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Zusammenfassung

Das Ziel dieser Arbeit ist es ein Materialmodell zu finden, das die Eigenschaften einer
Papierfaser abbilden kann. Die Arbeit unterteilt sich im Wesentlichen in zwei Teile. Im
ersten Teil wird eine Einführung in die Finite Elemente Methode gegeben und die Materi-
algesetze abgeleitet. Im zweiten Teil wird auf die Kalibrierung der Materialparameter mit
Nano-Indentierungsversuchen eingegangen.

Das Aufgabenpaket bestand darin ein anisotropes, viskoelastisches Materialmodell
in einen bestehenden Finite-Elemente-Code in MATLAB und in einer User-Subroutine
in ABAQUS zu implementieren. Mit dieser Implementierung wurden dann die Nano-
Indentierungsversuche simuliert. Durch iteratives Anpassen der Materialparameter, mit
entsprechenden Verfahren, wurden die Ergebnisse aus Simulation und Experiment
angeglichen. Dieses Vorgehen führt zur Lösung der ursprünglichen Aufgabenstellung,
die Materialparameter zu kalibrieren. Man spricht daher auch von der Lösung eines
inversen Problems.

Abstract

The goal of this thesis is to find a material model that is capable of describing the
behaviour of a pulp fibre. In the first major part of this thesis a general introduction to
finite element analysis is given and the constitutive equations of the used material model
are described. In the second major part the calibration of the material model parameters
with nano indentation experiments is outlined.

An anisotropic viscoelastic material model for finite deformations is implemented into
a finite element Matlab source code SOOFEA and in a user subroutine of ABAQUS. This
implementation is then used to simulate nano indentations experiments. By iteratively
adapting the material parameters the simulation results are fitted to the real experimental
values. With that proceedure the material parameters can be calibrated.
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1. Introduction

This thesis is a part of the research project that runs under the observation of the
Christian Doppler (CD) laboratory in cooperation with the ”Institute of Paper, Pulp- and
Fibre Technology” and ”Institute of Strength of Materials”. The aim of this thesis is to
find an appropriate material model to describe the behaviour of single pulp fibres and a
calibration method of the model parameters with nano indentation experiments.

Paper has a wide range of application from printing to carton or even furniture.
In practice, a well-established method to improve paper properties is to vary process
parameters and benchmarking the paper quality by measuring for example the maximum
tensile stresses or other significant material characteristics. On the other hand, paper
needs to be printed in many applications. Therefore, printer companies are very interested
to know how paper behaves in a printing process. Empirical optimisations is also
performed but as a consequence the optimisation chain from manufacturer to printer
is very long and the process time consuming. For that reason there is the wish to
understand the internal mechanism of paper. Since paper consists of a fibre network as
a first step the fibres have to be investigated.

Figure 1.1.: Pulp fibre [27]
Figure 1.2.: Bonding of pulp fibres in a paper sheet

[11]

Pulp fibres consist of various layers that are reinforced with fibrils (see figure 1.1).
Thus, this material compound has in the direction of the fibre and perpendicular to the
fibre different stiffness which has to be considered in the material model by implement-
ing anisotropy. For finite deformation it is best to formulate the anisotropy in terms of
structural tensors.

Furthermore, pulp fibres consist of cellulose, hemicellulose and lignin which have a
similar chain structure as polymers. Because of the possible rearranging of these chains,

1



1. Introduction

pulp fibres show a similar relaxation behaviour as polymers. Such behaviour is in a
material model implemented in terms of viscoelasticity.

As a consequence, due to this complex material properties a single tensile test is
not sufficient to estimate the material parameters. In the research project of the CD
laboratory various experimental tests are performed and the missing piece to link all
these measurements together is a suitable material model.

Regarding the material model itself, it is convenient to start with a well-established
model that is used for polymers or rubber. In the works [9] and [21] in which an
anisotropic viscoelastic model at finite deformations for rubber is discussed such a
material model was found and used.

Well established methods are available for the estimation of the elastic parameters in
fibre direction, however, this is not true for the transverse direction as a pulp fibre is
as tiny as a human hair which makes a tensile test in transverse direction impossible.
Therefore, nano indentation experiments are carried out on the outer surface of the pulp
fibre. This test is also designed to enable extraction of viscoelastic parameters in addition
to elastic properties.

This thesis is divided in two main parts. The first part starting with chapter 2 is dealing
with the constitutive equations and the second starting with chapter 7 is dealing with
the material parameter estimation.

Chapter 2 presents a brief introduction to finite deformation theory and in the following
chapter 3 the implementation into a finite element framework is discussed. Chapter
4 outlines the derivation of the material model. The verification of the implementation
is described in chapter 5. As it is necessary to have knowledge about how a specific
material parameter is influencing the total response of the material for the calibration of
the parameters chapter 6 explains the context.

Chapter 7 discusses a general solution method to solve the inverse problem that arises
from the material parameter estimation. Chapter 8 gives a short introduction to atomic
force microscopy. Chapter 9 presents an analytical approach to model the indentation
experiments and a solution strategy. Chapter 10 outlines a testing procedure with a finite
element Matlab source code SOOFEA for the constitutive equation. The simulation of the
indentation experiments in ABAQUS is presented in 11 before chapter 12 summarises
the findings.

2



2. Continuum Mechanics

In continuum mechanics, different approaches to describe deformation exist. Depending
on the amount of local deformation, different theories are applied.

• Finite/large strain theory
• Infinitesimal/small strain theory
• Large displacement or large-rotation theory

In this paper, large rotations and strains have to be examined and therefore only the
large strain theory is discussed.

2.1. Kinematics

In the modern continuum mechanics, the kinematics of material particles are described
by a reference configuration B0 also referred as material configuration and a current
configuration known as spatial configuration. The relation between those two configura-
tions is described by the nonlinear mapping equation 2.1. Furthermore, the deformation
gradient is defined as in equation 2.2. The deformation gradient is a linear mapping in
contrast to the point map ϕ(X) and is a fundamental quantity in continuum mechanics.

'(X; t)

F = rX'(X; t)

B0

BtX 2 B0

x = '(X; t)

Figure 2.1.: Nonlinear point map and deformation gradient

x = ϕ(X, t) (2.1)

F = ∇Xϕ(X, t) (2.2)

The deformation gradient could, in a geometrical point of view, be considered as a map
for tangents1. If X = P(ξ) is a curve in the material configuration and x = p(ξ) is a
curve in the spatial configuration only dependent on the parameter ξ ∈ R , then both are

1For a more detailed discussion on this topic, see [23].
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2. Continuum Mechanics

related. Equation 2.1 illustrates this as p(ξ) = ϕ(P(ξ), t). Using this expression on the
tangents of the curves results in:

dp(ξ)

dξ︸ ︷︷ ︸
t

= ∇Xϕ(X, t)
dP (ξ)

dξ︸ ︷︷ ︸
T

(2.3)

t = FT (2.4)

From equation 2.4 follows that F could be considered as a mapping of tangents T in
the material configuration to tangents t in the spatial configuration. Since in continuum
mechanics the deformation gradient is more relevant than the mapping ϕ(X, t), it is also
obvious to consider the tangent space TXB0 in contrast to the particle configuration B0

2.2. Strain

In finite strain theory the strains are based on the change of scalar product of two
element vectors.

1

2
(dx1 · dx2 − dX1 · dX2) = dX1 ·E dX2 (2.5)

Where E is the Green Lagrange strain tensor which operates on the material configuration.
The Green Lagrange strain tensor itself is derived from the right Cauchy tensor which is
on the other hand derived from the deformation gradient.

dx = F dX (2.6)

dx1 · dx2 = dX1 ·CdX2 (2.7)

C = F TF (2.8)

E =
1

2
(C − I) (2.9)

2.3. Stress

The basic concept is to find a relation between the Cartesian components σji that are
defined in the Cartesian coordinate planes dai. With this σji components the traction
vectors in the respective coordinate planes can be described.

ti = σ1ie1 + σ2ie2 + σ3ie3 (2.10)

Evaluating now the equilibrium on a tetrahedron in figure 2.2 with the traction vector tn
corresponding to the surface with the normal vector n and the traction vectors of the
coordinate planes as well as the body force f gives:

tn da =
3∑

j=1

ti dai − f dv (2.11)

Note that the plane areas dai = n · ei da can be expressed by the projection of da. This
equation can be simplified by dividing the equation with the area da and considering

4



2. Continuum Mechanics

dv → 0, da→ 0.

tn =
3∑

i=1

ti (n · ei) (2.12)

tn =
3∑

i,j=1

σjiej (n · ei) (2.13)

tn =

3∑

i,j=1

σjiej ⊗ ei︸ ︷︷ ︸
σ

n (2.14)

tn = σn. (2.15)

With equation 2.15 the Cauchy stress tensor σ is found. This tensor relates the traction
tn with the normal vector n. Since the normal vector and the traction vector do change
evenly at a rigid body motion t̃n = Qtn, ñ = Qn, the Cauchy tensor is as a consequence
objective. However, this property is lost at derivative respect to time. Furthermore, the
Cauchy stresses tensor is defined in the spatial configuration and is because of the
duality of shear stresses a symmetric tensor.
In modern formulation of continuum mechanics, the mapping between normal vector

e2

e3

e1

tn
n

da

dai

da−σ22 σ12

σ32

t1

Figure 2.2.: Element tetrahedron

and tangent vector is described in terms of tangent spaces TXB0 and co-tangent spaces
T ∗XB0. This applies respectively for the spatial configuration TxBt, T ∗xBt. Considering the
Cauchy formula a mapping from co-tangent to tangent space is already found.

σ =

{
T ∗xBt → TxBt
n 7→ t = σn

(2.16)

As a consequence t and n are in each space geometrically different but resemble in the
same vector which has only different measures in the spaces.
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2. Continuum Mechanics

2.4. Equilibrium and Virtual Work

The equilibrium equations can be formulated in the spatial or in the material configura-
tion. With the push forward or pull back operations, both equilibrium formulations can
be transformed into one another and are therefore equal. Nevertheless, depending on
the used constitutive relations it is advantageous to use one formulation rather than the
other. Even so that afterwards the equilibrium will be formulated in the material config-
uration the derivation of the equilibrium itself will be done in the spatial configuration
and then pulled back to the material configuration.
The equilibrium of a volume v with the body force per volume f and the traction force t
per area (see figure 2.3) is given by equation 2.17. With the Cauchy formula 2.15 and the
Gauss theorem the equilibrium equation can be reformulated in a more suitable form
2.19.

∫

∂v
t da+

∫

v
fdv =

∫

v
ρü dv (2.17)

∫

∂v
σnda+

∫

v
f dv+ =

∫

v
ρü dv (2.18)

∫

v
(divσ + f) dv =

∫

v
ρü dv (2.19)

The virtual work is derived by multiplying the equilibrium equation 2.17 with a virtual
displacement δu. This is also known as the weak form.

v

V

φ

∂v∂V

X3, x3

X2, x2

X1, x1

nt
da

Figure 2.3.: Virtual work

∫

v
(divσ + f) · δudv =

∫

v
ρü · δudv (2.20)
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2. Continuum Mechanics

With the divergence theorem div(σ · δu) = (divσ) · δu+ σ : grad δu equation 2.20 and the
Gauss theorem

∫
v divσ · δu dv =

∫
∂v σn · δu =

∫
∂v t · δu da can be rewritten as.

−
∫

v
σ : grad δu dv

︸ ︷︷ ︸
Wint

+

∫

v
f · δudv +

∫

∂v
t · δu da

︸ ︷︷ ︸
Wext

=

∫

v
ρü · δu dv

︸ ︷︷ ︸
Winertia

(2.21)

−Wint +Wext = Winertia (2.22)

Depending on the configuration, other stress definitions than the Cauchy stresses σ
are convenient to use. In this thesis, the focus lies on the Lagrangian configuration and
therefore the second Piola Kirchoff stress tensor and the Green Lagrangian strain tensor
E or right Cauchy tensor C is of importance. The derivation of the second Piola Kirchoff
S is for the sake of completeness done below.
Keeping in mind that the gradient of the virtual displacement ∇δu can be expressed by
the Euler Almansi strain by equation 2.26. This relation is derived starting from equation
2.9. A more detailed explanation is discussed in [15].

δE =
1

2
(δF TF + F T δF ) (2.23)

δF = δ(Gradu+ I) = Grad δu (2.24)

δE =
1

2
((Gradδu)TF + F TGradδu) (2.25)

δe = F−T δEF−1 =
1

2
((gradδu)T + gradδu) = sym(gradδu) (2.26)

Considering the symmetry of the Cauchy stress tensor, the internal work Wint in equation
2.21 can finally be expressed with equation 2.27. With the help of the pull back operation
and the properties of the tensor dot product, the definition of the second Piola Kirchhoff
follows as in equation 2.31.

δWint =

∫

v
σ : δe dv (2.27)

δWint =

∫

V
Jσ : F−T δEF−1dV (2.28)

δWint =

∫

V
JF−1σF−T︸ ︷︷ ︸

S

: δEdV (2.29)

δWint =

∫

V
S : δEdV (2.30)

S = JF−1σF−T (2.31)

Remark 1. At this point, it should also be mentioned that from the variation of equation
2.9 follows:

δE =
1

2
δC (2.32)

The relation between the stresses in the different tangent spaces are visualised in
figure 2.4. The second Piola Kirchhoff tensor can be interpreted as a material force (push
back of a spatial element force) per unit of undeformed area. In contrast, the first Piola
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2. Continuum Mechanics

Kirchhoff tensor can be interpreted as the current force per unit of undeformed area
which means that they are the analogy to the engineering stresses. The Cauchy stresses
are also referred to as true stresses since they can be interpreted as the current force
per unit of deformed area.

T
t

nN
S

F

F−T

P

Reference configuration Current configuration

τ = Jσ

x

x

X

X

TXB0
TxBt

T ∗
xBt

T ∗
XB0

Figure 2.4.: Stress relations

Remark 2. To establish a commutative mapping between reference and current configu-
ration the push/pull operations have to be considered. If in the reference configuration
the second Piola Kirchhoff tensor S is used the respective mapping in the current
configuration would be FSF T = τ which is the Kirchhoff stress tensor.

2.5. Solution of Equilibrium Equation

Equation 2.30 is generally a non-linear equation system which is mainly solved with
Newton’s method. In practice a variety of Newton implementations exist. However, in
this work only the well-established Newton algorithm (Newton-Raphson algorithm) with
algorithmic consistent tangent will be outlined.

2.6. Newton Algorithm

To show the principle of the Newton algorithm it is exemplary applied on a one vector
function f(x). At first, the function f(x) is linearised at a starting vector xk with a Taylor’s
series which results in equation 2.33. Here, the ∇ operator is a column vector so that
the product ∇xT gives the Jacobian matrix J . The iteration rule follows by finding the

8



2. Continuum Mechanics

zero points xk+1 of equation 2.33.

f(x) = f(xk) +

J︷ ︸︸ ︷
∇xTk (x− xk)︸ ︷︷ ︸

Df(xk)[u]

(2.33)

xk+1 = xk − J−1f(xk) (2.34)

For a more general notation the linearisation is noted with the symbol Df(x0)[u]. Where u
indicates the step or increment which is in the upper case (x− x0). The general iteration
rule for a complex function F(x) with the Newton’s method is then given by equation
2.36 with the assumption that the equation system could be solved respectively to u.

DF(xk)[u] = −F(xk) (2.35)

xk+1 = xk + u (2.36)

x0 x

f

f(x)

df
dx

∣∣∣
x1

x1
x2

df
dx

∣∣∣
x0

Figure 2.5.: One dimensional Newton’s method

2.7. Linearisation of the Constitutive Equations

At first, the equilibrium equation is discretised 2.21 and then linearised. Where (. . . )n+1

stands for the current unknown state and (. . . )n for the known previous step. Since the
external work Wn+1

ext is known no linearisation has to be performed.

δWn+1
int + δWn+1

inertia = δWn+1
ext (2.37)

DδWn
int[u] +DδWn

inertia[u] = δWn+1
ext − δWn

int − δWn
inertia (2.38)

In this work quasi static problems are solved so that the inertia part could be neglected.

DδWn
int[u] = δWn+1

ext − δWn
int (2.39)

As seen in section 2.6 and equation 2.39, the Newton method requires a linearisation of
the function. It is further necessary to linearise the internal work equation 2.30. In the
following the equations are written in index notation.

DδWint[u] =

∫

V
{DSij [u]δEij + SijDδEij [u]} dV (2.40)

9



2. Continuum Mechanics

Remark 3. From equation 2.9 the variation δ[. . . ] and linearisation D . . . [u] of the Green
Lagrange strain tensor follows. The mathematical operation of both are similar.

δEij =
1

2
δCij =

1

2
{δFmiFmj + FniδFnj} (2.41)

DEkl[u] =
1

2
{DFrk[u]Frl + FskDFsl[u]} (2.42)

For the linearised internal work 2.40, the linearisation of the varied Green Lagrange
strain tensor δE and the second Piola Kirchhoff tensor is necessary.

DδEij [u] =
1

2
{DδFmi[u]Fmj + δFmiDFmj [u] +DFni[u]δFnj + FniDδFnj [u]} (2.43)

(2.44)

The linearisation of the virtual quantities δ(. . . ) are zero since per definition they remain
constant in an incremental step u. This is in detail discussed in remark 5.

DδEij [u] =
1

2
{δFmiDFmj [u] +DFli[u]δFlj} (2.45)

(2.46)

Remark 4. Due to the fact that the second Piola Kirchhoff tensor can be expressed as
a function of the Green Lagrange strain tensor, the linearisation of the second Piola
Kirchhoff tensor can be represented by equation 2.47 by applying the chain rule. The
derivation of the second Piola Kirchhoff respective the Green Lagrange strain tensor is
also known as the material/Lagrangian tangent moduli or Lagrangian elasticity tensor C.
A more detailed explanation is given in chapter 4.

DSij [u] =
∂Sij
∂Ekl

DEkl[u] = CijklDEkl[u] (2.47)

Remark 5. The virtual work is at an increment defined by a trial solution position given
by the mapping φk and the virtual displacement δu as δW (φk, δu). For the solution with
Newton’s method it is necessary that in an increment u the virtual work δW change is
solely caused due to u itself by φk + u. As the virtual displacement is an independent
variable, the virtual displacement δu has to be constant in an increment. This is visualised
in figure 2.6.

The term δF = ∂δu
∂X = ∇0δu is representing in this context the virtual displacement. The

linearisation of this term in the increment u is in many cases zero. This depends on the
form of the nabla operator ∇0 (coordinate system) and on the element type in a finite
element context (see equation 3.9 ). In this thesis only Cartesian coordinates and brick
elements are used so that these linearised terms are equal to zero.

DδWint[u] =

∫

V
CijklDEkl[u]δEij dV +

∫

V
SijDδEij [u] dV (2.48)

Equating now the first integral of equation 2.48 with remark 4 and 3 gives:
∫

V
Cijkl

1

2
{DFrk[u]Frl + FskDFsl[u]} 1

2
{δFmiFmj + FliδFlj} dV (2.49)

∫

V
C

1

4
{DFrk[u]FrlδFmiFmj +DFrk[u]FrlFliδFlj + FskDFsl[u]δFmiFmj + FskDFsl[u]FliδFkj}

(2.50)
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t=t

X3, x3

X2, x2

X1, x1

u

δuδu

p

v∂vt=0

φ

V
∂V

P

Figure 2.6.: Virtual displacement

By using the minor symmetry of the Lagrange moduli Cijkl = Cjikl = Cijlk equation 2.50
can be further simplified.

∫

V
CijklDFrk[u]FrlδFmiFmj dV (2.51)

For the second integral of equation 2.48 follows:
∫

V
SijDδEij [u] dV (2.52)

∫

V
Sij

1

2
{δFmiDFmj [u] +DFli[u]δFlj} dV (2.53)

Again the symmetry of the second Piola Kirchhoff tensor can be used.
∫

V
SijδFmiDFmj [u] dV (2.54)

Inserting the found expressions for the linearised internal work into equation 2.39 gives:
∫

V
CijklDFrk[u]FrlδFmiFmj dV

︸ ︷︷ ︸
material tangent

+

∫

V
SijδFmiDFmj [u] dV

︸ ︷︷ ︸
geometrical tangent

= δWn+1
ext − δWn

int (2.55)

11



3. Finite Element Method

In general, the iteration rule for the Newton method is defined with equation 2.55.
However, as can be seen the displacement u does not directly appear in the equation
and therefore the equation system cannot be solved respective to u. The finite element
method can be used to provide solveable equations. In the finite element method, the
displacement u and the coordinates x are defined by shape functions which are in general
Lagrange polynomials. Due to the Gauss integration it is also best to transform the local
coordinate system of the element X,Y, Z into an iso-parametric r, s, t one. For that
reason the Jacobian J of the shape function occurs. This iso-parametric configuration is
visualised in the figure 3.1. Here, n indicates the amount of points n+ 1.

h[i,j,k](r, s, t) = lni (r)loj (s)l
p
k(t) (3.1)

lni (x) =
n∏

k=0
k 6=i

x− xk
xi − xk

(3.2)

x =

n∑

i=1

hi(r, s, t)x̂i y =

n∑

i=1

hi(r, s, t)ŷi z =

n∑

i=1

hi(r, s, t)ẑi (3.3)

u =

n∑

i=1

hi(r, s, t)ûi v =

n∑

i=1

hi(r, s, t)v̂i w =

n∑

i=1

hi(r, s, t)ŵi (3.4)

(3.5)

Remark 6. The displacements u can therefore be expressed by the discrete displacements
û by:

u = H(r, s, t)û (3.6)

Where H is defined by the Lagrange polynomials at the respective node positions.
Therefore, the shape of H depends also on the element type.

Remark 7. With the definition of the shape functions the deformation gradient is defined
as:

F =
∂(X + u)

∂X
= 1 +

∂u

∂X
= 1 +

∂r

∂X

∂u

∂r
= 1 + J−1∂H(r, s, t)

∂r︸ ︷︷ ︸
B

û (3.7)

(3.8)

For the linearisation of the deformation gradient and the variation follows:

δF = Bδû δFij = Bimδûmj (3.9)

DF [u] = Bû DFij [u] = Bimûmj (3.10)

12
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X3

X2

X1

x3

x2

x1t

s

r

Lagrange configuration
Euler configuration

J = ∂X
∂r

F = ∂x
∂X

iso-parametric refer-
ence configuration

J−1

Figure 3.1.: Configurations

Principally, the integrals 2.55 are solved during the numerical integration by evaluating
the integral expressions at every Gauss points of an element. As a consequence, the
material routine is called at all Gauss point of the element. For the integration in the
iso-parametric configuration over the volume also the boundaries have to be transformed.

dV = det(J)dV̄ = RdV̄ (3.11)

3.1. Assembling

Since the integration is performed on element level, the resulting element stiffness
matrices have to be assembled to a global stiffness matrix by ordering these element
stiffness matrices correctly.

3.2. Newton Algorithm

With the linearised internal work of section 2.7, the iteration rule 2.39 for the Newton
algorithm can now be specified with the deformation gradient approximation of remark
7. The shape functions are defined in the iso-parametric configuration. Consequently,
the volume boundary V of the integrals 2.54 and 2.51 must be transformed to the
iso-parametric reference configuration with equation 3.11. The determinant R of the
Jacobian is not to be confused with the determinant J of the deformation gradient.

∫

V̄
δûliBmlSijBmnûnjRdV̄ (3.12)

Introducing the approximation into the integral 2.51 gives
∫

V̄
δûniBmnFmjCijklFrlBrqûqkRdV̄ . (3.13)

13



3. Finite Element Method

For the known part of the inner virtual energy δWn
int follows.

δWn
int =

∫

V̄
SijδEijRdV̄ =

∫

V̄
Sij

1

2
(δFmiFmj + FniδFnj)RdV̄ (3.14)

=

∫

V̄
δFmiSijFmjRdV̄ (3.15)

=

∫

V̄
δûuiBmuFmjSijRdV̄ . (3.16)

Remark 8. Commonly, the displacements û are arranged in a column vector. However,
here the displacement is written in a matrix form ûij to enable a clear index notation. In
the other case, a Voigt representation of the other quantities would have been necessary1.

Finally, putting the found expressions into equation 2.55.

DδWint[û] = δWext − δWint (3.17)∫

V̄
δûniBmnFmjCijklFrlBrqûqkRdV̄ +

∫

V̄
δûliBmlSijBmnûnjRdV̄ = . . .

. . . δûmuF
ext
um −

∫

V̄
δûuiBmuFmjSijRdV̄

(3.18)

δûni

∫

V̄
(BmnFmjCijklFrlBrq −BmnSikBmq)RdV̄ ûqk = . . .

. . . δûmuF
ext
um − δûui

∫

V̄
BmuFmjSijRdV̄

(3.19)

δû

∫

V̄
(BFCFB +BSB) det(J) dV̄ û

︸ ︷︷ ︸
DFint[û]

= δûFext − δû
∫

V̄
BFS det(J) dV̄

︸ ︷︷ ︸
Fint

(3.20)

DFint[û] = Fext − Fint (3.21)

To get the iteration rule of the Newton method equation, 3.21 has to be discretized. For
that the notation of remark 9 is used. In a non-linear finite element analysis it is common
to prescribe the load in increments to establish a better convergence. These increments
are also known as pseudo time steps for static analysis. However, if the material follows
a time or kinematic dependent behaviour for example viscoelasticity, plasticity or the
material is subjected to a dynamic analysis then the load increment is also coupled to a
time step. Here, n indicates the load increments and i the Newton steps.

Remark 9. [•]in (3.22)
n . . . n-th load prescription
i . . . i-th iteration of Newton algorithm

With the notation of remark 9 equation 3.21 can be rewritten in a discrete form.

DFint[û
i+1
n+1] = (Fext)n+1 − (Fint)

i
n+1 (3.23)

Remark 10. As the increment in Newton’s Method is equivalent to a (pseudo) time step,
the linearisation is equivalent to a time derivation. This is also the reason why in literature
often the displacement u is replaced by a velocity v to be consistent.

Considering the linearisation of the internal work of remark 4 this expression can also
be interpreted as time derivatives.

Ṡ = C : Ė (3.24)

1See for example [3].
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3. Finite Element Method

A push forward operation of this equation leads to the Truesdell rate of the Kirchhoff
stresses τ ◦. However, the Euler tangent c is defined for the Truesdell rate of the Cauchy
stresses. Hence, the Euler tangent is a push forward of the Lagrange tangent C plus a
division by J as stated in equation 3.27

τ ◦ = Jc : d (3.25)

σ◦ = c : d (3.26)

c = J−1φ∗[C] (3.27)

If an update Lagrangian formulation is used and the finite element framework expects
a specific rate form, it has to be made sure that the right spacial tangent is evaluated.
Regarding ABAQUS this is discussed in the appendix 3.

3.2.1. Residuum

So, as in figure 3.2 could be seen for every load increment F ext
n+1 starting from point n

Newton’s method is applied. The equilibrium or solution is found if the unbalanced forces
or residuum ψi+1

n+1 defined as in equation 3.28 is zero. However, since in a numerical
solution zero will never be reached, an appropriate stopping criterion must be defined.

ψi+1
n+1 = (Fext)n+1 − (Fint)

i+1
n+1 (3.28)

Remark 11. If the unbalance of the forces Fext and Fint which is also known as residuum
ψn+1 is multiplied with the respective node displacements û we get as a result the
unbalanced energy.

(Wunb)
i+1
n+1 =

(
ûi+1
n+1 − ûin+1

)
·ψi+1

n+1 (3.29)

(Wunb)
i+1
n+1 < tolerance (3.30)

With the unbalanced energy an ideal stopping criterion 3.30 is found. The Newton
algorithm with algorithmic consistent tangent has a quadratic convergence. Since here
the virtual works were linearised also only the unbalanced energy has a quadratic conver-
gence. The advantage is that if the calculation of the tangent is faulty then the quadratic
convergence is instantaneously lost so that the correctness of the implementation could
be investigated. New implementations are often firstly tested on simple structures to be
able to perform plausibility checks.
For further information on this topic see [7].

3.3. Multi-field Variational Principle

For the usage of nearly incompressible materials, the pure variation of the displacement
tends to locking phenomena and has a poor performance in a numerical sense. There-
fore, for example the hydrostatic pressure or the volume ratio is treated as an extra
independent variable. There are many approaches from two to three field variational
principles. Here, only the three field variational Jacobian-pressure principle (Hu-Washizu
variational principle) which is implemented in the Abaqus’s mixed Hybrid elements is
introduced.
The isochoric hyperelastic potential is extended by an additional term (with a Lagrange
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3. Finite Element Method

Fint(t)

n

n+1

ψ1
n+1

ψ2
n+1

ψ3
n+1

u2n+1u1n+1 u3n+1

Fext
n+1 , F

int
n+1

Fext
n

Fint
n

C1
n+1

C2
n+1

Figure 3.2.: Newton-Raphson algorithm

multiplier p̂ ). So, in addition to the displacement field u the pressure field p̂ and Jacobian
Ĵ is varied.

Wint =

∫

V

[
ψiso(Ī1(u), Ī2(u)) + ψvol(Ĵ)− p̂(J(u)− Ĵ)

]
dV (3.31)

(3.32)

For the variation of the virtual work follows:

δWint =

∫

V

[
2
∂ψ

∂C
: δE + (

∂ψvol

∂Ĵ
+ p)δĴ − (J(u)− Ĵ)δp̂

]
dV (3.33)

ψ = ψvol + ψiso (3.34)

For a more detailed explanation, consult reference [1], [5] and [15].
In the appendix 2, it is briefly shown how this variational principle is implemented in the
user subroutine of ABAQUS.
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4. Material Model

The well documented work of Dirk Liefeith [9], [21], which is the basis for this chapter,
should not go unmentioned at this point.

Before the constitutive equations are derived based on the works of [33], [29] and [30]
a short introduction to the necessary theory is given. Especially the incompressibility,
the formulation of hyperelasticity and anisotropy is outlined.

4.1. Pulp Fibres

To understand the selection of the material model, it is advisable to look at a pulp fibre
from the mechanical point of view. A pulp fibre consists of various layers with different
properties. In figure 4.1 it is illustrated how the S2-layer of the fibre is made up. The
S2-layer is the main part of the fibre wall thickness and therefore only this layer is
exemplary discussed.

This layer is reinforced with cellulose micro-fibrils that are in a helical form arranged.
Those have a higher stiffness than the matrix material. When in wood, the fibres are
hollow but due to the production of paper the fibres collapse so that they can be modelled
as in figure 4.2. With that the top side and bottom side mirrored can be described with a
material that possesses another stiffness in one direction. Such a material is referred as
transverse isotropic which is indicating that the material differs in stiffness in two per-
pendicular directions. Such a simulation of a collapsed fibre is performed in section 5.1.4.

It is known that biological materials, polymers and rubber have Poisson’s ratios close
to 0.5 which justifies the usage of incompressible or nearly incompressible material laws.
Hemicellulose, lignin, cellulose which the pulp fibre consists of have a similar internal
structure as polymers. Polymers show due to its molecule chain structure a relaxation
behaviour which can also be observed on pulp fibres. Such a relaxation is modelled in
terms of viscoelasticity. Viscoelasticity is in literature mainly applied on incompressible
materials.
Considering these relations, it is assuring to implement an anisotropic, viscoelastic and
incompressible material model.

4.2. Incompressibility

The volume preserving constraint of incompressible materials has as side effect that
little changes in volume can lead to an extremely high hydrostatic pressure p (see also
remark 12). Such high stress would lead to a bad conditioned stiffness matrix and a bad
convergence. To circumvent this problem the incompressibility constraint is only partly
fulfilled and a deviation is penalised.
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4. Material Model

Fiber axis

Fibrillar direction ϕϕ

Cellulosic
microfibrils

S2-layer

Figure 4.1.: Pulp fibre

ϕ

Figure 4.2.: Collapsed pulp fibre

Remark 12. The total stresses σ can be decomposed into the hydrostatic pressure p
which changes the volume and a deviatoric part σdev that leads to a volume preserving
distortion.

p =
1

3
tr(σ) (4.1)

σ = σdev + pI (4.2)

To establish this in a finite deformation analysis the constitutive laws are split into
a volumetric and an isotropic part. Where the volumetric part is purely designated as
penalty function. For further information see [5].

F = F isoF vol (4.3)

J = det [F ] (4.4)

F vol = J
1
31 (4.5)

F iso = J−
1
3F (4.6)

The volumetric deformation gradient is a spherical tensor and includes the total volume
change. In the following, the volume preserving isochoric quantities are marked with a
bar F iso = F̄ .

4.3. Hyperelasticity

Elastic constitutive equations are only dependent on the current state. If the work done
by the stresses is path independent, which means the work in a time interval can be
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4. Material Model

expressed by the initial and final configuration, the work can be expressed with a scalar
elastic potential function ψ(F (X),X). Such a behaviour is termed hyperelastic.
The strain energy function must remain invariant due to a rigid body rotation. As we
know, the deformation gradient can be split in a stretch U and a rotation R by F = RU
but we also know that C = U2. This implies that it is best to represent the strain energy
function in terms of the right Cauchy tensor C. Keeping in mind that the strain energy
function is the time integration of the time derivation of itself and comparing the work
(power) conjugated pair S : Ė and the relation Ċ = 2Ė, it follows that the derivation
∂Cψ = 1

2S is half of the second Piola Kirchhoff.

ψ =

∫ t

t0

ψ̇(C,X) =

∫ t

t0

∂ψ

∂C
: Ċ =

∫ t

t0

1

2
S : Ċ =

∫ t

t0

S : Ė (4.7)

S = 2
∂ψ

∂C
=
∂ψ

∂E
(4.8)

In section 2 it was seen that the linearisation of the second Piola Kirchhoff can be
expressed by the Lagrangian elasticity tensor C. As the second Piola Kirchhoff tensor
depends on the derivation of the elastic potential respective to the right Cauchy tensor
and the equivalence of the derivations 4.8 it follows for the Lagrangian elasticity tensor.

C = ∂ES = 2∂CS = 4∂C∂Cψ(C,X) (4.9)

To establish the derivations after a tensor of the scalar tensor function ψ it is convenient
to formulate ψ by the invariants of the tensors Ii on which it is dependent (see remark
13). For the isotropic three dimensional case the elastic potential ψ(C,X) is defined by
the three invariants of the right Cauchy tensor ( see remark 13). Then the derivations
can be evaluated by the chain rule as:

S = 2
3∑

i=1

∂ψ

∂Ii

∂Ii
∂C

(4.10)

The derivations of the tensor invariants ∂Ii
∂C are given in the appendix 1. For the Lagrangian

elasticity tensor the derivation are given by:

C = 4
∑

Ii


∑

Ij

[
∂2ψ

∂Ii∂Ij

Ii
C
⊗ Ij
C

+
∂ψ

∂Ii

∂2Ii
∂C∂C

]
 (4.11)

Remark 13. The invariants of a second order tensor C are given in the three dimensional
case.

I1 = tr[C] (4.12)

I2 =
1

2
(tr[C]2 − tr[C2]) (4.13)

I3 = det[C] (4.14)

However, in a more general form, the elastic potential is dependent on more individual
tensors. Then the question arises with as many invariants the scalar tensor function can
be defined. This leads to the Theory of Invariants. In the Theory of Invariants a minimal
integrity basis is searched for which is an irreducible system of invariants. Here, a short
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4. Material Model

introduction is given and for a more detailed explanation it is referred to [31].
From [31] it is apparent that the invariants of a set of second order tensors can be ex-
pressed by traces of the tensor products. [31] gives also seven rules how the combination
of tensor products can be reduced to an integrity basis.

Remark 14. Rules for building an integrity base:

1. The tensor products are products of Pi, P 2
i and P 3

i (i = 1 . . . n). There is no higher
order than 3.

2. If the tensor is in a cubic form it possesses no other factors.
3. There is no product with the same two factors.
4. The first and the last factor cannot be of the same power.
5. P precedes P 2 . . . (This is a convention)
6. Two quadratic terms follow each other.
7. There are no tensor products of order higher than six.

With these rules we get as a result for a symmetric second-order tensor A the traces:

tr[A], tr[A2], tr[A3] (4.15)

For two symmetric second-order tensors A, B:

tr[A], tr[A2], tr[A3], tr[B], tr[B2], tr[B3] (4.16)

tr[AB], tr[AB2], tr[A2B], tr[A2B2] (4.17)

Finally for A, B, C additional to the invariants of the two tensors:

tr[ABC], tr[A2BC], tr[B2CA], tr[C2AB] (4.18)

tr[A2B2C], tr[B2C2A], tr[C2A2B] (4.19)

(4.20)

4.4. Anisotropy

The anisotropy can be formulated in a classical representation with a fixed coordinate
system which leads to a respective structure of the elastic moduli tensor (see equation
4.21) or a representation with coordinate independent structural tensors. In the following
context only the representation with structural tensors is discussed.




σ11

σ22

σ33

σ12

σ23

σ13




=




c1111 c1122 c1133 c1123 c1121 c1112

c2211 c2222 c2233 c2223 c2231 c2212

c3311 c3322 c3333 c3323 c3331 c3312

c2311 c2322 c2333 c2323 c2331 c2312

c3111 c3122 c3133 c3123 c3131 c3112

c1211 c1222 c1233 c1223 c1231 c1212







ε11

ε22

ε33

2ε23

2ε31

2ε12




(4.21)

A structural tensor characterises the directional dependence of the anisotropic behaviour.
For large deformations the anisotropic orientation of the material could change relating
to the fixed coordinate system. As the structural tensors are defined in the material
configuration, the advantage of structural tensors will become clear: Due to the push
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4. Material Model

forward operation the structural tensor is rotated accordingly and the orientation change
is implicitly established.

M = a⊗ a ; ||a|| = 1 (4.22)

The second order second Piola Kirchhoff stress tensor S is a response of the material due
to some deformation defined by right Cauchy tensor C. However, the material structure
as well influences the stress response so that the energy state of the material ψ is defined
by the deformation C and also by the internal structure which in turn is defined by
the second order structural tensor M . Such a constitutive energy function has to fulfil
the Principle of Material Indifference. This principle implies that an arbitrary orthogonal
transformation Q applied on the internal material structure and the deformation must
lead to the identical energetic state. A material symmetry group G is defined. For that,
assume a set of orthogonal transformations QinG, which leaves the energy state invariant.
Since the stresses are derivations from the strain energy respective to the deformation,
this principle implies as well on the stress response.

ψ(QCQT ,QMQT ) = ψ(C,M) ∀Q ∈ G (4.23)

S = 2∂Cψ(C,M) (4.24)

Now the definition of an isotropic material is that an arbitrary transformation Q on the
internal structure M but not on the deformation C leads to the same stress response.

ψ(C,QMQT )) = ψ(C,M) (4.25)

This leads to the consequence that the structural tensor M has to be M = λ1 were λ ∈ R
and arbitrary and therefore the constitutive equations are independent of the internal
structure. In contrast, this is not valid for an anisotropic material.
In figure 4.3, it is shown how the principal directions of strain and stress response do
not coincide for an anisotropic material.

x2

x1

Material direction

Eε 2 Eε 1

eσ 2

eσ 1

x2

x1

x2

x1

F (C,M )

Initial configuration with
principal strains Eε i

Running configuration with
principal stress directions eσ i

Figure 4.3.: Principal directions

4.4.1. Orthotropic Material

For an orthotropic material all three preferred directions a1, a2, a3 are orthonormal.
Therefore, the third direction can be expressed by the other two by a3 = a1 × a2. Which
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4. Material Model

leads also to the fact that the third structural tensor can be expressed by the other two
structural tensors. Since the structural tensors are derived from unit vectors a, it follows
that the power of the structural tensor is again the structural tensor.

Remark 15. The following simplifications of the structural tensors have to be considered
by evaluating the minimum integrity base.

M3 = 1−M1 −M2 (4.26)

M2 = M (4.27)

M1 : M2 = (a1 ⊗ a2) : (a2 ⊗ a2) = 0 (4.28)

From the previous section 4.3, the integrity base for three second order tensors is
given. In fact, an orthotropic material is defined by the three tensors C, M1, M2 so that
with the simplifications of remark 15 the integrity base follows as in equation 4.30. This
basis cannot be reduced any more.

I = {J1, J2, J3, J4, J5, J6, J7, IM1 , IM2} (4.29)

I ={tr[C], tr[C2], tr[C2], tr[CM1], tr[C2M1],

tr[CM2], tr[C2M2], tr[M1], tr[M2]}
(4.30)

Since the strain energy function of the Yeoh model is formulated with the principal
invariants I1, I2, I3 it is purposeful to replace the first three basic invariants in the
integrity base which gives a mixed form of basic and principal invariants.

I1 =tr[C] (4.31)

I2 =
1

2
(tr[C]2 − tr[C2]) = tr[cof(C)] (4.32)

I3 =det[C] (4.33)

I ={I1, I2, I3, J4, J5, J6, J7, IM1 , IM2} (4.34)

4.4.2. Transverse Isotropy

For a transverse isotropy only one structural tensor is needed. Therefore, the minimal
integrity base follows as:

I ={tr[C], tr[cof(C)], det[C], tr[CM1], tr[C2M1], tr[M1]} (4.35)

4.5. Isochoric and Volumetric Split

To implement an incompressible material, it is common practice to divide the elastic
potential in a volumetric and isochoric part. Where the volumetric part is accountable
for the volume dilatation and the isochoric for the deformation. For an incompressible
material the volumetric part is zero. Due to numerical reasons the volumetric part
is modelled as a penalty function and controlled to be very small by a parameter κ
which would normally be the bulk modulus. Such a penalty function is given by [25]. A
collection of these potentials can be found in [28].

ψ = ψvol(J) + ψiso(C̄) (4.36)

ψvol = κ(J − ln J − 1) (4.37)
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Since it is assumed that the volumetric part is small compared to the isochoric part it
is also assumed that the contribution of anisotropy and viscoelasticity is only affecting
the isochoric part. Therefore, the further contributions to the elastic potentials are only
effecting the isochoric part. For that reason also all potentials are dependent on the
respective isochoric invariants. As a consequence, the chain rule has to be applied to
the derivations of the elastic potential and the derivation 2 ∂Q∂C = M, ∂C̄

∂C = Q appears.
The fourth order tensor Q could be used to define the deviator operator DEV [•] in the
Lagrangian configuration.

DEV [•] = [•] : J
2
3Q (4.38)

The derivations of those tensors are given in the appendix. This correlation could also be
visualised in figure 4.4 as an intermediate configuration.

T
T̄

n̄N

Siso

Fvol = J
1
31

F−T
vol

Reference configuration Intermediate configuration

X̄

X̄

X

X

TXB0
T̄XB0

T̄ ∗
XB0

T ∗
XB0

t

n
F̄−T

Current configuration

τ

x

x

TXBt

T ∗
XBt

F̄ = J−1
3F

S̄

Figure 4.4.: Isochoric intermediate configuration

Remark 16. The deviator operator is in the Lagrangian configuration defined as:

DEV [•] =[•]− 1

3
[[•] : C]C−1 (4.39)

=[•] : I− 1

3
[I : [•] : C]C−1 (4.40)

=[•] :

[
I− 1

3
C ⊗C−1

]
(4.41)

For further information see also [17]. Performing the push forward of the DEV [•] operator
on the second Piola Kirchhoff tensor S, leads to the well known deviatoric components of
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the Cauchy stresses in the spatial configuration.

J−1FDEV [S]F T = J−1F [S]F T − J−1 1

3
[[S] : C]FC−1F T

︸ ︷︷ ︸
1

(4.42)

= J−1F [S]F T − J−1 1

3
tr(F [S]F T ) (4.43)

= J−1F [S]F T − 1

3
tr(J−1F [S]F T ) (4.44)

= σ − 1

3
tr(σ)1 = dev(σ) (4.45)

Where Iijkl = 1
2(δikδjl + δilδjk) is the fourth order identity tensor.

4.6. Elastic Potential

The elastic potentials for the anisotropic viscoelastic material are additively divided. In
a general way the strain energy function is split into an elastic and a viscoelastic part.
Since in this thesis an orthotropic material is used, only two preferred directions or
structural tensors M1, M2 are needed. Such an orthotropic material is visualised in
figure 4.5 with two perpendicular fibre orientations.

ψiso(C̄,M1,M2, I
I
i ,A

A
j ,B

B
k ) = ψe(C̄,M1,M2) + ψv(C̄,M1,M2, I

I
i ,A

A
j ,B

B
k ) (4.46)

Where IIi , A
A
j , BB

k are the internal variables in the context of viscoelasticity. The elastic
part is further divided into an isotropic and anisotropic elastic potential. Whereas for
the viscoelastic part potentials are necessary for each Maxwell (spring) element and for
each preferred direction plus isotropic part. The terms of viscoelasticity will be outlined
in section 4.10 in more detail.

a3

a2

a1

Figure 4.5.: Orthotropic material visualised with two fibre directions
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ψe(C̄,M1,M2) = ψeI(C̄) + ψeA(C̄,M1,M2) (4.47)

ψv(C̄,M1,M2, Ii,Aj ,Bk) =

nIv,i∑

i=1

ψvi (C̄, Ii) +

nAv,j∑

j=1

ψvj (C̄,M1,Aj) +

nAv,k∑

k=1

ψvk(C̄,M2,Bk) (4.48)

4.7. Stresses

The total stress is divided in the respective volumetric, elastic isotropic, elastic anisotropic
and the respective viscoelastic parts.

S = Svol + Siso = Svol + SeI + SeA + SvI + SvA (4.49)

Since the isochoric part of the calculation is performed in the isochoric intermedi-
ate configuration it is more effective to sum its parts in the aforementioned isochoric
intermediate configuration.

S̄iso = S̄eI + S̄vI︸ ︷︷ ︸
=S̄I

+ S̄eA + S̄vA︸ ︷︷ ︸
=S̄A

(4.50)

4.8. Lagrangian Elasticity Tensor

Similar to section 4.7 the Lagrangian moduli can be summed.

C = Cvol + CeI + CvI + CeA + CvA (4.51)

Again, the sum of the isochoric contribution can be summed up in the isochoric interme-
diate configuration to reduce the amount of transformations.

C̄iso = C̄eI + C̄vI︸ ︷︷ ︸
C̄I

+ C̄eA + C̄vA︸ ︷︷ ︸
C̄A

(4.52)

4.9. Elastic Properties

4.9.1. Isotropic

The elastic isochoric potential is defined by [33].

ψeI = µ10(Ī1 − 3) + µ20(Ī1 − 3)2 + µ30(Ī1 − 3)3 (4.53)

In figure 4.6, the Yeoh model is compared to the Neo-Hooke model. Here, both models
are fitted to experimental data from [32] of an uniaxial stretch test on rubber. Whereas
the Neo-Hooke material cannot describe the increase in stiffness at higher stretches, the
Yeoh model does. Consequently, the Yeoh model is well suited for large deformations
of rubber. If the parameters µ20 and µ30 are set to zero the model is equivalent to the
incompressible Neo-Hooke material model. With that in mind for smaller deformations
those parameters can be neglected.
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Figure 4.6.: Uniaxial stretch data fit with the Yeoh and Neo-Hooke model

4.9.2. Anisotropic

In general the elastic potential must fulfil physical principles as the balance principles or
the stress freeness in the initial state. From a mathematical point of view it is necessary
to assure the existence of solutions which implies further restriction on the shape of the
elastic potentials. This restriction is enforced by fulfilling the requirements of convexity.
Nevertheless, it is advantageous to weaken the requirement of a unique solution stated
by convexity. This leads to the definition of poly-convex elastic potential. For a more
detailed explanation about poly-convexity and its advantage of a scalar valued tensor
function see [28] and [29].
In [29], a poly-convex elastic potential 4.54 for an orthotropic material is outlined. This
elastic potential has in addition the advantage that through the set of parameters αe1,
αe2, the elastic potential can be made independent of the invariants J̄4, J̄5 by setting them
zero or analogous with αe3, αe4 and the invariants J̄6, J̄7. Keeping in mind that these
invariants are depended on the respective structural tensors, the orthotropic material
can easily be made independent of one preferred direction a1 or a2. As mentioned above
such a material with one preferred direction is referred to as transverse isotropic.

ψA = αe1(J̄4 − 1)2 + αe2K11 + αe3(J̄6 − 1)2 + αe4K12 + ψM1 + ψM2 (4.54)

K11 = (J̄5 − 1)− (Ī1 − 3)(J̄4 − 1) + (Ī2 − 3) (4.55)

K12 = (J̄7 − 1)− (Ī1 − 3)(J̄6 − 1) + (Ī2 − 3) (4.56)

ψM1 = −2αe2(J̄4 − 1) (4.57)

ψM2 = −2αe4(J̄6 − 1) (4.58)

The potentials ψM1 and ψM2 are needed to achieve a stress-free reference configuration.

Remark 17. For convenience the unit vectors of the preferred directions a1 and a2 are
described by the angles ϕ and ϑ as defined in figure 4.7.




sinϑ cosϕ
sinϑ sinϕ

cosϑ


 (4.59)
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ϑ

ϕ

a

z

x

y

Figure 4.7.: Preferred directions

4.10. Viscoelastic Properties

The viscoelastic behaviour could be modelled with different combinations of springs
and dashpots. Some of these combinations are very well-established in practice like the
Kelvin Voigt, Maxwell element or standard linear solid model (SLS). A general form is
represented by the generalised Maxwell elements as shown in figure 4.8. One Maxwell
element is a spring connected serially with a dashpot. In the general form, n Maxwell
elements are connected parallel to each other where one branch is purely elastic which
represents the elastic properties of section 4.9. Keeping that in mind the viscoelastic

µ1

µn

µ0 = f (ψeiso)

η1

ηn

S S

E

Q1

Qn

Se

Figure 4.8.: Two Maxwell elements

stresses can be expressed by the sum of the back stresses of the respective Maxwell
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elements in the directions a1, a2 and the isotropic ones.

S̄vI =

nIv∑

i=1

Q̄I
i (4.60)

S̄vA =

nAv,j∑

j=1

Q̄A
a1,j +

nAv,k∑

k=1

Q̄A
a2,k (4.61)

4.10.1. Isotropic

For the isotropic viscoelastic contribution to the elastic potential, the stiffness of the
Maxwell elements springs µi is just a variation by βi of the elastic potentials in section
4.9.1 for the sake of simplicity.

(ψviso)i = βiψ
e
iso (4.62)

If the differential equation system for the network of the generalised Maxwell elements is
solved in the isochoric intermediate configuration as stated in section 4.5 the following
evolution equation is found. Since only the deviatoric components of the stress tensors
contribute to the viscoelasticity but in the intermediate configuration the stresses are
derived by derivations respective to the isochoric quantities, they have generally not
only deviatoric components. Therefore, the DEV [•] has to be applied which is derived in
section 4.5. At this point this seems unnecessary since the isochoric stresses are in the
real material configuration already deviatoric tensors. However, the background of this
approach will get clearer in section 4.10.3 where equation 4.63 is discretised.

d

dt

[
Q̄I
i

]
+

2µi
ηi︸︷︷︸
τ−1
i

Q̄I
i =

µi
µ0︸︷︷︸
βi

d

dt

[
DEV [S̄e]

]
(4.63)

4.10.2. Anisotropic

For the anisotropic viscoelastic contribution respective evolution equations can be for-
mulated in the direction a1, a2.

d

dt

[
Q̄A
a1,j

]
+ τ−1

a1,j
Q̄A
a1,j =

d

dt

[
DEV [S̄v,0A,a1,j ]

]
(4.64)

d

dt

[
Q̄A
a2,k

]
+ τ−1

a2,k
Q̄A
a2,k =

d

dt

[
DEV [S̄v,0A,a2,k]

]
(4.65)

In figure 4.9, the basic structure of the viscoelasticity in the anisotropic model can be
seen. At the top, the anisotropic contribution shows both permanent anisotropic elastic
stresses SeA,1, S

e
A,2 and for each Maxwell element the instantaneous stresses Sv,0Aa1,k, S

v,0
Aa2,j

.
At the bottom, the single isotropic contribution is visualised with three clusters since the
isotropy is active in all directions.
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Anisotropy

Isotropy
2

3

1

M2M1

SeA,1
SeA,2

Sv,0A,a2,j

Sv,0A,a1,k

SeI,1

SeI,3

SeI,2

βiS
e
I,2

βiS
e
I,1

βiS
e
I,3

k
j

i i

i

dependent on dependent on

S2S1

S3

a2a1 τa1,k τa2,j

τiτi

τi

Figure 4.9.: Structure of viscoelastic model
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4.10.3. Time Integration

To implement the viscoelastic evolution equation 4.63 into a finite element framework a
time discretisation is required. In the non-linear solution algorithm the load is step by
step increased so that at this point this incrementation is linked directly to a real time
step as well. So that one has to make sure that the step properties for the simulation are
set accordingly.
For that reason the evolution equation has to be integrated over this time-step by using
the convolution integral. Here, the integration is performed in a general form so that the
differentiation between isotropic or anisotropic is omitted.
At first, equation 4.63 is Laplace transformed and simplified with the convolution theorem.
See also remark 18 for fundamental dependencies.

sL {Q(t)} −Q(0)︸ ︷︷ ︸
=0

+τ−1L {Q(t)} = L
{
Ṡ(t)

}
(4.66)

L {Q(t)} =
L
{
Ṡ(t)

}

s+ τ−1
(4.67)

= L

{
exp

(
− t
τ

)}

︸ ︷︷ ︸
=f(t)

L
{
Ṡ(t)ds

}

︸ ︷︷ ︸
=g(t)

(4.68)

= L

{∫ t

0
exp

(
− t− s

τ

)
Ṡds

}
(4.69)

Since it is assumed that at time t = 0 all stresses are zero, Q(0) vanishes. Converting
back to the time domain by using the inverse Laplace transformation gives an explicit
expression for the back-stresses.

Q(t) =

∫ t

0
exp

(
− t− s

τ

)
Ṡds (4.70)

Remark 18. Using the theorems:

Differentiation: L
{
ḟ(t)

}
= sL {f(t)} − f(0) (4.71)

Convolution: L {f(t)}L {g(t)} = L

{∫ t

0
f(t− s)g(s)ds

}
(4.72)

exp(−at) =
1

s+ a
(4.73)

The integral in equation 4.70 is implicitly solved during the analysis. For that the
integral has to be approximated by a discrete form which is established by splitting
the integral at time tn+1 into the known (. . . )n and unknown (. . . )n+1 part. This can be
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established by introducing the time step ∆t = tn+1 − tn in equation 4.70.

Qn+1 =

∫ tn+1

0
exp

(
− tn+1 − s

τ

)
Ṡds (4.74)

=

∫ tn

0
exp

(
− tn + ∆t− s

τ

)
Ṡds

+

∫ tn+1

tn

exp

(
− tn+1 − s

τ

)
Ṡds

(4.75)

= exp

(
−∆t

τ

)
Qn +

∫ tn+1

tn

exp

(
− tn+1 − s

τ

)
Ṡds (4.76)

Now solving the integral in equation 4.76 with the midpoint rule
∫ tn+1

tn
f(t) = ∆tf( tn+1+tn

2 )

and approximating the derivative Ṡ = Sn+1−Sn
∆t .

Qn+1 = exp

(
−∆t

τ

)
Qn + ∆t exp

(
− tn+1 − tn+1+tn

2

τ

)
Sn+1 − Sn

∆t
(4.77)

= exp

(
−∆t

τ

)
Qn + exp

(
−∆t

2τ

)(
Sn+1 − Sn

)
(4.78)

With equation 4.78 an update-equation is found for the back stresses. Where Qn, and
Sn have to be stored in every quadrature point at all prescribed increments. For further
details see [15].
Considering the result of equation 4.78 for the isotropic and anisotropic viscoelastic part
gives the respective update equations:

Q̄I,n+1
i = exp

(
−∆t

τi

)
Q̄I,n
i + exp

(
−∆t

2τi

)
βi

(
DEV [S̄e,n+1

I ]
∣∣∣
n+1
− DEV [S̄e,nI ]

∣∣n
)

(4.79)

Q̄A,n+1
a1,j

= exp

(
−∆t

τ

)
Q̄A,n
a1,j

+ exp

(
− ∆t

2τa1,j

)(
DEV [S̄v,0,n+1

A,a1,j
]
∣∣∣
n+1
− DEV [S̄v,0,nA,a1,j

]
∣∣∣
n
)

(4.80)

Q̄A,n+1
a2,k

= exp

(
−∆t

τ

)
Q̄A,n
a2,k

+ exp

(
− ∆t

2τa2,k

)(
DEV [S̄v,0,n+1

A,a2,k
]
∣∣∣
n+1
− DEV [S̄v,0,nA,a2,k

]
∣∣∣
n
)

(4.81)

Since the deviator operator DEV [•]|n changes in the reference configuration over the
iteration it has to be made sure that the right operator is applied.

Remark 19. Keeping in mind that the deviatoric viscoelastic isochoric stresses DEV [S̄n+1]
have to be transformed back to the reference configuration with Q and the properties of
a double operation of DEV in remark 20 gives:

DEV [S̄n+1] : Q = J−
2
3DEV [DEV [S̄n+1]] = J−

2
3DEV [S̄n+1] (4.82)

= S̄n+1 : Q (4.83)

4.10.4. Lagrangian Moduli

The derivatives of the known stresses (. . . )n equal zero in equation 4.79 to 4.81. Therefore,
only the derivation of the (. . . )n+1 stresses have to be considered for the Lagrangian
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moduli. Considering remark 19 the DEV [•] operator has not to be considered in the
derivation of the Lagrangian moduli.

C̄v,n+1
I,i = βi exp

(
−∆t

2τi

)
C̄e,n+1
I,i (4.84)

C̄v,n+1
A,a1,j

= exp

(
− ∆t

2τa1,j

)
C̄v,0,n+1
A,a1,j

(4.85)

C̄v,n+1
A,a2,k

= exp

(
− ∆t

2τa2,k

)
C̄v,0,n+1
A,a2,k

(4.86)

4.10.5. Simplification

Considering again remark 19, the isotropic viscoelastic stresses are consequently pro-
portional to the isotropic elastic part by βi exp

(
−∆t

2τi

)
and can be added to the elastic

part.

S̄n+1
I = S̄e,n+1

I +

nIv∑

i=1

βi exp

(
−∆t

2τi

)
S̄e,n+1
I (4.87)

S̄n+1
I =


1 +

nIv∑

i=1

βi exp

(
−∆t

2τi

)


︸ ︷︷ ︸
g

S̄e,n+1
I (4.88)

S̄n+1
I = g S̄e,n+1

I (4.89)

Where g could be seen as weight or ratio factor of the viscosity. The same applies for the
Lagrangian moduli.

C̄n+1
I =


1 +

nIv∑

i=1

βi exp

(
−∆t

2τi

)
 C̄e,n+1

I = g C̄e,n+1
I (4.90)

(4.91)

With that the isotropic contribution S̄I in equation 4.50 can be rewritten as:

S̄n+1
I = S̄e,n+1

I + S̄n+1
I (4.92)

=


1 +

nIv∑

i=1

βi exp

(
−∆t

2τi

)
 S̄e,n+1

I +

nIv∑

i=1

[
exp

(
−∆t

τi

)
Q̄I,n
i − exp

(
−∆t

2τi

)
βi DEV [S̄e,nI ]

∣∣n
]

︸ ︷︷ ︸
H̄n
I,i

(4.93)

In [15], the right sum in equation 4.93 is also referred to as the history variables H̄n
I,i.

Nonetheless, if the time-step changes over the increments it is not possible to save
only this history variable for the next increment. Therefore, it was decided to save the
back-stresses and deviatoric stresses separately.
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The isotropic contribution to the Lagrangian moduli in equation 4.52 is given in equation
4.94.

C̄n+1
I =


1 +

nIv∑

i=1

βi exp

(
−∆t

2τi

)
 C̄e,n+1

I (4.94)

On the other hand, the double operation of the DEV [•] operator applies also on the
anisotropic instantaneous stresses so that the anisotropic contribution S̄A in equation
4.50 could be rewritten as:

S̄n+1
A = S̄e,n+1

A +

nAv,j∑

j=1

Q̄A,n+1
a1,j

+

nAv,k∑

k=1

Q̄A,n+1
a2,k

(4.95)

=S̄e,n+1
A

+

nAv,j∑

j=1

S̄v,0,n+1
A,a1,j

+

nAv,j∑

j=1

[
exp

(
− ∆t

τa1,j

)
Q̄A,n+1
a1,j

− exp

(
− ∆t

2τa1,j

)
DEV [S̄v,0,nA,a1,j

]
∣∣∣
n
]

+

nAv,k∑

k=1

S̄v,0,n+1
A,a2,k

+

nAv,k∑

k=1

[
exp

(
− ∆t

τa2,k

)
Q̄A,n+1
a2,k

− exp

(
− ∆t

2τa2,k

)
DEV [S̄v,0,nA,a2,k

]
∣∣∣
n
]

(4.96)

For the anisotropic contribution to the total Lagrangian moduli in equation 4.52 equation
4.97 is found.

C̄A,n+1 = C̄e,n+1
A + exp

(
− ∆t

2τa1,j

)
C̄v,0,n+1
A,a1,j

+ exp

(
− ∆t

2τa2,k

)
C̄v,0,n+1
A,a2,k

(4.97)

Here, it has to be pointed out that one has to be careful with this simplification of the
double operation. Because this simplification is only possible if a double operation of the
same DEV [•]|n+1 is applied which is not the case for the history variables.
On the other hand, this simplification is necessary to get a consistency at the derivations
of the Lagrangian moduli.

33



4. Material Model

4.11. Derivations

As has been mentioned in section 4.5, due to the volumetric split the elastic potentials
are dependent on the isochoric invariants so that the chain rule has to be applied.

S = 2∂Cψ
iso = 2∂C̄ψ

iso : ∂CC̄ = S̄iso : Q (4.98)

Ciso = 2∂CS
iso = 2∂C(S̄iso : Q) (4.99)

= (2∂C̄S̄
iso : ∂CC̄) : Q + 2S̄iso : ∂CQ (4.100)

= QT : 4∂2
C̄ψ

iso : Q + S̄iso : 2∂2
CC̄ (4.101)

= QT : C̄iso : Q + S̄iso : M (4.102)

With that at hand only the isochoric derivations have to be outlined.

Remark 20. An important simplification of the model can be achieved by the identity of
the DEV [DEV [•]] = DEV [•] operator.

DEV [DEV [•]] = [•]ij
[
Iijkl −

1

3
CklC

−1
mn

] [
Iklmn −

1

3
CijC

−1
kl

]
(4.103)

= [•]ij


IijklIklmn −

1

3
CijC

−1
kl Iklmn +

1

9
Cij C−1

kl Ckl︸ ︷︷ ︸
=tr(CC−1)=3

C−1
mn − Iijkl

1

3
CklC

−1
mn




(4.104)

= [•]ij
[
Iijmn −

1

3
CijC

−1
mn +

3

9
CijC

−1
mn −

1

3
CijC

−1
mn

]
(4.105)

= [•]ij
[
Iijmn −

1

3
CijC

−1
mn

]
(4.106)

By using the symmetry of C it can be shown that the double contraction with the fourth
order identity tensor I gives again C.

IijklCkl =
1

2
[δikδjl + δilδjk]Ckl (4.107)

=
1

2
[δikCklδjl + δjkCklδil] (4.108)

=
1

2
[Cilδlj + Cjlδli] (4.109)

=
1

2
[Cij + Cji] = Cij (4.110)

4.11.1. Volumetric

For the derivation of the volumetric part see also [28]. To establish an easy change of the
penalty function, the derivation is performed in such a way that the potential ψvol can be
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easily replaced. Where (. . . )′ indicates the derivation respective to J .

ψvol = κ(J − ln J − 1) (4.111)

ψ′vol = κ(1− 1

J
) (4.112)

ψ′′vol = κ
1

J2
(4.113)

Svol = 2∂Cψ
vol = 2∂Jψ

vol∂CJ (4.114)
(A.14)

= Jψ′volC
−1 (4.115)

For the Lagrangian moduli follows:

Cvolijkl = 2∂Ckl(Jψ
′
volC

−1
ij ) (4.116)

= 2∂J(Jψ′vol)C
−1
ij ∂CklJ + 2Jψ′vol∂CklC

−1
ij (4.117)

(A.34)
= J(ψ′vol + Jψ′′vol)C

−1
ij C

−1
kl − 2Jψ′vol

1

2

[
C−1
ik C

−1
jl + C−1

il C
−1
jk

]
(4.118)

= J(ψ′vol + Jψ′′vol)C
−1 ⊗C−1 − 2Jψ′volC

−1�C−1 (4.119)

Remark 21. Where in analogy to [15] the operator � is defined as:

(A�B)ijkl =
1

2
[AikBjl +AilBjk] (4.120)

4.11.2. Isotropic

The Yeoh elastic potential is only dependent on the first invariant of C̄

ψeI = µ10(Ī1 − 3) + µ20(Ī1 − 3)2 + µ30(Ī1 − 3)3 (4.121)

S̄eI = 2∂Ī1ψ
e
I∂Ī1C̄ (4.122)

= 2
[
µ10 + 2µ20(Ī1 − 3) + 3µ30(Ī1 − 3)2

]
1 (4.123)

For the Lagrangian moduli follows:

C̄I,eijkl = 4∂C̄kl(∂Ī1ψ
e
I

∂Ī1

∂C̄ij
) (4.124)

= 4



∂C̄kl(∂Ī1ψ

e
I)
∂Ī1

∂C̄ij
+ ∂Ī1ψ

e
I

∂2Ī1

∂C̄ij∂C̄kl︸ ︷︷ ︸
(A.20)

= 0




(4.125)

= 4

[
∂2
Ī1Ī1

ψeI
∂Ī1

∂C̄ij

∂Ī1

∂C̄kl

]
(4.126)

C̄eI
A.20
= 4

[
2µ20 + 6µ30(Ī1 − 3)

]
1⊗ 1 (4.127)

(4.128)
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4.11.3. Anisotropic

The elastic potential is dependent on Ī1, Ī2, J̄4, J̄5, J̄6, J̄7.

ψeA =αe1(J̄4 − 1)2

+ αe2
[
(J̄5 − 1)− (Ī1 − 2)(J̄4 − 1) + (Ī2 − 3)

]

+ αe3(J̄6 − 1)2

+ αe4
[
(J̄5 − 1)− (Ī1 − 2)(J̄4 − 1) + (Ī2 − 3)

]

− 2αe2(J̄4 − 1)

− 2αe4(J̄6 − 1)

(4.129)

The stresses are derived by the chain rule. The derivations after the Invariants are given
in the appendix.

S̄eA = 2

[
∂ψeA
∂Ī1

∂Ī1

∂C̄
+
∂ψeA
∂Ī2

∂Ī2

∂C̄
+
∂ψeA
∂J̄4

∂J̄4

∂C̄
+
∂ψeA
∂J̄5

∂J̄5

∂C̄
+
∂ψeA
∂J̄6

∂J̄6

∂C̄
+
∂ψeA
∂J̄7

∂J̄7

∂C̄

]
(4.130)

∂Ī1ψ
e
A = −αe2(J̄4 − 1)− αe4(J̄6 − 1) (4.131)

∂Ī2ψ
e
A = αe2 + αe4 (4.132)

∂J̄4ψ
e
A = 2αe1(J̄4 − 1)− αe2(Ī1 − 3)− 2αe2 (4.133)

∂J̄5ψ
e
A = αe2 (4.134)

∂J̄6ψ
e
A = 2αe3(J̄6 − 1)− αe4(Ī1 − 3)− 2αe4 (4.135)

∂J̄7ψ
e
A = αe4 (4.136)

S̄eA =2{
[
−αe2(J̄4 − 1)− αe4(J̄6 − 1)

]
1

+ [αe2 + αe4] (Ī11− C̄)

+ (2αe1(J̄4 − 1)− αe2(Ī1 − 3)− 2αe2)M1

+ αe2(M1C̄ + C̄M1)

+ (2αe3(J̄6 − 1)− αe4(Ī1 − 3)− 2αe4)M2

+ αe4(M2C̄ + C̄M2)}
=
[
2(αe2 + αe4)Ī1 − 2(αe2(J̄4 − 1)− αe4(J̄6 − 1))

]
1

− 2(αe2 + αe4)C̄

+
[
4αe1(J̄4 − 1)− 2αe2(Ī1 − 3)− 4αe2

]
M1

+ 2αe2(M1C̄ + C̄M1)

+
[
4αe3(J̄6 − 1)− 2αe4(Ī1 − 3)− 4αe4

]
M2

+ 2αe4(M2C̄ + C̄M2)

(4.137)
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With equation 4.11 and the derivatives of equations 4.131 to 4.136 respective to Ī1, Ī2,
J̄4, J̄5, J̄6, J̄7 gives without the zero derivatives:

∂Ī1J̄4ψ
e
A = −αe2 (4.138)

∂Ī1J̄6ψ
e
A = −αe4 (4.139)

∂J̄4J̄4ψ
e
A = 2αe1 (4.140)

∂J̄4Ī1ψ
e
A = −αe2 (4.141)

∂J̄6J̄6ψ
e
A = 2αe3 (4.142)

∂J̄6Ī1ψ
e
A = −αe4 (4.143)

If the first derivatives of the invariants are examined, it will get obvious that only the
second derivatives of the invariants Ī2, J̄4 and J̄6 are unequal zero. The second derivatives
of these three invariants are provided in the appendix. Introducing these derivatives into
equation 4.11 gives:

C̄eA =4{−αe2(1⊗M1)

− αe4(1⊗M2)

− αe2(M1 ⊗ 1)

+ 2αe1(M1 ⊗M1)

− αe4(M2 ⊗ 1)

+ 2αe3(M2 ⊗M2)

+ (αe2 + αe4)(1⊗ 1− I)
+ αe2(M1⊗̃1 + 1⊗̃M1)

+ αe4(M2⊗̃1 + 1⊗̃M2)}

(4.144)

Remark 22. Where the operator ⊗̃ is given as

(A⊗̃B)ijkl =
1

2
(AikBjl +BjkAil) (4.145)

4.11.4. Viscoelastic

Since the viscoelastic stiffness is based on the respective potentials of the elastic part
(only with other parameters), the derivations are equivalent. So these derivations can
be easily obtained by setting αe3 = 0, αe4 = 0 for the preferred direction a1 and αe1 = 0,
αe2 = 0 for the preferred direction a2 in equation 4.137 and renaming the parameters αei
accordingly.
Hence, it follows for the preferred direction a1 and Maxwell element number j:

S̄vA,a1,j =
[
2(αv2,j)Ī1 − 2αv2,j(J̄4 − 1)

]
1

− 2αv2,jC̄

+
[
4αv1,j(J̄4 − 1)− 2αv2,j(Ī1 − 3)− 4αv2,j

]
M1

+ 2αv2,j(M1C̄ + C̄M1)

(4.146)

37



4. Material Model

C̄vA,a1,j =4{−αv2,j(1⊗M1)

− αv2,j(M1 ⊗ 1)

+ 2αv1,j(M1 ⊗M1)

+ αv2,j(1⊗ 1− I)
+ αv2,j(M1⊗̃1 + 1⊗̃M1)}

(4.147)

For the preferred direction a2 and Maxwell elements number k the stresses and La-
grangian moduli are given as:

S̄vA,a2,k =
[
2αv4,kĪ1 − αv4,k(J̄6 − 1))

]
1

− 2αv4,kC̄

+
[
4αv3,k(J̄6 − 1)− 2αv4,k(Ī1 − 3)− 4αv4,k

]
M2

+ 2αv4,k(M2C̄ + C̄M2)

(4.148)

C̄vA,a2,k =4{−αv4,k(1⊗M2)

− αv4,k(M2 ⊗ 1)

+ 2αv3,k(M2 ⊗M2)

+ αv4,k(1⊗ 1− I)
+ αv4,k(M2⊗̃1 + 1⊗̃M2)}

(4.149)
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4. Material Model

4.12. Algorithm

With that at hand the algorithm can be denoted as:

1. Load previous state variables QI,n
i , DEV [S̄e,nA,a2,j ]

∣∣∣
n
, QA,n

a1,j
, DEV [S̄v,0,nA,a1,j

]
∣∣∣
n
,

QA,n
a2,k

, DEV [S̄v,0,nA,a2,k
]
∣∣∣
n
.

2. Evaluate the determinant J , the right Cauchy tensor C, the isochoric right Cauchy
tensor C̄ and the invariants Ī1, J̄4, J̄6.

3. Evaluate the volumetric stresses Sn+1
vol (eq. 4.115) and Lagrange moduli Cn+1

vol

(eq. 4.119).

4. Evaluate the isochoric elastic stresses S̄e,n+1
I (eq. 4.123) and S̄e,n+1

A (eq. 4.137).

5. Compute the instantaneous stresses S̄v,0,n+1
A,a1,j

(eq. 4.146), S̄v,0,n+1
A,a2,k

(eq. 4.148).

6. Evaluate the respective deviatoric stresses DEV [S̄e,n+1
I ]

∣∣∣
n+1

, DEV [S̄v,0,n+1
A,a1,j

]
∣∣∣
n+1

and

DEV [S̄v,0,n+1
A,a2,k

]
∣∣∣
n+1

.

7. Compute the respective isochoric Lagrange moduli C̄e,n+1
I (eq. 4.127), C̄e,n+1

A (eq. 4.144),
C̄v,0,n+1
A,a1,k

(eq. 4.147), C̄v,0,n+1
A,a2,k

(eq. 4.149).

8. Update the back stresses Q̄I,n+1
i (eq. 4.79), Q̄A,n+1

a1,k
(eq. 4.80), Q̄A,n+1

a2,k
(eq. 4.81).

9. Compute the sum of the isotropic stresses (eq. 4.93) and Lagrange moduli (eq. 4.94).

10. Compute the sum of the anisotropic stresses (eq. 4.96) and Lagrange moduli
(eq. 4.97).

11. Compute the isochoric stress (eq. 4.50) and Lagrange moduli (eq. 4.52).

12. Compute the total isochoric stresses and Lagrange moduli
Sn+1
iso = S̄n+1

iso : Q, Cn+1
iso = QT : Cn+1

iso : Q.

13. Compute the total stresses and Lagrange moduli
Sn+1 = Sn+1

iso + Svol, Cn+1 = Cn+1
iso + Cn+1

vol .
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5. Verification

5.1. Uniaxial Tension Test

To show the orthotropic viscoelasticity behaviour, a simple uniaxial deformation is
calculated. For that purpose, the deformation gradient is given in a diagonal form with
the principal stretches λi.

F =



λ1 0 0
0 λ2 0
0 0 λ3


 (5.1)

e2

e1
S11 S11

S33 = 0 S33 = 0

S22 = 0

S22 = 0

e2

e3

Figure 5.1.: Uniaxial stretch test

Since only the stretch λ1 is prescribed and the surfaces in e1 and e2 direction have to
be stress-free only the stresses S11 can evolve. With these boundary conditions, the stress
components S22, S33 have to be zero, the stretches λ2, λ3 can be evaluated. This results
in a non-linear equation system that has to be solved with a Newton algorithm. Since
for the Newton algorithm the derivatives of S are needed and the derivatives respective
to the right Cauchy tensor C are already known it is more convenient to formulate the
Newton algorithm with C.

Ŝ =

(
S22

S33

)
Ĉ =

(
C22

C33

)
(5.2)

Ĉ =

(
C2222 C2233

C3322 C3333

)
(5.3)
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5. Verification

1

2
2
∂Si

∂Ĉi︸ ︷︷ ︸
Ĉ

(Ĉi+1 − Ĉi) + Ŝ = 0 (5.4)

Ĉi+1 = Ĉi − 2 Ĉ−1Ŝi (5.5)

||Ŝi+1|| =
√
Ŝi+1 · Ŝi+1 < tol (5.6)

5.1.1. Results Linear Loading

In this simulation, the stretch λ1 increase with stretch rates λ̇ = 1× 10−2, λ̇ = 5× 10−3

and λ̇ = 2× 10−3 from 1 up to 2. The results are compared to that of the diploma thesis of
Dirk Liefeith [21]. Where REF indicates the reference and SIM the simulated or calculated
results. The parameters are defined in table 5.1. The material model is implemented
in the in-house finite element program SOOFEA for this test. The preferred material
directions coincide with the triad of the Cartesian coordinate system: ai = ei for i = 1, 2, 3.

Isotropic κ µ10 µ20 µ30

160 0.1489× 10−4 −8.551× 10−3 6.175× 10−6

Viscosity(i) τi βi
1 1.0 0.0
2 1.0 0.0
3 1.0 0.0
4 1.0 0.0

Anisotropic αe1 αe2 αe3 αe4
0.5 0.6 0.25 0.25

Viscosity(j) τa1,j τa2,j αv1,j αv2,j αv3,j αv4,j

1 10.0 10.0 0.610 0.620 0.410 0.420
2 10.0 10.0 0.710 0.720 0.450 0.450
3 10.0 10.0 0.510 0.520 0.350 0.350
4 10.0 10.0 0.410 0.420 0.310 0.320

Table 5.1.: Input parameters for brick tensile test
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Figure 5.2.: Uniaxial stretch test
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Figure 5.3.: Uniaxial stretch test
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Figure 5.4.: Uniaxial stretch test

5.1.2. Results Cyclic Loading

In this simulation, the stretch λ1 is varied in one cycle with stretch rates λ̇ = 5× 10−3,
λ̇ = 2.5× 10−3 and λ̇ = 1× 10−3 from 1 up to a maximum of 2 and to a minimum of 0.75.
This analysis should show the hysteresis that can be described with viscoelasticity.
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Figure 5.5.: Uniaxial stretch test
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Figure 5.6.: Uniaxial stretch test
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Figure 5.7.: Uniaxial stretch test

5.1.3. Cook’s Membrane

A purely elastic test is performed on a three dimensional version of the Cook’s membrane
problem to show the effects of anisotropy. The material model is implemented into
the finite element software package ABAQUS using the user subroutine UMAT for this
problem. The cantilever was discretised with an edge subdivision of 20 in length and 10
in height and 2 in depth which sums up to 400 elements. As element type the hybrid
element C3D8RH with enhanced hourglass control was used. The parameters for the

F

Fibre orientation:
(45◦ blue, −45◦ red)

48mm

16
m
m

44
m
m

4mm

X

Figure 5.8.: Cook’s Membrane problem

simulation are specified in table 5.2. Figure 5.10 shows the displacements of node X.
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5. Verification

Isotropic κ µ10 µ20 µ30

100.0 0.2565 3.325× 10−3 3.518× 10−7

Anisotropic αe1 αe2
0.5 0.2

Force F
20 N

Table 5.2.: Input parameter for Cook’s Membrane simulation

XY

Z

X

Y

ZX

Y

Z

Figure 5.9.: ABAQUS simulation of Cook’s Membrane
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Figure 5.10.: Displacements U1 in x-direction, U2 in y-direction and U3 in z-direction for point X.
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width 32 µm
thickness 7.45 µm

length 1000 µm

Table 5.3.: Geometry of pulp fibre

5.1.4. Tensile Test of a Pulp Fibre

To show how the anisotropy can affect the behaviour of pulp fibres a simulation is
performed on a simplified model of the pulp fibre. A pulp fibre consists of various layers
with fibre reinforcement. These fibres are helically aligned around the fibre tube. However,
in a dried state the fibres are often flattened so that the fibre could be approximated by
a bi-material bar with two mirrored fibre orientations. The geometrical dimensions of
the pulp fibre are based on article [10]. The material parameters where chosen to show
clearly the anisotropic behaviour and the relaxation.
The structured mesh was generated with an edge subdivision of 200 in length, 10 in

ϕ

x

y

z
width

th
ic
kn
es
s

len
gth

X

Figure 5.11.: Specification of pulp fibre

Isotropic κ µ10 µ20 µ30

10 2.947× 10−4 −3.01× 10−5 5.605× 10−6

Viscosity(i) τi βi
1 100.0 0.2
2 10.0 0.3

Anisotropic αe1 αe2
0.001 0.002

Viscosity(j) τa1,j αv1,j αv2,j

1 10.0 0.011 0.012
2 10.0 0.021 0.022

Table 5.4.: Input parameters for brick tensile test

width, 4 in thickness and the radius with 3. As element type an eight node hybrid element
with enhanced reduced integration C3D8RH was used. The pulp fibre was fixed on one
side and pulled in x-direction (U1 displacement) as shown in figure 5.14. The simulation
is again performed using ABAQUS and UMAT.

In figure 5.14, the relaxation is clearly visible of the node point X after the prescription.
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5. Verification

Figure 5.12.: Undeformed pulp fibre t = 0 Figure 5.13.: Torsion of the pulp fibre at t = 75s
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Figure 5.14.: Displacement of point X
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6. Parameter Influence

6.1. Elastic Parameter Influence

From the theory manual of Abaqus [1] it has become apparent that for the Yeoh model
4.53 the parameters are commonly chosen to be that µ10 = 1.0 is of order one, µ20 =
−0.1÷ 0.01 negative and one to two orders smaller and µ30 = 0.01÷ 0.0001 up to four order
smaller. These parameters generate an S-shape of the stress strain behaviour. If µ20 and
µ30 are set to zero the model is equivalent to the incompressible neo-Hookean model.

To get hold of the anisotropic parameter influence, it is advisable to look at the
instantaneous anisotropic viscous second Piola Kirchhoff stresses of equation 4.146.

S̄vA,a1 =
[
2(αv2)Ī1 − 2αv2(J̄4 − 1)

]
1

− 2αv2C̄

+
[
4αv1(J̄4 − 1)− 2αv2(Ī1 − 3)− 4αv2

]
M1

+ 2αv2(M1C̄ + C̄M1)

(6.1)

The invariants J̄4 and J̄6 in equation 4.148 can be interpreted in a physical way. Since
they are the double contraction of the right Cauchy tensor and the structural tensor
C : M , they can be interpreted as the squares of the stretches projected in the preferred
direction1. Hence, in equation 6.1 the parameters of the preferred direction a1 can be
discussed. The same applies to the other preferred direction a2.

The parameter αv1 is only related to the structural tensor M1 and the invariant J̄4

and therefore this parameter has its influence purely on the preferred direction. The
parameter αv2 is also a factor of the right Cauchy tensor C̄ and the first invariant Ī1,
therefore, also some isotropic contribution is expected.

6.2. Viscoelastic Parameter Influence

To get a better understanding of how the material parameters influence the anisotropic
viscoelastic material response, the evolution of the stresses in tensile tests are analysed.
Since these test are displacement-controlled with a constant stretch rate, the back
stresses Q can only evolve if the parameters are chosen accordingly. This becomes clear
if the following is considered: The dashpot directly influences how much the spring is
tensioned. So, if the viscosity of the dashpot is high or τ � then the spring is completely
active and the back stresses are high. On the contrary if τ � then the spring is hardly
active since the dashpot is preventing a ’wind up’ of the spring. Which means that the
back stresses are low. So, on one point the parameter τ influences the maximum stress
response but on the other point also the relaxation process over time, how fast the back
stresses decay.

1For more details see [16]
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6. Parameter Influence

To show the influence of the relaxation time it is important to look at the update algorithm
6.3 taken in a simplified form and a linear increase of the instantaneous stresses is
assumed in figure 6.2.

Q Q

S S

Figure 6.1.: Dashpot & Spring

Hi = exp(−dt
τ

)Qi − exp(− dt
2τ

)Si (6.2)

Qi+1 = Hi + exp(− dt
2τ

)Si+1 (6.3)

The anisotropic viscous instantaneous stresses are hypothetical stresses that evolve if
due to fast loading the dashpot is completely rigid or inactive. If it is assumed that these
stresses evolve linearly over time, as it can be seen in 6.2 that at a certain point the
actual back stresses Q do not increase anymore which means that the increase of the
instantaneous stress (spring) is in equilibrium with the loss of stresses caused by the
history variables (dashpot).
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Evolution of stresses for a single Maxwell branch

S
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Q(==500)
H(==500)

Figure 6.2.: Evolution of stresses

6.3. Uniaxial Tension Test

Once more, a uniaxial stretch test of section 5.1 is done for one anisotropic Maxwell
branch where the preferred direction is aligned into the stretch direction. With the
parameters of table 6.1.

In figure 6.4 it can be seen that both perpendicular stretches λ2, λ3 are equivalent.
If now the preferred direction is rotated by 45° (this requires a1 = [

√
2

2 ,
√

2
2 , 0]) then a

difference in both stretches is expected. In figure 6.6 this can be observed.
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κ 1000
αv1 1.11
αv2 1.11
τ 100

Table 6.1.: Input parameters
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Figure 6.3.: Back stresses at uniaxial drive test
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Figure 6.4.: Stretches at uniaxial drive test

0 200 400 600 800 1000
time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
tr
es
s
[N
/m

m
2 ]

Uniaxial tensile test on single Maxwell branch

Figure 6.5.: Back stresses evolution at 45° preferred
direction
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Figure 6.6.: Stretches at 45° preferred direction
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6.4. Single Element Tensile Test

To get hold of the anisotropic viscoelastic behaviour in a finite element framework, a
single element tensile test is performed in Abaqus. As element type a linear eight node
hybrid element C3D8H was used. The material direction was set again to a1 = [

√
2

2 ,
√

2
2 , 0]

Due to the unaligned preferred direction with the drive axis the element tends to deform

y

x

z

1

4

8

5

6

2

3 ∆x

preferred direction

45◦

∆x

∆x

∆x

Figure 6.7.: Single element tensile test

ẋ 0.01 mm
s

Edge length 10 mm
Elongation ∆x 5 mm
total time 1000 s

Table 6.2.: Single element specification

downwards which aligns the preferred direction with the drive axis. The reason for this
is that due to the anisotropic stress part shear stresses are introduced. However, since
in this set-up no shear stresses could exist the element has to deform accordingly. The
simulation was performed with the parameters in table 6.3.

In figure 6.10, only the Cauchy stress σxx is plotted since only this stress evolves in the
uniaxial stretch test.
In figure 6.9 it is clearly visible that the displacements in y and in z direction are unequal
as expected. There is also hardly any relaxation visible in z direction since the anisotropic
viscoelastic part is dominating. In contrast to the z direction the displacement in y
direction is after the prescription at t=500 s slowly decreasing. This behaviour can be
explained by taking into account that the back stresses are only at a deformation present.
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Figure 6.8.: Deformation of the brick element

Isotropic κ µ10 µ20 µ30

10 2.947× 10−4 −3.01× 10−5 5.605× 10−6

Viscosity (i) τi βi
1 100.0 0.5
2 10.0 0.7

Anisotropic αe1 αe2
0.01 0.02

Viscosity (j) τa1,j αv1,j αv2,j

1 10 1.11 0.0
2 10 1.11 0.0

Table 6.3.: Input parameters for brick tensile test

Therefore, the whole model is in an over-stress state if the maximum displacement is
reached. Because of the permanent elastic part now the relaxation is triggered. Hence,
not only the relaxation times are influencing the relaxation behaviour but also the elastic
part.
Quantitatively the best displacement to relaxation behaviour of the test discussed in this
section can be achieved if elastic stress and over-stresses are of the same order. Since
the magnitude of the over-stresses is also dependent on the relaxation time it is not
sufficient to compare only the α and β values to get a hold of the over-stress magnitude.
Furthermore, also the strain rate has to be considered.
The relaxation behaviour of two Maxwell elements could influence each other, so that it
is even possible that the y-displacement could increase due to non-linear effects after the
loading (uneven relaxation of the shear stresses). This effect could be observed especially
if the parameter αv2,j is unequal to zero. However, the magnitude of this effect is in
general small.

6.5. Conclusion

As it was seen in the previous sections, if a desired relaxation displacement is wanted,
all the viscous parameters have to be considered since they are affecting each other, so
that a clear quantitative effect of one parameter cannot be proposed. Nevertheless, the
following influences can be kept in mind.
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Figure 6.10.: Cauchy stress σxx

• µ10 is dominating at small deformation, hence µ20 and µ30 can be neglected.
• τ is influencing how big and how fast the back stresses decrease/increase.
• The shear moduli ratios βi are quantifying the isotropic viscoelastic stress contribu-

tion. It is important to consider that if βi > 1 the material will slowly relax since the
back driving elastic stress (or spring) is small compared to the high counteracting
viscous back-stresses.

• The ratio of αei and αvi have a similar effect as βi.
• αv1, αv3, αe1, αe3 have only a contribution in the preferred direction.
• αv2, αv4, αe2, αe4 are hard to classify in their effect. They could be seen as parameters

that describe the interaction between preferred direction and isotropic base material.
For fibre reinforced material they are expected to be small in value.

• For the sake of completeness κ should be larger or equal to 1× 104µ to enforce an
accurate incompressibility.
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7. Inverse Problem

In the previous chapters the material model and the necessary parameters were described.
To estimate the viscosity relaxation experiments are used. For more details see [20].
However, one simple experiment of these is an experiment where a load is prescribed
and then held at a constant value while the displacement is measured. As the material
model is very complex, it is not possible to directly evaluate material parameters out
of a displacement measurement. For that reason the experiment has to be simulated
and both experimental and simulation displacements have to by matched varying the
material parameters. Such a problem is also known as an inverse problem since with
such a procedure the input of the system is found by a given output. This procedure is
visualised in figure 7.1.

Figure 7.1.: Inverse problem

7.1. Non-linear Least Squares Algorithm

In this section, a short introduction to least squares problems is given since data fitting
is solved with such algorithms. A fundamental discussion on this topic can be found in
[22] and [26]. In general a least squares problem could be denoted as:

F (x) =
1

2
f(x)Tf(x) (7.1)

Remark 23. In data fitting problems fi(x) is the error between simulation and experiment
at specific time points ti with the parameters x.

fi(x) = δexp(x)|i − δsim(x)|i (7.2)

As F (x) represents an error norm, the problem turns into a minimisation problem.
For linear problems a wide range of fast algorithms (e.g. SIMPLEX) exist that are often
designed for large equation systems. In this thesis, however, a small equation system
and a non-linear problem must be solved which means the algorithm performance is of
low importance.
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7. Inverse Problem

7.2. Powell’s Dog Leg Algorithm

Every evaluation of the current error with a finite element simulation is very expensive
so reducing the evaluation to a minimum is recommended. Especially the evaluation
of the Jacobian matrix proves exceedingly costly since the Jacobian has to be approxi-
mated iteratively. In the reference [22], independently from the computational cost, it
is suggested to use a secant-version approach at problems where the Jacobian has to
be approximated. Since the Dog Leg method gives good control over the step size, this
algorithm was preferred over the Levenberg Marquardt method.
The Dog Leg algorithm combines the steepest descent direction and the Gauss-Newton
step and controls the step width with the trusted region radius ∆.
The error function 7.2 is a non-linear function. To estimate a step size the error function
has to be linearised with a Taylor expansion.

f(x+ h) = f(x) + J(x)h (7.3)

Where J(x) denotes the Jacobian matrix. That has to be approximated iteratively. Intro-
ducing this in the function 7.1 leads to the linearised model L(h).

F (x+ h) ≈ L(h) = F (x) + hTJTf +
1

2
hTJTJh (7.4)

To find the minimum of L the first derivation of L′ has to be zero. As a result, we get the
well-known Newton method.

L′ = JTf + JTJh = 0 (7.5)

JTJh = −JTf (7.6)

If equation 7.5 is compared to the general Newton method 7.8., the term JTJ could be
identified as the Hessian matrix H and the term JTf as the gradient g.

Remark 24. To find the minimum of the cost function F (x) the condition F ′(x∗) = 0 has
to be fulfilled. Since this is a non-linear expression this has to be solved iteratively with
the Newton method.

F ′(x+ h) ≈ F ′(x) + F ′′(x)h = 0 (7.7)

Hh = −F ′(x) (7.8)

Out of equation 7.6 the Newton step hgn can be evaluated. The steepest descent
direction hsd is the gradient.

hsd = −F ′(x) = −g (7.9)

(7.10)

With that at hand the Dog Leg step hdl could be evaluated (see figure 7.2). So in contrast
to damped methods the step norm is clearly limited by the trusted radius ∆. To enable a
fast convergence this trusted radius has to be controlled which is achieved by checking if
the linearised model L is a good prediction or not. Hence, if the gain ratio ρ (eq. 7.11) has
a big value the prediction was good and the radius could be increased.

ρ =
F (x)− F (x+ h)

L(0)− L(h)
(7.11)

Which leads to the updating strategy:
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hsdhgn

hdl

∆

Figure 7.2.: Trusted region: Step definition of Dog Leg algorithm

1 i f rho < 0.25
2 Delta = Delta/2
3 e l s e i f rho > 0.75
4 Delta = max( Delta , 3*norm(h,2 ) )

7.3. Secant Version

As stated before, the evaluation of the Jacobian matrix is quite expensive. Due to this,
the secant method 7.12 was used. A secant can be used to approximate a finite difference
scheme. This is visualised in figure 7.3.
The Jacobian can be updated with the Broyden’s rank one update 7.13. Additionally,
if one step entry hi is smaller than 0.8 of its norm ||h|| an extra differential step is
calculated to update one column in the Jacobian with the finite difference scheme to
ensure that the approximation of the Jacobian does not get too poor. In conclusion every
iteration the vector function f has to be evaluated at maximum twice.

f(x) = f(xnew) + Jnew(x− xnew) (7.12)

Jnew = J +
1

‖h‖2
[f(xnew)− f(x)−B(xnew − x)] (xnew − x)T (7.13)

7.4. Initial Conditions

Even though the step norm ‖hdl‖ is limited especially at full parameter optimisation it
is possible that parameters get negative. Even though some of the parameters could be
negative (for example µ20) some other clearly must be positive. For instance the finite
element mesh could then collapse because of low or negative stiffness parameters or a
negative time constant could lead to extremely high values which would make a conver-
gence impossible. It was found that implementing a constraint with a penalty or barrier
function is not effective and is hindering a fast convergence. For that reason, the initial
conditions and the specification of the trusted radius have to be chosen carefully. For
values that are expected to be close to zero it is advisable to start with an initial value of
zero.
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hstep

secant

ε�

tangent (finite differ-
ence approximation)

Figure 7.3.: Secant approximation

By combining the Levenberg Marquardt method with the Dog Leg method it is possible
to ensure that the parameters are always greater than zero. In this hybrid method the
calculated Dog Leg step is checked if it leads to negative parameters. If this applies a step
with the Levenberg Marquardt method is calculated while the damping is adjusted so
that the step is small enough. Since a large Dog Leg step is an indication for the Jacobian
to be inaccurate also the Jacobian is recalculated with a forward Euler discretisation
and the trusted radius is reduced. With that at hand it can be ensured that the param-
eters are definitely positive. However, as mentioned before computational efficiency is lost.

Remark 25. The Levenberg Marquardt method is a damped method. In these methods
large steps are penalized by a damping parameter µ. If µ is zero the step is equivalent to
the Newton step.

minh

{
L(h) +

1

2
µ||h||2

}
(7.14)
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8. Atomic Force Microscopy

This chapter is intended to give a short introduction about atomic force microscopy
(AFM). It should help the reader to get a better understanding of the simulation set-up.
Therefore, only a little part of the AFM capabilities is discussed. Interested readers about
AFM are referred to [13].

In figure 8.1 an exaggerated visualisation of the indentation with the AFM method is
displayed. Basically the movement u is prescribed and the deflection d is measured by a
laser. Due to the known stiffness k of the cantilever, also a force can be prescribed and
the movement u has to be controlled respectively. The indentation δ is the difference of
movement u and deflection d. Due to the small dimension adhesion forces and magnetic
interaction are as well influencing the measurements. However, the measurement on the
pulp fibres are in such a way designed that the adhesion force can be neglected. In the
experiment the force is prescribed very fast and hold constant over a specific time (see
also figure 9.5).

Fibre

detector

cantilever

laser

d
stiffness k

indentation δ = movement u - deflection d

δ

u

Figure 8.1.: Atomic force microscopy

Currently the measurement set-up on pulp fibres is in development. For a first test of
the experiment set-up indentation experiments on poly-methyl-methacrylate (PMMA) are
performed. This data was during the master thesis available and used for the development
of the material parameter estimation algorithm. The indentation data of pulp fibres is
qualitatively similar.
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9. Inverse Problem with Hertz Theory

In this master thesis the focus lies on the analysis of nano indentation experiments.
There is no analytical description of an indentation with a complex material model as it
is used in this thesis. However, it is for investigation purposes interesting to estimate the
material parameters with the analytical Hertz theory and compare results.
In chapter 6 and 4.9.1, it was investigated that some simplification regarding the param-
eters can be made.
Firstly, in the isotropic elastic contribution, only the parameter µ10 has to be considered
for moderate stretches λ < 2. Therefore, the isotropic contribution is equivalent to the
Neo-Hookean model. For the parameters of the Neo-Hookean model a relation to the
Lamé constants is present, so that these parameters can be directly compared to the
parameters of the small strain theory.
Secondly, a further simplification occurs out of the fact that the indentation experiments
give no indication to distinguish between an anisotropic effect and isotropic effect, thus
only the isotropic parameters can be estimated.
With these simplifications, the difference of small strain theory and finite strain theory is
only given if large deformations are present. As in the indentation experiment about 10%
strains are expected, it justifies the usage of finite strain theory. But it is also expected
that the difference to the small strain theory is not that large. Consequently, this also
justifies the usage of the small strain theory, on which the Hertz theory is based on.

9.1. Viscoelastic Hertz Contact Model

From [19] a simple method is known to implement viscoelasticity into the Hertz theory.
For an incompressible material with the Poisson’s ratio ν = 0.5 the stress simplifies to
equation 9.1. See also section 10.1 for more details about the reduced Young’s modulus
and plane stress.

σ = 4µε (9.1)

For the generalised Maxwell model, the stress strain relation can be expressed in the
frequency domain as:

σ(s) = G(s)ε(s) (9.2)

If equation 9.2 is compared to equation 9.1 then it becomes clear that 4µ must be
substituted by the transfer function to integrate the viscosity in the model. This step
makes perfect sense in a demonstrative way since the viscosity changes the stiffness
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9. Inverse Problem with Hertz Theory

over time.

a3 = (Rδ)
3
2 =

3

4

(
1

4µ

)
RP (9.3)

→ a(s)3 =
3R

4

(
1

G(s)

)
P (s) (9.4)

δ(s) =

[
3

4
√
R

(
1

G(s)

)
P (s)

] 2
3

(9.5)

Where P is the indentation force, R the indenter radius, a the radius of the contact area
and δ the indentation. For more details see section 10.2. A detailed discussion on this
topic can be found in [19]. Evaluating now the transfer function G(s) of a generalised
Maxwell element with a similar method as it is known from resistor networks (node rule
and loop rule; see also [8]):

µ1, ε11

µn, εn1

µ0, ε

η1, ε12

ηn, εn2

σ σ

σ1

σn

σ0

ε

Figure 9.1.: Generalized Maxwell element

σ0 + σ1 + σ2 = σ node rule (9.6)

ε11 + ε12 − ε22 − ε21 = 0 loop rule (9.7)

ε21 + ε22 − ε = 0 loop rule (9.8)

Introducing the stress strain relation σ = µε and taking the equilibrium in the branches
into account σi = σi1 = σi2, ε = εi1 + εi2.

σ = µ0ε+ η1ε̇12 + η2ε̇22 (9.9)

µ1ε11 = η1ε̇12 → µ1(ε− ε12) = η1ε̇12 (9.10)

µ2ε21 = η2ε̇22 → µ1(ε− ε22) = η2ε̇22 (9.11)
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9. Inverse Problem with Hertz Theory

Performing a Laplace transformation leads to

σ = µ0ε+ η1sε12 + η2sε22 (9.12)

ε12 =
µ1ε

µ1 + η1s
(9.13)

ε22 =
µ2ε

µ1 + η2s
(9.14)

σ = µ0ε+ η1s
µ1ε

µ1 + η1s
+ η2s

µ2ε

µ1 + η2s
(9.15)

By introducing the relaxation time τi = ηi
µi

and the shear moduli ratio βi = µiµ0 the
transfer function is found.

σ = µ0

[
1 + β1

s
1
τ1

+ s
+ β2

s
1
τ2

+ s

]

︸ ︷︷ ︸
G(s)

ε (9.16)

From the general form of equation 9.6 follows that for n Maxwell elements the stress σ is
defined as:

σ = µ0

[
1 +

n∑

i=1

βi
s

1
τi

+ s

]
(9.17)

For the configuration with only one Maxwell element equation 9.16 can be reorganised
to ε. For more than one Maxwell element the result is a long expression which is too
complex. This becomes clear if it is imagined that for the strain response the branches
influences each other where at the stress response they just add up. Equation 9.18
shows the strain step response in the frequency domain.

ε =
1

µ0

[
1

s
− 1

s+ 1
τ1(1+β1)

+

1
1+β1

s+ 1
τ1(1+β1)

]
(9.18)

Finally, transforming back to the time domain by evaluating the step response gives:

ε(t) =
1

µ0

[
1− exp

(
− t

τ1(1 + β1)

)
+

1

1 + β1
exp

(
− t

τ1(1 + β1)

)]
(9.19)

Remark 26. To compare the shear moduli of the analytical model and that of the hypere-
lastic model of chapter 4 it has to be considered that for the Neo-Hookean material µ10 = µ

2
and in the analytical description 4µ = µ0 is replaced. In the hyperelastic formulation, to
compare µ10 and µ0, the latter has to be divided by 8.

µ10 =
µ0

8
(9.20)

9.1.1. Dissipation Energy

From [16] it is known that each Maxwell element is through its relaxation time τ in a
specific frequency domain active. Therefore, if due to the experiment it is known that
there is a short term and a long term response these Maxwell elements are hardly
influencing each other. As a consequence these Maxwell elements can be fitted separately.
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9. Inverse Problem with Hertz Theory
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Figure 9.2.: Dissipation energy influence by Maxwell elements

The dissipation energy of one damper WDi can be calculated by integrating the damping
force over one period.

WDi =

∮
FD dεi2 (9.21)

WDi =

∮
ηi ε̇i2 dεi2 (9.22)

WDi =

∫ 2π
ω

0
µ0βiτi ε̇

2
i2 dt (9.23)

Considering equation 9.13 and 9.16 the strain rate ε̇i2 can be evaluated. The strain rate
can be expressed by the transfer function T (s) with stress input as in equation 9.25.

ε̇i2(s) =
sµiε0

µi + ηis
=

s

1 + τis

1

G︸ ︷︷ ︸
T (s)

σ(s) (9.24)

ε̇i2(s) = T (s)σ(s) (9.25)

Assuming there is only a cosine input signal the steady state output is given by equation
9.27. For more details, see [14] [18]. By introducing this into the dissipation energy 9.23
the integral can be solved.

ϕi = arc(Ti(jω)) (9.26)

ε̇i2 = |Ti(jω)|cos(ωt+ ϕi) (9.27)

WDi =

∫ 2π
ω

0
µ0βiτi(|Ti(jω)|2 cos(ωt+ ϕi))

2dt (9.28)

WDi = µ0βiτi|Ti(jω)|2
∫ 2π

ω

0
(cos(ωt+ ϕi))

2dt (9.29)

WDi = µ0βiτi|Ti(jω)|2 π
ω

(9.30)
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9. Inverse Problem with Hertz Theory

To get the total dissipation those parts have to be summed up for the n Maxwell elements.

WD =
n∑

i=1

WDi (9.31)

9.1.2. Influence of the Relaxation Time on Dissipation Energy

The dissipation energy would be a better quantity for the calibration of the relaxation
times τi and shear moduli ratios βi. Since no experimental values for the dissipation
energy is available it is investigated how much a poor estimation of the relaxation times
could affect the dissipation energy. In this investigation it is assumed that a perfect fit
var1 resembles the true dissipation energy. Then the relaxation times are varied and it is
observed how much it influences the dissipation energy distribution.

As it can be imagined that a curve fit with only one Maxwell element dedicated for
the short time response would result in bad and meaningless curve fit this applies also
if a certain Maxwell element in between a frequency domain is skipped for the short
time response. This is visualised in variation var3 where unreasonable high dissipation
magnitudes are calculated. Out of the variations var5 and var6 follows that for the short
term part the relaxation time has to be higher than 3s to prevent this ’gap’. The result
of var4 is that the long term part should be below 40s to get a good and reasonable
fit otherwise the peak in figure 9.3 would further decrease. The lower boundary of the
long term relaxation time is implicitly defined through the duration of the experiment.
Considering that the long term part should be active until the end. A similar limitation
holds for the upper boundary of the short term part to establish a decoupling of long and
short term part. More details on estimating these parameters is discussed in section 9.3.

In conclusion, the more Maxwell elements over a frequency range are used the less
important it gets which values the relaxation times have.
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Figure 9.3.: Influence of relaxation times on dissipation energy
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var1 var2 var3 var4 var5 var6

τ1 40 35 35 50 35 35
τ2 3 - 0.1 3 0.5 2
τ3 1 - - - - -

Table 9.1.: Variation parameter

9.1.3. Step Response

As discussed in section 9.1.1 the Maxwell elements are active in different frequency
domains depending on the relaxation time τi. Consequently, they are also decoupled in
their contribution to the system response.
In the indentation experiments, the load is prescribed in a short time so that it is as a
first step convenient to look at step responses of the model. In figure 9.4, the decoupling
of the long and the short term behaviour is clearly visible. However, at this point it
should be noted that even though these parts are decoupled for the fit of the short time
response it is required that the long term response was already fitted. Otherwise, no
useful results can be expected. An interesting observation is that the factor 1

1+β can be
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Figure 9.4.: Step response

directly extracted from the signal at t = 0 (see figure 9.4).

9.1.4. Experiment Load Response

If the indentation experiment is looked at, the force is loaded with a ramp as shown in
figure 9.5 Since this is a linear model, the solution of a ramp response P (s) = kload

s2
can

be superimposed to give a respective total response. Where kload is the load rate and u
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tholdtload

P (t)
Pmax

t

Figure 9.5.: Load

the unit step function (Heaviside function).

P (t) = kloadt− kload(t− tload)u(t− tload) (9.32)

u(t) =

{
0 t < 0

1 t ≥ 0
(9.33)

By doing so, the indentation response can be found with ramp response δramp of equation
9.5.

δ(t) = δramp(t)− u(t− tload)δramp(t− tload) (9.34)

9.2. Indenter Radius Correction

In the experiment the indentation is performed in a pan in the surface. This curvature
is considered by correcting the radius R with equation 9.36. Equation 9.36 represents
the relative curvature. For more details, see [19]. The background of the contact hole
curvature and its estimation can be looked at in [6].

Rhole =
δ2
pl + r2

hole

2δpl
(9.35)

R =
(
R−1
indenter −R−1

hole

)−1
(9.36)

9.3. Fitting Strategy

During the solution of the inverse problem, a poor fitting performance was observed if all
parameters were attempted to fit at the same time. This can be explained by the following
factors.

• The elastic parameters µi influence the viscoelastic response.
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Rhole

Rindenter

δpl

rhole

Figure 9.6.: Relative curvature

• Through the initial conditions it has to be defined which Maxwell element branch
should represent which effect, otherwise a jumping phenomenon could appear.

• If the Maxwell elements are in a close frequency domain active they influence each
other.

• The parameters have different magnitudes which could lead to ill-conditioned
Jacobian.

• There are more combinations of τi and βi to establish equivalent good curve fit.

To circumvent these problems it is on one hand good to separate the fitting process
in sub processes and on the other hand to fixate on specific relaxation times. For a
first estimation of useful relaxation times, the general behaviour of similar exponential
functions as they appear in the constitutive laws is considered.
As it is known for exponential expressions like equation 9.37 after t = 3τ the function
value drops approximately to 5%.

u = exp(− t
τ

) (9.37)

In section 9.1, it was already mentioned that there is a short-term and a long-term
response. To estimate the relaxation times of short term and long term the experimental
indentation curve 9.7 can be divided into two time-domains.

τshort term =
tshort term

3
≈ 3s (9.38)

τlong term =
tlong term

3
≈ 40s (9.39)

As has become clear from section 9.1.2, that if fewer Maxwell elements are used the
values of the relaxation times have to be estimated precisely. Hence, it is necessary to
also fit the relaxation times. While for the analytical model the computational time is
not significantly increased, for the simulation with the finite element model it has a
tremendous effect. Therefore, it is convenient to estimate the relaxation times with the
analytical model and fit only the shear moduli ratios βi. Another advantage regarding
the computational time arises from the fact that for the short-term effect only the first
part of the simulation has to be evaluated which is further reducing the computational
time. As mentioned before, the fitting process is performed by fitting the elastic and the
viscoelastic parameters separately. Such a procedure is also known from [16]. To receive
an even more accurate fitting as well the short-term and the long-term Maxwell elements
are fitted in different sub processes.
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tshort term
tlong term

Figure 9.7.: Indentation measurement

τ1 ≈ t1/3
τ2 ≈ t2/3

τ3 =≈ t3/3

t

δ

t1
t2

t3

Figure 9.8.: Successive estimation of relaxation times

1. Fit the curve to the last part of the target curve. By assuming that all relaxation
processes have finished this part resembles the elastic part.

2. Fit the curve to the intermediate part of the target curve which resembles the
long-term part.

3. Fit the curve to the first part of the target curve which resembles the short-term
part.

9.4. Curve Fit with Hertz Model

This fitting strategy was tested with the analytical model of section 9.1. Here, a second
Maxwell element was used for the short-term response. From figure 9.9 to figure 9.12,
the four stages of the fitting process are shown (In the fourth stage a second short term
Maxwell element was fitted). To be able to compare the parameter to the hyperelastic
model of chapter 4, µ0 is recomputed to µ10 (see remark 26).
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Figure 9.9.: Elastic parameter fit
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Figure 9.10.: Long term fit
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Figure 9.11.: Short term fit 1
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Figure 9.12.: Short term fit 2

In the dissipation energy distribution 9.13 clearly one peak can be seen representing
the long-term response or the first Maxwell element. Right to the peak at higher frequency
a slight bump is visible that is showing the contribution of the short-term part. The
duration of the experiment is limiting the frequency band which can be pictured. For this
sample curve there is an indication that a Maxwell-element even for a lower frequency is
needed. This indication can be seen if it is looked closely to the end of the curve fit which
shows a deviation. This problem cannot be solved by just adding another low frequency
Maxwell-element because actually the reason for this discrepancy can be tracked back
to the assumption that the last part is representing the converged elastic part. It is also
most likely that the single loading is not sufficient to capture high frequencies. So, in
conclusion the experiment is not suitable to represent all frequencies.
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Figure 9.13.: Dissipation energy of Hertz theory curve fit
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10. Inverse Problem with SOOFEA

In chapter 6 it was found that only µ10 is relevant for the elastic contribution and since
PMMA is isotropic only the isotropic viscoelastic parameter τi and βi were taken into
account.

10.1. Testing on a Brick Element

For a fundamental study if the material model is capable of showing a similar behaviour
as it is observed in the experiments it is the best approach to test the material on a
simplified geometry. Since the quadratic convergence of the implementation was already
tested on a brick element, it was decided to find a way to simulate the indentation
experiment on this brick element. After this testing phase, the material model can be
implemented into Abaqus to get full access to element libraries, contact algorithms, post
processing and many other tools.

Test environment FEM model

Inverse problem

Material

properties

Figure 10.1.: Testing phase of material parameter estimation

The basic idea is to convert the indentation experiment into a compression of a brick
element. The Hertz theory is used in order to find a representative geometry for the brick.

The Hertz theory proposes a solution for a two dimensional stress distribution as
visualised in figure 10.2. By converting this solution into a one-dimensional rod tensile
(compression) test a respective cross-sectional area and length (height) can be evaluated
which can be used for the brick geometry as shown in figure 10.3.
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Figure 10.2.: Two dimensional stresses

→
E∗

h

δ

ε = δ
h

pm = σxx

Figure 10.3.: One dimensional rod

10.2. Defining the Geometry of the Brick Element

From the experiments the maximum indentation δ and the contact radius R of the
indenter are known. The radius R was evaluated as mentioned in section 9.2. The Hertz
theory proposes an elliptical pressure distribution in the contact area between indenter
and specimen. The following equations were taken from [19] and for more information on
that topic it is also referred to this reference.

p(r, t) = p0

(
1−

(
r

a

2
))1/2

(10.1)

The middle pressure of this distribution is

pm =
2

3
p0 (10.2)

The maximum pressure p0 can be expressed by the Force P

P = pmπa
2 (10.3)

For a circular point contact with the load P Hertz proposes a contact radius a and
indentation δ.

a =

(
3PR

4E∗

)1/3

(10.4)

a2 = Rδ (10.5)
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Where E∗ is the representative elastic modulus for plane stress.

σ = Cε (10.6)

C =
E

1− ν2︸ ︷︷ ︸
E∗




1 ν 0
ν 1 0
0 0 1−ν

2


 (10.7)



σxx
σyy
τxy


 =

E

1− ν2




1 ν 0
ν 1 0
0 0 1−ν

2





εxx
εyy
εxy


 (10.8)

Which gives for a uni-axial stretch εyy = 0 , εxy = 0

σxx = E∗εxx (10.9)

For an incompressible material ν = 0.5 the equation could be further simplified. It is also
convenient to substitute the elastic modulus E by the shear modulus µ.

µ =
E

2(1 + ν)
=
E

3
(10.10)

E∗ = 4µ (10.11)

a3 =
3

8

(
1

2µ

)
RP (10.12)

With the definition of the strain 10.13 and evaluating the shear modulus out of equation
10.4 the height h is defined by equation 10.17. The width or edge length b of the quadratic
bottom can be evaluated out of the contact radius given by 10.5.

εxx =
δ

h
(10.13)

σxx = E∗εxx = pm =
P

πRδ
(10.14)

σxx = 4µ
δ

h
(10.15)

µ =
3

16

P√
Rδ

3
2

(10.16)

h =
4µδ

σxx
(10.17)

b =
√
a2π (10.18)

δ . . . indentation
a . . . contact area radius
R . . . radius of tip
E . . . elastic modulus
µ . . . shear modulus
P . . . indenting force

10.3. Simulation in SOOFEA

The simulation was performed in an adapted version of an object oriented finite element
program SOOFEA [12] performed. The Matlab source code was provided by the Institute
of Strength of Materials. Due to the nearly incompressibility of the material it was
necessary to use a 27 node brick element to prevent locking effects. The basic set-up
is shown in figure 10.5. The geometry of the brick was evaluated with the estimates of
section 10.2.
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R

a a

δ

Figure 10.4.: Contact of two spheres

R 350 nm
δ 16.28 nm
δpl 10 nm
rhole 200 nm
P 5000 nN

h 195.8 nm
b 147.3 nm

Table 10.1.: Brick geometry

The magnitudes of the nine nodal forces were calculated to represent an energy
consistent evenly distributed pressure load. For that, the pressure has to be integrated
over the surface. The results of this integration in the initial configuration is given in
table 10.2. An update of the distribution during the analysis was not considered since
the change could be neglected.

corner nodes 1
36

edge middle nodes 1
9

center node 4
9

Table 10.2.: Nodal forces

Figure 10.6 shows the solution of the brick simulation. In this simulation the relaxation
times where chosen accordingly to the results of section 9.4 τ1 = 40s, τ2 = 3s, τ3 = 1s. The
bulk modulus κ was set to 100.

10.4. Conclusion

In this analysis a lower stiffness was evaluated as in the Hertz theory. To analyse this
result the same brick element was simulated in Abaqus with a Yeoh material. It was
found out that on one hand the usage of a hybrid element and on the other hand, the
usage of a finer discretisation than one element have a significant influence on the
indentation result. Which means that the result is dependent on the ”mesh” and the 27
node element is behaving too stiff due to the incompressibility.
However, it was not the aim of this analysis to evaluate quantitatively exact results but to
investigate if the material model is capable to fit the experimental indentation curve and
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Figure 10.5.: 27 node hexahedron
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Figure 10.6.: Indentation solution of brick simulation
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if the magnitudes of the parameters are plausible. With that in mind as it can be seen in
figure 10.6 that the curve could be fitted well it is a promising outcome of this analysis.
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11. Inverse Problem with Abaqus Solver

For the simulation with Abaqus the experiment has to be modelled. Afterwards, a commu-
nication between the inverse problem solver in Matlab and Abaqus has to be established.
During the thesis the tool InvPro was designed to establish this communication. In figure
11.1, the flow diagram of the simulation is visualised. At first, the experimental data
has to be averaged appropriately. Then, with the non-linear least squares algorithm
implemented in the tool InvPro a new parameter combination is estimated and an input
file for Abaqus is generated. In Abaqus, the indentation experiment is then simulated
with the specified material parameters. The result of this simulation is compared to the
experimental curve and if the difference is small enough, the curve fitting was successful
and the right material parameters were found.

estimate 
parameter

run Abaqus

postprocessing

preprocessing
exp. data

compare
indentation

Figure 11.1.: Communication between the different programs

11.1. Mesh

The mesh generation is based on the source code of the software tool STABiX [24]. The
mesh is generated with a python script, consists only of brick elements and is structured.
In the indentation experiment a contact hole is formed before the measurement starts.
For that reason, the existing script had to be adapted at some parts. For a more detailed
discussion why this contact hole is necessary, refer to [6].
Due to the incompressible material and the fact that the indentation experiment is
performed on a small fibre, it was decided to only fixate the bottom nodes of the mesh.
Otherwise, if the outer diameter nodes would also be locked, the material would behave
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much stiffer than appropriate due to its incompressibility. There are several mesh
refinement control variables which are defined in table 11.1.

Input parameter:
rhole = 200 Depends on experiment
δpl = 10 Depends on experiment
rsample = 400.0
hsample = 500.0
Rindenter = 350.0

Proportions:
box zfrac = 0.4 partition vertically =

ztop
hsample

r center frac = 0.25 radial partition of center and core = rcore
rcenter

Number of entities
box bias x Bias in x direction
box bias conv x Bias in x direction for the outer cylinder
box bias z Bias in z direction
box elm nx Number of horizontal elements in box
box elm nz Number of vertical elements in box
radial divi Number of horizontal elements between the big sample

and the box
c divi rcore = rcenter/c divi
c outer divi Number of elements for outer core sample in the radial direction
sample rep Number of sample sectors (have to be divisible by 8)

Table 11.1.: Mesh properties

11.2. Indenter and Contact Specification

For the indenter an analytical rigid sphere surface was used. This approach is justified
by the fact that the indentation depth is small and the indenter has a big radius on its
tip, so that a full consideration of the indenter geometry is not necessary (see figure
11.3). Even so, the topology of the indenter surface would have an effect on the results,
it cannot be considered since this data is not available. The indenter was set as rigid as
PMMA is much softer then the indenter.
The contact was assumed frictionless since no reliable data for the friction coefficient
was available and a finite slide surface to surface contact algorithm was used.
The pressure-overclosure method was set to ”Hard”-contact and the constraint enforce-
ment method was set to the default penalty method to establish fast convergence.
The contact initialisation leads often to convergence problems so that in the contact
initialisation phase tcontact the no-overclosure constraint was eased. For that reason, the
initialisation was modelled as a separate step so that there would also be the option (if
unexpected convergence problems appear) to initialise the contact with a displacement
controlled approach or adapt the solver controls accordingly.
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Figure 11.2.: Mesh properties
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Rtip

Figure 11.3.: Indenter

11.3. Mesh Study

In a mesh study the mesh is successively refined. If the stresses and the indentation do
not change with the element number or mesh refinement anymore, the consequence is
that the results are not dependent on the mesh size, which is wanted. The mesh study
was performed with a fully incompressible hyperlastic Yeoh material to establish fast
convergence.

#
box

bias x
box bias

conv x
box

bias z
box elm

nx
box elm

nz
radial

divi
c divi

c outer
divi

sample
rep

1 3 3 3 7 4 3 2 2 16
2 3 3 3 9 5 4 2 3 16
3 3 3 3 12 6 6 3 4 16
4 3 3 3 16 7 7 4 6 24
5 3 3 3 18 10 8 4 8 24
6 3 3 3 18 14 8 4 8 24
7 3 3 3 20 16 5 5 10 24
8 3 3 3 20 20 7 5 10 24
9 3 3 3 16 12 6 4 6 24

10 3 3 3 16 14 6 4 6 24
11 3 3 3 16 14 6 4 7 24
12 3 3 3 15 15 6 4 7 24
13 3 3 2 15 15 6 4 7 24
14 3 3 2 20 24 7 5 10 24

Table 11.2.: Mesh study properties

As a result of the mesh study the configuration 12 showed the same indentation and
stress results compared to a fine mesh. Therefore, this configuration was chosen.
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Figure 11.4.: Indentation result of mesh study
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Figure 11.5.: Stress result of mesh study

11.4. Simulation

Similar to chapter 10.3 again three Maxwell elements were used and the fitting process
was divided into four sub-processes. The bulk modulus and the loading was specified as
in table 11.3. For the load specification see also figure 9.5. The element type was set to a
hybrid element C3D8RH with reduced integration and enhanced hourglass control.

Pmax 5000 nN
tload 1.56 s
thold 120 s

Table 11.3.: Input specification

In contrast to the SOOFEA simulation in chapter 10.3 here the volumetric locking
phenomena was eliminated due to the mixed elements. As expected the shear moduli are
higher in value.
By comparing the β values to the Hertz theory results a little difference is visible. This
has more than one reason: Firstly the relaxation times were set to other values. Secondly
the algorithm could fit the curve with a different parameter combination, especially the
short-term response. Thirdly there are non-linear effects. Those non-linear effects can
be shown if the indentation curve is normalized and fitted with a linear generalised
Maxwell element model. Comparing the fitting parameters again in figure 11.7 and 11.6 a
significant difference is visible. By thinking one step ahead also the dissipation energies
could be compared. The dissipation energy can be evaluated by setting both shear moduli
to one which gives the distribution 11.8. In conclusion the non-linear effects lead to a
vertical distortion of the dissipation energy distribution. However, this once again justifies
that the relaxation times can be estimated with such a linear model or the Hertz model
of chapter 9.1. On the contrary the β-values have to be calculated.

11.4.1. Stresses

Clearly from figure 11.9 to 11.12 it can be seen how the stresses relax after the loading
due to the viscosity.
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Figure 11.6.: Solution of the curve fit with Abaqus
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Figure 11.7.: Normalized curve fit
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Figure 11.11.: Indentation at 3.16 s
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Figure 11.12.: Indentation at 121.56s

11.4.2. Contact Pressure

A further influence of the viscosity is that the contact pressure changes over time due to
the viscosity (see figure 11.13). A consequence of the changing contact pressure is that
the contact radius a is as well changing over time.
By evaluating the equivalent concentrated force P of the pressure distribution the
plausibility of the results can be checked. Assuming an elliptical pressure distribution
gives for the time t = 121.56s:

P =
2

3
pmax π a

2 =
2

3
0.25π 1002 ≈ 5200 ≈ 5000X (11.1)

During the analysis it was found out that the mesh parameter c divi has to be chosen
accordingly to other mesh parameters. Further details are given in the appendix 4.
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Figure 11.13.: Contact pressure distribution along y-axis
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11.5. Conclusion

It was found that little differences of the maximum indentation depth influences the
result of the shear moduli significantly. This applies also on the contact geometry or in
other words the indenter and the contact hole.

The indentation experiments were performed on a PMMA sample. For the PMMA sample
it is known from a tensile test that the elastic modulus is about 2.8 GPa. To compare
this with the incompressible material the modulus has to be divided by three to get the
shear modulus µ =0.93 GPa and again by two to obtain the parameter µ10=0.47 GPa. While
comparing this with the results of the simulation a moderate conformity is found. This
difference either originates from the uncertainties in either the contact geometry or in
the experimental measurements. Furthermore, it is also possible that the assumption
of an incompressible material in these small scales is not valid for PMMA. Last but not
least it is also possible that the material properties on the surface measured with the
indentation experiment are not identical with the inner material properties which would
make a comparison to a macro scale tensile test impossible.

The difference of the shear modulus compared to the Hertz theory is not immense but
the difference can be explained due to the consideration of large deformations which will
increase the contact area and therefore the material must not be as stiff as in the Hertz
theory. As the contact radius a is close to the indenter radius it is moreover questionable
if the assumptions of the Hertz theory are still valid.
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12. Summary and Outlook

The assignment of tasks in this thesis was to implement a suitable material model for
pulp fibres in an object oriented finite element code in Matlab and in Abaqus and then
use this implementations to calibrate the material model parameters by simulating nano
indentation experiments on pulp fibres. For this calibration an inverse problem has to be
solved.

For the description of the pulp fibre, a very versatile material model was used with
anisotropic and viscoelastic properties. The model is based on the theory of finite defor-
mation and on hyperelastic potentials. For the elastic part the strain energy function
proposed by Yeoh [33] was used. Viscoelasticity was implemented after the formulation of
Simo [30] and Holzapfel [15]. For the formulation of the anisotropy the elastic potentials
proposed by Schroeder and Neff [29] were taken into account. Even though, the material
model is capable of anisotropic behaviour, but the available experimental data on PMMA
gave no knowledge about any anisotropic parameters, it was decided to only estimate the
isotropic parameters and disable the anisotropic contribution.

For a better understanding of the indentation experiments an analytical Hertz model was
extended with viscoelasticity. With this model the main influences of viscous effects on
the indentation experiment were analysed and a curve fitting strategy has been developed.
This fitting strategy was necessary, since during the solution of the inverse problem a
poor performance of a full parameter optimisation was observed. In this strategy the
fitting process is divided into sub processes and only one parameter is fitted in one
process. With that approach on one hand the fit could be controlled better and on the
other hand computational time was reduced.

In a test phase of the material model it was investigated if the material model is suitable
to reproduce a similar response as in the experiments. This test was performed with a
finite element code SOOFEA in Matlab on a simple brick element geometry.

At last the indentation experiments where simulated in Abaqus and the inverse problem
iteratively solved. An outcome of this simulation was that due to large deformations
different results than the Hertz theory were investigated. Moreover, it was possible to
get a good curve fit with two Maxwell elements. This was also an indication that the
experiment can only cover a certain frequency band of the dissipation energy distribution.

An outlook of this investigation is that the estimated viscoelastic parameters should be
compared to viscoelastic parameters that are evaluated based on dynamic tests to ensure
that these results are accurate. A next step will be the analysis of real indentation data
of pulp fibres. Since it was found that the contact geometry has a big influence on the
analysis, it will be in future analysis beneficial to know the geometry more precisely.
Another investigation will be to adapt the current elastic potentials to get a minimum
amount of parameters while the material model behaviour is similar or even better.
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Henriksson, Gunnar: Pulp and Paper Chemistry and Technology. De Gruyter,
2009. ISBN: 9783110213461. URL: https://books.google.at/books?id=
oDde90yqkFkC (cit. on p. 1).

[12] Michael Hammer. SOOFEAM software. http://www.soofea.org/ (cit. on p. 70).

[13] Greg Haugstad. Atomic Force Microscopy: Understanding Basic Modes and Ad-
vanced Applications. John Wiley & Sons, Inc., 2012. ISBN: 9781118360668. URL:
http://dx.doi.org/10.1002/9781118360668.fmatter (cit. on p. 57).

83

https://books.google.at/books?id=Lypjx7CEIt8C
http://dx.doi.org/10.1007/s00033-014-0421-x
http://dx.doi.org/10.1007/s00033-014-0421-x
https://doi.org/10.1007/s00033-014-0421-x
https://doi.org/10.1007/s00033-014-0421-x
https://books.google.at/books?id=V5Zf1rVeeEsC
https://books.google.at/books?id=V5Zf1rVeeEsC
https://books.google.at/books?id=iv92vctq3j4C
https://books.google.at/books?id=oDde90yqkFkC
https://books.google.at/books?id=oDde90yqkFkC
http://dx.doi.org/10.1002/9781118360668.fmatter


Bibliography

[14] Anton Hofer. Regelungstechnik I. Ed. by -. TU Graz, Institut fuer Regelungstechnik
und Automatisierungstechnik, 2014 (cit. on p. 61).

[15] G.A. Holzapfel. Nonlinear Solid Mechanics. John Wiley & Sons Inc., 2006 (cit. on
pp. 7, 16, 31, 32, 35, 82).

[16] G.A. Holzapfel, T.C. Gasser, and M. Stadler. “A structural model for the viscoelastic
behavior of arterial walls: Continuum formulation and finite element analysis”. In:
European Journal of Mechanics - A/Solids 21.3 (2002), pp. 441–463. ISSN: 0997-
7538. DOI: http://dx.doi.org/10.1016/S0997- 7538(01)01206- 2. URL:
http://www.sciencedirect.com/science/article/pii/S0997753801012062
(cit. on pp. 47, 60, 65).

[17] Gerhard A. Holzapfel, Thomas C. Gasser, and Ray W. Ogden. “A New Constitutive
Framework for Arterial Wall Mechanics and a Comparative Study of Material
Models”. In: Journal of elasticity and the physical science of solids 61.1 (July 2000),
pp. 1–48. ISSN: 1573-2681. DOI: 10.1023/A:1010835316564. URL: https://doi.
org/10.1023/A:1010835316564 (cit. on p. 23).

[18] M. Horn and N. Dourdoumas. Regelungstechnik: Rechnerunterstuetzter Entwurf
zeitkontinuierlicher und zeitdiskreter Regelkreise. Elektrotechnik : Regelungstech-
nik. Pearson Studium, 2004. ISBN: 9783827370594. URL: https://books.google.
at/books?id=qvFSDQEACAAJ (cit. on p. 61).

[19] K. L. Johnson. Contact Mechanics. Cambridge University Press, 1985. DOI: 10.
1017/CBO9781139171731 (cit. on pp. 58, 59, 64, 69).

[20] H. Kuhn, Dana Medlin, and ASM International. Handbook Committee. Mechanical
Testing and Evaluation. ASM Handbook: Mechanical Testing and Evaluation. ASM
International, 2000. ISBN: 9780871703897 (cit. on p. 53).

[21] Dirk Liefeith. “Material Model for Anisotropic Rubber Viscoelasticity at Finite
Deformations”. MA thesis. Universitaet Stuttgart, 2007 (cit. on pp. 2, 17, 41).

[22] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for Non-Linear Least Squares
Problems (2nd ed.) Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby:
Informatics and Mathematical Modelling, Technical University of Denmark, DTU,
2004, p. 60 (cit. on pp. 53, 54).

[23] J.E. Marsden and T.J.R. Hughes. Mathematical Foundations of Elasticity. Dover
Civil and Mechanical Engineering. Dover Publications, 2012. ISBN: 9780486142272.
URL: https://books.google.at/books?id=-STEAgAAQBAJ (cit. on p. 3).

[24] David Mercier, czambaldi, RaulSanchezMartin, Claudio, and techfips. stabix:
STABiX v1.6.3. Feb. 2015. DOI: 10.5281/zenodo.14854. URL: https://doi.
org/10.5281/zenodo.14854 (cit. on p. 74).

[25] C. Miehe. Aspects of the Formulation and Finite Element Implementation of Large
Strain Isotropic Elasticity. Vol. 37. 1981-2004. International Journal for Numerical
Methods in Engineering, 1994 (cit. on p. 22).

[26] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Re-
search and Financial Engineering. Springer New York, 2006. ISBN: 9780387303031.
URL: https://books.google.at/books?id=eNlPAAAAMAAJ (cit. on p. 53).

[27] Roger Rowell. Handbook Of Wood Chemistry And Wood Composites. Feb. 2005.
ISBN: 9780849315886 (cit. on p. 1).

84

http://dx.doi.org/http://dx.doi.org/10.1016/S0997-7538(01)01206-2
http://www.sciencedirect.com/science/article/pii/S0997753801012062
http://dx.doi.org/10.1023/A:1010835316564
https://doi.org/10.1023/A:1010835316564
https://doi.org/10.1023/A:1010835316564
https://books.google.at/books?id=qvFSDQEACAAJ
https://books.google.at/books?id=qvFSDQEACAAJ
http://dx.doi.org/10.1017/CBO9781139171731
http://dx.doi.org/10.1017/CBO9781139171731
https://books.google.at/books?id=-STEAgAAQBAJ
http://dx.doi.org/10.5281/zenodo.14854
https://doi.org/10.5281/zenodo.14854
https://doi.org/10.5281/zenodo.14854
https://books.google.at/books?id=eNlPAAAAMAAJ


Bibliography

[28] Hartmann S. and Neff P. Polyconvexity of generalized polynomial-type hyperelastic
strain energy functions for near-incompressibility. Vol. 40. 2767-2791. International
Journal of Solids and Structures, 2003 (cit. on pp. 22, 26, 34).

[29] Neff P. Schroeder J. Invariant formulation of Hyperelastic Transverse Isoropy Based
on Polyconvex Free Energy Functions. Vol. 40. 401-445. International Journal of
Solids and Structures, 2002 (cit. on pp. 17, 26, 82).

[30] J. C. SIMO. On a Fully Three-dimensional Finite-strain Viscoelastic Damage Model:
Formulation and Computational Aspects. Vol. 60. 153-173. Computer Methods in
Applied Mechanics and Engineering, 1987 (cit. on pp. 17, 82).

[31] A. J. M. Spencer. Theory of Invariants. Vol. 1. Eringen: Academic Press, New York,
1971 (cit. on p. 20).

[32] L. R. G. Treloar. Stress-Strain Data for Vulcanised Rubber Under Various Types of
Deformation. Vol. 40: 59-70. Transactions of the Faraday Society, 1944 (cit. on
p. 25).

[33] O. H. Yeoh. Characterization of Elastic Properties of Carbon-black-filled Rubber Vul-
canizates. Vol. 63. 792-805. Rubber Chemistry and Technology, 1990 (cit. on
pp. 17, 25, 82).

85



Appendix

86



1. Tensor Derivations

A. Derivation of ∂J
∂F

J = det(F ) = λ1λ2λ3 (A.1)

F =

3∑

α=1

λαnα ⊗Nα (A.2)

F−1 =

3∑

α=1

1

λα
Nα ⊗ nα (A.3)

∂J

∂F
=

∂λ1λ2λ3

∂
3∑

α=1
λαnα ⊗Nα

=
3∑

α=1

∂λ1λ2λ3

∂λα
nα ⊗Nα (A.4)

= λ2λ3n1 ⊗N1 + λ1λ3n2 ⊗N2 + λ1λ2n3 ⊗N3 (A.5)

=
λ1λ2λ3

λ1
n1 ⊗N1 +

λ1λ2λ3

λ2
n2 ⊗N2 +

λ1λ2λ3

λ3
n3 ⊗N3 (A.6)

= JF−T (A.7)

B. Derivation of ∂J
∂C

Note: J2 = IIIC

C =
3∑

α=1

λ2
αNα ⊗Nα (A.8)

∂J

∂C
=

∂λ1λ2λ3

∂
3∑

α=1
λ2
αNα ⊗Nα

=
3∑

α=1

∂λ1λ2λ3

∂λ2
α

Nα ⊗Nα (A.9)

λ2
α = λ̄α (A.10)

∂J

∂C
=

3∑

α=1

∂(λ̄
1
2
1 λ̄

1
2
2 λ̄

1
2
3 )

∂λ2
α

Nα ⊗Nα (A.11)

=
1

2

[
λ̄1λ̄2λ̄3

λ̄1

] 1
2

N1 ⊗N1 +
1

2

[
λ̄1λ̄2λ̄3

λ̄2

] 1
2

N2 ⊗N2 +
1

2

[
λ̄1λ̄2λ̄3

λ̄3

] 1
2

N3 ⊗N3 (A.12)

=
1

2

[
λ1λ2λ3

λ1

]
N1 ⊗N1 +

1

2

[
λ1λ2λ3

λ2

]
N2 ⊗N2 +

1

2

[
λ1λ2λ3

λ3

]
N3 ⊗N3 (A.13)

=
1

2

[
JC−1

]
(A.14)
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C. Derivation of ∂IIIC
∂C

∂IIIC
∂C

=
∂J2

∂C
(A.15)

with eq. A.14 (A.16)

= 2J
∂J

∂C
= J2C−1 (A.17)

D. Derivation of ∂IC
∂C

∂IC
∂C

=
∂C : 1

∂C
(A.18)

=
∂C

∂C︸︷︷︸
=IC

: 1 +C :
∂1

∂C︸︷︷︸
=0

(A.19)

= 1 (A.20)

E. Derivation of ∂IIC
∂C

Note: II := tr(CC)

∂IIC
∂C

=
∂tr(CC)

∂C
=
∂C : C

∂C
=
∂CMNCMN

∂CIJ
(A.21)

=
∂CMN

∂CIJ
CMN + CNM

∂CNM
∂CIJ

(A.22)

with eq. A.36 (A.23)

= δMIδNJCMN + δNIδMJCNM (A.24)

= 2CIJ = 2C (A.25)
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F. Derivation of ∂C−1

∂C

∂I

∂C
= 0 (A.26)

∂C−1C

∂C
= 0 (A.27)

∂
[
(C−1)IM (C−1)MJ

]

∂CKL
=
∂(C−1)IM
∂CKL︸ ︷︷ ︸
wanted

CMJ + (C−1)IM
∂CMJ

∂CKL
= 0 (A.28)

∂CMJ

∂CKL
=

1

2
(δMKδJL + δJKδML) (A.29)

∂(C−1)IM
∂CKL

CMJ = −(C−1)IM
∂CMJ

∂CKL
· (C−1)JN (A.30)

∂(C−1)IM
∂CKL

δMN = −1

2

(
(C−1)IK(C−1)NL + (C−1)IL(C−1)NK

)
(A.31)

∂(C−1)IN
∂CKL

= −1

2

(
(C−1)IK(C−1)NL + (C−1)IL(C−1)NK

)
(A.32)

substitute N → J (A.33)

∂(C−1)IJ
∂CKL

= −1

2

(
(C−1)IK(C−1)JL + (C−1)IL(C−1)JK

)
= −C−1�C−1 = IC−1

(A.34)

Note: (C−1)JL(C−1)IK = (C−1)IK(C−1)JL

G. Derivation of ∂C
∂C

∂C

∂C
=
∂ 1

2 [CKL + CLK ]

∂CIJ
(A.35)

=
1

2
[δIKδJL + δILδJK ] = IIJKL = I (A.36)

(A.37)

H. Derivation of ∂IIC
∂C

Note: IIC := 1
2

(
tr[C]2 − tr[C2]

)

∂IIC
∂C

=
∂ 1

2

(
tr[C]2 − tr[C2]

)

∂C
(A.38)

= tr[C]
∂tr[C]

∂C
− 1

2

∂tr[C2]

∂C
(A.39)

with eq. A.20 and eq. A.25 (A.40)

= tr[C]I −C = ICI −C (A.41)
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I. Derivation of ∂C̄
∂C

∂C̄

∂C
=
∂J−2/3C

∂C
= J−2/3∂C

∂C
+C ⊗ ∂J−2/3

∂C
(A.42)

= J−2/3∂C

∂C
+
−2

3
J−5/3C ⊗ ∂J

∂C
(A.43)

with eq. A.14 and A.36 (A.44)

= J−2/3I− 2

3
J−5/3 1

2
JC ⊗C−1 (A.45)

= J−
2
3

[
I− 1

3
C ⊗C−1

]
= Q (A.46)

J. Derivation of 2 ∂C̄
∂C∂C

2∂CijCklC̄mn = 2
∂

∂Ckl

(
J−

2
3

[
Imnij −

1

3
CmnC

−1
ij

])
(A.47)

= 2

{
−2

3
J−

2
3
−1 ∂J

∂Ckl

[
Imnij −

1

3
CmnC

−1
ij

]
− J−

2
3

3

[
∂Cmn
∂Ckl

C−1
ij + Cmn

∂C−1
ij

∂Ckl

]}

(A.48)

= 2

{
−2

3
J−

2
3
−1 1

2
JC−1

kl

[
Imnij −

1

3
CmnC

−1
ij

]
− J−

2
3

3

[
ImnklC−1

ij − Cmn{IC−1}ijkl
]}

(A.49)

=
2

3
J−

2
3

{
C−1
kl

(
1

3
CmnC

−1
ij − Imnij

)
+
(
Cmn{IC−1}ijkl − ImnklC−1

ij

)}
= M (A.50)

K. Derivation of ∂(C:M)
∂C

Note: Where M is a symmetric structural tensor and therefore independent of C

∂tr(CM)

∂C
=
∂(C : M)

∂C
(A.51)

=
∂C

∂C
: M (A.52)

with eq. A.36 (A.53)

= I : M = M (A.54)
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L. Derivation of ∂(C2:M)
∂C

Note: Where M is a symmetric structural tensor and therefore independent of C

∂tr(C2M)

∂C
=
∂MikCklClmδim

∂Crs
(A.55)

With eq. A.36 (A.56)

=
1

2
Mik [δrkδsl + δrlδsk]Clmδim +

1

2
MikCkl [δrlδsm + δrmδsl] δim (A.57)

=
1

2
[CsmMmr + CrmMms] +

1

2
[MskCkr +MrkCks] (A.58)

Using the symmetry to establish a closed form (A.59)

= CsmMmr +MsmCmr = CM +MC (A.60)

M. Derivation of ∂2IIC
∂C∂C

Note: IIC := 1
2

(
tr[C]2 − tr[C2]

)

With given first derivation of the second invariant A.41:

∂(IC1−C)

∂C
=
∂IC
∂C
⊗ 1− ∂C

∂C
(A.61)

With the eq. A.36 and A.20 at hand, it follows: (A.62)

= 1⊗ 1− I (A.63)

N. Derivation of ∂2tr(C2M)
∂C∂C

Note: Where M is a symmetric structural tensor and therefore independent of C
Using the already known first derivation A.60:

∂(MknCnl + CknMnl)

∂Cij
= Mkn

∂Cnl
∂Cij

+
∂Ckn
∂Cij

Mnl (A.64)

With eq. A.36 (A.65)

Mkn
1

2
(δinδjl + δilδjn) +

1

2
(δikδjn + δinδjk)Mnl (A.66)

1

2
(Mkiδjl + δilMkj) +

1

2
(δikMjl +Milδjk) (A.67)

1

2
(Mikδjl + δjkMil) +

1

2
(δikMjl +Mjkδil) = M⊗̃1 + 1⊗̃M (A.68)

(A⊗̃B)ijkl =
1

2
(AikBjl +BjkAil) (A.69)
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2. Implementation of Hybrid Formulation

With the keyword HYBRID FORMULATION it is possible to specify which multi-field
variational principle is used in the UMAT in the ABAQUS environment. Out of the
manual [1] it is recommended to use the HYBRID FORMULATION=TOTAL which is a
version of a Hu-Washizu variational principle. For that it is necessary to calculate the
extra derivatives of the volumetric strain energy potential.

p̂ = −∂U(Ĵ)

∂J
(A.70)

K̂ = J
∂2U(Ĵ)

Ĵ2
(A.71)

∂2U(Ĵ)

∂Ĵ2
= J

∂3U(Ĵ)

∂Ĵ3
(A.72)

To incorporate the hydrostatic pressure p̂ the determinant J is replaced by Ĵ in the

derivations of the elastic potentials ψ′vol and ψ′′vol. The bulk modulus K̂ and ∂2U(Ĵ)

∂Ĵ2
are

passed into the stress array by extending it by NTENS + 1 and NTENS + 2.
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3. Corotated Frame

Due to the updated Lagrangian formulation and the usage of a corotated frame principle,
Abaqus expects a Green-Nahgdi rate form of the tangent. The Green-Nahgdi rate σ∆ can
be approximated with the Jaumann rate σ∇. For that reason the Euler tangent has to be
modified to fulfil the requirement of UMAT output1.

The variation in Abaqus is performed in terms of the Truesdell rate of the Kirchhoff
stresses τ ◦.

τ ◦ = Jc : d (A.73)

£τ = τ ◦ = τ̇ − lτ − τ lT (A.74)

The Euler tangent c can be calculated by the push forward operation of the Lagrange
tangent C in remark 10. With the split of the velocity gradient tensor l = d + w into
its symmetric and antisymmetric part and the Cauchy stresses τ = Jσ and J̇ = J tr(d)
equation A.74 can be rewritten.

τ ◦ = J
[
σ̇ − (d+w)σ − σ(d+w)T + tr(d)σ

]
(A.75)

By multiplying out and considering the identity of the antisymmetric spin tensor wT =
−w, the first three parts can be identified as the Jaumann rate.

τ ◦ = J


σ̇ + σw −wσ︸ ︷︷ ︸

σ∇

−dσ − σd+ (1 : d)σ


 (A.76)

Introducing equation A.76 into equation A.73 and reordering gives:

σ∇ = c : d+ dσ + σd− (1 : d)σ (A.77)

To get the Jaumann tangent c∇ as specified in equation A.78, the rate of deformation
tensor d has to be appropriately rearranged in equation A.77.

σ∇ = c∇ : d (A.78)

This is in the following outlined in index notation. Where Iijkl is the fourth order identity
tensor.

σ∇ij = cijkldkl + dikσkj + σikdkj − δkldklσij (A.79)

= cijkldkl + σkjIikmndmn + σikIkjmndmn − δklσijIklmndmn (A.80)

= cijkldkl +
1

2
[σkj(δimδkn + δinδkm) + σik(δkmδjn + δknδjm)− δkl(δkmδln + δknδlm)σij ] dmn

(A.81)

= cijkldkl +
1

2
[σnjδim + σmjδin + σimδjn + σinδjm − σij(δmn + δmn)] dmn (A.82)

= cijkldkl +
1

2
[σljδik + σkjδil + σikδjl + σilδjk − 2σijδkl] dkl (A.83)

= cijkldkl +
1

2
[δikσjl + σikδjl + δilσjk + σilδjk − 2σijδkl]

︸ ︷︷ ︸
c∇ijkl

dkl (A.84)

So by adding these additional terms to the Euler tangent the Jaumann Euler tangent
can be calculated.

1For futher information, see [1], [4], [2].
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4. Mesh Dependence

The discontinuous peak in figure A.1 is representing the unaveraged values of four
elements which are located in the middle. This peak is a result of an unwanted influence
of the mesh discretisation on the contact algorithm. Yet, it has no influence on the
indentation result. It was found out that the peak can be eliminated if the mesh parameter
c divi is chosen accordingly. Consequently, the peak was a result of big differences in
element size of elements that are close to each other.
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Figure A.1.: Contact pressure distribution along y-axis
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5. Class Diagram of Soofeam Matlab Program
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