

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden

Dissertation identisch.

Datum Unterschrift

Preface of the author

I first realised my deep interest in numerical computations during my master thesis

at the Institute of Mechanics at the Technical University of Graz. It was only

through my former supervisor Dr. Mathias Mair that I became aware of the

advertised doctoral position at the Institute of Soil Mechanics and Foundation

Engineering.

The present doctoral thesis allowed me to deal with the numerical simulation

methods in more detail. Moreover, the numerical investigation of a dynamic cone

penetration test on Martian soil was an exciting application.

Therefore, I would like to thank my supervisor Univ.-Prof. Dipl.-Ing. Dr.techn.

Helmut F. Schweiger M.Sc. of the Institute of Soil Mechanics and Foundation

Engineering for giving me the opportunity to be one of his PhD students. I

appreciate that he always took time for questions and discussions. I would also like

to thank Univ.-Prof. Dipl.-Ing. Dr.techn. Roman Marte, the head of the institute,

for the helpful discussions at the institute meetings.

In addition, I would like to thank Dr. Mag. Ing. Günter Kargl and Univ.-Doz. Dr.

Norbert I. Kömle of the Space Research Institute in Graz for the support and the

kind collaboration during my PhD. I would, furthermore, like to thank Dr. Mark

S. Bentley for all the time he spends on helping me.

I am grateful to the Austrian FFG (Forschungs-Förderungs-Gesellschaft) for

supporting this research in the frame of its ASAP10-program under the Project

InSight-MPS (Modeling of Dynamic Penetration in Granular Soils under Space

Conditions).

Also, I would like to thank my wife who moved with me to Graz and stand by me

during my dissertation.

Graz, November 2017 Joshua Poganski

Kurzfassung

Numerische Modellierung einer Dynamischen

Drucksondierung auf dem Mars

Die NASA InSight Mission ist eine unbemannte Raumfahrtmission, bei der ein

stationärer Lander auf die Oberfläche des Mars geschickt wird um das Innere des

Planeten zu untersuchen. Der geplante Start der Raumfahrtmission im Jahr 2016

musste aufgrund technischer Probleme auf das Jahr 2018 verschoben werden. Das

Ziel der Mission ist die Untersuchung des inneren Aufbaus des Planeten durch die

Beobachtung der seismischen Aktivität und des Wärmeflusses im Inneren des

Planeten. Dazu wird ein Seismometer (SEIS) auf die Oberfläche platziert und ein

Wärmeflusssensor (HP3) in den Boden gerammt. Der Wärmeflusssensor wird 3 bis

5 Meter tief in den Marsboden eingebracht um den thermischen Einfluss der

Sonneneinstrahlung auf die Temperaturmessung zu verringern und um den

Temperaturgradienten im Boden durch mehrere Temperatursensoren auf dem

Schleppkabel in unterschiedlichen Tiefen zu bestimmen.

HP3 besitzt einen inneren Schlagmechanismus welcher das Instrument in den

Boden rammt. Die Bewegung des Instruments wird während der Sondierung

gemessen, um aus diesen Daten mechanische Eigenschaften des Marsbodens zu

bestimmen. Das Wissen über die Bodenbeschaffenheit und deren

bodenmechanischen Eigenschaften liefert Rückschlüsse über die Geschichte des

Planeten und soll zukünftigen Missionen helfen, diese besser zu planen.

Es wurde ein numerisches Model der HP3 Drucksondierung entwickelt um das

Verhalten des granularen Materials während der dynamischen Sondierung zu

untersuchen. Dieses Model besteht aus dem Instrumentenkörper welcher in ein

granulares Material eindringt, sowie aus dem Schlagmechanismus welcher die

Bewegung des Sensors erzeugt. Der Einfluss der Randbedingungen aufgrund der

Einschränkungen im Labor sowie die Eindringperformance des Sensors in

unterschiedlichen Böden wurden untersucht. Zudem ist der Einfluss des

dynamischen Eindringens auf die Bodenbeschaffenheit ausgewertet.

Abstract

Numerical Modelling of Dynamic Cone Penetration into

Martian Subsurface

The NASA InSight Mission is an unmanned space mission that will send a lander

on Martian surface to investigate the interior of Mars. The expected launch will be

in 2018 after the initial date of launch in 2016 had to be postponed due to technical

problems. The major task of the mission is the study of the planets geological

evolution by investigating the seismic activity and the planets heat flow. For this

purpose, a seismometer (SEIS) will be placed on the surface and a heat flow probe

(HP3) will be driven into the subsurface of Mars. The heat flow probe will penetrate

3 to 5 metres deep into the ground of Mars to avoid the influence of the solar

radiation on the heat flow measurement and to allow measurement of the planetary

temperature gradient using thermal sensors on the trailing cable at different depths.

HP3 contains an internal hammering mechanism that pushes the probe into the

ground. The displacement of the probe during the penetration phase will be

measured and used for the determination of Martian soil mechanical properties.

Those information on the soil conditions and its soil mechanical properties

provides conclusions on the planets history and shall be used to better plan future

missions.

Therefore, a numerical model of the HP3 penetration progress has been developed

to investigate the behaviour of granular materials during dynamic penetration. This

model consists of a probe penetrating into granular material and a hammering

mechanism that generates the movement of the probe. Investigations on the

influence of boundaries in laboratory conditions and on the penetration

performance of the probe in different soils are carried out. Furthermore, the

influence of the dynamic penetration on the soil condition is evaluated.

Inhalt

1 Introduction .. 1

1.1 NASA InSight Mission ... 1

1.2 Heat flow and Physical Properties Probe (HP3) 3

1.3 Landing site .. 5

1.4 State of knowledge on Martian soil properties ... 8

1.5 State of knowledge in pile installation ... 10

1.6 State of the art in numerical modelling .. 11

1.7 Laboratory conditions for HP3 penetration tests 15

1.8 A brief introduction into the Material Point Method 17

2 The Discrete Element Method ... 20

2.1 The general DEM formulation ... 20

2.2 The Normal Contact Model .. 21

2.3 The Rolling Resistance Model ... 22

2.4 The Tangential Friction Model ... 30

2.5 The elastic-plastic yield criterion for frictional contacts 33

2.6 Validation of the Contact Models ... 36

2.7 Neighbor lists .. 38

2.8 The initial filling process .. 39

3 Calibration .. 41

3.1 Material ... 41

3.2 Angle of Repose ... 42

3.3 Triaxial Shear Test .. 44

3.4 Oedometer Test ... 45

3.5 Calibration Results ... 47

4 The Penetration Model ... 52

4.1 Simulation preparation ... 54

4.2 Validation of particle size scaling for the penetration simulation.......... 55

4.3 Simulation of quasistatic cone penetration tests 62

4.4 Simulation of dynamic penetration of HP3 .. 65

4.4.1 Plane strain model with prescribed displacements 74

5 A Pile Drive Model implemented in Matlab ... 80

5.1 An analytical approach for the penetration resistance 81

5.2 Time Integration ... 84

5.3 Application ... 85

5.4 Simulation results ... 85

5.5 Friction fatigue and the influence on the HP3 performance 89

6 Concluding remarks ... 92

7 Bibliography .. 95

8 Appendix .. 100

8.1 Simulation model structure .. 100

8.2 Modified rolling model sbjp ... 102

8.3 Modified rolling model stone2 ... 114

8.4 Modified rolling model dahl2 .. 131

8.5 Modified tangential model dahl ... 151

8.6 MatLab model for pile driving ... 164

Formelzeichen und Abkürzungen

Große Buchstaben

A [m2] Cross-sectional area of penetrator

ALE [] Arbitrary Lagrangian Eulerian

B [m] Cone diameter

CPT [] Cone Penetration Test

CTX [] Context Camera

DEM [] Discrete Element Method

DLR [] Deutsches Zentrum für Luft- und Raumfahrt

E50 [Pa] Secant modulus at 50 % peak strength

FCoulomb [N] Coulomb friction force

Fdamping [N] Damping force

FEM [] Finite Element Method

Fn [N] Normal contact force

Ft [N] Tangential contact force

Ft,max [N] Max tangential contact force

G [Pa] Particle shear modulus

HiRISE [] High Resolution Imaging Science Experiment

HP3 [] Heat flow and physical properties probe

HRSC [] High Resolution Stereo Camera

I [kgm2] Particle rotational inertia

IDA [] Instrument deployment arm

JPL [] NASA Jet Propulsion Laboratory

KP [] Proportional constant for controller

KD [] Differential constant for controller

MPM [] Material Point Method

Mr,plastic [Nm] Rolling resistive torque at mobilisation

NASA [] National Aeronautics and Space Administration

Nγ, Nq, Nc [] Bearing capacity factors

PFC2D [] Two-dimensional Particle Flow Code

Rshaft [N] Shaft resistance

Rtip [N] Tip resistance

SEIS [] Seismometer

SPH [] Smooth Particle Hydrodynamics

STATIL [] Static tilt sensor

Y [Pa] Particle Young’s modulus

Kleine Buchstaben

d50 [m] particles’ mean grain size

dt [s] time step size

dx [m] Relative displacements between two contacting particles

dxe [m] Relative elastic displacements

dxp [m] Relative plastic displacements

g [m/s2] Gravitational constant

kn [N/m] Particle normal stiffness

kt [N/m] Particle tangential stiffness

kt,prime [N/m] Particle tangential stiffness for primary loading

kt,un/re [N/m] Particle tangential stiffness for un-/reloading

kr [N/m] Particle rolling stiffness

m [kg] Particle mass

pd [m] Distance between two particles‘ centre

r [m] Particle radius

rv [m] Radius of particle v

rw [m] Radius of particle w

reff [m] Particles‘ effective radius

sγ, sq, sc [] Shape factors

t [m] Depth

vt [m/s] Relative tangential velocity

v⃗ [m] Position vector to a particle centre

w⃗⃗⃗ [m] Position vector to a particle centre

Griechische Buchstaben

 [°] internal friction angle

δn [m] overlap between two particles

µr [] Coefficient of rolling resistance

µt [] Tangential friction coefficient

µinter [] Interface friction coefficient

θ [°] Rotation angle of a particle

θelastic [°] Elastic rotation of a particle

σ [Pa] Stress

σv [Pa] Vertical stress

σh [Pa] Horizontal stress

ε [%] Strain

γo [N/m3] Soil specific weight above the tip

γu [N/m3] Soil specific weight underneath the tip

ρ [kg/m3] Soil density

ΔTcrit [s] Critical time increment

ω [1/s] Angular velocity

1 Introduction 1

1 Introduction

1.1 NASA InSight Mission

The NASA InSight Mission will investigate the deep interior of Mars to determine

the inner structure of the red planet more precisely and observe its geological

processes. Since the inner structure of Mars has not changed as much as on Earth

due to less geological activity, the mission will provide insights into the planets

earliest evolution. The information about the geological evolution on Mars will

reveal new knowledge on the evolution of all rocky planets, including Earth. So

far, the knowledge on the inner structure of Mars is given by gravity and

topography analysis as well as from magnetic data from Mars Global Surveyor

(Williams 2008). The InSight Mission will now provide seismic and thermal data

from the interior and thus will make it possible to create more accurate models of

the planets structure and reveal the planets origin.

For this task, a lander will be send to Mars carrying the two key instruments: the

SEISmometer (SEIS) and the Heat flow and Physical Properties Probe (HP3), see

Figure 1. The interior structure of Mars will be determined much more precisely

than in the past by measurements of the seismometer. Furthermore, the occurrence

of tectonic activities on Mars as well as meteor impacts will be detected by SEIS.

Although, SEIS will not be the first seismometer on a Mars mission, it will be the

first seismometer placed directly on the Martian surface. Previous seismometers

of the Viking Mission in 1976 were mounted on the lander deck, so that the motion

of the lander structure itself manipulates the results. The InSight seismometer is

mounted on a steerable mounting, so that the orientation can be adjusted after

deployment. The system will be fixed by a conical tip that dips into the sandy

surface to guarantee a stable connection between the sensors and the Martian

surface (Christensen & Knapmeyer-Endrun 2016). An additional covering protects

the seismometer against surface winds.

2 1 Introduction

Figure 1: The InSight lander (NASA/JPL-Caltech 2015a).

The inner heat flow of the planet will be recorded by the thermal sensors of HP3.

The HP3 instrument consists of a heat flow probe including a hammering

mechanism to penetrate itself into the ground. A trailing cable for data exchange

and power supply connects the probe with a support structure on the surface. The

thermal sensors are mounted at the probe and every 10 cm on the trailing cable so

that the temperature can be measured in different depth at the same time. Thus, a

temperature gradient of the planet can be determined. The thermal sensors have to

be installed in 3 to 5 metres depth to avoid the influence of the daily and annual

variation of the solar radiation on the thermal measurements. The penetration

progress will take about 30 Sols (Martian days) and around 10.000 hammer strokes

approximately. The position of the probe will be recorded by measuring the

extended length of the trailing cable and the orientation of the probe will be

determined by a tilt meter. The penetration rate will provide information on the

soil mechanical properties. Therefore, numerical models of the penetration process

are developed to understand the mechanics of the soil during the penetration and

to derive the soil mechanical parameters from back-calculations.

Further soil investigations will be done using the instrument deployment arm

(IDA) mounted at the InSight lander. The major task of the IDA is the placing of

SEIS and HP3 on the Martian surface. Besides, the IDA has a scoop that can be

used to grade the surface or displace boulders if there is no space for the

deployment of the instruments. Another suggestion for the usage of the IDA is the

excavation of a trench and the creation of a stable sand pile by pouring out the

excavated material. The shape of the trench and the angle of the sand pile will be

analysed by a camera mounted at the IDA. This analysis will reveal the angle of

1 Introduction 3

repose of the sand which corresponds to the critical state friction angle for a

cohesionless sand. Thus, the usage of the IDA for soil tests will provide

information on the soil strength parameter, i.e. the internal friction angle at critical

state.

The mission was first planned for launch in March 2016 but had to be postponed

for 2 years, caused by a technical problem on the seismometer. The reason was a

leakage of the vacuum vessel that enshrouds the main sensors and is needed to

enable a high sensitivity for measuring even the smallest ground movements in the

high frequency range. After the deployment and installation phase of SEIS and

HP3 is finished, the monitoring phase will take 1 Martian year which corresponds

to 687 days on Earth. It will take another 7 month for the deliveries of all data and

the mission will finish approximately 3 years after launch.

Table 1: Time schedule of InSight Mission

Task Duration

Cruise 6,5 months

Instrument Deployment 60 sols or 58 days

Surface Monitoring 1 Martian year or 687 days

Final Data Deliveries 7 months

1.2 Heat flow and Physical Properties Probe (HP3)

The Heat flow and Physical Properties Probe is a sensor that penetrates itself 3 to

5 m into the Martian surface. The position of HP3 is provided during its penetration

into the granular material and reveals information on the soil mechanical

parameters at the landing site. After the penetration process, it measures the

temperature of the planet over one Martian year. Therefore, the HP3 penetrator

features thermal sensors on the penetrator as well as on the trailing tether to

determine the temperature gradient. In addition, heater foils are installed on the

penetrator for active thermal conductivity measurements. The information on the

thermal conductivity and the temperature as well as the temperature gradient reveal

the planet’s heat flux.

The HP3 drive system consists of the hammering mechanism and a static tilt sensor

(STATIL) which is fixed by shock isolation springs to protect it from the fast

acceleration due to the hammering action. The hammering mechanism consists of

a brake spring, a suppressor mass, a roller with a cylindrical cam, force springs and

the hammer mass (Figure 2). The trailing cable (science tether) connecting the

4 1 Introduction

penetrator and the structure on the surface is needed for the power supply and the

data transmission. Besides, there are also thermal sensors on the trailing cable to

measure the temperature in the ground in different depths. The penetrator’s outer

casing is a cylindrical tube with a diameter of 18 mm and an ogive tip. The length

of the penetrator is 353 mm.

Figure 2: Interior of HP3 penetrator and its hammering mechanism, Lichtenheldt

et al. (2014)

A hammering cycle begins with the loading of the force springs that connects the

hammer and suppressor masses. For this purpose, the roller starts to rotate and

pulls the hammer towards the suppressor to load the force springs. At the end of

the loading phase there is a gap in the cam so that the roller loses the contact and

the hammer is accelerated by the force springs. The hammer mass is pushed

towards the tip, while the suppressor mass moves in the opposite direction. The

hammer mass hits the tip while the suppressor mass is slowly decelerated by the

brake spring which connects the suppressor with the rear casing. The mechanism

drives the penetrator only if a sufficient shaft friction is present that prevents the

penetrator from moving backwards due to the backward motion of the suppressor

mass. After the motion of the suppressor is slowed down, the loaded brake spring

accelerates the suppressor mass again and a second stroke due to the suppressor is

generated. Further minor strokes of the oscillating system may occur with low

impact energy. Such a loading cycle is repeated a few thousand times to drive the

penetrator into a depth of 3 to 5 m below the surface. The driving mechanism is

not gravity driven like usual vibratory penetrations, which makes it applicable also

in low gravity environments.

1 Introduction 5

1.3 Landing site

The landing site selection for InSight is done by the Jet Propulsion Laboratory

(JPL) in Pasadena and is managed by Dr. Matthew Golombek. A detailed

description of the landing site selection process considering the planning of the

landing phase as well as the deployment and proper function of the science

instruments is given by Golombek et al. (2016).

The InSight landing site is located in the western Elysium Planitia, an equatorial

region of Mars. The local altitude is below -2.5 km and thus it is low enough for a

sufficient atmospheric density to slow down the lander at descent. The estimated

landing area is determined by ballistic entry and landing simulations considering

uncertainties in the position and orientation of the lander at entry as well as

deviations in the atmosphere and in the aerodynamics of the lander. The resulting

landing area is an ellipse with a size of 130 km by 27 km that has to meet the

requirements for landing safety and instrument deployment. For the landing safety,

a smooth terrain with a radar reflective surface is needed to measure the altitude

and velocity of the lander at descent precisely by the landing radar. Furthermore,

a load bearing surface is required to bear the load of the spacecraft at touch down

as well as for the proper function of the science instruments. Additionally, a 3-5 m

layer of fragmented rock is needed for the penetration of the heat flow probe (HP3)

to record the planets heat flow from the interior.

In the case of the InSight landing area, a smooth terrain is characterised by a small

number of steep slopes and a low rock abundance. The slopes at the selected

landing site are required to be less than 15° at a length scale of 1 to 5 m as well as

for 84 m length scale. The slope angle below 15° on the small length scale is

required to avoid a tip over of the lander at touchdown while the inclination of the

terrain at a length scale of 84 m is required to determine the landers velocity

precisely at descent by radar. Furthermore, the levelling system of SEIS can only

compensate maximum slope angles of 15°. The slopes at the landing site are

evaluated by digital elevation models that are based on images from the orbiters

cameras HiRISE, HRSC and CTX. The HiRISE and CTX camera are mounted on

the Mars Reconnaissance Orbiter of NASA whereas the High Resolution Stereo

Camera (HRSC) is provided by the Mars Express orbiter of ESA. From these

digital elevation model data, a map for slopes at 84 m length scale was derived and

ensures that the slope angles at the landing region rarely exceed the restrictions of

15° (Figure 3). The data from the CTX camera reveal that the area with slopes

exceeding 15° covers about 0.66 % of the landing area, which is below the

requirements of 1 %.

6 1 Introduction

Figure 3: Slope map from digital elevation model images created by HRSC,

CTX and HiRISE images of the landing ellipse E9 for slopes at 84 m

length scale (Golombek et al. 2016).

Furthermore, maps for slopes at 2 m length scale were developed and reveal that

only about 0.1 % of the surface at the E9 landing site exceed the restrictions of 15°

at this length scale. With respect to the slopes at the landing site, the requirements

of a smooth terrain are fulfilled.

Besides the slopes, there is the hazard of surface rocks that could damage the lander

at touch down or impede the deployment of the seismometer and the heat flow

probe. A terrain map of the landing site from open to close of the launch period is

shown in Figure 4, where the dominant area in green represents a smooth terrain

while the smaller light purple area in the north east of the map is a more ridged

terrain. A rock abundance of about ~1.2 % is present at the landing site, which is

far below the requirements of 10 % and improves the landing safety as well as the

possibility for the deployment of the instruments. The rock sizes are determined

by an automated analysis of their shadows, where rocks smaller than 45 cm are not

hazardous for the lander and rocks up to 3 cm can be ignored for the deployment

of the instruments. The instruments can be deployed by the arm of the lander within

an annular workspace in a distance of 0.5 to 2 m from the lander over an arc of

180°. Both instruments need to be placed on a load bearing surface with low dust

deposits. The HP3 penetrator needs a layer of regolith (i.e. fragmented rock) to a

depth of at least 3 m to be able to penetrate into the ground and avoid the influence

of solar radiation on the thermal measurements. Observations of local craters

reveal that a layer of fine-grained regolith overlaying a rocky layer is present and

has a thickness of ~10 m depth. This is the result of investigations on the presence

of rocky ejecta for different crater sizes.

1 Introduction 7

Figure 4: Terrain map of the final landing ellipse E09 for three different launch

times, from open to close of the 2016 launch period (Golombek et al.

2016).

The digital elevation model reveals in total a smooth terrain with less than 0.5 %

area that exhibit slopes larger than 15° at 1-5 m length scale and is thus smoother

than previous landing sites of the Opportunity rover and the Phoenix lander

mission. Thermal image data provided by the orbiters suggests that the landing site

is covered by cohesionless fine sand. The slight seasonal variations of the thermal

inertia let assume a constant layer of at least 0.5 to 1 m below the surface.

Due to the global location in the equatorial region, there is no liquid or frozen water

expected within 5 m below the surface. Investigations of high-resolution images

of steep slopes indicate that the terrain is shaped by eolian processes without any

water or ice related characteristics. The terrain is also shaped by craters that are

determined to be mostly secondary craters from an impact 700 km to the north east

of the InSight landing site. The main crater is called Corinto and its date is

estimated to be prior to 0.1 Million years ago. There are several secondary craters

in the landing region with depth/diameter ratios of about 0.05 which is lower than

expected and the interior slopes are rarely at the limit of 15°. The secondary craters

cover 1.5 % of the landing region, where their contribution to the average slope

distribution is small.

Altogether, there is a good chance of a successful mission owing to the detailed

selection of a safe landing region.

8 1 Introduction

1.4 State of knowledge on Martian soil properties

In the past, several Mars missions have already studied the soil properties at

different landing sites to get a better knowledge of the geological evolution on

Mars and to better plan future missions. A topographic map with a colour coding

for the elevation is shown in Figure 5.

Figure 5: Landing sites of Mars missions in the past and the planned landing site

for InSight. (NASA/JPL-Caltech 2015b)

The Viking landers in 1975 were the first missions on Mars performing soil tests

for the determination of soil mechanical properties. For this purpose a robotic arm

with a scoop was used to dig into the Martian surface investigating the stable slope

angles of poured materials and performing bearing tests. The material at the Viking

landing site is assumed to represent the material at most areas of the equatorial

region (Moore 1989). The drift material at the landing site is a scoured material on

the surface consisting of very fine grains in µm size and behaves very soft, which

can be hazardous for rovers traversing. This loose material reveals a low bulk

density of 1000 to 1300 kg/m3. The internal friction angle of the drift material is

between 16 and 20 degrees and the cohesion ranges from 0 to 3.7 kPa caused

probably by cementation. In comparison, the underlying crusty to cloddy materials

exhibit internal friction angles of 30 to 39 degree which is similar to values of

terrestrial sand and indicating a material with higher bearing capacity. The

cohesion of this materials is below 3.2 kPa and the bulk density is estimated to be

1400 ± 200 kg/m3. Further clumped blocky materials with cm sized clumps are

present having an internal friction angle of 30.8 ± 2.4 degree and a bulk density of

1600 ± 400 kg/m3. The cohesion of the blocky materials is in the range of 2.2 to

1 Introduction 9

10.6 kPa. Moreover a few large rocks are present at Viking landing site but there

will be even less at the InSight landing site.

The Mars Pathfinder mission in 1996 performed soil mechanical tests using the

Imager for Mars Pathfinder (IMP), i.e. a camera on the lander, a second camera on

the rover and the wheels of the rover. The internal friction angle of the soil was

determined by information on the angle of repose from images of excavated

tailings from wheel digging and from the measured motor currents during the

wheel trenching. The values of the internal friction angle varied depending on the

layer and the site. Lower friction angles of 28 and 35 degrees depending on site

were observed by Moore (1999) in a thin layer at the first few cm of digging, while

below that layer higher friction angles of 37 and 41 degrees were observed. The

low friction angle of 28 degrees is attributed to drift material that overlays a cloddy

deposit. The angles of repose measured from IMP images were between 32 and 38

degree. The cohesion were measured to be quite low with values below 1 kPa.

The Mars Exploration Rovers (MER) Spirit and Opportunity in 2003 used their

wheels to trench and scuff the surface materials on Mars for determination of soil

strength parameters. For this purpose the mid and rear wheels were locked while

the front wheel digs into the soil. The data provided by the rovers were the motor

currents, the load on the wheels and the depth of the buried wheel from images.

For the determination of the internal friction angle, the material was first trenched

to create a tailing pile where the cohesive bonds are assumed to be broken after

trenching. Then shear tests were carried out using one wheel of the rover digging

into the excavated material. The obtained friction angles of the material by

Sullivan (2011) turn out to be between 30 and 37 degree which corresponds with

dry sandy soils on earth. The cohesion of the soil was determined by digging tests

on undisturbed material and the knowledge of the internal friction angle from the

tests on tailings. The values of cohesion ranged depending on site from 0 to 2 kPa

and from 0 to 11 kPa, but in the case of high cohesion the uncertainties were up to

+/- 3.9 kPa. A low cohesion of 2 kPa can also be obtained without any bonding

from dry sharp edged sand or if contents of silt and clay are present.

The Phoenix Mars Mission in 2008 used optical and atomic force microscopy to

determine the shape and the grain size of Martian dust. The shape of the particles

and their grain size distribution provide information about the particles’ transport

mechanisms and their weathering processes, Pike et al. (2011). The atomic force

microscope was used to investigate particles of micrometre size, whereas the

optical microscope was used for particles of millimetre size. Furthermore, a mass

spectrometer was used to determine the chemical analysis of the collected

materials. The landing site of Phoenix is in the Martian northern hemisphere at the

polar region, where frozen soil is present near the surface influencing the

mechanical response of the soil. Shaw et al. (2009) determined the soil strength

parameters, internal friction angle and cohesion, of the Martian soil at the Phoenix

landing site. For this purpose, the robotic arm on the Phoenix lander was used to

10 1 Introduction

excavate trenches and create dump piles. The internal friction angle was

determined by measuring the angle of the dump pile slopes, assuming that all

cohesive bonds were broken during the excavation of the material. The cohesion

of the soil was calculated from the resisting force during the excavation, which is

determined from the motor currents and the arm kinematics. There are

uncertainties in the calculation of the force and the position of the scoop due to the

stiffness of the robotic arm, so that the obtained values for cohesion are not very

reliable. The determined values for cohesion are below 2 kPa, where the largest

cohesion is attributed to ice in the soil. The angle of internal friction is assumed to

be between 33 and 42 degrees based on the corresponding dump pile slope angles.

Observations of landslides on Mars were done by Perko et al. (2006) and provide

information on the soil strength parameters. For this purpose, high resolution

images and laser altimeter measurements of Mars Global Surveyor orbiter were

used for a stability analysis of natural slopes in different regions. In the Hematite

area the steepest angle of natural slopes turn out to be about 30 degrees, which

corresponds to sandy soil on earth. The natural slopes at Gusev Crater reveal a

steepest angle of 38 degrees, where the soil is characterised as a mix of coarse and

fine materials. The material at this area is assumed to be densely packed because

of its high thermal inertia of 450 J/m2Ks1/2.

The knowledge of the soil mechanical properties on Mars helps to understand the

geological processes that forms the shape of the planet and provides guidance for

future missions. The mean values of internal friction and cohesion of Martian soil

lead to the conclusion that the materials are similar to terrestrial sandy soils. The

differences of the internal friction angle depending on the local site indicate that

there are different origins and mechanisms that shaped the Martian surface.

1.5 State of knowledge in pile installation

The standard procedure for pile installation is the impact driven pile. For this

purpose, a heavy weight is raised above the pile and released to use the impact

energy to drive the pile into the ground. Another procedure is the vibratory

installation of piles, where a vibratory hammer is installed onto the pile and

transmits vertical vibrations into the pile. The vibratory hammer consists of

rotating eccentric weights that are arranged in a way that the horizontal acting

forces counterweight each other. The development of more advanced vibratory

hammers makes it nowadays possible to drive even large offshore monopiles into

the ground. The vibratory driven piles have the advantage of quicker installation

times and reduced costs. Therefore, the vibratory installation procedure is of

interest for many applications, whereby the impact on the surrounding soil and the

pile capacity is still not fully understood. Galavi et al. (2017) investigates the

vibratory installation process of offshore monopiles using the Material Point

Method to understand the influence of the installation type on the bearing capacity.

1 Introduction 11

Even though the installation procedure of HP3 is different to a vibratory installation

there are some similarities. Both installation methods have an alternating motion

in short periods. The temporal evolution of a penetration resistance is similar for

small vibration amplitudes, see Vogelsang et al. (2017). The cyclic shearing of the

soil at the shaft is present in both cases and changes the soil structure in similar

ways. The difference is that the vibratory hammers are driven by gravitational

loading, whereas the HP3 mechanism needs solely a sufficient shaft friction to

absorb the backward accelerations.

The current calculation methods on pile installations are based on impact driven

piles, where effects of vibratory installation are not considered. Therefore,

numerical methods are required to compute the penetration rate of HP3.

A research project by the Deep Foundations Institute (2015) investigated the

influence of the installation procedure on the axial and lateral bearing capacity of

driven piles. It was found that the axial capacities of vibrated piles was always less

than for impact driven piles. The average capacity was reduced by 20 % when

using the vibratory installation procedure. Whereas, the axial capacity can be

increased by a followed impact installation to the full depth. The lateral capacity

was found to be less influenced by the installation procedure, although it exists

less data of experiments to confirm this.

The vibratory pile installation is a promising technique with short installation

times, although the influence on the surrounding soil is not completely known yet.

Therefore, it is necessary to investigate this penetration process in detail with the

help of numerical models. There is an enormous amount of research on this topic

that provides new insights, e.g. Grabe et al. (2013) investigated already the soil

changes from a deep vibration compaction with the help of a coupled Eulerian-

Lagrangian method.

1.6 State of the art in numerical modelling

Numerical simulations of dynamic cone penetration tests are quite rarely in

literature whereas simulations of quasistatic cone penetration tests are more

common. Different numerical methods have been used to simulate driven piles

with constant velocity. The common methods that are currently used for numerical

investigation on cone penetration or pile driving are:

 Enhanced Finite Element Methods (FEM):

o Material Point Method (MPM)

o Arbitrary Lagrangian Eulerian (ALE)

o Other similar FEM based methods

12 1 Introduction

 Smooth Particle Hydrodynamics (SPH)

 Discrete Element Method (DEM)

The ALE and MPM approach apply optimisation of the elements’ shape or

particle-in-cell techniques to solve large deformations with the Finite Element

Method. All FEM based solutions use a continuum approach for the representation

of the simulated material. For this purpose, the discontinuous granular material is

simplified as a continua, wherefore constitutive models are necessary to represent

the stiffness and strength behaviour. A common model for the strength of granular

materials is the Mohr-Coulomb failure criterion. Many constitutive models are

based on this theory and extend it. Still, the dilative behaviour of soils and the

associated softening is difficult to model with FEM based approaches. Besides

this, the frictional contact between soil and penetrator is challenging to be

modelled in finite element based methods and has a great impact on the penetration

resistance. In the doctoral dissertation of Issam (2013) a MPM formulation was

used to solve the large deformations in a deep penetration process. The installation

process was modelled by a varying driving force to represent an impact driven pile

installation. The penetration rate for one hammer stroke for different skin friction

is shown in Figure 6. For a shallow penetration the rate per stroke varied between

12 cm, 6 cm and 4.5 cm depending on the skin friction of 0.0, 0.5 and 1.0,

respectively.

Figure 6: Simulation results of an impact driven pile using a MPM formulation.

(Issam 2013)

1 Introduction 13

Further simulations of a CPT using the Material Point Method were done by

Ceccato et al. (2016). The cone penetration test under different types of drainage

was investigated using a two-phase formulation for the MPM. In the two-phase

MPM, the material points contain the information of the soil and the water. Besides

fully drained and undrained behaviour, also a partially drained material can be

simulated by this approach. The computational cost of MPM simulations of CPTs

are in the same range as similar DEM simulations.

Simulations of cone penetration tests in sand using the ALE technique were done

by Susila et al. (2003). The use of an auto-adaptive remeshing avoided mesh

distortions and enables the simulation of a penetration up to 11 cone diameters.

The penetration resistance for different internal friction angles and for different

initial vertical stress was evaluated.

The SPH discretises a continuous field into a series of particles to solve partial

differential equations. The material is subdivided into many particles (elements)

where each particle is carrying physical quantities of the current state. The

discretisation transforms the partial differential equation into an ordinary

differential equation that can be solved by many integration schemes (e.g. Euler

method). The material behaviour is governed by the differential equation. Thus, it

is necessary to define constitutive models to describe the behaviour of granular

materials like in the Finite Element Method. The advantage of SPH is that the

material can be highly distorted because the particles can move freely and their

adjacent particles are always updated. Kulak & Bojanowski (2011) applied the

SPH in combination with the ALE for the simulation of a cone penetration test.

SPH particles were used in the region near the penetrator where large distortions

appear. The penetrator size has similar dimensions as HP3 and the resulting

resistant force is comparable.

The DEM uses many individual elements representing a particulate material. The

simplest and widely used elements are spherical particles, since it is not necessary

to compute their orientation. The most common method in geotechnics is the soft-

particle approach, where the particles can overlap among each other and contact

forces are calculated and applied to the contacting particles. Further contact

models, e.g. tangential friction, can be applied additionally to consider all

necessary physics of the particulate material. The application of DEM in

geotechnics is limited on small scale simulations due to the required amount of

particles. The bulk behaviour of the particulate material results out of the contacts

and particle movements. This allows to investigate particle scale phenomena

without any presumptions made on constitutive models. Therefore, the particles’

movements can be traced and changes in the soil structure can be investigated. Due

to the discontinuous approach there are less restrictions in the way of modelling,

e.g. interpenetration of different materials or generation of cavities in the material

can be simulated. The DEM is less common used in geotechnical applications up

to now, because its applicability on large scale simulations was limited by the

14 1 Introduction

amount of particles and the associated computation time. Currently, due to new

computer technologies and using parallel processing, it becomes more and more

popular also for geotechnical applications where millions of particles have to be

simulated.

Holmen et al. (2017) simulated a penetration test in a cylindrical tube, where the

influence of different tip shapes on the penetration resistance is investigated and

compared to experimental results. Since the tube size is limited, it was possible to

simulate the real grain size by using 3.2 million particles with a mean particle

diameter of 1.09 mm. The penetration was done quite fast with a penetration

velocity of 2.5 m/s and 5 m/s. The simulations ran on a graphics processing unit

which accelerates the computation. Furthermore, the simulation only considers

translational motions while the rotational degrees of freedom are locked. This

affects the behaviour of the granular material, but the results were still in good

agreement with the experiments. Tran et al. (2016) reveal that the penetration

resistance in constant velocity condition is only stable for penetration rates lower

than 1.25 m/s. Consequently, the penetration resistance in the simulations of

Holmen et al. (2017) is affected by inertia forces of the particles.

Tran et al. (2016) investigated the tip resistance of a constant and impact driven

penetrometer with Itasca’s software PFC2D. It was observed that the impact driven

probes involve always an elastic rebound after penetration, whereas for small

penetration velocities the rebound is so large compared to the penetration that the

penetrator is lifted back into its initial position. As a result, a minimum velocity of

0.5 m/s was determined to be necessary to penetrate into the granular material. The

material was very dense packed with a porosity of 0.15 and the interparticle friction

parameter is 1.0. This results in a very high resistance of about 2 MPa, which

differs considerably from the observations presented in this thesis for the

penetration of HP3.

Further simulations of cone penetration tests in DEM were done by Butlanska et

al. (2014), who studied the influence of different boundary conditions and also the

difference between free and locked rotation of particles. The effect of particle

shape on the penetration resistance was investigated by Falagush et al. (2015)

using different clumps of particles or by prohibiting particles rotation. Simulations

of quasistatic penetration for the application on an earlier Mars mission were done

by Zöhrer (2006), who investigated the penetration resistance for different tip

angles and soil conditions. The use of DEM for penetration simulation is gaining

more and more interest, since the computational time gets reduced with new

technologies and more efficient particle codes.

After a first evaluation of the numerical methods that are used for cone penetration

tests in literature, the MPM and the DEM approach were investigated in more

detail.

1 Introduction 15

1.7 Laboratory conditions for HP3 penetration tests

The penetration tests of HP3 are performed in a laboratory of the DLR in Germany.

The performance tests for the deep penetration up to 5 m are done in an 80 cm

wide cylindrical chamber with a depth of 5 m (Spohn, 2013). The container

diameter should be at least 30 to 40 times the cone diameter (see Figure 7) which

is a result of centrifuge cone penetration tests in dry sand by Bolton et al. (1999).

This means that the cone diameter should be less than 2.6 cm to avoid influences

due to the boundaries. Whether the same prediction can be made for the dynamic

cone penetration is investigated by the numerical analysis in the following

chapters. Therefore, the particles displacements and the induced stresses are

compared for constant driven and dynamic driven probes. Besides the 5 m deep

container, there is another 3 m deep and 60 cm wide cylindrical container for

penetration tests at DLR (see Figure 8). The older 3 m deep test bed was used for

the first penetration tests of HP3, whereas later on the 5 m deep test bed was

constructed for the HP3 tests and primarily used. The results of the HP3

performance tests are discussed in chapter 4.

Figure 7: Effect of the container diameter to cone diameter D/B ratio on the

penetration resistance by Bolton et al. (1999).

16 1 Introduction

Figure 8: Deep penetration test bed with 3 m and 5 m height as well as the

incline, geothermal and mechanical test bed of DLR and JPL (Spohn

2013).

For the tests at DLR, the atmosphere and gravitation is not adjusted, so that the

earth environment is present. Whereas further tests in a Mars similar environment

are performed at JPL in Pasadena, where a CO2 atmosphere at 6 mbar and low

temperatures is created for a 3 m deep test bed. Experiments in lower gravity are

not really feasible because of the size and the duration of the test. However,

numerical simulations provide the possibility of penetration tests in different

gravitational environments.

The initial stress level, which is different from Mars to Earth due to the

gravitational constants, has a significant effect on the penetration resistance. The

centrifuge tests by Bolton et al. (1999) showed that the penetration resistance

normalized with respect to the overburden pressure increases with smaller initial

stress levels, see Figure 9. The plot shows the normalized resistance over

normalized depth at different acceleration ratios N. The gravitation in the

centrifuge was increased to 40g, 70g and 125g. A dense packed sample was used

with a relative density of 0.96. Even though the normalized resistance is reduced

by an increased stress level, the total resistance increases with higher initial stress

levels.

1 Introduction 17

Figure 9: Effect of stress level on the penetration resistance by Bolton et al.

(1999).

1.8 A brief introduction into the Material Point

Method

The Material Point Method (MPM) was originally developed by Sulsky et al.

(1993) and was first known as the Particle in Cell (PIC) method. Later on Sulsky

& Schreyer (1996) called it the Material Point Method. The PIC method was

already used earlier for simulation in fluid dynamics and was then adapted by

Sulsky et al. (1993) for the application in solid mechanics. A first application of

the MPM in geotechnical engineering was the simulation of a silo discharge by

Wieckowski et al. (1999). The MPM is a finite element based method that is

extended for the simulation of large deformations. Material points are introduced

inside the finite element mesh to carry the information of deformation, stresses and

other material properties. At each time step, the properties from the material points

are mapped onto the mesh nodes, where the differential equation of the virtual

work is solved. The strains and stresses due to the deformed mesh are saved again

in the material points before the mesh is redefined or reset to its initial

configuration. In this way, the material points can move behind the mesh, while

the mesh is always updated at each time step. A graphical representation of this

procedure is shown in Figure 10. The time domain is integrated by a semi-implicit

scheme. Thus, the computational costs are reduced due to the possibility of larger

time steps in comparison to an explicit time integration scheme. However, for high

dynamic simulations small time steps are still required.

18 1 Introduction

The grid-crossing of a material point can cause an unbalance force, where less

particles per element increase the effect. A higher number of particles may solve

this problem but increases the computational costs significantly. The error of grid-

crossing can be reduced by different methods, see Issam (2013).

Figure 10: The basic concept of the MPM formulation. (Issam 2013).

The initial filling of the material points is important for accurate results and to

prevent empty elements within a material. There are no empty elements allowed

inside the material to solve the system. Therefore, virtual particles are introduced

to avoid empty elements. This particles fill the empty elements with a small mass

during the computation. The total mass of virtual particles should not be too large

to obtain reliable results.

Even though material points are used to represent the granular material, the

material behaviour is governed by the deformation of the continuum elements at

each time step. Thus, it is necessary to apply constitutive models to describe the

granular behaviour. The frictional behaviour in contacts needs also be defined by

an appropriate algorithm to allow for the relative motion between two contacting

bodies. In usual FE codes, the interface between two contacting bodies needs to be

predefined, whereas in the MPM a separating of bodies and a colliding of bodies

should be possible. For this purpose, an automatic detection of the contact surface

is needed. An appropriate contact algorithm by Bardenhagen et al. (2000) was

implemented by Issam (2013), but also current research on the detection of new

contacts between two different materials in MPM is done by Hamad et al. (2017).

The MPM code by Deltares is currently more and more extended and improved in

collaboration by the Anura3D MPM Research Community. The extension of a two

phase formulation allows also for the simulation of water within the soil and the

further research on the shortcomings improved the code a lot in the last years. The

material point method is a practicable solution for large deformations but at the

time the computational costs for a high dynamic simulation seemed to be immense.

1 Introduction 19

The high processing times for the simulation of a quasistatic penetration test,

where large time steps can be used and mass scaling was applied, suggested

inappropriate large computation times for high dynamic simulations. Furthermore,

the missing access to the code would have made it impossible to implement

changes if necessary. For these reasons, the discrete element method was chosen

for the simulation of the HP3 penetration.

20 2 The Discrete Element Method

2 The Discrete Element Method

The Discrete Element Method (DEM) was chosen for the simulation of the

penetration process of HP3 since the modelling of large strains in dilatant materials

is difficult to realise using a continuum-based approach (Butlanska et al. 2014).

An advantage using the DEM that a constitutive model for the soil behaviour is

not required. This allows to investigate the soil response without any assumptions

on the soil behaviour beforehand. The non-linear stiffness and the complex

strength behaviour of granular materials is automatically achieved due to the

rearrangement and interaction of the discrete particles. However, assumptions on

the interparticle behaviour have to be made instead. These will be discussed below.

The DEM simulation of soil requires always a three dimensional model to capture

the physics of the granular material. A two dimensional simulation of particles in

a plane would model the behaviour of cylindrical rods instead. For the purpose of

a plane strain simulation in DEM, it is still necessary to use a three dimensional

model to reproduce the granular behaviour. However, it is possible to use periodic

boundaries to reduce the simulation domain. The periodic boundaries allows

particles to leave the domain at the border, while they re-enter on the other side of

the domain. In this way, simulations using the assumption of an infinite half-space

can be modelled in a small-scale test.

The use of discrete particles instead of continuum elements, such as in the finite

element method, allows for simulations involving large deformations, separation

of material and for interpenetration of different materials. The investigated

materials are dry cohesionless sands that can be well modelled in the DEM since

it needs only a few physical contact models. All of these contact models will be

explained in this chapter.

The used DEM software is LIGGGHTS from DCS Computing developed by Kloss

et al. (2012), which is an open-source software based on the LAMMPS code from

Sandia National Laboratories.

2.1 The general DEM formulation

The functional principle of the DEM is the computation of the motion of a large

number of particles. The material is modelled by many particles, where each

particle stores a position in x-, y- and z-direction and a radius. The distance pd of

each particle to a wall or another particle is calculated at each time step:

wvpd


 , (1)

2 The Discrete Element Method 21

where v⃗ and w⃗⃗⃗ are vectors that define the positions of two different particles. If the

distance pd is smaller than the sum of the corresponding particles radii, an overlap

δn is calculated as

dwvn prr  (2)

with the corresponding particles radii rv and rw. A separating force Fn depending

on the overlap is applied to both particles, see Figure 11. The position of the

particles is updated for each time step by an explicit time integration scheme. The

LIGGGHTS code uses a velocity Verlet integrator with half-step velocity to solve

the time integration (Verlet 1967).

Figure 11: A sketch of the soft particle DEM.

In addition to this, different contact models are used to add further contact forces

and torques to overlapping particles that can be e.g. sliding friction or rolling

resistance. The contact force Fn between two particles can be either calculated

linearly dependent on the overlap by using the Hooke’s law or considering also the

contact area by the Hertzian contact theory. In the following chapters, the contact

models that are used for the simulation of a dry cohesionless sand will be explained

in more detail.

2.2 The Normal Contact Model

The LIGGGHTS code provides two different normal contact models to determine

the normal force between the particles based on the Hertzian and the Hookean

contact mechanics. The simpler model is the Hookean normal model that

calculates a normal contact force Fn linearly dependent on the overlap δn

nnn kF  (3)

22 2 The Discrete Element Method

with the particles stiffness kn being a constant value. This approach does not take

into account the change of the contact area with overlap and therefore it can result

in unphysical large overlaps of particles.

The Hertzian contact theory is well known for solving the contact mechanics of

point or line contacts, where an infinite stress occurs theoretically caused by a zero

contact area. The Hertzian contact model in LIGGGHTS considers the change of

the contact area of two spherical particles that overlap. For this purpose, the

stiffness of the overlapping particles is not constant as it is for the Hookean contact

model, but it is dependent on the square root of the overlap. This causes a

progressive behaviour of the contact force with overlap and avoids large overlaps

of the particles (Figure 12).

Figure 12: The characteristic curves of normal force with overlap.

Both contact models are fully elastic, which means that all the deformation are

recovered at unloading.

Besides the elastic normal contact force, a damping force is applied to the normal

contact model that defines the amount of rebound after a collision. The coefficient

of restitution is used as an input parameter to specify the damping ratio in the

normal contact. It defines the ratio of relative velocities of two particles after and

before collision. Due to the damping force, a temporary tension force between two

separating particles is possible. In order to avoid those tension forces, the damping

force is limited so that the normal contact force is always a repulsive force.

Therefore, the normal contact model in LIGGGHTS has to be extended by the

keyword limitForce on.

2.3 The Rolling Resistance Model

A useful simplification in the DEM to be able to simulate a large amount of

particles is the spherical shape of the particles. Due to the spherical form of the

particles, the inertia tensor becomes a constant value owing to the point-symmetry.

Thus, it is not necessary to compute the orientation of the particles. This accelerates

2 The Discrete Element Method 23

the computation due to the reduced degrees of freedom of the system. However,

the angular velocity of the particles is still computed to consider the translational

motion of the particles that is caused by rotation around a frictional contact.

The arbitrary angular shape of real sand grains generates a contact point between

the grains that is eccentric to the centre of inertia and causes a resistance against

rolling. In order to consider the resistance against rotation due to the real grain

shape, a rolling resistance can be applied to the particles. Several rolling resistance

models are already implemented in the used DEM software. Further approaches to

consider the shape of the grains for geotechnical applications is the locking of

rotation for a certain percentage of the particles or the generation of clumped

particles by grouping several spherical particles to one irregular shaped particle.

The influence of both, locking of rotation and using clumped particles, on the

resistance of a cone penetration test was investigated by Falagush et al. (2015). It

reveals that the locking of the particles’ rotation results in an excessive large tip

resistance and is an unsuitable approach to consider the real grain shape, whereas

the use of clumped particles results in a tip resistance that depends on the clumped

particle shape and can be used to model the physics of angular grains.

The rolling resistance models that are implemented in LIGGGHTS are a constant

directional torque model and an elastic-plastic spring-dashpot model, which are

explained in detail by Ai et al. (2011). In a paper of Jiang et al. (2015) a rolling

resistance model is introduced considering a twisting resistance, which is

implemented in a rolling resistance model that was additionally developed within

this work.

The constant directional torque (cdt) model by Ai (2011) applies a constant torque

on particles that acts always against the relative rotation in the contact of two

particles. The torque is always applied to both particles, whereby a torque is

transmitted from particle to particle. A problem that occurs using the cdt model is

the oscillation of particles at rest position caused by the constant torque that is

always alternating in direction. The oscillations of the particles produce a residual

kinetic energy that destabilises the system and leads to a creeping in the macro-

scale behaviour.

24 2 The Discrete Element Method

Figure 13: Spring characteristic curve for different rolling models

The elastic-plastic spring-dashpot (epsd) model solves the problem of oscillations

at the rest position. Therefore, the model applies a rotational spring-dashpot to

particles that are in contact. As soon as the spring force reaches a maximum value

of resistance, the particle starts to rotate without any further increase of the

resisting torque. The elastic part of the rotation is always recovered at unloading,

which can cause an unphysical behaviour if the elastic part becomes too large. In

the case of a high stress state, the restructuring due to changes in load is highly

dependent on small rotations and movements of the particles. The deformation

energy that is saved in the elastic springs of the rolling model will be recovered in

deformation at unloading, causing an undesirable large rebound. An increase of

the stiffness of the rotational spring can reduce this effect, but with increasing

stiffness the model will start producing oscillations as it was observed for the

constant directional torque model. The spring characteristic curve of both models

is given in Figure 13.

Both the epsd and the cdt model apply a constant torque against the rotation of a

particle as soon as the particle mobilises. This is physically based on the

assumption of two spherical particles that overlap and create a flattened area in the

contact. The contact point of the particle is shifted to an eccentric point due to the

flattened area. The so created resisting moment is constant during rotation as long

as the particle has a constant overlap. The rolling resistive moment at mobilisation

Mr,plastic is proportional to the normal contact force Fn and the particles effective

radius reff

reffnplasticr rFM ,
, (4)

where
r is the coefficient of rolling resistance that has to be defined. This

corresponds to a resistive moment due to an eccentric contact force with an

eccentricity of reff ∙µr.

2 The Discrete Element Method 25

In geotechnical applications the resisting moment of a particulate material is less

attributed to the overlap but rather to the non-sphericity of the grains. Estrada et

al. (2011) investigated the bulk behaviour of polygons and spherical particles with

a constant maximum rolling resistance in a shear test. They determined a possible

mapping between the parameter for rolling resistance and the shape of the

polygons by considering shear strength, solid fraction, force and fabric

anisotropies. This indicates that a simple rolling resistance model can be used to

imitate the effect of angular grains. But caution should be taken here for different

loading cases.

Within this thesis, single particle simulations were investigated to obtain a more

realistic rolling resistance model. Therefore, a linearised rough profile of the

resisting moment of an ellipse and a cube, given in Figure 14, were implemented

in LIGGGHTS and tested. The rolling resistance of an ellipse increases first due

to the shift of the normal force out of the centre of the ellipse. At a certain point,

the eccentricity of the normal force decays due to the tilt up of the ellipse. The

resistance switches into an accelerating moment at 90 degree, when the ellipse is

upright. However, the resistance of a cube has its maximum at the beginning of its

rotation out of the rest position. The normal force acts at the edge of the cube with

an eccentricity of half the edge length times the cosine of twice the rotation angle.

Thus, the resistance decreases until the cube is on the edge with zero resistance.

At this point, the resistance switches into an accelerating moment that increases

again until the cube drops into its next rest position.

26 2 The Discrete Element Method

Figure 14: a) Rolling model for elliptical particles, b) Rolling model for

angular particles

For the study on the rolling models, the roll over behaviour of an irregular shaped

clumped particle was investigated and compared to the rolling behaviour from

different rolling resistance models. The rotational and translational velocities of a

particle rolling down an inclined plane were compared, applying different rolling

resistance models, see Figure 15 & Figure 16. The applied rolling resistance over

the relative rotation is shown on the right in both figures. It has been found that a

resisting moment similar to the resistance of a cube results in a suitable behaviour

for the case of a particle rolling down an inclined plane. This rolling resistance

model was also tested in calibration tests, but it revealed that it was not stable

enough for an adequate time step. Especially in an oedometer test, the particles

began to oscillate under pressure.

2 The Discrete Element Method 27

Figure 15: The rolling behaviour on an inclined plane of a clumped particle

(blue) and a particle with a rolling resistance model similar to an

ellipse (green & red).

28 2 The Discrete Element Method

Figure 16: The rolling behaviour on an inclined plane of a clumped particle

(blue) and a particle with a rolling resistance model similar to a

polygon (yellow & purple).

For further simulations the simple elastic-plastic spring-dashpot model of

LIGGGHTS was taken with modifications on the damping moment and the

behaviour of the transition zone between zero and maximum resistive torque. The

damping moment in the epsd rolling model acts during the elastic part and is not

limited. The damping moment increases with relative rotational velocity of the

contacting particles and may exceed the maximum torque at mobilisation. Thus, it

is possible that an unphysical high rolling resistance is generated and the material

would behave too stiff in the macro scale for a dynamic load. For this reason, the

used rolling model is modified such that the total rolling resistance between two

particles is always limited by the resisting torque at mobilisation.

Furthermore, changes on the rolling stiffness kr of the epsd model were

investigated. The default value for the rolling stiffness is given by

2

efftr rkk  (5)

with the tangential stiffness kt and the effective radius reff defined as

2 The Discrete Element Method 29

21

111

rrreff

 (6)

with r1 and r2 being the respective radii of the contacting particles. This leads to a

certain rotation angle of the particles in the elastic region of the rolling model

eff

n

relastic
r


  (7)

with µr being the parameter that defines the interparticle rolling resistance.

In this way, the amount of elastic rotation θelastic depends on the overlap δn relative

to the particles size. The problem that occurs using reduced elastic rotations is the

necessity of a very small time step. However, using larger elastic rotations will

cause larger elastic settlements and at some point also a weaker behaviour in

strength, which was observed from simulations of triaxial tests. The weakening in

strength is attributed to the separating of particles before they even reach their

maximum rolling resistance.

The dependency of the elastic rotations on the particles overlap makes it difficult

to develop a consistent algorithm to determine the resistive moment in the elastic

part. It has to be considered that the tangential stiffness is dependent on the

particles overlap as long as the Hertzian normal contact is used. Hence, also the

rolling stiffness is overlap dependent. A change in the overlap during the contact

of particles causes a change also in the rolling resistive torque, which has to be

defined by an appropriate algorithm. The change of the resistive torque due to a

change in the normal force is given by a new maximum torque and a different

stiffness in the elastic region.

The rolling models that exist in literature for an explicit time integration scheme

are described in Ai (2011), Wensrich (2012) and Jiang (2015). Ai (2011) named

them a directional constant torque model, a viscous model, an elastic-plastic

spring-dashpot model and further contact-independent models. The directional

constant torque model and the elastic-plastic spring-dashpot model are explained

in chapter 2.3, where they are named as the cdt and epsd model. The viscous model

applies a torque to particles in contact that is proportional to the normal force and

the angular velocities. The rolling resistance in the viscous model is just present as

long as the particles are in rotation, while in equilibrium there will be no lasting

resistance torque. The contact-independent models apply a resistive torque that is

proportional to the particles respective angular velocity. Thus, the particles do not

transmit a torque from particle to particle. The contact-independent models are not

commonly used because of the unphysical approach behind it.

There exist also high sophisticated rolling models which are more practicable for

implicit time integration schemes. A rolling model for the simulation of granular

30 2 The Discrete Element Method

material for geotechnical applications has been developed and implemented by

Lichtenheldt (2013). The model was used for the simulation of sand grains under

the load of a planetary rover wheel. The idea of the model is inspired by the

resisting torque of rectangular geometries and the applied torque is dependent on

the orientation of the particles, where each particle has its own function of resisting

torque. Thus, it is possible to apply accelerating as well as resisting torques. The

problem using this model with an explicit time integration schemes would be that

the fast changes in the torque and the accelerating torque destabilise the system.

Therefore, Lichtenheldt (2013) uses a semi-implicit Newmark integration scheme

to solve the time integration with an adequate time step.

2.4 The Tangential Friction Model

A tangential friction is usually defined between two contacting bodies, while in a

particulate material a network of many contacting particles exists. This friction

from particle to particle causes an inner resistance of the material against shearing.

A continuum parameter for particulate materials that specifies the resistance of the

material against shearing is the internal friction angle. This parameter depends on

the interparticle friction as well as on the rolling resistance, which reflects the

shape of the grains. Therefore, the DEM applies a tangential friction model to the

particles in addition to the rolling resistance.

The tangential friction model in LIGGGHTS is very similar to the rolling

resistance model from chapter 2.3. It consists of an elastic and a plastic part with

an additional damping component within the elastic part. The damping force

depends on the relative tangential velocity of the contacting particles. This

damping force is not limited in the original source code of LIGGGHTS. Therefore,

a modified version of the tangential friction model has been developed to limit the

total tangential force always by the Coulomb friction force. A schematic of the

mechanical principle of the model and the spring characteristic curve are shown in

Figure 17.

2 The Discrete Element Method 31

Figure 17: Mechanical scheme and spring characteristic curve of the tangential

contact model

The tangential friction force Ft increases linearly with the relative movement dx of

the contacting particles until it reaches the Coulomb friction force FCoulomb. At this

point the particles start to mobilise under a constant tangential friction. The friction

force in the elastic region and the limiting Coulomb force in the plastic region are

defined as follows:

,tNCoulomb

tt

FF

dxkF




 (8)

where the tangential stiffness kt defines the elastic region. If the tangential stiffness

is too large, the model becomes unstable and the time step needs to be reduced.

Otherwise, if the tangential stiffness is very low, the elastic part of the relative

movement of particles is increased and leads to an unphysical behaviour.

Therefore, the tangential stiffness is set to be as stiff as possible keeping a stable

simulation with a time step that has been defined by the normal contact model. The

default value of the tangential stiffness in case of the Hertzian normal contact is

given by

nt k
Y

G
k 6 (9)

with the Young’s modulus Y and the Shear modulus G.

For the determination of the coefficient of tangential friction µt and rolling friction

µr, it has to be identified first which type of motion is dominant. It becomes clearer

by comparing the accelerating torque of a particle on an inclined plane due to the

tangential friction and the rolling resistive torque due to the eccentric normal force.

32 2 The Discrete Element Method

Figure 18: Mechanical scheme of a particle on an inclined plane

The moments that act on the particle centre on in inclined plane are an accelerating

torque due to the tangential friction in the contact and a rolling resistive torque due

to the eccentric contact force, see also Figure 18. The equations of motion for

translation x and rotation φ of a particle are

 sinmgFxm tn  (10)

and

effrntn rFrFI   (11)

with the particle mass m, the rotational inertia I and the gravity g. In the case of a

particle-plane contact, the effective radius reff becomes equal to the particle radius

r and equation 11 can be transposed to

 rtnrFI   . (12)

These equations just hold for a particle that is mobilised in rotation and translation

in positive directions. The equation of motion for translation can be transformed

with

)cos(mgFn  (13)

to

 tgx   tan (14)

2 The Discrete Element Method 33

and determines the angle α of the slope that is necessary for the sliding of the

particle

t tan . (15)

If the angle of the slope is too low to provoke the sliding of the particle, it may be

possible that the particle starts to rotate instead. The tangential friction for a

sticking particle is equal to the downhill force due to the force equilibrium. This

results in an equation of rotational motion for the particle of

effrnn rFrFI   tan . (16)

For this case the particle starts to rotate as soon as

r tan (17)

is fulfilled. This means that if the coefficient of rolling resistance is smaller than

the coefficient of tangential friction, the particle would start to roll down the plane

rather than sliding and vice versa.

This has to be considered for the choice of the coefficients of rolling and sliding

resistance. Therefore, it has to be decided whether the particles are highly angular

and would rather slide than rotate or if the particles are assumed to be more round.

2.5 The elastic-plastic yield criterion for frictional

contacts

The algorithm for the rolling and twisting resistive torques as well as for the

tangential friction is a modified version of the algorithm that is already used for

the tangential friction in LIGGGHTS. The current resistive value is computed by

the accumulated amount of elastic deformations times the current stiffness of the

corresponding model. The increasing resistive value is limited by a maximum

resistance and the particles will begin to mobilise as soon as the limiting resistance

is acting. The algorithm consists of two parts, the elastic part, where all

deformations are recovered at unloading, and the plastic part, where permanent

deformations are generated. The plastic part is triggered by the exceeding of the

maximum resistance. An additional damping is applied within the elastic part to

reach a stable position without large oscillations. The total value, that is the sum

of resistance and damping, is also limited by the maximum resistance.

34 2 The Discrete Element Method

The elastic-plastic yield criterion for the frictional contacts in LIGGGHTS behaves

fully elastic until the limiting value for the plastic phase is reached. Thus, it can

happen that a large amount of deformation can be stored in the elastic phase that

will be recovered at unloading. This problem can be observed in the oedometer

test at unloading and reloading, where the soil does not compact as desired.

Furthermore, the elastic rebound takes a large part of the settlements during a

penetration cycle of HP3 and causes unrealistic large rebound after each

penetration stroke. For this reason, improvements of the yield criterion are made

to reduce the amount of stored elastic deformation. A new algorithm that is

implemented applies different stiffnesses for the elastic phase at loading and

unloading/reloading. Thus, lasting settlements will also occur in the elastic phase

due to a stiffer behaviour at unloading. A switch from unloading/reloading to

primary loading is triggered by a change in the relative displacement direction.

For the implementation of the new algorithm, two state values are necessary to

describe the torque or force level. The first value is the elastic relative displacement

and the second value is the sum of the elastic and plastic relative displacements,

see Figure 19.

Figure 19: Sketch of the yield algorithm with different stiffnesses for primary

loading and un-/reloading.

The maximum resistive force increases linearly under primary loading until the

Coulomb friction force FCoulomb is reached. The displacements at primary loading

consist of elastic dxe and plastic deformation dxp and the limiting resistive force

Ft,max depends on the sum










Coulombt

Coulombt

Coulomb

peprimet

t
FF

FF

F

dxdxk
F

max,

max,,

max,
,

),(
 (18)

with the stiffness kt,prime for primary loading. The total shear dxe+p is adjusted if the

Coulomb friction force is reached:

2 The Discrete Element Method 35














Coulombt

Coulombt

primetCoulomb

pe

pe
FF

FF

kF

dx
dx

max,

max,

, ,

,
 (19)

The stiffness for the computation of the resistive force is increased at unloading.

Therefore, even a loading-unloading cycle below the Coulomb friction lasts in

settlements, as it can be seen in Figure 19 during primary loading in the negative

direction. The limiting resistive force is also reduced again with relative

displacement in the opposite direction, so that the particle can move again under

primary loading.

The algorithm uses two more state variables to save the preloading of the particle

at a reversal of the movement direction and to reduce the preload with further

movement in the reverse direction. For this purpose, the plastic displacement

vector at direction reversal is stored in a variable dxstored and the total shear that

takes place starting from the last direction reversal is saved in a variable dxΔshear.

At the beginning, the elastic shear is updated for time step k+1 with step size dt

and the friction force is calculated for the case of an un-/reloading behaviour

1

/,

1









k

ereuntt

k

t

k

e

k

e

dxkF

dtvdxdx
 (20)

with the un-/reloading stiffness kt,un/re. If the plastic shear vector dxp
k and the

elastic shear vector dxe
k+1 point into the same half space, there is no direction

reversal and the total shear and dxΔshear can be updated by

,1

111

dtvdxdx

dtvdxdxdxdx

k

t

k

shear

k

shear

k

t

k

pe

k

p

k

e

k

pe















 (21)

otherwise a motion reversal is triggered. In the case of a motion reversal, the

current plastic shear displacement will be stored in dxstored and set to the sum of

the old value of dxstored and the unidirectional shear displacement dxΔshear. The

unidirectional shear displacement is the plastic shear that occurred since the last

motion reversal. If the plastic shear displacement is pointing into the same half

space as before, it will be reset to the current elastic shear dxe. The value of

dxΔshear is set to zero at motion reversal, so that it starts counting on from the

current reversal point.

The maximum resistive force Ft,max is updated by equation 18 for each time step.

The friction force Ft is compared to Ft,max and adjusted, if Ft exceeds the value of

Ft,max:












max,

max,

max,

1

/,

,

,

tt

tt

t

k

ereunt

t
FF

FF

F

dxk
F (22)

36 2 The Discrete Element Method

Furthermore, the elastic shear displacement is adjusted if the maximum resistive

force is reached:










max,

max,

/,max, ,

,

tt

tt

reuntt

e

e
FF

FF

kF

dx
dx (23)

In the end, a damping force is added to stabilise the oscillating system. The total

force Ft,total in the frictional contact is always limited by the Coulomb friction

force:










Coulombtotalt

Coulombtotalt

Coulomb

dampingt

totalt
FF

FF

F

FF
F

,

,

,
,

,
 (24)

2.6 Validation of the Contact Models

The contact models in the DEM are necessary to consider the physics of the

granular material that has to be modelled. For the application to geotechnical

problems, the explained contact models in chapters 2.2, 2.3 and 2.4 have to be

considered. The used contact models have to be validated in terms of a correct

physical behaviour and numerical stability. Therefore, the contact forces and

torques have to be related to physical quantities. For the validation regarding the

numerical stability, the motion of the particles during different kind of simulations

have to be investigated. Numerical instabilities often provoke high kinetic energies

which can be missed if they appear only in a few particles. The translational and

the rotational motion of particles are investigated in simulations with a single

particle as well as using multiple particles to figure out if instabilities occur and to

identify the origin.

The models that are investigated for the validation of the contact models are a

single particle on an inclined plane, a particle rolling in a pipe as well as

simulations of colliding particles (Figure 20). Furthermore, the stability of a

particle package using a few thousand particles is tested to prove the overall

behaviour.

The inclined plane model is used for investigations on the stability of the contact

model and to verify the general behaviour. The particle rolling in a pipe up and

down is used to observe the contact behaviour at a change in the direction of

movement and to validate the energy dissipation. Further simulations of many

particles are used to determine the behaviour of the contact model at colliding of

particles as well as the force and torque transmission. The oscillations of the

particles motion as well as the force and torque are investigated to identify any

irregularities in the contact behaviour.

2 The Discrete Element Method 37

Figure 20: Test models for the validation of the contact models.

The tangential and the rolling resistance depend also on the normal contact force

between the particles. Therefore, the algorithm for the calculation of the resistive

force or torque needs to be verified for all possible cases regarding a change in the

contact force. The sketch in Figure 21 represents a possible pathway of the

tangential friction force or the rolling resistance torque, where a change of the force

or torque due to an increasing contact force is displayed in blue lines and due to a

decreasing contact force in green lines. The rotation or translation starts always in

the elastic region of the corresponding model, where the force or torque increases

linearly with a movement. An increase of the contact force leads always to a jump

of the resistive force/torque into the elastic region with a larger stiffness and

maximum resistance. Where a decrease in the contact force will result in a jump

into the elastic or plastic region with a decreased stiffness and maximum

resistance. It can be seen in Figure 21 that at the first decrease of the contact force

(first green connection) the model jumps from the elastic into the plastic region,

while at the second decrease in the contact force there is a jump in the resistance

but it stays in the elastic region. The standard EPSD2 rolling model of LIGGGHTS

uses an algorithm that can cause backwards rotation due to a change in the contact

force even if the torque was just applied in one direction. This behaviour is

improved in the modified version that is used for the simulations. Therefore, the

resistance is calculated based on a total relative displacement and not changed by

increments. Thus, the applied algorithm controls the resistance in a way that lasting

settlements of particles will only occur in the direction of the acting torque or get

back into the initial position.

38 2 The Discrete Element Method

Figure 21: A graphical sketch of the algorithm for the tangential and rolling

model

2.7 Neighbor lists

The neighbor lists specifies the particles for the contact computation, see

LIGGGHTS®-PUBLIC documentation (2017). The preceding determination of

neighbouring particles is necessary to reduce the amount of contact computations.

For this purpose, the pairs of particles that will not interact in the next few time

steps are neglected in the force computation. Thus, it limits the amount of contact

computations to particles that are close to each other. The neighbouring particles

in a certain distance are determined and checked for possible force interactions.

The skin distance defines the domain to search for neighbouring particles and can

be set manually by the neigh command, where the skin distance is the additional

space between particles before they get in contact, see Figure 22.

Figure 22: Skin distance to search for neighbouring particles

A smaller skin distance causes the code to rebuild the neighbor lists more often but

the number of computed contacts is less, while a larger skin distance increases the

2 The Discrete Element Method 39

number of contacts that have to be computed and reduces the amount of neighbor

lists.

The skin distance should be set by default to the maximum radius of the used

particles, but can be reduced for simulations with less motion. In the case of a wide

range of different particle sizes, many neighbouring particles would be found if

the skin distance is related to the largest particle radius. In this case, it has to be

judged which skin size is the best fit.

In the case of the penetration simulation, where four different domains of scaled

particles sizes exist, the skin distance is chosen related to the maximum radius of

the particles in the core domain. In the filling phase the neigh size is set equal to

the corresponding radius and is reduced to half of it after the particles have settled,

since the particles motion is very slow from this point onwards.

2.8 The initial filling process

The initial filling process generates a certain density in the soil specimen and

creates the initial stresses in the soil. Furthermore, the filling can cause a sorting

of grains due to the granular segregation or compact the soil locally due to the drop

height of the particles. Hence, a particle radius expansion method is used to prepare

a homogenous soil bedding (Bernhardt et al. 2015).

For the particle radius expansion method the particles are inserted with a smaller

radius than they will have later in the simulation. The initial particle volume for

the insertion is decreased by the particles reduction scale to the power of three,

whereas the total volume of the filling area is kept constant. Thus, a very loose

packing is generated first and the insertion without an overlap of particles is easier.

The insertion is done in a zero gravity environment so that the particles hover

inside the filling domain. After the insertion is done, the particles radii are

expanded stepwise up to their desired size. The interparticle friction and rolling

resistance is kept zero, and the Young’s modulus is reduced until the particles

reached their desired radii and stopped moving. Then, the particles’ parameters for

the simulation are applied and the gravity is turned on.

The settlement of the soil particles and the overburden particles is performed in

parallel. The overburden particles are inserted in a close distance to the upper

boundary of the soil domain, so that the overburden particles generate less kinetic

energy.

The creation of a desired packing density is difficult to achieve in a particle code.

One option is the choice of the particles insertion domain such that the particles

compact during the radii expansion process. The loose particle bedding for the

simulations is prepared in a domain that is even larger than necessary to avoid a

40 2 The Discrete Element Method

close arrangement of particles. Due to the spherical shape of the particles it is not

always possible to achieve the loosest packing of a granular material. However,

the generated density can be measured in an accurate manner by the computation

of the volume and mass of a Voronoi tessellation for an embedded region of

particles.

3 Calibration 41

3 Calibration

The calibration of geotechnical materials in the DEM is usually done by

investigations of the macro scale behaviour and adjustment of the micro scale

parameters (O’Sullivan 2011), such as interparticle friction. These particle

parameters does not directly correlate with continuum material parameters but can

be adjusted to produce the same mechanical behaviour. Therefore, all tests are

modelled with the DEM and the system response is compared to the laboratory

measurements. The particles’ parameters that have to be defined are:

 Young’s modulus and poisson’s ratio for soil stiffness

 Tangential friction and rolling resistance for soil strength

 Coefficient of restitution for damping.

For the sake of calibration, different soil tests has been investigated, where a

Martian analogue material is used to reproduce a similar soil behaviour as it is

supposed to be at the InSight landing site. The soil tests that are available at the

laboratory of the Institute of Soil Mechanics and Foundation Engineering are an

angle of repose experiment, an oedometer test and a triaxial shear test. The angle

of repose experiment and the triaxial shear test provide information on the inner

shearing resistance of the soil, whereas in the oedometer test the stiffness of the

material can be determined. The strength of soils is often stated by its inner

resistance against shearing, as long as no grain crushing is involved. This shear

resistance depends on the grain to grain friction and the grain specific rolling

resistance. In geotechnics it is common to describe the shearing resistance by the

internal friction angle and the dilatancy angle. Instead, in the DEM the specific

values for grain to grain friction and rolling resistance are applied and dilatancy

effects are automatically captured within the simulation.

3.1 Material

The material that is investigated in this work is a local soil mined in Austria that

has a similar grain size distribution as the known Martian simulant JSC-Mars 1. It

is a sieved quartz sand smaller than 1 mm denoted as “Schwarzl UK4”. The

Schwarzl UK4 has already been used as a Martian simulant for penetration

simulations at the Space Research Institute in Graz, Austria (Zöhrer 2006). The

gradation of the particle size is very uniform and has a uniformity coefficient UC

of 4, which can be well reproduced in DEM. The particles’ size is upscaled in the

simulations depending on the model. A simple element test, for example, can be

modelled using only a few thousand particles without much difference in the

results. The characteristic of an element test is a homogeneous stress distribution,

e.g. in a uniaxial compression test. The maximum scale of the particle size is kept

42 3 Calibration

small enough to avoid the formation of long force chains carrying most of the load.

The material has an internal friction angle of about 33° and no cohesion. The bulk

density ranges from 1300 to 1700 kg/m3 with a grain density of 2700 kg/m3. Thus,

the void ratio is 0.58 for the densest packing and 1.07 for the loosest packing. The

grading curve of Schwarzl UK4 is shown in Figure 23. For the implementation in

the DEM the grading curve is adjusted (yellow line). The small amount of very

large particles and very small particles is neglected. The used particle size

distribution is generated out of values between the grading sizes. Instead of only

using the mean value between the grading sizes (blue line), a uniform distribution

of particle radii (green line) is applied to get a homogeneous soil behaviour.

Figure 23: Particle size disribution of Schwarzl UK4

3.2 Angle of Repose

The angle of repose experiment takes only little effort and provides first

information about the internal friction of the material. It is a common test used for

dry cohesionless granular materials. This test creates a natural slope by lifting up

a hollow tube filled with granular material, see Figure 24. The filling height of the

tube has to be large enough, so that the critical slope angle (i.e. the largest possible

slope angle) can be achieved. For a cohesionless dry sand the natural slope angle

corresponds directly to the internal friction angle at critical state. The critical state

means that shearing occurs at constant volume and that interlocking of grains does

not affect the strength. This condition is present for normally consolidated soils or

for overconsolidated soils at large shear strains, when softening has taken place.

3 Calibration 43

The advantage of the angle of repose experiment is the minor influence of the soil

stiffness on the obtained results. Thus, it is possible to derive the friction

parameters without adjusting the stiffness parameters in the simulation model.

Since in the DEM the interparticle friction and the rolling resistance define the

inner shearing resistance, both parameters need to be adjusted to match the right

slope angle. The outcome of this experiment is not a specific set of friction

parameters but a series of sets that reveal a reasonable slope angle. For this reason,

it has to be specified beforehand if the grains are more rounded or angular which

corresponds to a higher interparticle friction or rolling resistance, respectively.

Figure 24: Generation of a critical slope by lifting a filled cylinder.

An algorithm is applied to evaluate the angle of repose in the simulation in an

automatic way. The algorithm divides the sand pile in n horizontal slices and

determines the maximum and minimum positions of the particles in the horizontal

x- and y-axis in each slice, where the centre of the pile is at zero position (Figure

25). The top and the bottom slices are neglected to avoid errors due to a flattened

tip at the top or wide spread particles at the bottom. The maximum pile diameter

in each slice is calculated by the difference of the maximum and minimum position

of particles in the horizontal axes from each slice. The ratio of the height of a slice

to the difference of the maximum pile radii from slice to slice yields the inclination

of the pile. Thus, it is possible to automatically evaluate the slope angle for many

runs using different sets of parameters.

Figure 25: Sketch of the algorithm to determine the slope angle

44 3 Calibration

In the simulation model, the sliding friction and the rolling resistance between the

particles and the base plate is set to a value of 2.0 which is always larger than the

interparticle friction and rolling resistance. In the lab experiment a sand paper is

used as a base plate to create a large friction between the sand grains and the base

plate to avoid the influence of slipping at the base. Furthermore, a teflon tube is

used to reduce the friction between particles and the lifted casing, wherefore in the

simulation model the friction of the confining material is set to zero. A low friction

at the lifted casing ensures a continuous outpouring of the material.

3.3 Triaxial Shear Test

The triaxial shear test is an element test that fails a probe at different effective

mean stresses to determine the strength of a granular material. Therefore, a

cylindrical chamber is filled with saturated material and consolidated by applying

a confining pressure. The lateral pressure is generated by using a membrane for

the horizontal boundary and a surrounding fluid. The probe is then sheared under

a constant lateral pressure. The shear rate is chosen slow enough to avoid the

development of excess pore water pressure. The major principle stress during

shearing is measured on the top and bottom wall while the minor principle stress

at the membrane is kept constant. The triaxial test provides information on the peak

resistance and the critical state strength of the material. The peak strength is the

maximum resistance of a granular material during a shear test. However, the

strength at critical state is defined when ongoing shearing occurs under constant

volume. The interlocking of grains due to a dense bedding causes the material to

expand due to shearing and produces a peak resistance that is reduced again by

further shearing. The peak resistance depends on the void ratio and is related to the

dilative behaviour of the soil skeleton, whereas the critical state strength is

independent on the initial void ratio.

With a DEM model of the triaxial test, not only the strength values can be

determined, but the stress strain relationship can be evaluated and used for the

calibration. For the implementation in the DEM, the cylindrical boundary is

approximated by six planes forming a hexagonal prism, see also Figure 26. An

additional wall at top and bottom completes the chamber and hold the particles

inside. The pressure on each wall is measured and controlled by a movement of

the walls using the fix mesh/surface/stress/servo command of LIGGGHTS. The

controller uses the error between the set-point and the actual value as well as the

rate of change to approach the required pressure. This so called PD-controller acts

very rapidly on stress changes, which reduces the computation time and it turned

out to be the most stable choice for this application. The controller parameters were

determined by a script of Abel (2010), where the proportional constant KP is set to

7.5 % of the confining pressure and the differential constant KD is set to

3 Calibration 45

dtKK PD 12.0 (25)

with the time step size dt of the simulation.

Figure 26: The triaxial shear test at the laboratory on the left (Zöhrer, 2006).

The hexagonal prism chamber as well as the particulate material in

the model, from perspective and top view, on the right.

After the consolidation phase, the top wall is locked while the bottom wall is

moved upwards to shear the probe. The shear velocity in the DEM simulation can

be much faster as in the lab test, since there is no water considered in the simulation

that could generate excess pore water pressure. The vertical load acting against the

bottom wall is measured and evaluated to determine the maximum resistance and

the critical state strength. The volume of the probe is measured by the positions of

the surrounding walls. The computation of the stress at each wall is implemented

in the controlforces file. The contact area of each wall with the specimen is updated

throughout the simulation to compute the stress out of the forces. Three

simulations are carried out using a confining pressure of 100, 150 and 200 kPa

respectively. The maximum shear stress at different mean normal stresses reveals

a failure envelope that increases almost linearly with the mean normal stress. The

inclination of this failure envelope is defined as the internal friction angle of the

material. The internal friction angle at critical state corresponds to the angle of

repose for a cohesionless dry sand. Thus, the triaxial shear test should result in a

similar angle than the angle of repose experiment.

3.4 Oedometer Test

The oedometer test is a uniaxial compression test with lateral confinement that

focuses on the stress strain relation to determine the stiffness of a material. The

46 3 Calibration

bulk stiffness of granular materials is non-linear and depends on the current stress

state as well as on previous stress states that could have compacted the material in

the geological history. The oedometer test in the lab generates a static pressure in

the sample using a stamp at the top of the probe while the settlements of the stamp

are measured to derive the stress strain relation, see Figure 27. The material of the

confining elements has to be stiff enough to avoid their deformations during the

load application. The stress path is applied in increments that always doubles and

begins with a stress of 10 kPa. After a stress of 320 kPa is reached at primary

loading, the probe is unloaded first to 80 kPa and finally to 20 kPa. The load is

again increased stepwise by doubling up to a value of 640 kPa. This stress path

allows to investigate the primary loading as well as the unloading/reloading

behaviour.

The triaxial and the oedometer test are both element tests, which means that there

is a homogeneous stress state in the probe. In comparison to the triaxial test, where

a constant lateral pressure is applied, the oedometer test has a confining ring to

constrain the lateral strain of the probe. This boundary condition inhibits the soil

to fail by shearing.

Figure 27: A sketch of the oedometer test.

The oedometer test is implemented in LIGGGHTS using a fixed cylindrical wall

for the horizontal boundary and a fixed plane for the bottom. The top wall can only

move vertically and is stress controlled using the fix mesh/surface/stress/servo

command. The stress controlled top wall of the oedometer is used to apply different

stresses. To avoid large oscillations in the stress path, the proportional constant for

the controller is set much lower than for the triaxial test. A value of 2.4 for the

proportional constant KP was found to be an appropriate solution, whereas the

differential constant KD was set to

dtKK PD 2.0 . (26)

3 Calibration 47

The controller that drives the top wall reacts much slower and it occurs no

overshoot of the wall displacement during compaction, which could compact the

material and affect the soil stiffness. The force on the top wall and the

corresponding strain is measured and used to determine the stiffness of the

material. The assembled sample of the oedometer test in the DEM is shown in

Figure 28.

Figure 28: A cut view of the DEM model of the oedometer test with a colour

coding of the vertical stress in Pa.

The oedometer test is done using a loose sample under dry conditions for the

simulations as well as for the lab tests. The test is mainly used to determine the

particle stiffness for the DEM by fitting the bulk stiffness of the oedometer test,

where the lowest possible particle stiffness is preferred. The reason for a low

particles stiffness is the related time step, which increases with smaller stiffness

and thus less computation time is needed.

The stiffness of a granular material depends mainly on the structure of the soil

skeleton and is independent of the particles weight for the case of a static load.

Thus, it is possible to artificially increase the density of the particles and decrease

the gravity, such that the overall stress state is the same. Due to the increased

density of the particles, the system reacts slower and the time step can be increased.

This technique is called mass scaling and is just applicable as long as it is a

quasistatic simulation.

3.5 Calibration Results

The three calibration tests reveal parameters for the interparticle contacts to be able

to model the strength and the stiffness behaviour of the investigated Schwarzl UK4

sand. For the calibration procedure, the Hertzian normal contact, a modified

48 3 Calibration

tangential history model and a modified version of the EPSD2 rolling model of

LIGGGHTS are used and result in the interparticle parameters listed in Table 2.

Table 2: Particle parameters for Schwarzl UK4 sand

Young’s Modulus 0.8 GPa (8∙108 Pa)

Poisson’s ratio 0.3

Coefficient of restitution 0.1

Coefficient of friction 0.6-0.7

Coefficient of rolling friction 0.4-0.5

With these particle parameters, the angle of repose experiment results in an angle

of about 33° ± 1°. The direct comparison of the simulation and the experimental

result can be seen in Figure 29. There is a good agreement in the shape of the pile

that is created by pouring the material, where the angle of the slope corresponds to

the critical internal friction angle of the material.

Figure 29: Angle of repose from experiment (top) and simulation (bottom)

The simulation of the triaxial shear test confirms the critical friction angle of about

33° and the comparison of the stress-strain relationship during the shear phase

gives additional information on the soil stiffness. A secant stiffness modulus can

be determined that defines the stress-strain relation of the material at primary

loading and depends on the mean normal stress. The value of this modulus is

3 Calibration 49

determined by a secant through the point at 50 % of the peak strength and is

therefore also dependent on the initial void ratio. The comparison of the stress-

strain curve of the triaxial shear tests for lateral stresses of 100, 150 and 200 kPa

is shown in Figure 30. The stress strain curve at 100 kPa confining stress reveals

that the critical and the peak strength of the material as well as the secant stiffness

modulus can be well modelled in the DEM. The lab tests for 150 kPa and 200 kPa

differ from the DEM simulations in stiffness for 200 kPa and in strength for 150

kPa. Nevertheless, to prove the correctness of the DEM results, the shear stress

over the mean normal stress is plotted in Figure 31. The black lines represent the

critical state friction angle of 32° and the peak friction angle of 35°. The peak value

of each triaxial test is marked with a point and the critical state value with a square.

It is noticeable that the critical state strength illustrated by squares fits almost

perfect on the line of 32° friction angle for the DEM results. Furthermore, the peak

strength that are marked by points fits on a 35° friction angle. Whereas, the lab

tests reveal a reduced strength for the 150 kPa test. Even though, the DEM results

of the triaxial test differ partially from the lab tests, they fit very well to the

theoretical assumptions.

Regarding the triaxial tests, it can be seen that the DEM is also able to model the

strength softening after the reaching peak strength. A difficulty of the model is the

creation of a certain void ratio, which has to be done during the insertion phase.

The problem is that there will be always some settlements that will change the

desired void ratio. Therefore, the secant stiffness modulus can differ from the lab

results due to inaccuracies in the initial void ratio.

50 3 Calibration

Figure 30: The stress strain curve of a triaxial test from lab experiments and

from DEM simulations for a confining stress of 100, 150 and 200

kPa.

Figure 31: The stress path of a triaxial test from lab experiments and DEM

simulations.

3 Calibration 51

The results of the oedometer test show that the hardening behaviour of the sand

can be well modelled, but the settlements after unloading are much smaller in the

simulations than in the experiments. This behaviour is most probably caused by

the elastic behaviour of the contact model, which is necessary for a stable

simulation. In Figure 32 the stress strain is curve plotted for the oedometer test.

The results from the DEM simulation are in good agreement with the lab results

for the primary loading path until 320 kPa. The increasing stiffness of the soil due

to compaction is obtained in the DEM simulation but the amount of compaction is

less than in the lab test. Thus, the DEM code is not able to model the unloading

behaviour of the soil with its original contact models.

This issue is negligible for the case of a constant driven probe, where no unloading

appears. However, in the dynamic penetration process, an unloading is present

after each stroke. For the dynamic penetration, the lower compactibility of the

material will result in large rebounds after each stroke. Therefore, a lot of work

was invested in developing new contact models, especially for the rolling

resistance, see chapter 2.

Figure 32: Stress strain relation from the oedometer test.

52 4 The Penetration Model

4 The Penetration Model

Three simulation models were developed to investigate the performance of HP3. A

quasistatic cone penetration test was used to determine an approximate resistance

and to study the influence of Martian gravity on the penetration resistance. A

simplified model of a wall that penetrates with a prescribed velocity was used to

determine the influence of an upscaled particle size and to investigate the soil

behaviour under cyclic loading. The upscaling of the particle size is realised by a

shift of the particle size distribution to larger particle sizes, where the relative

distribution is unchanged. The final simulation is a fully coupled model that

simulates the hammering mechanism as well as the soil response. For this purpose,

the driving mechanism of HP3 needs to be modelled and coupled with a model of

the probe inside the test bed.

The dynamic penetration process of HP3 is driven by the hammering mechanism

consisting of a hammer mass and a suppressor mass, as well as connecting springs.

This mechanism has to be implemented in the simulation, because the generated

force profile of each stroke cycle is dependent on the soil response. Therefore, the

masses of the casing, hammer and suppressor are modelled out of particles with a

diameter of 5 cm and connected by the fix spring command of LIGGGHTS to

represent the assembly in Figure 33.

Figure 33: Hammer mechanism: Suppressor mass (green), Hammer mass (red)

Casing (blue)

The force spring that connects hammer and suppressor mass is much stiffer than

the brake spring that connects the suppressor mass to the casing. The exact values

are listed in Table 3.

4 The Penetration Model 53

Table 3: Mechanism parameters

Parameter Description Value for HP3

hammerm Hammer mass 110 g

pressormsup Suppressor mass 460 g

gcam sin HP3 casing mass 300 g

forcek Stiffness of force spring 6222 N/m

brakek Stiffness of brake spring 73 N/m

In the initial position, the break spring is pre-compressed to a length of 52.35 mm,

whereas its uncompressed length is 108 mm. The fully compressed length of the

break spring is 29.35 mm and thus it has a spring deflection of 23 mm. The force

spring gets fully compressed at each stroke cycle to a length of 20 mm, whereas

the uncompressed length is 35 mm. The free flight distance of the hammer mass is

15 mm at the point of release.

In the DEM model, the complete mechanism is modelled out of 4 particles, where

two particles represent the casing and the other two particles represent the hammer

and the suppressor mass, see also Figure 34. The hammer and the suppressor mass

are integrated only in z-direction by implementing a fix nve/z command. The two

particles representing the casing are connected by the fix rigid command with an

integration in the vertical z-axis. The velocity of the casing particles is computed

and applied to a body of the penetrator that is inserted in the soil model. While the

penetrator body is pushed forward through the soil, the resistive force on the

penetrator is computed and applied back onto the particles that represent the casing

mass. In this way, the simulations of the soil penetration and the hammering

mechanism are coupled to simulate the dynamic penetration process of HP3.

54 4 The Penetration Model

Figure 34: Implementation of the hammering mechanism in LIGGGHTS

The used DEM code allows for parallel processing, where the complete simulation

domain will be divided in subdomains. Each subdomain is solved by a single

processing unit. An overlap of the subdomains is necessary to compute the

interaction between them. For the dynamic penetration model, the allocation of the

domains for the central processing units (CPUs) should be selected with care. The

penetrator body should always be in the same CPU domain as the particles of the

hammering mechanism, otherwise errors may occur and lead to wrong results.

That is why, this simulation should use an allocation of the CPU domains in

horizontal direction with an uneven number of processor units for each direction.

In this way, the centre of the domain is always computed by a single processor

unit.

4.1 Simulation preparation

The HP3 penetration tests at DLR in Germany are performed in a cylindrical

chamber with a radius of 40 cm and a height of 5 metres. In order to have a feasible

representation, the simulation model has the same radius but is limited in the

vertical height. The bottom in the simulation model is more than 30 cm away from

the tip of the penetrator to avoid reflections or the creation of single force chains

directly to the bottom. For the soil above the penetrator, the model uses a layer of

particles atop of the probe to reproduce the overburden pressure in different depth.

Therefore, the weight of the material above the investigated domain is calculated

and assigned to the particles of the top layer. Furthermore, the soil model is

subdivided in 4 domains in radial direction with larger particles in the outer

domains to reduce the total amount of particles in the simulation. The smallest

particles are used in the core of the simulated soil domain, where the interaction of

the penetrator and the soil takes place.

4 The Penetration Model 55

In Figure 35 is a picture of the soil domain from side and bottom view, where the

particles of each domain have a different colour. It can be seen that there is no

large interpenetration of the subdomains, which is desired to avoid a mingling of

the particle size distribution. Therefore, frictionless walls separate these

subdomains in the beginning until the particles are settled. The particle scale of

each subdomain is in the range of 1.2 to 1.5 times the neighbouring subdomain,

whereas larger differences in the particle scale would cause too much

interpenetration of the subdomains and a poor transfer of stresses at the subdomain

boundaries.

Figure 35: The subdivided soil domain with different coloured particles to

highlight each subdomain (left: sliced side view, right: bottom view)

The skin size for the generation of the neighbor lists is set depending on the largest

particle radius of the core domain. This reduces the amount of neighbouring

particles and accelerates the computation, see chapter 2.7. The outermost

cylindrical wall and the bottom wall have a friction value for sliding of 0.3 and for

rolling of 0.1. The overburden particles have no friction at all and the penetrator

has a coefficient of friction for sliding of 0.3, whereas no rolling resistance is

applied. The rolling resistance between particles and the penetrator is ignored

because of the small contact area between the grains and the smooth penetrator

surface. The interparticle parameters are determined by the calibration procedure

that is described in chapter 3.

4.2 Validation of particle size scaling for the

penetration simulation

The usage of a scaled particle size instead of the real grain size is common for

geotechnical applications in DEM (Falagush et al. (2015), Ciantia et al. (2016),

Butlanska et al. (2014)). The upscaling of the particle size is used to reduce the

total amount of particles and needs to be validated for each model on its own. In

the simple element tests (e.g. triaxial shear test, oedometer test), where the stress

distribution is homogeneous, the scaling of the particle size has less influence than

56 4 The Penetration Model

in a cone penetration test with local deviations of stress. In the case of simulations

where the stress is locally induced into the soil, the upscaling should be used with

caution.

In geotechnical research, it is known from experiments that particle size

distribution has an influence on the penetration resistance of a cone penetration.

This is mostly caused by the difference in the void ratio and stiffness, but less

attributed to the particle size itself. Bolton et al. (1999) did investigations on the

effects of different cone diameters on the penetration resistance in Leighton

Buzzard sand. Different cone diameters B of 19.05, 10 and 6.35 mm were

investigated to determine the grain size effect using the same material at same

relative density. The results shown in Figure 36 reveal no particle size effect for

tests on a sand (d50: 0.225 mm) using cone diameter to mean grain size ratios of

85, 44 and 28. However, for medium sized particles (d50: 0.4 mm) the ratios of

cone diameter to grain size of 48 and 25 result in a similar resistance, whereas for

the ratio of 16 the resistance is slightly higher but within acceptable limits. For the

large particles (d50: 0.9 mm), the influence of the grain size becomes more

pronounced for the B/d50 ratio of 7, but is still negligible in comparison to the effect

of void ratio on the penetration resistance.

4 The Penetration Model 57

Figure 36: Grain size effects in Leighton Buzzard sand: (a) fine particles; (b)

medium and coarse particles. Normalized cone resistance over

Normalized depth (Bolton et al. 1999).

The increase of penetration resistance with smaller B/d50 ratio would cause an

inaccuracy that decreases the penetration rate of a dynamic penetration simulation.

Thus, the results are on the conservative side by underestimating the penetration

rate of HP3.

Several simulations of cone penetration tests with constant velocity are evaluated

to investigate the effect of particle size scaling in the DEM. These simulations

differ from the experiments of Bolton et al. (1999) in so far as the particle scale is

increased and the penetrator diameter is kept constant. Thus, the larger particles

have more weight than the small scale particles to obtain the same density and the

same stress state. The stiffness of the particles is also changed at upscaling due to

58 4 The Penetration Model

the radius dependent stiffness of the Hertz model. Thus, the same stiffness

behaviour in the macroscale is obtained.

Two different models were used for the investigations of particles size effects on

the penetration resistance. A model using large particle size scales in the range of

20 to 50 and a model for small particle size scales in the range of 5 to 20 are

investigated. The penetration rate for the simulations is 1 cm/s for the small scale

model and 10 cm/s for the large scale model, where the penetration rate in a dry

cohesionless sand has a minor influence on the penetration resistance until the

particles inertia gain impact on the resistance. This was also identified from the

experiments by Bolton et al. (1999), where cone penetration tests with penetration

rates of 2.5 mm/s and 20 mm/s were performed in a dense dry specimen without

noticeable deviations in the resistance.

The particles for the overburden pressure are not applied for the quasistatic cone

penetration models. The bulk density after gravity loading is about 1450 kg/m3

with a grain density of 2720 kg/m3. The particles’ Young’s modulus is 0.8 GPa

and the Young’s modulus of the penetrator and the confining walls is 21 GPa. The

Poisson’s ratio is set to 0.3 and the coefficient of restitution for damping is 0.1,

where no distinction between particles and walls is made.

The penetration simulations using a large scaling of the particle size are modelled

in a test chamber with 40 cm diameter and a depth of 75 cm. The total penetration

depth for these simulations is 55 cm, where the penetrator tip dips into the material

after 5 cm. Thus, the effective penetration depth is about 50 cm. The chamber is

radially subdivided in cylindrical domains with larger particle scale outwards (see

Figure 35), as explained already in chapter 4.1. The interparticle friction

parameters are 0.6 for sliding and 0.4 for rotation. The particle-wall friction

coefficient for sliding is 0.3 and for rotation is 0.1, whereas the particle-penetrator

friction coefficient for sliding is 0.3 and for rotation is 0.0. The rolling resistance

between particles and penetrator is negligible because of the small contact area

between the grains and the curved shape of the penetrator casing. The investigated

scale sizes are 50, 30, 25 and 20 with penetrator diameter to mean grain size B/d50

ratios of 1.2, 2, 2.4 and 3, respectively.

The particle displacement profiles in Figure 37 show the areas of displaced

particles. The limited colour range may be exceeded, wherefore the red coloured

particles are displaced 5 mm or even more. It can be seen that for the smaller

particle size, the area of displaced particles is smaller, whereas the penetration

resistance is not directly related to this. The penetration resistance shown in Figure

38 reveal a converging of the resistive force with a particle scale of 30 and lower.

Small deviations are attributed to irregularities of the soil structure, as it is in real

soils. The scattering of the actual resistive force becomes less with smaller

particles due to a more homogeneous stress distribution. The differences in

resistance from a particle scale of 30 and 20 is below 10 %. Thus, a penetration

4 The Penetration Model 59

simulation using a particle size that is scaled by the factor of 30 yields already well

approximated results with respect to the penetration resistance. The deformations

in the soil due to the penetration has a more extensive effect for the coarse-grained

simulation, when comparing the particles displacements of particle scale 20 and

30.

Figure 37: Comparison of particles displacements in m for different particle

scales after 20 cm and 40 cm of penetration

60 4 The Penetration Model

Figure 38: Comparison of the penetration resistance using different scale sizes.

The simulation of the whole test chamber with a scale of particle size lower than

20 would take too much computation time. Therefore, a small scale model of a

wall that penetrates into a small soil specimen is used to investigate the influence

of the particle scale on the penetration resistance and the soil behaviour. The shape

of the wall from a side view corresponds to the shape of the HP3 penetrator. The

investigated particle scales are 20, 15, 10 and 5 which correspond to B/d50 ratios

of 3, 4, 6 and 12. For the small scale model the total penetration depth is 5 cm. The

particle parameters are similar to those from the large scale model.

The comparison of the areas of mobilised particles using different scales of the

particles size is given in Figure 39. It can be seen that the areas of similar particle

displacements are almost the same, where the exact shape of these areas becomes

clearer with smaller particle scale. This means that in all simulations the same

amount of particle volume needs to be pushed in a similar way to penetrate in. A

similar rupture plane and a good agreement in the resistive force with different

particle scales validate the coarse-grained model.

4 The Penetration Model 61

Figure 39: Comparison of the particles displacements in m after 5 cm

penetration using different particle scales.

The penetration resistance for all simulations of different particle scales are

displayed in Figure 40. The simulations using larger particle scales reveal a larger

scattering in the resistive force, but the mean value corresponds well in all

simulations. At the beginning of the penetration, the resistive force of the larger

scaled models increases a bit faster due to the larger particles that need to be

mobilised right from the beginning.

62 4 The Penetration Model

Figure 40: Comparison of the resistive force during the penetration of the wall

at different particle scales

4.3 Simulation of quasistatic cone penetration tests

The quasistatic cone penetration test is an ideal model to evaluate the influence of

the soil parameters such as relative density, particle friction and gravity on the

penetration resistance. The procedure of a cone penetration test is already

explained in the previous chapters. Briefly summarised, a probe penetrates into the

sand under a constant velocity, while the resistive force is measured. The

penetration rate for the simulations is 10 cm/s in vertical direction, unless

otherwise specified. The penetrator drives centrically into the cylindrical soil

specimen. The interface friction between the penetrator and the soil is 0.3 for

sliding, whereas no rolling resistance is assumed in the interface due to the smooth

surface of the penetrator. Different gravitational constants, soil parameters and

densities are investigated and the influence on the resistance is analysed. There is

no overburden pressure applied for the quasistatic penetration. The particles’ radii

are scaled by a factor of 25.

The influence of the penetration rate on the resistance is shown in Figure 41. The

density in this simulations is about 1485 kg/m3 and corresponds to a void ratio of

0.83, which is a loose packing. The tangential friction parameter is 0.6 and the

coefficient of rolling resistance is 0.3. It can be seen that the penetration resistance

is little affected by penetration rates less than 1.6 m/s for a penetration depth up to

0.3 m. At a depth of 0.3 m, the asymmetric stress distribution results in a varying

4 The Penetration Model 63

resistance. The penetrator is only moved vertically and cannot compensate a non-

uniform stress distribution, see Figure 42. If an additional integration of the

penetrator’s motion in the horizontal plane is considered, it could compensate the

unilateral stress and thus result in a more unique resistance.

At a fast insertion of 4 m/s the resistance increases more significant right from the

beginning. At such fast insertion rates, the inertia force of the particles and

probably the damping in the normal contact begin to have an impact on the

resistance. Bolton et al. (1999) found by experiments in dry sand that penetration

rates of 0.25 cm/s and 2 cm/s yield almost the same resistance, where faster

insertion rates were not studied. In the simulation model, much higher penetration

rates are investigated. The negligible effect of the penetration rate holds only for

dry sand, whereas in saturated sand the fast insertion can produce excess pore

water pressure depending on the permeability of the material.

Figure 41: Comparison of penetration resistances at different insertion rates for

quasistatic penetration.

64 4 The Penetration Model

Figure 42: Von Mises Stress in Pa. The influence of fabric anisotropy on the

stress distribution, if the penetrator is not integrated in x- and y-

direction.

The comparison of the DEM simulations to laboratory results is plotted in Figure

43. The lab results of the cone penetration are taken from Lichtenheldt et al. (2014).

They carried out several penetration tests in the 5 m testbed at DLR and determined

a mean value and a confidence interval of the measurements. In difference to the

DEM simulations, the results from the lab tests are solely the tip resistance without

the shaft friction. Therefore, the frictional force is subtracted from the total

resistance. Two DEM simulations for Earth gravity and a bulk density of 1430

kg/m3 with a void ratio of 0.9 were done applying different interparticle friction

parameters. The Friction0604_density1.43 denoted data had a coefficient of

friction of 0.6 and a rolling resistance value of 0.4. The Friction0705_density1.43

denoted data had a coefficient of friction of 0.7 and a rolling resistance value of

0.5 instead. An additional simulation under Martian gravity with a friction

coefficient of 0.6 and a rolling resistance of 0.4 is denoted by marsgrav, where a

density of 1453 kg/m3 was achieved. The simulation using the lower friction values

in Earth gravity fits almost into the confidence interval of the measurements, where

it has to be considered that without the shaft friction, which is about 10 % of the

total resistance, the data would fit even better. A simulation with a perfectly

smooth penetrator surface would not only ignore the shaft friction, but also affect

the tip resistance. Therefore, the shaft or the tip resistance cannot be identified in

particular. The simulation using the larger friction parameters is completely

outside of the confidence interval. From the penetration simulation in Martian

gravity it can be obtained that the penetration resistance is decreased significantly

4 The Penetration Model 65

due to the lower stress level in the soil. This of course has an impact on the

penetration performance of HP3 and needs to be considered.

Figure 43: The cone resistance in kPa from DEM simulations compared to the

tip resistance of cone penetration test in the 5 m testbed at DLR

from Lichtenheldt et al. (2014).

4.4 Simulation of dynamic penetration of HP3

The heat flow and physical properties probe (HP3) of the NASA InSight Mission

is able to penetrate itself into a granular material by an implemented hammering

mechanism. This driving mechanism is modelled separately above the soil

specimen in the DEM simulations. The generated driving force depends on the soil

response, wherefore the simulation of the hammering mechanism is directly

coupled with the penetrator model in the soil specimen. The setup of the simulation

can be seen in Figure 44. The coupling between the driving mechanism and the

penetrator is done by an exchange of velocity and force. Therefore, the velocity of

the blue coloured particles for the casing is computed and applied to the penetrator

in the soil, while the force that acts on the penetrator body is applied back to the

blue particles. Furthermore, rotations of the penetrator are permitted to avoid

artificial bracing of the penetrator in the soil. It was observed from simulations

with a locked rotation of the penetrator that directional force chains arise at the tip

and the back end and generate a torque. These forces would usually cause a rotation

of the penetrator, whereas for a rotational locking these forces increase the

horizontal stress and thus the shaft friction is increased.

66 4 The Penetration Model

Figure 44: The model of the hammering mechanism above the soil domain.

The hammer mass in red, the suppressor mass in green and the

casing in blue.

The domains of different particle scales are obvious, where no intermixing of

particles between these domains occur, see also chapter 4.1. The smallest particle

scale is used in the centre, where the interaction of penetrator and soil takes place.

The overburden pressure is applied by the particle layer that lies on the soil. The

penetrator is pushed into the material with a velocity of 0.5 m/s to obtain the initial

setup for the hammering action. As soon as all oscillations disappeared, the

simulation of the hammer strokes begins. Therefore, the corresponding springs are

applied to the particles and accelerate them.

The penetration rate per stroke cycle is about a few millimetres, which is quite

small in comparison to the particles’ size. The standard contact models for friction

and rolling resistance behave highly elastic for small deformations, which leads to

incorrect results at unloading after each penetration stroke. Hence, it was necessary

to develop a new contact model that allows for plastic deformation even for small

displacements. An improved contact model for tangential friction and rolling

resistance was developed within this work and is explained in more detail in

chapter 2.5. The main feature of the improved contact model is the plastic

displacement of particles right from the beginning of the shear or roll motion. The

model could not yet be used for the simulations due to a discontinuity in the

moment. The problem of the discontinuity appears only in the three-dimensional

case and lead to an unstable behaviour of the particles. Therefore, only slightly

modified versions for sliding friction and rolling resistance were applied. Those

4 The Penetration Model 67

models have a limited damping and the current resistive value results from the total

deformation and is not based on the resistance of the previous time step.

The DEM model of the HP3 penetration provides information on the penetration

resistance and the performance of the driving mechanism. The penetration

resistance depends on the void ratio of the soil, the interparticle friction parameters,

the stress level and the penetration rate. Whereas the performance of the driving

mechanism depends on the resistance against the penetration and the shaft friction

at rebound. The shaft friction is necessary to prevent the probe from a backwards

motion.

It was observed from the simulations that depending on the penetration rate

different soil failure mechanisms appear. Either the penetrator begins to open a

cavity by pushing the material sideways or the penetration strokes compact the soil

beneath the penetrator, causing a punching in of the penetrator. The different

penetration types can be identified by the penetration resistance profile. In the case

of a cavity opening, the penetration occurs under a more or less constant resistant

force, whereas a linear increasing resistant force with penetration indicates a

compaction in front of the penetrator. The results of a simulation of 3 dynamic

stroke cycles are shown in Figure 45. Each stroke cycle consists of a major stroke

by the hammer mass at the beginning, followed by some minor strokes of the

hammer mass and a stroke of the suppressor mass. The first strokes by the hammer

mass are marked in the plots. The rebound after the strokes varies between the

cycles, where in the third stroke cycle it can be seen that after the large rebound of

the first stroke, the second stroke of the suppressor mass penetrates even more.

This is possibly caused by a loosening of the material due to the large unloading.

From the force displacement profile at the bottom of Figure 45 different

penetration types can be observed. The third stroke increases linearly from 40 N

up to a resistance of 110 N and indicates thus a structural compaction owing to this

stroke. The second stroke instead penetrates at a more or less constant resistance

of 60 N, which indicates a cavity opening in front of the tip.

68 4 The Penetration Model

Figure 45: Simulation results of 3 stroke cycles. The tip displacement at the top

and the force displacement curve on the bottom.

A snapshot of the particles’ displacements at the point of maximum penetration

during the first hammer stroke is shown in Figure 46. The red coloured particles

may exceed the displacement of 0.1 mm. It is obtained that the displacements in

the soil propagate more horizontally than vertically over time. The largest

displacements appear in the direction of the surface normal of the tip. It would be

preferred to have less impact on the soil structure in front of the tip to avoid an

increase of the tip resistance by compacted soil in this area. The induced stress by

the first hammer stroke is illustrated in Figure 47 and Figure 48 for the vertical and

the horizontal stress. For this purpose, a snapshot of the corresponding stress was

taken before the hammer stroke appeared and is subtracted from the stress at the

time step where the hammer stroke is acting. Figure 47 illustrates the induced

vertical stress at the time step just after the impact of the hammer mass. It can be

seen that the induced stress spreads from the tip conically into the ground. The

vertical stress at the shaft is reduced instead. A similar plot of the horizontal

induced stress at the time of the first hammer stroke is given in Figure 48. The

4 The Penetration Model 69

horizontal stress propagates laterally from the tip, whereas a reduction of the

horizontal stress appears below the tip and at the cone shoulders. A validation of

the horizontal stress distribution at the moment of the stroke was done with an

axisymmetric FEM model of the penetration in PLAXIS, see Figure 49. In the

FEM simulation a prescribed displacement of 1 mm was applied to the penetrator

and the dynamic response of the soil was investigated. For the interface, a strength

reduction factor of 0.8 was used. The used soil model was the Hardening Soil

Model with small strain stiffness. The friction angle is 31° and the E50
ref stiffness

is 10 MPa, whereas the un-/reloading stiffness is 30 MPa. A dry density of

1500 kg/m3 with a void ratio of 0.7 was used. All other parameters were chosen

based on experience. The values in Figure 49 range from a tensile stress of 2 kPa

in blue to a compressive stress of -35 kPa in red. White coloured zones exceeded

the colour range. The stress distribution from the FEM simulation confirms the

results from the DEM simulation. A reduced horizontal stress in front of the tip

and at the cone shoulders is obvious. The increased horizontal stress lateral from

the cone tip is also present in the FEM simulation.

Figure 46: The particles‘ displacements in m due to the first stroke of the

hammer mass.

70 4 The Penetration Model

Figure 47: The induced vertical stress in Pa at the time of the first hammer

stroke. The maximum values exceed the colour range.

Figure 48: The induced horizontal stress in Pa at the time of the first hammer

stroke. The maximum values exceed the colour range.

4 The Penetration Model 71

Figure 49: Effective radial stress in kPa from a FEM simulation in PLAXIS.

The dynamic penetration was also investigated in different depth. For this purpose,

the overburden pressure was adjusted to produce a stress level in the soil that

corresponds to different depth. From the resistant force during the first hammer

stroke in Figure 50 an increase of the resistance with depth is obvious. The

resistance ranges from 100 N to about 220 N for 1 m of overburden to 4 m of

overburden. Furthermore, an increase of the shaft friction during the rebound of

the probe is observed. The shaft friction at rebound ranges from about 10 N to

almost 50 N.

72 4 The Penetration Model

Figure 50: Resistant force due to the first hammer stroke in different depth.

For the validation of the dynamic penetration simulation, the known penetration

rates from lab tests at DLR and other simulations of the HP3 penetration were used

for comparison. Similar simulations of the HP3 penetration were performed by

Lichtenheldt et al. (2016) and revealed displacements of about 2 mm per stroke

cycle in a depth of 1 m. The corresponding results in Figure 51 show the

displacement profile from a DEM simulation compared to results from a one

dimensional multi body simulation (MBS) and measurements from lab tests. In

comparison, the second stroke cycle from the simulation results in Figure 45

yielded a similar penetration of about 2 mm. In contrast, the first and the third

stroke cycle penetrate only about 1 mm during a full loading cycle. The large

rebounds after each stroke indicates that the simulation of the dynamic penetration

has some inaccuracies that can be traced back to the elasticity in the contact

models. All the elastic behaviour of the particle structure is a result of the

elasticities in the contact models, since no other elastic behaviour is defined within

the code.

4 The Penetration Model 73

Figure 51: Displacements of HP3 during a stroke cycle from a DEM

simulation, a 1D multi body simulation (MBS) and from

measurements of lab tests. The penetration was performed in 1 m

depth. Lichtenheldt et al. (2016)

The penetration rate per stroke cycle from the lab tests is determined as a mean

value of a few penetration cycles. Owing to the fact that the penetration rate is

determined by optical measurements of points on the trailing cable, the precision

is too inaccurate to obtain the real penetration curve of each stroke cycle. The

penetration rate from a full penetration of about 6000 stroke cycles is given in

Figure 52. With the fact that a stroke cycle appears every 3.6 s, a mean value for a

single stroke cycle can be determined. In the beginning of the measurements, HP3

penetrates with a rate of about 2 mm per cycle, whereas in the depth between 3 to

4 m the penetration rate decays. At a depth of 4 m, the penetration per cycle is

reduced to a value of about 0.13 mm. The reason for the decay of the penetration

performance is not clarified yet. It is known from lab tests in the 3 m sample that

the penetration is not affected by approaching the bottom. Therefore, the tip

resistance or the shaft friction must have changed somehow. A certain shaft

friction is necessary for the hammering mechanism of HP3 to absorb the rear-

facing force of the suppressor mass. Thus, a reduction of the shaft friction may

reduce the penetration rate. The reduction of the shaft friction in dynamic installed

piles can appear and is known as friction fatigue. The phenomenon of friction

fatigue is explained in more detail in chapter 5.5.

74 4 The Penetration Model

Figure 52: Measured penetration rate of HP3 plotted over time from DLR

laboratories and penetration curves of constant penetration rates. A

stroke cycle appears every 3.6 s.

4.4.1 Plane strain model with prescribed displacements

The plane strain model of a wall penetration is used to obtain the influence of the

hammering action onto the soil deformation. Therefore, a wall with a profile of the

probe penetrates into a 20 cm wide, 4 cm thick and 12 cm high particle domain.

Periodic boundaries are used in the x-direction with a domain thickness of 4 cm.

The periodic boundary inserts the particles that leave the domain at the opposite

boundary. Thus, the horizontal stress in x-direction is the same at the boundaries

and a plane strain condition is produced. The wall penetrates into the domain with

a prescribed velocity. Therefore, the velocity profile of a stroke cycle was

determined first by a dynamic simulation of the HP3 penetration. The velocity

profile and the corresponding displacement of the probe can be seen in Figure 53.

The movement of the wall in the horizontal direction is locked.

4 The Penetration Model 75

Figure 53: The vertical position of the penetrator from a 3D simulation of a

hammer cycle at the top and the corresponding velocity at the

bottom.

For the preparation of the initial condition, the wall penetrates the first 5 cm with

a constant velocity of 1 cm/s into the soil domain. After the insertion is done, the

velocity profile of 10 dynamic stroke cycles is applied. The dynamic penetration

phase causes about 3 cm of settlements. The soil deformations due to the dynamic

cycles is observed.

The plane strain model allows to reduce the soil volume and thus the particles’ size

can be reduced. The model is no representation of the HP3 penetration but the soil

deformations are comparable. Furthermore, relative comparisons between

quasistatic and dynamic penetration can be drawn.

The particles displacements in Figure 54 reveal that the particles are dragged

downwards with the penetrator.

76 4 The Penetration Model

Figure 54: The particles displacements after a few stroke cycles.

The comparison of the influence of a dynamic and a quasistatic penetration is given

in Figure 55. Therefore, a model of a quasistatic penetration with a rate of 1 cm/s

and a total penetration depth of 8 cm is used as a reference. In the end of the

quasistatic penetration, the penetrator is kept in its final position for a time to get

rid of time dependent effects.

At the top of Figure 55, a checked pattern out of different coloured particles is used

to obtain the volumetric deformations from 3 cm of penetration. Therefore, the

particles are coloured with two different colours in the shape of a regular mesh at

5 cm of penetration. The mesh gets distorted due to further penetration up to a

depth of 8 cm. The lower level of the free surface and the more compacted mesh

at the tip and the cone shoulder reveal a higher compaction of the soil due to the

dynamic penetration than for the quasistatic one.

The corresponding displacements of the particles can be seen in the centre of

Figure 55. It shows up that the particles near the penetrator are displaced more in

the case of the dynamic than in the quasistatic penetration. This displacements are

restricted to particles close to the penetrator. The particles in far distance from the

penetrator are displaced to the same extend for the dynamic and the quasistatic

penetration. This is also an indication for a higher compaction due to the dynamic

penetration. The dynamic oscillation of the penetrator leads to a drop of particles

4 The Penetration Model 77

from above, which means that the particles are not just pushed sideways but also

dragged downwards.

The Von Mises stress of the particles is shown at the bottom of Figure 55. The

plots show the stress due to the initial filling phase and the complete penetration.

It is obtained that the cyclic motion of the dynamic penetration reduces the stress

near the penetrator. In the case of the quasistatic penetration, horizontal force

chains are produced and clamp the penetrator. The reduced stress at the dynamic

penetration can be feasible only with a concurrent compaction of the soil. This

result confirms the assumption of the higher soil compaction at the dynamic

penetration. The reduced horizontal stress results in a reduction of the shaft friction

whereby the axial bearing capacity gets reduced due to the dynamic penetration.

This was also found by investigations of the Deep Foundation Institute DFI (2015)

on the bearing capacity of vibratory and impact driven piles. The focus of this

investigations was on axially loaded piles, where the vibrated piles had about 80 %

of the capacity of impact driven piles.

The total resistance for the dynamic and constant driven wall is plotted in Figure

56. The maximum resistance of the dynamic driven wall exceeds the resistance of

the constant driven wall only slightly, if the first stroke at 0.05 m depth is

neglected. The resistance during the second stroke by the suppressor mass is below

the resistance of the constant driven probe. This is possibly caused due to the

unloading of the first stroke that loosens the soil.

The main difference in the dynamic driven case is that after each hammer stroke

the wall moves a bit upwards and relieves the soil. As a result, the stress in front

of the penetrator tip is reduced. Furthermore, due to the cyclic motion of the wall

in the dynamic case, the material gets more sheared and thus more compacted near

the wall.

78 4 The Penetration Model

Figure 55: The deformed soil domain at the top, the particles displacements in

m at the centre and the Von Mises stress of the particles in Pa at the

bottom.

4 The Penetration Model 79

Figure 56: The resistance of the dynamic and constant driven wall. The

dynamic penetration begins at 0.05 m depth.

80 5 A Pile Drive Model implemented in Matlab

5 A Pile Drive Model implemented in
Matlab

The pile drive model in Matlab is developed to determine the influence of different

tip and shaft resistance on the performance of the hammering mechanism.

Therefore, the hammering mechanism is modelled by a multi-body system using

spring-dashpot and collision contacts. The outer casing of the penetrator is

subdivided in many elements to apply different shaft resistances over the length of

the penetrator. In Figure 57 is a sketch of the penetrator model, where the collision

contacts are defined between the hammer mass m13 and the tip mass m12 as well as

between the suppressor mass m14 and an element of the penetrator’s shaft m8. The

shaft elements, the tip and the rear end are connected by stiff springs representing

the material stiffness of the penetrator. The soil model is a spring-dashpot

connection between the penetrator elements and a fixed point, where the spring

characteristics allows irreversible displacements as soon as a maximum resistance

is reached.

Figure 57: Sketch of the soil and the penetrator model

The pile drive model is based on the work of Smith (1962). The difficulty for this

way of simulation is the determination of the resistive force acting on the tip and

the shaft of the penetrator during the hammering strokes. The determination of an

approximated tip resistance has been presented in Poganski et al. (2016) and will

be explained in the next chapter.

5 A Pile Drive Model implemented in Matlab 81

5.1 An analytical approach for the penetration

resistance

The penetration resistance can be divided in a tip resistance and a shaft friction.

Both are acting against the penetration of the probe. The approach that is used for

the estimation of a penetration resistance is the bearing capacity of foundations.

The tip resistance can be calculated based on Terzaghi’s (1943) theory for a

bearing capacity of a flat circular shallow foundation, where this approach is not

valid for the deep penetration. Terzaghi’s equation is usually restricted to a

maximum footing depth of 3 times the diameter of the foundation. This is due to

the fact that in deeper foundation the complete ground heave will not occur.

Instead, the soil will compact locally to accommodate the displaced material.

Nevertheless, Terzaghi’s equation was used as a first approach for the computation

of a tip resistance and a shaft friction. The assumptions that are made for the

bearing capacity by Terzaghi are:

 Dry soil

 No inclination of the penetrator

 Flat tip

 Vertical penetration force

 Horizontal surface

 Horizontally layered soil

 Infinite half space

Under these restrictions the equation for the bearing capacity at the tip of the

penetrator is:

)2(cqoutip cNtNrNAR    (27)

with the radius r and the cross-section A of the penetrator, the soil specific weight

underneath the tip γu, the soil specific weight above the tip γo, the current depth t

and the cohesion c of the soil. The bearing capacity factors Nγ, Nq and Nc can be

determined considering the preceding assumptions as:





 tan

0
sin1

sin1
eNq




 (28)

 tan)1(0 sNN q  (29)

82 5 A Pile Drive Model implemented in Matlab

qqq sNN 0 (30)

cqc sNN)1(cot 0   (31)

, where φ is the friction angle of the soil and sγ, sq and sc are shape factors of the

foundation. The shape factors for a circular foundation and a centric origin of the

force are given by:

7.0s (32)

sin1qs (33)

1

1

0

0






q

qq

c
N

Ns
s (34)

The additional resistance caused by the shaft friction between soil and penetrator

can be added to the bearing capacity at the tip to derive the entire bearing capacity

acting on the penetrator.

The shaft friction can be computed using the Coulomb’s law of friction by

integrating the horizontal acting stress over the shaft area and multiply it with the

coefficient of friction between the penetrator and the surrounding soil. Therefore,

the horizontal stress needs to be known. A first assumption is that the horizontal

stress is about the half of the vertical stress. This is based on the approximation for

normally consolidated soils, where the ratio of horizontal stress σh to vertical stress

σv can be determined by

)sin(1 





v

h (35)

with the internal friction angle φ. A value of 0.5 corresponds to a friction angle of

30°. The vertical acting stress can be determined by the soil load at the depth t

gtv   (36)

with the soil bulk density ρ and the gravitational constant g.

This approximation is not valid anymore during the dynamic penetration, due to

the induced changes in stress by the penetrator, but it is valid for an undisturbed

material at the beginning of the penetration process.

5 A Pile Drive Model implemented in Matlab 83

The resistance due to shaft friction Rshaft is given by the integration of the horizontal

stress over the shaft area Ashaft times the interface friction coefficient µinter.



shaftA

hterinshaft dAtR)( (37)

Since the shaft area is subdivided in many elements, the integration can be

approximated by the sum over all shaft segments:





segmentsn

i

ihisegmentterinshaft tAR
1

,)( (38)

The determination of the real shaft friction force becomes difficult since the

horizontal stress that acts on the penetrator is influenced by the dynamic load

cycles. Experiments on monotonic and cyclic driven piles by Vogelsang et al.

(2017) reveal a friction force at the shaft lower than the prediction from

equation 37 supposing a medium dense packing with a dry density of 1440 kg/m3

and an interface friction coefficient between pile and soil of 0.3.

The penetration resistance for the pile drive model in Matlab increases linearly up

to a defined maximum resistance at which plastic deformation occurs. The

difference from this approach of a resistance force to a more sophisticated DEM

model is shown in Figure 58. The more realistic resistance from the 3D DEM

model increases slightly during penetration, where elastic and plastic deformation

are produced at the same time. However, in the Matlab model elastic and plastic

deformation are separated in time. The elastic part of the resistance in the Matlab

model is necessary to achieve a stable simulation.

84 5 A Pile Drive Model implemented in Matlab

Figure 58: Force-Displacement curve over a stroke cycle. (Poganski et al.

2016)

From DEM simulation it was also observed that the resistance at the second stroke

can be less than from the first stroke. This behaviour is not captured yet in the

Matlab model, so that only a constant maximum resistance can be applied.

5.2 Time Integration

The time domain is integrated by an explicit Euler method:

),(kkk xxfx   (39)

Txxx kkk 


1
 (40)

Txxx kkk   11
 , (41)

where xk denotes the displacement at the calculation step k and ΔT is the time

increment. The time increment is defined by the highest eigenfrequency of the

system and is 10 % of the critical time increment ΔTcrit:

5 A Pile Drive Model implemented in Matlab 85

K

m
Tcrit 




2

2
 (42)

5.3 Application

The simple one dimensional pile drive model is mainly used for a fast computation

of the penetration settlements at different tip and shaft resistances. Therefore, an

arbitrary tip and shaft resistance can be applied to the penetrator. The simulation

will determine the settlements per stroke at different penetration resistances. Thus,

it will reveal the correlation between penetration rate and resistance.

Furthermore, the influence of the ratio between shaft friction and tip resistances is

investigated. Therefore, the value of tip resistance and shaft friction is determined

by previous DEM simulations or approximated by values of penetration resistance

from cone penetration tests. In experiments by Vogelsang et al. (2017) it can be

seen that the maximum resistive force at cyclic penetration is close to the resistance

during a monotonic penetration as long as no friction fatigue occurs. The results

of the dynamic penetration simulation in chapter 4 reveal that the maximum

penetration resistance at cyclic loading depends also on the amount of penetration

per stroke. It is observed that the first stroke of the hammer mass causes larger

settlements and results in a larger resistance than the second stroke of the

suppressor mass.

5.4 Simulation results

The numerical penetration model in Matlab provides information on the

movements of the masses of the hammering mechanism and the penetrating probe.

Thus, the performance of the driving mechanism can be evaluated for different

resistances. The determination of the penetration resistance itself is more difficult

and needs more sophisticated models, such as the DEM model for instance.

The motions of the hammer, suppressor (support) and probe during one stroke

cycle can be seen in Figure 59. The resistance force was determined by DEM

simulations in advance. The acceleration of the hammer mass and the reaction onto

the suppressor mass at the release of the force springs can be observed at the

beginning. After the hammer mass hits the tip, a displacement of the probe of 2 mm

occurs. Then, the hammer mass moves upwards and oscillates with the suppressor

mass. A second stroke due to the suppressor mass is produced after 70 ms. The

total penetration rate of the probe due to one stroke cycle is about 3 mm.

86 5 A Pile Drive Model implemented in Matlab

Figure 59: The relative movements of the tip, the hammer and the suppressor

(support) mass from the Matlab model. (Poganski et al. 2016)

The energy that is transformed from the hammering mechanism into the movement

of the probe during a stroke cycle is shown in Figure 60. The second stroke

accounts for about 20 to 40 % of the total energy, so that the major contribution to

the penetration is given by the first stroke of the hammer mass. The plot shows

also the kinetic and potential part of the total energy. The potential energy of the

springs is first transformed into a kinetic energy of the masses. Then at each stroke,

the kinetic energy of a mass is transformed into a movement of the penetrator. In

the end, there is a bit of energy remaining in the hammering system due to the

preloading of the suppressor mass in its initial position.

5 A Pile Drive Model implemented in Matlab 87

Figure 60: The kinetic energy of the support mass and the hammer mass as

well as the potential energy of the break spring and the force springs

over a full stroke cycle. (Poganski et al. 2016)

The influence of the ratio between shaft friction and tip friction was investigated

by means of the Matlab model. Therefore, a total shaft friction of 1 to 10 % of the

tip resistance were applied, where tip resistance of 80 N, 100 N and 120 N were

investigated. These resistive forces were the result of cone penetration tests down

to 1 m using a DEM model. From Figure 61 it can be obtained that the lower tip

resistance results in a deeper penetration for the first 20 ms but causes also a larger

rebound due to the lower proportional shaft friction. After the rebound happened,

the difference in the total penetration due to the first stroke is only minimal. The

excessive rebound due to a reduction of the relative shaft friction is clearly

observed for all different tip resistances. This rebound opens a cavity in front of

the tip that could collapse and reduce the penetration performance. In the Matlab

model, the cavity stays open and the penetration performance is not impaired.

Hence, if large rebounds occur, the Matlab model cannot represent the real soil

behaviour and results in a too large penetration. The soil deformation and the tip

displacement are given in Figure 62. It appears that the soil only deforms in the

direction of the penetration, whereas at the rebound of the probe the soil is not

affected due to unloading or collapse of the cavity. Thus, the second stroke

generates a deep penetration, without any tip resistance in the beginning until the

tip of the probe strikes the soil.

88 5 A Pile Drive Model implemented in Matlab

Figure 61: The penetration of HP3 due to the first stroke of the hammer mass

for different tip resistance and shaft friction. The shaft friction

ranges from 0.1 to 0.01 times the tip resistance.

Figure 62: The displacement of the probe tip and the deformation of the soil in

front of the tip for a tip resistance of 80 N and a shaft friction of

0.8 N.

5 A Pile Drive Model implemented in Matlab 89

The lower gravity on Mars will for sure affect the performance of the driving

mechanism of HP3. Therefore, a simulation of the hammer stroke in Earth, Mars

and zero gravity environment is performed for different tip resistances. A tip

resistance of 120 N with a shaft friction of 20 N as well as a tip resistance of 80 N

with a shaft friction of 15 N are investigated. In Figure 63 are the displacements

of the penetrator for different gravitational environments. The lower gravity

increases the rebound effect due to the suppressor mass moving upwards. The

difference in the penetration rate is not dramatic but becomes more pronounced

for lower stress levels.

Figure 63: Penetration due to the first stroke of the hammer mass for different

gravitational environments and resistances. Earth gravity: 9.81 m/s2,

Mars gravity: 3.71 m/s2, Zero gravity: 0.1 m/s2.

5.5 Friction fatigue and the influence on the HP3

performance

In geotechnical applications, the installation procedure of piles affects the soil

condition in the vicinity of the pile. Hence, also the bearing capacity is influenced

by the installation method. From experimental investigations on displacement

piles in sand by White et al. (2004), the impact of the installation methods on the

horizontal stress was evaluated. For this purpose, the horizontal stress on a driven

pile was measured by total pressure cells in several distances to the tip. It was

clearly observed that a two-way cyclic loading reduced the horizontal acting stress

in comparison to jacked or monotonic installed piles. The reduction of the

90 5 A Pile Drive Model implemented in Matlab

horizontal stress was determined to be maximum at a distance of 3 diameters from

the tip. Behind that point the horizontal acting stress is almost constant. This

reduction of the horizontal stress due to a dynamic penetration leads to a reduced

shaft friction and is called “friction fatigue” in literature. This phenomenon appears

only under cyclic loading and is not present in monotonic installed piles. White et

al. (2004) investigated the appearance of friction fatigue and the dependency on

the number of loading cycles for different installation types.

Further studies on friction fatigue were carried out by Basu et al. (2014). A one-

dimensional finite element model was applied to understand the basic mechanisms

that causes friction fatigue at cyclic loaded piles. For this purpose, the pile

installation was simplified to a combination of a cylindrical cavity expansion

followed by vertical shearing cycles, see Figure 64. Therefore, only the horizontal

stress acting on the pile shaft was obtained. The complete load history of a dynamic

penetration can be divided in 3 stages, regarding to a soil element in front of the

tip. The soil element is first subjected to a cavity expansion to create a space for

the penetrator. This stage is accompanied by a shearing of the soil element due to

the interface friction. In the second stage, an unloading of the penetrator causes a

shear unloading of the soil element and for the two-way cyclic loading even a shear

load reversal. In the last stage the soil element is subjected to further shearing due

to more loading cycles. As a result of the shearing reversals the soil is compacted

and the horizontal stress gets reduced.

Figure 64: Simplified sketch of a dynamic pile installation

Owing to this load history, the horizontal stress near the tip is increased due to the

cavity expansion and decays along the shaft with distance to the tip.

The reduction of the shaft friction may affect the performance of the HP3

penetration during its installation. It can be obtained from Figure 61 that a reduced

shaft friction leads to a larger rebound after the first hammer stroke. This back

motion is imposed by the upwards movement of the suppressor mass. Thus,

5 A Pile Drive Model implemented in Matlab 91

friction fatigue could appear and the performance of the driving mechanism may

decay at a certain depth, when the ratio of tip resistance to shaft friction becomes

critical.

92 6 Concluding remarks

6 Concluding remarks

In this thesis, the discrete element method was investigated with regard to its

ability for the simulation of dynamic and quasistatic penetration of a probe into a

dry granular material. The simulation models shall help to understand the

penetration behaviour of the Heat Flow and Physical Properties Probe (HP3) from

DLR. HP3 is a thermal probe that will penetrate 3 to 5 m into Martian subsurface.

The instrument will be on board of the InSight lander in 2018. The numerical

models enable to have a look inside the soil and allows to back-calculate physical

properties of the soil from the penetration rate.

The calibration of a sandy material called Schwarzl UK4 was done to derive a first

set of parameters as well as to validate the numerical method for the application.

Three different tests were evaluated for the calibration procedure. An angle of

repose experiment was used to derive a range of parameters for the interparticle

friction. The simulation results were barely affected by the particles’ stiffness and

thus make it possible to determine the coefficient of interparticle friction and

rolling resistance without dependency on other parameters. The angle of repose

was about 32 to 33 degrees.

A triaxial shear test was performed for three different stress levels. The simulation

results were analysed with respect to theoretical assumptions and compared to lab

experiments. The critical state friction angle from the simulation results was

determined to be about 32 degree, which is in good agreement with the slope from

the angle of repose experiment. However, the comparison to the lab results showed

some deviations. The lab results for a 100 kPa confining stress were in good

agreement to the simulations, whereas the results for a 150 kPa confining stress

had less strength in the lab test and the results for a 200 kPa confining stress

showed a reduced stiffness.

Furthermore, an oedometer test was used to determine the particles’ stiffness. The

vertical stress of a vertically compacted sample was measured and compared. The

load path contains a primary loading, an unloading and a reloading of the soil

sample. The primary loading behaviour is well represented by the simulations,

whereas the unloading of the sample showed too large deformations. The highly

elastic behaviour at unloading is traced back to the frictional contact models in the

DEM. Hence, the frictional contact models were investigated and yielded modified

models that were implemented and tested. Single particle models were investigated

to obtain a more realistic rolling behaviour of an irregular shaped particle. The

enhanced contact models were consistently working well in 2D models, whereas

in the three-dimensional case the contact models appear to have discontinuities.

Hence, only a slightly modified contact model was used for the penetration

simulations, where the problem of the highly elastic behaviour could not be solved.

6 Concluding remarks 93

The elastic behaviour of the contact models rise to problems as soon as an

unloading of small interparticular deformations appears. This is the case for the

oedometer test and the dynamic cone penetration. In the triaxial test and the

quasistatic cone penetration the interparticular deformations are large enough that

particles loose contact and the impact of the elastic behaviour is almost negligible.

A simulation model of the HP3 penetration was developed. The model consists of

the soil domain and the hammering mechanism. In the soil domain, the resistance

force on the probe is measured and applied to the hammering mechanism. In the

model of the hammering mechanism, the driving velocity due to the hammering

impacts is determined considering the soil resistance from the soil model. The

driving velocity is then applied to the probe in the soil domain. This coupling

allows for a real simulation of the penetration, where the driving mechanism

depends on the soil resistance and the soil resistance depends on the penetration

due to the driving mechanism. The penetration results of the fully coupled DEM

model were compared to measurements and similar simulations of HP3 from

literature.

Furthermore, quasistatic cone penetration tests were simulated and evaluated with

the DEM. A comparison of dynamic and quasistatic driven probes was done with

respect to the soil deformation, stress distribution and penetration resistance.

Further CPTs with different penetration rates and in different gravitational

environments were carried out. The quasistatic cone penetration was also used to

identify the influence of the particle scale onto the penetration resistance.

A one-dimensional model of the dynamic simulation of HP3 was implemented in

Matlab to receive fast results for specific resistance values. The model focuses on

the hammering mechanism and the obtained driving force, whereas the soil

response is not modelled. Therefore, the soil resistance has to be defined. The soil

resistance can be estimated from cone penetration tests (CPTs) or from analytical

solutions. An analytical solution for a shallow penetration under certain

assumptions was derived in chapter 5.1.

The Discrete Element Method is suitable for geotechnical applications as long as

the investigated case can be modelled in a small scale test. The main limitation of

the method is the amount of particles that can be used. Furthermore, the particle

size should not be chosen too small in order to use a feasible time step size. For

the selection of a suitable DEM code, the focus should be on the implemented

contact models. An implicit DEM code may also be a proper solution, since in this

case the contact models for sliding and rolling resistance could be realised by step

functions.

Another solution for the simulation of CPTs could be the combination of DEM and

FEM. The large deformations near the penetrator could be modelled by the discrete

particles whereas the surrounding soil volume is modelled by finite elements.

94 6 Concluding remarks

Therefore, discrete particles can be fixed to the element nodes in the transition area

to couple both methods. Moreover, FEM based methods using particle-in-cell or

remeshing techniques still remain a good possibility for the simulation of large

deformations. Therefore, the work of Galavi et al. (2017) may give a solution for

the simulation of a dynamic penetration using the MPM.

7 Bibliography 95

7 Bibliography

Abel, D. (2010)

Regelungstechnik, Umdruck zur Vorlesung, Institut für Regelungstechnik,

RWTH Aachen, 34. Auflage.

Ai, J., Chen, J. F., Rotter, J. M. & Ooi, J. Y.(2011)

Assessment of rolling resistance models in discrete element simulations.

Powder Technology, Vol. 206, No. 3, p. 269-282,

doi:10.1016/j.powtec.2010.09.030.

Basu, P., Loukidis, D., Prezzi, M. & Salgado, R. (2014)

The Mechanics of Friction Fatigue in Jacked Piles Installed in Sand, ASCE,

From Soil Behavior Fundamentals to Innovations in Geotechnical

Engineering: Honoring Roy E. Olson GSP 233.

Bernhardt, M. L., O’Sullivan, C. & Biscontin, G (2015)

Effects of sample preparation methods in DEM. Geomechanics from micro

to macro, Vol 1 & 2, pp. 97-102.

Bolton, M. D., Gui, M. W., Garnier, J., Corte, J. F., Bagge, G., Laue, J. & Renzi

R. (1999)

Centrifuge cone penetration tests in sand. Géotechnique, 49, No. 4, 543-552.

Butlanska, J., Arroyo, M., Gens, A. & O’Sullivan, C. (2014)

Multi-scale analysis of cone penetration test (CPT) in a virtual calibration

chamber, Can. Geotech. J., 51, 51-66.

Ceccato, F., Beuth, L., Vermeer, P. A. & Simonini, P. (2016)

Two-phase Material Point Method applied to the study of cone penetration,

Computers and Geotechnics, 80, 440-452,

doi:10.1016/j.compgeo.2016.03.003.

Christensen, U. & Knapmeyer-Endrun, B. (2016)

SEIS – Seismometer für die Mars-Mission Insight, Max-Planck-Institut für

Sonnensystemforschung, [Date of access: 24.04.2017] URL:

http://www.mps.mpg.de/planetenforschung/insight-seis

Ciantia, M. O., Arroyo, M., Butlanska, J. & Gens, A. (2016)

DEM modelling of cone penetration tests in a double-porosity crushable

granular material, Computers and Geotechnics, 73, 109-127,

doi:10.1016/j.compgeo.2015.12.001.

Deep Foundations Institute DFI & Gavin Doherty Geo Solutions GDG (2015)

COMPARISON OF IMPACT VERSUS VIBRATORY DRIVEN PILES:

With focus on soil-structure interaction, report 14007-01-Rev2, [Date of

access: 25.07.2017] URL:

http://www.dfi.org/update/Comparison%20of%20impact%20vs%20vibrato

ry%20driven%20piles.pdf

http://www.mps.mpg.de/planetenforschung/insight-seis
http://www.dfi.org/update/Comparison%20of%20impact%20vs%20vibratory%20driven%20piles.pdf
http://www.dfi.org/update/Comparison%20of%20impact%20vs%20vibratory%20driven%20piles.pdf

96 7 Bibliography

Estrada, N., Azéma, E., Radjai, F. & Taboada, A. (2011)

Identification of rolling resistance as a shape parameter in sheared granular

media. Physical Review E : Statistical, Nonlinear and Soft Matter Physics,

American Physical Society, 2011, Vol. 84, pp.011306.

Falagush, O., McDowell, G. R. & Yu, H. S. (2015)

Discrete element modelling of cone penetration tests incorporating particle

shape and crushing, Int. J. Geomech., doi:10.1061/(ASCE)GM.1943-

5622.0000463, 04015003.

Galavi, V., Beuth, L., Coelho, B. Z., Tehrani, F. S., Hölscher, P. & Tol, F. V.

(2017)

Numerical simulation of pile installation in saturated sand using material

point method, Procedia Engineering, vol. 175, pp. 72-79,

doi:10.1016/j.proeng.2017.01.027.

Golombek, M., Kipp, D., Warner, N. et al. (2016)

Selection of the InSight Landing Site, Space Sci Rev, doi:10.1007/s11214-

016-0321-9.

Grabe, J. & Pucker, T (2013)

Numerisch gestützte Entwicklung von Geräten und Verfahren des

Spezialtiefbaus, Beiträge zum 12. Geotechnik-Tag in München, Geotechnik

und industrielle Verfahren, pp. 33-46.

Hamad, F., Giridharan, S. & Moormann, C. (2017)

A penalty function method for modelling frictional contact in MPM. 1 st

International Conference on the Material Point Method, MPM 2017,

Procedia Engineering, vol. 175, pp. 116-123,

doi:10.1016/j.proeng.2017.01.038.

Holmen, J. K., Olovsson, L. & Borvik, T. (2017)

Discrete modelling of low-velocity penetration in sand, Computers and

Geotechnics, 86, 21-32, doi:10.1016/j.compgeo.2016.12.021.

Issam, K. J. (2013)

Formulation of a Dynamic Material Point Method (MPM) for

Geomechanical Problems, Doctoral dissertation, Institut für Geotechnik,

Universität Suttgart.

Jiang, M., Shen, Z. & Wang, J. (2015)

A novel three-dimensional contact model for granulates incorporating rolling

and twisting resistance, Computers and Geotechnics, 65, 147-163,

doi:10.1016/j.compgeo.2014.12.011.

Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. (2012)

Models, algorithms and validation for opensource DEM and CFD-DEM,

Computational Fluid Dynamics, An Int. J. 2012, Vol. 12, No.2/3, pp140 -

152.

7 Bibliography 97

Kulak, R. F. & Bojanowski, C. (2011)

Modeling of Cone Penetration Test Using SPH and MM-ALE Approaches,

8th European LS-DYNA Users Conference, Strasbourg.

Lichtenheldt, R. & Krömer, O. (2016)

Soil modelling for InSight’s HP3-Mole: From highly accurate particle-based

towards fast empirical models. In: Earth & Space, ASCE.

Lichtenheldt, R., Schäfer, B. & Krömer, O. (2014)

Hammering beneath the surface of Mars – modelling and simulation of the

impact-driven locomotion of the hp3-mole by coupling enhanced multi-body

dynamics and discrete element method. In Shaping the future by engineering:

58th Ilmenau Scientific Colloquium IWK, URN (Paper):

urn:nbn:de:gbv:ilm1-2014iwk-155:2, Technische Universität Ilmenau, 08 –

12 September 2014.

Lichtenheldt, R. & Schäfer, B. (2013)

Planetary rover locomotion on soft granular soils – efficient adaption of the

rolling behaviour of nonspherical grains for discrete element simulations. In

3rd International Conference on Particle-Based Methods, S.807-818, ISBN

978-84-941531-8-1, Stuttgart.

LIGGGHTS®-PUBLIC documentation (2017)

Version 3.X, [Date of access: 16.10.2017] URL:

https://www.cfdem.com/media/DEM/docu/Manual.html

Moore, H. J., Bickler, D. B., Crisp, J. A. , Eisen, H. J., Gensler, J. A., Haldemann,

A. F. C., Matijevic, J. R., Reid, L. K. & Pavlics, F. (1999)

Soil-like deposits observed by Sojourner, the Pathfinder rover, J. Geophys.

Res., 104(E4), 8729-8746, doi:10.1029/1998JE900005.

Moore, H. J. & Jakosky, B. M. (1989)

Viking Landing Sites, Remote-Sensing Observations, and Physical

Properties of Martian Surface Materials, ICARUS, 81, 164-184.

NASA/JPL-Caltech (2015a)

Artist’s Concept of InSight Lander on Mars, [Date of access: 23.07.2017]

URL: https://insight.jpl.nasa.gov/images.cfm?ImageID=8501

NASA/JPL-Caltech (2015b)

Landing Area Narrowed for 2016 InSight Mission to Mars, [Date of access:

23.07.2017] URL: https://insight.jpl.nasa.gov/images.cfm?ImageID=8310

O’Sullivan, C. (2011)

Particle-Based Discrete Element Modeling: Geomechanics Perspective, Int.

J. Geomech., 449-464, doi:10.1061/(ASCE)GM.1943-5622.0000024.

Perko, H., Nelson, J. & Green, J. (2006)

Mars Soil Mechanical Properties and Suitability of Mars Soil Simulants, J.

Aerosp. Eng., 10.1061/(ASCE)0893-1321(2006)19:3(169), 169-176.

https://www.cfdem.com/media/DEM/docu/Manual.html
https://insight.jpl.nasa.gov/images.cfm?ImageID=8501
https://insight.jpl.nasa.gov/images.cfm?ImageID=8310

98 7 Bibliography

Pike, W. T., Staufer, U., Hecht, M. H., Goetz, W., Parrat, D., Sykulska-Lawrence,

H., Vijendran, S. & Madsen, M. B. (2011)

Quantification of the dry history of the Martian soil inferred from in situ

microscopy, Geophys. Res. Lett., 38, L24201, doi:10.1029/2011GL049896.

Poganski, J., Kömle, N. I., Kargl, G., Schweiger, H. F., Grott, M., Spohn, T.,

Krömer, O., Krause, C., et al. (2016)

Extended Pile Driving Model to Predict the Penetration of the Insight/HP3

Mole into the Martian Soil. Space Science Reviews, doi: 10.1007/s11214-

016-0302-z.

Shaw, A., Arvidson, R. E., Bonitz, R., Carsten, J., Keller, H. U., Lemmon, M. T.,

Mellon, M. T., Robinson, M. & Trebi-Ollennu, A. (2009)

Phoenix soil physical properties investigation, J. Geophys. Res., 114,

E00E05, doi:10.1029/2009JE003455.

Smith, E. A. L. (1962)

Pile driving analysis by the wave equation, Am. Soc. Civil Eng. (ASCE)

Trans. 127, 1145-1193.

Spohn, T. (2013)

Heat Flow and Physical Properties Package HP3, DLR, Institute of Planetary

Research.

Sullivan, R., Anderson, R., Biesiadecki, J., Bond, T. & Stewart, H. (2011)

Cohesion, friction angles, and other physical properties of Martian regolith

from Mars Exploration Rover wheel trenches and wheel scuffs, J. Geophys.

Res., 116, E02006, doi:10.1029/2010JE003625.

Sulsky, D., Chen, Z. & Schreyer, H. L. (1993)

A particle method for history-dependent materials, Technical Report

SAND93-7044, Sandia National Laboratories, Albuquerque U.S.

Sulsky, D. & Schreyer, H. L. (1996)

Axisymmetric form of the material point method with applications to

upsetting and Taylor impact problems, Computer Methods in Applied

Mechanics and Engineering, 139(1-4):409-429.

Susila, E. & Hryciw, R. D. (2003)

Large displacement FEM modelling of the cone penetration test (CPT) in

normally consolidated sand, Int. J. Numer. Anal. Meth. Geomech., 27, 585-

602, doi:10.1002/nag.287.

Terzaghi, K. (1943)

Theoretical Soil Mechanics. John Wiley & Sons, Inc., New York,

doi:10.1002/9780470172766

Verlet, L. (1967)

Computer “Experiments” on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules, Phys. Rev., Vol. 159, Iss. 1, 98-103.

7 Bibliography 99

Vogelsang, J., Huber, G. & Triantafyllidis, T. (2017)

Stress Paths on Displacement Piles During Monotonic and Cyclic

Penetration. Holistic Simulation of Geotechnical Installation Processes, 82,

Springer International Publishing, pp. 29-52, doi: 10.1007/978-3-319-52590-

7_2.

White, D. J. & Lehane, B. M. (2004)

Friction fatigue on displacement piles in sand, Géotechnique 54, No. 10, 645-

658.

Wieckowski, Z., Youn, S.-K. & Yeon, J.-H. (1999)

A particle-in-cell solution to the silo discharging problem, International

Journal for Numerical Methods in Engineering, 45(9):1203-1225.

Williams, J.-P., Nimmo, F., Moore, W. B. & Paige, D. A. (2008)

The formation of Tharsis on Mars: What the line-of-sight gravity is telling

us, J. Geophys. Res., 113, E10011, doi:10.1029/2007JE003050.

Bardenhagen, S. G., Brackbill, J. U. & Sulsky, D. (2000)

The material-point method for granular materials. Computer Methods in

Applied Mechanics and Engineering, 187, (3-4):529-541.

Zöhrer, A. (2006)

Laboratory Experiments and Numerical Modelling of Cone Penetration Tests

into various Martian Soil Analogue Materials, Doctoral dissertation, Institut

für Bodenmechanik und Grundbau, Technische Universität Graz.

100 8 Appendix

8 Appendix

8.1 Simulation model structure

The structure of the different calibration and penetration models is kept very

similar. The complete simulation, combining the filling process, consolidation and

the execution of the test, is loaded in the in.run file. For some models, e.g. the

oedometer test, the in.run file defines already variables for the simulation to avoid

changes in the substructure files and to allow a quick adjustment of the main

parameters. In general, the important parameters that specify the soil behaviour are

implemented in the in.variables file, where parameters that are defined already in

the in.run file are commented out. Furthermore, the parameters that define the

geometry of the boundaries, the particle volume fraction for insertion and the scale

size of the particles are set within the in.variables file. There are also a few

parameters defined in the in.variables file that are just important for special models

and sets the load steps for the oedometer simulation or the parameters for the

control unit of the stress controlled walls. The stress controlled walls are

implemented by the fix mesh/surface/stress/servo command and requires a set

parameters for the PID controller. Those parameters are the proportional, integral

and differential constant for the PID controller.

All simulations begin with a file that generates the particle filling. Therefore, a

particle radius expansion method is used to generate a homogeneous structure, see

chapter 2.8. The file that models the filling process is named as ‘in.fill’ or for some

cases with extension ‘in.fill_...’. The in.fill file generates a particle bedding, which

is different for each model due to differences in the geometry of the boundaries. A

restart file is generated at the end of the in.fill file to allow for a restart of the

simulation from the current time step. The restart file is then loaded for the main

simulation of the test. In some cases a separate consolidation file is used between

the filling and the execution of the test, where usually an appropriate consolidation

is already considered in the in.fill file.

The generation of the particle size distribution is done within the

in.verteilunglinear file. The particle size distribution is created by 3 radii sizes with

corresponding mass fractions. In between those 3 radii sizes there are further radii

and mass fractions defined on a linear interpolation to receive a smooth

distribution. For simulations with more than one particle size distribution, the

in.verteilunglineardevide file is used. This is necessary for simulations with

different scales of the particle size distribution.

The in.getdensity file can be used to determine the current bulk density of the soil

skeleton by means of the Voronoi tesselation. The file is suited for the geometry

of the 3D cone penetration model. The in.getdensity requires the restart file of the

8 Appendix 101

filling and computes the density after the filling process. The value of the density

is stored in a text file called info.txt.

The important output files for the different simulation models are

 Dynamic Cone Penetration: outputcheck.txt, molepos.txt

 Quasistatic Cone Penetration: outputcheck.txt

 Angle of Repose Test: results.txt

 Oedometer Test: results/results_oed...

 Triaxial Shear Test: results.txt

The content of the output files is different for the most models, therefore a list of

the content can be found in Table 4.

Table 4: Output files and the corresponding content in detail

 Dynamic

Cone

Penetration:

molepos.txt

Dynamic/Qua

sistatic Cone

Penetration:

outputcheck.t

xt

Angle of

Repose Test:

results.txt

Oedom

eter Test:

results/

results_oed...

Triaxia

l Shear Test:

results.

txt

1 Time Step Time Step Time Step Time Step Time Step

2 Tip

Displacement

in x [m]

Penetration

Resistance in

x [N]

Interparticle

friction

Stress on

Stamp [Pa]

Vertical Force

at Bottom [N]

3 Tip

Displacement

in y [m]

Penetration

Resistance in

y [N]

Interparticle

rolling

resistance

Relative

Strain of

Stamp [%]

Cross

Sectional

Area [m2]

4 Tip

Displacement

in z [m]

Penetration

Resistance in

z [N]

Mean Slope

Value

 Total Position

of Bottom

Wall [m]

5 Penetration

Resistance in

x [N]

Penetration

Velocity in x

[m/s]

Slope Value

at Top

 Horizontal

Confining

stress [Pa]

6 Penetration

Resistance in

y [N]

Penetration

Velocity in y

[m/s]

Slope Value

at Centre

 Total Volume

[m3]

102 8 Appendix

7 Penetration

Resistance in

z [N]

Penetration

Velocity in z

[m/s]

Slope Value

at Bottom

 Relative

Axial Strain

[%]

8 Incremental

Time Step

Incremental

Time Step

 Area of Wall

A [m3]

9 Incremental

Hammer

Displacement

[m]

Total Position

of Penetrator

in x [m]

 Area of Wall

C [m3]

10 Incremental

Suppressor

Displacement

[m]

Total Position

of Penetrator

in y [m]

11 Incremental

Penetrator

Displacement

[m]

Total Position

of Penetrator

in z [m]

8.2 Modified rolling model sbjp

#The SBJP model was mainly used for the simulation of HP3

#ifdef ROLLING_MODEL

ROLLING_MODEL(ROLLING_SBJP,sbjp,5)

#else

#ifndef ROLLING_MODEL_SBJP_H_

#define ROLLING_MODEL_SBJP_H_

#include "contact_models.h"

#include <algorithm>

#include "math.h"

#include "domain.h"

#include "math_extra_liggghts.h"

namespace LIGGGHTS {

8 Appendix 103

namespace ContactModels

{

 using namespace LAMMPS_NS;

 template<>

 class RollingModel<ROLLING_SBJP> : protected Pointers

 {

 public:

 static const int MASK = CM_CONNECT_TO_PROPERTIES |

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE;

 RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup,class

ContactModelBase *) :

 Pointers(lmp), coeffRollFrict(NULL)

 {

 history_offset = hsetup->add_history_value("rollanglex", "1");

 hsetup->add_history_value("rollangley", "1");

 hsetup->add_history_value("rollanglez", "1");

 hsetup->add_history_value("roll_flag", "0");

 hsetup->add_history_value("T_rollangle_x", "1");

 hsetup->add_history_value("T_rollangle_y", "1");

 hsetup->add_history_value("T_rollangle_z", "1");

 hsetup->add_history_value("roll_yield_flag", "0");

 hsetup->add_history_value("twist_yield_flag", "0");

 }

 void registerSettings(Settings&) {}

 void connectToProperties(PropertyRegistry & registry) {

 registry.registerProperty("coeffRollFrict",

&MODEL_PARAMS::createCoeffRollFrict);

104 8 Appendix

 registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model sbjp");

 registry.registerProperty("coeffFrict",

&MODEL_PARAMS::createCoeffFrict);

 registry.connect("coeffFrict", coeffFrict,"rolling_model sbjp");

 // error checks on coarsegraining

 if(force->cg_active())

 error->cg(FLERR,"rolling model sbjp");

 }

 void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces,

ForceData & j_forces)

 {

 double

r_torque[3],T_torque[3],r_coef,wr_n_i[3],wr_n_j[3],wr_t_i[3],wr_t_j[3];

 vectorZeroize3D(r_torque);

 vectorZeroize3D(T_torque);

 if(sidata.contact_flags) *sidata.contact_flags |=

CONTACT_ROLLING_MODEL;

 const double radi = sidata.radi;

 const double radj = sidata.radj;

 double reff=sidata.is_wall ? sidata.radi : (radi*radj/(radi+radj));

#ifdef SUPERQUADRIC_ACTIVE_FLAG

 if(sidata.is_non_spherical)

 reff = MathExtraLiggghtsSuperquadric::get_effective_radius(sidata);

#endif

 if(sidata.is_wall) {

 const double wr1 = sidata.wr1;

 const double wr2 = sidata.wr2;

8 Appendix 105

 const double wr3 = sidata.wr3;

 const double radius = sidata.radi;

 double r_inertia;

 if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*radius*radius;

 else r_inertia = 1.4*sidata.mi*radius*radius;

 calcRollTorque(r_torque,T_torque,sidata,reff,wr1,wr2,wr3,r_inertia,r_coef);

/*

 const double wr_dot_delta_i = sidata.en[0]*wr1 + sidata.en[1]*wr2 +

sidata.en[2]*wr3; //projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i);

 wr_t_i[0]=wr1 -wr_n_i[0];

 wr_t_i[1]=wr2 -wr_n_i[1];

 wr_t_i[2]=wr3 -wr_n_i[2];

 vectorCopy3D(wr_n_i, wr_n_j);

 vectorCopy3D(wr_t_i, wr_t_j);*/

 } else {

 double wr_roll[3];

 const int i = sidata.i;

 const int j = sidata.j;

 const double * const * const omega = atom->omega;

 const double r_inertia_red_i = sidata.mi*radi*radi;

 const double r_inertia_red_j = sidata.mj*radj*radj;

 double r_inertia;

 if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i *

r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j);

 else r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i +

r_inertia_red_j);

106 8 Appendix

 // relative rotational velocity

 vectorSubtract3D(omega[i],omega[j],wr_roll);

calcRollTorque(r_torque,T_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_i

nertia,r_coef);

/*

 const double wr_dot_delta_i = vectorDot3D(omega[i],sidata.en);

//projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i);

 vectorSubtract3D(omega[i],wr_n_i, wr_t_i);

 const double wr_dot_delta_j = vectorDot3D(omega[j],sidata.en);

//projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_j, wr_n_j);

 vectorSubtract3D(omega[j],wr_n_j, wr_t_j);*/

 /*

 const double T_transmit=0.6;

 if(vectorMag3D(omega[i])<vectorMag3D(omega[j])){

 i_forces.delta_torque[0] -=

T_transmit*(r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]);

 i_forces.delta_torque[1] -=

T_transmit*(r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]);

 i_forces.delta_torque[2] -=

T_transmit*(r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]);

 j_forces.delta_torque[0] += r_torque[0]+T_torque[0];//+r_coef*wr_t_j[0];

 j_forces.delta_torque[1] += r_torque[1]+T_torque[1];//+r_coef*wr_t_j[1];

 j_forces.delta_torque[2] += r_torque[2]+T_torque[2];//+r_coef*wr_t_j[2];

 }else{

 i_forces.delta_torque[0] -=

(r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]);

8 Appendix 107

 i_forces.delta_torque[1] -=

(r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]);

 i_forces.delta_torque[2] -= (r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]);

 j_forces.delta_torque[0] +=

T_transmit*(r_torque[0]+T_torque[0]);//+r_coef*wr_t_j[0];

 j_forces.delta_torque[1] +=

T_transmit*(r_torque[1]+T_torque[1]);//+r_coef*wr_t_j[1];

 j_forces.delta_torque[2] +=

T_transmit*(r_torque[2]+T_torque[2]);//+r_coef*wr_t_j[2];

 }*/

 }

 i_forces.delta_torque[0] -= (r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]);

 i_forces.delta_torque[1] -= (r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]);

 i_forces.delta_torque[2] -= (r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]);

 j_forces.delta_torque[0] += r_torque[0]+T_torque[0];//+r_coef*wr_t_j[0];

 j_forces.delta_torque[1] += r_torque[1]+T_torque[1];//+r_coef*wr_t_j[1];

 j_forces.delta_torque[2] += r_torque[2]+T_torque[2];//+r_coef*wr_t_j[2];

 }

 void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&)

 {

 if(scdata.contact_flags) *scdata.contact_flags &=

~CONTACT_ROLLING_MODEL;

 double * const c_history = &scdata.contact_history[history_offset];

 c_history[0] = 0.0; // this is the r_torque_old

 c_history[1] = 0.0; // this is the r_torque_old

 c_history[2] = 0.0; // this is the r_torque_old

 c_history[3] = rand() % 101; //roll_flag [0, 1]

108 8 Appendix

 c_history[4] = 0.0; // this is the T_torque_old

 c_history[5] = 0.0; // this is the T_torque_old

 c_history[6] = 0.0; // this is the T_torque_old

 c_history[7] = 0; //total angle shear

 c_history[8] = 0;//0.0; //k rotational

 }

 void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 private:

 double ** coeffRollFrict;

 double ** coeffFrict;

 int history_offset;

 inline void calcRollTorque(double (&r_torque)[3],double (&T_torque)[3],const

SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double wr3,

double r_inertia, double (&r_coef)) {

 double wr_n[3],wr_t[3];

 const double enx = sidata.en[0];

 const double eny = sidata.en[1];

 const double enz = sidata.en[2];

 const double dt = update->dt;

 double * const c_history = &sidata.contact_history[history_offset]; // requires

Style::TANGENTIAL == TANGENTIAL_HISTORY

 const double rmu = coeffRollFrict[sidata.itype][sidata.jtype];

 const double xmu = coeffFrict[sidata.itype][sidata.jtype];

 // remove normal (torsion) part of relative rotation

 // use only tangential parts for rolling torque

 const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz;

8 Appendix 109

 wr_n[0] = enx * wr_dot_delta;

 wr_n[1] = eny * wr_dot_delta;

 wr_n[2] = enz * wr_dot_delta;

 wr_t[0] = wr1 - wr_n[0];

 wr_t[1] = wr2 - wr_n[1];

 wr_t[2] = wr3 - wr_n[2];

 // spring (reff depends on wall-particle or particle-particle contact)

 const double kr = sidata.kt*reff*reff;//sidata.deltan;//*reff;//sqrt(reff);

 //<<<<<<<<<<<------------------EDIT

 //r_coef = 0.0;

 double dr_angle[3];//dr_torque[3];

 vectorScalarMult3D(wr_t,dt,dr_angle);

 // double dr_angle_mag = vectorMag3D(dr_angle);

 const double quad_oldrollmag =

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]);

 c_history[0] += dr_angle[0];

 c_history[1] += dr_angle[1];

 c_history[2] += dr_angle[2];

 /*

 const double quad_rollmag =

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]);

 if(c_history[7]==1 && quad_oldrollmag<quad_rollmag){

 const double qxfactor = 1;//quad_oldrollmag/quad_rollmag;

 c_history[0] *= qxfactor;

 c_history[1] *= qxfactor;

110 8 Appendix

 c_history[2] *= qxfactor;

 c_history[7] = 0;

 }else if(c_history[7]==3 && quad_oldrollmag>quad_rollmag){

 c_history[0] = 0;

 c_history[1] = 0;

 c_history[2] = 0;

 c_history[7] = 0;

 }*/

 r_torque[0] = kr*c_history[0];

 r_torque[1] = kr*c_history[1];

 r_torque[2] = kr*c_history[2];

 // limit max. torque

 const double r_torque_mag = vectorMag3D(r_torque);

 const double r_torque_max = fabs(sidata.Fn)*reff*rmu;//

 if(r_torque_mag > r_torque_max)

 {

 if(r_torque_mag != 0.0){

 const double factor = r_torque_max / r_torque_mag;

 r_torque[0] *= factor;

 r_torque[1] *= factor;

 r_torque[2] *= factor;

 // save rolling torque due to spring

 c_history[0] = r_torque[0]/kr;

 c_history[1] = r_torque[1]/kr;

8 Appendix 111

 c_history[2] = r_torque[2]/kr;

 /*

 if(c_history[7] == 2){

 c_history[7] = 3;

 }else if (c_history[7] == 0){

 c_history[7] = 2;

 }*/

 }else{r_torque[0]=r_torque[1]=r_torque[2]=0.0;}

 } else {

 // dashpot

 r_coef = 2.0*sqrt(r_inertia*kr);

 r_torque[0] += r_coef*wr_t[0];

 r_torque[1] += r_coef*wr_t[1];

 r_torque[2] += r_coef*wr_t[2];

 const double c_r_torque_mag = vectorMag3D(r_torque);

 if(c_r_torque_mag > r_torque_max && c_r_torque_mag!=0)

 {

 const double factorial = r_torque_max/c_r_torque_mag;

 vectorScalarMult3D(r_torque, factorial);

 c_history[7]=1;

 }

 }

 //=======================================TORSIONAL PART

 double r_coef_twist;

 //double iterm = 1.0-sidata.deltan/(2*reff);

112 8 Appendix

 const double T_torque_max =

fabs(sidata.Fn)*xmu*0.65*reff*rmu;//sqrt(1.0-iterm*iterm);

 const double krT = sidata.kt*reff*reff;

 double dr_torqueT[3];

 double dt_angle[3];

 vectorScalarMult3D(wr_n,dt,dt_angle);

 const double quad_oldtwistmag =

sqrt(c_history[4]*c_history[4]+c_history[5]*c_history[5]+c_history[6]*c_history

[6]);

 c_history[4] += dt_angle[0];

 c_history[5] += dt_angle[1];

 c_history[6] += dt_angle[2];

 /*

 const double quad_twistmag =

sqrt(c_history[4]*c_history[4]+c_history[5]*c_history[5]+c_history[6]*c_history

[6]);

 if(c_history[8]==1 && quad_oldtwistmag<quad_twistmag){

 const double qqfactor = 1;//quad_oldtwistmag/quad_twistmag;

 c_history[4] *= qqfactor;

 c_history[5] *= qqfactor;

 c_history[6] *= qqfactor;

 c_history[8]=0;

 }else if(c_history[8]==3 && quad_oldtwistmag>quad_twistmag){

 c_history[4] = 0;

 c_history[5] = 0;

 c_history[6] = 0;

 c_history[8]=0;

8 Appendix 113

 }*/

 T_torque[0] = krT*c_history[4];

 T_torque[1] = krT*c_history[5];

 T_torque[2] = krT*c_history[6];

 const double T_torque_mag = vectorMag3D(T_torque);

 if(T_torque_mag > T_torque_max)

 {

 if(T_torque_mag != 0.0){

 const double Tfactor = T_torque_max / T_torque_mag;

 T_torque[0] *= Tfactor;

 T_torque[1] *= Tfactor;

 T_torque[2] *= Tfactor;

 c_history[4] = T_torque[0]/krT;

 c_history[5] = T_torque[1]/krT;

 c_history[6] = T_torque[2]/krT;

 /*

 if(c_history[8] == 2){

 c_history[8] = 3;

 }else if (c_history[8] == 0){

 c_history[8] = 2;

 }

 */

 }else{T_torque[0]=T_torque[1]=T_torque[2]=0.0;}

 r_coef_twist=0.0;

 }else{

114 8 Appendix

 r_coef_twist=0.0;

 if(T_torque_max!=0){

 r_coef_twist = 0.3* 2.0 * sqrt(r_inertia*krT);

 }

 }

 T_torque[0] += r_coef_twist*wr_n[0];

 T_torque[1] += r_coef_twist*wr_n[1];

 T_torque[2] += r_coef_twist*wr_n[2];

 //=======================================end of torsional part

 double c_T_torque_mag = vectorMag3D(T_torque);

 if(c_T_torque_mag > T_torque_max && c_T_torque_mag!=0)

 {

 double factorialT = T_torque_max/c_T_torque_mag;

 vectorScalarMult3D(T_torque, factorialT);

 c_history[8]=1;

 }

 }

 };

}

}

#endif // ROLLING_MODEL_SBJP_H_

#endif

8.3 Modified rolling model stone2

#ifdef ROLLING_MODEL

ROLLING_MODEL(ROLLING_STONE2,stone2,6)

8 Appendix 115

#else

#ifndef ROLLING_MODEL_STONE2_H_

#define ROLLING_MODEL_STONE2_H_

#include "contact_models.h"

#include <algorithm>

#include "math.h"

#include "domain.h"

#include "math_extra_liggghts.h"

namespace LIGGGHTS {

namespace ContactModels

{

 using namespace LAMMPS_NS;

 template<>

 class RollingModel<ROLLING_STONE2> : protected Pointers

 {

 public:

 static const int MASK = CM_CONNECT_TO_PROPERTIES |

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE;

 RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup, class

ContactModelBase *) : Pointers(lmp), coeffRollFrict(NULL), coeffFrict(NULL),

treach_flag(false)//, Ref_T(0.0), kr_O(0.0)

 {

 history_offset = hsetup->add_history_value("r_torquex_old", "1");

 hsetup->add_history_value("r_torquey_old", "1");

 hsetup->add_history_value("r_torquez_old", "1");

 hsetup->add_history_value("the_flag", "1");

 hsetup->add_history_value("kr", "1");

116 8 Appendix

 hsetup->add_history_value("kr_O", "1");

 hsetup->add_history_value("firsttouch","1");

 hsetup->add_history_value("kt", "1");

 hsetup->add_history_value("r_torquey_direction", "1");

 hsetup->add_history_value("r_torquez_direction", "1");

 hsetup->add_history_value("transmit_torque_i", "1");

 hsetup->add_history_value("transmit_torque_j", "1");

 hsetup->add_history_value("T_torquex_old", "1");

 hsetup->add_history_value("T_torquey_old", "1");

 hsetup->add_history_value("T_torquez_old", "1");

 }

 void registerSettings(Settings&) {}

 void connectToProperties(PropertyRegistry & registry) {

 registry.registerProperty("coeffRollFrict",

&MODEL_PARAMS::createCoeffRollFrict);

 registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model stone2");

 registry.registerProperty("coeffFrict",

&MODEL_PARAMS::createCoeffFrict);

 registry.connect("coeffFrict", coeffFrict,"tangential_model history");

 // error checks on coarsegraining

 if(force->cg_active())

 error->cg(FLERR,"rolling model stone2");

 }

 void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces,

ForceData & j_forces)

 {

8 Appendix 117

 double r_torque[3],T_torque[3], transmittingratio_i, transmittingratio_j,

r_coef,r_coef_twist,wr_n_i[3],wr_n_j[3],wr_t_i[3],wr_t_j[3];

//tipreach_flag=false;

 vectorZeroize3D(r_torque);

 vectorZeroize3D(T_torque);

 if(sidata.contact_flags) *sidata.contact_flags |=

CONTACT_ROLLING_MODEL;

 #ifdef SUPERQUADRIC_ACTIVE_FLAG

 if(sidata.is_non_spherical)

 reff = MathExtraLiggghtsSuperquadric::get_effective_radius(sidata);

#endif

 if(sidata.is_wall) {

 const double wr1 = sidata.wr1;

 const double wr2 = sidata.wr2;

 const double wr3 = sidata.wr3;

 const double radius = sidata.radi;

 double r_inertia;

 if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*radius*radius;

 else r_inertia = 1.4*sidata.mi*radius*radius;

calcRollTorque(r_torque,T_torque,sidata,radius,wr1,wr2,wr3,r_inertia,transmitti

ngratio_i,transmittingratio_j,r_coef,r_coef_twist);

 transmittingratio_i=1;

 const double wr_dot_delta_i = sidata.en[0]*wr1 + sidata.en[1]*wr2 +

sidata.en[2]*wr3; //projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i);

 wr_t_i[0]=wr1 -wr_n_i[0];

 wr_t_i[1]=wr2 -wr_n_i[1];

118 8 Appendix

 wr_t_i[2]=wr3 -wr_n_i[2];

 vectorCopy3D(wr_n_i, wr_n_j);

 vectorCopy3D(wr_t_i, wr_t_j);

 } else {

 double wr_roll[3];

 const int i = sidata.i;

 const int j = sidata.j;

 const double radi = sidata.radi;

 const double radj = sidata.radj;

 const double reff = sidata.is_wall ? radi :

min(radi,radj);//(radi*radj/(radi+radj));

 const double * const * const omega = atom->omega;

 const double r_inertia_red_i = sidata.mi*radi*radi;

 const double r_inertia_red_j = sidata.mj*radj*radj;

 double r_inertia;

 if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i *

r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j);

 else r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i +

r_inertia_red_j);

 // relative rotational velocity

 vectorSubtract3D(omega[i],omega[j],wr_roll);

calcRollTorque(r_torque,T_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_i

nertia,transmittingratio_i,transmittingratio_j,r_coef,r_coef_twist);

 transmittingratio_i=1;

 const double wr_dot_delta_i = vectorDot3D(omega[i],sidata.en); //projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i);

8 Appendix 119

 vectorSubtract3D(omega[i],wr_n_i, wr_t_i);

 const double wr_dot_delta_j = vectorDot3D(omega[j],sidata.en); //projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_j, wr_n_j);

 vectorSubtract3D(omega[j],wr_n_j, wr_t_j);

 }

 i_forces.delta_torque[0] -= (r_torque[0]*transmittingratio_i + T_torque[0] +

r_coef*wr_t_i[0] + r_coef_twist*wr_n_i[0]);

 i_forces.delta_torque[1] -= (r_torque[1]*transmittingratio_i + T_torque[1] +

r_coef*wr_t_i[1] + r_coef_twist*wr_n_i[1]);

 i_forces.delta_torque[2] -= (r_torque[2]*transmittingratio_i + T_torque[2] +

r_coef*wr_t_i[2] + r_coef_twist*wr_n_i[2]);

 j_forces.delta_torque[0] += r_torque[0]*transmittingratio_i + T_torque[0] +

r_coef*wr_t_j[0] + r_coef_twist*wr_n_j[0];

 j_forces.delta_torque[1] += r_torque[1]*transmittingratio_i + T_torque[1] +

r_coef*wr_t_j[1] + r_coef_twist*wr_n_j[0];

 j_forces.delta_torque[2] += r_torque[2]*transmittingratio_i + T_torque[2] +

r_coef*wr_t_j[2] + r_coef_twist*wr_n_j[0];

/* i_forces.delta_F[0] += r_F[0];

 i_forces.delta_F[1] += r_F[1];

 i_forces.delta_F[2] += r_F[2];

 j_forces.delta_F[0] -= r_F[0];

 j_forces.delta_F[1] -= r_F[1];

 j_forces.delta_F[2] -= r_F[2];*/

 }

 void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&)

 {

 if(scdata.contact_flags) *scdata.contact_flags &=

~CONTACT_ROLLING_MODEL;

120 8 Appendix

 double * const c_history = &scdata.contact_history[history_offset];

 c_history[0] = 0.0; // this is the r_torque_old

 c_history[1] = 0.0; // this is the r_torque_old

 c_history[2] = 0.0; // this is the r_torque_old

 c_history[3] = 0;

 c_history[4] = 0.0;//kr=0.0;

 c_history[5] = 0.0;//kr_O=0.0;

 c_history[6] = 0; //firsttouch

 c_history[7] = 0.0; // this is the r_torque_xdirection

 c_history[8] = 0.0; // this is the r_torque_ydirection

 c_history[9] = 0.0; // this is the r_torque_zdirection

 c_history[10] = 1.0; //

 c_history[11] = 1.0; //

 c_history[12] = 0.0; // this is the r_torque_old

 c_history[13] = 0.0; // this is the r_torque_old

 c_history[14] = 0.0; // this is the r_torque_old

 }

 void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 private:

 double ** coeffRollFrict;

 double ** coeffFrict;

 int history_offset;

 bool treach_flag;

 inline void calcRollTorque(double (&r_torque)[3],double (&T_torque)[3],const

SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double

8 Appendix 121

wr3,double r_inertia,double (&transmittingratio_i),double (&transmittingratio_j),

double (&r_coef), double (&r_coef_twist)) {

 double wr_n[3],wr_t[3];

 double Ref_T, kr_O;

 const double dt = update->dt;

 double * const c_history = &sidata.contact_history[history_offset]; // requires

Style::TANGENTIAL == TANGENTIAL_HISTORY

 double edges=6;

 double correctionfactor;

 if(sidata.is_wall) {correctionfactor=1;edges*=2;} else {correctionfactor=0.5;}

 const double rmu= coeffRollFrict[sidata.itype][sidata.jtype];

 const double xmu = coeffFrict[sidata.itype][sidata.jtype];

 double Jn = edges/(2*(M_PI-2))*4;

 const double r_torque_max_dash = fabs(sidata.Fn)*reff*rmu;

 double omegamax=100; //mas omega das abgebildet werden soll

 double kr =

sidata.kt*reff*reff;//sqrt(kr_O*kr_O/4+M_PI*kr_O/(omegamax*edges*dt))-

kr_O/2;//2*Jn*reff*fabs(sidata.Fn);

 kr_O = fabs(sidata.Fn)*reff*rmu*edges/2;//inclination of the cosine curve

kr*r_torque_max*edges/(kr*M_PI - r_torque_max*edges);

 const double r_torque_max =

M_PI*kr_O/((kr_O/kr+1)*edges);//M_PI*r_torque_max_dash*Jn/(rmu*edges/2

+2*Jn);//most important

 double torque_direction[3];

 double transmittingtorqueratio_i,transmittingtorqueratio_j;

 //starting with a random torque magnitude and direction of torque

122 8 Appendix

 if(c_history[6]==0){

 double normal_vec[3];

 int coni = sidata.i;

 int conj = sidata.j;

 normal_vec[0] = sidata.en[0];

 normal_vec[1] = sidata.en[1];

 normal_vec[2] = sidata.en[2];

 double init_direction[3],directionxyz[3];

 srand((coni+1)*(conj+2));//*time(NULL));

 double perc_init_r_torque = rand() % 101;

 directionxyz[0] = (rand() % 101) - 50;

 directionxyz[1] = (rand() % 101) - 50;

 directionxyz[2] = (rand() % 101) - 50;

 vectorCross3D(normal_vec, directionxyz, init_direction);

 vectorNormalize3D(init_direction);

 double init_r_torque = r_torque_max_dash*perc_init_r_torque/100;

 c_history[0] = init_direction[0]*init_r_torque; // this is the r_torque_old

 c_history[1] = init_direction[1]*init_r_torque; // this is the r_torque_old

 c_history[2] = init_direction[2]*init_r_torque; // this is the r_torque_old

 //c_history[3] = rand() % 2;

 double randx= rand() % 101;

 double randy= rand() % 101;

 //transmittingtorqueratio_j= transmittingtorqueratio_i;//rand() % 101;

 transmittingratio_i=randx/100;

 transmittingratio_j=randy/100;

8 Appendix 123

 transmittingtorqueratio_i=cos(randx/100*M_PI/3);

 transmittingtorqueratio_j= 1-transmittingtorqueratio_i;

 if(sidata.is_wall) {

 transmittingtorqueratio_i=1;

 transmittingtorqueratio_j=1;

 }

 c_history[10]=transmittingratio_i;

 c_history[11]=transmittingratio_j;

 c_history[6]=1;

 }

 transmittingratio_i = c_history[10];

 transmittingratio_j = c_history[11];

 const double enx = sidata.en[0];

 const double eny = sidata.en[1];

 const double enz = sidata.en[2];

 //bool treach_flag;

// double maxoverlapc = reff*0.0823922; //=reff*(1/cos(22.5°)-1)

 // remove normal (torsion) part of relative rotation

 // use only tangential parts for rolling torque

 const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz; //projection

 wr_n[0] = enx * wr_dot_delta;

 wr_n[1] = eny * wr_dot_delta;

 wr_n[2] = enz * wr_dot_delta;

 wr_t[0] = wr1 - wr_n[0];

 wr_t[1] = wr2 - wr_n[1];

124 8 Appendix

 wr_t[2] = wr3 - wr_n[2];

 // spring (reff depends on wall-particle or particle-particle contact)

 double c_history_mag =

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]);

 //const double r_torque_max = fabs(sidata.Fn)*reff*rmu;//edit + konstant

 // double kr_fit =kr;

 double dr_torque[3],dr_F[3];//, wr_tsqu[3];

// double maxforce=maxoverlapc*sidata.kn/200;//*sidata.deltan;

// double kF=maxforce*edges/M_PI;

 vectorScalarMult3D(wr_t,dt*kr,dr_torque);

 double omega_mag = vectorMag3D(wr_t);

 treach_flag=c_history[3]>0.5?1:0;

 if(treach_flag==false){

 if(c_history[4]!=0){

 r_torque[0] = c_history[0]*kr/c_history[4] + dr_torque[0];

 r_torque[1] = c_history[1]*kr/c_history[4] + dr_torque[1];

 r_torque[2] = c_history[2]*kr/c_history[4] + dr_torque[2];

 }else{

 r_torque[0] = c_history[0] + dr_torque[0];

 r_torque[1] = c_history[1] + dr_torque[1];

 r_torque[2] = c_history[2] + dr_torque[2];}

 }

 // limit max. torque

 const double r_torque_mag = vectorMag3D(r_torque);

 // const double r_torque_max = fabs(sidata.Fn)*reff*rmu;//edit + konstant

8 Appendix 125

 if(rmu==0){vectorZeroize3D(r_torque);

 c_history[3]=0;}

 else{//____________________________________Start of my Rolling Model

 double maxtorque_dif;

 if(treach_flag==true){

 if(c_history[5]!=0){

 maxtorque_dif = kr_O/c_history[5];}

 else{maxtorque_dif = 1;}

 vectorScalarMult3D(wr_t,dt*kr_O,dr_torque);

 r_torque[0] = c_history[0]*maxtorque_dif -

dr_torque[0];//*kr_ratio;//

 r_torque[1] = c_history[1]*maxtorque_dif -

dr_torque[1];//*kr_ratio;//

 r_torque[2] = c_history[2]*maxtorque_dif -

dr_torque[2];//*kr_ratio;//

 double directioncheck = c_history[0]*r_torque[0] +

c_history[1]*r_torque[1] + c_history[2]*r_torque[2];

 if(directioncheck<0){

 double randxs= rand() % 101;

 double randys= rand() % 101;

 transmittingratio_i = cos(randxs/100*M_PI/3);

 transmittingratio_j = cos(randys/100*M_PI/3);

 c_history[10]=transmittingratio_i;

 c_history[11]=transmittingratio_j;

 }

 }

 else if(r_torque_mag > r_torque_max && treach_flag==0){

126 8 Appendix

 //equation shortened

 double kr_O_d_kr_Ox = M_PI/edges*kr_O/r_torque_mag-

kr_O/kr;//M_PI/edges*kr_O/r_torque_mag-edges*rmu/(4*Jn); // always use

R_TORQUE_MAG

 r_torque[0] *= kr_O_d_kr_Ox;

 r_torque[1] *= kr_O_d_kr_Ox;

 r_torque[2] *= kr_O_d_kr_Ox;

 c_history[3]=1;

 }

//--

 double r_stifftorque_mag = vectorMag3D(r_torque);

if(r_stifftorque_mag > r_torque_max && treach_flag == 1)

 { //equation shortened

 vectorCopy3D(r_torque, torque_direction);

 double kr_d_krx =

M_PI/edges*kr/r_stifftorque_mag-kr/kr_O;//M_PI/edges*kr/r_stifftorque_mag-

4*Jn/(edges*rmu); // always use R_STIFFTORQUE_MAG

 // if(kr_d_krx>0){

 r_torque[0] *= kr_d_krx;

 r_torque[1] *= kr_d_krx;

 r_torque[2] *= kr_d_krx;

 c_history[3]=0;

 // }

 /* else{

 r_torque[0] *= 0;

8 Appendix 127

 r_torque[1] *= 0;

 r_torque[2] *= 0;

 c_history[3]=0;

 }*/

 //c_history[7] = torque_direction[0];

 c_history[8] = torque_direction[1];

 c_history[9] = torque_direction[2];

 }

 double nabla_torque[3];

 nabla_torque[0] = c_history[0]-r_torque[0];

 nabla_torque[1] = c_history[1]-r_torque[1];

 nabla_torque[2] = c_history[2]-r_torque[2];

 // save rolling torque due to spring

 c_history[0] = r_torque[0];

 c_history[1] = r_torque[1];

 c_history[2] = r_torque[2];

 c_history[4] = kr;

 c_history[5] = kr_O;

 //flattening:

 //transmittingtorqueratio_j = 1-transmittingtorqueratio_i;

 const double torque_mag=vectorMag3D(r_torque);/*

 if(torque_mag>r_torque_max_dash && torque_mag!=0)

 {

 r_torque[0] *= r_torque_max_dash/torque_mag;

 r_torque[1] *= r_torque_max_dash/torque_mag;

128 8 Appendix

 r_torque[2] *= r_torque_max_dash/torque_mag;

 }

 */

 if(torque_mag<r_torque_max_dash/4 && treach_flag == 1) //keine

beschleunigungen

 {

 c_history[3]=0;

 }

double acderatio= 1.0;//0.6;//1.0/exp(omega_mag/0.5); //<<---ratio between

accelerating and decelerating torque [0,1]

double rotationflag = r_torque[0]*wr_t[0] + r_torque[1]*wr_t[1] +

r_torque[2]*wr_t[2];

if(rotationflag<0){

 r_torque[0] *= acderatio;

 r_torque[1] *= acderatio;

 r_torque[2] *= acderatio;

 }

//damping on each atom seperately see top

 if(c_history[3]==0 && r_torque_max!=0 && torque_mag<r_torque_max){

 r_coef = 1.0 * 2 * sqrt(r_inertia*kr) * (1-torque_mag/r_torque_max);//0.08

minimal zum ausdämpfen von oszillation zweier partikel

 // add damping torque

// r_torque[0] += r_coef*wr_t[0];

// r_torque[1] += r_coef*wr_t[1];

// r_torque[2] += r_coef*wr_t[2];

 }else{

 r_coef = 0.0 * 2 * sqrt(r_inertia*kr);//

8 Appendix 129

 // add damping torque

// r_torque[0] += r_coef*wr_t[0];

// r_torque[1] += r_coef*wr_t[1];

// r_torque[2] += r_coef*wr_t[2];

 }

 //instead of damping reduced accelerating torque

}//___

______End of my Rolling Model

//torsional part

 const double T_torque_max = fabs(sidata.Fn)*reff*xmu*0.65;

 const double krT = sidata.kt*reff*reff/2;//T_torque_max/(omegamax*dt);//

/M_PI*90;

 double dr_torqueT[3];

 vectorScalarMult3D(wr_n,dt*krT,dr_torqueT);

 if(c_history[7]!=0){

 T_torque[0] = c_history[12]*krT/c_history[7] +

dr_torqueT[0];

 T_torque[1] = c_history[13]*krT/c_history[7] +

dr_torqueT[1];

 T_torque[2] = c_history[14]*krT/c_history[7] +

dr_torqueT[2];

 }else{

 T_torque[0] = c_history[12] + dr_torqueT[0];

 T_torque[1] = c_history[13] + dr_torqueT[1];

 T_torque[2] = c_history[14] + dr_torqueT[2];}

 // limit max. torque

 const double T_torque_mag = vectorMag3D(T_torque);

130 8 Appendix

 if(T_torque_mag > T_torque_max)

 {

 //printf("[%d] %e > %e\n", update->ntimestep, r_torque_mag,

r_torque_max);

 const double factor = T_torque_max / T_torque_mag;

 T_torque[0] *= factor;

 T_torque[1] *= factor;

 T_torque[2] *= factor;

 c_history[12] = T_torque[0];

 c_history[13] = T_torque[1];

 c_history[14] = T_torque[2];

 c_history[7] = krT;

 r_coef_twist=0;

 }else{

 // save rolling torque due to spring

 c_history[12] = T_torque[0];

 c_history[13] = T_torque[1];

 c_history[14] = T_torque[2];

 c_history[7] = krT;

 r_coef_twist=0;

 if(T_torque_max!=0){

 r_coef_twist = 0.3 * 2 * sqrt(r_inertia*kr) * (1-

T_torque_mag/T_torque_max);//minimal zum ausdämpfen von oszillation zweier

partikel

 // add damping torque

 // T_torque[0] += r_coef_twist*wr_n[0];

 // T_torque[1] += r_coef_twist*wr_n[1];

8 Appendix 131

 // T_torque[2] += r_coef_twist*wr_n[2];

 }

 // no damping / no dashpot in case of full mobilisation rolling angle

 }

/*

const double T_twisttorque_delta = r_torque[0]*enx+ r_torque[1]*eny +

r_torque[2]*enz; //projection

 r_torque[0] -= enx * T_twisttorque_delta;

 r_torque[1] -= eny * T_twisttorque_delta;

 r_torque[2] -= enz * T_twisttorque_delta;*/

 }

 };

}

}

#endif // ROLLING_MODEL_EPSD_H_

#endif

8.4 Modified rolling model dahl2

#ifdef ROLLING_MODEL

ROLLING_MODEL(ROLLING_DAHL2,dahl2,8)

#else

#ifndef ROLLING_MODEL_DAHL2_H_

#define ROLLING_MODEL_DAHL2_H_

#include "contact_models.h"

#include <algorithm>

#include "math.h"

132 8 Appendix

#include "domain.h"

#include "math_extra_liggghts.h"

namespace LIGGGHTS {

namespace ContactModels

{

 using namespace LAMMPS_NS;

 template<>

 class RollingModel<ROLLING_DAHL2> : protected Pointers

 {

 public:

 static const int MASK = CM_CONNECT_TO_PROPERTIES |

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE;

 RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup,class

ContactModelBase *) :

 Pointers(lmp), coeffRollFrict(NULL)

 {

 history_offset = hsetup->add_history_value("rollanglex", "1");

 hsetup->add_history_value("rollangley", "1");

 hsetup->add_history_value("rollanglez", "1");

 hsetup->add_history_value("plastic_anglex", "1");

 hsetup->add_history_value("plastic_angley", "1");

 hsetup->add_history_value("plastic_anglez", "1");

 hsetup->add_history_value("stored_anglex", "1");

 hsetup->add_history_value("stored_angley", "1");

 hsetup->add_history_value("stored_anglez", "1");

 hsetup->add_history_value("delta_anglex", "1");

8 Appendix 133

 hsetup->add_history_value("delta_angley", "1");

 hsetup->add_history_value("delta_anglez", "1");

 hsetup->add_history_value("T_rollanglex", "1");

 hsetup->add_history_value("T_rollangley", "1");

 hsetup->add_history_value("T_rollanglez", "1");

 hsetup->add_history_value("T_plastic_anglex", "1");

 hsetup->add_history_value("T_plastic_angley", "1");

 hsetup->add_history_value("T_plastic_anglez", "1");

 hsetup->add_history_value("T_stored_anglex", "1");

 hsetup->add_history_value("T_stored_angley", "1");

 hsetup->add_history_value("T_stored_anglez", "1");

 hsetup->add_history_value("T_delta_anglex", "1");

 hsetup->add_history_value("T_delta_angley", "1");

 hsetup->add_history_value("T_delta_anglez", "1");

 hsetup->add_history_value("free", "0");

 hsetup->add_history_value("losbrechmoment", "0");

 }

 void registerSettings(Settings&) {}

 void connectToProperties(PropertyRegistry & registry) {

 registry.registerProperty("coeffRollFrict",

&MODEL_PARAMS::createCoeffRollFrict);

 registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model dahl2");

 registry.registerProperty("coeffFrict",

&MODEL_PARAMS::createCoeffFrict);

 registry.connect("coeffFrict", coeffFrict,"rolling_model dahl2");

 // error checks on coarsegraining

134 8 Appendix

 if(force->cg_active())

 error->cg(FLERR,"rolling model dahl2");

 }

 void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces,

ForceData & j_forces)

 {

 double

r_torque[3],T_torque[3],r_coef,wr_n_i[3],wr_n_j[3],wr_t_i[3],wr_t_j[3];

 vectorZeroize3D(r_torque);

 vectorZeroize3D(T_torque);

 if(sidata.contact_flags) *sidata.contact_flags |=

CONTACT_ROLLING_MODEL;

 const double radi = sidata.radi;

 const double radj = sidata.radj;

 double reff=sidata.is_wall ? sidata.radi : (radi*radj/(radi+radj));

#ifdef SUPERQUADRIC_ACTIVE_FLAG

 if(sidata.is_non_spherical)

 reff = MathExtraLiggghtsSuperquadric::get_effective_radius(sidata);

#endif

 if(sidata.is_wall) {

 const double wr1 = sidata.wr1;

 const double wr2 = sidata.wr2;

 const double wr3 = sidata.wr3;

 const double radius = sidata.radi;

 double r_inertia;

 if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*radius*radius;

 else r_inertia = 1.4*sidata.mi*radius*radius;

8 Appendix 135

 calcRollTorque(r_torque,T_torque,sidata,reff,wr1,wr2,wr3,r_inertia,r_coef);

/*

 const double wr_dot_delta_i = sidata.en[0]*wr1 + sidata.en[1]*wr2 +

sidata.en[2]*wr3; //projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i);

 wr_t_i[0]=wr1 -wr_n_i[0];

 wr_t_i[1]=wr2 -wr_n_i[1];

 wr_t_i[2]=wr3 -wr_n_i[2];

 vectorCopy3D(wr_n_i, wr_n_j);

 vectorCopy3D(wr_t_i, wr_t_j);*/

 } else {

 double wr_roll[3];

 const int i = sidata.i;

 const int j = sidata.j;

 const double * const * const omega = atom->omega;

 const double r_inertia_red_i = sidata.mi*radi*radi;

 const double r_inertia_red_j = sidata.mj*radj*radj;

 double r_inertia;

 if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i *

r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j);

 else r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i +

r_inertia_red_j);

 // relative rotational velocity

 vectorSubtract3D(omega[i],omega[j],wr_roll);

calcRollTorque(r_torque,T_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_i

nertia,r_coef);

136 8 Appendix

/*

 const double wr_dot_delta_i = vectorDot3D(omega[i],sidata.en);

//projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i);

 vectorSubtract3D(omega[i],wr_n_i, wr_t_i);

 const double wr_dot_delta_j = vectorDot3D(omega[j],sidata.en);

//projection

 vectorScalarMult3D(sidata.en, wr_dot_delta_j, wr_n_j);

 vectorSubtract3D(omega[j],wr_n_j, wr_t_j);*/

 }

 i_forces.delta_torque[0] -= (r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]);

 i_forces.delta_torque[1] -= (r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]);

 i_forces.delta_torque[2] -= (r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]);

 j_forces.delta_torque[0] += r_torque[0]+T_torque[0];//+r_coef*wr_t_j[0];

 j_forces.delta_torque[1] += r_torque[1]+T_torque[1];//+r_coef*wr_t_j[1];

 j_forces.delta_torque[2] += r_torque[2]+T_torque[2];//+r_coef*wr_t_j[2];

 }

 void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&)

 {

 if(scdata.contact_flags) *scdata.contact_flags &=

~CONTACT_ROLLING_MODEL;

 double * const c_history = &scdata.contact_history[history_offset];

 c_history[0] = 0.0; // dangle

 c_history[1] = 0.0; // dangle

 c_history[2] = 0.0; // dangle

 c_history[3] = 0.0; //

 c_history[4] = 0.0; //

8 Appendix 137

 c_history[5] = 0.0; //

 c_history[6] = 0.0; //

 c_history[7] = 0.0; //

 c_history[8] = 0.0;//

 c_history[9] = 0.0;

 c_history[10] = 0.0;

 c_history[11] = 0.0;

 c_history[12] = 0.0; // Tdangle

 c_history[13] = 0.0; // Tdangle

 c_history[14] = 0.0; // Tdangle

 c_history[15] = 0.0; //

 c_history[16] = 0.0; //

 c_history[17] = 0.0; //

 c_history[18] = 0.0; //

 c_history[19] = 0.0; //

 c_history[20] = 0.0;//

 c_history[21] = 0.0;

 c_history[22] = 0.0;

 c_history[23] = 0.0;

 c_history[24] = 0;

 c_history[25] = 0;

 }

 void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 private:

138 8 Appendix

 double ** coeffRollFrict;

 double ** coeffFrict;

 int history_offset;

 inline void calcRollTorque(double (&r_torque)[3],double (&T_torque)[3],const

SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double wr3,

double r_inertia, double (&r_coef)) {

 double wr_n[3],wr_t[3];

 double losbrechmoment; //110% = 1.1

 double old_roll[3],d_old_roll[3];

 const double enx = sidata.en[0];

 const double eny = sidata.en[1];

 const double enz = sidata.en[2];

 double tangentialdirection[3];

 const double dt = update->dt;

 double * const c_history = &sidata.contact_history[history_offset]; // requires

Style::TANGENTIAL == TANGENTIAL_HISTORY

 const double rmu = coeffRollFrict[sidata.itype][sidata.jtype];

 const double xmu = coeffFrict[sidata.itype][sidata.jtype];

 bool nulldurchgang=0;

 losbrechmoment=1.0;

 // remove normal (torsion) part of relative rotation

 // use only tangential parts for rolling torque

 const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz;

 wr_n[0] = enx * wr_dot_delta;

 wr_n[1] = eny * wr_dot_delta;

 wr_n[2] = enz * wr_dot_delta;

 wr_t[0] = wr1 - wr_n[0];

8 Appendix 139

 wr_t[1] = wr2 - wr_n[1];

 wr_t[2] = wr3 - wr_n[2];

 // spring (reff depends on wall-particle or particle-particle contact)

 const double kr = sidata.kt*reff*reff *2;

 //<<<<<<<<<<<------------------EDIT

 r_coef = 2.0*sqrt(r_inertia*kr);

 double dr_angle[3];

 vectorScalarMult3D(wr_t,dt,dr_angle);

 //rotate the rolling

 double quad_oldrollmag =

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]);

 double normalpart = c_history[0]*enx + c_history[1]*eny +

c_history[2]*enz;

 tangentialdirection[0] = c_history[0] - normalpart * enx;

 tangentialdirection[1] = c_history[1] - normalpart * eny;

 tangentialdirection[2] = c_history[2] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 c_history[0] = quad_oldrollmag * tangentialdirection[0];

 c_history[1] = quad_oldrollmag * tangentialdirection[1];

 c_history[2] = quad_oldrollmag * tangentialdirection[2];

 quad_oldrollmag =

sqrt(c_history[3]*c_history[3]+c_history[4]*c_history[4]+c_history[5]*c_history

[5]);

 normalpart = c_history[3]*enx + c_history[4]*eny +

c_history[5]*enz;

 tangentialdirection[0] = c_history[3] - normalpart * enx;

140 8 Appendix

 tangentialdirection[1] = c_history[4] - normalpart * eny;

 tangentialdirection[2] = c_history[5] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 c_history[3] = quad_oldrollmag * tangentialdirection[0];

 c_history[4] = quad_oldrollmag * tangentialdirection[1];

 c_history[5] = quad_oldrollmag * tangentialdirection[2];

 quad_oldrollmag =

sqrt(c_history[6]*c_history[6]+c_history[7]*c_history[7]+c_history[8]*c_history

[8]);

 normalpart = c_history[6]*enx + c_history[7]*eny +

c_history[8]*enz;

 tangentialdirection[0] = c_history[6] - normalpart * enx;

 tangentialdirection[1] = c_history[7] - normalpart * eny;

 tangentialdirection[2] = c_history[8] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 c_history[6] = quad_oldrollmag * tangentialdirection[0];

 c_history[7] = quad_oldrollmag * tangentialdirection[1];

 c_history[8] = quad_oldrollmag * tangentialdirection[2];

 quad_oldrollmag =

sqrt(c_history[9]*c_history[9]+c_history[10]*c_history[10]+c_history[11]*c_his

tory[11]);

 normalpart = c_history[9]*enx + c_history[10]*eny +

c_history[11]*enz;

 tangentialdirection[0] = c_history[9] - normalpart * enx;

 tangentialdirection[1] = c_history[10] - normalpart * eny;

 tangentialdirection[2] = c_history[11] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 c_history[9] = quad_oldrollmag * tangentialdirection[0];

8 Appendix 141

 c_history[10] = quad_oldrollmag * tangentialdirection[1];

 c_history[11] = quad_oldrollmag * tangentialdirection[2];

 //############################## end of rotations

 d_old_roll[0] = c_history[0];

 d_old_roll[1] = c_history[1];

 d_old_roll[2] = c_history[2];

 c_history[0] += dr_angle[0];

 c_history[1] += dr_angle[1];

 c_history[2] += dr_angle[2];

 old_roll[0] = c_history[3];

 old_roll[1] = c_history[4];

 old_roll[2] = c_history[5];

 c_history[3] += dr_angle[0];

 c_history[4] += dr_angle[1];

 c_history[5] += dr_angle[2];

 c_history[9] += dr_angle[0];

 c_history[10] += dr_angle[1];

 c_history[11] += dr_angle[2];

 const double rollmagat =

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]);

 double magnitde =

sqrt(c_history[3]*c_history[3]+c_history[4]*c_history[4]+c_history[5]*c_history

[5]);

 const double

compnulldurchgang=c_history[0]*old_roll[0]+c_history[1]*old_roll[1]+c_histor

y[2]*old_roll[2];

142 8 Appendix

 if(compnulldurchgang<0||(c_history[0]*d_old_roll[0]+c_history[1]*d_old

_roll[1]+c_history[2]*d_old_roll[2])<0){

 nulldurchgang=1;

 }

 if(nulldurchgang==1){

 double buff_roll[3];

 buff_roll[0] = old_roll[0]-d_old_roll[0];

 buff_roll[1] = old_roll[1]-d_old_roll[1];

 buff_roll[2] = old_roll[2]-d_old_roll[2];

 c_history[3] = c_history[9] + c_history[6];

 c_history[4] = c_history[10] + c_history[7];

 c_history[5] = c_history[11] + c_history[8];

 if((buff_roll[0]*c_history[3]+buff_roll[1]*c_history[4]+buff_roll[2]*c_his

tory[5])>0){

 c_history[3] = c_history[0];

 c_history[4] = c_history[1];

 c_history[5] = c_history[2];

 }

 c_history[6] = buff_roll[0];

 c_history[7] = buff_roll[1];

 c_history[8] = buff_roll[2];

 c_history[9] = c_history[0];

 c_history[10] = c_history[1];

 c_history[11] = c_history[2];

 }

 double rsht = c_history[0]*enx + c_history[1]*eny +

c_history[2]*enz;

8 Appendix 143

 tangentialdirection[0] = c_history[0] - rsht * enx;

 tangentialdirection[1] = c_history[1] - rsht * eny;

 tangentialdirection[2] = c_history[2] - rsht * enz;

 vectorNormalize3D(tangentialdirection);

 const double rollmag =

sqrt(c_history[3]*c_history[3]+c_history[4]*c_history[4]+c_history[5]*c_history

[5]);

 //unloading/reloading

 r_torque[0] = kr*c_history[0];

 r_torque[1] = kr*c_history[1];

 r_torque[2] = kr*c_history[2];

 double r_torque_max;

 if((kr/2*rollmag)>(losbrechmoment*fabs(sidata.Fn)*reff*rmu)){

 r_torque_max = fabs(sidata.Fn)*reff*rmu;

 c_history[3] *= r_torque_max/kr*2 /rollmag;

 c_history[4] *= r_torque_max/kr*2 /rollmag;

 c_history[5] *= r_torque_max/kr*2 /rollmag;

 }else{

 r_torque_max = kr/2*rollmag;

 }

 const double r_torque_mag = vectorMag3D(r_torque);

 if(r_torque_mag > r_torque_max)

 {

 if(r_torque_mag != 0.0 && kr!=0){

144 8 Appendix

 const double factor = r_torque_max / r_torque_mag;

 r_torque[0] *= factor;

 r_torque[1] *= factor;

 r_torque[2] *= factor;

 // save rolling torque due to spring

 c_history[0] = r_torque[0]/kr;

 c_history[1] = r_torque[1]/kr;

 c_history[2] = r_torque[2]/kr;

 }else{

 vectorZeroize3D(r_torque);

 //c_history[0]=c_history[1]=c_history[2]=0;

 }

 }else{

 r_coef = 2.0*sqrt(r_inertia*kr);

 }

 r_torque[0] += r_coef*wr_t[0];

 r_torque[1] += r_coef*wr_t[1];

 r_torque[2] += r_coef*wr_t[2];

 const double r_mag_withdamp = vectorMag3D(r_torque);

 //double signofdirection =

((r_torque[0]*tangentialdirection[0]+r_torque[1]*tangentialdirection[1]+r_torque

[2]*tangentialdirection[2])>0) ? 1 : -1;

 const double Fr_coulomb = fabs(sidata.Fn)*reff*rmu;

 if (r_mag_withdamp > losbrechmoment*Fr_coulomb) {

 const double ratiod = Fr_coulomb / r_mag_withdamp;

8 Appendix 145

 r_torque[0] *= ratiod;

 r_torque[1] *= ratiod;

 r_torque[2] *= ratiod;

 }

 //=======================================TORSIONAL PART

 bool nulldurchgangtwist;

 double normaldirection[3];

 double r_coef_twist;

 //double iterm = 1.0-sidata.deltan/(2*reff);

 const double T_torque_max_Coulomb =

fabs(sidata.Fn)*xmu*0.65*reff*rmu;//sqrt(1.0-iterm*iterm);

 const double krT = sidata.kt*reff*reff;

 double dr_torqueT[3];

 double dt_angle[3];

 vectorScalarMult3D(wr_n,dt,dt_angle);

 //rotate the rolling

 double quad_oldtwistmag =

sqrt(c_history[12]*c_history[12]+c_history[13]*c_history[13]+c_history[14]*c_

history[14]);

 normalpart = c_history[12]*enx + c_history[13]*eny +

c_history[14]*enz;

 normaldirection[0] = normalpart * enx;

 normaldirection[1] = normalpart * eny;

 normaldirection[2] = normalpart * enz;

 vectorNormalize3D(normaldirection);

 c_history[12] = quad_oldtwistmag * normaldirection[0];

 c_history[13] = quad_oldtwistmag * normaldirection[1];

146 8 Appendix

 c_history[14] = quad_oldtwistmag * normaldirection[2];

 quad_oldtwistmag =

sqrt(c_history[15]*c_history[15]+c_history[16]*c_history[16]+c_history[17]*c_

history[17]);

 normalpart = c_history[15]*enx + c_history[16]*eny +

c_history[17]*enz;

 normaldirection[0] = normalpart * enx;

 normaldirection[1] = normalpart * eny;

 normaldirection[2] = normalpart * enz;

 vectorNormalize3D(normaldirection);

 c_history[15] = quad_oldtwistmag * normaldirection[0];

 c_history[16] = quad_oldtwistmag * normaldirection[1];

 c_history[17] = quad_oldtwistmag * normaldirection[2];

 quad_oldtwistmag =

sqrt(c_history[18]*c_history[18]+c_history[19]*c_history[19]+c_history[20]*c_

history[20]);

 normalpart = c_history[18]*enx + c_history[19]*eny +

c_history[20]*enz;

 normaldirection[0] = normalpart * enx;

 normaldirection[1] = normalpart * eny;

 normaldirection[2] = normalpart * enz;

 vectorNormalize3D(normaldirection);

 c_history[18] = quad_oldtwistmag * normaldirection[0];

 c_history[19] = quad_oldtwistmag * normaldirection[1];

 c_history[20] = quad_oldtwistmag * normaldirection[2];

 quad_oldtwistmag =

sqrt(c_history[21]*c_history[21]+c_history[22]*c_history[22]+c_history[23]*c_

history[23]);

8 Appendix 147

 normalpart = c_history[21]*enx + c_history[22]*eny +

c_history[23]*enz;

 normaldirection[0] = normalpart * enx;

 normaldirection[1] = normalpart * eny;

 normaldirection[2] = normalpart * enz;

 vectorNormalize3D(normaldirection);

 c_history[21] = quad_oldtwistmag * normaldirection[0];

 c_history[22] = quad_oldtwistmag * normaldirection[1];

 c_history[23] = quad_oldtwistmag * normaldirection[2];

 c_history[12] += dt_angle[0];

 c_history[13] += dt_angle[1];

 c_history[14] += dt_angle[2];

 const double twistmagat =

sqrt(c_history[12]*c_history[12]+c_history[13]*c_history[13]+c_history[14]*c_

history[14]);

 double magnitdetwist =

sqrt(c_history[15]*c_history[15]+c_history[16]*c_history[16]+c_history[17]*c_

history[17]);

 const double

compnulldurchgangT=c_history[12]*c_history[15]+c_history[13]*c_history[16]

+c_history[14]*c_history[17];

 if(compnulldurchgangT<0){//||(magnitde==0.0 &&

vectorDot3D(oldroll,dr_angle)<0)){

 nulldurchgangtwist=1;

 }

 if(nulldurchgangtwist==1){

 double buff_twist[3];

 buff_twist[0] = c_history[15];

 buff_twist[1] = c_history[16];

148 8 Appendix

 buff_twist[2] = c_history[17];

 c_history[15] = c_history[21] + c_history[18];

 c_history[16] = c_history[22] + c_history[19];

 c_history[17] = c_history[23] + c_history[20];

 if((buff_twist[0]*c_history[15]+buff_twist[1]*c_history[16]+buff_twist[2

]*c_history[17])>0){

 c_history[15] = c_history[12];

 c_history[16] = c_history[13];

 c_history[17] = c_history[14];

 }

 c_history[18] = buff_twist[0];

 c_history[19] = buff_twist[1];

 c_history[20] = buff_twist[2];

 c_history[21] = 0.0;

 c_history[22] = 0.0;

 c_history[23] = 0.0;

 }

 c_history[15] += dr_angle[0];

 c_history[16] += dr_angle[1];

 c_history[17] += dr_angle[2];

 c_history[21] += dr_angle[0];

 c_history[22] += dr_angle[1];

 c_history[23] += dr_angle[2];

 double rshtT = c_history[12]*enx + c_history[13]*eny +

c_history[14]*enz;

 normaldirection[0] = rshtT * enx;

8 Appendix 149

 normaldirection[1] = rshtT * eny;

 normaldirection[2] = rshtT * enz;

 vectorNormalize3D(normaldirection);

 const double twistmag =

sqrt(c_history[15]*c_history[15]+c_history[16]*c_history[16]+c_history[17]*c_

history[17]);

 T_torque[0] = krT*c_history[12];

 T_torque[1] = krT*c_history[13];

 T_torque[2] = krT*c_history[14];

 double T_torque_max;//T_torque_max_Coulomb

 if((krT/2*twistmag)>(losbrechmoment*T_torque_max_Coulomb)){

 T_torque_max = fabs(sidata.Fn)*reff*rmu;

 c_history[3] *= T_torque_max/krT*2 /twistmag;

 c_history[4] *= T_torque_max/krT*2 /twistmag;

 c_history[5] *= T_torque_max/krT*2 /twistmag;

 }else{

 T_torque_max = krT/2*twistmag;

 }

 const double T_torque_mag = vectorMag3D(T_torque);

 if(T_torque_mag > T_torque_max)

 {

 if(T_torque_mag != 0.0){

 const double Tfactor = T_torque_max / T_torque_mag;

 T_torque[0] *= Tfactor;

 T_torque[1] *= Tfactor;

 T_torque[2] *= Tfactor;

150 8 Appendix

 c_history[12] = T_torque[0]/krT;

 c_history[13] = T_torque[1]/krT;

 c_history[14] = T_torque[2]/krT;

 }else{T_torque[0]=T_torque[1]=T_torque[2]=0.0;}

 }else{

 r_coef_twist = 0.3* 2.0 * sqrt(r_inertia*krT);

 }

 r_coef_twist = 0.3* 2.0 * sqrt(r_inertia*krT);

 T_torque[0] += r_coef_twist*wr_n[0];

 T_torque[1] += r_coef_twist*wr_n[1];

 T_torque[2] += r_coef_twist*wr_n[2];

 //=======================================end of torsional part

 const double c_T_torque_mag = vectorMag3D(T_torque);

 if(c_T_torque_mag > losbrechmoment*T_torque_max_Coulomb)

 {

 double factorialT =

T_torque_max_Coulomb/c_T_torque_mag;

 vectorScalarMult3D(T_torque, factorialT);

 }

 //##

 }

 };

}

}

#endif // ROLLING_MODEL_DAHL2_H_

#endif

8 Appendix 151

8.5 Modified tangential model dahl

#ifdef TANGENTIAL_MODEL

TANGENTIAL_MODEL(TANGENTIAL_DAHL,dahl,4)

#else

#ifndef TANGENTIAL_MODEL_DAHL_H_

#define TANGENTIAL_MODEL_DAHL_H_

#include "contact_models.h"

#include "math.h"

#include "update.h"

#include "global_properties.h"

#include "atom.h"

namespace LIGGGHTS {

namespace ContactModels

{

 template<>

 class TangentialModel<TANGENTIAL_DAHL> : protected Pointers

 {

 double ** coeffFrict;

 int history_offset;

 public:

 static const int MASK = CM_CONNECT_TO_PROPERTIES |

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE;

 TangentialModel(LAMMPS * lmp, IContactHistorySetup * hsetup,class

ContactModelBase *c) : Pointers(lmp),

 coeffFrict(NULL),

 heating(false),

152 8 Appendix

 heating_track(false),

 cmb(c)

 {

 history_offset = hsetup->add_history_value("shearx", "1");

 hsetup->add_history_value("sheary", "1");

 hsetup->add_history_value("shearz", "1");

 hsetup->add_history_value("plastic_shearx", "1");

 hsetup->add_history_value("plastic_sheary", "1");

 hsetup->add_history_value("plastic_shearz", "1");

 hsetup->add_history_value("stored_shearx", "1");

 hsetup->add_history_value("stored_sheary", "1");

 hsetup->add_history_value("stored_shearz", "1");

 hsetup->add_history_value("delta_shearx", "1");

 hsetup->add_history_value("delta_sheary", "1");

 hsetup->add_history_value("delta_shearz", "1");

 hsetup->add_history_value("free", "0");

 hsetup->add_history_value("losbrechmoment", "0");

 }

 inline void registerSettings(Settings& settings)

 {

 settings.registerOnOff("heating_tangential_dahl",heating,false);

 settings.registerOnOff("heating_tracking",heating_track,false);

 //TODO error->one(FLERR,"TODO here also check if right surface model

used");

 }

 inline void connectToProperties(PropertyRegistry & registry)

8 Appendix 153

 {

 registry.registerProperty("coeffFrict",

&MODEL_PARAMS::createCoeffFrict);

 registry.connect("coeffFrict", coeffFrict,"tangential_model dahl");

 }

 inline void surfacesIntersect(const SurfacesIntersectData & sidata, ForceData &

i_forces, ForceData & j_forces)

 {

 // normal forces = Hookian contact + normal velocity damping

 const double enx = sidata.en[0];

 const double eny = sidata.en[1];

 const double enz = sidata.en[2];

 double tangentialdirection[3];

 bool nulldurchgang=0;

 double losbrechmoment; //110% = 1.1

 double old_shear[3],dx_old_shear[3];

 // shear history effects

 if(sidata.contact_flags) *sidata.contact_flags |=

CONTACT_TANGENTIAL_MODEL;

 double * const shear = &sidata.contact_history[history_offset];

 const double dt = update->dt;

 losbrechmoment=1.0;

 if (sidata.shearupdate && sidata.computeflag) {

 // rotate shear displacements //normal part entfernen

 double shrmagbefore = sqrt(shear[0]*shear[0] + shear[1]*shear[1] +

shear[2]*shear[2]);

154 8 Appendix

 double normalpart = shear[0]*enx + shear[1]*eny + shear[2]*enz;

 tangentialdirection[0] = shear[0] - normalpart * enx;

 tangentialdirection[1] = shear[1] - normalpart * eny;

 tangentialdirection[2] = shear[2] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 shear[0] = shrmagbefore * tangentialdirection[0];

 shear[1] = shrmagbefore * tangentialdirection[1];

 shear[2] = shrmagbefore * tangentialdirection[2];

 shrmagbefore = sqrt(shear[3]*shear[3] + shear[4]*shear[4] +

shear[5]*shear[5]);

 normalpart = shear[3]*enx + shear[4]*eny + shear[5]*enz;

 tangentialdirection[0] = shear[3] - normalpart * enx;

 tangentialdirection[1] = shear[4] - normalpart * eny;

 tangentialdirection[2] = shear[5] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 shear[3] = shrmagbefore * tangentialdirection[0];

 shear[4] = shrmagbefore * tangentialdirection[1];

 shear[5] = shrmagbefore * tangentialdirection[2];

 shrmagbefore = sqrt(shear[6]*shear[6] + shear[7]*shear[7] +

shear[8]*shear[8]);

 normalpart = shear[6]*enx + shear[7]*eny + shear[8]*enz;

 tangentialdirection[0] = shear[6] - normalpart * enx;

 tangentialdirection[1] = shear[7] - normalpart * eny;

 tangentialdirection[2] = shear[8] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 shear[6] = shrmagbefore * tangentialdirection[0];

8 Appendix 155

 shear[7] = shrmagbefore * tangentialdirection[1];

 shear[8] = shrmagbefore * tangentialdirection[2];

 shrmagbefore = sqrt(shear[9]*shear[9] + shear[10]*shear[10] +

shear[11]*shear[11]);

 normalpart = shear[9]*enx + shear[10]*eny + shear[11]*enz;

 tangentialdirection[0] = shear[9] - normalpart * enx;

 tangentialdirection[1] = shear[10] - normalpart * eny;

 tangentialdirection[2] = shear[11] - normalpart * enz;

 vectorNormalize3D(tangentialdirection);

 shear[9] = shrmagbefore * tangentialdirection[0];

 shear[10] = shrmagbefore * tangentialdirection[1];

 shear[11] = shrmagbefore * tangentialdirection[2];

 //####################################end of rotation

 dx_old_shear[0] = shear[0];

 dx_old_shear[1] = shear[1];

 dx_old_shear[2] = shear[2];

 shear[0] += sidata.vtr1 * dt;

 shear[1] += sidata.vtr2 * dt;

 shear[2] += sidata.vtr3 * dt;

 old_shear[0] = shear[3];

 old_shear[1] = shear[4];

 old_shear[2] = shear[5];

 shear[3] += sidata.vtr1 * dt;

 shear[4] += sidata.vtr2 * dt;

 shear[5] += sidata.vtr3 * dt;

 shear[9] += sidata.vtr1 * dt;

156 8 Appendix

 shear[10] += sidata.vtr2 * dt;

 shear[11] += sidata.vtr3 * dt;

 }

 const double shrmag = sqrt(shear[0]*shear[0] + shear[1]*shear[1] +

shear[2]*shear[2]);

 const double kt = sidata.kt *2.0;

 //*pow(fabs(sidata.Fn),2.0/3.0);

 const double xmu = coeffFrict[sidata.itype][sidata.jtype];

 const double magnitde = sqrt(shear[3]*shear[3] + shear[4]*shear[4] +

shear[5]*shear[5]);

 const double

compnulldurchgang=shear[0]*shear[3]+shear[1]*shear[4]+shear[2]*shear[5];//sh

ear[0]*old_shear[0]+shear[1]*old_shear[1]+shear[2]*old_shear[2];

 if(compnulldurchgang<0/*||(shear[0]*dx_old_shear[0]+shear[1]*dx_old_s

hear[1]+shear[2]*dx_old_shear[2])<0*/){

 nulldurchgang=1;

 }

 if(nulldurchgang==1){

 double buff_shear[3];

 buff_shear[0] = old_shear[0]-dx_old_shear[0];

 buff_shear[1] = old_shear[1]-dx_old_shear[1];

 buff_shear[2] = old_shear[2]-dx_old_shear[2];

 shear[3] = shear[9] + shear[6];

 shear[4] = shear[10] + shear[7];

 shear[5] = shear[11] + shear[8];

 if((buff_shear[0]*shear[3]+buff_shear[1]*shear[4]+buff_shear[2]*shear[5

])>0){

 shear[3] = shear[0];

8 Appendix 157

 shear[4] = shear[1];

 shear[5] = shear[2];

 }

 shear[6] = buff_shear[0];

 shear[7] = buff_shear[1];

 shear[8] = buff_shear[2];

 shear[9] = shear[0];

 shear[10] = shear[1];

 shear[11] = shear[2];

 }

 double rsht = shear[0]*enx + shear[1]*eny + shear[2]*enz;

 tangentialdirection[0] = shear[0] - rsht * enx;

 tangentialdirection[1] = shear[1] - rsht * eny;

 tangentialdirection[2] = shear[2] - rsht * enz;

 vectorNormalize3D(tangentialdirection);

 const double shearedmag = sqrt(shear[3]*shear[3] + shear[4]*shear[4] +

shear[5]*shear[5]);

 const double gammat = sidata.gammat;

 // tangential forces = shear

 double Ft1 = -(kt * shear[0]);

 double Ft2 = -(kt * shear[1]);

 double Ft3 = -(kt * shear[2]);

 //yield algorithm

 const double Ft_shear = sqrt(Ft1 * Ft1 + Ft2 * Ft2 + Ft3 * Ft3);

 double Ft_friction;

 if((kt/2*shearedmag)>(losbrechmoment*xmu*fabs(sidata.Fn))){

158 8 Appendix

 Ft_friction = xmu * fabs(sidata.Fn);

 shear[3] *= Ft_friction/kt*2 /shearedmag;

 shear[4] *= Ft_friction/kt*2 /shearedmag;

 shear[5] *= Ft_friction/kt*2 /shearedmag;

 }else{

 Ft_friction = kt/2*shearedmag;

 }

 //plastic shear

 if (Ft_shear > Ft_friction) {

 if (shrmag != 0.0 && kt != 0.0) {

 const double ratio = Ft_friction / Ft_shear;

 if(heating)

 {

 sidata.P_diss += (vectorMag3DSquared(shear)*kt -

ratio*ratio*vectorMag3DSquared(shear)*kt) / (update->dt);

 if(heating_track && sidata.is_wall) cmb-

>tally_pw((vectorMag3DSquared(shear)*kt -

ratio*ratio*vectorMag3DSquared(shear)*kt) / (update-

>dt),sidata.i,sidata.jtype,2);

 if(heating_track && !sidata.is_wall) cmb-

>tally_pp((vectorMag3DSquared(shear)*kt -

ratio*ratio*vectorMag3DSquared(shear)*kt) / (update->dt),sidata.i,sidata.j,2);

 }

 Ft1 *= ratio;

 Ft2 *= ratio;

 Ft3 *= ratio;

 shear[0] = -Ft1/kt;

 shear[1] = -Ft2/kt;

8 Appendix 159

 shear[2] = -Ft3/kt;

 }

 else{Ft1 = Ft2 = Ft3 = 0.0;}

 }

 else

 {

 if(heating)

 {

 sidata.P_diss +=

gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*sidata.vtr3);

 if(heating_track && sidata.is_wall) cmb-

>tally_pw(gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*s

idata.vtr3),sidata.i,sidata.jtype,1);

 if(heating_track && !sidata.is_wall) cmb-

>tally_pp(gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*si

data.vtr3),sidata.i,sidata.j,1);

 }

 }

 Ft1 -= (gammat*sidata.vtr1);

 Ft2 -= (gammat*sidata.vtr2);

 Ft3 -= (gammat*sidata.vtr3);

 const double Ft_shear_withdamp = sqrt(Ft1 * Ft1 + Ft2 * Ft2 + Ft3 * Ft3);

 //double signofdirection =

((Ft1*tangentialdirection[0]+Ft2*tangentialdirection[1]+Ft3*tangentialdirection[

2])>0) ? 1 : -1;

 const double Ft_coulomb = xmu * fabs(sidata.Fn);

 if (Ft_shear_withdamp > losbrechmoment*Ft_coulomb) {

 const double ratiod = Ft_coulomb / Ft_shear_withdamp;

160 8 Appendix

 Ft1 *= ratiod;

 Ft2 *= ratiod;

 Ft3 *= ratiod;

 }

 //############################ End of Edit

 // forces & torques

 const double tor1 = eny * Ft3 - enz * Ft2;

 const double tor2 = enz * Ft1 - enx * Ft3;

 const double tor3 = enx * Ft2 - eny * Ft1;

 #ifdef SUPERQUADRIC_ACTIVE_FLAG

 double torque_i[3];

 if(sidata.is_non_spherical) {

 double xci[3];

 double Ft_i[3] = { Ft1, Ft2, Ft3 };

 vectorSubtract3D(sidata.contact_point, sidata.pos_i, xci);

 vectorCross3D(xci, Ft_i, torque_i);

 } else {

 torque_i[0] = -sidata.cri * tor1;

 torque_i[1] = -sidata.cri * tor2;

 torque_i[2] = -sidata.cri * tor3;

 }

 #endif

 // return resulting forces

 if(sidata.is_wall) {

 const double area_ratio = sidata.area_ratio;

8 Appendix 161

 i_forces.delta_F[0] += Ft1 * area_ratio;

 i_forces.delta_F[1] += Ft2 * area_ratio;

 i_forces.delta_F[2] += Ft3 * area_ratio;

 #ifdef SUPERQUADRIC_ACTIVE_FLAG

 i_forces.delta_torque[0] += torque_i[0] * area_ratio;

 i_forces.delta_torque[1] += torque_i[1] * area_ratio;

 i_forces.delta_torque[2] += torque_i[2] * area_ratio;

 #else

 i_forces.delta_torque[0] = -sidata.cri * tor1 * area_ratio;

 i_forces.delta_torque[1] = -sidata.cri * tor2 * area_ratio;

 i_forces.delta_torque[2] = -sidata.cri * tor3 * area_ratio;

 #endif

 } else {

 i_forces.delta_F[0] += Ft1;

 i_forces.delta_F[1] += Ft2;

 i_forces.delta_F[2] += Ft3;

 j_forces.delta_F[0] += -Ft1;

 j_forces.delta_F[1] += -Ft2;

 j_forces.delta_F[2] += -Ft3;

 #ifdef SUPERQUADRIC_ACTIVE_FLAG

 double torque_j[3];

 if(sidata.is_non_spherical) {

 double xcj[3];

 vectorSubtract3D(sidata.contact_point, sidata.pos_j, xcj);

 double Ft_j[3] = { -Ft1, -Ft2, -Ft3 };

162 8 Appendix

 vectorCross3D(xcj, Ft_j, torque_j);

 } else {

 torque_j[0] = -sidata.crj * tor1;

 torque_j[1] = -sidata.crj * tor2;

 torque_j[2] = -sidata.crj * tor3;

 }

 i_forces.delta_torque[0] += torque_i[0];

 i_forces.delta_torque[1] += torque_i[1];

 i_forces.delta_torque[2] += torque_i[2];

 j_forces.delta_torque[0] += torque_j[0];

 j_forces.delta_torque[1] += torque_j[1];

 j_forces.delta_torque[2] += torque_j[2];

 #else

 i_forces.delta_torque[0] = -sidata.cri * tor1;

 i_forces.delta_torque[1] = -sidata.cri * tor2;

 i_forces.delta_torque[2] = -sidata.cri * tor3;

 j_forces.delta_torque[0] = -sidata.crj * tor1;

 j_forces.delta_torque[1] = -sidata.crj * tor2;

 j_forces.delta_torque[2] = -sidata.crj * tor3;

 #endif

 }

 }

 inline void surfacesClose(SurfacesCloseData & scdata, ForceData&,

ForceData&)

 {

 // unset non-touching neighbors

8 Appendix 163

 // TODO even if shearupdate == false?

 if(scdata.contact_flags) *scdata.contact_flags &=

~CONTACT_TANGENTIAL_MODEL;

 double * const shear = &scdata.contact_history[history_offset];

 shear[0] = 0.0;

 shear[1] = 0.0;

 shear[2] = 0.0;

 shear[3] = 0.0;

 shear[4] = 0.0;

 shear[5] = 0.0;

 shear[6] = 0.0;

 shear[7] = 0.0;

 shear[8] = 0.0;

 shear[9] = 0.0;

 shear[10] = 0.0;

 shear[11] = 0.0;

 shear[12] = 0.0;

 shear[13] = 0.0;

 }

 inline void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 inline void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

 protected:

 bool heating;

 bool heating_track;

 class ContactModelBase *cmb;

 };

164 8 Appendix

}

}

#endif // TANGENTIAL_MODEL_DAHL_H_

#endif

8.6 MatLab model for pile driving

%run.m

clear all

close all

#GUI

soilmodel='eigen';

nstrokes=1;

moledepth=0; %m Actual mole depth moledepth per element

Tipresistance=80;

Shaftfriction=15;

global rho_soil

global phi_soil

global cohesion

global grav

global I_D

global KO

%nstrokes=2; %number of stroke cycles

ngrid=1; %Spatial grid resolution

npoints=12*ngrid+2; %Number of grid points

nplot=(npoints-2)/ngrid; %Number of plotted elements

sim_TIME=500e-3; %Simulation Time in sec for one stroke cycle

8 Appendix 165

sim_strokecycle=5; %Time between two strokes

%time_real=zeros(1,nstrokes);

hitelement=3; %element hit by supportmass

%Length interval:

L_shaft=0.400; %m Length of mole

deltaL=L_shaft/(npoints-3); %m Space interval

%***

%Length of support element and hammer element:

Lsup=2e-3;%unwichtig

Lram=0.5e-3;%unwichtig

%Constants:

grav=9.80665;#3.71;#9.80665; %m/s^2 Gravitational acceleration

gravity=grav;

%SOIL

E_soil=120e6; %Pa dynamic Young's modulus of loose sandy soil

nu_soil=0.25; %1 Poisson ratio of loose sandy soil

G_soil=E_soil/(2*(1+nu_soil)); %Pa shear module of the soil

cohesion=0;

phi_soil=32*(pi/180);

KO=1-sin(phi_soil);

rho_soil=1360;

rho_grain=2720;

%for spherical particles e_max=1 and e_min=0.33

e_max=1;

e_min=0.33;

166 8 Appendix

e_act=rho_grain/rho_soil-1;

I_D=(e_max-e_act)/(e_max-e_min);

phi_inter_phi_soil=atan(0.3)/phi_soil;%2/3;

%MOLE

E_mole=200e8; %Pa Young's modulus of mole material (stainless

steel)

rad_mole=13.5e-3; %m Radius of mole

A_mole=pi*rad_mole^2; %m Cross section area of mole

alpha=60/180*pi; %rad Sohlneigung, tip angle

effectiveDepth=2;%10*rad_mole; %loose soil <10*D dense soil <20*D

%Geometry:

%Note: positive x-direction is from the surface into the soil!

A_cushion=pi*rad_mole^2; %m Cross section area of cushion block

L_cushion=0.0138;%deltaL; %m Thickness of cushion block (same as other

elements)

%L_cushion=deltaL; %m Thickness of cushion block (same as other

elements)

%Global parameters:

%Spring properties

Kf=6222; %N/m Spring constant of percussion spring

Kb=73; %N/m Spring constant of support spring

Lfu=35.00e-3; %m Uncompressed length of percussion spring

Lfp=20.00e-3; %m Precompressed length of percussion spring

Lfc=20.00e-3; %m Compressed length of percussion spring

Lbu=108.00e-3; %m Uncompressed length of support spring

Lbp=52.35e-3; %m Precompressed length of support spring

Lbc=29.35e-3; %m Compressed length of support spring

8 Appendix 167

%Masses:

M_casing=276e-3; %kg Total mass of housing

M_shaftsegment=M_casing/(npoints-3); %kg Mass of one any interior tube

segment;

M_tip=24e-3;%2*M_shaftsegment; %kg Mass of MOLE tip;

M_ram=110e-3; %kg Mass of ram (hammer)

M_support=460e-3; %kg Support mass

%Coefficients of restitution for hammer and tube cap:

e1=0.1;

e2=0.1;

%Calculate friction resistance along tube segments:

 %kg/m^3 Soil density

%phi_friction=atan(0.4);%14*(pi/180); %rad Angle of friction

between soil and PEN-tube

%tanphi=tan(phi_friction);

sigma=zeros(1,npoints);

tip=npoints-2;

hammer=npoints-1;

support=npoints;

%Spring constants:

 E_cushion=E_mole; %Pa Young's modulus of PEN-tube top element;

 J_tip=0.5; %s/m Soil damping constant at the tip

 J_wall=0.15; %s/m Soil damping constant along the

moles's side wall (friction)

K_shaftsegment=(A_mole*E_mole)/deltaL; %N/m Spring constant of PEN-

tube segments

168 8 Appendix

K_cushion=(A_cushion*E_cushion)/L_cushion; %N/m Spring constant of

cushion material

check_Irho=(e_act<e_min)+(e_act>e_max);

if check_Irho>0

 error('Your density index is too large or too small, check your rho_soil and

rho_grain')

end

 deltat=2*pi*sqrt(M_shaftsegment/(K_shaftsegment))/40;%s Timestep

 ntmax=round(sim_TIME/deltat); %Number of timesteps

 time=(0:deltat:deltat*(ntmax)); %s Time

%---------------------------------------Boundary conditions-----------------

%Initial conditions:

mass=zeros(1,npoints); %mass in kg

mass(npoints-1)=M_ram;

mass(1:npoints-3)=M_shaftsegment;

mass(npoints-2)=M_tip;

mass(npoints)=M_support;

%

K=zeros(1,npoints); % stiffness of pile

K(1:npoints-3)=K_shaftsegment;

K(npoints-1)=Kf;

K(npoints)=Kb;

K(npoints-2)=K_cushion;

Ksoil=zeros(1,npoints-2); %stiffness of soil

Jsoil=zeros(1,npoints-2); %soil damping

Jsoil(1:npoints-3)=J_wall;

8 Appendix 169

Jsoil(npoints-2)=J_tip;

V=zeros(ntmax,npoints);

D=zeros(ntmax,npoints);

 D(1,npoints-1)=-(Lfu-Lfp);

C=zeros(1,npoints);

F=zeros(ntmax,npoints);

R=zeros(ntmax,npoints);

Z=zeros(ntmax,npoints);

Dsoil=zeros(ntmax,npoints);

hitforce=zeros(ntmax,1);

hitoverlap=0;

%moledepth_init=0.5; %m Initial depth of mole upper end in

soil

% initialpositions=[D(1,:)',zeros(npoints,1)];

% for ii=2:npoints-2

% initialpositions(ii,1)=initialpositions(ii-1,1)+deltaL;

% end

% initialpositions(npoints-1,1)= D(1,npoints-1)+L_shaft;

% initialpositions(npoints,1)=D(1,npoints)+Lbu;

% initialpositions(npoints,2)=1;

% initialpositions(npoints-1,2)=1;

% %plot initial conditions

% scatter(initialpositions(:,2),initialpositions(:,1))

% xlim([-4, 5])

% set(gca,'YDir','reverse');

flag=0;

170 8 Appendix

flags=zeros(npoints-3,1);

C1max=C(npoints-2);

C2max=hitoverlap;

tipDepth=zeros(nstrokes,1);

%soil layers

layer.number_of_layers=2;

layer.top=zeros(layer.number_of_layers,1);

layer.bot=zeros(layer.number_of_layers,1);

layer.rho=zeros(layer.number_of_layers,1);

layer.phi_soil=zeros(layer.number_of_layers,1);

layer.cohesion=zeros(layer.number_of_layers,1);

%cohesion dry = [0 - 5000] cohesion wet = [0 - 15000]

%cohesion wet clay = [10000 - 40000]

%_____________user input

layer.top(1)=11;

layer.bot(1)=12;

layer.rho(1)=1460;

layer.phi_soil(1)=phi_soil;

layer.cohesion(1)=cohesion;

layer.e_max(1)=1;

layer.e_min(1)=0.33;

layer.rho_grain(1)=2720;

layer.top(2)=15;

layer.bot(2)=20;

layer.rho(2)=1600;

8 Appendix 171

layer.phi_soil(2)=phi_soil;

layer.cohesion(2)=cohesion;

layer.e_max(2)=1;

layer.e_min(2)=0.33;

layer.rho_grain(2)=2720;

%---

for il=1:layer.number_of_layers

layer.I_D(il)=(layer.e_max(il)-(layer.rho_grain(il)/layer.rho(il)-

1))/(layer.e_max(il)-layer.e_min(il));

end

check_rho=find((layer.I_D<0)+(layer.I_D>1));

if check_rho>0

 error(['Your density index is too large or too small, check your rho_soil and

rho_grain of layer ' num2str(check_rho)])

end

if length(layer.top)~=layer.number_of_layers

 error('The variable layer.number_of_layers does not correspond to the number

of defined layers')

end

for stroke=1:nstrokes

%[rho_soil_u,phi_soil_u,cohesion_u]=get_soilprop_u(moledepth+deltaL+(npoin

ts-3-1)*deltaL,layer); %rho_soil under tip

for i=1:npoints-3

%

[rho_soil_i,phi_soil_i,cohesion_i,KO_i]=get_soilprop_i(moledepth+deltaL/2+(i-

1)*deltaL,layer);

% sigma(i)=sigma_v(moledepth+deltaL/2+(i-1)*deltaL, layer);

 sigma(i)=(moledepth+deltaL/2+(i-1)*deltaL)*rho_soil*grav; %ersatz

172 8 Appendix

% phi_inter=phi_soil_i*phi_inter_phi_soil;

 Ru_shaftsegment(i)=Shaftfriction/(npoints-

3);%KO_i*sigma(i)*rad_mole*(2*pi)*deltaL*tan(phi_inter); %K_0 consider

 end;

 tipposition=moledepth+deltaL+(npoints-3-1)*deltaL;

% sigma(npoints-2)=sigma_v(tipposition, layer); %flat tip

 %trailing cable

%Ru_shaftsegment(1)=Ru_shaftsegment(1)+moledepth*2*pi*rad_mole*sigma_

v(moledepth, layer)/2*0.1;

 %Mohr-Coulomb criteria

 yield_soil=sigma(npoints-3)*(1+KO)/2*sin(phi_soil)+cohesion*cos(phi_soil);

%Pa yield stress of the soil

 shear_soilpile=yield_soil/10; %Pa shear stress at soil-pile interface

 alpha=60/180*pi;

 switch soilmodel

 case 'Grundbruch nach �NORM'

% bearingcapacityflattip %for layered soil just bearingcapacityflattip

 %Qu_soil=3/4*Qu_soil;

 case 'lokales Scherversagen nach MC'

% mohrcoulomb3

 case 'Meyerhof'

% bearingcapacityMeyerhof

 case 'eigen'

 Qu_soil=Tipresistance/A_mole;

 end

 Ru_tip=Qu_soil*A_mole; %N Ultimate soil resistance at mole tip

8 Appendix 173

 Q_tip=(1+nu_soil)/(2*E_soil)*yield_soil*rad_mole; %m Soil quake

at tip calculated from material parameters (maximal elastic ground deformation)

 rad_disturbed=rad_mole*10; %m Disturbed region

around mole ;

 Q_shaft=shear_soilpile/G_soil*rad_mole*log(rad_disturbed/rad_mole); %m

Soil quake at boundary segments calculated from material parameters

 K_tip=Ru_tip/Q_tip; %N/m Spring constant of soil at the tip

 %end of updating soil properties

%

 Ksoil(npoints-2)=K_tip;

 K_wall=zeros(1,npoints);

 for i=1:npoints-3

 K_wall(i)=Ru_shaftsegment(i)/Q_shaft; %N/m Spring constants of soil

along shaft segments

 end;

 Ksoil(1:npoints-3)=K_wall(1:npoints-3);

for n=1:ntmax % do timestep

 %----------------Schlag Top Druck ist positiv

 C(npoints-1)=(D(n,npoints) - D(n,npoints-1)); %percussion spring

 F(n,npoints-1) = C(npoints-1)*K(npoints-1);

 C(npoints)=(D(n,1) - D(n,npoints)+(Lbu-Lbp)); %support spring

 F(n,npoints) = C(npoints)*K(npoints);

 %Federn koennen nicht kuerzer als compressed length sein:

 if C(npoints)>(Lbu-Lbc)

 D(n,npoints)=D(n,1)-(Lbp-Lbc);

 C(npoints)=(Lbu-Lbc);

 F(n,npoints) = C(npoints)*K(npoints);

174 8 Appendix

 end

 if C(npoints-1)>(Lfu-Lfc)

 D(n,npoints-1)=D(n,npoints)-(Lfu-Lfc);

 C(npoints-1)=(Lfu-Lfc);

 F(n,npoints-1) = C(npoints-1)*K(npoints-1);

 end

 for i=1:npoints-3 % calculate all mole springforces in this timestep

 C(i) = D(n,i) - D(n,i+1);

 F(n,i) = C(i)*K(i);

 end;

 C(npoints-2)=(D(n,npoints-1) - D(n,npoints-2)); %cushion spring

(hammer-tip contact)

 if C(npoints-2)>=0

 m_mean1=mass(npoints-1)*mass(npoints-2)/(mass(npoints-

2)+mass(npoints-1));

 gamma_n1=sqrt(4*m_mean1*K_cushion/(1+(pi/log(e1))^2));

 F(n,npoints-2)=K(npoints-2)*C(npoints-2) - gamma_n1*(V(n,npoints-2)-

V(n,npoints-1)); %step (a) and step (d)

 if F(n,npoints-2)<0

 F(n,npoints-2)=0; %step (f) no tension of spring

 end

 else

 F(n,npoints-2)=0;

 end

 hitoverlap=D(n,npoints)-D(n,hitelement);

 if(hitoverlap<=0)

 hitforce(n)=0;

8 Appendix 175

 else

m_mean=mass(hitelement)*mass(npoints)/(mass(hitelement)+mass(npoints));

 gamma_n=sqrt(4*m_mean*K_cushion/(1+(pi/log(e2))^2));

 hitforce(n)=hitoverlap*K_cushion - gamma_n*(V(n,hitelement)-

V(n,npoints)); %step (a) and step (d)

 if hitforce(n)<0

 hitforce(n)=0; %step (f) no tension of spring

 end

 end

 %Soil resistance at tip

 if (Dsoil(n,npoints-2)<(D(n,npoints-2)-Q_tip))

 Dsoil(n,npoints-2)=D(n,npoints-2)-Q_tip;

 flag=1;

 end

 if flag==0

 R(n,npoints-2)=(D(n,npoints-2)-Dsoil(n,npoints-2))*Ksoil(npoints-2)* (1 +

Jsoil(npoints-2)*V(n,npoints-2));

 elseif flag==1

 R(n,npoints-2)=(D(n,npoints-2)-Dsoil(n,npoints-2))*Ksoil(npoints-2) +

Jsoil(npoints-2)* Ksoil(npoints-2)* Q_tip*V(n,npoints-2);

 end

 if R(n,npoints-2)<0

 R(n,npoints-2)=0;

 end

 Dsoil(n+1,npoints-2)=Dsoil(n,npoints-2);

 %Soil resistance and plastic displacement via friction along tube

 for i=1:npoints-3

176 8 Appendix

 if(Dsoil(n,i)>(D(n,i)+Q_shaft)) %Routine #1 plastic displacement

 Dsoil(n,i)=D(n,i)+Q_shaft;

 flags(i)=1;

 elseif(Dsoil(n,i)<(D(n,i)-Q_shaft))

 Dsoil(n,i)=D(n,i)-Q_shaft;

 flags(i)=1;

 end

 if flags(i)==0 %linear elastic

 R(n,i)=(D(n,i)-Dsoil(n,i))*Ksoil(i)* (1+Jsoil(i)*V(n,i));

 elseif flags(i)==1

 R(n,i)=(D(n,i)-Dsoil(n,i))*Ksoil(i) + Jsoil(i)* Ksoil(i)* Q_shaft*V(n,i);

 end

 Dsoil(n+1,i)=Dsoil(n,i);

 end

%::INTEGRATION:::::::::::::::::::::::::::::

 Z(n,1) = -F(n,npoints)-F(n,1)-R(n,1) + gravity*mass(1); %Druckkraft ist

positiv!!

 for i=2:npoints-3

 if(i==hitelement)

 Z(n,i)=F(n,i-1)-F(n,i)-R(n,i) + hitforce(n) + gravity*mass(i);

 else

 Z(n,i)=F(n,i-1)-F(n,i)-R(n,i) + gravity*mass(i);

 end

 end

 Z(n,npoints-2)=F(n,npoints-3)+F(n,npoints-2)-R(n,npoints-2) +

gravity*mass(npoints-2); %tip

8 Appendix 177

 Z(n,npoints-1)=-F(n,npoints-2)+F(n,npoints-1) + gravity*mass(npoints-1);

%hammer

 Z(n,npoints)=-F(n,npoints-1)+F(n,npoints) - hitforce(n) +

gravity*mass(npoints); %support mass

 %

 %Velocities:

 V(n+1,:) = V(n,:) + Z(n,:)./mass*deltat;

 D(n+1,:) = D(n,:) + deltat*V(n+1,:);

 PotEnergy=1/2*Kf*C(npoints-1)*C(npoints-

1)+1/2*Kb*C(npoints)*C(npoints);

 KinEnergy=1/2*M_ram*V(n,npoints-1)*V(n,npoints-

1)+1/2*M_support*V(n,npoints)*V(n,npoints);

 TotEnergy=PotEnergy+KinEnergy;

end

disp('finished stroke')

disp(stroke)

moledepth=moledepth+D(end,npoints-2);

tipDepth(stroke)=moledepth+L_shaft;

end

% plot(tipDepth,'x')

realtime=0:3.75:3.75*nstrokes-1;

savefile=strcat('output.mat');

save(savefile, 'D', 'time')

totset=D(end,12);

#save('-ascii','-append', 'results/results.txt','counter', 'totset')

%plots

plot(time,D(:,12),'linewidth',2) %tip displacements

178 8 Appendix

hold on

plot(time,D(:,13),'r','linewidth',2) %hammer displacements

plot(time,D(:,14),'g','linewidth',2) %supportmass displacements

plot(time,Dsoil(:,npoints-2),'k','linewidth',2)

set(gca,'YDir','reverse');

h=legend('Tip','Soil')#,'hammer','support')

xlabel('Time [s]','fontsize',16)

ylabel('Displacements [m]','fontsize',16)

grid on

set (h, "fontsize", 14)

set(gca, "fontsize", 12)

xlim([0,0.14])

ylim([-0.005,0.006])

#ylim([-0.016,0.006])

% plot(F(:,12)) %force on tip

% plot(Dsoil(:,1),'k')

% hold on

% plot(D(:,1))

plot(f04reibung.time,f04reibung.D(:,12),'linewidth',2)

hold on

set(gca,'YDir','reverse');

plot(f03reibung.time,f03reibung.D(:,12),'r','linewidth',2)

plot(f02reibung.time,f02reibung.D(:,12),'g','linewidth',2)

plot(f01reibung.time,f01reibung.D(:,12),'k','linewidth',2)

%plot(f00reibung.time,f00reibung.D(:,12),'c','linewidth',2)

8 Appendix 179

legend('\mu_{inter}=0.4','\mu_{inter}=0.3','\mu_{inter}=0.2','\mu_{inter}=0.1')

xlabel('Time [s]')

ylabel('Displacements [m]')

