
Ing. Mark Robert Bergmoser, BSc

Secure collaborative editing of shared
documents on untrusted servers: Preventing a

third party from reading your data

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Development And Business Management

submitted to

Graz University of Technology

Supervisor

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Institute of Applied Information Processing and Communications (IAIK)

Advisor

Dipl.-Ing. Florian Reimair

Graz, October 2017

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to tugrazonline is identical to the
present master‘s thesis.

Date Signature

ii

Abstract

Exchanging information among team members in a fast, easy and secure way
is, especially for companies, essential for maintaining competitiveness. For
this purpose, so called text collaboration tools hosted on a server in the cloud,
are used on a large variety of devices. The main drawback of common tools is
that data is always readable for the server itself. Since servers are considered
as honest but curious, data might be read and analysed. Furthermore, servers
might get compromised and attackers might be granted access to sensitive
data. Available tools which support encryption of data are often restricted
to single user usage only or implement critical steps such as sharing keys
among clients. Preventing servers from being able to decrypt the processed
data along with an improved key management might enhance data privacy.
In the context of this thesis, the software STeCT has been developed, aiming
to present a prototypical text collaboration tool addressing these issues in
existing solutions. STeCT consists of a server, which stores the document and
provides an algorithm capable of merging data solely by its metadata. The
Server furthermore provides software to the clients enabling them to send
encrypted data, which is not decipherable by the server itself. For encryption
and decryption as well as for solving the problem of key distribution, CrySIL
is used by the clients. The tool was successfully tested and first performance
tests showed a high applicability of STeCT.

iii

Kurzfassung

Der Austausch von Information innerhalb von Teams, speziell innerhalb von
Firmen, muss schnell, einfach und sicher erfolgen um Wettbewerbsfähigkeit
aufrecht zu erhalten. Für diesen Zweck werden sogenannte Text Collabora-
tion Tools verwendet, die auf einem Server in der Cloud gehostet und für
viele verschiedene Geräte zur Verfügung gestellt werden. Der Nachteil dieser
Tools ist, dass der Server die Möglichkeit hat, die Daten der Benutzern zu
lesen und zu analysieren. Server können somit als ehrlich, jedoch auch als
neugierig angesehen werden. Ferner können Server von Kriminellen kom-
promittiert werden, welche dann möglicherweise auch Zugriff auf sensible
Daten erhalten. Verfügbare Tools, welche die Daten verschlüsseln, sind oft nur
von einem Benutzer gleichzeitig nutzbar oder sie implementieren kritische
Vorgänge wie zum Beispiel den Schlüsselaustausch. Wenn für Server nicht
mehr die Möglichkeit bestehen würde, die verschlüsselten Daten entschlüsseln
zu können und das Schlüssel-Management verbessert werden würde, könnte
die Datensicherheit stark verbessert werden. In dieser Arbeit wurde das Tool
STeCT entwickelt. Dabei handelt es sich um ein sicheres Text Collaboration
Tool, welches die oben genannten Probleme löst. STeCT besteht aus einem
Server, welcher das Dokument speichert und einem Algorithmus, der nur
anhand der Metadaten von verschlüsselten Daten Änderungen von Benutzern
in das Dokument einpflegen kann. Ferner stellt der Server die Software für
die Benutzer bereit, um diesen das Bearbeiten des Dokuments zu ermöglichen
und die gesendeten Daten zu verschlüsseln. Für die Ver- und Entschlüsselung
sowie für das Schlüsselmanagement wird CrySIL verwendet. Das Tool wurde
erfolgreich getestet und erste Leistungstest zeigen eine hohe Eignung von
STeCT.

iv

Contents

Abstract iii

1 Introduction 1

2 Background 5

2.1 Components and Elements . 5

2.1.1 Server . 5

2.1.2 Client . 9

2.1.3 Changesets . 12

2.1.4 Master Document . 13

2.1.5 Real-Time Text Collaboration 14

2.2 Merging . 15

2.2.1 Inconsistency Problems 16

2.3 Workflow . 19

2.4 Summary . 21

3 CrySIL 23

3.1 Cryptographic Key Storage . 24

3.2 Cryptographic Key Management 26

3.3 Cryptographic Provider . 26

3.4 Authentication Service . 27

3.5 Summary . 28

4 State Of The Art 29

4.1 Concepts . 29

4.1.1 Content Cloaking . 30

v

Contents

4.1.2 Peer-to-Peer Networks . 31

4.1.3 Homomorphic Encryption 33

4.1.4 Summary . 36

4.2 Tools . 37

4.2.1 SeGoDocs . 37

4.2.2 SafeGDocs . 38

4.2.3 SPORC . 39

4.2.4 Peer-to-Peer Network . 41

4.2.5 Summary . 42

5 STeCT: Secure Text Collaboration Tool 43

5.1 Architectural Overview . 43

5.2 STeCT Components . 45

5.2.1 Server . 45

5.2.2 Client . 46

5.2.3 CrySIL . 47

5.2.4 Master Document . 47

5.3 Communication . 48

5.3.1 Communication Objects 49

5.3.2 Workflow Communication 51

5.4 Merge Algorithm . 54

5.4.1 Preconditions . 54

5.4.2 Merging . 55

5.4.3 Basic Idea . 55

5.4.4 Merging Changesets . 56

5.4.5 Applying Changesets . 63

5.5 Security Considerations . 64

5.5.1 Security Mechanisms Of STeCT 64

5.5.2 Payload Encryption . 65

5.5.3 Learning From Metadata 66

5.6 Summary . 68

vi

Contents

6 Evaluation 69

6.1 Security Analysis . 69

6.1.1 Methodology . 69

6.1.2 Assumptions . 70

6.1.3 Model . 70

6.1.4 Assets . 71

6.1.5 Threat Agent . 72

6.1.6 Threats . 72

6.1.7 Summary . 75

6.2 Performance Test . 77

6.2.1 Test Setup . 77

6.2.2 Test Execution And Results 78

6.2.3 Summary . 79

7 Conclusion And Outlook 81

Bibliography 83

vii

List of Figures

1.1 Text collaboration architecture 3

2.1 Example Merging . 16

2.2 Example Merge Conflict . 17

2.3 Text Collaboration Without Concurrency Control 18

2.4 Workflow: Login . 20

2.5 Difference between a document with and without a checkpoint. 21

2.6 Workflow: Apply changeset at client 22

3.1 Cryptographic Key in the Cloud 25

3.2 Cryptographic Key Exchange . 25

4.1 Workflow of Content Cloaking 31

4.2 P2P Network . 33

4.3 P2P Network Storage . 42

5.1 Architecture Overview . 44

5.2 Document in STeCT . 48

5.3 Communication in STeCT . 52

5.4 Detect a merge conflict . 57

6.1 Target of evaluation . 71

6.2 Comparison of loading times . 79

viii

List of Tables

2.1 Advantages and drawbacks of hosted and self-hosted servers. . 10

5.1 Four cases of merging . 59

6.1 Summary of Threats . 76

6.2 Comparison of loading times . 80

ix

List of Algorithms

1 Principle workflow of solving a merge conflict 58

2 Pseudo Code of Case1 . 59

3 Pseudo Code of Case2 . 60

4 Pseudo Code of Case3 . 61

5 Pseudo Code of Case4 . 62

x

LIST OF ALGORITHMS

Nomenclature

ACL Access Control List

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CPU Central Processing Unit

CrySIL Crypto Service Interoperability Layer

HDD Hard Disk Drive

HOM Homomorphic encryption

HSM Hardware Security Module

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IV Initial Vector

JSON JavaScript Object Notation

NIST National Institute of Standards and Technology

OS Operating System

OT Operational Transformation

P2P Peer-to-Peer

RAM Random Access Memory

REST Representational state transfer

SQL Structured Query Language

SSH Secure Shell

UPS Uninterruptible Power Supply

WLAN Wireless Local Area Network

xi

1 Introduction

Collaboration among team members within a company, among customers,
vendors or business partners is very important for companies to remain com-
petitive. Especially in a digital environment it is necessary to share, exchange,
edit and distribute data and knowledge in a fast, easy and secure way. Text
documents (in the following just called documents) are one way to satisfy
these requirements.

With classical document software like Microsoft Office [35], Libre Office [18]
or Open Office [17], only one person at a time is able to edit the content of a
document. Sharing the latest version of the document might be a challenge
since every user has to have access to the location of the document which
is used to be a shared folder on a network drive. This might be an issue if
a team member is not in the local network of the company. Also merging
different versions of the document is a very difficult process, since most of
these documents are not containing pure text. Furthermore, every member of
the project needs a local installation of the software on the computer in order
to be able to read and edit the document. This increases the costs of licences
and maintaining the software on each computer. Since classical document soft-
ware is often only available for desktop computers, smartphones and tablets
cannot be used or their use is limited to editing this kind of documents. In
summary, using available document software has some drawbacks regarding
collaborative text editing. However, they are still often used in companies
since until now there is no secure and applicable alternative. As the study of
Dimensional Research [12] shows, collaboration is very important for business
professionals. To overcome the mentioned issues, text collaboration tools like
Google Docs [24] or Word Online [36] have been developed.

1

1 Introduction

Text collaboration tools allow any number of users to simultaneously edit the
same text document in real-time on any device having access to the Internet
and supporting a web browser, independent of the used Operating System
(OS) and the used browser. This can be achieved by moving the logic of the
text collaboration tool into the cloud. At the login, the client receives the
latest version of the document, called the master document, from the server.
When a client edits the document, only a changeset is sent to the server. A
changeset describes a set of changes (some kind of delta), e.g., a word which
was added or deleted by the user. In addition, the position of the text, the
version of the change, etc. is included in the changeset. Figure 1.1 illustrates
the basic architecture of a typical text collaboration tool. The server in turn
merges the changeset into the latest version of the document and distributes
the change to all connected clients. Under these conditions, every client has
the latest version of the document at any time. If two or more clients are
editing the same passage within a document, the server takes care of merging
the changesets so that no changeset gets lost.

An advantage of text collaboration tools is that they do not need a local
installation of the software since they can be executed directly in the client’s
web browser. This means, the client always uses the latest version of the
software. It follows that text collaboration tools can also be used on smart-
phones and tablets because they do not need a local installation. This kind of
document editing is very attractive to companies since they have less software
to maintain and the distribution of documents is very easy. Also the require-
ments are very low. A web browser and an Internet connection are sufficient
to run the text collaboration tool on any device.

When outsourcing the documents to the cloud, some issues arise concerning,
e.g., data security, availability, access permissions, etc. The provider of the
cloud service has to be trustworthy since the server may be able to read the
content of the document and may analyse it. This is due to the fact that for
most standard collaboration tools only the connection from the user to the

2

1 Introduction

Figure 1.1: Principle architecture of text collaboration tools. The server always holds the latest
version of the document.

server is encrypted and not the content itself. Even if the content is encrypted,
the server has to be capable of performing a decryption in order to be able
to merge the changesets from the clients. For companies, this might be a
problem in case the document contains sensitive data. Often, depending on
the terms of service, the provider reserves the right to access and analyse the
content of the document in order to enable, e.g., personalised advertising or to
improve the service. Further, some states may be able to carry out a lawful
interception, like the Unites States of America. Because of the USA PATRIOT
Act [37], the government of the United States of America is able to legally
retrieve information of documents stored by cloud providers, independent
of the terms of service. Also changing the cloud provider may constitute a
security issue. The company has to trust the old cloud provider to securely
delete the data, so that it is impossible to restore the data for anyone. Another
problem arises if the cloud provider gets compromised and the document gets
copied by criminals. If the document contains sensitive data, this may cause
the economic ruin of the company.

3

1 Introduction

Basically, there are two options to avoid a third party from analysing and/or
stealing data from documents stored in a cloud. The first option is to host an
own cloud. However, this has some important disadvantages like maintenance
of the hardware and software, costs for the server, availability, prevention
from unauthorized accesses, etc. There are many aspects to be considered
when hosting a cloud on one’s own. The other option is to encrypt the con-
tent of the document in such a way, that only the authorized clients are
able to read the encrypted documents. Logically, the server should not be
able to read the documents but it should be able to merge the changesets
of the different clients although the content is encrypted. There are some
solutions for encrypting the changesets of the document, like the Browser
add-on from Adkinson-Orellana et al. [1], but they are not supporting collabo-
ration of multiple users because merging encrypted content is not an easy task.

The aim of this thesis is to develop a strategy for merging encrypted change-
sets on the server side. Neither the server nor any third party should be able
to decrypt the content of the document at any time, only authorized clients
should be able to decrypt and read the document. To achieve an appropriate
level of security, CrySIL [39] should be part of the user management concept
and act as a central cryptographic provider for encrypting and decrypting
data.

The content of this thesis is structured as follows. Chapter 2 gives some back-
ground information on the used technologies. Chapter 3 describes CrySIL,
which is a remote key storage and cryptographic provider for heterogeneous
platforms. In Chapter 4, state of the art concepts and tools are described. Chap-
ter 5 presents the developed tool STeCT which is able to merge encrypted
content without the need to decrypt the data first. A security evaluation and a
performance test of STeCT are outlined in Chapter 6. Chapter 7 shows further
research opportunities and concludes this thesis.

4

2 Background

This chapter gives an introduction into text collaboration tools. The idea is
to get familiar with the principal workflow and the components which are
necessary to operate a text collaboration tool.

Section 2.1 describes the components and elements which are necessary to
execute a text collaboration tool. Section 2.2 explains what merging is and
how it is used for collaboration purposes. Section 2.3 introduces the typical
workflow of a text collaboration tool. Section 2.4 gives a summary of this
chapter.

2.1 Components and Elements

In this section, the basic components of a text collaboration tool and the basic
elements are described (see Figure 1.1). This aims to help in getting a better
understanding of each component’s function and their interconnections.

2.1.1 Server

The server represents the central element of the necessary infrastructure
around text collaboration tools. It is responsible for a range of tasks, the most
important ones are described in the following:

5

2 Background

• Hosting the master document: In a usual environment, the server is
the only component which stores the master document. Typically, the
clients only store a local copy of the master document as long as they are
connected to the server. Therefore, the server is responsible for saving
the master document securely. Furthermore, it is responsible for the
distribution of the document.

• Merging of changesets: If a client is editing the document, it sends
changesets to the server in order to notify it about the local changes
done by the user. The server in turn merges this changeset into the
master document to keep it up-to-date. A detailed description of the
merging process is provided in Subsection 2.2.

• Distribution of changesets: After the server received and merged the
changesets into the master document, it also distributes the changesets to
all connected clients. It follows that all connected clients always receive
the latest version from the server.

• Hosting software: Since most text collaboration tools are web-based,
the server hosts the software which is executed at the client to run the
web-application. After the login, the software (e.g., written in JavaScript)
is sent to the client and executed locally at the clients device as long as
the client is connected to the server. This ensures that the client always
runs the latest version of the software. Also the distribution of software
is much easier without any local installation.

Hosted vs Self-Hosted

In general, there are two ways for offering a public web service on the Internet:
a hosted server or a self-hosted server. Possessing a hosted server means to
rent an infrastructure, e.g., a virtual machine with an operating system to run
applications. In contrast, a self-hosted server means owning and operating the
server in a private infrastructure. Both variants have advantages and disad-
vantages in costs, security, etc. and will be discussed in the next section.

6

2 Background

Hosted: Nowadays, there are many companies which are offering servers
or virtual machines for rental, like Amazon Elastic Compute Cloud (Amazon
EC2)1, Rackspace2, Google Cloud Platform3 etc. Of course there are many more
providers. It is very easy to rent and operate a hosted server, it is just a few
clicks. The user first configures her virtual machine, like the used OS, num-
ber of Central Processing Unit (CPU) cores, size of Random Access Memory
(RAM), size of Hard Disk Drive (HDD), etc. Afterwards, the user accepts the
monthly price, agrees to the terms of service and the virtual machine is ready
to go. The user can cancel the contract at any time with compliance to the
period of notice if the virtual machine is not needed any more.

According to Ziff Davis Enterprise [15], a particular advantage of a hosted
server is its scalability. If the user needs more computing power , e.g., more
RAM or more CPU cores, the virtual machine can easily be reconfigured to
the customer’s needs. Furthermore, the customer does not need to care about
the infrastructure of the server, the availability, Internet connection or other
issues like backups, maintenance of hardware, Uninterruptible Power Supply
(UPS), etc.

In contrast to the advantages of a hosted server, there are also some dis-
advantages which have to be considered. Omer Tene [52] states in his article
that most of the cloud providers have a clause in their terms of service which
allows them to legally read, analyse and even change the data of the user.
Often cloud providers justify it with improvements of their services. This
trend is raising concerns. Not only cloud providers, also governments are able
to legally read the data stored by the cloud providers, independent of their
terms of service. For example, the United States of America amongst others
released a law called USA PATRIOT Act [37] in 2001 allowing them to read
data from cloud providers. Furthermore, Ristenpart et al. describe how it is
possible to extract information from one virtual machine by another virtual

1https://aws.amazon.com/ec2/
2https://www.rackspace.com/
3https://cloud.google.com/

7

https://aws.amazon.com/ec2/
https://www.rackspace.com/
https://cloud.google.com/

2 Background

machine whereby both are running on the same physical hardware. Further,
Maurice et al. [33] demonstrated that it is possible to create a robust cache
covert channels between different virtual machines. Under these circumstances
an attacker might be able to extract sensitive data from other users using the
same cloud provider and being hosted on the same physical server. For most
of the cloud providers the user cannot choose in which country the server is
hosted meaning where the data is stored.

In summary, a hosted server has many advantages like its scalability or
that the user does not need any infrastructure. There are also some drawbacks
like privacy and data protection against third parties. In other words, if the
data are stored in an encrypted way at the server, a hosted server is a good
choice.

Self-Hosted: In contrast to a hosted server, a self-hosted server means to
own the server and the corresponding infrastructure for running applications.
Owning a server brings along many advantages but also comes with some
drawbacks.

First of all, owning a server means that the owner can decide which hardware
should be used , e.g., which CPU, how much RAM, size of HDD, etc. The
server can be customized independently. The applications on the server can
be executed natively, which often brings along an improvement of the perfor-
mance. Basically, there is no need for a virtual machine except the user has
special use cases.

The drawbacks of a self-hosted server are versatile. One major drawback
in contrast to the hosted server is the scalability. Once it is configured and up
and running, it is difficult to change the hardware. For example, if the server
needs more CPU cores, maybe also the motherboard has to be exchanged.
Apart from this issue, the server and the service running on it need to be
shut down during the time of maintenance if there is no backup server which
also hosts the service in parallel. According to Koomey et al. [31] there are

8

2 Background

many cost factors which have to be considered. It is not only the costs of
the hardware, there are also other cost factors like electricity (for the server,
cooling, UPS, lights, losses, etc.), hardware maintenance, wiring, personnel
costs (IT staff, security staff, facility staff, etc.), software, facility costs, etc. An-
other issue is the security of the server. The server needs a firewall, antivirus
software, a certificate for a secure and trusted client-server communication,
regular updates of the OS and the used software, etc.

In summary, the self hosted server has some advantages concerning the
privacy of data and the control of the hardware, but it is very expensive, needs
a lot of configuration effort and requires maintenance.

Summary: Table 2.1 summarizes the most important advantages and draw-
backs of a hosted and self-hosted server which have been discussed in this
section. Although there are drawbacks with privacy and data confidentiality,
a hosted server might be the right choice if the user does not want to inves-
tigate much effort in configuring and maintaining the server. To overcome
the privacy issues, a new concept like introduced in this thesis or some of the
state-of-the-art tools described in Chapter 4 State Of The Art could be used.

2.1.2 Client

The client is another central component in a text collaboration tool. It is used
by the users who actually create and edit a shared document stored on the
server. As the server, the client has some important tasks to do, like merging
changesets into the local version of the document, creating changesets when
the user edits the document, etc. Simultaneously, the client has to satisfy a lot
of user requirements regarding security, simplicity, supported devices, etc. In
the following, this tasks and requirements are described in detail:

9

2 Background

Advantages Drawbacks

Hosted server

• Scalability • Privacy/data protection
• No infrastructure needed • U.S. government can access

the data
• Fixed costs per month • Security issues like getting

data from other VMs
• 24/7 service • No control of hardware

Self-hosted server
• Full control of hardware • Hight costs
• Native execution of soft-
ware

• High configuration effort

• Hardware matches require-
ments

• High maintenance effort

Table 2.1: Advantages and drawbacks of hosted and self-hosted servers.

• Merging of changesets: The merging process of the client is different
to the merging process of the server because the client only receives
changesets from the server and not from other clients. As a result, the
process of merging in this case is just applying the changeset sent by
the server to the local document of the client to keep it up to date. By
updating the local version, also the revision number is updated to the
one sent by the server. The role of the revision number is explained in
2.2 Merging.

• Creation of changesets: Every time the user edits the document, a new
changeset is created and sent to the server. This changeset contains all
necessary information about the change itself, e.g., what has changed,
at which position the change happened, on which revision number
the change based on, etc. Section 2.1.3 Changesets provides a detailed
description of a changeset. The revision number of the changeset is very
important for the server, because it is used to identify merge conflicts
(two changes are based on the same revision number) between clients.

10

2 Background

• Easy to use: The client is a software which is typically used by the end
customer. Therefore, it should be very easy to use. Ideally, the software
is self-explanatory and the user does not have to read a manual. This
includes a simple and clear design. Furthermore, the client software
should support as many OS and devices as possible.

• Support of different devices: Nowadays, however, the requirements for
a software are completely different than just a few years ago. Today,
beside the classic desktop computer, there are a lot of mobile devices
(especially smartphones or tablets) with limited hardware. As a result,
applications cannot be ported directly to mobile devices. Furthermore,
a lot of different OS exists, like Windows4, Linux5, Mac OS6 for desktop
computers or Android7, iOS8, Windows 10 Mobile9, Symbian10 for mobile
devices. For a software, especially for mobile devices, it is not easy to
support many OS [57]. This is due to the fact that a developer needs
knowledge about different programming languages and runtime envi-
ronments like J2ME for Android, Objective C for iOS or C++ for Symbian
[34].

To overcome these issues, a text collaboration tool is mostly based
on HTML [54] and JavaScript [56], which is supported on nearly every
OS and device. In fact, the application only has to be developed once
and can be used on a variety of different devices with different OS. As
a result, the developing and maintaining costs of the software can be
reduced enormously.

4https://www.microsoft.com/en-us/windows/
5https://www.linux.com/
6http://www.apple.com/macos
7https://www.android.com/
8http://www.apple.com/ios/
9https://www.microsoft.com/en/mobile/windows10/

10http://www.nokia.com/en_int

11

https://www.microsoft.com/en-us/windows/
https://www.linux.com/
http://www.apple.com/macos
https://www.android.com/
http://www.apple.com/ios/
https://www.microsoft.com/en/mobile/windows10/
http://www.nokia.com/en_int

2 Background

2.1.3 Changesets

Changesets are used to edit text in a standardized way within a collaborative
environment and transmit information about what has been changed in a
document between the server and the client.

A changeset is used to edit the master document, i.e., it is possible to in-
sert, delete or format data with it. The insertion of deletion of data may be
combined with a formatting, but this depends on the implementation of the
text collaboration tool. In general, a changeset is a combination of data and
the corresponding operation. Moreover, the data not only consists of the data
which should be edited, the data also contains the position of the change in the
document and the revision number it is based on. The revision number is used
to detect merging conflicts (see Section 2.2 Merging). Some text collaboration
tools like EtherPad Lite [19] are also adding the author to the changeset. Listing
2.1.3 shows an example of a real world changeset from EtherPad Lite. This
example inserts the word ”Hi” into the master document. For security reasons,
the changeset may also contain a hash or a signature [10] of the changeset
itself in order to detect undesired changes caused by transport errors or data
manipulation by attackers. In summary, every changeset must contain at least
following attributes:

• The Text which should be inserted or deleted

• An Operation like insertion or deletion

• A Position where to insert/delete the text

• The Revision Number on which the changeset is based on

. . .
” data ” :{ ”baseRev” : 0 , ” changeset ” : ”Z : dn>2|7=dm∗0+2$Hi” } ,
” apool ” : { numToAttrib” : { ”0” : [” author ” , ”a . 0 h14LrJ1959Kyvz1 ”]}}
. . .

Listing 2.1: Example of the relevant part of a changeset from EtherPad Lite.

12

2 Background

2.1.4 Master Document

The document which is stored at the server is called master document. It
always has the latest revision number and is downloaded by the client at
login. After the download, the client has a local copy of the current master
document. If a client is editing the local document, a changeset is generated
by the client and sent to the server. The server in turn merges the changeset
into the master document, increments the revision number and distributes the
latest change to all connected clients. This guarantees that the server version
of the document is always the latest one.

The master document can be seen as an empty document with a list
of changesets attached [3]. As a result, the client has to download the
whole list of changesets and applies them to an empty document locally.
Downloading and applying thousands of changesets may take some time and
is therefore not suitable for business software. To improve the performance,
the server creates so called checkpoints after, e.g., 50 changesets or some
defined interval. This means, the server creates a new document with the
data from the last, e.g., 50 changesets including the data of the previous
checkpoint. The previous or empty document is exchanged by the new
generated checkpoint. This avoids the changeset list from becoming too large
and therefore decreasing the performance.

13

2 Background

2.1.5 Real-Time Text Collaboration

A text collaboration tool allows multiple users to edit a shared document with
different devices independent of the actual location of the user. In principle,
there are two types of text collaboration tools: real-time and non real-time
collaboration. The difference between this two types is that with a real-time
text collaboration tool multiple users can edit a shared document at the same
time, whereas with non real-time text collaboration tools users are not editing
a shared file at the same time (these tools are similar to a revision system like
git11 or svn12).

As described by Ellis et al. [14], a real-time collaboration tool can be
characterized by the following attributes:

• highly interactive: The response time must be kept as short as possible.

• real-time: The notification time should be as close to the response time
as possible.

• distributed: Several users can work with different devices over the
Internet together.

• volatile: Users can login or logout at any time.

• ad hoc: Users do not have to follow a given way of working.

• focused: There is a high probability of merging conflicts because many
users are editing the same document at the same time.

According to Romanowski et al. [44], there are two important parameters:
The first one is the response time and the second one is the notification time.
The response time is the time needed to display the changes made by the
user to the users interface. This includes, e.g., time for computing the user
input, refreshing the screen, etc. The notification time is the time needed to
propagate the changes made by a user to all other users over the network.
This includes, e.g., network latency.

11https://git-scm.com/
12https://subversion.apache.org/

14

https://git-scm.com/
https://subversion.apache.org/

2 Background

The entire complexity of real-time collaboration tools is a result of
communication latency in computer networks. Obviously, if there would be
no latency in computer networks, a text collaboration tool would have the
same complexity as a single-user editor. This is due to the fact that merging
conflicts only occur if two users are editing the same revision of a document
without knowing (because of network latency) that another user is also
editing the document at the same time. Without any network latency, every
user would notice the changes of other users immediately and therefore will
always have the latest version of the document instantly. As a result, merging
conflicts would not be possible any more.

2.2 Merging

In general, merging means to combine or unite two or more entities to a single
one. It is an essential process of collaborative working. Without this process, it
would not be possible to operate collaboration tools in general. In the case of
text collaboration tools, merging means to integrate a changeset, created by a
user, into the master document on the server. As a result, the server increases
the revision number of the document which is now representing the latest
version of the document and distributes the changes to all connected clients.
Figure 2.1 illustrates a simple merging process.
When multiple users are working with a text collaboration tool, especially a
real-time one, sooner or later merge conflicts will occur. Simply put, a merge
conflict means that two clients are editing text based on the same revision
number. This does not necessarily mean that both are editing text at the same
position. Figure 2.2 demonstrates an example of a merge conflict. As a result,
both users have different versions of the document (”AB” and ”BA”) which
results in inconsistency. This is because of unpredictable network latency
when sending the changeset to the server. Thus, the goal is to have a merging
algorithm on the server which provides consistency of the master document
and the local version of all clients.

15

2 Background

Figure 2.1: Example of merging a changeset into the master document on the server.

Creating a merging algorithm is not an easy task. Many things have
to be considered to get it to work properly. Section 2.2.1 Inconsistency Problems
introduces some inconsistency issues a merging algorithm has to take care
of.

2.2.1 Inconsistency Problems

To keep consistency of a shared document, concurrency control is needed to
overcome issues caused by the latency of the network. If no such mechanism
is active, every user might have a different version of the document. Figure
2.3 illustrates a scenario with three users editing and sharing a document
without concurrency control. In this scenario, operation O1 is created by user
Alice and O2 and O3 are created by user Bob. The operations will be applied
to the current local copy of the respective user. According to Sun et al. [50],
three major issues caused by the unpredictable latency of the network can be
identified when using a real-time text collaboration tool. [50]

16

2 Background

Figure 2.2: Example of a merge conflict when two users are editing the document at the same
position based on the same revision. Because of unpredictable network latency, both
users have a different version of the document.

• Divergence problem: Since the operations are executed in the order
they are arriving, they are not in the same order for all users. Alice’s
execution order will be O1, O2, O3, Bob’s O2, O1, O3 and Charlie’s O2,
O3, O1. As a result, every user has another version of the document.
Assume that O1 inserts an ”A”, O2 a ”B” and O3 a ”C”. The document
for Alice would be ”ABC”, ”BAC” for Bob and ”BCA” for Charlie.

• Causality violation: Bob executes his operation O3 after he received
operation O1 from Alice. Therefore, it might be possible that O3 depends
on O1, e.g., O1 is a question and O3 is the answer. Since Charlie receives
O3 before O1, he might be confused by having the answer before the
question.

• Intention violation: Because O1 and O2 are created at the same time by
different users, both operations are independent of each other. When
Alice applies O2 to her local document, she has another base document
than Bob had when he created O2. By implication, the result may be
different to the intended one of Alice or Bob, respectively. For example,

17

2 Background

Figure 2.3: Scenario of a text collaboration tool without concurrency control. The changes are
applied on the local document of the user.

assume that the shared document contains the text ”ABCDEF” before O1
and O2 are executed. Now, Alice wants to insert two characters (”12”) at
position 1 which should result in the text ”A12BCDEF” and Bob wants
to delete two characters at position 2 (”CD”) which should result in
the text ”ABEF”. After executing O1 and O2, the intended result at all
users should be ”A12BEF”. Because of missing concurrency control, the
result in Alice’s document is ”A1CDEF”, which is neither the expected
result of Alice, nor of Bob. This is due to the fact that O2 is executed on
another base text (”A12BCDEF” instead of ”ABCDEF”) As a result, the
text ”2B” is deleted instead of ”CD”.

18

2 Background

To overcome these inconsistency problems in collaborative working, a lot
of algorithms and protocols implementing different strategies have been
developed. The following list gives a short overview of existing protocols:

• Turn-taking protocols: Only one user is allowed to edit the document
at a time. [26, 48]

• Lock-based protocols: The data object is locked before updating. [27,
29]

• Transaction-based protocols as proposed by [30, 5]

• Optimistic execution protocols as proposed by [28, 49]

2.3 Workflow

The prior chapters described only single parts of the workflow of text
collaboration tools. To put all the pieces together, this chapter describes the
general workflow from a high level view. This should give an idea of how a
text collaboration tool works in general.

In principle, every user can perform three different actions: receiving
the current master document from the server, creating and deleting text on
the local document and sending and receiving changesets from the server.
Although there exist solutions for text collaboration tools without the use of a
server, most of them are using a server as central component for storing the
master document. In general, the client only communicates with the server
and not with the other connected clients.

After a successful login, the client receives either an empty document
with a list of changesets or a so called checkpoint document with a list
of changesets from the server. Figure 2.4 visualises the login process. A
checkpoint document is used to increase the performance of creating the
local document at the client side. This is due to the fact that the client does
not have to apply all changesets from the beginning until the latest change

19

2 Background

on an empty document (the more changesets the client applies the more
time it needs), instead the client receives a checkpoint document and a
list with considerable less changesets. Figure 2.5 visualises the difference
between an empty document and a checkpoint document. This checkpoint
document contains all changesets from the beginning to a defined amount
of changesets. It is generated automatically by the server, e.g., when the list
of changesets exceeds a certain number of changesets. After creating this
checkpoint document, the list of changesets is empty again. There might
be several checkpoint documents, but only the latest one is downloaded by
the client. All changesets from the beginning on are stored and will not be
deleted by the server. By doing so, the server holds a history of the document
and the clients are able to restore any revision of the document.

Figure 2.4: At the login process, the client receives either an empty document or a checkpoint
document and a list of changesets.

After downloading the latest version of the document, the client can start
editing the document. Typically, the text collaboration tool checks periodically,
e.g., every second, if the user has done some changes to the local document
and sends them as a changeset to the server. The server in turn checks the
validity of the changeset and applies it to the master document with a new
revision number. If necessary, a merge (see chapter 2.2 Merging) has to be
done by the server. After this process, the new changeset is distributed to all
connected clients.

20

2 Background

(a)The master document
consists of an empty
document and a list of
changesets. The client
has to apply each sin-
gle changeset to the
empty document.

(b)The client receives the
checkpoint document
and has to apply only
few changesets which
increases the perfor-
mance a lot.

Figure 2.5: Difference between a document with and without a checkpoint.

When the client receives a new changeset from the server, it is applied to the
local document of the client (see Figure 2.6). This mechanism ensures that
the client always has the latest version of the document to prevent merging
conflicts with other clients.

2.4 Summary

In this chapter, first the components and elements of a text collaboration tool
were explained to get a basic knowledge about the topic. Next, the merging
process was explained. It is important to understand why a merging conflict
occurs and how it can be solved. The next section covered the typical workflow
of a text collaboration tool. It explains how the document is stored on the
sever, how it is distributed to the connected users, which actions a user can
perform and how to deal with changesets.

21

2 Background

Figure 2.6: After the server applied the latest changeset (rev.3) to the master document, it sends
it to all connected clients which in turn apply the changeset to their local document.

22

3 CrySIL

Nowadays, a high heterogeneous landscape exists for developing applications
for different devices. Above all, the diverse operating systems for mobile
devices like smartphones, tablets and smart watches differ a lot from each
other, e.g., for each mobile OS, applications have to be written in different
programming languages (Android uses Java, iOS uses Objecive C and
Windows Phone uses C# and C++). Further, each mobile OS has different
concepts for dealing with, e.g., security, applications, performance, etc.

Especially security related aspects may suffer from this amount of
heterogeneous platforms like cryptographic protocols. The same protocol has
to be implemented several times in different programming languages in order
to cover all kinds of systems. This makes the use of cryptography really hard.
Reimair et al. [40] defined three problems with heterogeneous systems related
to security:

• Managing cryptographic keys on multiple platforms might be difficult
because of missing key storage facilities.

• Some cryptographic protocols might not be available on every platform

• Because of the complexity of today’s cryptographic protocols, the likeli-
hood of bugs in the implementation increases [13].

To overcome this issues, Reimair et al. [39] developed the so called Crypto
Service Interoperability Layer, also known as CrySIL. In this thesis, CrySIL
is used as a secure central cryptographic key storage and key manager, as a
cryptographic provider and as an authentication service. These three tasks are
explained in detail in the next sections.

23

3 CrySIL

3.1 Cryptographic Key Storage

In order to perform cryptographic operations on data, so called cryptographic
keys are used to, e.g., encrypt/decrypt data or to calculate a digital signature.
Usually, the cryptographic key is stored on the device doing the cryptographic
operation or on a portable medium like a smartcard. As long as the user uses
just a single device, this course of action does not cause any problems. If the
user uses several different devices, it gets complicated. Especially, if keys are
added and deleted frequently the synchronisation of the cryptographic keys
is not an easy task. The synchronisation can either be done with shared cloud
storage or by exchanging passwords. Both are not recommended. Especially
for users who are not familiar with the field of IT security. Furthermore, not
all devices are supporting cryptographic operations with smartcards, e.g.,
smartphones or tablets.

To solve the issue with the key distribution for several devices, the
idea is to move the cryptographic keys into the cloud, in the case of this thesis
to CrySIL. In combination with a Secure Hardware Module (HSM), CrySIL
is a secure storage for cryptographic keys. Figure 3.1 visualises its concept.
It is no longer necessary to store the cryptographic keys on each device. In
addition to the secure storage of CrySIL, the cryptographic key is available
everywhere and at any time for the user as long as she is connected to the
Internet. Furthermore, if the user wants to share encrypted data with other
users, this can be done easily by using CrySIL as a key storage. For example,
if the user wants to share the encrypted data (which is, e.g., stored on a cloud
service like Dropbox1), she just has to grant the other users access to the
cryptographic key. Because the cryptographic key never leaves CrySIL, the
other users are only able to decrypt (the actual decryption of the data is done
by CrySIL, see 3.3 Cryptographic Provider) the data which are encrypted with
this key. As a result, all users are able to read the data without the need for
disclosing any cryptographic keys. Figure 3.2 illustrated this use case.

1https://www.dropbox.com

24

https://www.dropbox.com

3 CrySIL

In summary, moving the cryptographic keys to the cloud brings advantages
compared to a local storage.

Figure 3.1: The user can use her cryptographic keys on all devices without the need to syn-
chronize them because they are only stored once in the cloud.

Figure 3.2: Both users are able to see the content without exchanging the cryptographic key.

25

3 CrySIL

3.2 Cryptographic Key Management

Creating a cryptographic key is not as easy as it might look like. A lot
of different things have to be considered, like enough entropy for the
cryptographic key generation, the length of the resulting cryptographic key,
whether the cryptographic key should be derived from a user password or
another key or some random value, etc. If the cryptographic key generation
is not performed correctly or with weak parameters, the cryptographic key
can be compromised easily by attackers. The National Institute of Standards
and Technology (NIST) [4] gives a recommendation on how to generate
cryptographic keys.

By moving the key management into the cloud, in this case to CrySIL, the
user does not have to care about a secure key generation any more. This is all
done by CrySIL. It takes care of a secure cryptographic key generation and
additionally, as described in Section 3.1 Cryptographic Key Storage, takes care of
storing them securely. CrySIL is able to create different types of cryptographic
keys, i.e., symmetric or asymmetric cryptographic keys.

3.3 Cryptographic Provider

As already discussed prior in this section, there are a lot of different
implementations for the same cryptographic algorithms and protocols.
This is due to the fact that every OS has different concepts and uses
different programming languages for the implementation. Further, due to the
complexity of algorithms, the likelihood of implementation failures is always
given. Furthermore, on some platforms specific protocols and/or algorithms
may not exist.

When moving the encryption/decryption process and the correspond-
ing protocols to the cloud, in this case to CrySIL, there is only one
implementation which is available for every client with any device indepen-
dent of the used OS. In other words, the client sends data to the cloud and

26

3 CrySIL

receives the encrypted or the decrypted data, respectively. This concept has a
great advantage: the cryptographic key, which is generated and stored by
CrySIL, never leaves the cloud. The user is not able to obtain the cryptographic
key. This is an additional security feature of CrySIL, eliminating possible risks
caused by compromised user devices. The report of Kaspersky Lab [32] from
2015 shows that attacks from the Internet are very common.

When several users need access to shared data, e.g., with a secure
text collaboration, all of them are able to read the encrypted content of the
document because all are using the same cryptographic key. If one member
leaves the group, the administrator only has to restrict further access to the
cryptographic key by CrySIL instead of reencrypting the whole document
with a new cryptographic key and distributing it to all other clients.

Regarding security, the connection to CrySIL is secured via HTTPS
which is supported by every common web browser. The actual data are
encoded as JavaScript Object Notation (JSON) [7] and sent via HTTPS to the
server or to the client, respectively.

3.4 Authentication Service

CrySIL can also be used as an authentication service. In other words, in case
of, e.g., a secure text collaboration tools, CrySIL authenticates the user and
grants or denies the access to the cryptographic service. It is important to
note, that the whole authentication process is done by CrySIL. The client only
needs to send the credentials to CrySIL which in turn grants or denies the
access.

27

3 CrySIL

3.5 Summary

In this chapter, some properties of CrySIL have been explained which are
useful for a secure text collaboration tool. The following list summarizes these
properties:

• Cryptographic keys can be stored securely by CrySIL in the cloud.

• CrySIL provides a secure key generation with state-of-the-art parameters
and algorithms like AES [47], RSA [43], etc.

• Data encryption and decryption is performed by CrySIL. Due to this fact,
only one implementation of each cryptographic algorithm is necessary
and thus reduces the likelihood of implementation flaws.

• The user authentication can be performed by CrySIL.

• The service of CrySIL is platform independent. As a result, CrySIL can
be used by any operation system and any device which supports a
common web browser.

Because of its properties like platform independence, key storage and manager,
CrySIL is suitable for developing a secure text collaboration tool which can be
operated on different operating systems and different devices like computers,
smartphone, tablets, etc.

28

4 State Of The Art

This chapter gives an overview of state-of-the-art concepts and tools which
allow to operate a secure text collaboration tool. In this case, secure means
that the content of the file stored on the server is encrypted and the server is
not able to read or analyse its content. Only the clients are able to decrypt
and edit the content.

First, Section 4.1 Concepts gives an overview of concepts which can be
used as a basis for a secure text collaboration tool. Next, Section 4.2 Tools
gives an overview of current solutions.

The disadvantage of all tools presented in Section 4.2 Tools is that
none of team is really a real-time secure text collaboration tool and some are
only for single user purposes.

4.1 Concepts

There are many different concepts how to create a secure text collaboration
tool. Some of them are using a server as a central element, other do not need
a server at all and only use clients. This section gives an introduction to the
most important concepts which are currently used. Also the advantages and
the flaws of the concepts are discussed.

29

4 State Of The Art

4.1.1 Content Cloaking

Content Cloaking is a simple approach to achieve additional security when
using a cloud as a central storage for documents with sensible data. Most
times, this concept is realised by using third-party-applications, like plug-ins
for web browsers (see Sections 4.2.1 SeGoDocs and 4.2.2 SafeGDocs). As the
name suggests, the content of the message is cloaked before sending it to the
server. This does not prevent the server from reading the data of the user, but
the server is not able to process the data any more because they are encrypted.

The basic functionality of content cloaking is rather easy. Before the
data is sent to the server or the cloud, it is encrypted with a state of the
art crypto algorithm like the Advanced Encryption Standard (AES) [47].
When receiving the data, it is decrypted before it is passed to the respective
application. Figure 4.1 illustrates the workflow of content cloaking.

To the user, the whole process of encrypting and decrypting data is
completely transparent. Because of the hardware implementation of the AES
standard, modern CPUs can encrypt and decrypt data very fast. Due to this
fact, the delay caused by the encryption/decryption process is very small and
therefore not noticeable for the user.

Content cloaking is a good concept to protect sensible data from third parties.
It encrypts data before they are sent to the server and decrypts the data before
processing them. Because it can be implemented as a plugin for web browsers,
it is easy to use and the process is completely transparent to the user. Content
cloaking can be applied to already existing text collaboration tools like Google
Docs1.

The drawback with content cloaking is that it cannot be used simulta-
neously by many users because it only can encrypt and decrypt data. Since
the merging algorithm is the original one from the cloud provider, it does not

1https://docs.google.com

30

https://docs.google.com

4 State Of The Art

support merging of encrypted content (as long as the server is not able to
decrypt the content). Further, the cryptographic key has to be shared among
all users having access to the document.

In summary, content cloaking is a good and easy concept to protect
data against unauthorised data access, but it is not suitable for simultaneous
editing of the document.

Figure 4.1: Principle workflow of content cloaking. It acts like an additional layer between the
server and the client. The data is encrypted before sending it to the server and
decrypted before the data is processed by the client.

4.1.2 Peer-to-Peer Networks

In contrast to the most other solutions of secure text collaboration tools, Peer-
to-Peer (P2P) networks are working without having a central server to increase
the security. This is due to the fact that servers are often high-value targets for
attacks2,3. For example, tools like SubEthaEdit [53] and CoWord [41] are using
such a P2P network. Figure 4.2 illustrates an example of a typical P2P network.

2https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html?_r=0
3http://www.informationisbeautiful.net/visualizations/

worlds-biggest-data-breaches-hacks/

31

https://www.nytimes.com/2016/09/23/technology/yahoo-hackers.html?_r=0
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

4 State Of The Art

Every client has a local copy of the document. All changes on the
document are exchanged with all connected clients. Because of a missing
server, this is not an easy tasks. To overcome issues with the synchronisation,
one peer of all connected ones becomes a so called super-peer. This super-peer
takes over the role of the server (e.g., detecting merging conflicts, distributing
changesets, etc.) and has to be present during the whole session. Logically,
this might cause a problem if the super-peer is offline for some reason. To
solve this issue, a central storage provider can be introduced, like Dropbox4,
Google Drive5, SugarSync6 or Box7. In contrast to a server based solution, the
server solely stores data instead of detecting merging conflicts, distributing
changesets, etc. As a result, the data is stored securely (in the sense of
backups) on the server, but has to be encrypted by the peers before sending it
to the cloud. Otherwise the storage provider might be able to read and/or
analyse the content of the document.

The advantage of a peer-to-peer network is that no server is needed,
neither a hosted nor a self-hosted one. This may save a lot of money because
there is no need to maintain a server infrastructure.

The drawbacks within this solution are diverse. The key management
and distribution of the cryptographic key is not easy. Because of a missing
server, a random client takes care of the merging process and may store the
document in the cloud. As a result, the round trip time increases because now
there are two instances involved in the merging/storing process. This leads to
a bad performance. Further, the document has to be reencrypted with a new
cryptographic key if a user leaves the text collaboration tool.

To sum up, a P2P network is no real alternative to a server-client con-
cept. The disadvantages are strongly overbalanced within this solution.

4https://www.dropbox.com/en/
5https://www.google.com/drive/
6https://www.sugarsync.com/en/
7http://www.box.com/

32

https://www.dropbox.com/en/
https://www.google.com/drive/
https://www.sugarsync.com/en/
http://www.box.com/

4 State Of The Art

Figure 4.2: Example of a P2P network with 6 connected users. One of the connected peers
becomes a super-peer which acts like a server.

4.1.3 Homomorphic Encryption

Homomorphic encryption (HOM) is a completely different approach how a
secure text collaboration tool can be realised. The basic idea of HOM is to
execute operations on encrypted data without the need to decrypt them first.
The operations can directly be applied to the data as they would be in plain.

In general, the term Homomorphic describes a property of an encryp-
tion scheme. This property allows calculations or operations on encrypted
data without the need to decrypt the data first. But not every encryption
scheme has homomorphic properties. The drawback with HOM, especially
fully homomorphic encryption, is that it is currently rather slow [9]. When
using HOM in practice, it often supports only one operation like multiplying
or adding values. The HOM scheme of Boneh et al. [6] supports two different
operations, but only one at a time.

33

4 State Of The Art

To get a better understanding in how HOM works, two examples are
given below. The first one is ROT13 [8], which is a special case of Caesar
cipher, and the second example is unpadded RSA [43]. In the following, the
encryption will be written as E(plaintext) and the decryption as D(cipher text).

The Caesar cipher is a substitution cipher and one of the oldest en-
cryption schemes known and named after the roman politician and general
Julius Caesar. It is at least 2000 years old. Julius Caesar used this cipher to
encrypt his private correspondence. The caesar cipher is the first recorded
substitution cipher, but other substitution ciphers are known to have been
used earlier [46]. The principle of this cipher is rather simple. Each character
of the plaintext is replaced by an other fixed character from the alphabet.
This is done by shifting the alphabet. Equation 4.1 shows how the encryption
works and equation 4.2 shows how the decryption works. In the formula, p
represents the current character of the plaintext (more precisely the number
of the character in the alphabet), n the amount of shifts and c the resulting
ciphertext. This formula has to applied to each single character of the plaintext
to get the ciphertext. Equation 4.3 shows an example for the decryption of the
text ”Hello World”.

En(p) = (p + n) mod26 (4.1)

Dn(c) = (c− n) mod26 (4.2)

E3(Hello World) = Khoor Zruog (4.3)

Homomorphic properties of ROT13

ROT13 (rotate by 13 places) is a special kind of the caesar cipher. The shift of
each character is always 13. Of course it is known that ROT13 is not a secure
encryption scheme because it can be easily broken with letter analyses, but
for explaining HOM it is useful. First, the two words HELLO and WORLD
will be encrypted with ROT13. The result will be:

34

4 State Of The Art

E13(HELLO) = URYYB (4.4)

E13(WORLD) = JBEYQ (4.5)

Imagine that user Alice writes the encrypted text URYYB into a plain doc-
ument and user Bob concatenates his text JBEYQ with Alice’s text. The re-
sult will be URYYBJBEYQ. When this text gets decrypted, the result will be
HELLOWORLD (see equation 4.6). This means, Bob added some text to an
encrypted text without decrypting it first. It follows that ROT13 has homo-
morphic properties with respect to the concatenation.

D13(URYYBJBEYQ) = HELLOWORLD (4.6)

Homomorphic properties of RSA

The unpadded RSA encryption scheme has also homomorphic properties with
respect to multiplication. Given two arbitrary numbers a and b, it does not
mater if someone calculates E(a) ∗ E(b) or E(a ∗ b). Equation 4.7 shows the
general encryption formula for RSA and equation 4.8 proves the correctness
of the homomorphic property. The public key modulus will be written as m,
the exponent as e, the plaintext as p.

E(p) = xe mod m (4.7)

E(a) ∗ E(b) = ae ∗ be mod m = (a ∗ b)e mod m = E(a ∗ b) (4.8)

As a result, two numbers can be multiplied without the need of decrypting
them first. Of course, unpadded RSA cipher is not secure and is limited to the
multiplication of two numbers. There are many other HOM schemes like the
Paillier cryptosystem [38] or the Goldwasser–Micali cryptosystem [23]. To be
applicable in a real world scenario, a HOM should support any operation
without any restrictions. Such HOMs might be fast, but not yet practicable for
daily business. A HOM cryptoscheme which supports any operation on data
is called fully homomorphic encryption.

35

4 State Of The Art

In contrast to HOM, fully homomorphic encryption (fully HOM) sup-
ports any kind of operation on encrypted data. Such a fully HOM already
exists. Gentry Craig wrote a PhD thesis [21] about this topic and also
published a paper [22]. Although fully HOM works in theory, it is impractical
with today’s computational power. Craig estimated, that a Google search
query with fully HOM would increase the amount of computing time by about
a trillion. According to Moore’s law [45] and given Craigs estimation holds, it
will take another 40 years until fully HOM will be as efficient as today’s search.

In summary, some cryptographic algorithms have homomorphic properties,
e.g., RSA, which can be used with today’s computing power. But these
properties are often limited to one calculation, for example multiplying. Fully
HOM already exists for any kind of operation, but it is not applicable for
today’s computing power. It is estimated that it will take about another 40

years before fully HOM can be used in our daily life. Fully HOM would be a
perfect solution for STeCT, but it is not practicable yet.

4.1.4 Summary

This section presented different concepts of how a secure text collaboration
tool can be built. Each of them has its own advantages and disadvantages. The
common problem with all these concepts is the cryptographic key manage-
ment. Each solution assumes that the client encrypts/decrypts the data locally
and the cryptographic key has to be shared among all clients. Further, none
provides a solution for an easy and secure key exchange between the clients
and only few of them support multi-user functionality. To overcome these
issues, a new concept has to be developed which benefits from the advantages
and overcomes the drawbacks of the presented concepts.

36

4 State Of The Art

4.2 Tools

Many tools exists which can be used for secure text collaboration. Most of them
are implemented as a plug-in for web browsers. This makes them available on
many different platforms. The main drawback with current solutions is that
they do not support multiple users and real-time collaboration at the same
time. This chapter describes some of the current solutions which are working
properly for single user purposes.

4.2.1 SeGoDocs

The tool SeGoDocs (short term for ”Secure Google Docs”) is a prototype
developed by D’Angelo et al. [11]. It is a lightweight, cryptographic,
client-side solution browser plug-in for Firefox web browser 8 which supports
encryption of Google Docs [24] files, in particular for the word proces-
sor, using the content cloaking technique as described in 4.1.1 Content Cloaking.

After SeGoDocs successfully performed the login for Google Docs, it
starts two observers which are monitoring the HTTP [55] traffic. Because
Google Docs uses AJAX [20] and a specific protocol, SeGoDocs is able to
identify the requests. When an observer recognises incoming or outgoing
data, the message gets intercepted. Depending on whether data is incoming
or outgoing, the data gets decrypted or encrypted, respectively. For encryp-
tion/decryption, SeGoDocs implements only the AES [47] algorithm written
in pure JavaScript [56].

This tool is designed for single-user purposes. The authors do not ad-
dress multi-user collaboration except that the key distribution between several
users is difficult.

8https://www.mozilla.org/en-US/firefox/products/

37

https://www.mozilla.org/en-US/firefox/products/

4 State Of The Art

In summary, one major advantage of SeGeDocs is that it can be used with
the existing collaboration tool Google Docs. The drawback is that it can be
assumed that the tool is not applicable for multi-user support. Further, the
key management is difficult and has to be done by the user itself.

4.2.2 SafeGDocs

SafeGDocs [42] is a Firefox web browser plug-in offering additional security
by encrypting the content of a Google Docs document before sending it to the
cloud. It is developed by GRADIANT 9 (Galician Research and Development
Center for Advanced Telecommunications) and is available for everyone.

Like SeGoDocs, SafeGDocs is also based on the concept of content
cloaking (see 4.1.1 Content Cloaking), but the workflow is different. SafeGDocs
does not send any information to the server when the user edits the document.
Instead, all changes are cached locally. When the user clicks on the save
button in the plug-in, the whole document gets encrypted (the standard
algorithm is AES with a 128 bit key) and is send to the server. SafeGDocs
supports some standard encryption algorithms which can be chosen by the
user for encryption of the document.

The cryptographic key for the document is encrypted with AES 256

bit derived by a master password and stored as a hidden file called
SafeGDocs.doc in Google Drive. This means, that the cryptographic key is
never stored locally on the clients device.

The developers do not mention multi-user collaboration. Due to the
fact that the whole document gets encrypted when the user saves the docu-
ment, it is very unlikely that more than one user can work simultaneously
on the document. Also the key exchange is difficult because the encrypted
cryptographic key is stored in the Google Drive of the document’s creator.

9https://www.gradiant.org/?lang=en

38

https://www.gradiant.org/?lang=en

4 State Of The Art

Another disadvantage is that not all features of Google Drive are sup-
ported yet, like headers, footnotes, page number and page count, comments,
etc. Clearly, this limitations are decreasing the usability of the tool.

To sum up, this tool can be used to easily store an encrypted docu-
ment in the cloud, but it is not practicable for a multi-user collaboration. The
user can only save the whole document at once by clicking a button which
triggers the encryption of the document.

4.2.3 SPORC

Feldman et al. developed a generic framework called SPORC [16], which can
be used for a lot of collaborative applications using untrusted servers as a
storage location for documents. They also developed, among other software, a
prototype for a browser-based collaborative text editor.

The only role of the server in this approach is to store the encrypted
document and to distribute the changesets to all connected clients. The clients
are provided with a local copy of the document which is downloaded at the
login. Due to performance issues, the server also stores so called checkpoints
(see 2.1.4 Master Document). The server is not able to read the content because
it is encrypted by the clients and the key is never distributed to the server
at any time. Therefore, the server can be untrustworthy. To provide further
security, to each changeset of the client the global sequence number and
a client-specific sequence number is added along with a hash value. This
hash value contains the hash value of the previous changeset chain and the
current changeset of the client. This ensures the integrity of the data over the
lifetime. The clients are able to detect any modification on the data stored at
an external server or if an operation went wrong. In addition, each changeset
is signed by the client. Therefore, each client can check whether the received
changeset is authentic and of integrity or not.

Each client can perform changes at any time without locking the doc-
ument on the server. If a merge conflict occurs, it is resolved automatically by

39

4 State Of The Art

the clients by applying a technique called Operational Transformation (OT) [14,
51]. SPORC also supports offline changes on the document.

Each document in SPORC has an Access Control List (ACL) which defines
the access rights of each user. Three types of users can be distinguished:

• Reader: The reader is only allowed to read/decrypt the document. She
is not allowed to carry out modifications.

• Editor: The editor is allowed to edit the document, e.g., delete or insert
new text. She is not allowed to change the ACL of the document.

• Administrator: The administrator has full control over the document,
i.e., editing the document and the ACL.

Another great feature of SPORC is that clients are able to detect if a server
manipulates data. If this happens, the clients can switch automatically to a
new server and restore the document. After switching the server, the clients
can continue their work. SPORC allows multiple users to collaborate at the
same time on the same document via the web browser. The changes of
other users arrive in nearly real-time. According to Feldman et al., the user
experience of SPORC is similar to Google Docs [24] or EtherPad [19]. For the
implementation of SPORC, Feldman et al. reused some code from the mean-
while suspended project Google Wave [25], which is now called Apache Wave [2].

To sum up, SPORC is a comprehensive tool which supports many
features like switching the server on the fly, etc. As in the other tools, the
main weakness of SPORC is the implementation of the key management. The
administrator has to create a key and share it with all participating users
which might be critical.

40

4 State Of The Art

4.2.4 Peer-to-Peer Network

Zhang et al. [58] developed a Peer-to-Peer proof-of-concept using the cloud
provider Dropbox10 as a central storage. Due to the use of an external storage
provider, it provides storage integrity, but it does not guarantee low-latency.

To avoid merging conflicts, the document on the server is split into
several pieces (see Figure 4.3). This is done automatically by the clients. Every
piece of the document on the server is stored in an encrypted way in order
to prevent the server from reading the data. If a client edits a piece of the
document, it is locked for the other ones. As a result, only one client can
edit a piece of the document at a time. By doing this, the tools achieves
quasi-real-time collaboration. Further, relaxing the real-time requirements
reduces the amount of required resources and eases the achievement of
document consistency. If the client does not release the lock it is automatically
unlocked after a defined time-out.

By locking pieces of the document, the performance of the system
gets decreased. If the pieces are chosen too small (e.g., a single line or a few
words), a lot of overhead is produced. If the pieces are too large (e.g., a whole
paragraph), the probability that two users want to edit the same piece of text
increases and users have to wait until the locked piece gets unlocked.

In summary, a Peer-to-Peer network is not the best choice for a text
collaboration tool as already mentioned in Section 4.1.2. Further, locking
resources will decrease the performance of the tool. Storing the document in
form of n pieces is a good idea because, e.g., it can support redo-operations,
provides a history of the changes, etc.

10https://www.dropbox.com/en/

41

https://www.dropbox.com/en/

4 State Of The Art

Figure 4.3: The document is divided into n encrypted pieces. Only one client is allowed to edit
a piece at a time.

4.2.5 Summary

This section presented some state-of-the-art secure text collaboration tools.
Most of them support a multi-user collaboration, e.g., SPORC or the Peer-to-
Peer network. The drawback within all this solutions is the cryptographic key
management. Each client has to store the cryptographic key locally and has to
perform the encryption/decryption itself. Due to different implementations of
the same algorithm for different operating systems, this might cause problems
discussed in Section 3.3.

42

5 STeCT: Secure Text Collaboration

Tool

In Chapter 4 State Of The Art, some state-of-the-art concepts and existing
solutions for a secure text collaboration where shown, but all of them have
some drawbacks, e.g., a missing cryptographic key management. This chapter
presents a solution to securely store data even if the server is considered
to be insecure. Further, users do not have to care about a cryptographic
key and user management, since CrySIL [39] is used. To achieve the goal
of only using metadata for merging, an algorithm was developed which is
capable of merging encrypted data without the need to decrypt them first.
Further, a web-based prototype was implemented as a proof of concept for
this algorithm.

In Section 5.1, the architecture and the concept of STeCT are presented. In
Section 5.2, the components of STeCT are described. The communication
between all components is shown in Section 5.3. The merge algorithm is
explained in Section 5.4 and Section 5.5 gives an overview of the security
measures.

5.1 Architectural Overview

Existing solutions for text collaboration tools have limitations regarding the
security of data stored at the server. Either the data on the server is not
encrypted at all or the server holds a key for decrypting the data. If the server
gets compromised, e.g., due to an attack, the attacker is able to read and
analyse the data.

43

5 STeCT: Secure Text Collaboration Tool

Figure 5.1: Overview of the STeCT architecture and its components.

To overcome this issue, data from the clients have to be encrypted
and under no circumstances the server should be able to encrypt the data. To
meet these requirements, an algorithm was developed which is able to merge
encrypted data. This algorithm represents the core of STeCT and is executed
by the server in the cloud. Therefore, the document is securely stored at the
server even if the server is considered as honest but curious. The clients are
exchanging changesets with the server to modify the document or to receive
updates from other clients. CrySIL has the role of the central cryptographic
provider. It stores the cryptographic key and encrypts/decrypts the messages
from the client. Figure 5.1 visualises the architecture of STeCT.

44

5 STeCT: Secure Text Collaboration Tool

5.2 STeCT Components

This section describes the role of each component in STeCT. It gives informa-
tion about the purpose of each component and its relationships to others.

5.2.1 Server

The server is the central component in STeCT. In this thesis, the server is
treated like one hosted by a third party because of the reasons discussed
in Section 2.1.1 Hosted vs Self-Hosted. Because of the drawbacks of a hosted
server (privacy protection, no control of hardware, security issues like getting
data from other VMs, etc.) the server is considered as honest but curious in
sense of data protection. It can be assumed that a third party is able to read
the data.

One task of the server is to store the document securely in the sense
of data confidentiality. Another task is to give the clients the possibility to
access and change the stored document simultaneously at any time. Therefore,
the client software is hosted by the server in form of a downloadable web
application which is executed by the client’s web browser. Only with this
software, the clients are able to access and change the document.

If the document exceeds a predefined length (amount of changesets)
since the last checkpoint, the server advises a random client to generate a so
called checkpoint (the communication object checkpoint is discussed in Section
5.3.1). A checkpoint is defined as the result of applying a defined amount of
changesets on an empty document or on another checkpoint. In other words,
the checkpoint contains all changes from the prior changesets and the client
only has to apply one checkpoint instead of a list of changesets in order to get
the resulting document.

Furthermore, the server takes care of the integrity of the document. It
especially ensures that the revision number of each changeset is strictly
monotonically increasing without any gaps. A gap within the revision

45

5 STeCT: Secure Text Collaboration Tool

number would result in an invalid document. The revision number is used
to order the sequence of the changesets for building the document. At first
the changeset with revision number zero is applied to the local document,
followed by the changeset with the revision number one, etc.

5.2.2 Client

The client, or more specifically the client software, is downloaded from the
server and executed by the user’s web browser. Due the fact that the client
software only requires an up-to-date web browser like Chrome1, Firefox2,
etc. and an active Internet connection to operate, it can be used on a large
bandwidth of devices like desktop computers, smartphones or tablets.

In general, the client allows the user to read and edit the document
and displays changes from other users. It communicates directly with the
server. When the client is started, it sends the current revision number (at
startup this is always zero) to the server. The server in turn sends all necessary
changesets to the client so that the client is able to build the current document
by applying the changesets. When the user types in or deletes some text, a
changeset is sent to the server at which the based revision number is the
revision number of the last received changeset (this means the current change
is based on revision number x) and the new revision number is the based
revision number plus one.

To receive updates from other clients, the client polls the server peri-
odically with a so called Update Client communication object (see Section 5.3.1
Update Client) containing the client’s current revision number. If the revision
number of the server is higher than the client’s one, the client receives the
missing changesets and applies them to its local document to achieve the
same document version as on the server.

1https://www.google.com/chrome/index.html
2https://www.mozilla.org/en-US/firefox/new/

46

https://www.google.com/chrome/index.html
https://www.mozilla.org/en-US/firefox/new/

5 STeCT: Secure Text Collaboration Tool

To build checkpoints (see Section 5.3.1 Checkpoint), the client periodically sends
a request to the server. If there is the need to build such a checkpoint, the
server sends all changesets since the last checkpoint to the requesting client,
otherwise the server does not send an answer to the client. The client in turn
applies all the changesets to a checkpoint-changeset and sends it back to the
server.

Before the client sends or applies a changeset, the payload of the
changeset has to be encrypted or decrypted, respectively. Therefore, the client
first sends the changeset to CrySIL for data encryption and afterwards to the
server. When receiving a changeset, it has to be decrypted first by CrySIL
before the client can apply it to the local document.

5.2.3 CrySIL

In STeCT, CrySIL acts as a central cryptographic provider and performs the
login of the clients. To be logged in means that CrySIL provides the crypto-
graphic keys and the cryptographic operations to the client for encrypting or
decrypting data. Without being logged in, anybody may be able to download
the document, but is not able to decrypt it. Further, CrySIL provides a defined
interface for the encryption and decryption operations. It is completely inde-
pendent from the server and the client. Detailed information on CrySIL can
be found in Chapter 3 CrySIL.

5.2.4 Master Document

The document in STeCT is, in principle, a list of changesets (see Section
5.3.1 Changeset) and checkpoints (see Section 5.3.1 Checkpoint). Figure 5.2
visualises how a document looks like. The document is ordered by the so
called revision number. The first element in the list has the revision number
zero, the second one one, the third one two, etc. The revision number has
to be strictly increasing without any gaps, otherwise the client is not able
to generate the resulting text out of the document. How the changesets are
applied to the local document is explained in Section 5.4.5 Applying Changesets.

47

5 STeCT: Secure Text Collaboration Tool

The server is the only component with the permission to manipulate
the document. It can insert changesets and checkpoints, but it is not supposed
to delete any changeset or checkpoint.

Figure 5.2: A document consists of a list of changesets and checkpoints with a strictly mono-
tonically increasing revision number. Applying all changesets will result in the final
document.

5.3 Communication

This section describes the communication in STeCT . Section 5.3.1 describes the
communication objects which are used to exchange information between the
STeCT components. Section 5.3.2 gives details on the communication between
the STeCT components.

48

5 STeCT: Secure Text Collaboration Tool

5.3.1 Communication Objects

In STeCT there are 4 different communication objects which are used to send
and receive data from the client, server and CrySIL. These are changesets,
checkpoints and build checkpoint.

Changeset

The changeset is used to exchange data between the server and the client. It is
used for inserting or deleting text from the document and for updating the
client. The changeset consists of the following fields:

• int basedRevisionNumber: Specifies the revision on which this changeset
is based on.

• int revisionNumber: The new revision number of this changeset according
to the client. The revision number might be modified by the merge
algorithm.

• operation: The operation can have four different values:

– INSERT: Used by the client. By applying an insert-changeset, text is
added to the document.

– DELETE: Used by the client. By applying a delete-changeset, text is
removed from the document.

– BUILD CHECKPOINT: Used by the server to advise the client to
build a new checkpoint.

– INITIAL: Used as the initial changeset which creates an empty
document at the client.

• int position: The position in the local document where the current opera-
tion should be applied. The position has to fulfil the following require-
ment: 0 <= position <= datalength

• String data: Contains the (encrypted) payload of the changeset. This
value is null if the operation is not INSERT.

49

5 STeCT: Secure Text Collaboration Tool

• int numberOfCharToDelete: Defines how many characters should be
deleted. This field is only used if the operation is DELETE.

• boolean checkPoint: If the flag is true, this is a Checkpoint. A description of
the checkpoint can be found in Section 5.3.1 Checkpoint.

• int lockBegin: Start index of lock. Further details are given in Section 5.4
Merge Algorithm.

• int lockEnd: End index of lock. Further details can be found in Section
5.4 Merge Algorithm.

• String userName: The unique username is a random String generated by
the client application. It is not used in the current version but may be
important for implementing e.g. a document history.

• int dataLength: Length of the decrypted payload (field data).

Checkpoint

If the checkpoint-flag of a changeset is set to true, the this changeset defines a
checkpoint. The checkpoint consists of the same subset of fields as a changeset,
but not all of the fields are used. If the client receives a checkpoint, then it
clears the local document (all changesets are removed from the list) and
applies the checkpoint to the local document. In the following, only the used
field are described:

• int revisionNumber: The revision number indicates the state, meaning
the current revision’s content, of the document. It is always the based
revision number plus one.

• int basedRevisionNumber: Specifies the revision on which this changeset
is based on.

• String data: Contains the (encrypted) payload of the previous changesets
since the last checkpoint including the old checkpoint.

• boolean checkPoint: In case of a checkpoint, this flag is true.

• int dataLength: Length of the decrypted payload (field data).

50

5 STeCT: Secure Text Collaboration Tool

Update Client

This communication object is used by the client for updating the client to the
latest reversion. If there are newer changesets, the server will send all of them
to the client, otherwise an empty String is returned to the client. The Update
Client objects consists of the following fields:

• String userName: The unique username of the user.

• int clientRevision: The current revision of the client. It is used to determine
whether there is a newer revision at the server.

Build Checkpoint

The client periodically sends a Build Checkpoint to the server. If the client
should build a checkpoint, the server sends all necessary changesets to the
client so that it is able to build a checkpoint. This object does not need any
fields because the server decides if there is the need for building a new
checkpoint.

5.3.2 Workflow Communication

In the prior section the communication objects which are used to exchange
data between all STeCT components were described. This section describes
on which channels the communication objects are sent from A to B and
who communicates with whom. Figure 5.3 visualises the communication
paths between all STeCT components. The security of the communication is
described in Section 5.5 Security Considerations.

Client

The client in STeCT is communicating with the server and CrySIL. Before
the client sends a changeset to the server, it sends an encryption request
containing the plain payload data to CrySIL. After receiving the encrypted
data, the changeset is forwarded to the server. When the client receives a
changeset from the server, it sends a decryption request to CrySIL before the

51

5 STeCT: Secure Text Collaboration Tool

Figure 5.3: The communication paths in STeCT. The client communicates with CrySIL and the
server. There is no communication between CrySIL and the server.

changeset can be applied to the local document.

The client periodically sends an Update Client and Checkpoint object to
the server in order to check whether there is a new revision number which
is required for updating the client’s local document to the latest version or
whether building a new checkpoint changeset for the server is necessary.

Server

The server communicates only with the client. It can receive Changeset, Update
Client and Checkpoint objects from the server and always responds with a list
of changesets, containing zero to n objects.

52

5 STeCT: Secure Text Collaboration Tool

When receiving a changeset, the result of the merging algorithm de-
termines the changesets being sent to the client. The result of the merging
algorithm can have the following values:

• merged: The current changeset was successfully merged.

• merge split: The current changeset has to be split into two independent
changesets (only possible for the operation DELETE). These changesets
have to be processed again by the merging algorithm.

• already deleted: The text of the current changeset has already been deleted
by another user. The changeset can be ignored.

• checkpoint inserted: A new checkpoint has been added to the list.

• merge failed: An error occurred during the merge process.

If there is no merge needed and the changeset can be applied directly
to the master document, the same changeset is sent back to the client.
If the result of the merge algorithm is merged, merge split, already deleted,
checkpoint inserted or merge failed, the client receives all changesets since the
latest checkpoint including the latest checkpoint. This ensures that the client
is always up-to-date.

The Update Client object is used to update the client’s local version if
there are new changes at the master document (changesets with a higher
revision number than the current revision number of the client). If there are
changesets in the master document with a higher revision number, the server
sends all of them to the client to update the local document to the latest
version. If the client is already up-to-date, an empty String is returned.

The Checkpoint object is used to determine whether the client should
build a checkpoint for the server or not. If it is necessary to build a checkpoint,
the server sends all changesets since the latest checkpoint including the latest
checkpoint to the client. Otherwise an empty String is returned.

53

5 STeCT: Secure Text Collaboration Tool

5.4 Merge Algorithm

The merge algorithm is the main component of each text collaboration tool. It
is responsible for solving conflicts such as described in Section 2.2 caused by
inconsistency problems due to parallel modification of the master document
by different users. Development of such a merge algorithm has hardly been
done before. A lot of aspects have to be considered such as taking care of
the consistency of the master document, avoiding multiple deletion of the
same text by different users, etc. It is even more challenging to develop a
merge algorithm which is able to merge encrypted data without decrypting
them first. This section describes the merge algorithm developed and used
by STeCT. This algorithm is intended to run on honest but curious servers,
therefore it is able to merge encrypted data solely by using metadata.

First, the preconditions for the merge algorithm are explained in Sec-
tion 5.4.1. Next, Section 5.4.2 describes the merging process of STeCT. Section
5.4.3 explains the basic idea of the algorithm and the prerequisites. Next,
section 5.4.4 shows some implementation details of the algorithm. Section
5.4.5 describes how a changeset is applied by the client.

5.4.1 Preconditions

As already described in Section 5.2.4 Master Document, the master document
consists of a list of changesets and checkpoints. By applying all changesets
from the list to an empty String, the client can build a human-readable
presentation of the current master document.

The server is able to read and modify all fields of the changeset ex-
cept the field data, which contains the encrypted payload from the client. In
order to perform a merge, the server needs to modify some fields like revision
number, position or lockBegin. However, the server is not allowed to change the
field data at any time. Further, the algorithm is not allowed to edit changesets
which are already merged into the master document.

54

5 STeCT: Secure Text Collaboration Tool

When applying a changeset to the master document, the algorithm is
only allowed to add it at the end of the list, checkpoint changesets might also
be inserted at any valid position. The revision numbers of all changesets in
the list have to be in ascending order whereby no gaps are allowed in order to
ensure a consistent master document.

5.4.2 Merging

Merging in STeCT means to append a changeset of a client to the end of
the master document. If a conflict occurs, the client’s changeset has to be
modified in such a way that it won’t have an effect on the changesets created
by other users having a higher revision number than the client’s based revision.
After these modifications, the changeset is merged into the master document.
For simplification, the process of merging and resolving a conflict is simply
called merging. For example, if the master document contains the characters
”abc” and user A inserts the characters ”123” at index zero (result should
be ”123abc”) and user B deletes three characters an index zero (delete ”abc”)
at the same time, the algorithm should prevent user B from deleting the
characters ”123” from user A if the changeset of user A was processed first.
The algorithm should modify the changeset of user B in such a way that it
deletes the intended characters ”abc” and not ”123”. At the end of each merge
process, the modified changeset is appended to the master document’s list.

5.4.3 Basic Idea

When a client sends a changeset to the server, the first step of the algorithm
is to determine whether a merge is necessary or whether the changeset can
directly be applied to the master document. Therefore, the latest revision
number of the master document is compared with the based revision number of
the client’s changeset. If they are identical, the changeset can be applied to
the master document without any changes. If the based revision number is
lower, then the server needs to merge with the master document. If the based
revision number is higher, an error is logged at the server side and the client
will be updated to the latest version of the master document.

55

5 STeCT: Secure Text Collaboration Tool

The basic workflow of how to merge a changeset into the master doc-
ument is the following: At first, only the changesets of the master document
with the same or a higher revision number have to be considered. This is due
to the fact that both, the new changeset from the client and the changesets
from the master document with a lower revision number, are based on the
same data basis. Next, the algorithm has to iterate through all changesets from
the master document whereby the changesets are ordered by their revision
number in an ascending manner. For each changeset the algorithm checks
whether there is a merge conflict within the current changeset (more details
are described in Section 5.4.4). Figure 5.4 visualises how a merge conflict
between two changesets is detected. If there is a conflict, the algorithm solves
the conflict by updating some fields of the client’s changeset like position etc.
Otherwise it does not change the client’s changeset. Section 5.4.4 describes in
detail, which fields are updated. If the algorithm iterated through the list of
changesets and solved all occurring merge conflicts, the modified changeset
from the client can be applied to the master document. Algorithm 1 illustrates
the work flow of the merge algorithm.

5.4.4 Merging Changesets

When a merge conflict has been detected, it has to be resolved by the
algorithm. This is done by updating fields in the client’s changeset or by
splitting the changeset. After the merging process, the changeset is appended
to the master document.

If the operation of a changeset is INSERT, it means that the new in-
serted text begins at index lockBegin and ends at the index lockEnd. These two
fields are always set by the client. It follows that the changeset to be merged
is not allowed to modify the text between the index lockBegin and lockEnd. In
contrast, if the operation is DELETE, the fields mark the indices where text
has been deleted. This is necessary in order to prevent multiple deletion of
text, which would result in a wrong behaviour of the algorithm. In general,
the fields lockBegin and lockEnd are used to detect a conflict between two

56

5 STeCT: Secure Text Collaboration Tool

Figure 5.4: This image illustrates how a merge conflict between two changesets can be detected.
There are four different types of merge conflicts.

changesets. Further, these two fields provide some kind of locking for future
conflicts.

When merging a changeset, four different types have to be distinguished.
Each of them requires an individual solution. Table 5.1 shows an overview
of these four cases. In the following, these four types are explained in detail
aiming to generate a better understanding of how the algorithm is able to
resolve the merge conflict and how the client’s changeset is merged into the
master document. In the following, the changeset of the client which has to
be merged is denoted as Client Changeset (CS). The current element of the list
with higher revision numbers than the one from CS is donated as Master
Changeset (MC) and the list containing these changesets is just called list.

57

5 STeCT: Secure Text Collaboration Tool

Algorithm 1: This pseudo code shows how a merge conflict is solved in
STeCT.

Data: List of changesets from the master document with an equal or
higher revision number than the based revision number of the
client in ascending order

while not at end of the list do
/* ignore checkpoint changesets for merging */

if isCheckpoint then
continue;

end
if check for merge conflict then

solveConflict();
end

end
add Changeset to master document;

MC Insert & CC Insert (Case1)

Case1 is the simplest case of solving a merge conflict. At first, the algorithm
checks whether the position of CC is before or after MC. In the case CC is af-
ter MC, the index of CC has to be adapted because there is an insert before CC.

The next step is to determine whether there is a merge conflict be-
tween these two changesets. A merge conflict in this case is defined as
overlapping lock-indices. If a conflict is detected, the position of CC has to
be adapted to the lockEnd index of MC again. In other words, the CC will
be inserted after MC. If no conflict is detected, the algorithm has finished
processing the current MC. Algorithm 2 shows the implementation as pseudo
code.

58

5 STeCT: Secure Text Collaboration Tool

MC INSERT MC DELETE CC INSERT CC DELETE
MC INSERT x x Case 1 Case 2

MC DELETE x x Case 3 Case 4

CC INSERT Case 1 Case 3 x x
CC DELETE Case 2 Case 4 x x

Table 5.1: This table shows the four different possibilities of a merge conflict. For each case, a
different solution exists.

Algorithm 2: Pseudo code of solving a merge conflict for Case1

Data: MC (current changeset of list), CC (changeset of client)
if CC.position >= MC.position then

CC.position += MC.dataLength;
end
if merge conflict then

CC.position = MC.lockEnd;
end
continue with next changeset from list;

MC Insert & CC Delete (Case2)

The second case is similar to Case1, but in case of a merge conflict the
changeset has to be split into two changesets. The first new changeset deletes
the text before MC and the second one the text after MC. This prevents the
current CC from deleting text being inserted by MC.

The two new changesets get the revision number of MC and, among
other fields, the field numberOfCharToDelete is updated. In case of a split,
the algorithm terminates and starts again with these two changesets. They
are treated as they have been received by a client. Algorithm 3 shows the
implementation as pseudo code. If it is only necessary to delete text, e.g., in
front of MC, the field numberOfCharToDelete of the second changeset is zero.

59

5 STeCT: Secure Text Collaboration Tool

The algorithm will ignore such changesets because they won’t have any effect
on the master document.

Algorithm 3: Pseudo code of solving a merge conflict for Case2

Data: MC (current changeset of list), CC (changeset of client)
if CC.position >= MC.position then

CC.position += MC.dataLength;
end
if merge conflict then

Changeset c1 = CC.clone();
Changeset c2 = CC.clone();

c1.setnumberOfCharToDelete(MC.getLockBegin() -
CC.getPosition());
update lock-indices of c1;
c1.setBasedRevisionNumber(MC.getRevisionNumber());

c2.setPosition(MC.getLockEnd());
c1.setnumberOfCharToDelete();
update lock-indices of c2;
c2.setBasedRevisionNumber(MC.getRevisionNumber());

terminate algorithm and start it again with c1 and c2;
end
continue with next changeset from list;

MC Delete & CC Insert (Case3)

The challenge within Case3 is the correct handling of the deleted text and not
to mix up existing text. The first step is to check whether a conflict exists. If
there is a conflict, CC is either located before or after MC. In case CC follows
MC, the position of CC is reduced by the amount of characters to delete
from MC. If CC is located before MC, the position of CC does not have to be
updated. Algorithm 4 shows the implementation as pseudo code.

60

5 STeCT: Secure Text Collaboration Tool

Algorithm 4: Pseudo code of solving a merge conflict for Case3

Data: MC (current changeset of list), CC (changeset of client)
if merge conflict then

CC.setPosition(MC.getPosition());
else

if CC.getPosition() >= MC.getPosition() then
if MC.getLockEnd() < CC.getPosition() then

CC.setPosition(CC.getPosition() -
MC.getNumberOfCharsToDelete());

else
CC.setPosition(MC.getLockBegin());

end
update lock-indices of CC;

end
end
continue with next changeset from list;

MC Delete & CC Delete (Case4)

The challenge in Case4 is to detect and prevent multiple deletions of the same
text. If a text has already been deleted by MC, CC should be ignored. If only a
part of MC is deleted, CC should be split up (like in Case2) in order to delete
the remaining text.

At first, the algorithm checks whether the text has already been deleted by
MC. If this is the case, the algorithm terminates. The next step is to check for
a conflict. If there is a conflict, three cases are possible:

• delete text before prior delete

• delete text after prior delete

• delete text before and after prior delete

If there is no conflict, the algorithm executes the same code as in the else-
condition of Algorithm 4. Algorithm 5 shows the respective pseudo code.

61

5 STeCT: Secure Text Collaboration Tool

Algorithm 5: Pseudo code of solving a merge conflict for Case4

Data: MC (current changeset of list), CC (changeset of client)
/* check if CC is already deleted by MC */

if MC.getLockBegin() <= CC.getPosition() && Mc.getLockEnd() >=

(CC.getPosition() + CC.getNumberOfCharsToDelete()) then
terminate algorithm;

end
if merge conflict then

/* delete text before MC */

if CC.getLockEnd() < MC.getPosition() then
update lock-indices of CC;

/* delete text after MC */

else if MC.getLockEnd() < CC.getPosition() then
CC.setPosition(CC.getPosition() -
MC.getNumberOfCharsToDelete());

/* delete text before and after MC → split CC */

else
Changeset c1 = CC.clone();
Changeset c2 = CC.clone();

c1.setnumberOfCharToDelete(MC.getLockBegin() -
CC.getPosition());
update lock-indices of c1;
c1.setBasedRevisionNumber(MC.getRevisionNumber());

c2.setPosition(MC.getLockEnd());
c2.setnumberOfCharToDelete(CC.getNumberOfCharsToDelete()
- c1.getNumberOfCharsToDelete() -
MC.getNumberOfCharsToDelete());
update lock-indices of c2;
c2.setBasedRevisionNumber(MC.getRevisionNumber());

end

62

5 STeCT: Secure Text Collaboration Tool

else
if CC.getPosition() >= MC.getPosition() then

if MC.getLockEnd() < CC.getPosition() then
CC.setPosition(CC.getPosition() -
MC.getNumberOfCharsToDelete());

else
CC.setPosition(MC.getLockBegin());

end
update lock-indices of CC;

end
end
continue with next changeset from list;

5.4.5 Applying Changesets

One task of the client is to display the document to the user. For this purpose,
the client has to apply the changesets to the local document, which is in fact
a simple String. If the operation of the received changeset is INSERT, the
client inserts the payload at the given position in the master document. If the
operation is DELETE, the client deletes numberOfCharToDelete characters at the
given position from the master document. In the following, a simple example
is given for each case.

• INSERT

– Local document contains the text HelloWorld

– Insert the text New at position 5

– Result is HelloNewWorld

• DELETE

– Local document contains the text HelloNewWorld

– Delete 3 characters at position 5

63

5 STeCT: Secure Text Collaboration Tool

– Result is HelloWorld

5.5 Security Considerations

In this chapter, the security considerations of STeCT are presented. First, Sec-
tion 5.5.1 gives details about the security mechanisms, e.g., how the connection
to the server is secured. Next, Section 5.5.2 explains how the payload of the
changeset is encrypted. Finally, Section 5.5.3 gives an idea of what can be
learned from analysing metadata.

5.5.1 Security Mechanisms Of STeCT

STeCT has to be protected against a variety of attack vectors like man-in-the-
middle-attack, Spoofing, etc. Therefore, some security mechanisms are used.
The following list gives an outline of how STeCT is secured:

• The payload of the changeset is encrypted and decrypted by CrySIL. The
advantage is that the cryptographic key never leaves CrySIL. Even if
the client gets compromised, the attacker is not able to steal the cryp-
tographic key. The master document does not have to be re-encrypted
with a new key if a user is not allowed to use STeCT any more.
• The encryption of the payload is done with AES and a 512 bit key. The

size of the payload is limited to 512 bit. Detailed information on the
encryption can be found in Section 5.5.2
• To protect the communication between the server and the client and

between the client and CrySIL, a standard HTTPS connection is used.
HTTPS ensures a secure end-to-end encrypted connection which protects
against man-in-the-middle-attacks, data manipulation, etc.

64

5 STeCT: Secure Text Collaboration Tool

5.5.2 Payload Encryption

Encrypting data is the most critical part in STeCT. The security of the master
document relies on a secure encryption of the data. Therefore, some points
have to be considered regarding the encryption:

• Encryption algorithm

• Length of the cryptographic key

• Size of the payload

• Entropy of the plaintext

For data encryption and decryption, the symmetric encryption algorithm AES
[47] is applied in Cipher Block Chaining (CBC) mode whereby a 256 bit key is
used. The size of the payload should be the same as the key length, except
for the payload of checkpoint changesets. Because the ciphertext is at least
as long as the cryptographic key, the encryption is reasonably secure. This
means, the security depends on the cipher. It follows that the payload size for
normal changesets is limited to 256 bit, whereby at most 128 bits (4 characters
with UTF-8 encoding) are used as payload and at least 128 bits are used as a
kind of Initial Vector (IV). This should increase the entropy of each encrypted
payload. Further, this should avoid having two times the same cipher text
when encrypting the same plaintext.

When using the UTF-8 encoding and each character uses 32 bit, at
most 4 characters can be stored in the payload of a single changeset. The
entropy of these 4 characters can be calculated as follows (for simplification
purposes, only the characters a-z, A-Z, 0-9 and 10 special characters are
considered):

26 (a− z) + 26 (A− Z) + 10 (0− 9) + 10 (special characters) (5.1)

= 72 combinations per character

65

5 STeCT: Secure Text Collaboration Tool

As calculation 5.1 shows, there are 72 possibilities for each character. To
calculate the entropy, this number has to be exponentiated by the number of
possible characters:

724 ≈ 2.67 ∗ 107 (5.2)

According to calculation 5.2, there are approximately 2.67 ∗ 107 different
combinations for the user data of the payload of each changeset. Additionally,
128 bits IV are added before the payload gets encrypted. The final entropy is
calculated using the following calculation:

2.65 ∗ 107 ∗ 2128 ≈ 9.14 ∗ 1045 (5.3)

According to calculation 5.3, there are about 9.14 ∗ 1045 different possibilities
for the payload before it gets encrypted. It should be noted that 9.14 ∗ 1045

is the lowest possible entropy. If the text is, e.g., reduced to 3 characters, the
entropy raises to 723 ∗ 2160 ≈ 3.93 ∗ 1055.

5.5.3 Learning From Metadata

Because only the payload is encrypted, the server or third parties may be
able to read the metadata of communication objects, e.g., the position, kind
of operation or based revision number. If an attacker is able to read the
metadata, she might extract some information about the master document
depending on the kind of communication object. The following sections
discuss, which information might be extracted by analysing metadata of
different communication objects.

Learning from changeset metadata

For each changeset, only the payload is encrypted. This is due to the fact that
the server needs the metadata to resolve conflicts and merge changesets into
the master document. Therefore, the changeset contains the most information
of metadata. An attacker might be able to extract the following information
from the changesets:

66

5 STeCT: Secure Text Collaboration Tool

• If it is possible to analyse the metadata of all changesets, the resulting
length of the master document can be calculated.

• Because of the field userName it can be analysed which user currently
edits which part of the document. Further, some kind of document
history can be build.

• It can be determined at which position an operation (insert or delete) is
executed and how many characters are added or removed, respectively.

• If the operation of the changeset is INITIAL, then the document is reset
to an empty document.

Because at least 128 bit of the 256 bit payload are random, the possibility that
the same plaintext results in the same ciphertext is vanishingly low. Due to
this fact, a frequency analyses of the characters is impossible.

Learning from checkpoint metadata

The checkpoint uses the same fields as the changeset, but not all of them are
used. The fields of the checkpoint are described in Section 5.3.1. Further, only
the field payload is encrypted. Following information might be extracted by an
attacker:

• Each time an attacker analyses the metadata of a checkpoint, she is able
to determine the length of the resulting document.

• By comparing the length field of different checkpoints, it can be deter-
mined whether text was added to or deleted from the document.

• The revision number gives information on how many changesets are
necessary to trigger a client to build a checkpoint.

Learning from update client metadata

The update client only contains the fields userName and clientRevision. The
only information an attacker can extract is which user has which local version
of the master document.

67

5 STeCT: Secure Text Collaboration Tool

Learning from build checkpoint metadata

The build checkpoint only contains the field buildCheckpoint which is set to
true if the client should build a checkpoint for the server. It is not possible to
extract any useful information from this communication object.

5.6 Summary

This chapter described the general idea of developing STeCT, a secure text
collaboration tool. At first, an overview of the architecture was given. In this
context, the components and their roles were described in order to generate
a better understanding in how STeCT works. Next, the communication itself
and the used communication objects were explained, e.g., which components
are communicating with each other and which communication objects are
exchanged. The basic idea of the merging algorithm with all limitations and
preconditions was explained in detail. Further, the four possible types of merge
conflicts were explained and solutions for solving each of them was presented.
At the end of this chapter, some security aspects were discussed. This also
involved the description of the implemented security mechanisms within
STeCT. Further, the encryption method of the payload was explained and the
entropy of each payload was calculated in order to show that the encryption is
reasonably secure. This chapter also includes a discussion about what can be
learned from analysing the metadata of the different communication objects.

68

6 Evaluation

The previous chapter contains the implementation details of STeCT. This
chapter evaluates the security and the performance of STeCT. For this purpose,
this chapter is split into two parts. The first Section 6.1 Security Analysis
describes the methodology, assumptions, the model and assets. Further, threat
agents and threats are defined and described. Section 6.2 Performance Test
describes some performance test done along with the implementation.

6.1 Security Analysis

The main reason for performing a security analysis is not to detect imple-
mentation flaws. The security analysis is used to proof whether the concept
of exchanging and processing data is secure against different attacks or not.
Therefore, first the methodology defines how the security analysis is done
for STeCT. Next, some assumptions are made which limit the scope of the
security analysis. Then, a model is defined which is used to identify assets
and threats. Also, threat agents are defined.

6.1.1 Methodology

Before starting the security analysis, the methodology used throughout this
section is explained. First, some assumptions have to be made in order to
create a basis under which the security analysis can be performed. Second, an
abstract model of STeCT is defined which is used to identify assets, threats, etc.
Third, the assets of STeCT are identified. Fourth, threat agents are identified
and explained. Fifth, the impact of the threats is analysed.

69

6 Evaluation

6.1.2 Assumptions

It is assumed that all the encryption algorithms used for this implementation
have been evaluated by others. Also CrySIL [39] is assumed to be evalu-
ated and secure. The security of STeCT is not given if any of the following
assumptions is violated:

SA-1 CrySIL, as proposed by Reimair et al. [39], is assumed to be secure.
The cryptographic key for encrypting/decrypting the data never leaves
CrySIL.

SA-2 All used cryptographic algorithms are considered to be secure if they
are used as proposed by the NIST1. The NIST defines standards for
different processes like encryption schemes.

SA-3 Because HTTPS is a standard technology which provides confidentiality
and integrity, the connection between the server, client and CrySIL is
secure if configured properly.

SA-4 Used web browsers are always up to date and are assumed to be
secure. This means that they have no implementation flaws and are not
compromised by , e.g., faked root certificates or malicious plug-ins.

SA-5 The operating system is up-to-date and has to provide protection mech-
anisms which prevent third party applications from interacting with
STeCT in any way.

SA-6 For mobile operating systems it is assumed that the device is not rooted
and sandboxing is enforced between the different applications.

6.1.3 Model

The abstract model shown in Figure 6.1 is used to identify potential security
threats. Furthermore it is possible to derive assets, threat agents and threats
from this model. The identified security threats are discussed in the next
sections.

1https://www.nist.gov/

70

https://www.nist.gov/

6 Evaluation

Figure 6.1: The abstract model with all components of the implemented secure text collabora-
tion tool STeCT. This model helps to identify assets, threat agents and threats.

6.1.4 Assets

From the model in Section 6.1.3, the following assets are identified and have
to be protected:

A-1 The data storage of the server contains all changesets which are necessary
to build the resulting document.

A-2 The cryptographic keys are used to encrypt and decrypt the payload of
the changesets. These keys are securely stored by CrySIL and are never
leaving CrySIL.

A-3 The code executed by the browser is responsible for creating the change-
sets, encrypting/decrypting the payload, etc.

71

6 Evaluation

A-4 The changeset contains all necessary information about the modifications
of the master document.

A-5 The credentials are necessary for performing the login for CrySIL.

6.1.5 Threat Agent

Threat agents are individuals or groups which can perform a threat. A threat
agent may be an attacker, user, etc. Following threat agents can be identified:

TA-1 The Observer is able to monitor all data sent between the client and the
server.

TA-2 An Interceptor has full access to the communication and is able to modify
the sent and received data.

TA-3 The Server itself might be a threat agent if it gets compromised.

TA-4 A Natural Person which is able to, e.g., steal devices or manipulate
devices.

TA-5 An Attacker may take control over a device or manipulate software on
the device.

6.1.6 Threats

From the model in Section 6.1.3, a lot of threats can be identified against
which STeCT needs protection. In the following, the identified threats are
discussed:

72

6 Evaluation

T-1 Man-in-the-middle attack

An attacker is able to read and modify the data between two commu-
nication partners. As a result, the attacker may modify the changesets
sent to the server and manipulate the master document.

Affected assets: A-1, A-4

Involved threat agents: TA-2

Mitigation: To maintain integrity, a digital signature can be added to the
changeset. The server will ignore changesets with invalid signatures.

Residual risk: The attacker is still able to read the changesets. However,
due to the design of the changeset only metadata can be analysed by an
attacker. The payload is still protected by an AES encryption.

T-2 Replay attack

If an attacker is able to record a changeset, she might send it to the
server several times in order to modify the master document.

Affected assets: A-1, A-4

Involved threat agents: TA-1

Mitigation: The client can retrieve a unique random number from the
server and add it to the changeset in a secure way. This random number
is only valid for a short period of time. The server will ignore changesets
if the random number is used multiple times or if the random number
has not been assigned yet.

Residual risk: None.

73

6 Evaluation

T-3 Device theft

The device of the user (smartphone, laptop, etc.) might get stolen by an
attacker. If the credentials for CrySIL are stored within the web browser,
the attacker has access to the document.

Affected assets: A-1, A-5

Involved threat agents: TA-4

Mitigation: Use a two-factor authentication, do not store credentials in
an insecure way.

Residual risk: The stolen device is used for the two-factor authentication.

T-4 Compromised server

There are many ways to compromise a server, e.g., due to security flaws
or cross-VM attacks. As a result, an attacker may have access to the data
storage.

Affected assets: A-1

Involved threat agents: TA-3, TA-5

Mitigation: The server is able to decrypt the changeset, but it is not able
to decrypt the payload. as long as CrySIL does not collide.

Residual risk: None.

T-5 Compromised cryptographic provider

If the cryptographic provider CrySIL gets compromised, an attacker
might be able to steal the cryptographic keys.

Affected assets: A-2, A-5

Involved threat agents: TA-5

Mitigation: CrySIL can securely store the cryptographic keys in a dedi-
cated HSM.

Residual risk: None.

74

6 Evaluation

T-6 Cross-Side Scripting (XSS)

An attacker might be able to inject some malicious code into the web
client’s software.

Affected assets: A-1, A-3, A-4, A-5

Involved threat agents: TA-2, TA-3, TA-5

Mitigation: Signing the code of the software.

Residual risk: None.

T-7 Spoofing

An attacker might get access to the changesets and modify the param-
eters or the payload. Spoofing can be achieved by, e.g., a man-in-the-
middle-attack or by manipulating the network traffic inside the local
network.

Affected assets: A-1, A-4

Involved threat agents: TA-2, TA-5

Mitigation: The changeset can be signed by the client. If the changeset
has been manipulated, the server would just reject it.

Residual risk: None.

6.1.7 Summary

The chapter 6.1 Security Analysis described the assumptions on which this
security analysis is based on. Further, the model described in Chapter 6.1.3
was used to define assets and threat agents which are used to describe
possible threats on STeCT. Table 6.1 shows a summary of the relationship
between threats, assets and involed threat agents.

As shown in Table 6.1, Asset 1 (data storage) is the most critical asset
to be protected against attacks. Also Asset 4 (changeset) and Asset 5

(credentials) are often at risk of being attacked. By encrypting the payload,
Asset 1 and Asset 4 are protected against threats. Asset 5 remains a problem
of the user requiring her to securely store her credentials. Table 6.1 also shows

75

6 Evaluation

that TA-2 (interceptor) and TA-5 (attacker) are the most common threats of a
secure text collaboration tool.

Although a lot of security mechanisms are implemented in STeCT,
still some residual risks exist. However, they are out of scope of STeCT.
The user credentials have to be protected by the user herself. If the users
looses her credentials, an attacker might be able to perform a login and gain
access to the document. Another problem might be a stolen device if the user
has the auto-login function enabled in the web browser and the attacker is
able to get access to the stolen device. Further, an attacker might be able to
read and analyse the metadata of communication objects and extract some
information about the document. This is discussed in Section 5.5.3 Learning
From Metadata.

Threats
Assets Threat Agents

A-1 A-2 A-3 A-4 A-5 TA-1 TA-2 TA-3 TA-4 TA-5
T-1 �7 � � �7 � � �7 � � �
T-2 �7 � � �7 � �7 � � � �
T-3 �7 � � � �7 � � � �7 �
T-4 �7 � � � � � � �7 � �7
T-5 � �7 � � �7 � � � � �7
T-6 �7 � �7 �7 �7 � �7 �7 � �7
T-7 �7 � � �7 � � �7 � � �7

Table 6.1: Relationship between threats, assets and threat agents.

76

6 Evaluation

6.2 Performance Test

Because performance is an important factor influencing the acceptance of
a software, this section describes the performance of STeCT. At first, the
test setup is described which contains the infrastructure as well as the used
software. Next, the execution of the test and the results are presented. Finally
the performance test is summarized.

6.2.1 Test Setup

The test setup consists of two computers connected via Wireless Local Area
Network (WLAN). One computer is the server on which STeCT is running
and the second one is the client.

The server hardware is a Lenovo W530 Workstation with an Intel i7-
3630QM processor and 8GB RAM. The used operating system is Kubuntu
14.04 LTS (Trusty Tahr) with latest updates. The used Java version is 1.7.0 80.
For the development of STeCT, the Integrated Development Environment
(IDE) Eclipse was used with the version Kepler Service Release 2.

The client hardware consists of a desktop computer with an AMD
PhenomTM|| X6 1055T processor and 8GB RAM. The operating system is
Windows 10 Version 1703 with latest updates. The used Java version is 1.7.0 79.
The used web browser is Google Chrome with the version 62.0.3202.75.

The used router to establish the network connection between the server and
the client is a FRITZ!Box 6840 LTE with the software version 06.84. The used
WLAN standard is 802.11n+g+b with 2.4GHz.

77

6 Evaluation

6.2.2 Test Execution And Results

Especially for text collaboration tools the loading time of the document and
single changesets is crucial. To determine the loading times of STeCT, the
following described test was performed.

At first, the loading time of the whole document was determined
whereby the document consists of a varying amount of changesets without
the usage of checkpoints. For the first measurement, the document consists of
1.000 changesets, for the second measurement the document consists of 2.000

changesets and so on up to 10.000 changesets. The second test was performed
like the first one with the modification that the client created a checkpoint
after every 300 changesets.

The time measurement was performed using timestamp differences.
The first timestamp was taken after the client’s startup when the client made
the first update request to the server. The second timestamp was taken
after the call had finished. This also includes the processing of all received
changesets. Figure 6.2 visualises the results of the measurement and Table 6.2
holds the exact values of the measurement.
As can be seen in Figure 6.2, without the usage of checkpoints the loading
time seems to increase exponentially with increasing amount of changesets.
In the test environment it took 460 ms to load 1000 changests. This loading
time might barely be accepted by the users. With 2000 changesets, the loading
time increases to nearly one second which might not be accepted by the users.

With the usage of checkpoints, the loading time of the document stays below
200 ms independent of the amount of changesets. This is due to the fact
that the client has to process at most 300 changesets which leads to a better
performance. Reducing the threshold to, e.g., 100 changesets for creating
checkpoints might not be affective because a loading time of at most 200 ms
is an acceptable value and the overhead bears no relation to the improved
performance.

78

6 Evaluation

Figure 6.2: Comparison between the loading times of different setup of STeCT. The blue line
shows the loading time without encryption and without the usage of checkpoints.
The red line shows the loading time without encryption and checkpoint creation
after every 300 changesets.

Independent of the usage of checkpoints, an update request to the
server needs about 15 to 20 ms if the client already has the latest version of
the document and no changeset has to be applied by the client.

6.2.3 Summary

Figure 6.2 clearly shows that there is a need for checkpoints in STeCT. Without
checkpoints, the loading time will increase with every new changeset. With
the use of checkpoints, the loading time can be maximized to a distinct value
dependent on the frequency of the checkpoints. Too many checkpoints will
increase the overhead and too less checkpoints lead to a bad performance. As
the performance test in Section 6.2.2 showed, creating a checkpoint after every
300 changesets is a good trade-off between performance and overhead.

79

6 Evaluation

Amount of changesets Loading time without
checkpoints [ms]

Loading time with
each 300 changesets a
checkpoint [ms]

1000 460 42

2000 925 73

3000 1645 31

4000 2864 73

5000 4214 133

6000 6110 78

7000 7991 124

8000 10422 194

9000 13044 83

10000 16554 170

Table 6.2: Comparing the loading times of different setups of STeCT.

80

7 Conclusion And Outlook

This work presented STeCT which can be used as a secure alternative to, e.g.,
Google Docs1 because the payload of each changeset is encrypted and the
server is not able to decrypt the data. Due to this fact, STeCT allows users
to share sensible documents on untrusted servers which are considered as
honest but curious. Because the server hosts the document and is responsible
for merging and distributing changesets, a new algorithm was developed
which allows the server to merge changesets only with usage of its metadata.
Because STeCT closely operates with CrySIL, the users do not have to
care about the cryptographic key management compared to other existing
solutions. Each user has her own credentials and CrySIL authorises the user
to use certain cryptographic functionality. As a proof of concept of STeCT, a
prototype of the client was implemented and tested successfully.

Because the client of STeCT is a prototype, it consists of a simple text
field which does not support any code formatting like bold, italic, text
colours, etc. However, these are restrictions of the client, not of the merge
algorithm. Further, this prototype does not support a login functionality for
CrySIL yet. For simplification reasons, the update strategy of the client’s local
document is polling. Together with a login procedure for CrySIL, polling can
be exchanged with an asynchronous session management.

The changeset is used to add, remove or modify the master docu-
ment at the server. Because the payload contains sensitive data, it is encrypted
by CrySIL before it is sent to the client and decrypted by CrySIL before the
client processes the data. Altough the payload is encrypted, an attacker might

1https://docs.google.com

81

https://docs.google.com

7 Conclusion And Outlook

be able to read and modify the metadata of the changeset. As a counter
measure, the client might sign the changeset. This would guarantee integrity
of the data over the entire life-cycle. The server rejects changesets with an
invalid signature and requests the client to resend the changeset. Signing is
also applicable for the other communication objects.

Another possibility is to additionally encrypt the changeset with an-
other cryptographic key. The drawback with this solutions is that the server
also needs this cryptographic key to be able to read the metadata. If the server
gets compromised, also an attacker might be able to read the decrypted
metadata.

To mitigate replay attacks for all communication objects, the client
can request a random or unique number from the server which gets signed
with the communication attack. If the same number is used more than once,
the communication object is rejected by the server.

The prototype implementation of the client is downloaded from the
server and executed locally by the client’s web browser. An attacker might
modify the code in such a way that the encryption/decryption calls to
CrySIL are prevented and the payload is not encrypted. To mitigate code
modifications due to a compromised server or by code injections, the code of
the client might also be signed. This ensures that the original code is executed
at all times.

82

Bibliography

[1] Lilian Adkinson-Orellana et al. “Privacy for google docs: Implementing
a transparent encryption layer.” In: Proceedings of the 2nd International
Conference on Cloud Computing (2010), pp. 20–21 (cit. on p. 4).

[2] Apache Wave. The Apache Software Foundation. Available online at http:
//incubator.apache.org/wave/. 2014 (cit. on p. 40).

[3] Etherpad Foundation AppJet Inc. “Etherpad and EasySync Technical
Manual.” In: Mar. 2011. url: https://github.com/ether/etherpad-
lite/raw/master/doc/easysync/easysync-full-description.pdf

(cit. on p. 13).

[4] Elaine Barker and Allen Roginsky. “Recommendation for cryptographic
key generation.” In: NIST Special Publication 800 (2012), p. 133 (cit. on
p. 26).

[5] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.
isbn: 0-201-10715-5. url: http://research.microsoft.com/en-us/
people/philbe/ccontrol.aspx (cit. on p. 19).

[6] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formu-
las on Ciphertexts.” In: Theory of Cryptography, Second Theory of Cryptog-
raphy Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings. 2005, pp. 325–341. doi: 10.1007/978-3-540-30576-7_18.
url: http://dx.doi.org/10.1007/978-3-540-30576-7_18 (cit. on
p. 33).

[7] Tim Bray. “The javascript object notation (json) data interchange format.”
In: (2014). url: https://tools.ietf.org/html/rfc7159.html (cit. on
p. 27).

83

http://incubator.apache.org/wave/
http://incubator.apache.org/wave/
https://github.com/ether/etherpad-lite/raw/master/doc/easysync/easysync-full-description.pdf
https://github.com/ether/etherpad-lite/raw/master/doc/easysync/easysync-full-description.pdf
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-540-30576-7_18
https://tools.ietf.org/html/rfc7159.html

Bibliography

[8] Chris Christensen. “Review of Modern Cryptanalysis: Techniques for Ad-
vanced Code Breaking by Christopher Swenson.” In: Cryptologia 33.1 (2009),
p. 5. doi: 10.1080/01611190802293397. url: http://dx.doi.org/10.
1080/01611190802293397 (cit. on p. 34).

[9] Michael Cooney. “IBM touts encryption innovation - New technology
performs calculations on encrypted data without decrypting it.” In:
(June 2009). url: http://www.computerworld.com/article/2526031/
security0/ibm-touts-encryption-innovation.html (cit. on p. 33).

[10] Ian Curry. “An Introduction to Cryptography and Digital Signatures.”
In: (Mar. 2001). url: https : / / netrust . net / docs / whitepapers /

cryptointro.pdf (cit. on p. 12).

[11] Gabriele D’Angelo, Fabio Vitali, and Stefano Zacchiroli. “Content cloak-
ing: preserving privacy with Google Docs and other web applications.”
In: Proceedings of the 2010 ACM Symposium on Applied Computing (SAC),
Sierre, Switzerland, March 22-26, 2010. 2010, pp. 826–830. doi: 10.1145/
1774088.1774259. url: http://doi.acm.org/10.1145/1774088.
1774259 (cit. on p. 37).

[12] Dimensional Research. Collaboration Trends And Technology - A Survey
Of Knowledge Workers. Available online at https://www.alfresco.

com/sites/www.alfresco.com/files/dimesional-research-collab-

survey-findings-report-082415.pdf. Aug. 2015 (cit. on p. 1).

[13] Manuel Egele et al. “An Empirical Study of Cryptographic Misuse
in Android Applications.” In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’13. Berlin,
Germany: ACM, 2013, pp. 73–84. isbn: 978-1-4503-2477-9. doi: 10.1145/
2508859.2516693. url: http://doi.acm.org/10.1145/2508859.
2516693 (cit. on p. 23).

[14] Clarence A Ellis and Simon J Gibbs. “Concurrency control in groupware
systems.” In: Acm Sigmod Record. Vol. 18. 2. ACM. 1989, pp. 399–407

(cit. on pp. 14, 40).

84

http://dx.doi.org/10.1080/01611190802293397
http://dx.doi.org/10.1080/01611190802293397
http://dx.doi.org/10.1080/01611190802293397
http://www.computerworld.com/article/2526031/security0/ibm-touts-encryption-innovation.html
http://www.computerworld.com/article/2526031/security0/ibm-touts-encryption-innovation.html
https://netrust.net/docs/whitepapers/cryptointro.pdf
https://netrust.net/docs/whitepapers/cryptointro.pdf
http://dx.doi.org/10.1145/1774088.1774259
http://dx.doi.org/10.1145/1774088.1774259
http://doi.acm.org/10.1145/1774088.1774259
http://doi.acm.org/10.1145/1774088.1774259
https://www.alfresco.com/sites/www.alfresco.com/files/dimesional-research-collab-survey-findings-report-082415.pdf
https://www.alfresco.com/sites/www.alfresco.com/files/dimesional-research-collab-survey-findings-report-082415.pdf
https://www.alfresco.com/sites/www.alfresco.com/files/dimesional-research-collab-survey-findings-report-082415.pdf
http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2508859.2516693

Bibliography

[15] Ziff Davis Enterprise. “The Pros and Cons of Self-Managed vs. Hosted
Solutions.” In: 2010. url: http://i.dell.com/sites/doccontent/
public/solutions/k12/en/Documents/pros-cons-self-managed-

vs-hosted.pdf (cit. on p. 7).

[16] Ariel J. Feldman et al. “SPORC: Group Collaboration using Untrusted
Cloud Resources.” In: 9th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC,
Canada, Proceedings. 2010, pp. 337–350. url: http://www.usenix.org/
events/osdi10/tech/full_papers/Feldman.pdf (cit. on p. 39).

[17] The Apache Software Foundation. Open Office. Available online at https:
//www.openoffice.org/. June 2016 (cit. on p. 1).

[18] The Document Foundation. Libre Office. Available online at https://
www.libreoffice.org/. June 2016 (cit. on p. 1).

[19] The Etherpad Foundation. Etherpad. Available online at http : / /

etherpad.org/. June 2016 (cit. on pp. 12, 40).

[20] Jesse James Garrett et al. “Ajax: A new approach to web applications.”
In: (2005) (cit. on p. 37).

[21] Craig Gentry. “A fully homomorphic encryption scheme.” crypto.

stanford.edu/craig. PhD thesis. Stanford University, 2009 (cit. on
p. 36).

[22] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices.”
In: Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing. STOC ’09. Bethesda, MD, USA: ACM, 2009, pp. 169–178.
isbn: 978-1-60558-506-2. doi: 10.1145/1536414.1536440. url: http:
//doi.acm.org/10.1145/1536414.1536440 (cit. on p. 36).

[23] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption and how to
play mental poker keeping secret all partial information.” In: Proceedings
of the fourteenth annual ACM symposium on Theory of computing. ACM.
1982, pp. 365–377 (cit. on p. 35).

[24] Google. Google Docs. Available online at https://docs.google.com.
June 2016 (cit. on pp. 1, 37, 40).

85

http://i.dell.com/sites/doccontent/public/solutions/k12/en/Documents/pros-cons-self-managed-vs-hosted.pdf
http://i.dell.com/sites/doccontent/public/solutions/k12/en/Documents/pros-cons-self-managed-vs-hosted.pdf
http://i.dell.com/sites/doccontent/public/solutions/k12/en/Documents/pros-cons-self-managed-vs-hosted.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Feldman.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Feldman.pdf
https://www.openoffice.org/
https://www.openoffice.org/
https://www.libreoffice.org/
https://www.libreoffice.org/
http://etherpad.org/
http://etherpad.org/
crypto.stanford.edu/craig
crypto.stanford.edu/craig
http://dx.doi.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1536414.1536440
https://docs.google.com

Bibliography

[25] Google. Google Wave. Available online at https://wave.google.com/
wave/. 2012 (cit. on p. 40).

[26] Saul Greenberg and David Marwood. “Real Time Groupware As a Dis-
tributed System: Concurrency Control and Its Effect on the Interface.”
In: Proceedings of the 1994 ACM Conference on Computer Supported Cooper-
ative Work. CSCW ’94. Chapel Hill, North Carolina, USA: ACM, 1994,
pp. 207–217. isbn: 0-89791-689-1. doi: 10.1145/192844.193011. url:
http://doi.acm.org/10.1145/192844.193011 (cit. on p. 19).

[27] Irene Greif, Robert Seliger, and William E. Weihl. “Atomic Data Ab-
stractions in a Distributed Collaborative Editing System.” In: Proceedings
of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. POPL ’86. St. Petersburg Beach, Florida: ACM, 1986,
pp. 160–172. doi: 10.1145/512644.512659. url: http://doi.acm.org/
10.1145/512644.512659 (cit. on p. 19).

[28] A. Karsenty and M. Beaudouin-Lafon. “An algorithm for distributed
groupware applications.” In: [1993] Proceedings. The 13th International
Conference on Distributed Computing Systems. May 1993, pp. 195–202. doi:
10.1109/ICDCS.1993.287708 (cit. on p. 19).

[29] Michael J. Knister and Atul Prakash. “DistEdit: A Distributed Toolkit
for Supporting Multiple Group Editors.” In: Proceedings of the 1990
ACM Conference on Computer-supported Cooperative Work. CSCW ’90. Los
Angeles, California, USA: ACM, 1990, pp. 343–355. isbn: 0-89791-402-3.
doi: 10.1145/99332.99366. url: http://doi.acm.org/10.1145/
99332.99366 (cit. on p. 19).

[30] Michael J. Knister and Atul Prakash. “Issues in the Design of a Toolkit
for Supporting Multiple Group Editors.” In: Computing Systems 6.2
(1993), pp. 135–166. url: http://www.usenix.org/publications/
compsystems/1993/spr_knister.pdf (cit. on p. 19).

[31] Jonathan Koomey et al. “A Simple Model for Determining True Total
Cost of Ownership for Data Centers.” In: 2007. url: http://www.
premiersolutionsco.com/wp- content/uploads/2010/12/Total-

Cost-Of-Ownership-For-Data-Centers.pdf (cit. on p. 8).

86

https://wave.google.com/wave/
https://wave.google.com/wave/
http://dx.doi.org/10.1145/192844.193011
http://doi.acm.org/10.1145/192844.193011
http://dx.doi.org/10.1145/512644.512659
http://doi.acm.org/10.1145/512644.512659
http://doi.acm.org/10.1145/512644.512659
http://dx.doi.org/10.1109/ICDCS.1993.287708
http://dx.doi.org/10.1145/99332.99366
http://doi.acm.org/10.1145/99332.99366
http://doi.acm.org/10.1145/99332.99366
http://www.usenix.org/publications/compsystems/1993/spr_knister.pdf
http://www.usenix.org/publications/compsystems/1993/spr_knister.pdf
http://www.premiersolutionsco.com/wp-content/uploads/2010/12/Total-Cost-Of-Ownership-For-Data-Centers.pdf
http://www.premiersolutionsco.com/wp-content/uploads/2010/12/Total-Cost-Of-Ownership-For-Data-Centers.pdf
http://www.premiersolutionsco.com/wp-content/uploads/2010/12/Total-Cost-Of-Ownership-For-Data-Centers.pdf

Bibliography

[32] Kaspersky Lab. “Kaspersky Security Bulletin 2015 - OVERALL STATIS-
TICS FOR 2015.” In: (2015). url: https://securelist.com/files/
2015/12/KSB_2015_Statistics_FINAL_EN.pdf (cit. on p. 27).

[33] Clémentine Maurice et al. “Hello from the other side: SSH over robust
cache covert channels in the cloud.” In: NDSS, San Diego, CA, US (2017)
(cit. on p. 8).

[34] Tom Melamed and Ben J. C. Clayton. “A Comparative Evaluation of
HTML5 as a Pervasive Media Platform.” In: Mobile Computing, Ap-
plications, and Services - First International ICST Conference, MobiCASE
2009, San Diego, CA, USA, October 26-29, 2009, Revised Selected Papers.
2009, pp. 307–325. doi: 10.1007/978-3-642-12607-9_20. url: http:
//dx.doi.org/10.1007/978-3-642-12607-9_20 (cit. on p. 11).

[35] Microsoft. Microsoft Office. Available online at https : / / products .

office.com/en-US/word. June 2016 (cit. on p. 1).

[36] Microsoft. Word Online. Available online at https://products.office.
com/en-US/office-online/. June 2016 (cit. on p. 1).

[37] U.S. Government Publishing Office. Patriot Act. Available online at
https://www.gpo.gov/fdsys/pkg/PLAW- 107publ56/pdf/PLAW-

107publ56.pdf. Oct. 2001 (cit. on pp. 3, 7).

[38] Pascal Paillier. “Public-key cryptosystems based on composite degree
residuosity classes.” In: International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Springer. 1999, pp. 223–238 (cit. on
p. 35).

[39] Florian Reimair, Peter Teufl, and Thomas Zefferer. “WebCrySIL - Web
Cryptographic Service Interoperability Layer.” In: WEBIST 2015 - Pro-
ceedings of the 11th International Conference on Web Information Systems
and Technologies, Lisbon, Portugal, 20-22 May, 2015. 2015, pp. 35–44. doi:
10.5220/0005488400350044. url: http://dx.doi.org/10.5220/
0005488400350044 (cit. on pp. 4, 23, 43, 70).

87

https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
http://dx.doi.org/10.1007/978-3-642-12607-9_20
http://dx.doi.org/10.1007/978-3-642-12607-9_20
http://dx.doi.org/10.1007/978-3-642-12607-9_20
https://products.office.com/en-US/word
https://products.office.com/en-US/word
https://products.office.com/en-US/office-online/
https://products.office.com/en-US/office-online/
https://www.gpo.gov/fdsys/pkg/PLAW-107publ56/pdf/PLAW-107publ56.pdf
https://www.gpo.gov/fdsys/pkg/PLAW-107publ56/pdf/PLAW-107publ56.pdf
http://dx.doi.org/10.5220/0005488400350044
http://dx.doi.org/10.5220/0005488400350044
http://dx.doi.org/10.5220/0005488400350044

Bibliography

[40] Florian Reimair et al. “MoCrySIL - Carry Your Cryptographic Keys in
Your Pocket.” In: SECRYPT 2015 - Proceedings of the 12th International
Conference on Security and Cryptography, Colmar, Alsace, France, 20-22
July, 2015. 2015, pp. 285–292. doi: 10.5220/0005547902850292. url:
http://dx.doi.org/10.5220/0005547902850292 (cit. on p. 23).

[41] Advanced Collaborative Technology Research. “Codoxware: Connecting
people and documents.” In: (). url: http://www.codoxware.com/ (cit.
on p. 31).

[42] GRADIANT (Galician Research and Development Center for Advanced
Telecommunications). “SafeGDocs.” In: (2013). url: http://safegdocs.
com/ (cit. on p. 38).

[43] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for
obtaining digital signatures and public-key cryptosystems.” In: Commu-
nications of the ACM 21.2 (1978), pp. 120–126 (cit. on pp. 28, 34).

[44] Andrzej Romanowski, Pawel Wozniak, and Juliusz Gonera. “Simpli-
fied Centralized Operational Transformation Algorithm for Concurrent
Collaborative Systems.” In: IJCSA 9.3 (2012), pp. 47–60. url: http:
//www.tmrfindia.org/ijcsa/v9i34.pdf (cit. on p. 14).

[45] Robert R Schaller. “Moore’s law: past, present and future.” In: IEEE
spectrum 34.6 (1997), pp. 52–59 (cit. on p. 36).

[46] Simon Singh. The Code Book: The Evolution of Secrecy from Mary, Queen
of Scots, to Quantum Cryptography. 1st. New York, NY, USA: Doubleday,
1999. isbn: 0385495315 (cit. on p. 34).

[47] National Institute of Standards and Technology (NIST). “Advanced
Encryption Standard (AES).” In: (Nov. 2001). url: http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf (cit. on pp. 28, 30, 37,
65).

[48] M. Stefik et al. “WYSIWIS Revised: Early Experiences with Multiuser
Interfaces.” In: ACM Trans. Inf. Syst. 5.2 (Apr. 1987), pp. 147–167. issn:
1046-8188. doi: 10.1145/27636.28056. url: http://doi.acm.org/10.
1145/27636.28056 (cit. on p. 19).

88

http://dx.doi.org/10.5220/0005547902850292
http://dx.doi.org/10.5220/0005547902850292
http://www.codoxware.com/
http://safegdocs.com/
http://safegdocs.com/
http://www.tmrfindia.org/ijcsa/v9i34.pdf
http://www.tmrfindia.org/ijcsa/v9i34.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://dx.doi.org/10.1145/27636.28056
http://doi.acm.org/10.1145/27636.28056
http://doi.acm.org/10.1145/27636.28056

Bibliography

[49] C. Sun, Y. Zhang, and Y. Yang. “Distributed Synchronization of Group
Operations in Cooperative Editing Environments.” In: Concurrent En-
gineering 4.3 (1996), pp. 293–302. doi: 10.1177/1063293X9600400308.
url: http://dx.doi.org/10.1177/1063293X9600400308 (cit. on p. 19).

[50] Chengzheng Sun et al. “A consistency model and supporting schemes
for real-time cooperative editing systems.” In: Australian Computer Sci-
ence Communications 18 (1996), pp. 582–591 (cit. on p. 16).

[51] Chengzheng Sun et al. “Achieving Convergence, Causality Preservation,
and Intention Preservation in Real-time Cooperative Editing Systems.”
In: ACM Trans. Comput.-Hum. Interact. 5.1 (Mar. 1998), pp. 63–108. issn:
1073-0516. doi: 10.1145/274444.274447. url: http://doi.acm.org/
10.1145/274444.274447 (cit. on p. 40).

[52] Omer Tene. “What Google Knows: Privacy And Internet Search En-
gines.” In: 2008. url: http://epubs.utah.edu/index.php/ulr/
article/viewFile/136/118 (cit. on p. 7).

[53] TheCodingMonkeys. “SubEthaEdit: Collaborative text editing.” In: ().
url: http://www.codingmonkeys.de/subethaedit/ (cit. on p. 31).

[54] W3C. HTML and CSS. Available online at https : / / www . w3 . org /

standards/webdesign/htmlcss. 2016 (cit. on p. 11).

[55] W3C. HTTP - Hypertext Transfer Protocol. Available online at https:

//www.w3.org/Protocols/. 2016 (cit. on p. 37).

[56] W3C. JavaScript Web APIs. Available online at https://www.w3.org/
standards/webdesign/script. 2016 (cit. on pp. 11, 37).

[57] Spyros Xanthopoulos and Stelios Xinogalos. “A Comparative Analysis
of Cross-platform Development Approaches for Mobile Applications.”
In: Proceedings of the 6th Balkan Conference in Informatics. BCI ’13. Thes-
saloniki, Greece: ACM, 2013, pp. 213–220. isbn: 978-1-4503-1851-8. doi:
10.1145/2490257.2490292. url: http://doi.acm.org/10.1145/
2490257.2490292 (cit. on p. 11).

89

http://dx.doi.org/10.1177/1063293X9600400308
http://dx.doi.org/10.1177/1063293X9600400308
http://dx.doi.org/10.1145/274444.274447
http://doi.acm.org/10.1145/274444.274447
http://doi.acm.org/10.1145/274444.274447
http://epubs.utah.edu/index.php/ulr/article/viewFile/136/118
http://epubs.utah.edu/index.php/ulr/article/viewFile/136/118
http://www.codingmonkeys.de/subethaedit/
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/Protocols/
https://www.w3.org/Protocols/
https://www.w3.org/standards/webdesign/script
https://www.w3.org/standards/webdesign/script
http://dx.doi.org/10.1145/2490257.2490292
http://doi.acm.org/10.1145/2490257.2490292
http://doi.acm.org/10.1145/2490257.2490292

Bibliography

[58] Chunwang Zhang et al. “Secure Quasi-Realtime Collaborative Editing
over Low-Cost Storage Services.” In: Secure Data Management - 9th VLDB
Workshop, SDM 2012, Istanbul, Turkey, August 27, 2012. Proceedings. 2012,
pp. 111–129. doi: 10.1007/978-3-642-32873-2_8. url: http://dx.
doi.org/10.1007/978-3-642-32873-2_8 (cit. on p. 41).

90

http://dx.doi.org/10.1007/978-3-642-32873-2_8
http://dx.doi.org/10.1007/978-3-642-32873-2_8
http://dx.doi.org/10.1007/978-3-642-32873-2_8

		2017-10-31T10:28:32+0100
	Ing. Mark Robert Bergmoser
	Signature verification at http://www.signature-verification.gv.at

