scaled Time approaches. In these cases, the accuracy
improved in proportion to the considered percentage of interactions per
user and the analyzed percentage of active time per user.
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The accuracy of the Absolute and Days settings were generally lower, even
though some analyzed MOOCs showed an increasing trend in accuracy as
we used higher numbers of considered initial absolute interactions per user
and days after first interaction of users. When we further investigated these
results, we discovered two potential explanations.
First, some MOOCs presented an initial phase (of up to seventeen days)
with few interactions, possibly due to an actual later start of the courses
and/or unavailability of materials to the users.
Second, despite an official duration of eight weeks, the majority of the
interactions within some MOOCs were concentrated on shorter periods of
consecutive days. This shorter length led to a similar distribution of the
interactions of the classes and eventually resulted in features characterized
by low variance, which in turn worsened the performance of our classifier.

For MOOCs of Curtin University, we obtained higher accuracy when com-
pared with those of Universidad Galileo’s MOOCs. We noticed such higher
accuracy regardless of the chosen approach we used to construct the fea-
tures. We identified a couple of possible explanations for the higher accuracy
of the predictions on MOOCs of Curtin University.
First, the detailed logs of Curtin University allowed us to construct more
features than the one we created for Universidad Galileo’s MOOCs.
Besides, we also noticed that user interactions were strongly concentrated on
a small set of tools, which included Video, Course Navigation, and Problem
components. However, users interacted with the Forum component seldom.
We believe this being more a sign of uncomplicated and easy courses or top-
ics, rather than a general observation valid for other MOOCs and settings.
Second, in a self-paced setting, users do not have to comply with a fixed
schedule and can interact with the MOOCs at their own speed. This auton-
omy seems to relate more to the final outcome of users than in the case of
MOOCs with a course set over a predefined number of calendar days.
We obtained low accuracy only with the Days setting. However, we noticed
that the logs of the two MOOCs included, on average, more than 40% of
users who enrolled and never interacted any further with the system. We
verified that, by not considering these users, the accuracy of the prediction
increased and the results were in line with those obtained with the other
approaches for this system.

The system-to-system dropout prediction accuracy was not particularly high
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for all proposed approaches.
Such a result is likely due to the small set of features we used for these
experiments. We can conclude that the seven features we used were too few
to distinguish Dropouts from Completers among the two systems correctly.
Moreover, MOOCs from Universidad Galileo had a fixed schedule, including
deadlines for assignments and projects submissions, while the self-paced
MOOCs of Curtin University let users more freedom on their learning
schedule.
As a consequence, our classifier was not able to correctly identify the two
classes of users on one system when the training set consisted only of users
from the other system.

However, when we merged the datasets from Universidad Galileo together
with the datasets of Curtin University and attempted a dropout prediction
on a multisystem scenario, the accuracy increased for all approaches.
The only exception was the Days approach that suffered the most from users
with only a single interaction, namely the enrolling action. By removing
these users, the accuracy was comparable to the ones of the other settings,
meaning that dropout detection on a multisystem setting is attainable and
yields high accuracy.

Such result was also confirmed by the scores of the features that we obtained
using Boosted Decision Trees. In particular, we were able to split the features
into two groups clearly.
The first group of features always had high scores among the different
experiments, meaning that the classifier could classify users with high
accuracy by using these features. The second group of features had low
scores, signifying that these features were not helpful to distinguish between
Dropouts and Completers.
Overall, we found that the features with the highest scores were those
that describe averaged aspects of sessions; Session Length, Active Time and
Timespan Clicks. The total number of interactions users had with the MOOCs
(Requests) was also among the high-scoring features.
Besides, we verified that certain features always got the lowest scores in
almost every setting and experiments. This group of features included Days,
Active Days Requests and Sessions. We also noticed that this division in high-
and low-scoring features was clearer for predictions in the multisystem
setting than in the system-to-system setting.
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Our results represent the first step towards the early detection of dropouts
in a multisystem setting.
As a first observation, we saw that in MOOCs with a fixed schedule
Dropouts and Completers approached the first part of the course with
similar behaviors. Therefore it is harder to detect dropouts during the ini-
tial days after the start of a MOOC. After the first deadline to hand in an
assignment or project part of the users will, eventually, stop engaging with
the MOOCs and, therefore, is easier to detect dropouts at this point.
We did not investigate reasons for users to abandon a course, but we spec-
ulate that an initial negative grade would be a possible reason that could
have led to users dropping out of a course.
Furthermore, the fixed schedule forces users to engage with MOOCs during
its whole duration. Therefore, when personal commitments and priorities
of users outside of the MOOCs become demanding, it is hard for registered
users to keep up with the course and, therefore, results in users dropping
out. Besides, a delayed start of the course might lower the level of interest
of users.
The idea of a self-paced MOOC and its availability on a wide-select of
available platforms seems to appeal to many potential enrollees.
However, a high number of registered users does not signify more engaged
users. Indeed, it is the self-paced setting of the courses, which have led
to higher dropout rates. A possible consideration could be that a MOOC
requires a proper organization and structure of the learning material to
enhance the likelihood of a successful completion of the course.
The self-paced environment that many MOOCs are offering seems to be
counterproductive for a high number of users that tend to interact less and
are more prone to dropout. This can be evidenced by the fact, that some of
these users subscribe to MOOCs without further interacting after the start
of the course.
Therefore, it is easier to detect dropouts in these MOOCs even by analyzing
only the interactions that take place at the beginning of the course.
The intrinsic differences among systems and domains can be overcome by
the correct identification of the features with the highest scores. We discov-
ered that some features always had high scores for both of the systems we
analyzed. Thus, users’ way of interacting in self-paced and synchronous
MOOCs share some similarities.
However, these similarities are too few to correctly distinguish Completers
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from Dropouts in system-to-system experiments, which is an application of
our classifier that yielded mixed results. On the other hand, by training our
classifier with information from both systems the accuracy of our prediction
increased.

We identified the small number of features we used as one of the limitations
of our model. Therefore, naturally, the next step should be to do a more
in-depth analysis of the events and tools each system offers, with the goal
of incorporating new features into our model.
Evaluation of these new features through ranking would help us to verify
which features are more valuable to detect dropouts on a system. With this
process, we would obtain a refinement of the set of features to enhance the
accuracy of the predictions.
To deepen the gained insights and verify whether the obtained results hold
at a general level, we also aim to incorporate new systems and domains
into our model. It is only by finding general rules across various systems
that it would be possible to improve the accuracy of our classifier and,
consequently, lower the general trend of high dropout rates.
As this study has underlined, the need for a homogenous prediction model
is strong. Early dropout detection stands out as a requirement for any system
and domain and should, therefore, be addressed by a flexible homogeneous
model.
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