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Abstract

Robot localization is crucial part of modern robot systems and is a well studied
topic. There are lots of different techniques which can be used to estimate
the position of a robot in relation to an environment. Typically because of the
uncertainty in the robot domain, these techniques use some kind of filtering
approach to determine the current robots pose, using various types of sensors
like 2D lasers and the representation of the environment. To determine how
well the robot knows its pose we introduced the term localization scoring.
Localization scoring analyses how precise a robot is localized. It typically uses
the robots position and additional sensor data to check how well the stated
position fits into the environment. In this thesis an existing implementation
based on a particle filter will be analyzed for finding features such as the
distribution of the environment of different kind which can be used to score the
accuracy of robot localization. It then is examined if those features are useful for
robot localization scoring by using them in machine learning approaches. One
way of finding a feature is by training neural networks on the particle cloud.
This allows to find a complex feature that holds a lot of information about the
localization state of the robot. To find the best fitting neural network different
types and structures are evaluated. Results show that convolutional as well as
recurrent networks have a good performance in detecting a localization feature.
Also the desired network complexity is minimal since a particle filter generates
information which simple network structures can already be classified. Using
extracted localization features and combining them in boosting algorithms like
AdaBoost shows that a reasonable output is trained which can be used to
estimate the robots localization quality.
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Kurz Zusammenfassung

Roboter Lokalisierung ist ein wichtiger Bestandteil moderner Roboter und ein
gut untersuchtes Forschungsgebiet. Es gibt viele verschiedene Techniken die
verwendet werden können um die Position eines Roboters in einer Umge-
bung zu bestimmen. Um die Genauigkeit eines Roboters in der Umgebung zu
erhöhen werden meist Umgebungsdaten und Sensoren wie 2D Laser verwen-
det. Um festzustellen wie genau ein Roboter seine Position begann man damit
die angegebene Position zu bewerten. Dabei geht es darum zu analysieren wie
genau der Roboter lokalisiert ist und wie sicher er sich ist, and der richtigen
Stelle zu sein. Typischerweise werden dafür die geschätzte Position des Robot-
ers, die Umgebung und verschiedene Sensordaten benutzt um festzustellen wie
gut die geschätzte Position in die Umgebung passt. Im Grunde geht es darum
festzustellen ob ein Roboter lokalisiert oder delokalisiert ist. In dieser Arbeit
wird eine bereits bestehende Implementation eines Partikelfilters analysiert um
bestehende Merkmale, wie Verteilung der Partikel, zu finden. Diese Merkmale
werden dann verwendet um die Genauigkeit einer angegebenen Position zu
bewerten. Um dies zu erreichen werden die gefundenen Merkmale kombiniert
und in verschiedenen maschinellen Lernansätzen verwendet. Eine Möglichkeit
um ein Merkmal zu finden besteht darin, neuronale Netzwerke auf die Partikel-
wolke zu trainieren. Dies ermöglicht es ein komplexes Merkmal zu extrahieren
welches Informationen über den Lokalisierungszustand des Roboters enthält.
Um ein passendes neuronales Netzwerk zu finden werden verschiedene Arten
und Strukturen ausgewertet. Die Ergebnisse zeigen, dass sowohl faltende neu-
ronale Netze (CNNs) als auch rekurrente Netzwerke eine hohe Genauigkeit
bei der Erkennung des Lokalisierungszustandes erzielen. Des Weiteren wurde
herausgefunden, dass die dazu benötigte Netzwerkkomplexität minimal ist da
ein Partikelfilter nur einfache Informationen erzeugt die schon mit kleineren
Netzwerkstrukturen erkannt werden können. Um eine Gesamtgenauigkeit zu
erhalten wurden alle gefundenen Merkmale kombiniert und in maschinelle
Lernalgorithmen wie AdaBoost kombiniert. Dabei wurde gezeigt, dass bei
Verwendung von vernünftigen Merkmalen der Lokalisierungszustand eines
Roboters sehr gut geschätzt werden kann.
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Chapter 1

Introduction

This Master’s thesis deals with topics which are currently hot discussed. It
discusses particle filter [1, 12], a common technique for robot localization, and
evaluates the information which these techniques produce. This information
is then used in training deep learning networks to find out if it can be used for
estimating the accuracy of a robots position.
The peculiarity is that usually particle filters are used in combination with
machine learning approaches for state estimation [160], pattern recognition
[19] or to track objects [112]. This thesis does not combine those techniques for
improving either of these combinations. Instead, machine learning approaches
are used to recognize patterns in particle filters information for estimating the
quality of the localization of the robot.

In this chapter we are going to motivate the problem which we like to handle
and present the initial situation of the thesis.

1.1 Initial Situation

Robot localization is a well discussed topic nowadays. There are lots of dif-
ferent techniques which can be used to estimate the position of a robot in an
environment. Typically, these techniques use some kind of state estimation
technique to determine the current robots pose, using various types of sensors
like 2D lasers. Localization algorithms are known to have some accuracy issues
since they only work with probabilistic models and thus do not always report
the correct position [10, 146]. To determine how well the robot knows its pose
in relation to its environment we introduced the term localization scoring. Lo-
calization scoring analyses how well a robot is localized. It typically uses the
robots position and additional sensor data to check how well the stated position
fits. Determining how well a robot is localized is also known to be difficult. As
it is not obvious to determine the position of a robot using only simple sensors,
it is also a challenge to find a method which delivers a good estimation of the
robots current position estimation quality.

A typical approach used for localization is the so-called Monte Carlo method
which is based on the particle filter [147, 34, 146]. This algorithm uses particles
to represent the uncertainty about the robots pose. Different types of sensor
data are then used to reorganize the particles based on the likelihood of the
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CHAPTER 1. INTRODUCTION 2

processed data fitting into the environment [148, 80, 146]. In robotics, typically
laser scanners are used in particle filters to evaluate the position. In an un-
ambiguous environment particle start to form particle clusters after some time
which represent the robots position and the uncertainty about it. Checking
the accuracy of a stated position is not obvious using only laser sensor data.
Many algorithms for localization scoring use simple methods like calculating
the distance between scan and map points and then estimate the quality using
defined thresholds which state how many scan points must match a certain
distance to be localized [138, 82, 146]. Another method is to do some sort of
line recognition within the map and scan. Those lines are then matched to
evaluate the position of the robot [29]. Often many simple techniques with
various parameterizations are combined to improve the quality of a scoring
algorithm. In those combined method one also needs weighting parameters to
define the importance of different scoring features. There also exist more com-
plex approaches but many of them need to set additional parameters which
are difficult to estimate since it is not an obvious task to determine and rank
important features [76, 61, 163, 148]. At the end the performance is often un-
reliable and a lot of work has to be invested to find parameters for a certain
environment which fit best.

1.2 Thesis Outline

First the problems addressed in this thesis are stated more formally and the
aim of of this thesis is defined. After showing our goals and used methods
some basics are explained which help to orientate through this work. Also
related topics which were found in research are described and discussed. Then
particle filters are analyzed and information is searched which can be applied
for machine learning approaches. This information is then filtered and stored
as training data for deep learning networks. The data is then used to train
deep learning networks to find an acceptable solution. To make sure that
the selected solution is optimal, different network structures with different
network parameterizations will be presented and trained. The outcome is
also investigated using different validation sets, not only created test sets but
also real world data sets. The result of this solution is then also combined
with classical techniques used nowadays to score the localization accuracy of a
robot.

1.3 Problem definition

This section handles the definition of problems which are handled in this master
thesis. Problems of the current situation are revealed and explained in further
detail. Subsequently it is discussed which of these problems are addressed in
this thesis and how we plan to solve them.

1.3.1 Basic Problems in Robot Localization

Since the very first beginning of self-localizing robots some fundamental prob-
lems are known which researcher tried to overcome with various solutions.
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The basic problems are now shortly discussed.

The first problem which is addressed is the global localization problem
[109, 105]. Given a robot and an arbitrary environment which the robot may
know. The robot does not obtain information about its initial position within
this environment. The task is now to determine the robots location within the
environment using only data retrieved from simple sensors like 2D laser-range
finders. Thus the pose has to be estimated from scratch. While humans have
lots of information available to determine their current position it is not trivial
to determine the initial location of a robot, using only limited information.

The next issue is the kidnapped robot problem [94]. It is similar to the global
localization problem with the difference that the robot was already localized in
the environment. While an autonomous robot is localized in an environment it
is moved to an arbitrary location without giving any feedback. The robot then
has to find its current position again using only the new information available.
An essential problem which comes with the problems discussed so far is that
the environment might have various areas which look similar. This results
in multiple possible positions. Figure 1.1 illustrates this problem. The grey
ellipse is the old position of the robot while the blue ellipse is the new position.
Since the robot was carried away and did not receive any information about
this movement he has to determine its new position. From both, the new and
old robots position, the environment looks the same. Thus the robot might not
even know he was carried to another position.

Figure 1.1: Illustration of the kidnapped robot problem

Another localization issue is the difference between active and passive lo-
calization [55, 135]. In passive localization the robot estimates its position using
only incoming sensor data. It states that based on the localization information
neither the orientation nor the motion of the robot can be adjusted [15]. In active
localization the robot has the possibility to control the motion or orientation of
the robot to improve the accuracy of the localization technique [15]. Thus it can
choose where to look to gain necessary information for localizing the robot.

The last basic problem are dynamic environments [140]. When localizing
a robot in an environment there is a difference between not changing the ap-
pearance of the setting over time and adapting its appearance based on new
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information. This new information may have various reasons like people or
other robots moving around within this environment. This leads to the problem
that there are artifacts within the environment which disturb a smooth local-
ization. This results in the issue that the localization might become unreliable
if there is a lot of noise within the environment.

In general, localization is hard because the pose can not be directly ob-
tained. Some kind of sensors which measure the environment or the motion
of the robot are needed. The problem of measuring the environment is, that it
can be ambiguous and non trivial. Also the sensors for measuring the environ-
ment and the motion have systematic and non-systematic errors which lead to
localization errors.

1.3.2 Current Localization Scoring approach

This section focuses on describing how the localization score is currently com-
puted and which issues this computation has.

One important fact which has to be mentioned is that the robots localization
and the scoring of its position accuracy are currently separated in two different
modules which are independent from each other. A particle filter is used to
localize the robot based on its movement. Therefore the odometry of the robot
is taken and transformed to environmental coordinates. Since the odometry
has a certain error this transformation is adapted with the help of the particle
filter. This filter spreads out particles in the environment and calculates the
position with the highest probability. Based on this found position the trans-
formation between odometry and map is adapted such that the new position
in the environment is the position with the highest probability. For a detailed
explanation on how particle filters work see chapter 2.3.4.

To determine how accurate the localization of the robot works a separate
module is used. This node uses four simple techniques to determine the posi-
tion accuracy of the robot. The first technique uses a hough line detector [43] to
receive lines from the environment and the 2D laser scan. Those lines are then
compared and matched to each other. After evaluating those matching lines,
the importance of this result is weighted together with the other three tech-
niques. The second approach is to map single scan points on those previously
calculated lines. Therefore every scan point is evaluated and it is checked how
well it fits to the environmental lines.

The third technique uses a simple implementation of a ray-caster [132] to
evaluate the position of the scan in the environment. Based on the robots
position a ray-trace is sent out for each scan point and it is checked if this
certain scan point lies in front of an obstacle, if it matches the obstacle or if it
lies behind. This is then used to compute another scoring solution which is
weighted with the rest. Figure 1.2 shows how the ray-casting technique is used
to determine the robots position. The green points indicate a scan point, the
black rectangle indicates a wall.

The last technique which is applied to score the accuracy of a robots position
is the angle scoring. In this method the laser scan is taken and rotated in both
directions for a certain degree. It is then evaluated if the rotated scan fits better
to the environment than the original scan. For this evaluation the point-line
matching or line-line matching as described above can be used. Figure 1.3
illustrates this technique. Therefore the scan is rotated a bit to see if it fits better
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Figure 1.2: The ray-casting localization method. Determining the position of
the scan point.

Figure 1.3: Localizing the robot by changing the scan angle

into the environment. This method takes care of small orientation errors.

When looking back at section 1.3.1 where active and passive localization
were discussed one can now see that the particle filter is a passive localization
method since it does not take over the control of the robot to improve the
localization efficiency. It only takes the current observations and might adapt
the robots position. The methods used for localization scoring are neither
passive nor active localization. They are only used to determine how well a
robot is localized without changing the actual position. But the score of this
evaluation could be used to do some kind of error handling. When the score
becomes critically low and the robots seems to be delocalized it could start to
do some active localization.

The Problem of Parametrization

The four different techniques described above for scoring the accuracy of the
robots position have one major issue. Every single technique uses multiple
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parameters which need to be set correctly such that the method can be assumed
working. To receive optimal results one has to adjust those parameters for
different environments and invest a lot of time to find the best fitting options.

For example, the first approach needs various parameters to be set, start-
ing from the parameters for hough line detection [43], the matching distances
and angles which state when a robot is delocalized, going to the weight of im-
portance for every certain technique. All other methods also need predefined
parameters like the rotation angle of the scan-angle method. This results in an
huge number of parameters for which it is nearly impossible to find the best
parameter combination.

The Inflation of Particle Filters

Particle filters based localization approaches are a good method to overcome
some of the issues mentioned above [147, 146]. For example they are able to
solve the global localization problem as well as the kidnapping problem. An-
other advantage of particle filters is that they are non-parametric [146] which
means that no parameter has to be adjusted to achieve the optimal result.
However, there also occur some minor problems. The first is that the accu-
racy and the performance depend on the number of particles spread over the
environment. To keep this algorithm efficient the number of particles should
be small while to keep it accurate the number of particles should be high[60, 50].

Another issue is the inflation of the particle filter. When having an environ-
ment which can not be clearly assigned to a scan, the particle cloud starts to
inflate because the uncertainty about the current position increases. It is then
hard to determine if the robot still is localized or if it is already delocalized. The
best example for such an inflation are long straight corridors as shown in Fig-
ure 1.4. When driving through the corridor the position of the robot becomes
imprecise by the particle filter. This is due to the issue that for the particle filter
every position within this corridor looks similar. The current laser scan fits
fine to the current robots position but also fits to various positions ahead and
behind the robot. This leads to an inflated particle cloud which makes it hard
to localize.

Figure 1.4: Inflating particle clouds due to a long corridor
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1.4 Aim of the thesis

After having defined in Section 1.3 the problems which are known at the mo-
ment concerning robot localization and particle filters, it now will be discussed
how these problems are addressed in this thesis. Therefore it is described what
will be aimed with this thesis and how this is reached.

The basic localization problems are well known and many different ap-
proaches exist which aim to solve some of these issues. This thesis should
neither be a summary of those approaches nor should it develop new methods
for robot localization. The aim of this thesis is to take a common laser-based
localization approach using particle filters, use its information to support this
approach and aim to improve its efficiency. This is done by analyzing the in-
formation provided by the particle filters and using it to train a deep neural
network [134]. This method is used because it is not trivial to analyze the infor-
mation of particle filters by hand. It is aimed to find a proper network which
detects relevant information about the robot localization accuracy that can be
used to score the accuracy of the robots position. Particle filters already handle
a lot of basic issues which were described above. But since it does not reveal
the accuracy of its solution that easily, it is hard to judge how well a robot is
localized in a certain environment.

It also has to be mentioned that not the topic of robot localization itself is the
topic of this thesis. It is about using an existing approach, respectively particle
filters, and evaluate its accuracy by using the information revealed. Therefore
it is about supporting and assessing the results of localization techniques.

To evaluate the accuracy of a particle filter based localization this thesis
investigates the following three questions concerning robot localization scoring:

1. Can information provided by particle filters be used to score the accuracy
of a position?

2. Does the temporal development of the particle filters information reveal
information for localization scoring?

3. Can the approach of using particle filters for localization scoring be
boosted using additional features concerning localization?

When analyzing a particle filter one is mainly able to observe the particle
cloud. A simple approach of analyzing the information which is obtained by
this cloud might be to apply statistical tools. Those tools can be used to deter-
mine basic statements about the robots localization quality. Since the particle
filter models a complex system it might not be enough to simply apply sta-
tistical tools and make assumptions. The shape of a particle cloud can take
various forms and thus a statistical statement like the standard deviation of the
normal distribution might not lead to good results. To improve these results
tough a collection of those statistical statements, called features, could be used
for training boosting algorithms like AdaBoost. Additionally a neural network
can be applied to detect complex features which cannot be obtained with the
usual statistical tools.
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To answer the questions above the particle filter will be analyzed for finding
features of different kind which can be used to score the accuracy of robot lo-
calization. Then it is examined if those features are useful for robot localization
scoring by using them in machine learning approaches. Therefore training data
which is relevant for our selected machine learning approaches is generated.
We focus on producing supervised data sets for training because we expect bet-
ter results than using unsupervised data sets [40]. We also try to improve our
approach by using large data sets. In general, it is difficult and time consuming
to evaluate the ground truth of a robots position in real world environments
since one needs to observe the correct robots pose by using external observation
tools. To overcome this issue and generate a large supervised data set a robot
simulation software is used for observing the information of particle filters [57].
The outcome of our machine learning approaches will then also be used on data
which is generated in real world environments and verified manually.

To answer the first question a convolutional neural network (CNN) [83,
111, 86] is modeled and trained to see if there is a correlation between particle
filter information (e.g. the pattern of the particles) and the localization score.
Then a recurrent neural network (RNN) [91] is shaped to answer the second
question and it is checked if the temporal development of particle filters reveal
information about the localization accuracy of robots. After having evaluated
and answered the first two questions, the best rated neural network of this
thesis is used to answer the third question. Therefore, additional features
which are already used for localization scoring are examined and combined
with our objectives. It is then tried to boost the performance of our network by
using an additional machine learning approach on those combined feature set.
The outcome of these questions will then be examined, compared to each other
and analyzed in detail.



Chapter 2

Prerequisites

This chapter describes all needed prerequisites that are used to comprehend
this thesis. Therefore technical aspects as well as theoretical background which
is needed to understand this thesis are discussed. First, basics of the common
Robot Operating System (ROS) are explained and how it can be used to work
with robots. Then various localization mechanisms are presented which are
used nowadays to localize a robot or to score the accuracy of a robots localiza-
tion, focusing on the particle filter and its implementation for robot localization.

Having explained how the localization can be done for a robot, the principles
of neural networks are presented. Starting with some basics, going to deep
learning architectures and how to train them. At the end two frameworks will
be explained which are used in this thesis to apply machine learning approaches
and for data generation.

2.1 Used materials and procedures

To successfully perform our work and satisfy all the defined aims we have to
set our working materials and explain our used procedure.

The particle filter algorithm which is analyzed in this thesis is implemented
into the Robot Operating System (ROS) [117]. This system provides a frame-
work full of tools, drivers and libraries which allow you to develop robot
software. It is widely used and easy to extend. ROS offers a code basis for
different programming languages like C++, Java or Python. This thesis works
with the programming language C++ and all further examples will be made
in this language. Although the software is used to provide all components
for a robot we do only work with one feature. Since we want to evaluate
robot localization we focus only on the implementation of particle filters. This
implementation can be found in the AMCL package that is offered by ROS.
For receiving needed information about the robots localization and to generate
training data, the robot operating systems communication channel is used.

When generating training data which can be classified into different states
to train a deep neural classification network, a measurement has to be done to
determine the robots stated position and the actual position. Therefore, a sim-
ulation software is used to simulate a robots hardware. By doing so the actual
position of the robot can still be observed, even if the robot is delocalized. This

9
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simulation software is a self developed testing software of incubedIT which
is based on the well known stage [57]. incubedIT is a company developing
software for autonomous transportation robots. Stage is an open source robot
simulator which is already supported by ROS.

To train various deep learning networks the Caffe framework is used [73].
It is and machine learning framework which was developed by the Berkeley
university and by other contributors. Its aim is to offer a fast and modular
platform which can be used to train neural networks.

There exist vast amounts of sensor types that can be used by a robot to
interact with its environment [121, 2, 150]. Also for localizing a robot in its
environment a lot of different sensor types can be used [80, 61]. To proceed
with the current situation and to delimit the scope of this thesis, only 2D laser
range finders and robot motion tracking are considered, concerning localiza-
tion scoring.

The implementation part and thus all examples which are presented within
this thesis are done using the operating system Ubuntu 14.04. It is not guaran-
teed that the implementation or other used materials work on other platforms
in the same way. Using other operating systems might lead to errors in compi-
lation or during runtime.

2.2 Robot Operating System

This section describes the Robot Operation System (ROS) which was introduced
by the Stanford Artificial Intelligence Laboratory in 2007 [117]. As described
before in Section 2.1, ROS is a framework which provides tools, drivers, a
communication framework and libraries which can be used to write software
for robots. This software was chosen because it is a well-known framework
which is widely spread and currently used in research. Although it might
not be the simplest solution for writing a single robot software it is one of
the most used frameworks for robotic research. This might be due to a stable
and maintained software core that is easily extendible. This thesis does not
explain how to install ROS. A detailed description for that can be found in
[110]. ROS offers a code basis for different programming languages like C++,
Java or Python. This thesis works with the programming language C++ and all
further examples will be made in this language. Some of the main advantages
of ROS are highlighted in [110]:

1. Distributed computation. Not everything a robot needs can be com-
puted on computer. Some processes might run on multiple machines.
Therefore a communication framework is needed which allows the robot
to communicate with other processes or computers. The best example
would be the control of a robot where humans send commands from a
separate computer to the robot. This interface is a distributed extension
of the software.

2. Software reuse. Since robotics is a popular topic nowadays, many solu-
tions for various tasks exist. This leads to a large collection of excellent
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algorithms that can be used for main robotic tasks like navigation or lo-
calization. But those algorithms are only useful if there is a framework
which offers those algorithms. ROS does so and thus one does not need
to re-implement many algorithms for related tasks on robots.

3. Rapid testing. During the development of robotic software one also
needs to test the implementation. This can be challenging when there is
not always a robot nearby. To overcome this issue, ROS offers so-called
bagfiles. This is a simple way to record robots sensor data and replay it as
often as one likes.

To understand the implementation of a robots localization task, one needs
to have knowledge about ROS. Therefore some basics are described in this
chapter to understand the use of the robot operating system. First the structure
is explained and how the system is started. Then some further terminologies
like nodes, topics and parameters are explained. ROS is used as robot software
to run the localization task. It is needed because information about the robots
environment, especially sensor data and odometry, can be retrieved through
this. All this data is required to make assumptions about the robots location.

2.2.1 Structure

To find the main directory of ROS, a standard path for the software location is
defined when installing ROS. This path is defined on Ubuntu using an environ-
ment variable called ROS PACKAGE PATH. In there the code for the operating
system can be found. ROS is organized in packages. Such packages hold dif-
ferent files that pursue a common purpose. Generally it includes executable
files as well as code files. Each package contains a manifest file which defines
the details of a package. The most important thing defined in there are de-
pendencies. Those dependencies might be system dependencies or other ROS
packages which contain needed capabilities.

2.2.2 The ROS Master

Packages, as explained above define the structure of ROS, but the aim is to
execute some software which is defined in those packages. One of the goals
of ROS is to keep everything simple and separated. Therefore many small
programs, called nodes are started to run at the same time. Those nodes can
operate independently from each other but sometimes need to share some
information. To communicate with other nodes one needs the ROS master.
This master is started at the beginning to offer a communication framework
between small programs. This master keeps running the whole time while
robotic software is used. To start the master one needs to call:

roscore

Once the master is running, one can start a ROS program from a package.
Running a ROS program results in a running node. Those nodes execute the
ROS dependent code which was written within the packages. One package can
hold multiple executables that can be started as a node at the same time. To
start a node one needs to call:
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rosrun <package−name> <executable−name>

To see which nodes are currently running on the master the command

rosnode l i s t

can be used. To retrieve special information about a node one can call:

rosnode i n f o <node−name>

This outputs a list of topics which are published and subscribed by this node.
Also a list of services that are offered by the node is shown. Topics and Services
are explained later in this chapter.

2.2.3 Messages and Topics

So far only packages were described and how to start them but it was not
discussed how the communication between nodes looks like. The main mech-
anism that is used for communication in ROS are messages. Those messages
can hold information using standard types like integers, floats and strings.
They can also contain another message type within that message, resulting in
a structured message. ROS offers some standard messages that can be used to
send specific data like odometry or sensor data to other nodes. But it also al-
lows to define new message types which can have any structure using standard
types and previously defined message types. Messages are defined in a .msg
programming language which is then automatically converted into code which
can be used in e.g. C++. Listing 2.1 shows an example for a msg file holding
a string, an integer and another message type called PoseWithCovariance in the
package geometry msgs.

# Example ROS message p o s i t i o n . msg in package sample msgs
# This i s used to generate a C++ c l a s s ” P o s i t i o n ” in
# package sample msgs
s t r i n g robot name
uint32 r o b o t i d
geometry msgs / PoseWithCovariance pose

Listing 2.1: A small ROS message containing standard types and another
message type

To share messages between nodes a channel is opened which allows to publish
messages. This channel is also called topic. To identify a topic it has a name.
The idea behind that is that a node can share information to other nodes by
publishing messages to a certain topic. If a node wants to retrieve information
it can subscribe to a certain topic in which it is interested in. To see which
topics are currently active one can call:

r o s t o p i c l i s t

To check which nodes publish a certain topic and which nodes subscribe it the
following command can be used:

r o s t o p i c i n f o <topic−name>

To observe the messages which are sent through a topic the command

r o s t o p i c echo <topic−name>
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can be used. This command keeps listening to the topic and lists all the mes-
sages which are published in the meantime. Listing 2.2 shows an example for
publishing a message within a node. It uses the previously defined message
position.msg to advertise the topic robot location and then publishes a message
to the topic.

1 # include ” ros / ros . h”
2 # include ”sample msgs / P o s i t i o n . h”
3
4 i n t main ( i n t argc , char ∗ ∗ argv )
5 {

6 . . .
7 / / open a c c e s s p o i n t t o communicat ion with ROS sys t em
8 ros : : NodeHandle n ;
9 / / c r e a t e p u b l i s h e r

10 ros : : Publ i sher locat ion pub =
11 n . adver t i se <sample msgs : : Pos i t ion >(” r o b o t l o c ” , 1 ) ;
12 . . .
13 / / c r e a t e new message
14 sample msgs : : P o s i t i o n msg ;
15 msg . robot name = ” robot 0 ”
16 msg . r o b o t i d = 0
17
18 / / p u b l i s h message t o t o p i c
19 locat ion pub . publ ish (msg)
20 . . .
21 }

Listing 2.2: An example for publishing a message within a node

To subscribe a message from a certain topic, the node needs to define a sub-
scriber. For this subscriber a callback function is declared. This function is
called when a new message arrives on the topic. Listing 2.3 shows an example
for subscribing a message within a node. It also uses the message position.msg
and subscribes to the topic robot location. When a message arrives the callback
function onLocationCallback is called and executed.
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1 # include ” ros / ros . h”
2 # include ”sample msgs / P o s i t i o n . h”
3
4 i n t main ( i n t argc , char ∗ ∗ argv )
5 {

6 . . .
7 / / open a c c e s s p o i n t t o communicat ion with ROS sys t em
8 ros : : NodeHandle n ;
9

10 / / c r e a t e p u b l i s h e r
11 ros : : Subscr iber l o c a t i o n s u b =
12 n . subscr ibe ( ” r o b o t l o c ” , 1 , onLocationCallback ) ;
13 . . .
14 }

15
16 void onLocationCallback (
17 const sample msgs : : P o s i t i o n : : ConstPtr& msg)
18 {

19 / / ou tp ut t h e r o b o t s name
20 ROS INFO ( ”Name:%s ” , msg−>robot name . c s t r ( ) ) ;
21 }

Listing 2.3: An example for subscribing a message on a topic

2.2.4 Parameters

Another mechanism to get information into nodes are parameters. The idea is
to have a parameter server running which holds parameters and their values.
The main advantage of such a parameter server is that the values of parameters
can change during runtime. When this happens, all nodes are informed and
can update their given parameter value. This allows to adopt specific values
within nodes without having to change and recompile the code. To get a list of
the currently set parameters the command

rosparam l i s t

can be used. To get the value for a parameter from the server one uses the get
command:

rosparam get <parameter name>

For setting a parameter the command set is used:

rosparam s e t <parameter name> <parameter value>

Listing 2.4 shows the use of parameters in a node. First a parameter laser range
is requested and printed to the terminal using a normal and a default version.
The default version has the advantage that if the parameter is not found, it
just sets the given default value while the normal version needs some error
handling. For setting a value of a parameter there are two possibilities, either
via a node handle or static.
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1 # include ” ros / ros . h”
2
3 i n t main ( i n t argc , char ∗ ∗ argv )
4 {

5 . . .
6 / / open a c c e s s p o i n t t o communicat ion with ROS sys t em
7 ros : : NodeHandle n ;
8
9 double range , range2 ;

10 / / normal g e t v e r s i o n
11 i f ( n . getParam ( ” l a s e r r a n g e ” , range ) )
12 {

13 . . .
14 }

15
16 / / d e f a u l t v a l u e g e t v e r s i o n
17 n . param<double>(” l a s e r r a n g e ” , range2 , 3 0 . 0 ) ;
18
19 / / s e t wi th node h a n d l e
20 n . setParam ( ” l a s e r r a n g e ” , 3 5 . 0 ) ;
21
22 / / s e t s t a t i c
23 ros : : param : : s e t ( ” l a s e r r a n g e ” , 3 5 . 0 ) ;
24 . . .
25 }

Listing 2.4: An example for parameter using within a node

Another possibility that is offered by parameters is to dynamically update
them during the code execution by adding a callback function that is called
whenever the parameter value is changed. Therefore one has to bind a param-
eter server to a defined callback function. When he parameter is then changed
by other nodes or by the user this function is called and allows to react on the
new value for a given parameter. This method is also called dynamic reconfig-
uration notification. This is often used if the parameters might change during
runtime but for this thesis they play only a subordinate role.

2.2.5 Services

An alternative method for communicating between nodes are service calls.
They have two main differences compared to messages:

1. Services are bi-directional. While messages are only sent through a topic
to another node, no response is received. In service calls the channel is
used in both directions. One node sends a service to another node and
then waits for the other node to respond. This means that another node
is needed which responds to the service call, otherwise it might never
receive a response.

2. Service calls use a one-to-one communication. In contrast to messages
which can be published and subscribed to a topic by multiple nodes,
service calls are only done by one node. This node send a service call to
an offered service and waits for a response. Since this connection is only
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established between the service caller and service sender, no other node
can listen to this service calls.

To get a list of all service which are active, the command

r o s s e r v i c e l i s t

can be used. To get more information on a given service the command

r o s s e r v i c e i n f o <serv ice −name>

can be called. This command reveals information about the node which offers
the service and about the service type which has to be used. To call a rosservice
from the command line the following command is used:

r o s s e r v i c e c a l l <serv ice −name> <request−content>

Like messages, services are generated using a separate file. In this case it is a
.srv file which describes the structure of the service. The service file holds two
different definitions, separated by “− − −”. The upper one is the definition of
the request layout and the lower one is the structure of the response layout.
Listing 2.5 gives a small example for a service file. It takes a string and an
integer as request parameter and sends back a boolean value.

# Example ROS s e r v i c e r o b o t e x i s t s . srv in package
sample srvs

# This i s used to generate a C++ c l a s s ” RobotExis ts ” in
# package sample srvs
s t r i n g robot name
uint32 r o b o t i d
−−−

bool e x i s t s

Listing 2.5: A small ROS service containing standard types

This message is then taken to generate a C++ code that can be used within a
node to send and retrieve services. Listing 2.6 shows how a service is advertised
by a node. It offers a service robot exists and calls in a function checkExistence if
the service is called.



CHAPTER 2. PREREQUISITES 17

1 # include ” ros / ros . h”
2 # include ” sample srvs / RobotExis ts ”
3
4 bool checkExis tence (
5 sample msgs : : RobotExis ts : : Request& req ,
6 sample msgs : : RobotExis ts : : Response& r es )
7 {

8 r es . e x i s t s = t rue ;
9 return t rue ;

10 }

11
12 i n t main ( i n t argc , char ∗ ∗ argv )
13 {

14 . . .
15 / / open a c c e s s p o i n t t o communicat ion with ROS sys t em
16 ros : : NodeHandle n ;
17 / / o f f e r s e r v i c e
18 ros : : S e r v i c e S e r v e r srv =
19 n . a d v e r t i s e S e r v i c e ( ” r e x i s t s ” , checkExis tence ) ;
20 . . .
21 }

Listing 2.6: An example forthe usage of and service advertiser

To call a service, one needs to create a service client. Listing 2.7 shows an
example of an client. It starts a client, calls it and prints the response.

1 # include ” ros / ros . h”
2 # include ” sample srvs / RobotExis ts ”
3
4 i n t main ( i n t argc , char ∗ ∗ argv )
5 {

6 . . .
7 / / open a c c e s s p o i n t t o communicat ion with ROS sys t em
8 ros : : NodeHandle n ;
9 / / c r e a t e s e r v i c e c l i e n t

10 ros : : S e r v i c e C l i e n t c l =
11 n . s e r v i c e C l i e n t <sample srvs : : RobotExists >(” r e x i s t s ” ) ;
12 / / c r e a t e new s e r v i c e i n s t a n c e
13 sample srvs : : RobotExis ts srv ;
14 srv . request . robot name = ” robot 0 ” ;
15
16 / / c a l l s e r v i c e
17 c l . c a l l ( srv ) ;
18 / / p r i n t r e s p o n s e
19 ROS INFO ( ” e x i s t s :%d” , srv . response . e x i s t s ) ;
20 . . .
21 }

Listing 2.7: An example for a service call in a node
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2.3 Localization of Robots

This section describes needed prerequisites for understanding the robots local-
ization problem as described in Section 1.3. In there, the current localization
scoring approach is already explained but for better understanding and for
the sake of completeness a typical hough line transformation [43] and a basic
ray-caster [132] will be presented. Those two techniques are currently used for
scoring the accuracy of the robots localization and its information will later be
used as features for boosting the deep learning results like discussed in Sec-
tion 1.4.
Then additional features are presented which will be used for boosting the deep
learning results. Those features are extracted from the localization approach
from Ingemar J. Cox [29, 32, 31].
Another topic handled in this section are the principles of the basic particle filter
[34, 146] which is used to train a deep neural network for state estimation on
robot localization scoring. Since the particle filter is only a general algorithm, a
more specific algorithm is needed that can be used for robot localization. There-
fore also the Monte Carlo localization [147, 60, 146] will be discussed which is
an extension of the particle filter for the use in robot localization.

2.3.1 Hough Line Transform

This section focuses on the hough transform. It is a method to detect lines, cir-
cles or other arbitrarily parametrizable geometric figures [96, 8]. The method
discussed in this thesis is used for detecting straight lines, which is the simplest
application of a hough transform [43].

Usually lines are represented using two parameters a and b. They are used
in the equation y = a ∗ x + b to represent a line in two dimensional space.
The problem with this equation comes with vertical lines. Those cannot be
represented with this equation. To overcome this issue instead of a and b new
parameters θ and r are introduced [43, 17, 54], where θ is the angle of the
line and r is the distance from the origin respectively on the x-axis. Hough
transform uses the formula represented in Equation 2.1 for defining a line. This
formula can also be rewritten into Equation 2.2 to look similar to the basic line
formula.

r = x ∗ cosθ + y ∗ sinθ⇔ (2.1)

y = −
cosθ
sinθ

∗ x +
r

sinθ
(2.2)

All lines can now be represented by defining a θ ∈ [0, 360[ and r ≥ 0. A hough
line is represented as a point in two dimensional parameter space with axis θ
and r. Figure 2.1 illustrates the mapping of a line onto a point.

The hough transform uses this parameter space to map a pixel p0 in an image
to all lines that can pass through that point. This results in a sine-like curve in
the hough space. When adding all pixels to the hough space, some lines may
overlap and increase the intensity of this points. This results in local maxima
which indicate the most likely lines within this image. Figure 2.2 shows the
mapping of two points into the hough space. This results in an overlap which
is a local maximum and thus is the most likely line for those two points. To
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Figure 2.1: mapping a line to an hough point

detect lines in images often edge detection algorithms [153, 152] are used to
highlight possible lines and improve the result of the hough transform. To
work with the hough space in algorithms an so-called accumulator is needed.
It covers the hough space and holds the value for each point. When a new
pixel is added, the accumulator is increased for all bins where the lines pass
through. To detect finite lines an approach called Progressive Probabilistic

Figure 2.2: the process of detecting a hough line between two points.

Hough Transform [96, 54] is used. This approach searches along the infinite
lines in the created edge image to detect finite lines. This procedure is not
further discussed here. Having explained all necessary steps which are done
in the hough transform for detecting lines one can now summarize it into an
algorithm with four steps:

1. Apply an edge detection algorithm on image.

2. Map image points into hough space and store them in an accumulator.

3. Interpret the accumulator to detect lines of infinite length. This needs
some thresholds and maybe other constraints.

4. Convert infinite lines to finite lines.

Hough transform is used for robot localization scoring to detect lines in an
environment which is represented as a map. This map contains map points that
are transformed into lines. The same is done using an image of the laser scan.
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Those two images are then matched against each other to receive information
about the robots localization accuracy. The matching is often done by searching
the nearest map line to a scan line and by comparing its positions like the error
in translation or rotation.

2.3.2 Ray Casting

To determine if the localization accuracy of a robot the ray casting method
is used to check if a scan point lies in front of an obstacle, on an obstacle or
behind. This section describes how this ray casting mechanism works. Ray
casting is a method to detect intersections within an environment using rays
which are sent out from a position with a certain angle [133, 47]. It is mostly
used in computer graphics for 3D environments and is a solution for various
problems [58, 65]. This thesis uses ray casting to determine the distance of the
first obstacle that intersects with a ray. Since the robot uses a 2D representation
of the environment only the algorithm for a 2D ray casting is presented.

To perform a ray casting one needs a 2D grid representation of the envi-
ronment and a viewpoint which is the ray origin. This viewpoint consists of
a position vector p and an orientation d. The environment grid contains cells
which either are 0 or contain a positive value which indicate the probability of
an obstacle. To start ray casting one needs to define the opening angle θwhich
determines the field of view of the robot. Another definition is the number of
rays N which should be sent out through the grid and the maximum distance
max which should be checked through the grid. To determine how far two rays
are away from each other, one can now calculate the angle step α

α =
θ
N

(2.3)

To orientation of the starting point for the first ray is the robots orientation
rotated by −θ/2. Using this starting orientation a ray is sent out to the grid map
using a simple Bresenham algorithm [14, 4]. The Bresenham algorithm will
not be presented within this thesis but for better understanding the principle
is now shortly explained. Bresenham [14] developed a method to draw a line
within a grid given only a starting point and an end point. It is a popular
algorithm for line drawing or line following in computer graphics because it is
fast and can only be done using simple integer calculations. For the purpose in
this thesis the Bresenham algorithm gets a starting point and the orientation as
input. It then internally calculates the end point using the maximum distance
max. It then iterates over the cells in the grid that lie on this line and checks if
a grid cell is blocked. The result of this algorithm is the distance to an obstacle
or max if no obstacle was found. Listing 2.8 shows the ray casting method in
pseudo code as it is used in the current implementation. The result of each ray
is stored in a list which is then returned for further processing.
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1 function r a y c a s t i n g ( grid , p , d , θ , N , max )
2 r e s u l t = empty l i s t
3 α = θ / N
4 / / c a l c u l a t e s t a r t i n g o r i e n t a t i o n
5 s = d r o t a t e d by −θ / 2
6 for ( i = 0 ; i < N; i ++)
7 d i s t = bresenham ( grid , p , s )
8 r e s u l t . append ( d i s t )
9 s += α

10 return r e s u l t

Listing 2.8: The raycasting algorithm as it is used in pseudo code

Figure 2.3 illustrates the algorithm with the defined parameters for better un-
derstanding. The red lines mark the field of view which the robot can see
from its current viewpoint. The green lines indicate an ray which is sent out
to the grid using the Bresenham algorithm. The algorithm starts on the left
border orientation and then increases the orientation angle by α for each ray.
To purpose of the ray casting method in robot localization is to cross check the

Figure 2.3: The ray casting illustrated for better understanding

retrieved laser points with its environment. Typically the parameters for the
ray casting algorithm are defined by the laser configuration to match each scan
point to one ray. Therefore, the opening angle, the number of rays and the
maximum distance are defined according to the parameter of the laser scanner
which is used.

2.3.3 Cox Approach for Position Estimation

This section describes the approach of Ingemar Cox who proposed a method
for position estimation on mobile robots [32]. His approach was tested with
a mobile robot called Blanche [107], a mobile robot which was designed to
be low cost and uses only odometry and an optical range finder. He also
proposed many new methods concerning the simultaneous localization and
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mapping problem (SLAM) [31, 89] but in this thesis only the approach for
position estimation is discussed.

The general idea which Cox presented was to use only one optical range
finder and odometry sensors to estimate the position of the robot. The odometry
is defined as (x, y, θ) which is the position on a grid including the orientation
of the robot with respect to a global or local coordinate frame. To perform this
task Cox defined four components which are required [32]:

1. A map of the environment containing line segments as obstacles

2. A sensing mechanism to sense the environment using odometry and
optical range sensors

3. An algorithm which matches the sensor data onto a map

4. An algorithm that estimates the precision between the matched dataset
and which allows to combine the correction with the current position to
optimize the robots position.

Since the environment of the robot is only stored within a grid map containing
pixels as obstacles, one has to detect line segments which can be used for this
approach. An example on how this could be achieved is the Hough transform
as described in Section 2.3.1. The sensor data is represented as a list of < r, θ >
tuples where r is the range of a scan point and θ is the scans angle w.r.t. to the
robots orientation. Figure 2.4 shows a small part of a map including a scan. In
this example the green scan points have a small rotation and a small translation
such that it does not fit perfectly to the black map lines. The goal is to match the
scan to the line segments which is basically a general problem that is discussed
in computer vision. In computer vision the task is often to map an image with an
arbitrary rotation and translation to a model. This is usually done by searching
for features and determining the correspondence between the image and the
model with the help of these features. In [30, 31] Cox proposed a matching

Figure 2.4: A simple example of a map with a displaced scan. The black lines
indicate an obstacle within the map while the dots are the displaced scan points

algorithm for images which can be used if the displacement between model
and image is small. Since the scan image is often near the correct position and
only small adoptions have to be made, an algorithm can be used which maps
a scan point to the closest line. A complete algorithm then consists out of four
steps [32] and is leaned on the iterative closes point (ICP) algorithm:
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1. For each scan calculate the target. The target is the nearest line segment
to the point.

2. Search for a congruence where the squared distance is minimized for all
scan points concerning their targets.

3. Move the scan image using the found congruence in step 2.

4. Repeat steps 1-3 until a certain threshold is reached.

Any congruence can be described using a translation t and a rotation θ and
is denoted by < t, θ >. The rotation θ is not estimated by taking an arbitrary
origin but by using the center of gravity c of the scan image for rotation. The
center of gravity c is a point within a model w.r.t. the center of gravity in the
scan image such that is moves with the position of the image. This leads to the
fact that a congruence < t, θ > can map any point x of an image to

x→ R(θ)(x − c) + (c + t). (2.4)

In this equation R(θ) i a rotation by an angle of θ in the clockwise direction.
Thus it is denoted by

R(θ) =

[
cosθ − sinθ
sinθ cosθ

]
(2.5)

To get a congruence for step 2 a value for (t, θ) is searched that minimizes

S =
∑

i

([R(θ)(vi − c) + (c + t)]Tui − ri)2 (2.6)

where ui is a unit vector, orthogonal to the infinite target line which corresponds
to the scan point vi. T indicates the transpose. ri is the dot product of any point
with ui. To simplify the equation an approximation for R(θ) is done [32]

R(θ) =

[
1 −θ
θ 1

]
. (2.7)

To get the congruence out of S, the derivate w.r.t. t and w.r.t. θ are set to 0 such
that, after simplification, the following equation is found[

M2 m1
mT

1 m0

]
∗

[
t
θ

]
=

[
d1
d0

]
(2.8)

where

M2 =
∑

i

uiuT
i (matrix),

m1 =
∑

i

ui(uT
i vi) (vector),

m0 =
∑

i

(uT
i vi)2 (scalar),

d1 =
∑

i

ui(ri − uT
i vi) (vector),

d0 =
∑

i

(ri − uT
i vi)(uT

i vi) (scalar).

(2.9)
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The localization approach from Cox can be used to estimate the position of a
robot when the displacement of the scan image is small, i.e. the translation and
rotation between model and scan is small. This method is currently not used
to localize the robot which was a reason that it will not be considered in the
deep learning approach but the resulting congruence < t, θ >might hold some
information which can be used to boost the deep network which is trained in
this thesis.

2.3.4 Particle Filters

This section presents the principles of particle filters [1, 12, 146]. It is a popular
method for representing arbitrary probability distributions and solving state
estimation problems. The technique behind particle filters is the Monte Carlo
method [125, 122, 98] which already exists for over five decades. The main
problem with particle filters is that they are computationally expensive which
is a reason why other methods like the Kalman filter [156, 154] are good alterna-
tives. Particle filter allow the analysis of complex systems which are non-linear
and non-Gaussian. The goal is to deal with arbitrary probability distributions
and model them correctly [42, 149]. Since the computational power has in-
creased in the last years and particle filters are a non-parametric approach for
solving complex models, they were applied in many different fields like neuro-
science [129], biochemical networks [37], signal processing [6], economics [79]
and robotics [34].

To understand the functionality behind particle filters, the theory is briefly
introduced in this section. First, basics like the Hidden Markov Model, Bayesian
Inferences and the Sequential Monte Carlo are explained. Then the particle filter
algorithm is introduced before adopting it for robot localization problems [145].

Markov Model

To understand how particle filters work one has to know the basics of state-
space models. Those start with a Markov Model which is a common approach
for modelling sequences [49, 119, 114]. Let Qn be a state variable where n
indicates the time. Qn can be a discrete or stochastic random variable which
can take any state within its state space. The aim of the Markov Model is to
evaluate a sequence of states Q1, ...,QN, where N is the length of the sequence,
and to assign a probability P(Q1, ...,QN) to this sequence. By remodeling this
probability one receives the following factorization:

P(Q1:N) = P(Q1, ...,QN) = P(Q1)P(Q2|Q1)P(Q3|Q2,Q1) · ... · P(QN |QN−1, ...,Q1)
(2.10)

This means that the number of probabilities increases exponentially with the
length of the sequence N, since every sequence state can be combined with all its
predecessor states [114]. To solve this problem the context is restricted. This also
has the advantage that the model can be used for sequences of different size. The
basic idea of the restriction is to not include all previous states for estimating the
probability of the current state. Instead, only a few previous states are taken
into account when estimating the probability of a state. The most common
model is the bigram model which restricts the influence of previous states to
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one such that

P(Q1:N) = P(Q1, ...,QN) = P(Q1)
N∑

i=2

P(Qi|Qi−1). (2.11)

This model is also called Markov Model of 1st order. The parameter for this
model are the prior probabilities P(Q1) for the first state at the beginning and
the transition probability P(Qi|Qi−1). These probabilities can be trained using a
maximum-likelihood estimation [27].

To summarize the terminology above, a Markov Model consists of the fol-
lowing parameters Θ = {π,A}:

1. It holds a quantity of possible states S = {s1, ..., sNS }where NS is the number
of states

2. πi = P(Q1 = i) is the probability for the state i ∈ S at time 1. This is also
called the prior probability.

3. ai j = P(Qn = j|Qn−1 = i) is the transition probability from state i ∈ S to j ∈ S.
Those transition probabilities are summarized in matrix A = [ai j]NS×NS .

Hidden Markov Model (HMM)

In contrast to Markov Models, Hidden Markov Models cannot observe the state
Qn. Here the states are ”hidden” and only observable through observations Xn.
Those Xn can be discrete or continuous. To conclude from an observation to a
state, observation probabilities P(Xn|Qn) exist. This gives the probability to see
Xn if we assume Qn. It is assumed that observations only depend on the current
state and not on other states or observations. Figure 2.5 shows how a HMM is
structured. It illustrates how transition and observation probability work.

Figure 2.5: Structure of a Hidden Markov Model

The parameter of a HMM Θ = {π,A,B} are the same like for the Markov
Model and additionally the following extensions are valid:

1. HMMs have additional observation probabilities which can be discrete
or continuous. Those probabilities are summarized in the symbol B.

(a) discrete observations: xn ∈ {θ1, ..., θk} : bi,xn = P(Xn = xn|Qn = i)
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(b) continuous observations: xn ∈ Rd : bi,xn = P(xn|Qn = i). The continu-
ous observations can be modelled using different distributions.

2. For HMMs only Markov Models of 1st order are used. So the current
state depends only on one previous state.

3. Observations Xn depend only on Qn.

The goal of Hidden Markov Models is to estimate the state QN, given all the
observations up to that time P(QN |X1 : N). Another approach would be to
find the posterior distribution P(Q1:N |X1:N) sequence of states. This distribution
can be computed using different methods. This thesis handles the Bayesian
Inference and the Sequential Monte Carlo method.

Bayesian Inference

Bayesian inference is a method which uses Bayes’ theorem to update a prob-
ability distribution as more observations are made [99, 11]. It uses the Bayes
theorem

P(Q1:N |X1:N) =
P(Q1:N,X1:N)

P(X1:N)
(2.12)

to rewrite the joint probability

P(Q1:N,X1:N) = P(Q1:N−1,X1:N−1)P(QN |QN−1)P(XN |QN). (2.13)

This can again be used to form the equation

P(Q1:N |X1:N) = P(Q1:N−1,X1:N−1)P(QN |QN−1)P(XN |QN) (2.14)

At the end two steps are retrieved. The update step

P(QN |X1:N) = P(XN |QN)P(QN |X1:N−1) (2.15)

and the prediction step

P(QN |X1:N−1) = P(QN |QN−1)P(QN−1|X1:N−1) (2.16)

where P(QN−1|X1:N−1) is known through recursion and P(QN |QN−1) is the tran-
sition probability. Bayesian Inference has on major problem: It is often hard
to deal with these distributions in closed-form. This happens especially in
non-Gaussian and non-linear models.

Sequential Monte Carlo Method (SMC)

A solution for the intractable distributions are Sequential Monte Carlo meth-
ods. Those methods are the predecessor of particle filters [5, 33]. They are used
to approximate the distribution by representing probability distributions using
a large number of particles K. A property which also holds for particle filters is
that as K → ∞, the distribution converges to the correct distribution [41]. For
SMC one can use importance sampling [104] to simulate K independent and
identically distributed (i.i.d.) particles Q(i)

1:N |
K
i=1 according to an arbitrary impor-

tance sampling distribution π̂(Q1:N |X1:N). This is done to overcome the problem



CHAPTER 2. PREREQUISITES 27

of computationally expensive sampling and to sample complex distributions.
The empirical estimates are then

PK(Q1:N |X1:N) =
1
K

K∑
i=1

δQ(i)
1:N

(Q1:N)W(i)
N (2.17)

where δQ(i)
1:N

denotes the delta function which is located in Q(i)
1:N. W(i)

N holds the
importance weights with

W(i)
N =

w(Q(i)
1:N)∑

j w(Q( j)
1:N)

(2.18)

and
w(Q1:N) =

P(Q1:N |X1:N)
π̂(Q1:N |X1:N)

. (2.19)

An issue which occurs with importance sampling is that it can be hard to find
a good importance distribution and it is not usable for recursive estimation.
This means when a new observation XN+1 is made, the previously predicted
samples and weights cannot be reused. A solution for this issue is sequential
importance sampling [93]. Lets assume that one can factor the importance
distribution as

π̂(Q1:N |X1:N) = π̂(Q1:N−1|X1:N−1)π̂(QN |Q1:N−1,X1:N) (2.20)

where the first multiplicand is the importance distribution at time N − 1 and
the second multiplicand is the extension to time N. Equation 2.20 can then be
reformed into

π̂(Q1:N |X1:N) = π̂(Q1|X1)
N∏

n=2

π̂(Qn|Q1:n−1,X1:n) (2.21)

and out of this the importance weight can be recursively evaluated

W(i)
N ≈W(i)

N−1

P(XN |Q
(i)
N )P(Q(i)

N |Q
(i)
N−1)

π̂(Q(i)
N |Q

(i)
1:N−1,X1:N)

. (2.22)

Having defined this, one can now simulate

Q(i)
N ∼ π̂(Qn|Q

(i)
1:N−1,X1:N) (2.23)

and update the weight W(i)
N for Q(i)

1:N based on the previously calculated weights
W(i)

N−1. To reduce the variance one can take the newly generated distribution
for sampling. This is called resampling and improves the results of Sequential
Monte Carlo. Providing the current weighted particles, one can resample as
follows:

P(QN |X1:N) ≈
K∑

i=1

W(i)
N δQ(i)

N
. (2.24)

Since this equation replaces the particles with new ones one has to keep in mind
that a particle with a small weight is unlikely to be drawn and a particle with
a large weight might be drawn multiple times.
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Particle Filter Algorithm

The sections above describes the background which is needed to understand
particle filters. This section now deals with the algorithm that combines the-
oretical and practical knowledge. The key idea of particle filters is to spread
particles in space which represent the posterior distribution [146]. Instead
of using a parametric form for representing the distribution, particle filters
generate samples based on its own distribution. An advantage is that this is
non-parametric and that it can represent complex distributions.

A problem which occurs with the sampling step in Equation 2.24 is that a
discrete distribution is used to approximate a continuous one. This leads to the
issue that in discrete space the probability for two particles which are sampled
by its distribution to be identical is greater than 0. In contrast, the continuous
distribution never draws two particles identically. In the particle filter one
solves this issue by approximating the distribution from Equation 2.24 using a
kernel density estimate which works with the particles instead of using them
directly. Thus we can rewrite the resampling equation as

P(QN |X1:N) ≈
K∑

i=1

W(i)
N KF(QN −Q(i)

N ). (2.25)

where KF(QN −Q(i)
N ) denotes a kernel function which is located at Q(i)

N . One can
now define a complete particle filter using the state and update equations from
sequential importance sampling and combine it with the resampling step from
Equation 2.25.

To use the formal equations which were described in this section, one needs
an algorithm which combines all the necessary steps [146]. For the algorithm
we define a set of particles

Xt = x[1]
t , x

[2]
t , ..., x

[M]
t (2.26)

where each particle x[m]
t |

M
1 represents the state space at time t. More concrete,

each particle is a representation of the state at time t. M is the number of par-
ticles. The complexity of the algorithm increases with the number of particles
chosen.

1 function P a r t i c l e F i l t e r ( Xt−1,ut, zt )
2 X̄t = Xt = ∅
3 for m = 1 to M do
4 sample x[m]

t = P(xt|ut, x[m]
t−1)

5 w[m]
t = P(zt|x[m]

t )
6 X̄t = X̄t + 〈x[m]

t ,w[m]
t 〉

7 endfor
8 for m = 1 to M do
9 draw i with p r o b a b i l i t y ≈ w[i]

t

10 add x[i]
t to Xt

11 endfor
12 return Xt

Listing 2.9: The particle filter algorithm [146]

The aim of a particle filter is to approximate the probability of xt by a set of par-
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ticles Xt and to update the probability based on the observations. Listing 2.9
describes the algorithm for a particle filter. ut denotes some action which is
taken at the current time step. This is chosen using the transition probability
defined in Section 2.3.4. zt denotes the observation which was made after exe-
cuting action ut. Sampling can e.g. be done with one of the previously discussed
methods, the importance sampling or the sequential importance sampling. The
particle filter can be split up in three main parts

1. Transition is the fist phase. It applies the given action ut to each particle,
which lets them move.

2. Evidence: In this phase the particles which were moved in the transition
phase are weighted again based on the observation zt.

3. After having weight the samples resampling takes place. In this phase
M new samples are created, based on the new weights from the evidence
phase.

Monte Carlo Localization

Having defined the basic particle filter algorithm one can now use it to localize
a robot within its environment. This section adapts the particle filter which was
described in Section 2.3.4 and presents an example for a needed motion model
and a measurement model. Monte Carlo Localization is an approach which
is based on particle filtering and can be applied to the local as well as global
localization problem [146, 147, 51]. To use the particle filter one has to define a
motion model which samples a particle based on the actual motion. In robot
localization this is usually done by using a motion model which relies on some
measurements of the odometry. In scope of this work an motion model based
on odometry sensors is used. The sampled particles are then used to determine
their importance by calculating their weights, using a measurement model. Us-
ing the same notations as in Section 2.3.4, one can adapt the particle filter to re-
ceive the Monte Carlo localization algorithm which is presented in Listing 2.10.

1 function MCL( Xt−1,ut, zt,m )
2 X̄t = Xt = ∅
3 for m = 1 to M do
4 x[m]

t = sample motion model(ut, x[m]
t−1)

5 w[m]
t = measurement model(zt, x[m]

t ,m)
6 X̄t = X̄t + 〈x[m]

t ,w[m]
t 〉

7 endfor
8 for m = 1 to M do
9 draw i with p r o b a b i l i t y ≈ w[i]

t

10 add x[i]
t to Xt

11 endfor
12 return Xt

Listing 2.10: The Monte Carlo localization algorithm [146]

For the motion model one can basically choose between velocity motion model
and odometry based motion model. Velocity models use dead reckoning to deter-
mine the robots position while odometry based models use wheel encoders to
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determine the motion [146, 45]. In this thesis an implementation of the odom-
etry motion model is used to sample particles. It samples a particle xt−1 based
on an given action ut which is the transition from one state into another. xt−1
and ut hold position information which is denoted as

xt−1 =

x
y
θ

 ,ut =

(
x̄t−1
x̄t

)
(2.27)

with

x̄t−1 =

x̄
ȳ
θ̄

 , x̄t =

x̄′

ȳ′

θ̄′

 . (2.28)

the algorithm uses four parameters α1 to α4 which represent the error in odom-
etry sensors. Listing 2.11 shows the pseudo code of the currently used motion
model. The function sample(σ2) uses a zero-centered distribution to generate a
random sample [146]. Using a normal distribution this could be e.g.

1
2

12∑
i=1

rand(−σ, σ) (2.29)

where rand is a pseudo random number generator which uses a uniform dis-
tribution based on the parameters.

1 function sample motion model ( ut, xt−1 )
2 δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄) − θ̄
3 δtrans =

√
(x̄ − x̄′)2 + (ȳ − ȳ′)2

4 δrot2 = θ̄′ − θ̄ − δrot1

5
6 δ̂rot1 = δrot1 − sample(α1δ2

rot1 + α2δ2
trans)

7 δ̂trans = δtrans − sample(α3δ2
trans + α4δ2

rot1 + α4δ2
rot2)

8 δ̂rot2 = δrot2 − sample(α1δ2
rot2 + α2δ2

trans)
9

10 x′ = x + δ̂trans · cos(θ + δ̂rot1)
11 y′ = y + δ̂trans · sin(θ + δ̂rot1)
12 θ′ = θ + δ̂rot1 + δ̂rot2

13
14 return xt = (x′, y′, θ′)T

Listing 2.11: The odmometry motion model [146]

Figure 2.6 shows the three parameters δtrans, δrot1 and δrot2 of the motion model.
The movement of a robot in one time interval t − 1 to t is approximated by a
translation δtrans and two rotations. One at the beginning and at the end (δrot1
and δrot2).
To measure the environment one needs a measurement model. It uses data
which is retrieved from the real world environment by sensors. Nowadays
there are various sensor types like range finders, cameras or tactile sensors
which retrieve information of the environment and use different measurement
models [146]. In this thesis a currently used model for a 2D laser range finder is
described. Lasers are similar to sonar sensors, they send out signals and record
the received echo. The difference between those two sensors are the signal
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Figure 2.6: Visualization of the odometry model

types which are sent out. In case of sonar an ultrasonic beam is emitted while
laser sensors use light beams. Since those two methods work in the same way
they both can be used for the measurement model described below.

1 function measurement model ( zt, xt,m )
2 q = 1
3 for k = 1 to K do
4 compute zk∗

t for the measurement zk
t using ray c a s t i n g

5 p = zhit · Phit(zk
t |xt,m) + zshort · Pshort(zk

t |xt,m)
6 +zmax · Pmax(zk

t |xt,m) + zrand · Prand(zk
t |xt,m)

7 q = q · p
8 return q

Listing 2.12: The measurement model [146]

Listing 2.12 describes the currently used measurement model for beam range
finders. It uses four parameters zhit, zshort, zmax, zrand which weight the outcome
of four different distributions with zhit + zshort + zmax + zrand = 1. The algorithm
uses a loop to iterate over all K scan points. Since the robot can be displaced
and the given scan range zk

t might not be correct, zk∗
t is computed. It is the actual

range of the current scan point. To receive this value, typically ray casting is
done.

The beam measurement model uses four different sections within the range
to compute the probabilities. Those sections depend on the actual measurement
retrieved from zk∗

t . Phit is a Gaussian distribution at the location where it is most
likely to hit an object. Pshort defines the probability for a scan point to be in
the short range using an exponential distribution. Pmax defines the probability
for the maximum range and Prand adds a random factor to the probabilities,
both using uniform distribution. Figure 2.7 illustrates the sections for the
measurement distribution.

Putting all four sections together results in a pseudo-density of the mixture
distribution [146]. This mixture distribution is calculated in listing 2.12 and is
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(a) Gaussian distribution Phit (b) Exponential distribution Pshort

(c) Uniform distribution Pmax (d) Uniform distribution Prand

Figure 2.7: Sections of measurement model as described in [146]

mathematically defined as

wt =

K∏
k=1

P(zk
t |xt,m) =

K∏
k=1


zhit

zshort
zmax
zrand


T 

Phit(zk
t |xt,m)

Pshort(zk
t |xt,m)

Pmax(zk
t |xt,m)

Prand(zk
t |xt,m)

 . (2.30)

where wt is the resulting weight for particle xt and scan observation zt. Figure 2.8
shows the complete pseudo-density of the measurement model.
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Figure 2.8: Pseudo-density of the beam range mixture model

2.4 Neural Networks

After having explained the major prerequisites to understand the robots lo-
calization, the next important topic is discussed. Neural networks are a key
topic in this thesis. They are needed to train and validate datasets which are
generated to estimate the position accuracy of a robot.

This section focuses on the most important things which are needed for
understanding neural networks. First the basics are explained to get a rough
overview and to refresh the knowledge on neural networks. Then it is explained
which data can be used to train a neural network and how it has to be used. It is
then shown how prepared data can be used to train a neural network. Therefore
two main learning algorithms are discussed. Having discussed the basics of
neural networks, more complex network architectures which are needed in this
thesis are presented. Therefore all necessary information like the principle idea
and the learning mechanism are discussed.

2.4.1 Basics

An artificial neural network is a crucial machine learning concept which is
trained to make decisions based on the input data [62, 68]. The idea of this
machine learning approach comes from nature or, to be more precise, from
brains [62, 25]. It is leaned to simulate a functioning brain which consists of
neurons that are connected with each other. The principle of neural networks is
similar but the output is decided by the way neurons are connected with each
other, how the network is trained and which data is used.
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Neurons

In neural networks a simple component is called neuron. A simple type of
such neurons is a perceptron which was introduced by Frank Rosenblatt [123].
The idea of a perceptron is to take several binary inputs x1, ..., xn and use

Figure 2.9: A component of neural networks: the perceptron

them to produce one binary output out. To compute a meaningful output
Rosenblatt introduced weights w1, ...,wn which are real numbers and indicate
the importance of a single input xi. The output is then calculated using the
sum of the inputs and its weights

∑
j w jx j and a given threshold b. Since the

output is binary it can either be 0 or 1. This is done by checking the sum of the
weighted inputs using the threshold

out =

0 if
∑

j w jx j ≤ b
1 if

∑
j w jx j > b

. (2.31)

Usually, neurons are illustrated like in Figure 2.9. To simplify Equation 2.31 one
can write the weighted sum

∑
j w jx j as dot product, resulting in wT

·x =
∑

j w jx j
where w and x indicate vectors. The next step is to make the threshold from
Equation 2.31 to the other side. To further simplify the equation, the threshold
is from now on called bias and set negative b = −b. The outcome of those
modifications is then

out =

0 if wT
· x + b ≤ 0

1 if wT
· x + b > 0

. (2.32)

By changing the weights w of the inputs and the bias b one can change the
outcome of the model [62]. This is the basic idea behind training neural net-
works. The action of selecting an output for the perceptron is called activation
function. It defines how well a neuron is satisfied to the input. In the case
of perceptrons it is a so-called step function which either 0 or 1, depending on
the input. To find the best value for weights such that a wished output is re-
trieved some kind of artificial training is needed. The approach of optimizing
the weights is to adopt the weights with a small error to see how the output
changes. However, when using perceptrons and its step-activation function
like introduced above, a small change in a weight can cause the output to flip
e.g. from 0 to 1. This might change the behaviour of a network completely and
might lead to an incorrect network. To overcome this issue sigmoid neurons
were introduced [92]. A sigmoid neuron uses a sigmoid activation function
and holds the same variables like a perceptron: weights w, inputs x and a bias
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b. Another difference is that inputs x are not restricted to be binary but to be a
value between 0 ≤ xi ≤ 1. Also the output is not 0 or 1 but computed as

out = σ(wT
∗ x + b) (2.33)

where σ is the sigmoid function which is defined as

σ(z) =
1

1 + exp−z (2.34)

such that the output can be calculated by

out =
1

1 + exp−
∑

j w jx j−b
. (2.35)

Basically, sigmoid neurons obtain their advantage from the smoothness of the
sigmoid function. Due to this smoothness a small change 4wi in weight wi or
4b in bias b will only produce a small change 4out in the output. In fact, the
change in the output 4out can be approximated by

4out ≈
∑

j

∂out
∂w j
4w j +

∂out
∂b
4b (2.36)

where ∂out/∂w j denotes the partial derivative of the output w.r.t. w j and ∂out/∂b
is the partial derivative w.r.t. b.

Constructing Neural Networks

Understanding neurons and their functionality, one can now start to construct a
neural network. Basically, a neural network is the combination of various neu-
rons which are connected with each other. To get an output for a certain input
set one then has to propagate the input values through the network using the
defined weights and biases. The creator of a network can construct any kind
of network structure by just adding neurons to the network and connecting
them with other neurons [25]. That is the theory. In practice the construction of
networks follows some conventions. Often a network is build up using layers.
Those layers are a part of neural networks and contain a certain number of
neurons that are connected with each other in a specific way.
First of all, one needs to define the number of input neurons. This is done
by choosing the number of needed inputs. Every input enters the network
through its own input neuron which can then be distributed and combined
to other neurons. Putting those input neurons together one receives an input
layer. The same holds for the output layer. By defining a desired number
of outputs one creates the output layer. If one likes to only sent inputs to an
output layer, one can already construct a network for his needs. In practice,
more layers are added between input and output layer. Those are called hidden
layers and can contain any number of neurons. Also the connections within
the layers can be chosen arbitrarily. There are different types of hidden layers,
some of them are presented and discussed in Section 2.4.4. Figure 2.10 shows
an example of a neural network. It uses three input neurons and two output
neurons. In-between a hidden layer with four neurons which are fully con-
nected to the other layers is added.



CHAPTER 2. PREREQUISITES 36

Figure 2.10: An example construction of a neural network

2.4.2 Data Generation for Learning

To optimize the performance of a network one has to adapt the weights and
biases of all neurons. This is done by applying training algorithms as described
in Section 2.4.3. However, to train a network and to optimize the neurons one
needs a vast amount of data [40, 81, 66, 21]. This data is a collection of input
sets which are used to train, test and validate a network. Therefore, the data is
split up in three sets: the training set, the test set and the validation set. The
training set is used to adapt the weights and biased of the neurons within the
network while the test and validation set verify the network structure. There are
different possibilities for training which use different types of datasets. Based
on the data structure one can separate the learning methods into unsupervised,
supervised and semi-supervised learning. This thesis deals with supervised
data but for the sake of completeness the other two possibilities are also briefly
explained. To see how data is generated which is used for this thesis look at
Section 4.3.1.

Underfitting and Overfitting

Since the network is trained only on training data, the danger of overfitting
and underfitting occurs [36, 151]. Depending on the network structure and
the training set, the training algorithm might tend to overfit. The definition of
overfitting is a low training error and a high test error. This results in a network
that works perfectly fine with the training set but does not find the correct
output for new input data. The main reason for overfitting is a training set that
contains only specific information and does not represent the general situation.
The network is optimized based on the specialized data which then leads to a
low training error but when testing it, the error raises. When the training data
is not specific enough or the information is not extracted correctly underfitting
might occur. Then the training error and the test error is high. A reason for
underfitting is wrong or imprecise input data. If data is used that does not hold
relevant information to train, the network cannot identify necessary features



CHAPTER 2. PREREQUISITES 37

to optimize the weights and biases. This results in a high training and testing
error. To reduce the risk of over- and underfitting, a test set is used to check
how well a network performs on datasets which are not trained. This check
is done during the training to possibly adapt the training steps. After training
the validation set is used to finally validate the received network. This is used
to see how data which is completely independent from the training performs.

Supervised Learning

Supervised learning is the task to train the network given pre-labelled data
[40, 81]. This means the data which is used to train the network knows what
the result should be. Typically it is represented as pair of an input vector and
the desired value for the output. Learning algorithms which use this kind of
training sets are more likely to score high accuracy in training since the network
structure can be adapted according to the desired output. Formally, given N
labelled training samples of the form 〈xi, yi〉 where xi is the input vector and
yi is the desired output label. A learning algorithm then produces a network
where the input optimally describes the label such that f : X → Y, where X
is the space of the input which is mapped onto the output space Y. The most
common machine learning approaches which use supervised data are support
vector machines (SVM) [141], linear regression [161], logistic regression [26] aw
well as neural networks.

Unsupervised Learning

Unsupervised learning approaches do not have a desired output label for their
training data [66]. Although neural networks are often more efficient when
using supervised training samples, some research has proven that also good
results with unsupervised data can be achieved [88]. The problem which
unsupervised learning has to face is that it cannot evaluate the accuracy of
the current network structure while learning. To overcome this issue many
different approaches are used like the k-means algorithm [77] for clustering
or hebbian learning for neural networks [101]. Preprocessing of the given
data is a common approach to improve the accuracy of algorithms which use
unlabelled data. This can be done with methods like the principal component
analysis (PCA) [75].

Semi-Supervised Learning

Semi-supervised learning is a modification of supervised learning [21]. It is
suited for methods which can combine both, labelled and unlabelled data.
Typically there exists only a small amount of labelled data and a vast amount of
unlabelled data. It is shown that the accuracy of a machine learning algorithm
which uses unlabelled data combined with a small amount of labelled data is
considerable improved [21]. This technique is often used when it is hard to
generate supervised data e.g. in robotics where one often needs a human agent
who labels a small amount of data.
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2.4.3 Training Neural Networks

Having constructed the structure of a neural network and prepared the de-
sired training data, one can now start to search for the optimal weight/bias
parametrization to solve a given problem. This can be done by using different
training algorithms. Some of them are described in this section. When training
networks a lot of training data is used. Based on this data the weights are
adapted and optimized. However, be aware that neural networks do not guar-
antee an optimal solution and might get stuck in local minima [113, 62]. This
section introduces two main methods which are used to train neural networks.
While backpropagation is an algorithm which is widely used to train different
types of networks [85], backpropagation through time focuses on networks
which want to learn sequences like it is used in recurrent networks [143].

Basically there are two different network structures. Feedworward net-
works allow only a propagation of the input data to the next layer. This means
that the data stream flows from the input to the output without any loops in
the network. In recurrent network structures, single loops are allowed. Single
loops are created by using the output of a neuron as input of the same neuron
again. For a more detailled description see Section 2.4.4. Thus it is possible to
propagate data back to a predecessor layer. Backpropagation is an algorithm
which can be used to train feedworward networks. It is not possible to train a
recurrent structure with that algorithm. Therefore an adoption was made and
backpropagation through time was invented.

Backpropagation

To train a neural network it is necessary to train an error function. By selecting
an error function and reducing the error, one can improve the performance of
the network [126]. A common approach therefore is backpropagation which
uses gradient descent [146]. Given the error function one can measure the
difference between the desired output and the actual output. Then this gap is
used to adapt the weights and biases of the network to reduce the error.

Figure 2.11: The network structure for backpropagation
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In backpropagation, the error of a single neuron can be calculated by

ek = zk − yk (2.37)

where zk is the actual output of neuron k and yk is the desired output (label).
Given K output neurons, one can define the classical measurement function of
the error which is the sum of the squared errors

E(i) =
1
2

K∑
k=0

e2
k =

1
2

K∑
k=0

(zk − yk)2. (2.38)

Figure 2.11 shows the notation of the used variables above. To reduce the error
of the function one has to choose new weights that minimize the measurement
of the error. Since no analytic solution is possible, gradient descent is used
[87]. To improve the network and update its weights, the gradient of the
error function is needed. To calculate the gradient two message passes are
needed. The forward pass and the backward pass. Using these passes, the
error gradient can be calculated as

∂E(i)

∂wkj
= δkz j (2.39)

where wkj is the weight between neuron j and k, δk is the error of neuron k and
z j is the output of neuron j. Forward pass calculates the activation and outputs
of all neurons z. Therefore the input x is used and propagated through the
network. To start, every input neuron receives the input from the vector, then
the output for every neuron j which comes after the input layer is calculated as

z(a)
j = f (a)

j

 A∑
l=1

w(a)
jl zl

 (2.40)

where a is the a-th layer within the network with 1 < a ≤ b. This is defined
because the first layer only receives the input values without weights which
are propagated forward. b is the number of layers. A is the number of inputs
for neuron j and zl is the output of the predecessor neuron. f j is the activation
function which is used. As described in Section 2.4.1, a sigmoid function σ(x) is
often used. Of course every neuron can have its own activation function which
might lead to various different activation functions within a network.
After all outputs z j of the output layer are calculated, backward transmission
takes place. Here, the error δk is calculated backwards. Starting from the output
neurons with

δk =
∂ fk(ak)
∂ak

ek (2.41)

where fk is the activation function for neuron k and ak is the activation value.
As described in Section 2.4.1, the activation value is the sum of the weighted
inputs and its bias ak = wTx+b. For every hidden neuron, the error is calculated
as

δk =
∂ fk(ak)
∂ak

∑
r∈post(k)

δrwrk (2.42)
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Figure 2.12: Forward transmission and backward transmission

where post(k) are the successor neurons of k. Figure 2.12 illustrates the forward
and backward transmission. First, forward transmission takes place which is
shown with the blue arrows. Then the error is propagated back by calculating
δk and sending it back with the red arrows.

This algorithm is usually executed for each sample set until a stopping cri-
teria is reached. Since this algorithm does not guarantee an optimal solution,
it might converge to a local minimum. It is also not guaranteed that the al-
gorithm converges. To train a network using backpropagation two different
methods can be used which determine when the error gradient is calculated.
In batch learning the error gradient is calculated from a collection of training
samples and then accumulated. So the update of the weights is only done after
a collection of samples is seen:

wkj = wkj − ηOE (2.43)

where η is parameter which defines the learning rate and

E =

m∑
i

E(i). (2.44)

In online learning, the weights are updated after each sample i is propagated
forward

wkj = wkj − ηOE(i). (2.45)

This method is often much faster and can be used when the data is coming in
at real-time. It also has the possibility to escape from a local minimum since
every single sample may enforce a significant weight change.

Backpropagation Through Time (BPTT)

To train a network structure which allows loops within layers, the backpropa-
gation through time was invented [157]. It is a method which allows to train
recurrent network structures. Recurrent networks are often used to train data
sequences, since it can learn to remember information from previous inputs
[9, 97]. In contrast to feedforward networks, a recurrent structure is able to
encode longer past information, thus it is suitable for sequence modelling. In-
stead of explaining the complete functionality, this thesis only describes the



CHAPTER 2. PREREQUISITES 41

difference of the structure, the difference in calculating the output and give the
error cost function for using BPTT.

The advantage of BPTT is that it tends to be faster for training sequence
models than other basic optimization techniques like evolutionary optimization
[162]. An disadvantage is that it has some issues with local optima. Local
optima are a bigger problem in BPTT than it in feedforward networks.
In a recurrent network errors can be reused for propagating forward. This can
be done to a certain number of layers such that a wished sequence can be used.
This process is usually called unfolding [7]. Due to unfolding the loops of the
network structure can be dissolved. Typically a parameter k is defined which
determines how deep a loop should be unfolded. When unfolding takes place,
one adds a sequence of neurons which take an input xi and the previously
calculated output zi. Since the output zi does not exist for the first neuron,
a initial value for z1 has to be specified. This is usually a vector of zeros.
Additionally also a time instance t has to be given to the network. Figure 2.13
shows an example of and unfolded network with k = 3. it takes neuron f and
unfolds it three times. zt is an initial input which has to be defined. xi are the
sequential inputs at time i. After unfolding the neuron is concatenated with
the next neuron to continue processing.

Figure 2.13: An unfolded recurrent neural network with k = 3

For recurrent networks a new cost function is defined which measures the error.
It is called cross-entropy [124] and shown to perform well in recurrent neural
networks. The error function is then defined as

E(i) = −

K∑
k=0

(zk ln yk + (1 − zk) ln(1 − yk)) (2.46)

and

E =

m∑
i

E(i), (2.47)

following the same definition as before for the simple backpropagation algo-
rithm. The recurrent neurons also calculate their outputs differently, since they
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have more inputs.

z(a)
j (t) = f (a)

j

 A∑
l=1

wa
jlzl(t) +

B∑
h=1

w(a)
jh zh(t − 1)

 (2.48)

The main difference is the second term. This term adds the weighted output
of the neuron form the previous time step, where B is the number of outputs
from the previous time step which flow into the current calculation. Also a
time interval t has to be introduced. To change the weight one has then to
calculate the error δk for every output neuron and propagate it back through
the unfolded network.

2.4.4 Deep Learning Architectures

This section deals with different network structures that are commonly used
for various fields of application. Since a network with a single layer can not
solve complex problems, more hidden layers are added to an network. This is
basically the definition of a deep neural network [35]. A network becomes deep
if many hidden layers are added. Those deep layers can have different forms
and structures. There are some common structures which have proved their
value over time for certain applications. This section introduces some network
structures which are used for state estimation on robot localization scoring.
First the convolutional neural networks are introduced. It is a common network
for feature detection and image classification [83]. Then neural networks for
sequence classification are presented, i.e. recurrent neural network and the
long-short term memory. Those networks allow to identify sequences and are
used for e.g. speech recognition [67, 91]. After that a combination of both,
recurrent network and convolutional network is presented and discussed.

Convolutional Neural Networks (CNN)

Convolutonal neural networks are commonly used to detect features in images
which help to classify an image. Therefore, the image is used as input of a neu-
ral network structure. In convolutional neural networks one applies a small
filter several times on various positions of the image. This method reduces
the number of parameters which have to be learned and thus also overfitting
is prevented [111]. Typically several types of feature detectors are used where
each of them have their own network layer. Those feature detectors are trained
to extract valuable information out of the image. Those detectors are then ap-
plied on different positions of the image to search for a certain feature. This
allows a part of the image to be represented in the same way. Convolutional
neural networks use three basic ideas: local receptive fields, shared weights
and pooling.

Local Receptive Fields
To understand a convolutional neural network it helps to think of an image
as the input. Thus the inputs are organized as a grid. As in artificial neural
networks, the input neurons are connected to a hidden layer. The first differ-
ence is that not every input pixel is connected to every hidden neuron but the
connections are made in small, localized regions from the input image. This
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region is called local receptive field for the hidden layer. It has a fixed size
of L rows and M columns. This local receptive field is then slided across the
complete image resulting in a different hidden neuron connection for every
field. Figure 2.14 shows an example of the first hidden layer, using a 5x5 local
receptive field. Depending on the size of the local receptive field, the number
of hidden neurons in the feature layer decreases. Since the field alsways has
to map at least one input neuron to a hidden neuron, the hidden layer is never
bigger than the input layer.

Figure 2.14: A 5x5 local receptive field over the image and creating first hidden
layer

Shared Weights and Biases
From Section 2.4.1 one already knows that each neuron holds a bias and weights
for its inputs. For each hidden neuron the same weights and bias from the local
receptive field is used. So for the ( j, k)-th hidden neuron the output is

σ

b +

L∑
l=0

M∑
m=0

wl,ma j+l,k+m

 . (2.49)

Here, σ is a sigmoid activation function, b is the bias, wl,m is the array of the
input weights and ax,y denotes the input activation at position (x, y).

This leads to the fact that every neuron in the first hidden layer searches
for the same feature but on different positions within the map grid. This fact
also leads to the advantage of a convolutional network. They do not care about
the location of a feature in an image and therefore one does not have to care
about the translation of images. Since those hidden layers detect features in the
image, it is also called a feature map. There is also a possibility to detect various
features from the input image by adding more feature maps. Figure 2.15 shows
an example input layer with three feature maps. the collection of all feature
maps which come from the same input layer is called convolutional layer and
is the key idea of CNNs which helps to reduce the amount of parameters.

Pooling Layers
Another common layer which a convolutional network uses are so-called pool-
ing layers. Pooling layers usually are inserted after the use of convolutional
layers. They are used to simplify the received feature information which was
generated in the feature maps. More exact, a pooling layer uses the output of
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Figure 2.15: Using several feature maps to detect different kind of features

a feature map and prepares a summarized layer. This pooling layer takes a
defined number of input neurons, organized in a NxN grid, and reduces this
number to one. An example is the max-pooling method which searches for
the maximum activation from the inputs and sends this value to the output.
Figure 2.16 shows an example of a 2x2 max-pooling layer. It takes four in-
put neurons and only outputs the highest value of these four inputs. Since a

Figure 2.16: Using the max-pooling layer of size (2x2) on the output of the
feature map

convolutional layer holds many feature maps, also many pooling layer exist.
Every pooling layer is used for a single feature map where the pooling is ap-
plied separately. All those layer types can then be used to build a complete
convolutional neural network. One just has to put all layers together to obtain
a fully functional feature detector. A complex neural network can also contain
many convolutional layers which are concatenated. To obtain a correct classi-
fication one also needs to add a desired number of output neurons where each
neuron indicates a possible solution. Figure 2.17 shows the general structure
of a complete CNN containing an input layer, a convolutional layer with three
feature maps, corresponding pooling layers and output neurons for solving the
problem.

Recurrent Neural Networks (RNN)

The next structure which was already shortly discussed in Section 2.4.3 are
recurrent neural networks. RNNs are allowed to form directed cycles within
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Figure 2.17: The main structure of a convolutional layer which forwards its
output to a hidden layer

the network and thus can propagate through time. Due to those loops a kind
of internal memory is generates which allows to store information from pre-
vious inputs [91, 136]. This internal memory allows to remember previous
input information and can change its behaviour based on this input. Thus it
is also a common network to train sequences [64] since it performs good on
recognizing sequences. The best example for the use of a recurrent network is
speech recognition [120]. Speech recognition uses the directed loops within the
network structure to store the previous words. Thus the probability of a word
occurring depends on the words which came before. This makes sense since
a sentence follows grammatical rules and thus not every word combination
is equally likely. There are several different implementations of recurrent net-
works which solve different problems in all kinds of fields. Some of the most
common network structures are fully connected RNNs [158], bi-directional
RNNs [136] and Long-Short Term memory networks [67]. This thesis only
deals with Long-Short Term Memory structures since it will also be used in the
implementation part.

A recurrent network is typically organized with RNN units. Such a unit
maps the input to a hidden state which then again maps the hidden state to the
output. It uses different weight parameters W, b which are trained to receive
the output. Figure 2.18 illustrates a simple RNN unit. It receives its input xt
and uses it to calculate the hidden layer ht and the output value zt.

Figure 2.18: Illustration of a RNN unit

The hidden layer vector ht holds the input and is trained to remember sequences

ht = σg(Wh1xt + Wh2ht + bh) (2.50)
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where xt is the input vector, σg is the sigmoid activation function, ht is the
hidden vector and Wh1,Wh2, bh are parameter matrices and vector. The output
vector zt defines what information is passed on

zt = σg(Wzht + bz) (2.51)

where Wz, bz are parameters and ht is the output of the hidden layer.

Long-Short Term Memory (LSTM)

LSTM is a recurrent neural network architecture which has an universal field of
application. It is shown that given enough network units it is able to compute
the same things like a traditional computer can do [67]. A Long-Short Term
Memory network is good at classifying, predicting and processing time series.
Its special power is that it is also good in learning and evaluating time series
which have a time lag of unknown size between two events. It is well suited
for training data that really has to remember longer time series and also focuses
on the current input. This is a reason why in many fields LSTM is better than
other recurrent architectures.

A Long-Short Term Memory network uses so-called LSTM units which are
essential for the design of such a network. Those units can solely be used or
in addition to other network units. A LSTM unit is a collection of recurrent
neurons which is good at remembering information for either a long or short
period of time. The period of how long information should be remembered
depends on the trained LSTM unit. The reason why LSTM units perform well
at their tasks is that they do not use an activation function in its recurrent
components. This leads to the advantage that stored information does not get
iteratively squashed over time. Also the gradient does not tend to fade away
when Backpropagation Through Time is applied for training. LSTM units are
usually implemented in blocks which contain several units. Such an block
typically contains three or four gates which control the information flow into
or out of the memory. These gates are implemented with the help of logistic
functions that compute a probability between 0 and 1. The most common gates
are the input gate, the output gate and the forget gate. The input gate controls
the extent which defines when a new value flows into the memory. A forget
gate defines how much the unit is allowed to forget and which values remain in
memory. An output gate defines which values in memory are used to compute
the output activation in the block. The only weights W and U in an LSTM block
are used to direct the operation of the gates as shown in Figure 2.19.

Elements of a Traditional LSTM

To understand the typical structure of a LSTM network, a LSTM unit is ex-
plained. A traditional LSTM uses three gates and a Hadamard product ◦. The
Hadamard product is defined over two matrices A,B ∈ Rm×n such that it is

A ◦ B = (ai j · bi j) =

 a11 · b11 ... a1n · b1n
... ... ...

am1 · bm1 ... amn · bmn

 ∈ Rm×n (2.52)
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Figure 2.19: A simple LSTM block with only input, output and forget gates.
LSTM blocks may have more gates

The forget gate vector ft holds the weight of how much information should be
remembered.

ft = σg(W f xt + U f ht − 1 + b f ) (2.53)

where xt is the input vector, σg is the sigmoid activation function, ht is the
output vector and W,U and b are parameter matrices and vector. The output
gate vector ot defines what information is used to generate the output and is
denoted as

ot = σg(Woxt + Uoht − 1 + bo). (2.54)

The input gate vector it is defined similarly and which holds the weight for
acquiring new information

it = σg(Wixt + Uiht − 1 + bi), (2.55)

The cell state vector ct is defined as

ct = ft ◦ ct−1 + it ◦ σg(Wcxt + Ucht−1 + bc) (2.56)

where σg is the hyperbolic tangent activation function and c0 = 0. The resulting
vector ht also uses the hyperbolic tangent activation function for its steps, except
the first one because its first value is defined as h0 = 0

ht = ot ◦ σc(ct). (2.57)

Long-Short Recurrent Convolutional Networks (LRCN)

Many tasks which are used in computer vision need sequential processing of
inputs as well as feature recognition. Until now convolutional neural networks
can only evaluate an image for one time step. When a sequence of input im-
ages should be trained only few approaches are known. To overcome this
issue a new approach for was introduced which is applicable for visual recog-
nition and description [39]. It combines convolutional layers with the recurrent
LSTM architecture. In this method, first features are extracted using convolu-
tional layers. Then the result of these layers is used as input to LSTM units.
They learn the sequential part and generate the output. Figure 2.20 shows
the general structure of a LRCN network. It takes t sequences as input, uses
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a convolutional layer to detect features which are then trained for sequence
learning. Then after the LSTM unit a output is predicted. This is repeated
through the complete sequence to receive the output of the sequence. If one
wants to predict the data while the sequence is running, one can also get this
output while the sequence is running through the network.

Figure 2.20: A general architecture of a LRCN network

LRCN is deep in terms of time and space. It can be applied on various vision
tasks and can also handle sequential inputs as well as sequential outputs. In
theory it should be easy to extend existing recognition tools to support them
with LRCN mechanisms.

2.5 Caffe

This section discusses some theoretical knowledge which is needed for training
deep neural networks with the framework Caffe [73]. Therefore it is presented
how Caffe trains its networks and how to use it. A focus is set especially on
how data has to be prepared that it is usable for the framework, how networks
are modelled and how the framework is used to actually train a network.

2.5.1 Stochastic Gradient Descent (SGD)

As already defined in Section 2.4 it is necessary to define an error function to
train a neural network. This error function is then minimized while learning
takes place. This method does not guarantee an optimal solution and can
converge to a local minimum, leading to a non-optimal solution. There are
many different error functions J(θ) which were proposed to train a neural
network. The most common method which is used is the so-called gradient
descent. This method was already introduced in Section 2.4.3 but now it will
be mentioned a bit more in detail. A simple cost function which can be used
for gradient descent is linear regression which is defined as

J(θ) =
1
m

m∑
i=1

(
hθ(x(i)

− y(i))
)2

(2.58)
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where θ is a given parameter vector that should be optimized, m is the number
of training samples used, hθ is the hypothesis on which the samples should be
relied on, x(i) is the i-th training sample and y(i) is the desired output. This cost
function tries to find a linear function that is optimal to the given parameter
space. It tries find a hypothesis such that hθ(x) = xTθ ≈ y.

Gradient descent takes some arbitrary cost function J(θ) and tries to reduce
the error. It calculates an error by using the cost function and slightly adapts
the parameter space until is converges. The basic gradient descent algorithm
is defined as

θ j = θ j − η ·
∂
∂θ j

J(θ) (2.59)

where θ j indicates the parameter vector at iteration j, η is a defined learning
rate with 0 < η < 1 and ∂/∂θ j is the partial derivative of the cost function J(θ)
with respect to θ j.

Using the example cost function from Equation 2.58 and combining it with
gradient descent one receives

θ j = θ j − 2η ·
1
m

m∑
i=1

(
hθ(x(i)

− y(i))
)
· x(i)

j (2.60)

where 2η is the learning rate, hθ(x(i)
− y(i) is the error which is received by the

current hypothesis and x(i)
j is the input.

It is computationally intensive to train a neural network with the complete
cost function when the number of training samples is high because all training
samples have to be computed before applying one training step. Another
approach for improving this is stochastic gradient descent [164]. This method
uses the same definitions as before but instead of training the complete cost
function, a parameter update is only performed by a few training samples. The
number of training examples is defined as batch size. It ca be defined as a
number which is less then the training size. If it is one then only one training
sample is used for updating the parameter space. The equation for stochastic
gradient descent then looks like

θ j = θ j − η ·
∂
∂θ j

J(θ, x(i),y(i)) (2.61)

where x(i),y(i) are a batch of training samples. The batch is usually selected by
taking randomly selected data samples but for training sequences the order of
the sequence has to stay intact. As SGD recomputes the gradient based only on
a batch of training samples, it can perform faster parameter updates and often
also converges faster. This method can also be used for online learning. Since
only a batch of training samples is used to update the parameters, a certain
fluctuation occurs over the training steps. This happens because a certain batch
might not perform so good for the complete training set and therefore increases
the overall training error. This makes it difficult to find an exact minimum
which can be used. But on the other hand it is also possible to escape local
minima with this method.

The framework of Caffe uses stochastic gradient descent for training a neural
network structure. The batch size can be defined by the user and thus also the
amount of oscillation can be chosen individually.
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2.5.2 Preparing Data for Caffe

To train a neural network using a given framework one usually has to prepare
the retrieved data such that it is applicable for a particular learning algorithm.
The same holds for the Caffe framework and thus one has to prepare its data
according to the given specifications. This thesis only focuses on supervised
learning and thus also needs to prepare the desired labels for training. When
starting to prepare the training data one needs to prepare sets of input data
and output labels. The best and easiest way for representing input data in
Caffe are images. This allows to store information within one data object that
can be read by the Caffe framework. For this thesis it also has the advantage
to observe the images since convolutional training is commonly applied for
pattern recognition on images. The generated data also has to be split up into a
training set and a test set. One can individually choose how many test samples
one would like to use but in general 20 − 40% are used for testing. Having a
collection of images and knowing the corresponding labels, one can use two
basic principles of preparing the data for Caffe.

The first method is to create a so-called LMDB file. Those files allow high-
performance processing of its inputs. To create such a file one needs a list of
files and the corresponding labels. A small section of a training file could look
like

. . .
path / to / f i l e / image37 . png 0
path / to / f i l e / image45 . png 0
path / to / f i l e / image1 . png 1
path / to / f i l e / image13 . png 1
path / to / f i l e / image785 . png 0
. . .

where each image has a label of 0 or 1. Caffe then offers an executable called
convert imageset which can be executed to generate a LMDB file.

. / convert imageset path / to / t r a i n . t x t path / to / s t o r e / lmdb

The main advantage of this method is that it is easy to generate a training set
which can be used by the framework. However, disadvantages are that it does
not allow multiple labels for an image which can be annoying if one would like
to train data with multiple labels and it does not allow floating labels such that
the label must be a positive integer representation.

To solve these problems one can use data which is represented in HDF5
format. This format allows to store multiple labels for an input and also allows
them to be a float. The disadvantage which comes with this data format is that
it does not offer a simple conversion of images into HDF5 format. Instead one
has to download a library which can then be used to create data sets. For this
thesis a python library named h5py is used to generate correct data samples
but therefore one also needs basic knowledge in python. To simplify the HDF5
data generation one could also use an image list containing the labels as above.

Caffe loads the data row by row into the network. To use random ordering
one can shuffle the created image list or, for LMDB, could add the option -shuffle
when creating the set.
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2.5.3 Defining a Network Structure

Having prepared the data which can be used for training, one can define the
desired network structure. Caffe offers a complete network generation solution
in python where one can define the desired structure in python and then the
desired structure is generated. Typically the structure of a network is defined
in a .prototxt file. This file contains all necessary information which is needed
for understanding the structure. It contains a set of layers which hold specific
parameters and define what the input should be and where the output is sent to.

To make structuring easier many standard layer types which can be used
are supported. For the input also different layers are defined such that the
framework can distinguish between e.g. LMDB and HDF5 input data. Some
of the most important layers which are used in this thesis are

1. Convolution Layers

2. Pooling Layers

3. Long-Short Term Memory Layers

4. Inner Product Layers (fully connected layer)

5. Dropout Layers

6. Softmax Layers

Listing 2.13 shows a part of the prototxt file. It defines a Pooling layer with the
name pool1. The parameter bottom in line 4 defines where the layer should be
added within the network. In this example the layer is added at the bottom
of the layer conv1 which is probably a convolution layer. The parameter top in
line 5 defines under which name the output should be stored. pooling param in
line 6-9 are special parameters which are set for defining the structure of the
pooling layer. In there it is defined that max-pooling should be used with a
kernel size of 2.

1 l a y e r {
2 name : ” pool1 ”
3 type : ” Pooling ”
4 bottom : ”conv1”
5 top : ” pool1 ”
6 pooling param {

7 pool : MAX
8 k e r n e l s i z e : 2
9 s t r i d e : 2

10 }

11 }

Listing 2.13: An example layer which is contained in the .prototxt file

Figure 2.21 illustrates the flow graphically. Top and bottom therefore can be
seen as separate positions where the data is stored or retrieved.
Figure 2.22 shows a small network as an example. It uses an data layer to
retrieve the input which is stored at data and label. The input data is then used
by a fully connected layer and sent on to the softmax layer. The softmax layer
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Figure 2.21: The flow of a Caffe layer illustrated

then also receives the label and can compare them for adapting the learning
weights.

Figure 2.22: Example Caffe network

Basically any desired network structure can be modelled by adding various
layers into the structure file and linking them together. Since it does not make
sense to arbitrarily combine different layers one can lean on common network
structures when designing a new network. One of the most popular network
structure which has been useful in various fields is the so-called LeNet structure
[3]. This structure is a convolutional neural network which was introduced to
recognize handwritten digits.

2.5.4 Training a Network with Caffe

When the training data is prepared and a valid network structure is defined,
one can start to train the network. To train a network using Caffe one has
to define a so-called solver file which also ends with .prototxt. In the solver
file all necessary parameters are set which are then applied for the network.
Listing 2.14 shows an example file of such a solver file.
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1 net : ” path / to / network . p r o t o t x t ”
2 t e s t i t e r : 80
3 t e s t i n t e r v a l : 500
4
5 b a s e l r : 0 . 0 1
6 momentum : 0 . 9
7 weight decay : 0 .0005
8 l r p o l i c y : ” inv ”
9 gamma: 0 .0001

10 power : 0 . 7 5
11
12 display : 100
13 max i ter : 10000
14 snapshot : 5000
15 s n a p s h o t p r e f i x : ” path / to / r e s u l t / name”
16 solver mode : GPU

Listing 2.14: Basic content of a solver file for Caffe

Line 1 defines the path to the network file which has to be loaded. This
is necessary because the framework only asks for the solver file and not for
the structure file. Line 2-3 define at which interval the network should be
tested and how many batches should be used to test. This file says that every
500 iterations a test should be done with 80 batches. Line 5-10 define some
principle network parameters like the learning rate for gradient descent and
other parameters which are used within the network. Line 12 defines how often
the current progress should be printed to the command line and line 13 states
how many iterations should be done. Line 14-15 define where the resulting file
which contains all trained network parameters should be stored and at which
iteration a temporary snapshot should be made. Line 16 describes the processor
that should be used for training. This can either be CPU or GPU.

Having adapted the solver file to the specific needs, one can start the train-
ing. This can be done by using the provided executable and tell it to train the
solver file

. / c a f f e t r a i n −−s o l v e r=path / to / s o l v e r . p r o t o t x t [ opt ions ]

After training the framework creates two files. The first is a .caffemodel file which
contains all necessary values like weights and biases which were trained for
the network. The second file is a .solverstate file that stores the last iteration step
which was done with SGD. This solverstate file could then be used to continue
with the training if e.g. a training was cancelled or more training steps then
defined in the solver file are needed.

2.6 OpenCV

Open Source Computer Vision is a library that offers efficient algorithms which
are designed for real-time applications [71, 70]. The main fields of application
are computer vision and machine learning. It offers libraries which can be
used in C++, C and Python. It also contains various machine learning algo-
rithms that were already trained and are ready for use. The best example are
implementations for face recognition and object detection. Since the complete
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OpenCV library is very powerful, only a few parts are mentioned which are
needed within this thesis. First various methods are presented which are used
for generating and handling images. Then it is shown how a trained Caffe
network can be loaded into C++ with the help of OpenCV. This is shown since
the trained neural network has to be implemented into a ROS node. At the
end of this section a Boosting method is described which is used to train given
features for robot localization scoring.

2.6.1 Image Handling

Since OpenCV is a library for computer vision, it seems quite obvious that it
can also do simple image handling. To understand how training samples can
be created with the help of OpenCV, a short introduction is given in handling
images [13]. Images in C++ are stored using a class called cv::Mat. It is used to
represent each pixel in a N×M matrix. The representation of pixel xnm depends
on the image type. If a pixel contains multiple channels, like RGB, the pixel
can be represented as a vector. In this thesis only grey images are handled and
thus a unsigned character with a range of 0 ≤ xnm ≤ 255 is used. An image in
C++ can be created as

cv : : Mat img = cv : : Mat ( r , c , CV 8UC1 , cv : : S c a l a r ( 0 ) ) ;

where img is created with r rows and c columns. The type CV 8UC1 states that
each pixel in the image should be represented by eight unsigned bits and one
channel. cv::Scalar(0) states the initial colour of the image. In this case only
a black-white Scalar is used where 0 indicates a white background. Scalars
can also represent other color schemes like RGB where three color values are
inserted. After creating an instance of an image one can draw different objects
into the image e.g. lines, circles or rectangles. This thesis needs only to draw
circles so a code for that is shown but all other figures are drawn similarly.

cv : : Point p i x e l ( x , y ) ;
cv : : c i r c l e ( img , pixe l , 1 , cv : : S c a l a r ( 2 5 4 ) , CV FILLED ) ;

In this command a new point is created which indicates a pixel at position (x, y).
Then the circle function is called which draws a circle in image img, at center
pixel, colour 254 and it states that the circle should be filled. Another method
which is used in this thesis is to rotate an image. This can be done by defining
the center of rotation, creating an rotation matrix which knows the center and
the angle to be turned and rotating the image. The result of the rotation is
stored in a new image instance.

cv : : Point c e n t e r ( x , y ) ;
cv : : Mat r o t = cv : : getRotationMatrix2D ( center , angle , 1 ) ;
cv : : Mat r e s u l t ;
cv : : warpAffine ( img , r e s u l t , rot , img . s i z e ( ) ) ;

The last thing which is used in this thesis for handling images is to cut them.

cv : : Rect r o i ( s t a r t x , s t a r t y , width , height ) ;
cv : : Mat cut ( img , r o i ) ;

In the example above, the instance roi indicates a region of interest which is
represented as a rectangle. This rectangle starts at column start x and at row
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start y in the image. The position indicates the lower left corner from where it
should be cut. Then the width and height of the new image are given and a
new image cut is created.

2.6.2 Working with trained Neural Networks

Having trained a neural network it is used to identify labels on new data. In
the case of this thesis the neural network should be used on live data for robot
localization scoring. Therefore it needs to be embedded in a ROS node which
receives all necessary information, builds an input set with this data and then
uses the input set to estimate the localization quality. Neural networks are
often hard to learn but once they are learned it is easy to classify new input
data [134]. Thus it can be used on live-data and get a real-time localization
status. To use a trained network in a ROS node the OpenCV library is needed.
OpenCV offers an interface for loading a trained Caffe model and using it for
classification. Listing 2.15 shows an example code of how a Caffe model is
loaded using OpenCV and how a new image is classified.

1 # include <opencv2 / dnn . hpp>
2 # include <opencv2 / imgproc . hpp>
3 # include <opencv2 / highgui . hpp>
4 using namespace cv ;
5 using namespace cv : : dnn ;
6
7 i n t main ( ) {
8 Net net = readNetFromCaffe ( network txt , model bin ) ;
9 i n t x = 36 , y = 3 6 ;

10 Mat img = generateNewImage ( ) ;
11 Mat blob = blobFromImage ( img , 1 , S ize ( x , y ) , S c a l a r ( 0 ) ) ;
12
13 net . se t Input ( blob , ” data ” ) ;
14 Mat r es = net . forward ( ” l o s s ” ) ;
15
16 Mat prop mat = r es . reshape ( 1 , 1 ) ;
17 Point c l a s s p t ;
18 double ∗ prob ;
19 minMaxLoc ( prop mat , NULL, prob , NULL, &c l a s s p t ) ;
20 i n t id = c l a s s p t . x ;
21 }

Listing 2.15: Loading the trained Caffe network into ROS using
OpenCV

In line 8 the given Caffe network is loaded using the method readNetFromCaffe.
This is a method which is in the OpenCV library and takes two arguments as
parameter. network txt is the path to the network structure which was used
to train the network and model bin is the path to the .caffemodel file which was
produced after the network was trained. Line 10 generates a new image file
that should be checked using live data retrieved from ROS topics. In line 11 a
blob is created. A blob is a 4D matrix which is created using the given image.
It also optionally scales the image and if needed resizes it to a size of x and
y. The given Scalar is an optional input that may contain mean values which
are subtracted from the image channels. Line 13 sets the new blob as input for
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the loaded network and states where should be stored at. Here the input blob
is stored at position data which is used to load the first layer. In line 14 the
network is propagated forward until the layer loss is reached. The result is then
reshaped to a smaller matrix in line 16 which can then be used to analyse the
calculated label. Line 19 analyses the given result and stores the found label
with its probability in two local variables. In the end one has the variable id
which contains the found label and the variable prob which is a pointer to the
probability for the found label.

2.6.3 AdaBoost

Boosting is a machine learning approach which uses supervised data for clas-
sification. The idea is to combine multiple weak classifier which does not hold
enough information about a certain class itself and combine it to one strong
classifier that can be used for identifying classes [130, 131]. OpenCV offers
an adaptive boost algorithm which takes N training samples (xi, yi), 1 ≤ i ≤ N
with xi ∈ RK and yi ∈ −1,+1. xi is the input vector which contains K different
components that are used for training. yi is the desired label which is either
−1 or +1. There exist several variants of boosting algorithm which all have a
similar structure [52]. In this thesis the standard discrete AdaBoost algorithm
which uses two classes is presented. It uses its N-sized input set and initializes
the weights for each input sample with wi = 1/N. Then a weak classifier fm(x),
the weighted training error εm and the scaling factor cm is computed. Then
the weights are increased for input samples that have been wrongly classified.
After this step the weights are normalized and the steps for finding a new weak
classifier are repeated form M times. At the end a final classifier F(x) is found
which uses the sign of the weighted sum of the input set. Thus, the final discrete
AdaBoost algorithm contains the following steps [108, 90]:

1. Collect N supervised samples (xi, yi), 1 ≤ i ≤ N with xi ∈ RK and yi ∈

−1,+1.

2. Assign initial weights to all samples as wi = 1/N, 1 ≤ i ≤ N.

3. For m in 1 ≤ m ≤M do

(a) Find the weak classifier fm(x) ∈ −1,+1 which is based on the weights
wi.

(b) calculate the error

εm = exp

− N∑
i=1

wiyi fm(xi)

 (2.62)

(c) calculate the scaling factor

cm =
1
2

log
(1 − εm

εm

)
(2.63)

(d) update the weights as

wi =
1
Z
· wi · exp(−yicm fm(xi)) (2.64)

where Z is factor for normalization such that
∑

i wi = 1.
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4. generate new function F(x) for classification with

F(x) = sgn

 M∑
m=1

cm fm(x)

 (2.65)

This algorithm produces a function F(x) which is either −1 or +1. F(x) is
based on the sum of the calculated weights. It is currently implemented in
OpenCV and is used in this thesis to boost the performance of weak classifiers.

2.6.4 Support Vector Machines

A Support Vector Machine (SVM) is a popular tool for classification [141, 69]. It
searches for an optimal hyperplane which can be used to separate two classes.
It takes training samples as input which are classified and outputs an optimal
hyperplane which can be used to categorize new samples. To find the optimal
plane which separates the two classes best is not a trivial task. Consider m
training samples (x(i), y(i)), 1 ≤ i ≤ m where x(i) is a sample which is labelled
with y(i)

∈ {−1, 1}. If those samples are linearly separable, multiple possible
solutions exist which could be applied. Figure 2.23a illustrates the problem on
a two dimensional problem which is linearly separable. The task is now to find

(a) An example of multiple possible
hyperplane solutions

(b) An optimal hyperplane found with
SVM

Figure 2.23: Determining the optimal hyperplane out of multiple solutions
using SVM

the best hyperplane, determined with wo and bo, that maximizes the separation
space between the two classes

wT
o x + bo = 0 (2.66)

To apply SVM one has to define support vectors. Those are the samples x(s)

which are closest to the separation hyperplane. They are used to define an
optimal separation hyperplane. The evaluation function is then

h(x) = wT
o x(i) + bo (2.67)

which is used to classify new samples x. This is done based on the sign of h(x).
The distance of a sample x(i) is given as

r =
h(x(i))
‖wo‖

(2.68)
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where ‖wo‖ is the euclidean norm

‖w‖ =

√∑
i

w2
i . (2.69)

Since ‖wo‖ and bo can be scaled without changing the separation hyperplane,
one can choose the support vectors x(s) such that

h(x(s)) = wT
o x(s) + bo = ±1, for y(s) = ±1. (2.70)

The distance of a support vector is then defined as

r =
h(x(s))
‖wo‖

=
±1
‖wo‖

(2.71)

and the maximized margin is then given as

ρ = 2|r| =
2
‖wo‖

. (2.72)

To find the optimal hyperplane one has to maximize the margin. This can be
done by minimizing 1/2‖w‖2. The optimization problem is then given as

wo = arg min
w

1
2
‖w‖2 (2.73)

and can be solved with the help of Lagrange multipliers

J(w, b, α) =
1
2
‖w‖2 −

m∑
i=1

αi[y(i)(wTx(i) + b) − 1] (2.74)

where αi ≥ 0 are Lagrange multipliers. The optimal solution can then be found
in the saddle of

min
w

max
α

J(w, b, α). (2.75)

The Lagrange multipliers αi can then be found by using the dual form and
solving it with the help of quadratic optimization

Q(α) =

m∑
i=1

αi −
1
2

m∑
i, j

αiα jy(i)y( j)xT(i)x(i) (2.76)

where
m∑

i=1

αiy(i) = 0, and αi ≥ 0. (2.77)

The Lagrange multipliers can then be used to find the solution as a linear
combination of training vectors as

wo =

m∑
i=1

αiy(i)x(i),

bo = y(i)
−wT

o x(i).

(2.78)
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If data samples are not linearly separable, so-called kernel methods can
be applied. Those methods take the training samples which are not linearly
separable and map them into a higher dimensional space with the use of some
non-linear transformation ϕ(.) [28]. Such a kernel function returns the inner
product of data points within some space

K(x1, x2) = ϕ(x1)Tϕ(x2). (2.79)

Kernels allow to operate in high-dimensional feature spaces without having to
compute the coordinates within this space. This is also called the kernel trick
and has better performance than explicit computation methods.



Chapter 3

Related Research

This section discusses literature and research topics that are related to this
thesis. There exist various different research areas that are currently quite
popular and many publications concerning those areas are presented in this
thesis. This section tries to cover all related research areas and presents the latest
progress which was achieved within these areas. Therefore new and valuable
literature that is connected with this thesis was selected. Another interesting
search phrase is the exact topic itself, hence also research on estimating the
robots location accuracy with neural networks and particle filters was done.
Surprisingly, no publications were found that exactly match this topic. Most of
the publications on robot localization focus on the process of localizing a robot
and not on measuring its accuracy. Also research showed no valuable results
on using neural networks for analysing particle filters. Instead it was often
used to improve the accuracy of neural networks by combining both methods.

Before searching related research one has to determine research areas that
are important within the thesis. Those areas are then examined to find valuable
publications. The found publications are then analysed on their relevance and
collected within this section. By evaluating and summarizing those research
areas one can then design an overall concept that can be used to solve the
problems which were defined in section 1.3. The most related research areas
that are addressed in this thesis are

• Latest research on robot localization and its accuracy

• Convolutional neural networks and its progress

• Application of long-short term memory networks

• Pattern recognition with neural networks

• Development of particle filters

• The use of particle filters in combination with neural networks

Those research areas are investigated carefully to gain enough information that
is necessary to address the problem formulations of this thesis and to set a
knowledge base that is up to date such that the results are valuable and not
outdated.

60
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At first the current topics in robot localization are analysed. Therefore it is
searched for promising methods that might be useful in the near future. Then,
the latest progress on CNNs and LSTMs is discussed and current applications
are analysed. After that, it is searched on how pattern recognition can be
done by using neural networks and how particle filters might be applied to
different topics. Also the combination of particle filters and neural networks is
presented.

3.1 Robot Localization and its Accuracy

The first topic which is discussed in here is the current research in robot local-
ization and in analysing the accuracy of some localization methods. Therefore,
two methods for feature detection are shown that use only a grid map and a
laser scanner. Both feature detectors aim to detect significant corners for robot
localization. Then a publication on the localization accuracy of a robot that uses
particle filters in combination with scan matching is discussed.

3.1.1 Using the Laser Scan for Feature Detection

A novel approach is proposed by Kallasi et al. who introduced a new method
for detecting features to localize and navigate robots [76]. They propose two
new feature detectors called Fast Adaptive Laser Keypoint Orientation-Invariant
(FALKO) and Orthogonal Corner (OC). Those two detectors are an improvement
of the Fast Laser Interest Region Transform (FLIRT) [148] approach that can be used
to detect high curvature points in laser scan images. While the FLIRT method
searches for general features which depend on the viewpoint of the robot,
FALKO and OC are designed to detect stable features like corner walls. The
difference between the two proposed methods is that FALKO detects features
by selecting meaningful neighbours and scoring the cornerness of a feature and
OC uses orthogonal alignments to detect important features.

A good feature detector is important for robot localization since those fea-
tures can be used to map a laser scan into a given environment. If a detector can
find a lot of meaningful features in the laser scan that look nearly the same in
the grid map, one can match the scan into the environment with high accuracy.
This thesis now presents the two detectors that are proposed by Kallasi et al.
[76].

Orthogonal Corner Detector

The orthogonal corner detector uses the fact that indoor environments often
have many straight walls that are aligned in an orthogonal direction. It uses the
Hough Transform HT(θ, r) and its Hessian representation of scan points S to
map each point into the hough parameter space as described in Section 2.3.1. For
transforming scan points into the Hough Space only a subset of the parameter
space of size nθ × nr is used where the cells are centered in [θt, rs], with 0 ≤
t < nr and 0 ≤ s < nθ. Here θt is defined as θt = t4θ with 4θ = π/nθ and
rs = 4r(s−nr/2). This is then used to calculate the Hough Spectrum HS(θt) [20]
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which is defined as the squared sum of all distances in the Hough space

HS(θt) =
∑
rs∈r

HT(θt, rs)2. (3.1)

The OC detector then determines the dominant direction θ̄which is the absolute
maximum of the Orthogonal Hough Spectrum

θ̄ = max(OHS(θt)) = max(HS(θt) + HS(θt+nθ/2)). (3.2)

Here θt+nθ/2 is used since the cells are centered. The dominant direction is then
used to rotate every scan point pi by −θ̄, resulting in a new set S̄. Every point
pi defines its own neighbourhood radius ri which depends on the distance to
the viewpoint ‖pi‖. The radius is then calculated as

ri = a exp(b‖pi‖) (3.3)

where a, b are parameters which can be chosen individually. This can then be
used to define three neighbour sets as

C(pi) = {p j ∈ S̄ : ‖p j − pi‖ < ri} (3.4)

Cx(pi) = {p j ∈ C(pi) : |p j,x − pi,x| < w ∧ |p j,y − pi,y| > w} (3.5)

Cy(pi) = {p j ∈ C(pi) : |p j,y − pi,y| < w ∧ |p j,x − pi,x| > w} (3.6)

where w is a threshold on point alignment. One can then score the neighbour-
hood of a point by checking the alignment into both directions. The larger a Cx
and Cy set is, the higher is its score. The values for determining the score are
defined as nx = |Cx(pi)| and ny = |Cy(pi)|. Those values are then used to score
the neighbourhood of a point and check if it is a valuable corner as

score(pi) =
nx + ny

ε + |nx − ny|
(3.7)

where ε is the allowed error. This score can then be used to score corners and
thus find out how well the given scan matches int its environment.

FALKO Detector

The Fast Adaptive Laser Keypoint Orientation-invariant detector uses 2D range
data to detect edge intersections. It computes its neighbours like in the OC
detector, Equation 3.4. This set is then split up into two subsets

CL(pi) = {p j ∈ C(pi) : j < i}, (3.8)

CR(pi) = {p j ∈ C(pi) : j > i}. (3.9)

Then the cardinality of a point is checked and if |CL| < 2 or |CR| < 2 the point is
thrown away from the possible corner set. Then the two endpoints xL and xR
for a corner candidate are calculated. They are defined as

xL = p jmin , jmin = arg min
j
{p j ∈ CL(pi)} (3.10)



CHAPTER 3. RELATED RESEARCH 63

xR = p jmax , jmax = arg max
j
{p j ∈ CR(pi)}. (3.11)

These variables are then used to form a geometrical triangle 4pi, xL, xR which
is then evaluated. The connection between xL, xR is the base of the triangle
xL, xR. If the length of this base line or the height of the triangle is lower than
some defined threshold ri/β, the point is thrown away. Here, β is a parameter
which has to be chosen. Then a polar grid is used on a point pi that separates
the neighbourhood into circular sectors. Then the neighbour points are used to
compute the orientation based on the candidate point, such that

φ j,L =

⌊
sn

2π
tan−1

(
p j,y − pi,y

p j,x − pi,x

)⌋
,∀p j ∈ CL(pi) (3.12)

φ j,R =

⌊
sn

2π
tan−1

(
p j,y − pi,y

p j,x − pi,x

)⌋
,∀p j ∈ CR(pi) (3.13)

where sn is the number of sectors that are used in the polar grid. One can now
define a distance function for quantized orientations in the sector units as

dθ(φ1, φ2) =
((

(φ1 + φ2) +
sn

2

)
mod sn

)
−

sn

2
. (3.14)

The distance function can then be used to score the corners of a point candidate
and its neighbours. Therefore the left and the right side are calculated as

scoreL(pi) =

jmin∑
h=i−1

jmin∑
k=h−1

|dθ(φh,L, φk,L)| (3.15)

scoreR(pi) =

jmax∑
h=i+1

jmax∑
k=h+1

|dθ(φh,R, φk,R)| (3.16)

which can then be summarized into one score function which measures the
alignment of two point sets.

score(pi) = scoreL(pi) + scoreR(pi). (3.17)

FALKO and OC are both approaches that are a good to detect features and
to score them. By detecting features in the environment and in the scan, one can
try to match them and thus localize the robot. Those features can also be used
as additional boosting parameter for AdaBoost of Support Vector Machines
when it comes to improving the localization scoring accuracy.

3.1.2 Combining Particle Filters with Laser Scan Matcher

A publication which was presented in 2012 by Röwekämper et al. evaluates
the position accuracy of a mobile robot localization method that is based on
particle filtering and laser scan matching [127]. For evaluation they used a mo-
tion capture system that tracks the position of a robot within its environment
with high accuracy [103]. The localization system which was used in their
evaluation was a combination of basic state-of-the-art approaches. Therefore
Monte Carlo Localization (see Chapter 2.3.4), a scan matching procedure [155]
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and the Kullback-Leibler distance sampling (KLD-sampling) [50] were used.
KLD-sampling is used to improve the efficiency of the particle filter by dynami-
cally adapting the number of samples. Thus, if the robot is focused only a small
number of particles is used whereas a large number of particles is needed if
the uncertainty of a location is high. Scan matching algorithms try to improve
the localization of a robot by matching a given laser scan to a grid map. This
is achieved by slightly rotating and translating the scan image and checking
whether the adoption improves the matched scan points.

Röwekämper et al. defined three requirements for the localization approach
[127]. It should be efficient, robust and accurate. To fulfill these requirements
some adoptions on the MCL algorithm were made. The first step was to
estimate the robots pose xt at time step t. This is done with the Monte Carlo
localization as

p(xt|z1:t,u0:t−1) ∼ p(zt|xt)
∫

x′
p(xt|x′,ut−1)p(x′|z1:t−1,u0:t−2)dx′ (3.18)

where u0:t−1 is the list of actions which were executed by the robot so far, z0:t is
the observation sequence and p(xt|xt−1,ut−1) is the motion model that states the
likelihood of the robot ending in state xt after executing action ut−1 in state xt−1.
p(zt|xt) is the probability of observing zt when staying at position xt.
To improve the performance of the MCL algorithm, KLD sampling is applied.
This leads to the fact that particles are only generated when needed and thus
improve the performance. While the robot is not completely sure about its lo-
calization status new particles are generated. When it has enough knowledge
about its position the particle set is kept small to increase the performance. To
further improve the MCL algorithm and make it more precise laser scan match-
ing is applied. Therefore local sensor measurements are stored in a grid map
and compared during runtime. The variant which is used by Röwekämper et
al. is the iterative closest point (ICP) principle. This method is used as post
processing step. Thus the output of the MCL algorithm is used as input for
the scan matcher. To make the localization system even more robust, beams
that are not well explained by the environment are masked by integrating over
the particles. This improves the localization behavior. Using the localization
system as described above, Röwekämper et al. examined a robots localization
accuracy in a static and dynamic environment [127]. They managed to keep the
localization error low at only a few millimeters. They also state that the local-
ization error in a dynamic environment never exceeded a translational error of
17mm and a rotational error of 0.15 degree. Although these results sound quite
promising one cannot derive further informations on larger environments that
are highly dynamic.

Röwekämper et al. also summarize other localization approaches which are
currently researched [127]. Many of them are based on the Monte Carlo Lo-
calization method or on the Extended Kalman Filter (EKF). The most common
sensors for robot localization are odometry sensors and range sensors but also
cameras, RFID chips, GPS receivers and wireless receivers are gaining more and
more popularity. Some localization approaches which use perspective cameras
store visual features in a database and try to match them. Those features are for
example so-called SIFT features [137]. Another presented method is the combi-
nation of Monte Carlo Localization with stereo cameras and SIFT features [46].
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An current approach for the Extended Kalman Filter that was presented by Cho
and Kim is to use chirp-spread-spectrum ranging [22]. Another method that be-
comes increasingly popular localizing robots by using wireless signals [44, 48].
The main advantage of this method is that it is quite cheap but it does not offer
a high accuracy yet. In general it is hard to say which localization approaches
are the best since all of them have advantages and disadvantages. Mostly it
depends on the desired accuracy, on the performance, on the complexity or on
the price.

3.2 Progress and Application of CNNs

This section focuses on the progress of convolutional neural networks and their
practical applications. CNNs are a promising structure for neural networks
and increasingly gain popularity. They excel in classifying images and thus
also have their main application in image classification. Due to increasing
popularity the CNN is a hot research topic and it is applied in various research
areas. This section especially focuses on the current fields of application which
are promising research topics. First feature detection on images is discussed
and then a publication is discussed that detects dynamic obstacles in grid maps
with convolutional neural networks.

3.2.1 Feature Detection on Images

The main application of CNNs is the detection of features within images. There-
fore an given image is used as input of a neural network and sent into convo-
lutional layers which store single features in feature maps. Those features can
then be used to recognize patterns for classification.

Modern CNN detecting Tower Lighthouses

A simple and modern example is presented by Shamov and Shelest [139]. They
present the main features of convolutional neural networks and show how
they are nowadays applied for feature detection. Therefore they created the
task of detecting tower lighthouses from a video stream. The main part of their
work focuses on presenting popular activation functions which can be used
for neurons. A common activation function which was already presented in
Section 2.4.1 is the sigmoid function. It is defined as

σ(x) =
1

1 + e−x (3.19)

and offers easy computation as well as an derivative which is continuous.
Another popular activation function is the hyperbolic tangent function. Like the
sigmoid function it is easy to compute and offers a derivative which continuous.
Another property is that it is antisymetric. It is defined as

σ(x) =
e2x
− 1

e2x + 1
. (3.20)

The last activation function which is presented here is the Rectifier Linear Unit
(ReLU). This was also used by Shamov and Shelest to train their CNN. This
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function filters negatives and otherwise returns the given x value. It is defined
as

σ(x) = max(0, x). (3.21)

By using ReLUs as activation function and a GPU for increasing the training
performance, Shamov and Shelest managed to receive an accuracy of 69−73% in
testing with a simple network structure [139]. They also state that this accuracy
can be further improved by conducting further trainings.

This study is interesting for this thesis because it shows that modern CNNs
have a lot of potential in recognizing features. It also shows that complex
systems are not always necessary to train an acceptable solution.

Road Detection with CNNs

A challenge which becomes increasingly popular due to self driving cars is the
detection of free road surfaces. This is needed to avoid obstacles on the road,
to support path planning and enhance decision making. Especially when it
comes to unclear situations like invisible lane markings a good road detection
is necessary. Often simple camera images are used in combination with deep
neural networks to detect free road surfaces [100, 84]. In [16], Caltagirone
et al. present a road detection approach using light detection and ranging
(LIDAR) devices and fully convolutional neural networks (FCN). By taking
the point cloud from the LIDAR device and generating an image from the top
view they managed to train a convolutional neural network. The top view was
chosen because they think that it better represents the current situation than a
normal camera perspective. Caltagirone et al. showed that their approach of
generating top view images leads to an efficient network that has high accuracy.
They managed to detect 95.32% of the road surface correctly, using the KITTI
road benchmark data set [53]. Another advantage of their method is that it is
fast and usable for real time applications on GPU accelerated hardware.

Both advantages of this study can be applied in this thesis. First of all, the
point cloud of the particle filter could be represented from the top view on an
image since this seems to achieve acceptable results. Also it is shown that fully
convolutional neural networks can be applied in real time, which is also needed
to estimate a robots localization status.

3.2.2 Dynamic Object Detection in Grid Maps

A new application of convolutional neural networks is the detection of dynamic
obstacles in grid maps. Piewak et al. use a grid map and a deep neural
network to detect whether grid cells within a map are moving or not [115].
Their difference to a normal tracking approach, like particle filters, is to use
the complete map grid with a top view as input image. They also proposed
an approach which is optimized for real time applications. Another advantage
that occurs with the use of grid maps is that this approach does not depend
on specific sensor types. It is applicable on any grid map without the need to
restrict the sensor types that recorded the map. The aim of their publication
is to classify every pixel within an image that represents a dynamic occupancy
grid map (DOG). For better results the grid map is preprocessed. Therefore the
information of the DOG is extracted for each cell. A cell contains information
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about its occupancy status which is between 0.0 (free) and 1.0 (blocked). It also
contains a velocity information for each cell which is a vector in (x, y) direction
on the map. This is received from a velocity distribution that is calculated with
the help of a particle filter. The particles of the filter can be used to calculate the
mean velocity voverall = (vx, vy)T as well as the variance of the x and y velocity
Var(vx),Var(vy). This can be used to calculate the Mahalanobis distance [159]
m as

m2 = vT
overallΣ

−1vT
overall (3.22)

where Σ is the covariance matrix of the particle velocities. These values and a
boolean variable Occ which indicates whether the cell is free or not are used to
create five different combinations of RGB images. Other variables which are
used to create RGB images are the norm of the velocity which is calculated as

vx,norm =
vx√

Var(vx)
, vy,norm =

vy√
Var(vy)

(3.23)

and the overall variance of the velocity

Varoverall = Var(vx) + 2Cov(vx, vy) + Var(vy). (3.24)

Based on the preprocessed images, a convolutional neural network is trained
which maps each input pixel to one output pixel. For applying backpropagation
an additional weight matrix C is used in the cost function J(θ). The cost function
itself is based on the multinomial logistic loss and defined as

J(θ) = −

 m∑
i=1

K∑
k=1

C(y(i))1{y(i) = k} log Q(i, k, θ)

 (3.25)

with
Q(i, k, θ) = P(y(i) = k|x(i);θ) (3.26)

and C contains a weight for each of the K classes

C =
[
c(1), ..., c(K)

]
. (3.27)

By applying this cost function Piewak et al. managed to classify each grid
cell from the input [115]. The outcome was a grid map which contained only
dynamic obstacles. They achieved a test accuracy was 97.2% and thus higher
than the used baseline method for comparison. The baseline method which
was used separates static and dynamic obstacles by defining a threshold on the
Mahalanobis distance.

This publication is discussed in this thesis because a particle filter for robot
localization performs best in static environments. The proposed method for
detecting dynamic obstacles can be used to remove moving obstacles when
predicting the robots location. This might yield in a better performance of the
particle filter and thus increase the localization score. A problem with this
method tough is that it is applied on a complete grid map. This might lead to
a problem when the input grid is large because the training time will increase
tremendously. It also seems like the detection of dynamic obstacles is only
applicable within the trained map. Other map structures might not achieve the
same results and thus every map needs to be trained on its own.
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3.3 LSTMs and their Application

The next topic that is needed for this thesis are long-short term memory net-
works as discussed in Section 2.4.4. To create a recurrent structure that can
keep up with the literature, some recent research is discussed. The most pop-
ular application of LSTM networks is sequence classification like e.g. speech
recognition [120, 63]. Therefore one needs to define a vocabulary that is used
in training. Also language models are trained which learn the probability
distribution of word sequences [142].

Recurrent neural networks can also be used for prediction and simple clas-
sification. Those two abilities are interesting for this thesis. Prediction is a topic
which can be used to predict delocalizations of a robot. Thus one can prevent
or act before the actual delocalization occurs. Simple classification can also be
used for state estimation of a robots localization status since one only needs to
know whether the robot is delocalized or not.

This section shows how research applies LSTM networks nowadays to pre-
dict certain tasks. Therefore different fields of application are addressed like
the stock market or solar power stations. Also some recent publication on
classification with a LSTM network is discussed.

3.3.1 Forecasting with LSTMs

Predicting future events is a topic that fascinates human minds. If one could
collect enough information to reliably forecast a future state one could solve
many problems that are currently unsolved. LSTM networks make claim to
predict the future. Although they might not be able to predict complex future
events, they are able to use given training data and train a pattern that makes
it possible to forecast events. The prerequisite for successfully conducting this
task is that the data contains enough information about the desired prediction.

Solar Power Prediction

Gensler et al. wanted to see how good LSTM networks can really predict a
future event [56]. Therefore they compared different types of deep learning
networks on a defined task. The task was to forecast the power production of
solar panels. With this task they want to provide a reliable power forecasting
method that allows to efficiently operate within a solar power station. For
comparison they used a multilayer perceptron (MLP) architecture which is a
simple neural network that consists only of fully connected layers. As discussed
in Section 2.4.1, the output for every single neuron which is used within such a
network is computed as

out = f (
inputs∑

i

(xi · wi + bi)) (3.28)

where xi is a input of a neuron which is weighted by wi. bi is a given bias which
is used within activation function f . Another network architecture that was
used is the deep belief network (DBN). This is a method that can be separated
in two steps for forecasting. The first step is to reduce the dimensionality
of the input. This is done by conducting feature learning like in CNNs. Then
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additional layers are added to conduct the prediction of the output. Every layer
consists of a two layer artificial neural network (ANN). Those two layers are
used like a funnel. Thus the first ANN helps to learn better features within the
data. This kind of layer architecture is also referred to as Restricted Boltzmann
Machine (RBM) [128]. Often a DBN is trained like a unsupervised network at
the beginning to abstract the data such that the feature set is reduced. Then
an artificial neural network is appended which is trained using the labelled
training set. Those two deep learning architectures are then used to evaluate
a LSTM network and a LSTM network which was combined with an Auto
Encoder. An Auto Encoder is a multilayer perceptron network which follows a
specific network topology. To make a reliable statement Gensler et al. used five
different error measurements for comparing the deep learning architectures. All
of them take N samples as input and compare the measured power production
x of a solar power station with its predicted power production x′. The first
error measurement which was used is the root-mean-square-error (RMSE).
Another error function is the average absolute deviation (AbsDev) and the mean
absolute error (MAE). Also the Bias and the correlation between measured and
predicted outcome was measured. The definition of the different error functions
which were used are shown in Equation 3.29. In the correlation function x̄
represents the median of the given data set.

RMSE(x, x′) =

√√
1
N
·

N∑
n=1

(x′n − xn)2

AbsDev(x, x′) =
1∑N

n=1 xn
·

N∑
n=1

|x′n − xn|

MAE(x, x′) =
1
N
·

N∑
n=1

|x′n − xn|

BIAS(x, x′) =
1
N
·

N∑
n=1

(x′n − xn)

Correlation(x, x′) =

∑N
n=1(x′n − x̄′) ·

∑N
n=1(xn − x̄)√∑N

n=1(x′n − x̄′)2 ·
∑N

n=1(xn − x̄)2

(3.29)

The results of the experiment for solar power forecasting showed that in nearly
all error measurements the Auto Encoded LSTM performed the best. MLP
networks had a lower error in the Bias but in the overall comparison the Auto-
LSTM network performed the best. This also shows that recurrent networks and
especially long-short term memory networks excel at their task of predicting
future events.

Prediction of the Stock Market

Another publication that uses LSTM networks for prediction is the work of
Nelson et al. [106]. They used the recurrent network architecture for predicting
the price movement on the stock market. Therefore they gathered data from
different stocks over a period of seven years. Since the stocks have different
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prices and because the variance between time series needs to be stabilized they
normalized the data to

x(1)
i = log(pi) − log(pi−1) (3.30)

where pi is the price at time step i and x(1)
i is the first input for the LSTM

network. To not only predict the data on the stock price 175 other indicators
that are often used for predicting the stock market are generated and used as
input to the network. The label yi for each input sample is a binary output that
indicates an increase or decrease of the closing price at the next time period.
Thus the label is calculated as

yi =

1 , if pi+1 > pi

0 , else.
(3.31)

The results of this experiment were that the LSTM outperforms other prediction
methods as well as a pseudo-random prediction. In general the accuracy of
roughly 54.6% is chastening. This accuracy seems to be roughly the same like
with random outputs. To show that it is better than random they also evaluated
the output with a pseudo random number. This method yields an accuracy of
48 − 50% on the same sets. Although the result is not far away from random
it showed a small improvement and that LSTMs might score better accuracies
when investigated a bit more. Also one has to admit that it is difficult to
predict the progress of a stock without investigating the complete market. This
publication is interesting for this thesis not only because of its prediction task
but also on the fact that the network was trained to predict a binary output.
This can also be used in this thesis to classify the position of a robot as localized
or delocalized.

3.3.2 Classification with LSTMs

Another task which can be done with LSTM networks is classification of given
samples. This is usually a task of MLP or CNN networks but research has
also shown that recurrent network architectures can be used for classification.
Especially when temporal information like the development of a sample set or
the position of an object should be included.

Identifying Targets for Military Applications

A good example is a recent research that was done by Jithesh et al. [74]. They
used a LSTM network in the military sector to detect targets on a high resolution
range profile (HRRP) based radar. Their goal was to identify given types of
targets which are recorded on a radar. Therefore three different target types
were defined and used to train a LSTM network. For example, one type was
a model of a military aircraft and another model a missile. The data for the
HRRP radar was prepared through an electromagnetic simulation. For each
target model different simulations were done and recorded. Those simulations
were then labelled and trained using a LSTM network. The results of this
study were astonishing. It was shown that the target models could be classified
without any ambiguity. They tested 100 different profiles and all of them were
identified correctly.
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3.4 Pattern Recognition with Neural Networks

Pattern recognition is a popular task in visual computing. It is about detecting
specific patterns within an given input. In visual computing these inputs
often are images which are used to detect certain structures like humans. A
lot of different approaches are presented which state to be the best pattern
recognition method. Since it is impossible to compare every approach with
each other it is difficult to determine the best solution for a given problem. The
pattern recognition methods that are presented in this section focus on recent
approaches which were done to recognize patterns in different input formats.
They also rely on a neural network structure since this is a main aspect of this
thesis. First a recent pattern recognition approach is presented that aims to
detect bird pest. Then a SVM approach for character recognition is presented.

Detecting the Bird Pest with Pattern Recognition

For winegrowers birds are a huge problem. Since the very first beginning of
wine growing it is a challenge to keep vermin away from the vineyards. To
do so many different protection mechanisms were developed which aim to
scare away the birds. The problem of such systems nowadays is that they are
often loud, expensive and only activate in certain time periods. To improve the
efficiency of such a system Dolezel et al. developed a system that detects birds
[38]. Their system consists of a central control unit that controls the overall
system, detection units that search for birds and scare units that are meant to
scare birds off. The goal is to detect birds in specific areas and only do an
frightening maneuver within this area. The part which is interesting for this
thesis is the detection unit. Those units are spread all over a vineyard and
record sounds. This sound is then divided into sequences of constant length so
that they can be used to extract features. It is said that the feature extraction is
the most important step for a good pattern recognition model. Therefore they
did a linear prediction coding (LPC) [95]. LPC is a successful method for sound
recognition which can approximate a given sound sample according to

s̄(n) =

p∑
k=1

αks(n − k) (3.32)

where s(n) is the given sound sample, p is the number of LPC coefficients,
αk is the k-th LPC coefficient and s̄(n) is the approximation of the given sound
sample. To effectively predict bird patterns the error between the approximated
and current sound has to be minimized. It is defined as

E =

N∑
n=1

e(n)2 (3.33)

where N is the number of sound samples and e(n) = s(n)− s̄(n). To minimize the
error E one has to set the derivative to zero w.r.t. each parameter in α. Having
this done one obtains the values for αk. The advantage of the LPC approach
for feature extraction is that it can be efficiently solved and that the error of
the approximation can be increased with the number of LPC coefficients but
stays limited. This approach is then used to generate a set of training data that
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was acquired by recording different bird species. The training data was then
used in a deep neural network and trained on different combinations of sound
sequence length and number of LPC coefficients. The network was trained
with the error function

Eval = −
1
N

N∑
i=1

[o(i) ln(y(i)) + (1 − o(i)) ln(1 − y(i))] (3.34)

which is believed to be far more suitable than a usual mean squared error
function. Here the error function runs over N samples, o(i) indicates the desired
output and y(i) is defined as the actual output. The result of this study was
that they managed to train a neural network for pattern recognition with an
accuracy of 89.6%. This is a promising result and shows that patterns can be
detected with high accuracy by using neural networks. Although this study
was conducted on sound signals, it is an important literature topic for this thesis
because it shows off that a deep neural network can be used to detect specific
patterns from a given input. For this study only a deep learning network
with simple hidden layers was used. This also shows that good results can be
achieved by using simple neural networks that do not contain convolutional
layers.

Recognizing Characters on Licence plates with SVM

Recognizing licence plates is a job which is often still done by humans. With an
increasing number of cars also more images have to be examined to determine
a drivers car. Carata and Neagoe presented a method which may automate the
process of detecting licence plates in images [18]. They used a pulse-coupled
neural network (PCNN) for segmenting images and then applied a Support
Vector Machine on the image segment to detect the characters on a licence
plate. A PCNN is a neural network that is inspired by biology and based on a
similar structure that was found in the visual cortex of mammals. This method
is used to obtain a binary image on the given segmentation for better character
recognition.

The processed image is then used by a Support Vector Machine classifier to
recognize a character in every segmentation that was produced by the PCNN.
SVM uses a decision hyper plane which is tried to optimize such that it separates
the character classes. The results of this publication show that the combination
of PCNN and SVMs for pattern recognition to a good job in detecting charac-
ters on licence plates. Depending on the SVM kernel and the input size, the
accuracy varies between 92 − 96%. Compared to reference methods this is an
improvement of roughly 15%. This research is interesting for this thesis be-
cause it is shown how patterns can easily be recognized using only black-white
images for pattern recognition. Although the input image was a normal image,
PCNN converted it into a binary image consisting only of black and white pix-
els. This knowledge can be used when it comes to designing input samples for
predicting the localization state of a robot.
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3.5 Improvements of the Particle Filter

This section now focuses on the particle filter and proposed improvements.
Since the particle filter is one of the most popular methods for state estimation,
a lot of research is done to improve its accuracy and performance. In theory
the state of a complex system can be estimated correctly by sending out in-
finity particles. This sounds great at the first moment but with an increasing
number of particles the efficiency decreases too. This is the point where many
researches start their work. They try to decrease the number of particles while
offering the same performance. Others try to adapt the number of particles
based on the current state. If the PF is sure about its state the number of parti-
cles is decreased whereas the number is increased if the uncertainty increases.
This is called adaptive particle filtering [34]. The particle filter improvements
which are proposed in this section is part of recent research which claims to be
different than other approaches. If promising methods are found, the state esti-
mation of a robots localization status could be improved in further research by
improving the current particle filter. First a new tracking method is presented
that applies particle filters on voxels in the environment. Then a method for
robust localization that uses lanes as markers is presented where the weight
update step and resampling step is combined.

Tracking Objects with Particle Filter and Voxels

Morales et al. presented a method for object tracking by using a 3D occupancy
grid as environment representation and a particle filter based approach for
detecting and tracking obstacles [102]. Therefore they took a 3D point cloud
as input and converted it into a occupancy grid. To do so an empty grid is
created and filled with empty voxels. Then for each voxel g a set of points P j is
searched within its neighbourhood. The size of the set P j (‖P j‖) then indicates
the occupancy probability of the voxel. The probability also depends on the
distance Z between the voxel and the camera. The probability of occupancy for
voxel g can be calculated using its centered position gc = (gx gy)T

P(occ|g) =
‖P j‖√

(u1 − u0 + 1) · (v1 − v0 + 1)
(3.35)

with

u0 = (gx −
vs

2
) ·

fx
2

u1 = (gx +
vs

2
) ·

fx
2

v0 = (gy −
vs

2
) ·

fy

2
v1 = (gy +

vs

2
) ·

fy

2

(3.36)

where vs is a user defined size of a voxel and fx, fy are the focals in x, y. The
voxel grid is then used for the prediction step. Therefore a particle distribution
is used that is based on a motion model for each particle and also takes the time
between two frames into account. While some researchers proposed a particle
filter for indicating the occupancy of a voxel, Morales et al. use the occupancy
probability as described above and thus only have to compute the speed of
each voxel with the particle filter. The weighting and resampling step is based
on the assumption that older particles represent real speed vectors with higher
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probability. Each voxel g holds a list of its containing particles sorted by age.
When defining a maximum number of particles for a voxel τmax, the resampling
process only has to remove particles from this list. The main speed vector for
a voxel can then be calculated with different approaches. One is the weighted
mean. It uses the speed vectors vx, vy, vz of a particle qi and its age ψ. The age
is represented by the number of cycles which the particle survived. The main
vector of voxel g can now be calculated as

Vg =

∑
qi∈Qg

qi(v j) · qi(ψ)

‖Qg‖
(3.37)

where j ∈ x, y, z and Qg is the particle set of voxel g. The voxels are then
combined into clusters which are used to track objects within the grid map.
For validation they used different error measurements and configurations. The
configuration changes consist of changes like the voxel size vs, the maximum
number of particles τmax or the maximal speed. The result showed that a fast
and powerful tool for detecting and tracking object was proposed. It can be
applied for 3D point clouds in autonomous driving. The combination of particle
filter and voxelization showed a good performance increase while keeping
the accuracy high. This might be an interesting point for robot navigation
and localization when a 3D sensor like LIDAR can be used. This might offer
complete new possibilities in localization scoring and robot localization itself.

Robust Lane Localization with PF

A technique which tries to optimize the localization on lines is presented by
Rabe and Stiller [118]. they proposed a method for optimizing a vehicles
localization within the environment by using a particle filter and sensors like
a lane detector. Their approach is to optimize the performance of the particle
filter by combining the weight update step and the resampling step. Before the
weight update takes place the action uk is applied, resulting in the intermediate
belief which is calculated as

bel(xk) = p(xk|z1:k−1,u1:k) (3.38)

where k indicates the current time step, xk = (xk yk θk)T is the 2D pose of a
particle, z1:k−1 is the sequence of observations and u1:k is the action sequence
that was applied. THis intermediate belief is then used to apply the sensor
measurement zk, resulting in the posterior belief

bel(xk) = p(xk|z1:k,u1:k). (3.39)

After the weight update the resampling phase takes place. This is done because
the weight of some particles tends to go towards zero while others get more
important. In the resampling step less important particles are thrown away
while more important ones are duplicated more often. This is the point where
Rabe and Stiller join in [118]. They state to improve and combine the weight
and update steps by applying an idea of the Kalman filter. They make the
assumption that the intermediate belief bel(xk) follows a normal distribution
N(µp, σ2

p). Also the observation probability is defined as a normal distribution
N(µm, σ2

m). In this publication the observation is the lane-marking observation.
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This is used to determine the posterior distribution which is proportional to
N(µc, σ2

c ) where

µc =
µpσ2

m + µmσ2
p

σ2
m + σ2

p
, σ2

c =
σ2

mσ
2
p

σ2
m + σ2

p
. (3.40)

The median and variance for the intermediate distribution can be approximated
as

µ̂p =

∑N
i=1 wixi∑N

i=1 wi

σ̂2
p =

1
N − 1

∑N
i=1 wi(xi − µp)2∑N

i=1 wi

(3.41)

where N is the number of particles and wi are the corresponding weights for
each particle. This can now be used for conducting the resampling step. This
is done by shifting each particle by

4xi = µc −
σc

σ̂p
µ̂p +

(
σc

σ̂p
− 1

)
xi. (3.42)

This approach is not yet robust since only normal distributions can be mod-
elled. This might be an issue e.g. at the initialization step where the particles
are distributed based on an uniform distribution. To overcome this issue a
more robust approach is presented which models the intermediate belief as a
combination of an uniform distribution and a normal distribution of the form

g(x,W,Θ) = π1 f1(x,W, θ1) + π2 f2(x,W, θ2)
= π1U1 + (1 − π1)N1

(3.43)

with parameters

Θ = {θ1, θ2} = {{π1, a1, b1}, {π2, µ1, σ1}} (3.44)

where π2 = 1 − π1 and

Ui =U(x, ai, bi) =

 1
bi−ai

, if x ∈ [ai, bi]
0 , else,

Ni = N(x, µi, σi) =
1√

2πσ2
i

exp

− (x − µi)2

2σ2
i

 . (3.45)

This can then be used to estimate the parameters Θ and the assignment proba-
bilities. The result of this study shows that a lot of performance optimizations
were done whereas the accuracy loss was only small and is still better than by
using simple normal distributions.

The publication from Rabe and Stiller [118] shows that a lot of performance
optimization can be done by combining the weight update and resampling step.
Although the publication focuses on sensors for line-marking observations this
also might be important knowledge for the improvement of particle filters on
robot localization using 2D range sensors.
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3.6 Combining Particle Filters and Neural Networks

The last research topic that is closely related to this thesis are particle filters
and their combination with neural networks. This also describes the goal
of this thesis. Taking a particle filter and using its information for training
a neural network. However, research does not address the exact same topic.
Particle filters are a popular method which is known to support various machine
learning approaches and help them to solve complex tasks. Thus, literature
combines particle filters and neural networks in a way such that both methods
work together or improve each other. The task of using a particle filter and not
combining it with a neural network but using it to train a neural network seems
to be new. Although recent research does not handle the supposed combination
of the used methods, it might be important to investigate how a particle filter
and neural networks work together so far and what improvements is offered by
this combination. Therefore, an approach for supporting a particle filter with a
neural network such that less particles are needed for localization is presented.
More over how an aircraft can be tracked in video frames is discussed to show
how particle filters and neural networks can be combined nowadays.

Reducing Particles due to Neural Networks

Localization is an essential part of mobile robot navigation. To efficiently
navigate a robot through an environment it is indispensable to have an efficient
and accurate localization algorithm. In terms of efficiency Choi et al. proposed
a new navigation algorithm that is based on particle filters but uses a reduced
particle set by combining it with a neural network [23]. Therefore they use a
radial basis function (RBF) that is used for training. Their proposed algorithm
consists of six steps

1. Initialization step
To combine the process they use an input vector xk which is retrieved
from the encoder uk (e.g. odometry) and an measurement vector zk for
training. Then a set of particles Sk is created, containing M particles. This
set contains the particle xm

k and its weight wm
k that incorporates with the

measurement.
Sk = {xm

k ,w
m
k |m = 1, ...,M} (3.46)

2. Prediction step
In the prediction step the particles are updated based on the motion of the
robot. This is done by updating each particle according to the given action
from the motion model. In the motion model also some random noise
has to be added such that the variable of interest also simulates noise.
The variable of interest is the weighted sum over all particles. The noise
is often simulated with Gaussian noise. Therefore the robot is initialized
at its position as x0 = (x0 y0 θ0)T. During the movement of the robot the
difference between the rotation is calculated as

δθk = θk − θk−1 (3.47)

and the orientation is calculated as

θk = arctan(4yk/4xk). (3.48)
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The translation of the robot is calculated as

ρk =
√
4x2

k + 4y2
k (3.49)

resulting in the motion model with errors such that

xk =

x̂k
ŷk

θ̂k

 =

xk + ρk cosθk
yk + ρk sinθk

θk


θ̂k = θ̂k−1 + δθ̂k +N(µrot, σ1rotδθ̂k)

(3.50)

where σrot is the rotation in radian, σ1rotδθ̂k andµrot are the mean and stan-
dard deviation. The translation can have two different errors. The first
is the error in the distance and the second one is the error in orientation.
This results in

ρ̂k = ρk +N(µdist, σdist) +N(µor, σor) (3.51)

where µx and σx are the means and standard deviations for the distance
travel and orientation. The input of the prediction step is the particle set
Sk with the latest action uk and the recent observation zk. Sk represents
the intermediate believe such that

bel(xk) =

∫
p(xk|xk−1,uk)bel(xk−1)dxk−1. (3.52)

3. Weight update step
In the weight update step the weight of each particle is updated according
to the observation zk that was made

wm
k = p(zk|xm

k ) (3.53)

resulting in the posterior believe

bel(xk) ≈ p(zk|xm
k )bel(xk). (3.54)

4. Training the RBF
Having updated the weight, it is used to for training on the RBF. Therefore
the weight coefficient is calculated as

πi,k = [ fi(wm
k )′ fi(wm

k )]−1 fi(wm
k )′zk (3.55)

with

fi(wm
k ) = exp

−‖wm
k − ci,k‖

2

r2
i,k

 (3.56)

where ci,k is the i-th basis function center vector and ri,k the i-th basis
function center width. The new weight can then be trained with

wm
k = π0,k +

P∑
i=1

πi,k fi(wm
k ) (3.57)

where P is the depth of the radial basis function.
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5. Resampling
In the resampling step the particles in the set Sk are replaces by M new
particles. The probability of drawing a particle is given by the distribution
of importance weights from the old set. The new particle set is then
normalized by its weights such that wm

k = 1/M.

6. Update step
In the update step all necessary variables are updated. When the prior
pose is given as xk−1 = (x̂k−1 ŷk−1 θ̂k−1)T and the robots posterior pose is
given as xk = (x̂k ŷk θ̂k)T, the observation can be seen as

zk =


ρ̂k

θ̂k

φ̂k

 =


√

d2
x + d2

y

atan2(dy/dx) − θ̂k−1

atan2(−dy/ − dx) − θ̂k

 (3.58)

with dx = x̂k − x̂k−1 and dy = ŷk − ŷk−1. The robots pose as described in
Equation 3.50 can now be rewritten into

xk,ms =

x̂k,ms
ŷk,ms

θ̂k,ms

 =


x̂k−1 + ρ̂k cos φ̂k + θ̂k−1

ŷk−1 + ρ̂k sin φ̂k + θ̂k−1

π + φ̂k + θ̂k−1 − θ̂k

 (3.59)

and for each particle measurement zm
k the observation can be written as

zm
k =


ρ̂m

k
θ̂m

k
φ̂m

k

 =


√

(dm
x )2 + (dm

y )2

atan2(dm
y /dm

x ) − θ̂k−1

atan2(−dm
y / − dm

x ) − θ̂m
k

 (3.60)

with dm
x = x̂m

k − x̂k−1, dm
y = ŷm

k − ŷk−1 and xm
k = (x̂m

k ŷm
k θ̂

m
k )T. Using three

standard deviations σρ̂, σθ̂, σφ̂ for the measurement noise of a observation,
one can calculate the probability p(xm

k |xk−1, zk) as

p(xm
k |xk−1, zk) =

1
√

2πσρ̂
exp

− (ρ̂k − ρ̂m
k )2

2σρ̂


·

1
√

2πσθ̂
exp

− (θ̂k − θ̂m
k )2

2σθ̂


·

1
√

2πσφ̂
exp

− (φ̂k − φ̂m
k )2

2σφ̂

 .
(3.61)

By applying those six steps for a localizing a mobile robot, Choi et al. managed
to get an acceptable localization result by only using 40 particles [23]. Compared
to other methods like Kalman filter or normal particle filter they managed to get
slightly better errors with their RBF optimization. This research is especially
interesting because it is an optimization method that can be applied to the
normal particle filter for performance improvement. Thus the evaluation time
of the localization status could also be improved.
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Combining PF and NN for Aircraft Tracking

Another field of application for particle filters and neural networks is aircraft
tracking. Izadkhah et al. presented a novel approach for aircraft tracking which
makes use of both methods to increase the tracking accuracy [72]. Therefore
they use images of flying aircrafts as input and combine particle filters and
neural network to visually track the aircraft. The main problem which currently
exists is the problem of loosing the aircraft while tracking is done due to changes
in speed, occlusion or in light conditions like reflection. To make their approach
more stable Izadkhah et al. decided to split their tracking approach into three
steps. The first step is to use a particle filter for estimating the position of the
aircarft within a video frame. This knowledge is then used to segment the
target from its background feeding it in a neural network and to use the greedy
snake algorithm to find the contour of the aircraft.

The particle filter was chosen instead of the Kalman filter because it offers
lots of advantages. For example, particle filters can handle non-linear systems
and thus are better to handle fast speed and orientation changes. To segment the
target from its background the Epanechnikov kernel is layed over the estimated
position [24]. It is defined as

k(x) =

 1
2 c−1

d (d + s)(1 − ‖x‖2) , if ‖x‖2 ≤ 1
0, otherwise

(3.62)

where cd defines the volume in the d-dimensional region. Having the silhouette
region of the target, the kernel can be applied over this. The silhouette of the
aircraft is then also modified with various image processing algorithms. The
result is then used to feed a perceptron neural network. The task of the neural
network is to exactly split the background from the target pixels. Therefore,
the output size of the video frame is the same as the input size. This allows the
neural network to classify each pixel. The outcome of the neural network is
a binary image where white indicates the background and black indicates the
shape of the aircraft. Having an exact shape of the aircraft the Greedy Snake
algorithm is applied to get the contour of the target [78].

This approach shows that a combination of different methods, especially
particle filter and neural networks, can be used to solve or improve given tasks.
A particle filter is used to track a target but it is not directly used to feed a
neural network. Instead, the estimated pose of an aircraft is used to separate
the background from the target. This is a way of improving neural networks
with the tracking outcome of a particle filter. Although the particle filter is not
explicitly used as input of a neural network this still gives a good example on
how the particle filter is currently combined with neural networks.



Chapter 4

Concept

This chapter focuses on the concept how to train a neural network using infor-
mation from particle filters as input data to evaluate the localization accuracy.
To keep the outcome of this thesis transparent it is important to clearly spec-
ify every step which is conducted. At first, the particle filter is analysed to
define the information which is used for training a neural network. Then it
is described how data samples are classified into two classes, localized and
delocalized namely, and how they are generated. The next step is to enforce
delocalizations by driving the robot within an environment to receive samples
that represent the situation where the robot lost its localization. Having gen-
erated enough data samples the network structure is designed and presented.
It is also described how networks are trained and how the results are used for
boosting the current scoring technique.

4.1 Overall Concept

To get a overall idea of the concept this section discusses the main steps which
are conducted in this thesis to estimate the localization accuracy of a robot.
Figure 4.1 illustrates the overall concept. A robot is simulated and randomly
driven through an environment to produce data. Some of this data is collected,
like the information of the laser scan, the map as well as the particle filters
information. This information is then used to extract various features which
are used in boosting approach for estimating the localization accuracy. The
distribution of the particles is also used as input of neural networks to train the
localization state of a robot. The trained neural network is then used to score
the localization accuracy. It is also used as additional input for the boosting
approaches to further improve the combined localization accuracy.

4.2 Particle Filter Analysis and Data Filtration

To train a network with information from a particle filter that is used for robot
localization one has to define what sort of information to use and how it should
be represented. This section focuses on the what-part, so it is described what
information is used for training the neural networks.

80
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Figure 4.1: The overall concept for extracting features and estimating the local-
ization quality

When looking at Section 2.3.4 and how the particle filter works one receives
important information like the shape of the particle cloud which is used to
determine the robots position. This information is used by the particle filter to
estimate the robots position state. Since it is hard or often impossible to calculate
complete distributions for complex systems, a limited number of particles are
used which represent the complete system. The more particles are used the
more accurate the estimation gets. But the performance also depends on the
number of particles such that a compromise between efficiency and accuracy
has to be made. An often used number of particles is around 1000 [146] because
the performance and the accuracy trade-off is still acceptable.

The information which can be observed from the particle filter are the par-
ticles. Those particles help representing the complex system and hold informa-
tion about the robots position. For the state of the localization task each particle
in the set contains its position (x, y) within an environment and its associated
orientation θ. The observation of the particle set can be done during two stages
of the particle filter algorithm.

1. After the evidence phase, where the particles are weighted based on the
observation made. This leads to a particle set that contains not only the
position and orientation but also a weight for each particle. This weight
indicates how likely it is to be on the location represented by the particle.

2. After the resampling phase. Here a new particle set is generated, based
on the weights which were calculated in the evidence phase. The weight
of each particle is normalized since the probability of the evidence phase
was used to generate this sample. This leads to the fact that the new
particle set is designed based on the previously calculated weights.

This thesis deals with the particle set which is retrieved after the resampling step
because it is easier to represent the set for neural networks when no additional
weight parameter is used (see Section 4.3.1).
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4.3 Generating and Separating Data

This section describes how data is generated and how it is labelled. To under-
stand the procedure of creating a training sample one has to understand how
data is generated and how it is labelled.

Figure 4.2: The overall procedure of generating a data sample and labelling

Figure 4.2 shows the overall procedure of generating a data sample and finding
the correct label. To create a data sample one needs the information from the
particle filter which is used to create an training image x. This image is labelled
by comparing the exact position, retrieved by the simulation and the estimated
position, retrieved by the distribution of the particles. By determining how dif-
ferent those two positions are one can classify the robots localization state and
thus also create a label y for the data sample. The exact procedure of creating
and labelling data samples is shown within the next sections.

4.3.1 Data Generation

This section focuses on the question about how the data should be represented.
This is an important step since some kind of neural networks work better
with a specific format for the data samples. For instance convolutional neural
networks are designed for pattern recognition on images and therefore work
best if the input is an image. For recurrent networks it is important to keep track
of the sequence order since it is important to train samples in correct order. To
satisfy both network types, CNN and RNN, the particle set is used to generate
an image which is labelled with the time step.

To create an image one needs to represent the particle set in a proper way.
To do so, the position of each particle is placed within an empty image grid and
represented as black dot. The density of the dots represents the likelihood of
a position, the image represents the probability distribution. Since the particle
can be spread all over the map grid, the problem might occur that an environ-
ment that is used to classify the robots position status does not have the same
size as the environment which was used for training. Also, it might become
very expensive to train a neural network when the environment is large because
the image would then have to represent the complete grid. Using large images
which represent the whole grid also leads to the issue that the particle set is hard
to localize since it might only be a small black cloud in a large environment. To
overcome these problems a filter is applied. When creating an image only the
immediate surrounding of the particle set is used, instead of the complete map
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grid. This part holds the most particles and contains the most relevant infor-
mation which is used for training. To restrict the image size on the estimated
location, one also has to define the location of the immediate surrounding. In
this thesis the center of gravity of the particles is used to determine the center
of the image. Therefore the mean over all particles is calculated as

m =
1
N

N∑
i

xi (4.1)

where N is the number of particles within the set and xi is the position vector
containing the particles position in the environment xi = (xi, yi)T. This mean
is usually also used as the stated robots position which further motivates this
choice. Since the particles indicate a possible position, they will occur closely
together when the robot is well localized. Thus the mean over all particles
is a good approximation of the robots position. When the shuttle looses its
localization the particle set will start to diverge but the mean still indicates
where the most information can be found. Assumed that two particle cluster
form on completely different locations in the environment, the mean might
point to a location which does not hold any information at all. This is not an
issue because such separated clouds indicate a delocalized robot and thus it
might also be learned by the network. For additional information, each image
is rotated by the mean of the orientation of all particles. This leads to the fact
that every image is aligned based on their main orientation. This might also
reveal information about the localization state of a robot.

To keep the images small enough such that a neural network can be trained
efficiently, the image has to be cut out on a stated position. This position is the
mean of the particle set. The size of an image can be chosen individually. In this
thesis a size of 36×36 pixel is used. This also has the advantage that the trained
network can be validated using environments of different size. Figure 4.3 shows
some examples of generated images, stored at different time steps t. The first
three images illustrate a particle set of a localized robot and the fourth image is
an example of a delocalized robot. Those images are only samples and do not
imply that all other images look the same.

(a) (b) (c) (d)

Figure 4.3: Example images generated for training a neural network. Each
time step is done in a frequence of 5Hz. (a) Localized particle set at time step t.
(b) Localized set at time t+40. (c) Localized set at time step t+90. (d) Delocalized
image at time step t + 110.

The transformation and inflation of particle cluster may indicate the localization
state of the robot. Thus a neural network can be trained to detect the patterns
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within the transformations. If that is the case and the particle set is inflating,
the main task for a neural network is to learn at which state the robot becomes
delocalized.

To generate enough distinctive data samples the robot has to drive randomly
within a predefined environment. When creating training data for neural
networks only one environment is created. This is done because it should also
be evaluated if the form of the particle cloud changes with the environment
structure or not. To receive many different training samples the robot is driven
randomly through the environment such that it is unlikely to drive the exact
same path twice. This leads to different robot locations within the map and
thus also to different data samples.

4.3.2 Data Separation

Having created a big data set which can be used for training one also needs
to separate the training set into localized and delocalized samples. When it
comes to training a neural network one needs a huge amount of data samples
such that the weights of the network are adjusted for many given samples. A
human expert might encounter some troubles when labelling every sample by
hand because it is time consuming.

To label data samples automatically one needs to observe the robots position
which is estimated by the particle filter and the ground truth. In a real world
environment it is difficult to observe the ground truth since one needs to deter-
mine the correct position at any stage of the robots movement. An approach
for that would be a high precision motion capture system [103] which allows to
analyse the robots position with high accuracy. Since those systems are expen-
sive and because it is difficult to set them up for big environments, this solution
was not an option in this thesis. Instead, a simulation software is used. This
simulation software imitates an specified environment and simulates the robots
hardware. The simulation software which is used is an adoption of Stage [57]
and allows to simulate different kinds of robot hardware devices with defined
errors. The advantage of such a simulation is that it can observe the ground
truth of a robots position. This can then be used to compare the actual robot
position with its stated one.

To label the dataset one can now define a threshold distance d. When
observing the robots motion one can then calculate the distance between desired
and stated position. This distance is then checked with the threshold and a
sample is labelled in a way such that

yi =

0 , if distance < d
1 , else.

(4.2)

When it comes to the question how the threshold distance should be chosen,
some problem occurs. If the threshold is chosen too low data samples are
marked as delocalized while they are still valid. This leads to the problem that
a neural network might not find a solution because delocalized samples look
too similar with localized samples. If the threshold is selected too high some
delocalized positions might be labelled as correct location. Another problem
with high threshold is that it becomes harder to generate delocalized sample
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data since it is difficult to produce a lot of incorrect data samples which have a
high distance to the ground truth.

4.4 Enforcing Delocalizations

Using the simulation software above one can now use a robot to drive randomly
in an environment and observe its positions. However, a good implementation
of a particle filter will not lead to an localization error if every measurement is
reasonably.

One possible solution to delocalize a robot is to move the robot to a stated
position. This method is related to the kidnapped robot problem where one
moves the robot without telling him how he moved. This solution is not usable
for this thesis because one needs to observe the delocalization over a time
period. The particle filter adopts its system based on the previous distribution.
If one would randomly reposition the robot the previous distribution would be
useless.

Therefore one needs a solution that can produce delocalizations by changing
the input for the particle filter over a time period. The best way how this can be
achieved is to simulate sensing errors in the observation and transition model.
There are many different ways to produce sensing errors for a robot. The most
common solutions are errors in odometry and dynamic obstacles in the laser
scan. The simulation software which is used can simulate both, odometry
errors and scan obstacles. This thesis focuses on only one error type since this
allows to draw conclusions based on the selected error type. For the current
situation it seems more important to focus on dynamic obstacles since the
implementation of this task should be used in highly dynamic environments.
To do so, the simulation is encouraged to randomly insert dynamic obstacles
into the laser scan such that the particle filter has to account these differences
when calculating the new particle distribution. This is also a realistic case in a
real world since it is known that the robot looses its localization while driving
through a group of dynamic obstacles, like a group of persons.

4.5 Preparing Network Structures

Having created a training set for neural networks one can start defining a
network structure which can be used for training. The problem with defining
a single network structure is that one cannot generalize the outcome of the
network. Thus several network structures need to be defined and trained.
When using particle filters as input it is hard to specify the best network type and
structure since it is not clear which information is extracted by a neural netowrk
for estimating the robots localization accuracy. A possible network structure
is a convolutional neural network which is used for pattern recognition within
an image. Another possibility is that a recurrent network might learn the
transformation of the particle cloud over a certain time period. To evaluate
all possibilities, both network structures are designed. A CNN for feature
extraction and a recurrent network structure for learning the transformation
over time. For learning a recurrent network a long-short term memory (LSTM)
structure is used since a better performance is expected [67]. Additionally a
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combination of both, CNN and LSTM, is trained. This is called a Long-Term
Recurrent Convolutional Network (LRCN). By using this network structure it
is evaluated if the advantages of both networks can be combined.

For each different network type (CNN, LSTM and LRCN) three different
network structures are created and trained. At first a simple model with only
one or two type layers is created. Then a larger model and a complex model
is designed and trained. Those three structures are chosen to evaluate whether
a simple network structure leads to underfitting or a complex structure leads
to overfitting. Then, for each network structure different parametrizations are
tried and evaluated. Therefore parameters like the learning rate or the learning
rate policy are adopted to see if the results can be improved by using different
learning rates. This results in a total of nine networks to be trained with different
parametrizations.

In the following sections different network structures are modelled and the
reasons for the different network types are discussed in more detail.

4.5.1 Training a CNN

A convolutional neural network has the advantage of detecting translated fea-
tures by using feature layers. Those feature layers are the heart of CNNs. The
reason why this network type is used in this thesis is because it is tried to extract
feature information from the form of a particle cloud to detect delocalizations.
To train a meaningful network one needs to have enough training samples and
a network structure that fits to the purpose. However, creating a big set of data
samples has some difficulties. Also finding the right structure is not so easy if
one has few research topics to rely on. This section now focuses on those two
problems. First, the difficulties with creating big data sets are discussed. Then
three network structures that are used for training a CNN are proposed.

When generating data samples with a robot that randomly drives through
an environment some problems occur. The first problem is to find situations
where the robot looses its localization. While the robot is driving in the en-
vironment one needs to enforce the robot to loose its location by itself. It is
hardly foreseeable when the robot starts to delocalize and also it does not occur
so often. Due to the issues it is rather seldom to create delocalized images
compared to localized ones. This leads to the issue that a lot more positive data
samples are generated. In general, roughly 80% are positive data samples and
only 20% represent delocalized states. If this data set is used to train a neural
network, it would already achieve an accuracy of 80% by classifying every state
as localized. This does not reflect any success of such a network structure. To
overcome this issue one could randomly delete positive data samples until an
acceptable ratio of localized and delocalized images is achieved. This would
be about 50/50 or maybe 60/40. Another issue with the big data set is the cor-
relation of samples [59]. When using ordered training data one obtains highly
correlated examples for whole mini batches. This leads to the problem that the
network might not extract relevant features. To overcome this issue training
data should be randomly shuffled. This leads to uncorrelated data which usu-
ally performs better. Different random orderings do not perform completely
the same but only vary in a small factor that is negligible.

Having created a working training set one needs to define possible network
structures. To get a good comparison of the network and to determine the rough
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complexity of the structure that fits the best, this thesis trains three different
network structures with increasing complexity.

The simplest network structure is shown in Figure 4.4a. It consists of one
convolutional layer and one pooling layer, then merges them together in a fully
connected layer which also calculates the output for classification. The next
structure is shown in Figure 4.4b. It is based on the LeNet structure [3] and
consists of two convolutional layers that are connected via pooling layers and
two fully connected layers.

(a)

(b)

Figure 4.4: Structures of Convoutional Neural Networks. (a) Simple structure,
(b) mid-complex structure

The complex network is based on a successful deep learning structure called
GoogLeNet which was developed and published by Google [144]. Google pre-
sented a deep learning architecture which was designed for classification in
the ImageNet Large-Scale Visual Recognition Challenge 2014. It differs from
other network structures by its high utilization and carefully selected layers.
Since Google has more computational power and because the network struc-
ture becomes quite large for learning with limited resources, the structure was
only designed until the first classification output. Also the size of the local
receptive fields and the number of feature maps for each convolutional layer
was adopted.

Figure 4.5 illustrates the adapted GoogLeNet structure which was used for
training images from the particle filter. Additionally to the simple and mid-
complex structures this network also holds concat layers. Those concat layers
take multiple layers as input and then combine them to one single output
layer. This has the advantage that multiple layers can be created and learned
in parallel.

To receive meaningful results all three different network structures are
trained on the same data set. While changing the parametrizations, like the
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learning rate, on every network structure, we should be able to compare the
results since the training and validation set are the same.

Figure 4.5: The complex network structure for a CNN leaned on GoogLeNet

4.5.2 Training a LSTM

When it comes to training a recurrent neural network one faces the same prob-
lems as before. First, the ratio between localized and delocalized training



CHAPTER 4. CONCEPT 89

data does not fit since roughly 80% are labelled as localized. Also the data
is highly correlated. The solution of randomly deleting images and shuffling
them does not work for this kind of network because the network is trained
with sequences. If one randomly deletes data samples the information about
the sequence gets lost. The same holds for shuffling images. To overcome
this issue a simple solution was found for this thesis. To keep a suitable ratio
between positive and negative images, only delocalizations itself are recorded.
While generating images, no image is stored directly. It is waited for a delo-
calization to occur which is then used to store a sequence of data samples with
length s.

Figure 4.6: Illustration of generating sequence data sets for a LSTM. When a
delocalization occurs a period from the past to the future is recorded and stored

To not only store the delocalization itself but also the inflation before the last
s/2 samples are stored temporarily while generating the data. When the robot
delocalizes, those s/2 images are stored as data samples and the next s/2 images
are being recorded as well. The future is recorded since the development of the
particle cloud might reveal further information about the localization accuracy.
This leads to the result that roughly 50% correct images are recorded before the
delocalization took place and roughly 50% incorrect images are created after
the delocalization was detected. Figure 4.6 illustrates the method. At time step
t a delocalization occurs so samples from xt−s/2 to xx+s/2 are generated.
Using this data would train a recurrent network to only detect starting delo-
calizations. It would not be possible to determine the normal localized state
where the robot does not indicate to get lost. To solve this issue some random
sequences of correct driving behaviours are also stored such that about 60%
positive data samples are generated.

Another issue which has to be faced is the correlation of the data samples.
LSTM networks need the information of its predecessor and thus also some
kind of correlation. But it should also be possible to randomly shuffle input
sets for recurrent networks. To do so, this thesis uses some sort of sequence
shuffling. Instead of shuffling all the images randomly sequences of a certain
length are hold together and those sequences are shuffled randomly.

Again, three different networks are created to determine how deep a LSTM
structure should be. Figure 4.7 illustrates all three network structures. The
LSTM layer consists of a defined number of LSTM units. At first there seems
to be not so many differences but also the depth of each layer is different.
With increasing network complexity the number of LSTM units for each layer
increases too. This results in a high difference of the network structures since
the simple network only uses a few LSTM units whereas the complex LSTM
layers use more units that are learned.
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(a)

(b)

(c)

Figure 4.7: Defined structures of LSTM Networks. (a) Simple structure, (b) mid-
complex structure, (c) complex structure

4.5.3 Training a Combination LRCN

The third network type which is used in this thesis are long-term recurrent
convolutional neural networks [39]. They are a combination of the previously
designed network types. For generating training data the same issues like for
LSTM networks hold. Therefore some sequence shuffling and delocalization
recording has to be done, like above. The reason why this network type is also
evaluated is because it is tried to combine the advantages of both network types
into one network. Of course it is not said that both network types perform
well or that any of the previously presented networks can be used for state
estimation on robot localization scoring, but even if none of those networks
find an acceptable solution it might still be possible that a LRCN increases the
efficiency by picking the best of both network types.

To validate the network type three different network structures are designed,
again. Those network structures vary in complexity and thus are suitable
for further comparison. The layers of a LRCN network are a combination
of convolutional and recurrent layers. By changing the local receptive fields
in convolutional layers and by adopting the number of LSTM units for the
LSTM laye, one can easily increase the complexity without adding a ton of new
layers. Figure 4.8 shows the network structures which are used for learning the
classification of particle filters with LRCN networks. They do not only vary on
the depth of the network but also on their single layer definitions.
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(a)

(b)

(c)

Figure 4.8: Defined structures of LRCN Networks. (a) Simple structure, (b) mid-
complex structure, (c) complex structure

4.6 Validating networks

To determine whether a neural network succeeds in classifying information
from particle filters one needs to define how the success is measured. This
section shortly discusses how network types and structures are validated and
how they are compared.

To validate a network one needs to define some kind of measurement which
is not only meaningful but can also be used to compare different networks. The
best measurement to do so is the accuracy. Accuracy is a value that describes
how good a network fits to a given data set. If a classification task with two
classes is done it can be easily computed by comparing each result with the
desired output. Having two classes, one can assign to a class either the term
positive or negative. To validate a data sample it is run through the network
structure and the output is measured. The output is then assigned to one of
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the two classes, depending on the result. By comparing the assigned class with
the expected label class one can now determine whether a class was correctly
assigned or not. If both, the result and the label match, then the outcome is
true. When a data sample is classified as positive and the expected class is also
positive the data sample is true positive. If the two classifications do not match
the outcome is false.If the data sample is classified as negative and the expected
result is positive the outcome is false negative. By counting the results one can
now determine the accuracy acc as

acc =
tp + tn

tp + tn + fp + fn
(4.3)

where tx indicates a correct classification and fx an incorrect one. To normalize
the classifications and show only the ratio of true and false classified samples,
one can represent the measurements as percentage vx such that

vtp =
tp

tp + fn
, v f n =

fn
tp + fn

, vtp + v f n = 1

vtn =
tn

tn + fp
, v f p =

fp
tn + fp

, vtn + v f p = 1.
(4.4)

Using the accuracy and its true-false ratios one can validate the network
structure by testing it with specific data sets. This thesis uses three different
data sets to evaluate the trained networks. The first data set is the training set
which was used to train the neural networks. Out of this one can evaluate how
well networks were trained on the given data set. The next set is a validation
set which is recorded within the same environment. The robot randomly drives
through the map and collects new data samples. These samples are then used
to generate a new accuracy. Thus one can determine if a network was too
well fitted on the training data. The third data set is generated in a completely
different environment. This is done because it should be evaluated whether
the particle clusters form a specific shape within a specific environment or if it
could be generalized after learning a network in only one environment.

4.7 Boosting with AdaBoost and SVM

After training and validating the different network structures boosting is done.
With this method it is tried to improve the accuracy of the current localization
scoring algorithm. Therefore features are selected which currently calculate
the accuracy of the robots localization and also new additional features may
be added. Then a bunch of feature samples is generated and labelled for
classification. Therefore the same distance d for defining a delocalized robot is
chosen. This feature set is then used to learn an optimal weight distribution
such that the classification of the robots location status is improved. This
is done using the boosting algorithm AdaBoost and additionally a Support
Vector Machine. Both algorithms are provided by the OpenCV library and
can be used for classification tasks on two labels. After boosting the features
one receives an accuracy as described above. It is then evaluated in this thesis
whether this accuracy can be boosted by adding an additional feature which
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was learned with neural networks. This additional feature is the predicted class
of the neural neural network that performed the best i.e. that had been rated
the best based on its accuracy on the training and validation sets.

After adding the predicted class to the boosting algorithms the accuracy
is again optimized. Both outcomes can then be evaluated and compared to
determine whether a localization scoring method using features can be boosted
by using predictions from neural networks.

Feature Selection

A task which has to be done before boosting is to select meaningful features that
represent the localization status of a robot. In general it is hard to specify which
features might be important for localization scoring. To do a primitive and
simple evaluation one can search various possible features that might be useful
for scoring the accuracy of a robots localization. By using a threshold distance
d as above the robots localization status can be determined and every feature
can be inspected on its own. Therefore n feature estimations are recorded and
labelled to the correct class. Those recordings are then split up into a localized Xq
and delocalized Xp set. These sets are then represented as a discrete distribution
over k bins. Each bin contains a number of samples which lie within that bin. A
discrete probability distribution P is then represented as the number of samples
within that bin divided by the total number of samples n

P(i) =
|bin(i)|

n
. (4.5)

The same holds for the distribution Q. Having two discrete distributions P,Q
for the localized and delocalized set one can calculate the Kullback-Leibler
divergence [116] as

D(P||Q) = KL(P,Q) =

k∑
i

P(i) × log
P(i)
Q(i)

(4.6)

where k is the number of bins. The KL-divergence is only defined if ∀i : Q(i) =
0 → P(i) = 0 applies. If P(i) = 0 the contribution of the i-th bin is also 0. It is
defined that D(P||Q) ≥ 0 for all distributions and D(P||Q) = 0 if P = Q.

Both distributions can then be observed and their KL divergence indicates
their similarity. The higher the score the lower is their similarity. If they are
completely different they indicate an excellent feature that holds a lot infor-
mation about the localization status. If both distributions are similar it can be
assumed that only little information is offered by this feature.
After evaluating a bunch of possible features one can then select the best re-
sults and use them to apply a boosting algorithm. This boosting algorithm
then tries to optimize the features for a good state estimation. Of course dif-
ferent approaches can be done and a lot of improvements for these boosting
algorithms are possible but this thesis only focuses on the improvement of
boosting algorithms by using predicted network outcomes. Therefore a com-
plete optimization of boosting methods is not conducted to receive comparable
results.
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Implementation

To fully understand the results which are presented in this thesis one needs
to have a basic understanding on the implementational part. Thus, the im-
plementation of the concept is presented in this section to make the results
that are presented in this thesis reproducible. First the setting of software and
hardware components that are used is presented and the environmental setup
for training and validating data is shown. Then it is shown how data samples
are separated and labelled. Another step that is discussed in this chapter is the
generation, training and validation of data samples as well as the extraction of
relevant features for boosting the result of the neural networks.

5.1 Setting and Versions

This section presents the setting that is used in this thesis to create, train and
validate data samples as well as neural networks. Therefore, the software
and hardware components are shown. In this thesis two different hardware
systems were used. The first was chosen for simulating a mobile robot and all
its required components. Therefore, the simulation was done on a hardware
that is also sold for industrial mobile robots by incubedIT GmbH1.

Table 5.1 shows the main specifications of the machine that is used for
mobile robot simulation. Generating data samples and validating them is im-
plemented as a ROS node and thus also done on this machine. The simulated
robot works on a simple platform that does not offer GPU acceleration. Since
the used Caffe framework for training neural networks allows the use of GPU to
reduce the computational training time a second machine is used. The second
hardware is responsible for creating and training neural network structures.
Table 5.2 shows the specifications of the second machine.

Although the implementation and evaluation was done on the proposed sys-
tems it might not be necessary to follow the exact same hardware specifications
or software versions. Changes in Software like the operating system can lead to
faults. Since this thesis was only done on the defined setting it is not guaranteed
to work for other settings too.

1http://www.incubedit.com/solutions/smart-shuttles/
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Processor Intel Core i5-2510E
Hertz 2,5 GHz
RAM 4GB DDR3
Graphics Card None
OS Ubuntu 14.04 LTS
ROS Version Indigo
OpenCV Version 3.3
GCC Version 4.8.5

Table 5.1: Specifications of the hardware and software setting for simulating a
mobile robot

Processor Intel Core i7-3612QM
Hertz 2,1 GHz
RAM 8GB DDR3
Graphics Card Nvidia GeForce GT630M
OS Ubuntu 16.04 LTS
OpenCV Version 3.3
Caffe Version 1.0.0
CUDA Version 7.5.17
Python Version 2.7.12
GCC Version 5.4.0

Table 5.2: Specifications of the platform for training neural networks

5.2 Environmental Setup

To see the potential results of this thesis it is also necessary to understand the
environmental setting that was used for the mobile robot simulation. Basically,
two different environments are used for training and validating. Both environ-
ments are designed for a mobile robot with certain difficulties that are believed
to cause a localization problem. For example, a difficulty for the particle filter
localization is a long corridor as discussed in Section 1.3. The first environment
which is used is shown in Figure 5.1. It uses the map difficulties as described
above and also contains walls that are not parallel to each other. This might also
lead to delocalizations since the particle filter might change its opinion about
its current location and rotate a bit so that the rotated wall is matched instead
of the other one. The first environment is used for generating the training set.
Therefore the robot is randomly driven around and data is generated based on
its movement. While the robot is driving through the environment it is sensing
its environment and avoiding obstacles so that no collision occurs. To validate
a network structure this environment is also used but with a completely new
generated dataset for validation such that the evaluation is persistent against
overfitting.
The second environment shown in Figure 5.2 is only used for validation. The
data generated from a simulated robot while driving around is used to val-
idate a network structure in an independent environment. This is done to
validate the network in other maps and to evaluate whether the network can
be used in different kinds of environments or if it has to be trained on every
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Figure 5.1: Environment for training and validating neural networks

new environment.

Figure 5.2: Environment for validating neural networks

5.3 Separating Samples

Before generating data samples that can be used for training and validating
one has to define the state on which a robot is delocalized. As discussed in
Section 4.3.2 it is necessary to define a threshold distance d which is used as
boundary to label data samples.

Finding an optimal separation threshold is not trivial if the distance is not
restricted to defined limits. Sometimes restrictions can be done by a user who
e.g. states that the robot may never be off the route by more than 50 centimeters
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or 40 degree in orientation. This thesis is not restricted to user limitations and
thus it is tried to find an optimal threshold distance. The threshold distance
defines the allowed error in translation and rotation. The translation is given
in meters while the allowed rotation error is given in radians. To do so the
current scoring algorithm is used to identify a good threshold. This current
implementation was done by employees of incubedIT who extracted features
from the map grid and the laser scan which are used for scoring the accuracy.
Therefore a simulated mobile robot is driven through an environment and
different threshold distances between 0.5 ≤ d ≤ 1.5 are used to classify the
localization score of a state, where d is increased by 0.25 for every step. For
each threshold distance about 15.000 samples were generated with the current
scoring algorithm to receive an comparable result. One has to remember that
the existing scoring algorithm is only a rough guideline since it is optimized in
this thesis and does not work reliable. The outcome for each threshold distance
are then two discrete distributions for localized and delocalized samples. The
distributions are calculated by allocating each percentage of the localization
score to a bin. This bin is then normalized over the number of samples to
receive a discrete distribution, like P(i) = #bin(i)/n where i is the score, #bin(i) is
the number of samples within bin i and n is the total number of samples of the
distribution. Those distributions are then analyzed and compared to each other.
An interesting thing for comparing them and getting their similarity would be
to represent them via a normal distribution. However, this does not necessarily
represent the distribution correctly since it is unlikely that every feature follows
a normal distribution. To overcome this issue and to evaluate the similarity of
both distributions, the Kullback-Leibler divergence (KLD) is used [116]. For
two discrete distributions P(x),Q(x) the Kullback-Leibler divergence is given
as

D(P||Q) = KL(P,Q) =

k∑
i

P(i) × log
P(i)
Q(i)

(5.1)

where k is the number of bins that are used in the distribution. The discrete
distributions give the propability of bin i. This is calculated by using the number
of samples that are within the bin and divide it by the total number of samples
n. The KL-divergence is only defined if ∀i : Q(i) = 0 → P(i) = 0 applies. If
P(i) = 0 the contribution of the i-th bin is also 0.

threshold #bin D(P||Q)
0.5 100 0.634
0.75 100 0.704
1.0 100 0.782
1.25 100 0.874
1.5 100 0.832

Table 5.3: Kullback-Leibler divergence for localized and delocalized samples
on different threshold distances

Table 5.3 shows the result of the calculated Kullback-Leibler divergence on
different threshold distances. #bin indicates the number of bins that were used.
Since the scoring algorithm returns its result in percent each bin was allocated
to a percent value so that a total of 100 bins were used. D(P||Q) indicates the
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KL-divergence of both distributions P,Q and thus also shows how similar those
distributions are. P is in this case the distribution of delocalized samples and
Q the distribution of localized samples. The outcome of the KLD can then be
used to compare the similarity of the distributions. The higher the result, the
more different the distributions are.
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Figure 5.3: Separating delocalized and localized data samples with threshold
distance of 1.25 meter and an allowed rotation difference of 1.25 radian

The result was that higher threshold distances improve the separation of the
localized and delocalized curve. The optimal separation was found at 1.25
meters for translation and 1.25 radians for rotation. When setting the threshold
distance one has to be aware that only a small number of delocalized samples
are found if the threshold is set too high. This makes it hard to produce enough
delocalized data samples for training. A threshold distance of 1.25 is on the
upper limit of generating enough delocalized samples. It is still possible to
collect enough samples but it is already very time consuming.

The final threshold distance was chosen to be 1.25 meters, respectively
1.25 radians for the orientation, since this offers a good data separation while
producing enough delocalized data samples. Figure 5.3 shows the separation
of the data samples with threshold 1.25 based on the current scoring algorithm.

5.4 Implementing Required Components

Having defined the setup and threshold distance for data separation one can
start defining the components. To solve the problem of localization scoring
with neural networks the components are split up into two phases.

1. Training Phase
In the training phase a large data set is generated. Therefore, the corre-
sponding node needs three different inputs. The first is the particle cloud
which was generated by the particle filter. This input is used to create an
image that contains the individual particles. The next input is the robots
pose which was estimated based on the particle cloud. The third input
is the ground truth which is received by the simulation observation and
used in combination with the robots pose to label the image.
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By letting the robot drive randomly in the environment and continuously
updating the input one can generate a set of images. This set of images
is then prepared and fed into a neural network for training. The result of
this phase is a neural network structure with its trained weights.

2. Validation Phase
The validation phase is done after training. It is done to validate a network
or to estimate a robots localization state in real time. This phase also
generates an image based on the particle cloud but does not necessarily
need to know the ground truth. The ground truth is only needed during the
validation phase when the estimated class of an image has to be compared.
If validation is not done one could simply deactivate the validation step
and only use it for state estimation. This makes is applicable for real
world applications since the ground truth can usually not be observed.
To validate a created image the previously trained network is loaded and
used to classify the image. This classification step is rather fast such that
it can be computed on a robot while it is driving through an environment.

Figure 5.4: Component Structure for training and validating localization states

Figure 5.4 illustrates the two phases. The image generation can be shared
by both phases. The labelling step is only done in the training phase because
the it is not needed while validating. In the validation step the trained network
is used to classify an image and thus estimate the robots localization state.
If the ground truth can be observed within this phase, the estimated class
can be compared to the desired class. This allows to measure the accuracy
of the used neural network. This step does not depend on the ground truth
which can only be received in the simulation and thus is also applicable in real
world environments for estimating a robots localization state. The red arrows
indicate the inputs for a certain steps. Those inputs are implemented using
callback functions for certain topics. The red dotted line indicate an optional
input for the validation phase.

The next sections focus on the single steps within the phases to get a better
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understanding about the image generation and on the implementation of the
two phases.

5.4.1 Generating and Labelling Data

To generate images that are used for training and validating neural networks
one needs to subscribe to the particle cloud topic that is published by the
particle filter node. This particle cloud is then extracted and converted into
an image. The procedure of extracting a particle cloud and converting it to an
image that is used for training is described in this section. Figure 5.5 shows the
particle cloud in the environment and how it is extracted.

Figure 5.5: Extracting a particle cloud from the map and converting it into a
training sample for neural networks

Whenever a new particle cloud is received it is used to generate an im-
age. Therefore the position of every particle is normalized by the mean of its
positions

pi = pi − p̄ (5.2)

where pi indicates a particle vector containing the position pi = (xi yi θi)T and
p̄ is the mean vector over all particles, calculated as

p̄ =
1
N

N∑
i=0

pi (5.3)

where N is the number of particles. The normalized particles are then drawn
into the image around its center. Since the position of a particle is given in
meters one does not know where to place each particle within the image grid.
Thus a scaling factor f is needed so that the image is filled reasonably with
particles. This factor can be seen as zoom parameter since it defines how big
the field of view is on the image. Based on the image size and the wished detail
of the particle cloud the zoom factor can be higher or lower. For this thesis
f = 10 was used. After that the image is rotated by p̄θ radian and cut into a
square with a predefined size s × s.

For training a neural network the image needs to be labelled too. This
is done by storing the image with an label flag such that the image name
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is labelID imageID.png. To label the image the ground truth topic and the
estimated robots pose is needed. The estimated pose is retrieved by the particle
filter pose topic which states the robots position. The label ID is then defined
by the Euclidean distance between the two positions, the difference in their
rotation and the threshold distance d. As determined above, the threshold
distance is chosen to be 1.25 within this thesis. The Euclidean distance for
ground truth xg = (xg yg θg)T and stated position xs = (xs ys θs)T is calculated
as

ed(xg, xs) =
√

(xg − xs)2 + (yg − ys)2 (5.4)

and the difference in orientation is simply calculated as ‖θg − θs‖ where the
norm also respects a possible overflow in rotation (from 2π to 0 or vice versa).
The label li for particle i is then calculated as

li =

0 , if d(xg, xs) ∧ ‖θg − θs‖ < d
1 , else.

(5.5)

5.4.2 Training Data

Training a neural network is done separately to the ROS structure. The Caffe
framework offers a binary that can be used for training neural networks (see
Section 2.5). To prepare the data set for training the programming language
Python is used. First, all created image paths within a given directory are
loaded

import glob
d i r l i s t = glob . glob ( path / to / d i r / ∗ . png )

Depending on the network structure, the image list is either shuffled in se-
quences of length sl or totally random. Then for each image the label is extracted
from its name

import re
f i r s t num = re . f i n d a l l ( r ’ / \ d ’ , f )
l a b e l = ( i n t ) ( re . f i n d a l l ( ’ \d ’ , f i r s t num [ 0 ] ) [ 0 ] )

This assumes that the image is named correctly and that the path to the directory
does not contain a number. Then a text file as described in Section 2.5.2 is
generated which contains a list of image paths and its associated label. This
is then used to create a HDF5 data file for the Caffe framework. This is then
added as input layer to the given network structure which is defined in the
prototxt file
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1 l a y e r {
2 name : ” l o c a l i z a t i o n ”
3 type : ”HDF5Data”
4 top : ” data ”
5 top : ” l a b e l ”
6 hdf5 data param {

7 source : ” path / to / hdf5 / f i l e l i s t . t x t ”
8 b a t c h s i z e : 100
9 }

10 }

Listing 5.1: Integrating the HDF5 data set as input layer into a network

The network structure is then included in the solver file which is used to start
training. The result of the training is a file with the ending .caffemodel that
contains all trained weights for the given network structure.

5.4.3 Validating Data

To validate the network and use it for state estimation on live data the created
.caffemodel file needs to be loaded into a ROS node. This node also creates an
image as described above but does not store it. Instead it uses the image to
propagate through the trained network and so to classify the robots localization
status. Listing 2.15 shows an example implementation for loading a pre-trained
network and classifying a generated image.

If the network is applied in real world environments the resulted label can
be used to estimate the localization state. Depending on the accuracy of the
trained network the estimation is more or less applicable. To evaluate how
accurate the trained network is one needs to calculate the difference between
the actual and desired position as in Section 5.4.1. Note that this can only be
done in a simulation environment and that it is not applicable in real world
estimations since the ground truth is needed for this task.

5.5 Feature Extraction

Having trained and validated a neural network structure one can now try to
boost this structure. To do so one needs to find valuable features that can
be used for boosting. Also a new component is needed that extracts features
and uses them for boosting. This section now handles the structure of the
new boosting component and evaluates a handful features that can be used for
boosting.

5.5.1 Adding a Boosting Component

To further improve the localization scoring accuracy the state estimation of
a trained neural network is used in combination with various features. This
combination is inserted into the AdaBoost algorithm provided by OpenCV. It is
also tried to boost the localization scoring with an implementation of Support
Vector Machines, also offered by OpenCV.
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To conduct boosting one has to adapt the predefined component structure
and add the new component as illustrated in Figure 5.6. This component

Figure 5.6: Extension of the Required Component Structure

simultaneously collects extracted features while training data is generated.
Those features are labelled like the generated image and stored within a .csv
file. Then the AdaBoost and SVM algorithm are applied on the feature set to
find the right feature weights. For comparison within this thesis the boosting
algorithms are applied twice. At first only the extracted features are boosted to
get a reference for comparison. Then the estimations from the neural network
are added as an additional feature. This new feature space is then boosted
again and can be cross checked with the reference. Thus it can be evaluated
whether the old localization approach can be boosted with the additional neural
network feature.

5.5.2 Finding valuable Features

Having prepared the component for boosting one needs to find valuable fea-
tures that can be used. Usually it is hard to specify which features are important
since one does not know if a specific feature holds enough information about
the localization state. To overcome this issue one could just add a whole bunch
of features and boost them no matter whether they are relevant or not. This
might lead to an acceptable result but unnecessary features can increase the
training error of boosting algorithms. In this thesis features are examined on
their relevance and promising features are extracted for boosting. As discussed
in Section 4.7 the relevance of features for this thesis is determined by com-
paring the Kullback-Leibler divergence of localized and delocalized sets [116].
Therefore the threshold distance d is used to separate the feature set into local-
ized and delocalized sets. By comparing the distributions of the feature sets one
can check if valuable information is available that can be used for classification.
When applying this method one has to be aware that the threshold distance d
was computed with the help of the current localization scoring approach. This
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method does not work reliable and has some scoring errors. Thus it does not
perfectly separate the data set and some information might be misinterpreted,
leading to normal distributions that are more similar. Also, boosting algorithms
may cope with seemingly irrelevant data and combine them with other features
to conduct a better optimization [130]. Thus the selection of features is done
generously.

To find meaningful features a total of 33 features are analyzed. These
features either correlate to the particle cloud or to comparisons of map and
scan points. To gain a rough understanding every feature is shortly presented.
The first seven features are gained from the particle cloud and its computed
center of gravity. This center is calculated as the mean over all (x, y) positions.
The center is then used to calculate different distance measurements. Feature
number 8-14 are also created from the particle cloud and technically the same
but instead of using the center of gravity a circle is layed around the cloud to
to form a hull. The next 15 features are received from the map and laser scan.
The last two features use particle filters information. Since a particle cloud may
form more than one cluster when the uncertainty of a position increases, the
number of clusters found in the particle cloud is also given as feature. When
calculating the estimated position of the robot the mean of the biggest cluster is
used. Therefore it might also be interesting how the biggest cluster is shaped.
This is represented in the last three features. Those features are the variances
taken from the covariance matrix of the biggest cluster.

1. Center of gravity maximum distance: contains the distance from the
particle to the center of gravity which is furthest away.

2. Center of gravity mean: holds the mean over all particles. It is calculated
as the sum divided by the number of particles.

3. Center of gravity mean absolute deviation: this is similar as above but
calculates the mean over the same samples again

MNAD =
1
N

N∑
i=1

|xi − µ| (5.6)

where µ is the mean over distances and N is the number of distances.

4. Center of gravity median: sorts the distances of all particles and then
selects the one in the middle of the array.

5. Center of gravity median absolute deviation: this is a more robust mea-
surement than the simple median. It subtracts the median from every
sample and then calculates the median again over the absolute result

MDAD = median(|xi −median(X)|). (5.7)

6. Center of gravity minimum distance: contains the distance from the
particle to the center of gravity which is the closest.

7. Center of gravity standard deviation: is the deviation from the normal
distribution and defined as

σ2 =
1
N

N∑
i

(xi − µ)2. (5.8)
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8. Circle maximum distance: is the radius of the circle. This also represents
the distance to the particle that is furthest away.

9. Circle mean: holds the mean over all particles. It is calculated as above.

10. Circle mean absolute deviation: this is also calculated like with the center
of gravity in Equation 5.6

11. Circle median: is the median of all particle distances to the circle center.

12. Circle median absolute deviation: this feature makes the median more
robust and is calculated as in Equation 5.7

13. Circle minimum distance: the distance between the circle center and its
closest particle.

14. Circle standard deviation: the standard deviation of the distances be-
tween the circle center and the particles.

15. Point distance: is defined as the average distance of a scan point to a map
line.

16. Point fitting: represents in percent how well the points fit to the found
map lines.

17. Point inlier: states how many points are in front of detected map lines.

18. Point quality: represents the quality of single map points that were
matched on detected map lines.

19. Raycasting inlier: states the percentage of scan points that are within a
certain range from the map point.

20. Raycasting inlier percentage: is the percentage of scan points that were
found before an obstacle occurred in the map.

21. Raycasting matching percentage: states how many scan points exactly
match to the map.

22. Raycasting outlier percentage: given the percentage of scan points that
were found behind map obstacles.

23. Raycasting quality: states how well the scan matches to the map after
applying raycasting to each point. The result of this raycasting step is a
number of inliers, outliers and matching points.

24. Angle inliers: states how many scan lines are found that are nearer
that the found map lines. This is done because the map contains only
total blocked points. If a line is detected behind this blocked wall it
can be assumed that the scan does not fit correctly. the inlier feature is
normalized by the number of found lines.

25. Angle quality: states how well a laser scan fits onto a map after rotating
the scan point a bit. The quality is measured by searching for Hough lines
and then matching them against each other after rotating the scan.
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26. Line angle: represents the average angle between matching line. There-
fore Hough lines are detected in the scan and in the map and then matched
against each other. The difference to the angle of the lines is then taken as
feature.

27. Line distance: is the average distance of scan lines to the nearest map
line.

28. Line fitting: defines how many scan lines fit to map lines. This is normal-
ized and given in percentage.

29. Line length: returns the average line length based on the found lines
within the scan points.

30. Number of clusters: represents the number of found clusters within the
particle cloud. This is used because the particle cloud may form multiple
clusters when getting delocalized.

31. main cluster variance x: The variance of the main cluster in x direction.
The main cluster is the biggest cluster which is also used to estimate the
robots position. This value is received from the covariance matrix of the
main cluster.

32. main cluster variance y: The variance of the main cluster in y direction.

33. main cluster variance z: The variance of the main cluster in z direction.

To determine which features are important the robot was randomly driven
around in a simulation environment and the features were recorded. After
generating roughly 100.000 feature samples every feature is analysed on its
own. Therefore the discrete distributions P,Q for both classes are used to cal-
culate the KL divergence. The result of this analysis is shown in Table 5.4.The
feature number correlates to the numeration above. The unit column states
the unit of measurement, #bin is the size of bins that were used for the dis-
crete distribution and D(P||Q) is the Kullback-Leibler divergence. By observing
the KLD a general assumption can be made whether a feature is important
for boosting or not. It is defined that D(P||Q) ≥ 0 for all distributions and
D(P||Q) = 0 if P = Q. This means, the higher the result of the KLD the more
different the distributions are. When extracting the features that should be used
for this thesis it was also taken into account that features that do not seem to
correlate with the task may reveal information for boosting algorithms [130].
This is sometimes achieved by combining different features and reweighing
them. Thus, the feature selection was done generously and only features were
excluded which seem to hold very few no information.

The extracted features which are used for boosting are highlighted in Ta-
ble 5.4. The number of bins depends on the measurement unit and on the
discrete distributions. When using percent as measurement KLD uses 100 bins,
one for each percent. For degree the number of bins is 360, one for every degree.
For meters the size of a bin is 1cm. Therefore a feature that contains its samples
between a range of 0.0 − 1.0 meters has 100 bins. The selection of features
is based on the discrete distribution of the samples. Those distributions are
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Feature No unit #bin D(P||Q)
1 meters 350 0.265
2 meters 150 0.313
3 meters 100 0.314
4 meters 150 0.296
5 meters 50 0.321
6 meters 100 0.153
7 meters 100 0.293
8 meters 300 0.286
9 meters 200 0.294
10 meters 50 0.281
11 meters 200 0.279
12 meters 50 0.260
13 meters 150 0.159
14 meters 50 0.285
15 meters 400 0.086
16 % 100 0.157
17 % 100 0.118
18 % 100 0.035
19 % 100 0.183
20 % 100 0.046
21 % 100 0.166
22 % 100 0.045
23 % 100 0.098
24 % 100 0.315
25 % 100 0.035
26 degree 360 0.105
27 meters 400 0.042
28 % 100 0.033
29 meters 250 0.086
30 amount 5 0.102
31 meters 100 0.403
32 meters 100 0.050
33 meters 150 0.147

Table 5.4: Kullback-Leibler divergence for all features. Gray background indi-
cates an extracted feature that is used for boosting, selected by D(P||Q) ≥ 0.08

used for determining the Kullback-Leibler divergence which is again used for
comparing the localized and delocalized feature sets. From the definition of
the KLD one knows that the higher the value the less similarities are shared be-
tween both distributions. Features that seem to hold not much information are
removed. Since no feature is completely equal one could argue to consider all
found features but some features are nearly identical and might only increase
the boosting error. To extract relevant features the threshold for selecting a
feature was set to D(P||Q) ≥ 0.08. This value was chosen so that at least 75% of
the detected features are used for boosting. This threshold results in 26 features
that are used for boosting.
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Figure 5.7: Example of good feature separation using the existing scoring algo-
rithm and threshold distance 1.25 on feature number 31

An example for a good separable feature is shown in Figure 5.7. When
looking at this extracted feature one can see that the discrete distribution does
overlap but the probabilities are well separated. Also one has to remember that
the used scoring algorithm is not optimized and might not lead to an optimal
result. Figure 5.8 shows an example of a bad separated feature so that those
results can be compared. Both discrete distributions have their most parts near
to 100%. The main difference is a small number of delocalized samples around
0% but this also is not significantly high. Thus this example does not indicate a
significant difference. Due to the similarity of the distributions this feature will
most likely not reveal any information about the localization state.
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Figure 5.8: Example of bad feature separation using the existing scoring algo-
rithm and threshold distance 1.25 on feature number 18

By analysing some features that were identified during the implementation
phase one can extract features that can be used for boosting a neural network.
This thesis extracted 26 out of 33 features and uses them as input for a reference
boosting. After that the outcome of a trained neural network can be added
as additional feature and boosted. This result can then be compared to the
reference outcome. Since boosting algorithms might find information which is
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not revealed by comparison of normal distributions the selection of features was
done generously and thus also seemingly unimportant features were selected.



Chapter 6

Evaluation

This chapter focuses on a sound evaluation of the previously presented con-
cept. Therefore three different network types are analysed to extract a single
feature that estimates the robot localization state. The first network type which
is evaluated is a Convolutional Neural Network. This uses feature layers to
detect patterns in the shape of the particle cloud. Then it is evaluated whether
temporal information can be extracted from the particle filter to estimate the
robots localization state by applying Long-Short Term Memory networks. The
last network type is a combination of the two previously used types and is called
Long-term Recurrent Convolutional Network. The proposed neural network
structures are trained to determine the needed complexity of the networks.
Therefore, three networks are designed for each network type that have differ-
ent network structures with different complexity. By evaluating the different
structures one can determine how complex a network has to be designed to
fulfill its task of estimating the robots localization state. To evaluate a network
different validation sets are used to determine the classification accuracy. As
stated in Section 4, the sets are generated by letting a robot drive randomly
through an given environment. The first set that is evaluated was used to
train the neural network. This shows information on the overall network per-
formance and how good the neural network was trained based on the given
data. Then a second set is used to validate the network structure. This set was
recorded on the same environment as the neural network was trained on. The
last set is also a validation set which was recorded in a completely different
environment. Using these three sets one can answer three main questions that
occur for the trained networks

1. How well does the network structure perform on the given training set?
Does it find valuable information that can be used to train the network?

2. Does the neural network indeed train the robots localization state or does
it extract information that is irrelevant for this task? For instance does it
train the driven path of the robot?

3. Is the shape of the particle cloud influenced by the shape of the environ-
ment? Is the training needed to be done for every single environment?

By answering these questions one can also answer two out of three questions
that were presented in the problem definition (see Section 1.4). The third

110
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question from Section 1.4 concerning feature boosting can be answered by
using the best network structure that was found as additional feature.

To further improve the localization state estimation this thesis combines
different features that hold information about the robots localization state. This
is done because it is assumed that a combination of features perform better than
a single extracted feature like the outcome of the neural network. Therefore,
various features that are extracted from the particle filter, the environment, the
2D laser scan and the robots pose are used as described in Section 5.5.2. Those
features are then boosted by using AdaBoost and Support Vector Machines.
This is done by taking all found features and training them once with the
neural network outcome as additional feature and once without. This allows
us to determine whether the neural network outcome indeed imrpoves the
localization state estimation.

6.1 Evaluating Convolutional Neural Networks

The first network type that is evaluated are Convolutional Neural Networks.
Those network types use convolutional layers that hold different feature maps
and aim to detect trained features on an image. In this section three CNNs with
increasing complexity are analysed as presented in Section 4.

Simple Convolutional Neural Network

The first Convolutional Neural Network only consists of a simple structure.
Only one convolutional layer is used that is concatenated with a pooling layer
and a fully connected layer. Figure 6.1 shows the loss while training the neural
network. One can see that at the beginning the loss was a bit higher and while
training it did not decrease very much. For training a total of 100.000 iterations
were done to see if the neural network can further decrease its loss.
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Figure 6.1: The loss while training a simple Convolutional Neural Network
structure

Having trained the simple CNN structure it was evaluated by measuring
the accuracy of the three validation sets. Table 6.1 shows the result of the evalu-
ation. The Environment column indicates the validation set that was evaluated.
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Environment tp tn fp fn accuracy
training set 64 411 62 360 12 693 10 588 84.52 %
same environment 59 192 60 229 14 770 15 807 79.62 %
new environment 48 386 53 059 21 940 26 613 67.63 %

Table 6.1: Result of the simple convolutional neural network

The next four columns show the number of correct and incorrect classified sam-
ples where positive samples indicate that they were classified as localized and
negative samples were classified as delocalized. The accuracy was calculated
as discussed in Section 4.6. By looking at the accuracy of the validation sets one
can see that the network scored a quite good training accuracy of 84.52%. This
shows that relevant information could be extracted by the convolutional neural
network since the ratio of localized and delocalized samples is about 0.5. Val-
idating the neural network with samples that were randomly recorded within
the same environment yields an accuracy of 79.62%. By comparing this result
with the training set one can see that it is roughly 5% lower than the training
accuracy. This might be due to the fact that the validation set contains samples
that were not used for training. The accuracy of the second set is also high and
shows that the robots localization state can still be estimated efficiently even if
it was driven on different routes within the same environment. This leads to
the conclusion that this CNN structure did indeed learn the localization state
of the robot and not the path it has driven while collecting the data. The third
set in Table 6.1 was recorded within a completely different environment and
shows that the accuracy decreases roughly to 67%. From this decrease one can
conclude that the new environment does not form completely the same shape
of particles leading to a lower classification accuracy. Although the accuracy is
still higher than the sample ratio, it shows that not all shapes that were trained
within an environment are applicable to a different environment. This might be
due to the reason that the shape of the particle cloud depends on the structure
of the environment. If the new environment has many different scan- and en-
vironment shapes this might also lead to a different distribution of the particle
cloud. There seem to be still some general particle formations that occur in
both environments but a lot of information is lost due to the different shapes.

Mid-Complex Convolutional Neural Network

This next network structure is more complex than the previous Convolutional
Neural Network. It uses multiple convolutional layers and also more fully
connected layers. The exact structure of the network can be seen in Section 4.
Figure 6.2 shows the loss while training the neural network. One can see that
the loss decreases over a period of roughly 60.000 iterations. The total number
of iterations that was used for training was 100.000.

Table 6.2 shows the result of the mid-complex network structure. When
looking at the accuracy of the training set one sees an astonishing accuracy of
over 96%. This shows that the training samples were nearly perfectly separated
into the correct classes. The result on the validation set that was recorded in
the same environment but different paths are used. It shows that the accuracy



CHAPTER 6. EVALUATION 113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

0.2

0.4

0.6

0.8

1

iterations

lo
ss

Figure 6.2: The loss while training a mid-complex Convolutional Neural Net-
work structure

Environment tp tn fp fn accuracy
training set 72 050 72 656 2 343 2 949 96.47 %
same environment 59 655 65 220 9 779 15 344 83.25 %
new environment 48 284 51 113 23 886 26 715 66.27 %

Table 6.2: Result of the mid-complex Convolutional Neural network

decreases by more than 13%, indicating a network that was slightly overfitted.
Although the accuracy of the second validation set is not as high as for the
training set, it is still a very good result and shows by comparing it to the
training set that not the path was trained but the localization state of the robot.
The accuracy of the third validation set again decreases by roughly 17% to
66.28%. Since this is the set that was recorded in a new environment one can
determine that the network structure was only trained for one environment
and does only hold general information for other environments but the overall
accuracy is still ok.

Complex Convolutional Neural Network

The last convolutional network structure is designed to be very complex. This
is done to see whether a complex network structure is more efficient than sim-
pler ones. It uses many convolutional layers and is leaned on the network
structure of GoogLenet [144]. The exact structure of the network can be seen in
Section 4. Figure 6.3 shows the loss while training the neural network. One can
see that the loss keeps decreasing to the end but at roughly 85.000 iterations the
decrease in loss is not so significant anymore. The total number of iterations
that was used for training was 100.000.

Table 6.3 shows the evaluation result of the complex convolutional network
structure. Compared to the training accuracy of the mid-complex CNN it did
not increase. This leads to the assumption that this network structure is too
complex to help to solve the problem of estimating a robots localization state.
The complex network structure still managed to yield a high accuracy but since
a less complex network scored a higher accuracy it is not necessarily useful to
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Environment tp tn fp fn accuracy
training set 66 342 70 490 4 509 8 657 91.22 %
same environment 56 584 65 482 9 517 18 415 81.38 %
new environment 39 337 53 749 21 250 35 662 62.06 %

Table 6.3: Result of the complex Convolutional Neural network
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Figure 6.3: The loss while training a complex Convolutional Neural Network
structure

construct such complex systems. This is due to the fact that the image samples
that were trained do not hold a lot of information compared to full RGB images
of e.g. humans. Only a small amount of information is given by the particle
cloud. More complex images might need many more layers because they hold
various features that have to be detected. This is not the case for this thesis and
thus simpler convolutional networks seem to perform the best. The accuracy of
the validation set that was recorded in the same environment but not used for
training shows that again the network is a bit overfitted but managed to train
the correct information such that the localization state of the robot is estimated.
The validation within a different environment shows that it does not hold a lot
general information that can be applied to different environments. its accuracy
of roughly 62% shows that only little information is detected within a new
environment.

6.2 Evaluating Long-Short Term Memory Networks

This section focusses on evaluating the recurrent LSTM networks which were
trained to find out whether the temporal development of a particle cloud re-
veals information about the robots localization state. To find a proper network
complexity three different network structures with increasing complexity are
evaluated. To get an accuracy that can be evaluated efficiently the localized set
and delocalized set was limited to about 75.000 each such that a sample distri-
bution of roughly 50:50 is created. This allows to make more precise statements
since both sets contain the same number of samples.
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Simple Long-Short Term Memory Network

The first structure which is evaluated is the simplest structure. As presented in
Section 4 it consists of one single LSTM layer and two fully connected layers.
By looking at the loss function in Figure 6.4 one can see that the loss could only
be minimized within the first 20.000 iterations. Nevertheless, a total of 80.000
iterations were done during training with the hope to further minimize the loss.
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Figure 6.4: The loss while training a simple LSTM Network structure

Table 6.4 shows the results for a simple LSTM. The training accuracy is
with 84.42% lower than the accuracy of a convolutional neural network but
the validation accuracy on the same map can easily compete with them. This
indicates a neural network that is not overfitted at all and extracted some useful
temporal information for the recurrent network. The validation accuracy for the
different environment again is significantly lower but not completely random.
This leads to the assumption that some core information was extracted while
training a recurrent network. As for CNNs it seems like the particle cloud has
different shapes within different environments. Thus some information is only
learned within the environment that was used for training. So far the usage of
sequential neural networks is not an improvement compared to CNNs.

Environment tp tn fp fn accuracy
training set 60 659 65 964 9 035 14 340 84.42 %
same environment 57 476 65 769 9 230 17 523 82.16 %
new environment 53 043 48 640 26 359 21 956 67.79 %

Table 6.4: Result of the simple LSTM network

Mid-complex Long-Short Term Memory Network

The next structure which is evaluated for training temporal development of
the particle cloud is a bit more complex. It uses more LSTM layers that are
connected with fully connected layers at the end. For the exact structure of
the network, see Section 4. The loss for the mid-complex LSTM structure is
shown in Figure 6.5. It continuously decreases over time for about 80.000
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iterations. The complete training of the network structure was done in 100.000
iterations. Table 6.5 shows the outcome of the mid-complex LSTM structure.
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Figure 6.5: The loss while training a mid-complex LSTM Network structure

Environment tp tn fp fn accuracy
training set 69 025 61 403 13 596 5 974 86.95 %
same environment 64 286 58 690 16 309 10 713 81.99 %
new environment 59 627 41 415 33 584 15 372 67.36 %

Table 6.5: Result of the mid-complex LSTM network

It can be seen that the network performs well and reaches a training accuracy
of 86.95%. Also the validation set that was recorded in the same environment
reaches a high accuracy of roughly 82%. This indicates a network that does
not overfit. Although the accuracy in another environment decreases for over
14% it still detects a lot of useful information. By comparing the number of
false positives and false negatives one can see that the detection of delocalized
states was not trained as well as the detection of localized states. Delocalized
states were misclassified twice as often as localized states. Depending on the
requirements of the network this can be good or bad. When the user likes to
detect all delocalized states it is better to reduce the false positives. On the
other side the user could like to detect no false negatives so that the robot
does not unnecessarily believe to be delocalized. The optimal solution is to
reduce both, false positives and false negatives, but if this is not possible or
the user only likes to optimize one set this can be also done by adapting the
network structure. Also the number of classified training samples play a role
in this case. If the training set consists mainly of localized samples the network
tends to perform better in detecting localized states. So by varying the network
structure and the ratio of training sample states on can shape the network for
the users requirements.

Complex Long-Short Term Memory Network

The last LSTM structure that is evaluated is the most complex one. As described
in Section 4 it consists of multiple LSTM layers followed by multiple fully
connected layers. To find out how well the complexity of this network fits the
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problem for this thesis, it is compared to the other network types. Figure 6.6
shows the loss function that was recorded during training. It can be seen that
the loss was continuously decreased for about 60.000 iterations. The complete
training phase was done in 100.000 iterations.
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Figure 6.6: The loss while training a complex LSTM Network structure

Environment tp tn fp fn accuracy
training set 64 318 66 816 8 183 10 681 87.42 %
same environment 59 549 65 093 9 906 15 450 83.10 %
new environment 47 527 51 972 23 027 27 472 66.33 %

Table 6.6: Result of the complex LSTM network

Table 6.6 shows the validation results on the complex LSTM structure using
three different validation sets. The training itself yields an accuracy of 87.42%
and is an acceptable result. Also the validation set that was recorded in the
same environment scores a high accuracy of more than 83%. Although it seems
to work well when applied in the same environment, it looses many percent
when it is tested for an new environment. This problem was also detected on
the previous network structures. Thus one can also assume that the complex
LSTM network needs to be trained on its own for every environment.

6.3 Evaluating Long-term Recurrent Convolutional
Networks

The last network type that is evaluated in this thesis is the Long-term Recurrent
Convolutional Network. This combination of convolutional and LSTM layers
yields to take advantage from both layer types to further improve the localiza-
tion score. To find an acceptable network structure that can be used for training
three different networks with increasing complexity are trained.

Simple Long-term Recurrent Convolutional Network

The first LRCN network structure that is evaluated is a simple one. It consists
of only two convolutional layers that are concatenated with a LSTM layer and
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a fully connected layer. The exact structure is presented in Section 4. Figure 6.7
shows the loss function during training. It can be seen that the loss rapidly
increases at about iteration 22.000. This is an increase due to the stochastic
gradient descent. It moved out of a local minima and tried to find a better
solution. One can also see that indeed the loss was minimized a little bit after
the local minimum was escaped.
The results on the trained network are shown in Table 6.7. It can be seen that the
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Figure 6.7: The loss while training a simple LRCN structure

Environment tp tn fp fn accuracy
training set 66 792 66 300 8 699 8 207 88.73 %
same environment 60 400 63 417 11 582 14 599 82.55 %
new environment 55 034 49 284 25 715 19 965 69.55 %

Table 6.7: Result of the simple LRCN

combination of a CNN and LSTM network already yields a good performance
when trained on a small network structure. It performs better than the other
simple network structures on their own and scores an training accuracy of
88.73%. Also the validation accuracy on the same environment is with roughly
82% close to its training outcome and indicates a well fitted network. It can also
be seen that the ratio of correct classified localizations and delocalizations is
nearly equal. This means that both classes were trained to be detected correctly.

Mid-complex Long-term Recurrent Convolutional Network

To observe how complex the network structure can be to solve the task of
estimating a robots localization state, a more complex LRCN is constructed.
It consists of multiple convolutional layers, two LSTM layers and two fully
connected layers as described in Section 4. The loss function illustrated in
Figure 6.8 shows that the main decrease of loss was reached within the first
25.000 iterations. While training was done for a total of 100.000 iterations the
loss could not be decreased any further.
In Table 6.8 the results of the trained neural network are shown. While the
simple LRCN structure scored an accuracy of over 88%, this structure only
reached an accuracy of 88.13%. Also the other two validation accuracies are
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Figure 6.8: The loss while training a mid-complex LRCN structure

about 2% lower than the one in the simpler structure. Another noticeable
point is the difference of false positives and false negatives. It can be seen that
localized states were misclassified twice as often as delocalized states. This
means the network was shaped to better detect delocalized states.

Environment tp tn fp fn accuracy
training set 60 740 68 431 6 568 14 259 86.12 %
same environment 55 817 66 195 8 804 19 182 81.34 %
new environment 48 807 51 973 23 026 26 192 67.19 %

Table 6.8: Result of the mid-complex LRCN

Complex Long-term Recurrent Convolutional Network

The last network structure that is evaluated is a complex LRCN structure.
It is designed to see whether this complex structure is capable of extracting
relevant information or not. Also it is used to get a rough understanding of the
needed complexity for estimating a robots localization state. During training
the loss was recorded and is visualized in Figure 6.9. It can be seen that the
loss converged and did not decrease anymore starting at about iteration 50.000.
The complete training was continued for a total of 100.000 iterations.

Environment tp tn fp fn accuracy
training set 55 901 73 236 1 763 19 098 86.09 %
same environment 48 566 70 380 4 619 26 433 79.30 %
new environment 26 610 61 705 13 294 48 389 58.88 %

Table 6.9: Result of the complex LRCN

Table 6.9 shows the result of the complex LRCN structure. Here it can also be
seen that the training accuracy is lower than the accuracy of the simple LRCN
structure. Thus one can assume that only a simple network structure is needed
when a combination of CNN and LSTM is used to detect the localization state
of the robot. Another interesting result is the ratio of false positives and false
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Figure 6.9: The loss while training a complex LRCN structure

negatives on the training set. It can be seen that the delocalized states were
trained nearly perfectly while the classification error of false negatives is about
ten times higher. Another problem that can be seen from the results in Table 6.9
is that the new environment scores only a low accuracy. This also indicates
that the network might be overfitted and only trained on the structure of one
environment.

6.4 Boosting Features

Having evaluated different network types and structures one can now deter-
mine the best performing network and use it for boosting. This section handles
the selection of the best performing neural network and evaluates two different
boosting algorithms. At first all found features from Section 5.5.2 are boosted
with AdaBoost to train a base that can be used for comparison. Then the
neural network feature is added as additional feature and boosted again with
AdaBoost. The same two steps are then repeated on a Support Vector Machine.

6.4.1 Selecting the best performing Neural Network

As evaluated previously in this chapter there are nine trained networks which
are eligible to be used as additional feature for boosting. To find the best net-
work structure one has to define the situation in which the boosting algorithm
should be used. To be more specific one has to state whether the boosted fea-
tures are trained for a single environment or if the resulting feature weights
should be generalized and usable for different environments. For the first case
one can select the best performing network feature according to its accuracy on
the training set and in the validation set that was recorded in the same environ-
ment. If it should be more generalized one has to determine the best network
structure based on the validation accuracy with different environments. Since
the evaluation results of the neural networks show that they perform the best
when they are trained for one environment, this thesis focuses on the first pos-
sibility where it is assumed that training a network and boosting is done for
every single environment.

By comparing the training accuracy and validation accuracy of the same
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environment one can easily determine the best performing network structure
that can be used for estimating a robots localization state. Although the mid-
complex CNN seems to be overfitted it still performs the best on the validation
set. Therefore this neural network structure will also be used as additional
feature for boosting. In practice other aspects might be important. For example
for some company it might be important to minimize the number of false delo-
calizations while for another company a reduced number of false localizations
might be in focus. Depending on the application and needs one can choose
different network structures that are suitable.

6.4.2 Boosting with AdaBoost

This section applies AdaBoost on the features that were extracted and evaluates
the results. First AdaBoost is used to train all features except of the neural net-
work feature to calculate a base line for comparison. Then the neural network
feature is added and boosted again. When training features with AdaBoost one
needs to set the number of weak classifiers that may be used. Weak classifiers
are the extracted features that are used for training and various combinations of
them which are generated automatically by the OpenCV library. In Section 5.5.2
26 features were extracted and are used as weak classifiers. One could now
set the number of weak classifiers to 100 and the OpenCV implementation of
Adaboost automatically creates 74 new weak classifiers that are a combination
of the given features. This is done to further improve the performance of the
boosting algorithm. To find the best suiting number of weak classifiers one has
to train AdaBoost on a different number of classifiers and then select the one
with the highest test accuracy.

Evaluation of AdaBoost without Neural Network Feature

This section evaluates the the AdaBoost algorithm that is applied to the ex-
tracted features from Section 5.5.2 without the neural network outcome which
was evaluated above. AdaBoost was trained with a different number of classi-
fiers between 26 and 300 to find a proper number of weak classifiers that can
be used. Figure 6.10 shows the training and testing accuracy on a different
number of weak classifiers. The highest test accuracy before converging takes
place is scored with 276 weak classifiers.
Table 6.10 shows the resulting accuracy that was reached with AdaBoost and
276 weak classifiers. Positive samples are samples that were classified as lo-
calized and negative samples are classified as delocalized. Overall it can be
seen that the training and test accuracy are both quite high and do not differ a
lot. This means that the trained weights were fitted perfectly so that no over-
fitting takes place.Also the validation in a different environment scores an high
accuracy of 81.83%.

Evaluation of AdaBoost with Neural Network Feature

After training the baseline for comparison the output of the selected neural
network is now added as additional feature. As above one has to determine the
number of weak classifiers that should be used for training. Figure 6.11 illus-
trates the training and test accuracy of the AdaBoost algorithm on a different
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Figure 6.10: Training and test accuracy of AdaBoost without neural network
feature on a different number of weak classifiers

set tp tn fp fn accuracy
training set 64 258 63 883 11 106 10 731 85.45 %
same environment 64 423 63 726 11 263 10 566 85.44 %
new environment 48 935 61 540 5 898 18 626 81.83 %

Table 6.10: Boosting result using AdaBoost without the neural network feature
and 276 weak classifiers

number of weak classifiers. The test accuracy starts to converge at roughly 200
iterations and reaches it maximum with a total of 229 weak classifiers.
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Figure 6.11: Training and test accuracy of AdaBoost with neural network feature
on a different number of weak classifiers

Using this number of classifiers a test accuracy of 88.21% is reached as shown
in Table 6.11. This table also shows the improvement of accuracy when the
neural network output is used as additional feature. The difference of accu-
racy compared to AdaBoost without the neural network feature (Table 6.10) in
the same environment is an increase of 2.85% in training and 2.77% in testing.
When validating the boosting approach in a different environment the accu-
racy is still high but did not improve very much compared to boosting without
neural network feature. Since the network feature does not perform well in
other environments one can not expect better results than in boosting without
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the neural network output. This perfectly proves that the use of the neural
network output as feature increases the boosting performance by roughly 3%
when applied in the same environment. Also the number of weak classifiers
can be reduced by 47 which increases the training performance.

set tp tn fp fn accuracy
training set 33 633 32 563 4 886 3 888 88.30 %
same environment 33 675 32 453 5 097 3 745 88.21 %
new environment 51 550 59 988 7 450 12 011 82.62 %

Table 6.11: Boosting result using AdaBoost with the neural network feature
and 229 weak classifiers

Due to the accuracy improvement and the overall high accuracy that was
reached when boosting localization features with AdaBoost one can assume
that this method works well on estimating the localization state of the robot.

6.4.3 Boosting with Support Vector Machines

Another method for classifying the localization state of a robot with various
features as input are Support Vector Machines. SVMs are used in this thesis to
find an optimal separation hyperplane that separates localized and delocalized
states. As before with AdaBoost two different feature sets are used for training.
At first the features as presented in Section 5.5.2 are used without the selected
neural network output. This is then compared with a SVM that trains all the
features including the neural network output.

Evaluation of SVM without Neural Network Feature

The first approach for finding an optimal separation hyperplane is done without
the neural network feature and conducted with the library offered by OpenCV.
This library offers an automatic trainer that automatically searches for the op-
timal separation hyperplane and also tries to detect the perfect Kernel for it.
Since this SVM algorithm is well tested by OpenCV and its automatic mode
decreases the computational effort this method was used for training.

set tp tn fp fn accuracy
training set 23 027 23 099 14 291 14 572 61.51 %
same environment 23 158 23 289 14 320 14 222 61.94 %
new environment 21 735 21 970 15 639 15 864 58.11 %

Table 6.12: Boosting result using SVM without the neural network feature

Table 6.12 shows the outcome of the boosting with a SVM. It appears that this
method is not applicable for this task since the testing accuracy in the same
environment is with 61.94% roughly 20% lower than it is with AdaBoost. The
accuracy in a different environment decreases further to 58.11%. However, since
this is the base line for comparison the neural network feature is still added
and evaluated with a Support Vector Machine to see if it can be improved too.
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Evaluation of SVM with Neural Network Feature

To further improve the support vector machine above the neural network out-
come is added as additional feature. For this case also the automatic trainer
was used which searches for an optimal kernel to separate the training set.

set tp tn fp fn accuracy
training set 15 796 31 499 5 950 21 725 63.09 %
same environment 15 943 31 727 5 823 21 477 63.59 %
new environment 22 017 21 873 15 736 15 582 58.35 %

Table 6.13: Boosting result using SVM with the neural network feature

By adding the neural network feature one can improve the accuracy of a
SVM in the same environment by about 2% as shown in Table 6.13. Although
this is an improvement compared to the SVM without the network feature it is
still worse than the boosting approach with AdaBoost. Due to the low accuracy
it can be assumed that a SVM is not suitable for solving the task of estimating
a robots localization state.

6.5 Comparing Old Scoring Approach to AdaBoost

To determine if the boosting approach is an improvement compared to the old
localization scoring approach, both are now shortly compared. To compare
the old localization scoring approach one needs to generate samples which can
be classified into two classes. In Section 5.3 the optimal threshold distance
for separating two classes was already found. Since the old scoring approach
returns an the quality of the robots localization in percent one needs to find
a separation line which can be used to classify samples into a localized and
delocalized class. Figure 5.3 shows how the two classes were separated into
two discrete distributions. The optimal separation hyperplane for separating
the two distributions in percent is at a score of 45%. This means that samples
with a score < 45% are classified as delocalized and the others are classified
as localized. By classifying the old localization scoring approach one can now
collect scores and compare them to the actual localization state as discussed in
Section 5.4.1. To compare the boosting approach and the old scoring method
a robot is randomly driven in the training environment which was used to
train the neural networks. While driving through the environment the robot
classifies the old localization score and compares it to the actual label, resulting
in a set of true positives, true negative, false positives and false negatives. The

Method tp tn fp fn accuracy
AdaBoost 33 675 32 453 5 097 3 745 88.21 %
Old Scoring Approach 29 320 21 344 16 100 8 140 67.61 %

Table 6.14: Comparing the old localization scoring approachand the best per-
forming boosting approach, AdaBoost including the neural network output in
the trained environment
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results for the training environment can be seen in Table 6.14. One can see
that AdaBoost outperforms the old localization scoring approach by more then
20%. Thus one can conclude that the boosting approach with neural networks is
indeed an improvement and can be used to score the localization state of a robot
when applied in the trained environment. Table 6.15 shows the results in a new

Method tp tn fp fn accuracy
AdaBoost 51 550 59 988 7 450 12 011 82.62 %
Old Scoring Approach 28 925 22 003 15 441 8 535 68.16 %

Table 6.15: Comparing the old localization scoring approachand the best per-
forming boosting approach, AdaBoost including the neural network output in
the trained environment

environment. It can be seen that no approach increases its accuracy in a different
environment. While AdaBoost scores an accuracy of 82.62%, the old scoring
algorithm scores 68.16%. This much lower than the boosting approach. This
comparison shows that boosting also outperforms the old scoring approach in
new environments.
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Conclusion

In this thesis an implementation of particle filter-based robot localization was
analyzed for finding features of different kind which can be used to score
the accuracy of robot localization. Those features were extracted by applying
different approaches like statistical methods. Also features that already existed
in a previously existing localization scoring approach were selected as possible
feature. To determine the importance of a feature many samples were recorded
and separated into a localized and delocalized class. Then the distribution of
the previous localization score of these two classes was determined. Those
two distributions were calculated for every feature and used to rank their
importance by calculating the Kullback-Leibler divergence. Promising features
were then selected to be trained on two machine learning approaches: Boosting
with AdaBoost and applying a Support Vector Machine (SVM).

An additional feature was extracted by training neural networks to detect
the localization state of a robot based on the shape of the particle cloud. The as-
sumption is that the shape of the particle cloud and its temporal development
bear information about the localization quality. To find the best fitting neu-
ral network three different types with increasing complexity were evaluated:
a convolutional neural network (CNN), a long-short term memory network
(LSTM) and a long-term recurrent convolutional network (LRCN). The first
network type was used to determine whether the particle cloud holds relevant
information about the localization state of a robot. This was proven to be true
when the best performing CNN reached a training accuracy of 96.47% and a
validation accuracy in the same environment of roughly 83%. Although this
is a promising result it also showed that a CNN needs to be trained for every
environment since the validation accuracy in a different environment decreases
to under 70%. Training a CNN works already quite well for simple network
structures. Since a binary image representing the projected sample was used
for training the particle cloud only few convolutional layers were needed to ex-
tract relevant information. More complex network structures would search for
complex patterns that can be found in other fields of application but not in our
task. The LSTM network was used to find out if the temporal transformation of
a particle cloud reveals information about the localization state of a robot. The
evaluation shows that indeed a lot of information can be found by training tem-
poral transformations. The best performing LSTM structure scored a training
accuracy of 87.42% and a validation accuracy of 83.10% in the same environ-
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ment. As with convolutional networks a LSTM network needs to be trained
individually for every environment since the validation accuracy in different
environments decreases dramatically. The last network type is the co-called
long-term recurrent convolutional network (LRCN) which is a combination of
CNN and LSTM. This network type was used to see whether the advantages of
the different trained networks above can be combined into one single network.
Although the simplest LRCN structure which was tested performed best, it
could not increase the accuracy of the trained networks above. Also it could
not get rid of the issue that the network needs to be trained individually for
every single environment. Overall, the best performing network was a CNN
with little complexity. This network was also further used as additional input
for the two machine learning approaches, AdaBoost and SVM.

To find out if various features can be combined to improve the localization
accuracy two different machine learning approaches were applied. Both ap-
proaches used the extracted features to train a base result for comparison. Then
the output of the best performing neural network was added as additional fea-
ture and the method was trained again. The first approach that was evaluated
is adaptive boosting (AdaBoost) and showed that the training accuracy can be
improved from 85.45% without neural network feature to 88.30% with network
feature. From scientific view this is a top result but for practical application this
accuracy might still be too low. The second machine learning approach was a
support vector machine. The SVM could not keep up with the results of Ad-
aBoost and reached a training accuracy of 61.51% without the neural network as
additional feature. Including the neural network output the SVM did improve
its training accuracy but with 63.09% it is still a lot lower than the results with
AdaBoost. In conclusio, the evaluation of different settings showed that it is
possible to use information about the particle cloud for scoring the localization
quality.
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Future Work

Having set a corner stone for estimating the robots localization state by using
machine learning approaches on information provided by particle filters, fur-
ther research needs to be done to improve the results of this thesis. Therefore
different topics are presented which can be studied in the future.

The first topic is the triggering of errors in the particle filter. In this thesis the
error of the particle filter was simulated in the laser scan by adding dynamic
obstacles into the environment such that the laser model does not exactly match
the environment. As mentioned in this thesis it is also possible to force errors
in the particle filter by adding errors in odometry. This could be done to see if a
combination of both errors lead to a better result that can be applied in practice.

The next topic is to improve the particle filters performance for better lo-
calization accuracy. Therefore different publications already exist which aim
to make the particle filter more robust and more accurate. An example for this
would be to apply adaptive particle filtering [50] or to detect dynamic obstacles
as presented in [115] and then exclude them from the particle filter algorithm.

Another topic which can be done is to improve the neural network struc-
tures for extracting information from the particle cloud. This thesis focused on
determining whether a neural network can be used to extract relevant infor-
mation and if so, which network types can be applied. It was not searched for
the optimal neural network and thus the accuracy of a neural network may be
further improved by determining an optimal network structure.

This thesis only considered the position of particles for training neural
networks. Another step might be to insert more information of the particle
filter into neural networks such as the orientation of the robot. This could be
done by using a color channel which indicates the robots orientation.

Also real world tests should be conducted to see how well the localization
approach performs on a real robot in a real environment. Although the simu-
lation considered several aspects of a real robot, some information might still
be missing to apply the presented approach in a real world environment.
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Abbreviations

Abbreviation Definition
OS Operating System
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
HMM Hidden Markov Model
SMC Sequential Monte Carlo
PF Particle Filter
NN Neural Network
SVM Support Vector Machine
PCA Principal Component Analysis
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
LRCN Long-Short Recurrent Convolutional Network
BPTT Backpropagation Through Time
AdaBoost Adaptive Boost
SVM Support Vector Machine
SGD Stochastic Gradient Descent
EKF Extended Kalman Filter
FALKO Fast Adaptive Laser Keypoint Orientation-invariant
OC Orthogonal Corner
KLD Kullback-Leibler Divergence
GPS Global Positioning System
RFID Radio Frequency Identification
SIFT Scale Invariant feature Transform
MCL Monte Carlo Localization
ICP Iterative Closest Point
LIDAR Light Detection and Ranging
FCN Fully Convolutional Network
DOG Dynamic Occupancy Grid
MLP Multilayer Perceptron
DBN Deep belief Network
ANN Artificial Neural Network
RBM Restricted Boltzmann Machine
RMSE Root Mean Square Error
MAE Mean Absolute Error
HRRP High Resolution Range Profile
LPC Linear Prediction Coding
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PCNN Pulse-Coupled neural Network
RBF Radial Basis Function
GCC GNU Compiler Collection
LMDB Lightning Memory-Mapped Database
CPU Central Processing Unit
GPU Graphics Processing Unit
RGB Red Green Blue
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