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Kurzfassung 

Numerische Modellierung einer Dynamischen 

Drucksondierung auf dem Mars 

Die NASA InSight Mission ist eine unbemannte Raumfahrtmission, bei der ein 

stationärer Lander auf die Oberfläche des Mars geschickt wird um das Innere des 

Planeten zu untersuchen. Der geplante Start der Raumfahrtmission im Jahr 2016 

musste aufgrund technischer Probleme auf das Jahr 2018 verschoben werden. Das 

Ziel der Mission ist die Untersuchung des inneren Aufbaus des Planeten durch die 

Beobachtung der seismischen Aktivität und des Wärmeflusses im Inneren des 

Planeten. Dazu wird ein Seismometer (SEIS) auf die Oberfläche platziert und ein 

Wärmeflusssensor (HP3) in den Boden gerammt. Der Wärmeflusssensor wird 3 bis 

5 Meter tief in den Marsboden eingebracht um den thermischen Einfluss der 

Sonneneinstrahlung auf die Temperaturmessung zu verringern und um den 

Temperaturgradienten im Boden durch mehrere Temperatursensoren auf dem 

Schleppkabel in unterschiedlichen Tiefen zu bestimmen.  

HP3 besitzt einen inneren Schlagmechanismus welcher das Instrument in den 

Boden rammt. Die Bewegung des Instruments wird während der Sondierung 

gemessen, um aus diesen Daten mechanische Eigenschaften des Marsbodens zu 

bestimmen. Das Wissen über die Bodenbeschaffenheit und deren 

bodenmechanischen Eigenschaften liefert Rückschlüsse über die Geschichte des 

Planeten und soll zukünftigen Missionen helfen, diese besser zu planen.  

Es wurde ein numerisches Model der HP3 Drucksondierung entwickelt um das 

Verhalten des granularen Materials während der dynamischen Sondierung zu 

untersuchen. Dieses Model besteht aus dem Instrumentenkörper welcher in ein 

granulares Material eindringt, sowie aus dem Schlagmechanismus welcher die 

Bewegung des Sensors erzeugt. Der Einfluss der Randbedingungen aufgrund der 

Einschränkungen im Labor sowie die Eindringperformance des Sensors in 

unterschiedlichen Böden wurden untersucht. Zudem ist der Einfluss des 

dynamischen Eindringens auf die Bodenbeschaffenheit ausgewertet.  



Abstract 

Numerical Modelling of Dynamic Cone Penetration into 

Martian Subsurface 

The NASA InSight Mission is an unmanned space mission that will send a lander 

on Martian surface to investigate the interior of Mars. The expected launch will be 

in 2018 after the initial date of launch in 2016 had to be postponed due to technical 

problems. The major task of the mission is the study of the planets geological 

evolution by investigating the seismic activity and the planets heat flow. For this 

purpose, a seismometer (SEIS) will be placed on the surface and a heat flow probe 

(HP3) will be driven into the subsurface of Mars. The heat flow probe will penetrate 

3 to 5 metres deep into the ground of Mars to avoid the influence of the solar 

radiation on the heat flow measurement and to allow measurement of the planetary 

temperature gradient using thermal sensors on the trailing cable at different depths.  

HP3 contains an internal hammering mechanism that pushes the probe into the 

ground. The displacement of the probe during the penetration phase will be 

measured and used for the determination of Martian soil mechanical properties. 

Those information on the soil conditions and its soil mechanical properties 

provides conclusions on the planets history and shall be used to better plan future 

missions.  

Therefore, a numerical model of the HP3 penetration progress has been developed 

to investigate the behaviour of granular materials during dynamic penetration. This 

model consists of a probe penetrating into granular material and a hammering 

mechanism that generates the movement of the probe. Investigations on the 

influence of boundaries in laboratory conditions and on the penetration 

performance of the probe in different soils are carried out. Furthermore, the 

influence of the dynamic penetration on the soil condition is evaluated.  
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Formelzeichen und Abkürzungen 

Große Buchstaben 

A [m2] Cross-sectional area of penetrator 
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CTX [] Context Camera 

DEM [] Discrete Element Method 
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Fdamping [N] Damping force 

FEM [] Finite Element Method 

Fn [N] Normal contact force 

Ft [N] Tangential contact force 

Ft,max [N] Max tangential contact force 

G [Pa] Particle shear modulus 

HiRISE [] High Resolution Imaging Science Experiment 

HP3 [] Heat flow and physical properties probe 

HRSC [] High Resolution Stereo Camera 

I [kgm2] Particle rotational inertia 

IDA [] Instrument deployment arm 

JPL [] NASA Jet Propulsion Laboratory 

KP [] Proportional constant for controller 

KD [] Differential constant for controller 

MPM [] Material Point Method 

Mr,plastic [Nm] Rolling resistive torque at mobilisation 

NASA [] National Aeronautics and Space Administration 

Nγ, Nq, Nc [] Bearing capacity factors 

PFC2D [] Two-dimensional Particle Flow Code 

Rshaft [N] Shaft resistance 

Rtip [N] Tip resistance 

SEIS [] Seismometer 

SPH [] Smooth Particle Hydrodynamics 

STATIL [] Static tilt sensor 

Y [Pa] Particle Young’s modulus 

Kleine Buchstaben 

d50 [m] particles’ mean grain size 

dt [s] time step size 



dx [m] Relative displacements between two contacting particles 

dxe [m] Relative elastic displacements 

dxp [m] Relative plastic displacements 

g [m/s2] Gravitational constant 

kn [N/m] Particle normal stiffness 

kt [N/m] Particle tangential stiffness 

kt,prime [N/m] Particle tangential stiffness for primary loading 

kt,un/re [N/m] Particle tangential stiffness for un-/reloading 

kr [N/m] Particle rolling stiffness 

m [kg] Particle mass 

pd [m] Distance between two particles‘ centre 

r [m] Particle radius 

rv [m] Radius of particle v 

rw [m] Radius of particle w 

reff [m] Particles‘ effective radius 

sγ, sq, sc [] Shape factors 

t [m] Depth 

vt [m/s] Relative tangential velocity 

v⃗ [m] Position vector to a particle centre 

w⃗⃗⃗ [m] Position vector to a particle centre 

Griechische Buchstaben 

 [°] internal friction angle 

δn [m] overlap between two particles 

µr [] Coefficient of rolling resistance 

µt [] Tangential friction coefficient 

µinter [] Interface friction coefficient 

θ [°] Rotation angle of a particle 

θelastic [°] Elastic rotation of a particle 

σ [Pa] Stress 

σv [Pa] Vertical stress 

σh [Pa] Horizontal stress 

ε [%] Strain 

γo [N/m3] Soil specific weight above the tip 

γu [N/m3] Soil specific weight underneath the tip 

ρ [kg/m3] Soil density 

ΔTcrit [s] Critical time increment 

ω [1/s] Angular velocity 
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1 Introduction 

1.1 NASA InSight Mission 

The NASA InSight Mission will investigate the deep interior of Mars to determine 

the inner structure of the red planet more precisely and observe its geological 

processes. Since the inner structure of Mars has not changed as much as on Earth 

due to less geological activity, the mission will provide insights into the planets 

earliest evolution. The information about the geological evolution on Mars will 

reveal new knowledge on the evolution of all rocky planets, including Earth. So 

far, the knowledge on the inner structure of Mars is given by gravity and 

topography analysis as well as from magnetic data from Mars Global Surveyor 

(Williams 2008). The InSight Mission will now provide seismic and thermal data 

from the interior and thus will make it possible to create more accurate models of 

the planets structure and reveal the planets origin.  

For this task, a lander will be send to Mars carrying the two key instruments: the 

SEISmometer (SEIS) and the Heat flow and Physical Properties Probe (HP3), see 

Figure 1. The interior structure of Mars will be determined much more precisely 

than in the past by measurements of the seismometer. Furthermore, the occurrence 

of tectonic activities on Mars as well as meteor impacts will be detected by SEIS. 

Although, SEIS will not be the first seismometer on a Mars mission, it will be the 

first seismometer placed directly on the Martian surface. Previous seismometers 

of the Viking Mission in 1976 were mounted on the lander deck, so that the motion 

of the lander structure itself manipulates the results. The InSight seismometer is 

mounted on a steerable mounting, so that the orientation can be adjusted after 

deployment. The system will be fixed by a conical tip that dips into the sandy 

surface to guarantee a stable connection between the sensors and the Martian 

surface (Christensen & Knapmeyer-Endrun 2016). An additional covering protects 

the seismometer against surface winds.  
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Figure 1: The InSight lander (NASA/JPL-Caltech 2015a). 

The inner heat flow of the planet will be recorded by the thermal sensors of HP3. 

The HP3 instrument consists of a heat flow probe including a hammering 

mechanism to penetrate itself into the ground. A trailing cable for data exchange 

and power supply connects the probe with a support structure on the surface. The 

thermal sensors are mounted at the probe and every 10 cm on the trailing cable so 

that the temperature can be measured in different depth at the same time. Thus, a 

temperature gradient of the planet can be determined. The thermal sensors have to 

be installed in 3 to 5 metres depth to avoid the influence of the daily and annual 

variation of the solar radiation on the thermal measurements. The penetration 

progress will take about 30 Sols (Martian days) and around 10.000 hammer strokes 

approximately. The position of the probe will be recorded by measuring the 

extended length of the trailing cable and the orientation of the probe will be 

determined by a tilt meter. The penetration rate will provide information on the 

soil mechanical properties. Therefore, numerical models of the penetration process 

are developed to understand the mechanics of the soil during the penetration and 

to derive the soil mechanical parameters from back-calculations.  

Further soil investigations will be done using the instrument deployment arm 

(IDA) mounted at the InSight lander. The major task of the IDA is the placing of 

SEIS and HP3 on the Martian surface. Besides, the IDA has a scoop that can be 

used to grade the surface or displace boulders if there is no space for the 

deployment of the instruments. Another suggestion for the usage of the IDA is the 

excavation of a trench and the creation of a stable sand pile by pouring out the 

excavated material. The shape of the trench and the angle of the sand pile will be 

analysed by a camera mounted at the IDA. This analysis will reveal the angle of 
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repose of the sand which corresponds to the critical state friction angle for a 

cohesionless sand. Thus, the usage of the IDA for soil tests will provide 

information on the soil strength parameter, i.e. the internal friction angle at critical 

state.  

The mission was first planned for launch in March 2016 but had to be postponed 

for 2 years, caused by a technical problem on the seismometer. The reason was a 

leakage of the vacuum vessel that enshrouds the main sensors and is needed to 

enable a high sensitivity for measuring even the smallest ground movements in the 

high frequency range. After the deployment and installation phase of SEIS and 

HP3 is finished, the monitoring phase will take 1 Martian year which corresponds 

to 687 days on Earth. It will take another 7 month for the deliveries of all data and 

the mission will finish approximately 3 years after launch.  

Table 1: Time schedule of InSight Mission 

Task Duration 

Cruise 6,5 months 

Instrument Deployment 60 sols or 58 days 

Surface Monitoring 1 Martian year or 687 days 

Final Data Deliveries 7 months 

 

1.2 Heat flow and Physical Properties Probe (HP3) 

The Heat flow and Physical Properties Probe is a sensor that penetrates itself 3 to 

5 m into the Martian surface. The position of HP3 is provided during its penetration 

into the granular material and reveals information on the soil mechanical 

parameters at the landing site. After the penetration process, it measures the 

temperature of the planet over one Martian year. Therefore, the HP3 penetrator 

features thermal sensors on the penetrator as well as on the trailing tether to 

determine the temperature gradient. In addition, heater foils are installed on the 

penetrator for active thermal conductivity measurements. The information on the 

thermal conductivity and the temperature as well as the temperature gradient reveal 

the planet’s heat flux.  

The HP3 drive system consists of the hammering mechanism and a static tilt sensor 

(STATIL) which is fixed by shock isolation springs to protect it from the fast 

acceleration due to the hammering action. The hammering mechanism consists of 

a brake spring, a suppressor mass, a roller with a cylindrical cam, force springs and 

the hammer mass (Figure 2). The trailing cable (science tether) connecting the 
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penetrator and the structure on the surface is needed for the power supply and the 

data transmission. Besides, there are also thermal sensors on the trailing cable to 

measure the temperature in the ground in different depths. The penetrator’s outer 

casing is a cylindrical tube with a diameter of 18 mm and an ogive tip. The length 

of the penetrator is 353 mm.  

 

Figure 2: Interior of HP3 penetrator and its hammering mechanism, Lichtenheldt 

et al. (2014) 

A hammering cycle begins with the loading of the force springs that connects the 

hammer and suppressor masses. For this purpose, the roller starts to rotate and 

pulls the hammer towards the suppressor to load the force springs. At the end of 

the loading phase there is a gap in the cam so that the roller loses the contact and 

the hammer is accelerated by the force springs. The hammer mass is pushed 

towards the tip, while the suppressor mass moves in the opposite direction. The 

hammer mass hits the tip while the suppressor mass is slowly decelerated by the 

brake spring which connects the suppressor with the rear casing. The mechanism 

drives the penetrator only if a sufficient shaft friction is present that prevents the 

penetrator from moving backwards due to the backward motion of the suppressor 

mass. After the motion of the suppressor is slowed down, the loaded brake spring 

accelerates the suppressor mass again and a second stroke due to the suppressor is 

generated. Further minor strokes of the oscillating system may occur with low 

impact energy. Such a loading cycle is repeated a few thousand times to drive the 

penetrator into a depth of 3 to 5 m below the surface. The driving mechanism is 

not gravity driven like usual vibratory penetrations, which makes it applicable also 

in low gravity environments.  
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1.3 Landing site 

The landing site selection for InSight is done by the Jet Propulsion Laboratory 

(JPL) in Pasadena and is managed by Dr. Matthew Golombek. A detailed 

description of the landing site selection process considering the planning of the 

landing phase as well as the deployment and proper function of the science 

instruments is given by Golombek et al. (2016).  

The InSight landing site is located in the western Elysium Planitia, an equatorial 

region of Mars. The local altitude is below -2.5 km and thus it is low enough for a 

sufficient atmospheric density to slow down the lander at descent. The estimated 

landing area is determined by ballistic entry and landing simulations considering 

uncertainties in the position and orientation of the lander at entry as well as 

deviations in the atmosphere and in the aerodynamics of the lander. The resulting 

landing area is an ellipse with a size of 130 km by 27 km that has to meet the 

requirements for landing safety and instrument deployment. For the landing safety, 

a smooth terrain with a radar reflective surface is needed to measure the altitude 

and velocity of the lander at descent precisely by the landing radar. Furthermore, 

a load bearing surface is required to bear the load of the spacecraft at touch down 

as well as for the proper function of the science instruments. Additionally, a 3-5 m 

layer of fragmented rock is needed for the penetration of the heat flow probe (HP3) 

to record the planets heat flow from the interior.  

In the case of the InSight landing area, a smooth terrain is characterised by a small 

number of steep slopes and a low rock abundance. The slopes at the selected 

landing site are required to be less than 15° at a length scale of 1 to 5 m as well as 

for 84 m length scale. The slope angle below 15° on the small length scale is 

required to avoid a tip over of the lander at touchdown while the inclination of the 

terrain at a length scale of 84 m is required to determine the landers velocity 

precisely at descent by radar. Furthermore, the levelling system of SEIS can only 

compensate maximum slope angles of 15°. The slopes at the landing site are 

evaluated by digital elevation models that are based on images from the orbiters 

cameras HiRISE, HRSC and CTX. The HiRISE and CTX camera are mounted on 

the Mars Reconnaissance Orbiter of NASA whereas the High Resolution Stereo 

Camera (HRSC) is provided by the Mars Express orbiter of ESA. From these 

digital elevation model data, a map for slopes at 84 m length scale was derived and 

ensures that the slope angles at the landing region rarely exceed the restrictions of 

15° (Figure 3). The data from the CTX camera reveal that the area with slopes 

exceeding 15° covers about 0.66 % of the landing area, which is below the 

requirements of 1 %.  
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Figure 3: Slope map from digital elevation model images created by HRSC, 

CTX and HiRISE images of the landing ellipse E9 for slopes at 84 m 

length scale (Golombek et al. 2016). 

Furthermore, maps for slopes at 2 m length scale were developed and reveal that 

only about 0.1 % of the surface at the E9 landing site exceed the restrictions of 15° 

at this length scale. With respect to the slopes at the landing site, the requirements 

of a smooth terrain are fulfilled.  

Besides the slopes, there is the hazard of surface rocks that could damage the lander 

at touch down or impede the deployment of the seismometer and the heat flow 

probe. A terrain map of the landing site from open to close of the launch period is 

shown in Figure 4, where the dominant area in green represents a smooth terrain 

while the smaller light purple area in the north east of the map is a more ridged 

terrain. A rock abundance of about ~1.2 % is present at the landing site, which is 

far below the requirements of 10 % and improves the landing safety as well as the 

possibility for the deployment of the instruments. The rock sizes are determined 

by an automated analysis of their shadows, where rocks smaller than 45 cm are not 

hazardous for the lander and rocks up to 3 cm can be ignored for the deployment 

of the instruments. The instruments can be deployed by the arm of the lander within 

an annular workspace in a distance of 0.5 to 2 m from the lander over an arc of 

180°. Both instruments need to be placed on a load bearing surface with low dust 

deposits. The HP3 penetrator needs a layer of regolith (i.e. fragmented rock) to a 

depth of at least 3 m to be able to penetrate into the ground and avoid the influence 

of solar radiation on the thermal measurements. Observations of local craters 

reveal that a layer of fine-grained regolith overlaying a rocky layer is present and 

has a thickness of ~10 m depth. This is the result of investigations on the presence 

of rocky ejecta for different crater sizes.  
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Figure 4: Terrain map of the final landing ellipse E09 for three different launch 

times, from open to close of the 2016 launch period (Golombek et al. 

2016). 

The digital elevation model reveals in total a smooth terrain with less than 0.5 % 

area that exhibit slopes larger than 15° at 1-5 m length scale and is thus smoother 

than previous landing sites of the Opportunity rover and the Phoenix lander 

mission. Thermal image data provided by the orbiters suggests that the landing site 

is covered by cohesionless fine sand. The slight seasonal variations of the thermal 

inertia let assume a constant layer of at least 0.5 to 1 m below the surface.  

Due to the global location in the equatorial region, there is no liquid or frozen water 

expected within 5 m below the surface. Investigations of high-resolution images 

of steep slopes indicate that the terrain is shaped by eolian processes without any 

water or ice related characteristics. The terrain is also shaped by craters that are 

determined to be mostly secondary craters from an impact 700 km to the north east 

of the InSight landing site. The main crater is called Corinto and its date is 

estimated to be prior to 0.1 Million years ago. There are several secondary craters 

in the landing region with depth/diameter ratios of about 0.05 which is lower than 

expected and the interior slopes are rarely at the limit of 15°. The secondary craters 

cover 1.5 % of the landing region, where their contribution to the average slope 

distribution is small. 

Altogether, there is a good chance of a successful mission owing to the detailed 

selection of a safe landing region.  
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1.4 State of knowledge on Martian soil properties 

In the past, several Mars missions have already studied the soil properties at 

different landing sites to get a better knowledge of the geological evolution on 

Mars and to better plan future missions. A topographic map with a colour coding 

for the elevation is shown in Figure 5.  

 

Figure 5: Landing sites of Mars missions in the past and the planned landing site 

for InSight. (NASA/JPL-Caltech 2015b) 

The Viking landers in 1975 were the first missions on Mars performing soil tests 

for the determination of soil mechanical properties. For this purpose a robotic arm 

with a scoop was used to dig into the Martian surface investigating the stable slope 

angles of poured materials and performing bearing tests. The material at the Viking 

landing site is assumed to represent the material at most areas of the equatorial 

region (Moore 1989). The drift material at the landing site is a scoured material on 

the surface consisting of very fine grains in µm size and behaves very soft, which 

can be hazardous for rovers traversing. This loose material reveals a low bulk 

density of 1000 to 1300 kg/m3. The internal friction angle of the drift material is 

between 16 and 20 degrees and the cohesion ranges from 0 to 3.7 kPa caused 

probably by cementation. In comparison, the underlying crusty to cloddy materials 

exhibit internal friction angles of 30 to 39 degree which is similar to values of 

terrestrial sand and indicating a material with higher bearing capacity. The 

cohesion of this materials is below 3.2 kPa and the bulk density is estimated to be 

1400 ± 200 kg/m3. Further clumped blocky materials with cm sized clumps are 

present having an internal friction angle of 30.8 ± 2.4 degree and a bulk density of 

1600 ± 400 kg/m3. The cohesion of the blocky materials is in the range of 2.2 to 
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10.6 kPa. Moreover a few large rocks are present at Viking landing site but there 

will be even less at the InSight landing site.  

The Mars Pathfinder mission in 1996 performed soil mechanical tests using the 

Imager for Mars Pathfinder (IMP), i.e. a camera on the lander, a second camera on 

the rover and the wheels of the rover. The internal friction angle of the soil was 

determined by information on the angle of repose from images of excavated 

tailings from wheel digging and from the measured motor currents during the 

wheel trenching. The values of the internal friction angle varied depending on the 

layer and the site. Lower friction angles of 28 and 35 degrees depending on site 

were observed by Moore (1999) in a thin layer at the first few cm of digging, while 

below that layer higher friction angles of 37 and 41 degrees were observed. The 

low friction angle of 28 degrees is attributed to drift material that overlays a cloddy 

deposit. The angles of repose measured from IMP images were between 32 and 38 

degree. The cohesion were measured to be quite low with values below 1 kPa.  

The Mars Exploration Rovers (MER) Spirit and Opportunity in 2003 used their 

wheels to trench and scuff the surface materials on Mars for determination of soil 

strength parameters. For this purpose the mid and rear wheels were locked while 

the front wheel digs into the soil. The data provided by the rovers were the motor 

currents, the load on the wheels and the depth of the buried wheel from images. 

For the determination of the internal friction angle, the material was first trenched 

to create a tailing pile where the cohesive bonds are assumed to be broken after 

trenching. Then shear tests were carried out using one wheel of the rover digging 

into the excavated material. The obtained friction angles of the material by 

Sullivan (2011) turn out to be between 30 and 37 degree which corresponds with 

dry sandy soils on earth. The cohesion of the soil was determined by digging tests 

on undisturbed material and the knowledge of the internal friction angle from the 

tests on tailings. The values of cohesion ranged depending on site from 0 to 2 kPa 

and from 0 to 11 kPa, but in the case of high cohesion the uncertainties were up to 

+/- 3.9 kPa. A low cohesion of 2 kPa can also be obtained without any bonding 

from dry sharp edged sand or if contents of silt and clay are present.  

The Phoenix Mars Mission in 2008 used optical and atomic force microscopy to 

determine the shape and the grain size of Martian dust. The shape of the particles 

and their grain size distribution provide information about the particles’ transport 

mechanisms and their weathering processes, Pike et al. (2011). The atomic force 

microscope was used to investigate particles of micrometre size, whereas the 

optical microscope was used for particles of millimetre size. Furthermore, a mass 

spectrometer was used to determine the chemical analysis of the collected 

materials. The landing site of Phoenix is in the Martian northern hemisphere at the 

polar region, where frozen soil is present near the surface influencing the 

mechanical response of the soil. Shaw et al. (2009) determined the soil strength 

parameters, internal friction angle and cohesion, of the Martian soil at the Phoenix 

landing site. For this purpose, the robotic arm on the Phoenix lander was used to 
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excavate trenches and create dump piles. The internal friction angle was 

determined by measuring the angle of the dump pile slopes, assuming that all 

cohesive bonds were broken during the excavation of the material. The cohesion 

of the soil was calculated from the resisting force during the excavation, which is 

determined from the motor currents and the arm kinematics. There are 

uncertainties in the calculation of the force and the position of the scoop due to the 

stiffness of the robotic arm, so that the obtained values for cohesion are not very 

reliable. The determined values for cohesion are below 2 kPa, where the largest 

cohesion is attributed to ice in the soil. The angle of internal friction is assumed to 

be between 33 and 42 degrees based on the corresponding dump pile slope angles.  

Observations of landslides on Mars were done by Perko et al. (2006) and provide 

information on the soil strength parameters. For this purpose, high resolution 

images and laser altimeter measurements of Mars Global Surveyor orbiter were 

used for a stability analysis of natural slopes in different regions. In the Hematite 

area the steepest angle of natural slopes turn out to be about 30 degrees, which 

corresponds to sandy soil on earth. The natural slopes at Gusev Crater reveal a 

steepest angle of 38 degrees, where the soil is characterised as a mix of coarse and 

fine materials. The material at this area is assumed to be densely packed because 

of its high thermal inertia of 450 J/m2Ks1/2.  

The knowledge of the soil mechanical properties on Mars helps to understand the 

geological processes that forms the shape of the planet and provides guidance for 

future missions. The mean values of internal friction and cohesion of Martian soil 

lead to the conclusion that the materials are similar to terrestrial sandy soils. The 

differences of the internal friction angle depending on the local site indicate that 

there are different origins and mechanisms that shaped the Martian surface.  

1.5 State of knowledge in pile installation 

The standard procedure for pile installation is the impact driven pile. For this 

purpose, a heavy weight is raised above the pile and released to use the impact 

energy to drive the pile into the ground. Another procedure is the vibratory 

installation of piles, where a vibratory hammer is installed onto the pile and 

transmits vertical vibrations into the pile. The vibratory hammer consists of 

rotating eccentric weights that are arranged in a way that the horizontal acting 

forces counterweight each other. The development of more advanced vibratory 

hammers makes it nowadays possible to drive even large offshore monopiles into 

the ground. The vibratory driven piles have the advantage of quicker installation 

times and reduced costs. Therefore, the vibratory installation procedure is of 

interest for many applications, whereby the impact on the surrounding soil and the 

pile capacity is still not fully understood. Galavi et al. (2017) investigates the 

vibratory installation process of offshore monopiles using the Material Point 

Method to understand the influence of the installation type on the bearing capacity.  
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Even though the installation procedure of HP3 is different to a vibratory installation 

there are some similarities. Both installation methods have an alternating motion 

in short periods. The temporal evolution of a penetration resistance is similar for 

small vibration amplitudes, see Vogelsang et al. (2017). The cyclic shearing of the 

soil at the shaft is present in both cases and changes the soil structure in similar 

ways. The difference is that the vibratory hammers are driven by gravitational 

loading, whereas the HP3 mechanism needs solely a sufficient shaft friction to 

absorb the backward accelerations.  

The current calculation methods on pile installations are based on impact driven 

piles, where effects of vibratory installation are not considered. Therefore, 

numerical methods are required to compute the penetration rate of HP3.  

A research project by the Deep Foundations Institute (2015) investigated the 

influence of the installation procedure on the axial and lateral bearing capacity of 

driven piles. It was found that the axial capacities of vibrated piles was always less 

than for impact driven piles. The average capacity was reduced by 20 % when 

using the vibratory installation procedure. Whereas, the axial capacity can be 

increased by a followed impact installation to the full depth. The lateral capacity 

was found to be less influenced by the installation procedure, although it exists 

less data of experiments to confirm this.  

The vibratory pile installation is a promising technique with short installation 

times, although the influence on the surrounding soil is not completely known yet. 

Therefore, it is necessary to investigate this penetration process in detail with the 

help of numerical models. There is an enormous amount of research on this topic 

that provides new insights, e.g. Grabe et al. (2013) investigated already the soil 

changes from a deep vibration compaction with the help of a coupled Eulerian-

Lagrangian method.  

1.6 State of the art in numerical modelling 

Numerical simulations of dynamic cone penetration tests are quite rarely in 

literature whereas simulations of quasistatic cone penetration tests are more 

common. Different numerical methods have been used to simulate driven piles 

with constant velocity. The common methods that are currently used for numerical 

investigation on cone penetration or pile driving are: 

 Enhanced Finite Element Methods (FEM): 

o Material Point Method (MPM) 

o Arbitrary Lagrangian Eulerian (ALE) 

o Other similar FEM based methods 
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 Smooth Particle Hydrodynamics (SPH) 

 Discrete Element Method (DEM) 

The ALE and MPM approach apply optimisation of the elements’ shape or 

particle-in-cell techniques to solve large deformations with the Finite Element 

Method. All FEM based solutions use a continuum approach for the representation 

of the simulated material. For this purpose, the discontinuous granular material is 

simplified as a continua, wherefore constitutive models are necessary to represent 

the stiffness and strength behaviour. A common model for the strength of granular 

materials is the Mohr-Coulomb failure criterion. Many constitutive models are 

based on this theory and extend it. Still, the dilative behaviour of soils and the 

associated softening is difficult to model with FEM based approaches. Besides 

this, the frictional contact between soil and penetrator is challenging to be 

modelled in finite element based methods and has a great impact on the penetration 

resistance. In the doctoral dissertation of Issam (2013) a MPM formulation was 

used to solve the large deformations in a deep penetration process. The installation 

process was modelled by a varying driving force to represent an impact driven pile 

installation. The penetration rate for one hammer stroke for different skin friction 

is shown in Figure 6. For a shallow penetration the rate per stroke varied between 

12 cm, 6 cm and 4.5 cm depending on the skin friction of 0.0, 0.5 and 1.0, 

respectively.  

 

Figure 6: Simulation results of an impact driven pile using a MPM formulation. 

(Issam 2013) 
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Further simulations of a CPT using the Material Point Method were done by 

Ceccato et al. (2016). The cone penetration test under different types of drainage 

was investigated using a two-phase formulation for the MPM. In the two-phase 

MPM, the material points contain the information of the soil and the water. Besides 

fully drained and undrained behaviour, also a partially drained material can be 

simulated by this approach. The computational cost of MPM simulations of CPTs 

are in the same range as similar DEM simulations.  

Simulations of cone penetration tests in sand using the ALE technique were done 

by Susila et al. (2003). The use of an auto-adaptive remeshing avoided mesh 

distortions and enables the simulation of a penetration up to 11 cone diameters. 

The penetration resistance for different internal friction angles and for different 

initial vertical stress was evaluated.  

The SPH discretises a continuous field into a series of particles to solve partial 

differential equations. The material is subdivided into many particles (elements) 

where each particle is carrying physical quantities of the current state. The 

discretisation transforms the partial differential equation into an ordinary 

differential equation that can be solved by many integration schemes (e.g. Euler 

method). The material behaviour is governed by the differential equation. Thus, it 

is necessary to define constitutive models to describe the behaviour of granular 

materials like in the Finite Element Method. The advantage of SPH is that the 

material can be highly distorted because the particles can move freely and their 

adjacent particles are always updated. Kulak & Bojanowski (2011) applied the 

SPH in combination with the ALE for the simulation of a cone penetration test. 

SPH particles were used in the region near the penetrator where large distortions 

appear. The penetrator size has similar dimensions as HP3 and the resulting 

resistant force is comparable.  

The DEM uses many individual elements representing a particulate material. The 

simplest and widely used elements are spherical particles, since it is not necessary 

to compute their orientation. The most common method in geotechnics is the soft-

particle approach, where the particles can overlap among each other and contact 

forces are calculated and applied to the contacting particles. Further contact 

models, e.g. tangential friction, can be applied additionally to consider all 

necessary physics of the particulate material. The application of DEM in 

geotechnics is limited on small scale simulations due to the required amount of 

particles. The bulk behaviour of the particulate material results out of the contacts 

and particle movements. This allows to investigate particle scale phenomena 

without any presumptions made on constitutive models. Therefore, the particles’ 

movements can be traced and changes in the soil structure can be investigated. Due 

to the discontinuous approach there are less restrictions in the way of modelling, 

e.g. interpenetration of different materials or generation of cavities in the material 

can be simulated. The DEM is less common used in geotechnical applications up 

to now, because its applicability on large scale simulations was limited by the 
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amount of particles and the associated computation time. Currently, due to new 

computer technologies and using parallel processing, it becomes more and more 

popular also for geotechnical applications where millions of particles have to be 

simulated.  

Holmen et al. (2017) simulated a penetration test in a cylindrical tube, where the 

influence of different tip shapes on the penetration resistance is investigated and 

compared to experimental results. Since the tube size is limited, it was possible to 

simulate the real grain size by using 3.2 million particles with a mean particle 

diameter of 1.09 mm. The penetration was done quite fast with a penetration 

velocity of 2.5 m/s and 5 m/s. The simulations ran on a graphics processing unit 

which accelerates the computation. Furthermore, the simulation only considers 

translational motions while the rotational degrees of freedom are locked. This 

affects the behaviour of the granular material, but the results were still in good 

agreement with the experiments. Tran et al. (2016) reveal that the penetration 

resistance in constant velocity condition is only stable for penetration rates lower 

than 1.25 m/s. Consequently, the penetration resistance in the simulations of 

Holmen et al. (2017) is affected by inertia forces of the particles.  

Tran et al. (2016) investigated the tip resistance of a constant and impact driven 

penetrometer with Itasca’s software PFC2D. It was observed that the impact driven 

probes involve always an elastic rebound after penetration, whereas for small 

penetration velocities the rebound is so large compared to the penetration that the 

penetrator is lifted back into its initial position. As a result, a minimum velocity of 

0.5 m/s was determined to be necessary to penetrate into the granular material. The 

material was very dense packed with a porosity of 0.15 and the interparticle friction 

parameter is 1.0. This results in a very high resistance of about 2 MPa, which 

differs considerably from the observations presented in this thesis for the 

penetration of HP3.  

Further simulations of cone penetration tests in DEM were done by Butlanska et 

al. (2014), who studied the influence of different boundary conditions and also the 

difference between free and locked rotation of particles. The effect of particle 

shape on the penetration resistance was investigated by Falagush et al. (2015) 

using different clumps of particles or by prohibiting particles rotation. Simulations 

of quasistatic penetration for the application on an earlier Mars mission were done 

by Zöhrer (2006), who investigated the penetration resistance for different tip 

angles and soil conditions. The use of DEM for penetration simulation is gaining 

more and more interest, since the computational time gets reduced with new 

technologies and more efficient particle codes.  

After a first evaluation of the numerical methods that are used for cone penetration 

tests in literature, the MPM and the DEM approach were investigated in more 

detail.  
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1.7 Laboratory conditions for HP3 penetration tests 

The penetration tests of HP3 are performed in a laboratory of the DLR in Germany. 

The performance tests for the deep penetration up to 5 m are done in an 80 cm 

wide cylindrical chamber with a depth of 5 m (Spohn, 2013). The container 

diameter should be at least 30 to 40 times the cone diameter (see Figure 7) which 

is a result of centrifuge cone penetration tests in dry sand by Bolton et al. (1999). 

This means that the cone diameter should be less than 2.6 cm to avoid influences 

due to the boundaries. Whether the same prediction can be made for the dynamic 

cone penetration is investigated by the numerical analysis in the following 

chapters. Therefore, the particles displacements and the induced stresses are 

compared for constant driven and dynamic driven probes. Besides the 5 m deep 

container, there is another 3 m deep and 60 cm wide cylindrical container for 

penetration tests at DLR (see Figure 8). The older 3 m deep test bed was used for 

the first penetration tests of HP3, whereas later on the 5 m deep test bed was 

constructed for the HP3 tests and primarily used. The results of the HP3 

performance tests are discussed in chapter 4.  

 

Figure 7: Effect of the container diameter to cone diameter D/B ratio on the 

penetration resistance by Bolton et al. (1999). 
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Figure 8: Deep penetration test bed with 3 m and 5 m height as well as the 

incline, geothermal and mechanical test bed of DLR and JPL (Spohn 

2013). 

For the tests at DLR, the atmosphere and gravitation is not adjusted, so that the 

earth environment is present. Whereas further tests in a Mars similar environment 

are performed at JPL in Pasadena, where a CO2 atmosphere at 6 mbar and low 

temperatures is created for a 3 m deep test bed. Experiments in lower gravity are 

not really feasible because of the size and the duration of the test. However, 

numerical simulations provide the possibility of penetration tests in different 

gravitational environments.  

The initial stress level, which is different from Mars to Earth due to the 

gravitational constants, has a significant effect on the penetration resistance. The 

centrifuge tests by Bolton et al. (1999) showed that the penetration resistance 

normalized with respect to the overburden pressure increases with smaller initial 

stress levels, see Figure 9. The plot shows the normalized resistance over 

normalized depth at different acceleration ratios N. The gravitation in the 

centrifuge was increased to 40g, 70g and 125g. A dense packed sample was used 

with a relative density of 0.96. Even though the normalized resistance is reduced 

by an increased stress level, the total resistance increases with higher initial stress 

levels.  
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Figure 9: Effect of stress level on the penetration resistance by Bolton et al. 

(1999). 

1.8 A brief introduction into the Material Point 

Method 

The Material Point Method (MPM) was originally developed by Sulsky et al. 

(1993) and was first known as the Particle in Cell (PIC) method. Later on Sulsky 

& Schreyer (1996) called it the Material Point Method. The PIC method was 

already used earlier for simulation in fluid dynamics and was then adapted by 

Sulsky et al. (1993) for the application in solid mechanics. A first application of 

the MPM in geotechnical engineering was the simulation of a silo discharge by 

Wieckowski et al. (1999). The MPM is a finite element based method that is 

extended for the simulation of large deformations. Material points are introduced 

inside the finite element mesh to carry the information of deformation, stresses and 

other material properties. At each time step, the properties from the material points 

are mapped onto the mesh nodes, where the differential equation of the virtual 

work is solved. The strains and stresses due to the deformed mesh are saved again 

in the material points before the mesh is redefined or reset to its initial 

configuration. In this way, the material points can move behind the mesh, while 

the mesh is always updated at each time step. A graphical representation of this 

procedure is shown in Figure 10. The time domain is integrated by a semi-implicit 

scheme. Thus, the computational costs are reduced due to the possibility of larger 

time steps in comparison to an explicit time integration scheme. However, for high 

dynamic simulations small time steps are still required.  
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The grid-crossing of a material point can cause an unbalance force, where less 

particles per element increase the effect. A higher number of particles may solve 

this problem but increases the computational costs significantly. The error of grid-

crossing can be reduced by different methods, see Issam (2013).  

 

Figure 10: The basic concept of the MPM formulation. (Issam 2013). 

The initial filling of the material points is important for accurate results and to 

prevent empty elements within a material. There are no empty elements allowed 

inside the material to solve the system. Therefore, virtual particles are introduced 

to avoid empty elements. This particles fill the empty elements with a small mass 

during the computation. The total mass of virtual particles should not be too large 

to obtain reliable results.  

Even though material points are used to represent the granular material, the 

material behaviour is governed by the deformation of the continuum elements at 

each time step. Thus, it is necessary to apply constitutive models to describe the 

granular behaviour. The frictional behaviour in contacts needs also be defined by 

an appropriate algorithm to allow for the relative motion between two contacting 

bodies. In usual FE codes, the interface between two contacting bodies needs to be 

predefined, whereas in the MPM a separating of bodies and a colliding of bodies 

should be possible. For this purpose, an automatic detection of the contact surface 

is needed. An appropriate contact algorithm by Bardenhagen et al. (2000) was 

implemented by Issam (2013), but also current research on the detection of new 

contacts between two different materials in MPM is done by Hamad et al. (2017).  

The MPM code by Deltares is currently more and more extended and improved in 

collaboration by the Anura3D MPM Research Community. The extension of a two 

phase formulation allows also for the simulation of water within the soil and the 

further research on the shortcomings improved the code a lot in the last years. The 

material point method is a practicable solution for large deformations but at the 

time the computational costs for a high dynamic simulation seemed to be immense.  
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The high processing times for the simulation of a quasistatic penetration test, 

where large time steps can be used and mass scaling was applied, suggested 

inappropriate large computation times for high dynamic simulations. Furthermore, 

the missing access to the code would have made it impossible to implement 

changes if necessary. For these reasons, the discrete element method was chosen 

for the simulation of the HP3 penetration.  
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2 The Discrete Element Method 

The Discrete Element Method (DEM) was chosen for the simulation of the 

penetration process of HP3 since the modelling of large strains in dilatant materials 

is difficult to realise using a continuum-based approach (Butlanska et al. 2014). 

An advantage using the DEM that a constitutive model for the soil behaviour is 

not required. This allows to investigate the soil response without any assumptions 

on the soil behaviour beforehand. The non-linear stiffness and the complex 

strength behaviour of granular materials is automatically achieved due to the 

rearrangement and interaction of the discrete particles. However, assumptions on 

the interparticle behaviour have to be made instead. These will be discussed below. 

The DEM simulation of soil requires always a three dimensional model to capture 

the physics of the granular material. A two dimensional simulation of particles in 

a plane would model the behaviour of cylindrical rods instead. For the purpose of 

a plane strain simulation in DEM, it is still necessary to use a three dimensional 

model to reproduce the granular behaviour. However, it is possible to use periodic 

boundaries to reduce the simulation domain. The periodic boundaries allows 

particles to leave the domain at the border, while they re-enter on the other side of 

the domain. In this way, simulations using the assumption of an infinite half-space 

can be modelled in a small-scale test.  

The use of discrete particles instead of continuum elements, such as in the finite 

element method, allows for simulations involving large deformations, separation 

of material and for interpenetration of different materials. The investigated 

materials are dry cohesionless sands that can be well modelled in the DEM since 

it needs only a few physical contact models. All of these contact models will be 

explained in this chapter.  

The used DEM software is LIGGGHTS from DCS Computing developed by Kloss 

et al. (2012), which is an open-source software based on the LAMMPS code from 

Sandia National Laboratories.  

2.1 The general DEM formulation 

The functional principle of the DEM is the computation of the motion of a large 

number of particles. The material is modelled by many particles, where each 

particle stores a position in x-, y- and z-direction and a radius. The distance pd of 

each particle to a wall or another particle is calculated at each time step: 

wvpd


 , (1) 
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where v⃗ and w⃗⃗⃗ are vectors that define the positions of two different particles. If the 

distance pd is smaller than the sum of the corresponding particles radii, an overlap 

δn is calculated as 

dwvn prr   (2) 

with the corresponding particles radii rv and rw. A separating force Fn depending 

on the overlap is applied to both particles, see Figure 11. The position of the 

particles is updated for each time step by an explicit time integration scheme. The 

LIGGGHTS code uses a velocity Verlet integrator with half-step velocity to solve 

the time integration (Verlet 1967).  

 

Figure 11: A sketch of the soft particle DEM.  

In addition to this, different contact models are used to add further contact forces 

and torques to overlapping particles that can be e.g. sliding friction or rolling 

resistance. The contact force Fn between two particles can be either calculated 

linearly dependent on the overlap by using the Hooke’s law or considering also the 

contact area by the Hertzian contact theory. In the following chapters, the contact 

models that are used for the simulation of a dry cohesionless sand will be explained 

in more detail.  

2.2 The Normal Contact Model 

The LIGGGHTS code provides two different normal contact models to determine 

the normal force between the particles based on the Hertzian and the Hookean 

contact mechanics. The simpler model is the Hookean normal model that 

calculates a normal contact force Fn linearly dependent on the overlap δn 

nnn kF   (3) 
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with the particles stiffness kn being a constant value. This approach does not take 

into account the change of the contact area with overlap and therefore it can result 

in unphysical large overlaps of particles.  

The Hertzian contact theory is well known for solving the contact mechanics of 

point or line contacts, where an infinite stress occurs theoretically caused by a zero 

contact area. The Hertzian contact model in LIGGGHTS considers the change of 

the contact area of two spherical particles that overlap. For this purpose, the 

stiffness of the overlapping particles is not constant as it is for the Hookean contact 

model, but it is dependent on the square root of the overlap. This causes a 

progressive behaviour of the contact force with overlap and avoids large overlaps 

of the particles (Figure 12).  

 

Figure 12: The characteristic curves of normal force with overlap.  

Both contact models are fully elastic, which means that all the deformation are 

recovered at unloading.  

Besides the elastic normal contact force, a damping force is applied to the normal 

contact model that defines the amount of rebound after a collision. The coefficient 

of restitution is used as an input parameter to specify the damping ratio in the 

normal contact. It defines the ratio of relative velocities of two particles after and 

before collision. Due to the damping force, a temporary tension force between two 

separating particles is possible. In order to avoid those tension forces, the damping 

force is limited so that the normal contact force is always a repulsive force. 

Therefore, the normal contact model in LIGGGHTS has to be extended by the 

keyword limitForce on.  

2.3 The Rolling Resistance Model 

A useful simplification in the DEM to be able to simulate a large amount of 

particles is the spherical shape of the particles. Due to the spherical form of the 

particles, the inertia tensor becomes a constant value owing to the point-symmetry. 

Thus, it is not necessary to compute the orientation of the particles. This accelerates 
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the computation due to the reduced degrees of freedom of the system. However, 

the angular velocity of the particles is still computed to consider the translational 

motion of the particles that is caused by rotation around a frictional contact.  

The arbitrary angular shape of real sand grains generates a contact point between 

the grains that is eccentric to the centre of inertia and causes a resistance against 

rolling. In order to consider the resistance against rotation due to the real grain 

shape, a rolling resistance can be applied to the particles. Several rolling resistance 

models are already implemented in the used DEM software. Further approaches to 

consider the shape of the grains for geotechnical applications is the locking of 

rotation for a certain percentage of the particles or the generation of clumped 

particles by grouping several spherical particles to one irregular shaped particle. 

The influence of both, locking of rotation and using clumped particles, on the 

resistance of a cone penetration test was investigated by Falagush et al. (2015). It 

reveals that the locking of the particles’ rotation results in an excessive large tip 

resistance and is an unsuitable approach to consider the real grain shape, whereas 

the use of clumped particles results in a tip resistance that depends on the clumped 

particle shape and can be used to model the physics of angular grains.  

The rolling resistance models that are implemented in LIGGGHTS are a constant 

directional torque model and an elastic-plastic spring-dashpot model, which are 

explained in detail by Ai et al. (2011). In a paper of Jiang et al. (2015) a rolling 

resistance model is introduced considering a twisting resistance, which is 

implemented in a rolling resistance model that was additionally developed within 

this work.  

The constant directional torque (cdt) model by Ai (2011) applies a constant torque 

on particles that acts always against the relative rotation in the contact of two 

particles. The torque is always applied to both particles, whereby a torque is 

transmitted from particle to particle. A problem that occurs using the cdt model is 

the oscillation of particles at rest position caused by the constant torque that is 

always alternating in direction. The oscillations of the particles produce a residual 

kinetic energy that destabilises the system and leads to a creeping in the macro-

scale behaviour.  
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Figure 13: Spring characteristic curve for different rolling models 

The elastic-plastic spring-dashpot (epsd) model solves the problem of oscillations 

at the rest position. Therefore, the model applies a rotational spring-dashpot to 

particles that are in contact. As soon as the spring force reaches a maximum value 

of resistance, the particle starts to rotate without any further increase of the 

resisting torque. The elastic part of the rotation is always recovered at unloading, 

which can cause an unphysical behaviour if the elastic part becomes too large. In 

the case of a high stress state, the restructuring due to changes in load is highly 

dependent on small rotations and movements of the particles. The deformation 

energy that is saved in the elastic springs of the rolling model will be recovered in 

deformation at unloading, causing an undesirable large rebound. An increase of 

the stiffness of the rotational spring can reduce this effect, but with increasing 

stiffness the model will start producing oscillations as it was observed for the 

constant directional torque model. The spring characteristic curve of both models 

is given in Figure 13. 

Both the epsd and the cdt model apply a constant torque against the rotation of a 

particle as soon as the particle mobilises. This is physically based on the 

assumption of two spherical particles that overlap and create a flattened area in the 

contact. The contact point of the particle is shifted to an eccentric point due to the 

flattened area. The so created resisting moment is constant during rotation as long 

as the particle has a constant overlap. The rolling resistive moment at mobilisation 

Mr,plastic is proportional to the normal contact force Fn and the particles effective 

radius reff 

reffnplasticr rFM ,
, (4) 

where 
r  is the coefficient of rolling resistance that has to be defined. This 

corresponds to a resistive moment due to an eccentric contact force with an 

eccentricity of reff ∙µr.  
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In geotechnical applications the resisting moment of a particulate material is less 

attributed to the overlap but rather to the non-sphericity of the grains. Estrada et 

al. (2011) investigated the bulk behaviour of polygons and spherical particles with 

a constant maximum rolling resistance in a shear test. They determined a possible 

mapping between the parameter for rolling resistance and the shape of the 

polygons by considering shear strength, solid fraction, force and fabric 

anisotropies. This indicates that a simple rolling resistance model can be used to 

imitate the effect of angular grains. But caution should be taken here for different 

loading cases.  

Within this thesis, single particle simulations were investigated to obtain a more 

realistic rolling resistance model. Therefore, a linearised rough profile of the 

resisting moment of an ellipse and a cube, given in Figure 14, were implemented 

in LIGGGHTS and tested. The rolling resistance of an ellipse increases first due 

to the shift of the normal force out of the centre of the ellipse. At a certain point, 

the eccentricity of the normal force decays due to the tilt up of the ellipse. The 

resistance switches into an accelerating moment at 90 degree, when the ellipse is 

upright. However, the resistance of a cube has its maximum at the beginning of its 

rotation out of the rest position. The normal force acts at the edge of the cube with 

an eccentricity of half the edge length times the cosine of twice the rotation angle. 

Thus, the resistance decreases until the cube is on the edge with zero resistance. 

At this point, the resistance switches into an accelerating moment that increases 

again until the cube drops into its next rest position.  
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Figure 14: a) Rolling model for elliptical particles, b) Rolling model for 

angular particles 

For the study on the rolling models, the roll over behaviour of an irregular shaped 

clumped particle was investigated and compared to the rolling behaviour from 

different rolling resistance models. The rotational and translational velocities of a 

particle rolling down an inclined plane were compared, applying different rolling 

resistance models, see Figure 15 & Figure 16. The applied rolling resistance over 

the relative rotation is shown on the right in both figures. It has been found that a 

resisting moment similar to the resistance of a cube results in a suitable behaviour 

for the case of a particle rolling down an inclined plane. This rolling resistance 

model was also tested in calibration tests, but it revealed that it was not stable 

enough for an adequate time step. Especially in an oedometer test, the particles 

began to oscillate under pressure.  
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Figure 15: The rolling behaviour on an inclined plane of a clumped particle 

(blue) and a particle with a rolling resistance model similar to an 

ellipse (green & red).  



28 2 The Discrete Element Method 

 

 

Figure 16: The rolling behaviour on an inclined plane of a clumped particle 

(blue) and a particle with a rolling resistance model similar to a 

polygon (yellow & purple).  

For further simulations the simple elastic-plastic spring-dashpot model of 

LIGGGHTS was taken with modifications on the damping moment and the 

behaviour of the transition zone between zero and maximum resistive torque. The 

damping moment in the epsd rolling model acts during the elastic part and is not 

limited. The damping moment increases with relative rotational velocity of the 

contacting particles and may exceed the maximum torque at mobilisation. Thus, it 

is possible that an unphysical high rolling resistance is generated and the material 

would behave too stiff in the macro scale for a dynamic load. For this reason, the 

used rolling model is modified such that the total rolling resistance between two 

particles is always limited by the resisting torque at mobilisation.  

Furthermore, changes on the rolling stiffness kr of the epsd model were 

investigated. The default value for the rolling stiffness is given by 

2

efftr rkk   (5) 

with the tangential stiffness kt and the effective radius reff defined as 
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rrreff

  (6) 

with r1 and r2 being the respective radii of the contacting particles. This leads to a 

certain rotation angle of the particles in the elastic region of the rolling model 

eff

n

relastic
r


   (7) 

with µr being the parameter that defines the interparticle rolling resistance.  

In this way, the amount of elastic rotation θelastic depends on the overlap δn relative 

to the particles size. The problem that occurs using reduced elastic rotations is the 

necessity of a very small time step. However, using larger elastic rotations will 

cause larger elastic settlements and at some point also a weaker behaviour in 

strength, which was observed from simulations of triaxial tests. The weakening in 

strength is attributed to the separating of particles before they even reach their 

maximum rolling resistance.  

The dependency of the elastic rotations on the particles overlap makes it difficult 

to develop a consistent algorithm to determine the resistive moment in the elastic 

part. It has to be considered that the tangential stiffness is dependent on the 

particles overlap as long as the Hertzian normal contact is used. Hence, also the 

rolling stiffness is overlap dependent. A change in the overlap during the contact 

of particles causes a change also in the rolling resistive torque, which has to be 

defined by an appropriate algorithm. The change of the resistive torque due to a 

change in the normal force is given by a new maximum torque and a different 

stiffness in the elastic region.  

The rolling models that exist in literature for an explicit time integration scheme 

are described in Ai (2011), Wensrich (2012) and Jiang (2015). Ai (2011) named 

them a directional constant torque model, a viscous model, an elastic-plastic 

spring-dashpot model and further contact-independent models. The directional 

constant torque model and the elastic-plastic spring-dashpot model are explained 

in chapter 2.3, where they are named as the cdt and epsd model. The viscous model 

applies a torque to particles in contact that is proportional to the normal force and 

the angular velocities. The rolling resistance in the viscous model is just present as 

long as the particles are in rotation, while in equilibrium there will be no lasting 

resistance torque. The contact-independent models apply a resistive torque that is 

proportional to the particles respective angular velocity. Thus, the particles do not 

transmit a torque from particle to particle. The contact-independent models are not 

commonly used because of the unphysical approach behind it.  

There exist also high sophisticated rolling models which are more practicable for 

implicit time integration schemes. A rolling model for the simulation of granular 
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material for geotechnical applications has been developed and implemented by 

Lichtenheldt (2013). The model was used for the simulation of sand grains under 

the load of a planetary rover wheel. The idea of the model is inspired by the 

resisting torque of rectangular geometries and the applied torque is dependent on 

the orientation of the particles, where each particle has its own function of resisting 

torque. Thus, it is possible to apply accelerating as well as resisting torques. The 

problem using this model with an explicit time integration schemes would be that 

the fast changes in the torque and the accelerating torque destabilise the system. 

Therefore, Lichtenheldt (2013) uses a semi-implicit Newmark integration scheme 

to solve the time integration with an adequate time step.  

2.4 The Tangential Friction Model 

A tangential friction is usually defined between two contacting bodies, while in a 

particulate material a network of many contacting particles exists. This friction 

from particle to particle causes an inner resistance of the material against shearing. 

A continuum parameter for particulate materials that specifies the resistance of the 

material against shearing is the internal friction angle. This parameter depends on 

the interparticle friction as well as on the rolling resistance, which reflects the 

shape of the grains. Therefore, the DEM applies a tangential friction model to the 

particles in addition to the rolling resistance.  

The tangential friction model in LIGGGHTS is very similar to the rolling 

resistance model from chapter 2.3. It consists of an elastic and a plastic part with 

an additional damping component within the elastic part. The damping force 

depends on the relative tangential velocity of the contacting particles. This 

damping force is not limited in the original source code of LIGGGHTS. Therefore, 

a modified version of the tangential friction model has been developed to limit the 

total tangential force always by the Coulomb friction force. A schematic of the 

mechanical principle of the model and the spring characteristic curve are shown in 

Figure 17. 
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Figure 17: Mechanical scheme and spring characteristic curve of the tangential 

contact model 

The tangential friction force Ft increases linearly with the relative movement dx of 

the contacting particles until it reaches the Coulomb friction force FCoulomb. At this 

point the particles start to mobilise under a constant tangential friction. The friction 

force in the elastic region and the limiting Coulomb force in the plastic region are 

defined as follows: 

,tNCoulomb

tt

FF

dxkF




 (8) 

where the tangential stiffness kt defines the elastic region. If the tangential stiffness 

is too large, the model becomes unstable and the time step needs to be reduced. 

Otherwise, if the tangential stiffness is very low, the elastic part of the relative 

movement of particles is increased and leads to an unphysical behaviour. 

Therefore, the tangential stiffness is set to be as stiff as possible keeping a stable 

simulation with a time step that has been defined by the normal contact model. The 

default value of the tangential stiffness in case of the Hertzian normal contact is 

given by 

nt k
Y

G
k 6  (9) 

with the Young’s modulus Y and the Shear modulus G. 

For the determination of the coefficient of tangential friction µt and rolling friction 

µr, it has to be identified first which type of motion is dominant. It becomes clearer 

by comparing the accelerating torque of a particle on an inclined plane due to the 

tangential friction and the rolling resistive torque due to the eccentric normal force.  
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Figure 18: Mechanical scheme of a particle on an inclined plane 

The moments that act on the particle centre on in inclined plane are an accelerating 

torque due to the tangential friction in the contact and a rolling resistive torque due 

to the eccentric contact force, see also Figure 18. The equations of motion for 

translation x and rotation φ of a particle are 

 sinmgFxm tn   (10) 

and 

effrntn rFrFI    (11) 

with the particle mass m, the rotational inertia I and the gravity g. In the case of a 

particle-plane contact, the effective radius reff becomes equal to the particle radius 

r and equation 11 can be transposed to 

 rtnrFI   . (12) 

These equations just hold for a particle that is mobilised in rotation and translation 

in positive directions. The equation of motion for translation can be transformed 

with 

)cos(mgFn   (13) 

to 

 tgx   tan  (14) 
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and determines the angle α of the slope that is necessary for the sliding of the 

particle 

t tan . (15) 

If the angle of the slope is too low to provoke the sliding of the particle, it may be 

possible that the particle starts to rotate instead. The tangential friction for a 

sticking particle is equal to the downhill force due to the force equilibrium. This 

results in an equation of rotational motion for the particle of 

effrnn rFrFI   tan . (16) 

For this case the particle starts to rotate as soon as  

r tan  (17) 

is fulfilled. This means that if the coefficient of rolling resistance is smaller than 

the coefficient of tangential friction, the particle would start to roll down the plane 

rather than sliding and vice versa.  

This has to be considered for the choice of the coefficients of rolling and sliding 

resistance. Therefore, it has to be decided whether the particles are highly angular 

and would rather slide than rotate or if the particles are assumed to be more round.  

2.5 The elastic-plastic yield criterion for frictional 

contacts 

The algorithm for the rolling and twisting resistive torques as well as for the 

tangential friction is a modified version of the algorithm that is already used for 

the tangential friction in LIGGGHTS. The current resistive value is computed by 

the accumulated amount of elastic deformations times the current stiffness of the 

corresponding model. The increasing resistive value is limited by a maximum 

resistance and the particles will begin to mobilise as soon as the limiting resistance 

is acting. The algorithm consists of two parts, the elastic part, where all 

deformations are recovered at unloading, and the plastic part, where permanent 

deformations are generated. The plastic part is triggered by the exceeding of the 

maximum resistance. An additional damping is applied within the elastic part to 

reach a stable position without large oscillations. The total value, that is the sum 

of resistance and damping, is also limited by the maximum resistance.  
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The elastic-plastic yield criterion for the frictional contacts in LIGGGHTS behaves 

fully elastic until the limiting value for the plastic phase is reached. Thus, it can 

happen that a large amount of deformation can be stored in the elastic phase that 

will be recovered at unloading. This problem can be observed in the oedometer 

test at unloading and reloading, where the soil does not compact as desired. 

Furthermore, the elastic rebound takes a large part of the settlements during a 

penetration cycle of HP3 and causes unrealistic large rebound after each 

penetration stroke. For this reason, improvements of the yield criterion are made 

to reduce the amount of stored elastic deformation. A new algorithm that is 

implemented applies different stiffnesses for the elastic phase at loading and 

unloading/reloading. Thus, lasting settlements will also occur in the elastic phase 

due to a stiffer behaviour at unloading. A switch from unloading/reloading to 

primary loading is triggered by a change in the relative displacement direction.  

For the implementation of the new algorithm, two state values are necessary to 

describe the torque or force level. The first value is the elastic relative displacement 

and the second value is the sum of the elastic and plastic relative displacements, 

see Figure 19.  

 

Figure 19: Sketch of the yield algorithm with different stiffnesses for primary 

loading and un-/reloading.  

The maximum resistive force increases linearly under primary loading until the 

Coulomb friction force FCoulomb is reached. The displacements at primary loading 

consist of elastic dxe and plastic deformation dxp and the limiting resistive force 

Ft,max depends on the sum  










Coulombt

Coulombt

Coulomb

peprimet

t
FF

FF

F

dxdxk
F

max,

max,,

max,
,

),(
 (18) 

with the stiffness kt,prime for primary loading. The total shear dxe+p is adjusted if the 

Coulomb friction force is reached: 
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The stiffness for the computation of the resistive force is increased at unloading. 

Therefore, even a loading-unloading cycle below the Coulomb friction lasts in 

settlements, as it can be seen in Figure 19 during primary loading in the negative 

direction. The limiting resistive force is also reduced again with relative 

displacement in the opposite direction, so that the particle can move again under 

primary loading.  

The algorithm uses two more state variables to save the preloading of the particle 

at a reversal of the movement direction and to reduce the preload with further 

movement in the reverse direction. For this purpose, the plastic displacement 

vector at direction reversal is stored in a variable dxstored and the total shear that 

takes place starting from the last direction reversal is saved in a variable dxΔshear.  

At the beginning, the elastic shear is updated for time step k+1 with step size dt 

and the friction force is calculated for the case of an un-/reloading behaviour 
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with the un-/reloading stiffness kt,un/re. If the plastic shear vector dxp
k and the 

elastic shear vector dxe
k+1 point into the same half space, there is no direction 

reversal and the total shear and dxΔshear can be updated by 
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otherwise a motion reversal is triggered. In the case of a motion reversal, the 

current plastic shear displacement will be stored in dxstored and set to the sum of 

the old value of dxstored and the unidirectional shear displacement dxΔshear. The 

unidirectional shear displacement is the plastic shear that occurred since the last 

motion reversal. If the plastic shear displacement is pointing into the same half 

space as before, it will be reset to the current elastic shear dxe. The value of 

dxΔshear is set to zero at motion reversal, so that it starts counting on from the 

current reversal point.  

The maximum resistive force Ft,max is updated by equation 18 for each time step. 

The friction force Ft is compared to Ft,max and adjusted, if Ft exceeds the value of 

Ft,max: 
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Furthermore, the elastic shear displacement is adjusted if the maximum resistive 

force is reached: 
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In the end, a damping force is added to stabilise the oscillating system. The total 

force Ft,total in the frictional contact is always limited by the Coulomb friction 

force: 
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2.6 Validation of the Contact Models 

The contact models in the DEM are necessary to consider the physics of the 

granular material that has to be modelled. For the application to geotechnical 

problems, the explained contact models in chapters 2.2, 2.3 and 2.4 have to be 

considered. The used contact models have to be validated in terms of a correct 

physical behaviour and numerical stability. Therefore, the contact forces and 

torques have to be related to physical quantities. For the validation regarding the 

numerical stability, the motion of the particles during different kind of simulations 

have to be investigated. Numerical instabilities often provoke high kinetic energies 

which can be missed if they appear only in a few particles. The translational and 

the rotational motion of particles are investigated in simulations with a single 

particle as well as using multiple particles to figure out if instabilities occur and to 

identify the origin.  

The models that are investigated for the validation of the contact models are a 

single particle on an inclined plane, a particle rolling in a pipe as well as 

simulations of colliding particles (Figure 20). Furthermore, the stability of a 

particle package using a few thousand particles is tested to prove the overall 

behaviour.  

The inclined plane model is used for investigations on the stability of the contact 

model and to verify the general behaviour. The particle rolling in a pipe up and 

down is used to observe the contact behaviour at a change in the direction of 

movement and to validate the energy dissipation. Further simulations of many 

particles are used to determine the behaviour of the contact model at colliding of 

particles as well as the force and torque transmission. The oscillations of the 

particles motion as well as the force and torque are investigated to identify any 

irregularities in the contact behaviour.  
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Figure 20: Test models for the validation of the contact models.  

The tangential and the rolling resistance depend also on the normal contact force 

between the particles. Therefore, the algorithm for the calculation of the resistive 

force or torque needs to be verified for all possible cases regarding a change in the 

contact force. The sketch in Figure 21 represents a possible pathway of the 

tangential friction force or the rolling resistance torque, where a change of the force 

or torque due to an increasing contact force is displayed in blue lines and due to a 

decreasing contact force in green lines. The rotation or translation starts always in 

the elastic region of the corresponding model, where the force or torque increases 

linearly with a movement. An increase of the contact force leads always to a jump 

of the resistive force/torque into the elastic region with a larger stiffness and 

maximum resistance. Where a decrease in the contact force will result in a jump 

into the elastic or plastic region with a decreased stiffness and maximum 

resistance. It can be seen in Figure 21 that at the first decrease of the contact force 

(first green connection) the model jumps from the elastic into the plastic region, 

while at the second decrease in the contact force there is a jump in the resistance 

but it stays in the elastic region. The standard EPSD2 rolling model of LIGGGHTS 

uses an algorithm that can cause backwards rotation due to a change in the contact 

force even if the torque was just applied in one direction. This behaviour is 

improved in the modified version that is used for the simulations. Therefore, the 

resistance is calculated based on a total relative displacement and not changed by 

increments. Thus, the applied algorithm controls the resistance in a way that lasting 

settlements of particles will only occur in the direction of the acting torque or get 

back into the initial position.  
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Figure 21: A graphical sketch of the algorithm for the tangential and rolling 

model 

2.7 Neighbor lists 

The neighbor lists specifies the particles for the contact computation, see 

LIGGGHTS®-PUBLIC documentation (2017). The preceding determination of 

neighbouring particles is necessary to reduce the amount of contact computations. 

For this purpose, the pairs of particles that will not interact in the next few time 

steps are neglected in the force computation. Thus, it limits the amount of contact 

computations to particles that are close to each other. The neighbouring particles 

in a certain distance are determined and checked for possible force interactions. 

The skin distance defines the domain to search for neighbouring particles and can 

be set manually by the neigh command, where the skin distance is the additional 

space between particles before they get in contact, see Figure 22.  

 

Figure 22: Skin distance to search for neighbouring particles 

A smaller skin distance causes the code to rebuild the neighbor lists more often but 

the number of computed contacts is less, while a larger skin distance increases the 
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number of contacts that have to be computed and reduces the amount of neighbor 

lists.  

The skin distance should be set by default to the maximum radius of the used 

particles, but can be reduced for simulations with less motion. In the case of a wide 

range of different particle sizes, many neighbouring particles would be found if 

the skin distance is related to the largest particle radius. In this case, it has to be 

judged which skin size is the best fit.  

In the case of the penetration simulation, where four different domains of scaled 

particles sizes exist, the skin distance is chosen related to the maximum radius of 

the particles in the core domain. In the filling phase the neigh size is set equal to 

the corresponding radius and is reduced to half of it after the particles have settled, 

since the particles motion is very slow from this point onwards.  

2.8 The initial filling process 

The initial filling process generates a certain density in the soil specimen and 

creates the initial stresses in the soil. Furthermore, the filling can cause a sorting 

of grains due to the granular segregation or compact the soil locally due to the drop 

height of the particles. Hence, a particle radius expansion method is used to prepare 

a homogenous soil bedding (Bernhardt et al. 2015).  

For the particle radius expansion method the particles are inserted with a smaller 

radius than they will have later in the simulation. The initial particle volume for 

the insertion is decreased by the particles reduction scale to the power of three, 

whereas the total volume of the filling area is kept constant. Thus, a very loose 

packing is generated first and the insertion without an overlap of particles is easier. 

The insertion is done in a zero gravity environment so that the particles hover 

inside the filling domain. After the insertion is done, the particles radii are 

expanded stepwise up to their desired size. The interparticle friction and rolling 

resistance is kept zero, and the Young’s modulus is reduced until the particles 

reached their desired radii and stopped moving. Then, the particles’ parameters for 

the simulation are applied and the gravity is turned on.  

The settlement of the soil particles and the overburden particles is performed in 

parallel. The overburden particles are inserted in a close distance to the upper 

boundary of the soil domain, so that the overburden particles generate less kinetic 

energy.  

The creation of a desired packing density is difficult to achieve in a particle code. 

One option is the choice of the particles insertion domain such that the particles 

compact during the radii expansion process. The loose particle bedding for the 

simulations is prepared in a domain that is even larger than necessary to avoid a 
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close arrangement of particles. Due to the spherical shape of the particles it is not 

always possible to achieve the loosest packing of a granular material. However, 

the generated density can be measured in an accurate manner by the computation 

of the volume and mass of a Voronoi tessellation for an embedded region of 

particles.  
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3 Calibration 

The calibration of geotechnical materials in the DEM is usually done by 

investigations of the macro scale behaviour and adjustment of the micro scale 

parameters (O’Sullivan 2011), such as interparticle friction. These particle 

parameters does not directly correlate with continuum material parameters but can 

be adjusted to produce the same mechanical behaviour. Therefore, all tests are 

modelled with the DEM and the system response is compared to the laboratory 

measurements. The particles’ parameters that have to be defined are: 

 Young’s modulus and poisson’s ratio for soil stiffness 

 Tangential friction and rolling resistance for soil strength 

 Coefficient of restitution for damping. 

For the sake of calibration, different soil tests has been investigated, where a 

Martian analogue material is used to reproduce a similar soil behaviour as it is 

supposed to be at the InSight landing site. The soil tests that are available at the 

laboratory of the Institute of Soil Mechanics and Foundation Engineering are an 

angle of repose experiment, an oedometer test and a triaxial shear test. The angle 

of repose experiment and the triaxial shear test provide information on the inner 

shearing resistance of the soil, whereas in the oedometer test the stiffness of the 

material can be determined. The strength of soils is often stated by its inner 

resistance against shearing, as long as no grain crushing is involved. This shear 

resistance depends on the grain to grain friction and the grain specific rolling 

resistance. In geotechnics it is common to describe the shearing resistance by the 

internal friction angle and the dilatancy angle. Instead, in the DEM the specific 

values for grain to grain friction and rolling resistance are applied and dilatancy 

effects are automatically captured within the simulation.  

3.1 Material 

The material that is investigated in this work is a local soil mined in Austria that 

has a similar grain size distribution as the known Martian simulant JSC-Mars 1. It 

is a sieved quartz sand smaller than 1 mm denoted as “Schwarzl UK4”. The 

Schwarzl UK4 has already been used as a Martian simulant for penetration 

simulations at the Space Research Institute in Graz, Austria (Zöhrer 2006). The 

gradation of the particle size is very uniform and has a uniformity coefficient UC  

of 4, which can be well reproduced in DEM. The particles’ size is upscaled in the 

simulations depending on the model. A simple element test, for example, can be 

modelled using only a few thousand particles without much difference in the 

results. The characteristic of an element test is a homogeneous stress distribution, 

e.g. in a uniaxial compression test. The maximum scale of the particle size is kept 
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small enough to avoid the formation of long force chains carrying most of the load. 

The material has an internal friction angle of about 33° and no cohesion. The bulk 

density ranges from 1300 to 1700 kg/m3 with a grain density of 2700 kg/m3. Thus, 

the void ratio is 0.58 for the densest packing and 1.07 for the loosest packing. The 

grading curve of Schwarzl UK4 is shown in Figure 23. For the implementation in 

the DEM the grading curve is adjusted (yellow line). The small amount of very 

large particles and very small particles is neglected. The used particle size 

distribution is generated out of values between the grading sizes. Instead of only 

using the mean value between the grading sizes (blue line), a uniform distribution 

of particle radii (green line) is applied to get a homogeneous soil behaviour.  

 

Figure 23: Particle size disribution of Schwarzl UK4 

3.2 Angle of Repose 

The angle of repose experiment takes only little effort and provides first 

information about the internal friction of the material. It is a common test used for 

dry cohesionless granular materials. This test creates a natural slope by lifting up 

a hollow tube filled with granular material, see Figure 24. The filling height of the 

tube has to be large enough, so that the critical slope angle (i.e. the largest possible 

slope angle) can be achieved. For a cohesionless dry sand the natural slope angle 

corresponds directly to the internal friction angle at critical state. The critical state 

means that shearing occurs at constant volume and that interlocking of grains does 

not affect the strength. This condition is present for normally consolidated soils or 

for overconsolidated soils at large shear strains, when softening has taken place. 
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The advantage of the angle of repose experiment is the minor influence of the soil 

stiffness on the obtained results. Thus, it is possible to derive the friction 

parameters without adjusting the stiffness parameters in the simulation model. 

Since in the DEM the interparticle friction and the rolling resistance define the 

inner shearing resistance, both parameters need to be adjusted to match the right 

slope angle. The outcome of this experiment is not a specific set of friction 

parameters but a series of sets that reveal a reasonable slope angle. For this reason, 

it has to be specified beforehand if the grains are more rounded or angular which 

corresponds to a higher interparticle friction or rolling resistance, respectively.  

 

Figure 24: Generation of a critical slope by lifting a filled cylinder.  

An algorithm is applied to evaluate the angle of repose in the simulation in an 

automatic way. The algorithm divides the sand pile in n horizontal slices and 

determines the maximum and minimum positions of the particles in the horizontal 

x- and y-axis in each slice, where the centre of the pile is at zero position (Figure 

25). The top and the bottom slices are neglected to avoid errors due to a flattened 

tip at the top or wide spread particles at the bottom. The maximum pile diameter 

in each slice is calculated by the difference of the maximum and minimum position 

of particles in the horizontal axes from each slice. The ratio of the height of a slice 

to the difference of the maximum pile radii from slice to slice yields the inclination 

of the pile. Thus, it is possible to automatically evaluate the slope angle for many 

runs using different sets of parameters.  

 

Figure 25: Sketch of the algorithm to determine the slope angle 
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In the simulation model, the sliding friction and the rolling resistance between the 

particles and the base plate is set to a value of 2.0 which is always larger than the 

interparticle friction and rolling resistance. In the lab experiment a sand paper is 

used as a base plate to create a large friction between the sand grains and the base 

plate to avoid the influence of slipping at the base. Furthermore, a teflon tube is 

used to reduce the friction between particles and the lifted casing, wherefore in the 

simulation model the friction of the confining material is set to zero. A low friction 

at the lifted casing ensures a continuous outpouring of the material.  

3.3 Triaxial Shear Test 

The triaxial shear test is an element test that fails a probe at different effective 

mean stresses to determine the strength of a granular material. Therefore, a 

cylindrical chamber is filled with saturated material and consolidated by applying 

a confining pressure. The lateral pressure is generated by using a membrane for 

the horizontal boundary and a surrounding fluid. The probe is then sheared under 

a constant lateral pressure. The shear rate is chosen slow enough to avoid the 

development of excess pore water pressure. The major principle stress during 

shearing is measured on the top and bottom wall while the minor principle stress 

at the membrane is kept constant. The triaxial test provides information on the peak 

resistance and the critical state strength of the material. The peak strength is the 

maximum resistance of a granular material during a shear test. However, the 

strength at critical state is defined when ongoing shearing occurs under constant 

volume. The interlocking of grains due to a dense bedding causes the material to 

expand due to shearing and produces a peak resistance that is reduced again by 

further shearing. The peak resistance depends on the void ratio and is related to the 

dilative behaviour of the soil skeleton, whereas the critical state strength is 

independent on the initial void ratio.  

With a DEM model of the triaxial test, not only the strength values can be 

determined, but the stress strain relationship can be evaluated and used for the 

calibration. For the implementation in the DEM, the cylindrical boundary is 

approximated by six planes forming a hexagonal prism, see also Figure 26. An 

additional wall at top and bottom completes the chamber and hold the particles 

inside. The pressure on each wall is measured and controlled by a movement of 

the walls using the fix mesh/surface/stress/servo command of LIGGGHTS. The 

controller uses the error between the set-point and the actual value as well as the 

rate of change to approach the required pressure. This so called PD-controller acts 

very rapidly on stress changes, which reduces the computation time and it turned 

out to be the most stable choice for this application. The controller parameters were 

determined by a script of Abel (2010), where the proportional constant KP is set to 

7.5 % of the confining pressure and the differential constant KD is set to 
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dtKK PD 12.0  (25) 

with the time step size dt of the simulation.  

 

Figure 26: The triaxial shear test at the laboratory on the left (Zöhrer, 2006). 

The hexagonal prism chamber as well as the particulate material in 

the model, from perspective and top view, on the right.  

After the consolidation phase, the top wall is locked while the bottom wall is 

moved upwards to shear the probe. The shear velocity in the DEM simulation can 

be much faster as in the lab test, since there is no water considered in the simulation 

that could generate excess pore water pressure. The vertical load acting against the 

bottom wall is measured and evaluated to determine the maximum resistance and 

the critical state strength. The volume of the probe is measured by the positions of 

the surrounding walls. The computation of the stress at each wall is implemented 

in the controlforces file. The contact area of each wall with the specimen is updated 

throughout the simulation to compute the stress out of the forces. Three 

simulations are carried out using a confining pressure of 100, 150 and 200 kPa 

respectively. The maximum shear stress at different mean normal stresses reveals 

a failure envelope that increases almost linearly with the mean normal stress. The 

inclination of this failure envelope is defined as the internal friction angle of the 

material. The internal friction angle at critical state corresponds to the angle of 

repose for a cohesionless dry sand. Thus, the triaxial shear test should result in a 

similar angle than the angle of repose experiment.  

3.4 Oedometer Test 

The oedometer test is a uniaxial compression test with lateral confinement that 

focuses on the stress strain relation to determine the stiffness of a material. The 
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bulk stiffness of granular materials is non-linear and depends on the current stress 

state as well as on previous stress states that could have compacted the material in 

the geological history. The oedometer test in the lab generates a static pressure in 

the sample using a stamp at the top of the probe while the settlements of the stamp 

are measured to derive the stress strain relation, see Figure 27. The material of the 

confining elements has to be stiff enough to avoid their deformations during the 

load application. The stress path is applied in increments that always doubles and 

begins with a stress of 10 kPa. After a stress of 320 kPa is reached at primary 

loading, the probe is unloaded first to 80 kPa and finally to 20 kPa. The load is 

again increased stepwise by doubling up to a value of 640 kPa. This stress path 

allows to investigate the primary loading as well as the unloading/reloading 

behaviour. 

The triaxial and the oedometer test are both element tests, which means that there 

is a homogeneous stress state in the probe. In comparison to the triaxial test, where 

a constant lateral pressure is applied, the oedometer test has a confining ring to 

constrain the lateral strain of the probe. This boundary condition inhibits the soil 

to fail by shearing.  

 

Figure 27: A sketch of the oedometer test.  

The oedometer test is implemented in LIGGGHTS using a fixed cylindrical wall 

for the horizontal boundary and a fixed plane for the bottom. The top wall can only 

move vertically and is stress controlled using the fix mesh/surface/stress/servo 

command. The stress controlled top wall of the oedometer is used to apply different 

stresses. To avoid large oscillations in the stress path, the proportional constant for 

the controller is set much lower than for the triaxial test. A value of 2.4 for the 

proportional constant KP was found to be an appropriate solution, whereas the 

differential constant KD was set to 

dtKK PD 2.0 . (26) 
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The controller that drives the top wall reacts much slower and it occurs no 

overshoot of the wall displacement during compaction, which could compact the 

material and affect the soil stiffness. The force on the top wall and the 

corresponding strain is measured and used to determine the stiffness of the 

material. The assembled sample of the oedometer test in the DEM is shown in 

Figure 28.  

 

Figure 28: A cut view of the DEM model of the oedometer test with a colour 

coding of the vertical stress in Pa.  

The oedometer test is done using a loose sample under dry conditions for the 

simulations as well as for the lab tests. The test is mainly used to determine the 

particle stiffness for the DEM by fitting the bulk stiffness of the oedometer test, 

where the lowest possible particle stiffness is preferred. The reason for a low 

particles stiffness is the related time step, which increases with smaller stiffness 

and thus less computation time is needed.  

The stiffness of a granular material depends mainly on the structure of the soil 

skeleton and is independent of the particles weight for the case of a static load. 

Thus, it is possible to artificially increase the density of the particles and decrease 

the gravity, such that the overall stress state is the same. Due to the increased 

density of the particles, the system reacts slower and the time step can be increased. 

This technique is called mass scaling and is just applicable as long as it is a 

quasistatic simulation.  

3.5 Calibration Results 

The three calibration tests reveal parameters for the interparticle contacts to be able 

to model the strength and the stiffness behaviour of the investigated Schwarzl UK4 

sand. For the calibration procedure, the Hertzian normal contact, a modified 
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tangential history model and a modified version of the EPSD2 rolling model of 

LIGGGHTS are used and result in the interparticle parameters listed in Table 2. 

Table 2: Particle parameters for Schwarzl UK4 sand 

Young’s Modulus 0.8 GPa (8∙108 Pa) 

Poisson’s ratio 0.3 

Coefficient of restitution 0.1 

Coefficient of friction 0.6-0.7 

Coefficient of rolling friction 0.4-0.5 

 

With these particle parameters, the angle of repose experiment results in an angle 

of about 33° ± 1°. The direct comparison of the simulation and the experimental 

result can be seen in Figure 29. There is a good agreement in the shape of the pile 

that is created by pouring the material, where the angle of the slope corresponds to 

the critical internal friction angle of the material.  

 

Figure 29: Angle of repose from experiment (top) and simulation (bottom) 

The simulation of the triaxial shear test confirms the critical friction angle of about 

33° and the comparison of the stress-strain relationship during the shear phase 

gives additional information on the soil stiffness. A secant stiffness modulus can 

be determined that defines the stress-strain relation of the material at primary 

loading and depends on the mean normal stress. The value of this modulus is 
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determined by a secant through the point at 50 % of the peak strength and is 

therefore also dependent on the initial void ratio. The comparison of the stress-

strain curve of the triaxial shear tests for lateral stresses of 100, 150 and 200 kPa 

is shown in Figure 30. The stress strain curve at 100 kPa confining stress reveals 

that the critical and the peak strength of the material as well as the secant stiffness 

modulus can be well modelled in the DEM. The lab tests for 150 kPa and 200 kPa 

differ from the DEM simulations in stiffness for 200 kPa and in strength for 150 

kPa. Nevertheless, to prove the correctness of the DEM results, the shear stress 

over the mean normal stress is plotted in Figure 31. The black lines represent the 

critical state friction angle of 32° and the peak friction angle of 35°. The peak value 

of each triaxial test is marked with a point and the critical state value with a square. 

It is noticeable that the critical state strength illustrated by squares fits almost 

perfect on the line of 32° friction angle for the DEM results. Furthermore, the peak 

strength that are marked by points fits on a 35° friction angle. Whereas, the lab 

tests reveal a reduced strength for the 150 kPa test. Even though, the DEM results 

of the triaxial test differ partially from the lab tests, they fit very well to the 

theoretical assumptions.  

Regarding the triaxial tests, it can be seen that the DEM is also able to model the 

strength softening after the reaching peak strength. A difficulty of the model is the 

creation of a certain void ratio, which has to be done during the insertion phase. 

The problem is that there will be always some settlements that will change the 

desired void ratio. Therefore, the secant stiffness modulus can differ from the lab 

results due to inaccuracies in the initial void ratio.  
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Figure 30: The stress strain curve of a triaxial test from lab experiments and 

from DEM simulations for a confining stress of 100, 150 and 200 

kPa. 

 

Figure 31: The stress path of a triaxial test from lab experiments and DEM 

simulations.  
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The results of the oedometer test show that the hardening behaviour of the sand 

can be well modelled, but the settlements after unloading are much smaller in the 

simulations than in the experiments. This behaviour is most probably caused by 

the elastic behaviour of the contact model, which is necessary for a stable 

simulation. In Figure 32 the stress strain is curve plotted for the oedometer test. 

The results from the DEM simulation are in good agreement with the lab results 

for the primary loading path until 320 kPa. The increasing stiffness of the soil due 

to compaction is obtained in the DEM simulation but the amount of compaction is 

less than in the lab test. Thus, the DEM code is not able to model the unloading 

behaviour of the soil with its original contact models.  

This issue is negligible for the case of a constant driven probe, where no unloading 

appears. However, in the dynamic penetration process, an unloading is present 

after each stroke. For the dynamic penetration, the lower compactibility of the 

material will result in large rebounds after each stroke. Therefore, a lot of work 

was invested in developing new contact models, especially for the rolling 

resistance, see chapter 2.  

 

Figure 32: Stress strain relation from the oedometer test.  
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4 The Penetration Model 

Three simulation models were developed to investigate the performance of HP3. A 

quasistatic cone penetration test was used to determine an approximate resistance 

and to study the influence of Martian gravity on the penetration resistance. A 

simplified model of a wall that penetrates with a prescribed velocity was used to 

determine the influence of an upscaled particle size and to investigate the soil 

behaviour under cyclic loading. The upscaling of the particle size is realised by a 

shift of the particle size distribution to larger particle sizes, where the relative 

distribution is unchanged. The final simulation is a fully coupled model that 

simulates the hammering mechanism as well as the soil response. For this purpose, 

the driving mechanism of HP3 needs to be modelled and coupled with a model of 

the probe inside the test bed.  

The dynamic penetration process of HP3 is driven by the hammering mechanism 

consisting of a hammer mass and a suppressor mass, as well as connecting springs. 

This mechanism has to be implemented in the simulation, because the generated 

force profile of each stroke cycle is dependent on the soil response. Therefore, the 

masses of the casing, hammer and suppressor are modelled out of particles with a 

diameter of 5 cm and connected by the fix spring command of LIGGGHTS to 

represent the assembly in Figure 33.  

 

Figure 33: Hammer mechanism: Suppressor mass (green), Hammer mass (red) 

Casing (blue) 

The force spring that connects hammer and suppressor mass is much stiffer than 

the brake spring that connects the suppressor mass to the casing. The exact values 

are listed in Table 3.  
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Table 3: Mechanism parameters 

Parameter Description Value for HP3 

hammerm  Hammer mass 110 g 

pressormsup  Suppressor mass 460 g 

gcam sin  HP3 casing mass 300 g 

forcek  Stiffness of force spring 6222 N/m 

brakek  Stiffness of brake spring 73 N/m 

 

In the initial position, the break spring is pre-compressed to a length of 52.35 mm, 

whereas its uncompressed length is 108 mm. The fully compressed length of the 

break spring is 29.35 mm and thus it has a spring deflection of 23 mm. The force 

spring gets fully compressed at each stroke cycle to a length of 20 mm, whereas 

the uncompressed length is 35 mm. The free flight distance of the hammer mass is 

15 mm at the point of release.  

In the DEM model, the complete mechanism is modelled out of 4 particles, where 

two particles represent the casing and the other two particles represent the hammer 

and the suppressor mass, see also Figure 34. The hammer and the suppressor mass 

are integrated only in z-direction by implementing a fix nve/z command. The two 

particles representing the casing are connected by the fix rigid command with an 

integration in the vertical z-axis. The velocity of the casing particles is computed 

and applied to a body of the penetrator that is inserted in the soil model. While the 

penetrator body is pushed forward through the soil, the resistive force on the 

penetrator is computed and applied back onto the particles that represent the casing 

mass. In this way, the simulations of the soil penetration and the hammering 

mechanism are coupled to simulate the dynamic penetration process of HP3.  
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Figure 34: Implementation of the hammering mechanism in LIGGGHTS 

The used DEM code allows for parallel processing, where the complete simulation 

domain will be divided in subdomains. Each subdomain is solved by a single 

processing unit. An overlap of the subdomains is necessary to compute the 

interaction between them. For the dynamic penetration model, the allocation of the 

domains for the central processing units (CPUs) should be selected with care. The 

penetrator body should always be in the same CPU domain as the particles of the 

hammering mechanism, otherwise errors may occur and lead to wrong results. 

That is why, this simulation should use an allocation of the CPU domains in 

horizontal direction with an uneven number of processor units for each direction. 

In this way, the centre of the domain is always computed by a single processor 

unit.  

4.1 Simulation preparation 

The HP3 penetration tests at DLR in Germany are performed in a cylindrical 

chamber with a radius of 40 cm and a height of 5 metres. In order to have a feasible 

representation, the simulation model has the same radius but is limited in the 

vertical height. The bottom in the simulation model is more than 30 cm away from 

the tip of the penetrator to avoid reflections or the creation of single force chains 

directly to the bottom. For the soil above the penetrator, the model uses a layer of 

particles atop of the probe to reproduce the overburden pressure in different depth. 

Therefore, the weight of the material above the investigated domain is calculated 

and assigned to the particles of the top layer. Furthermore, the soil model is 

subdivided in 4 domains in radial direction with larger particles in the outer 

domains to reduce the total amount of particles in the simulation. The smallest 

particles are used in the core of the simulated soil domain, where the interaction of 

the penetrator and the soil takes place.  
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In Figure 35 is a picture of the soil domain from side and bottom view, where the 

particles of each domain have a different colour. It can be seen that there is no 

large interpenetration of the subdomains, which is desired to avoid a mingling of 

the particle size distribution. Therefore, frictionless walls separate these 

subdomains in the beginning until the particles are settled. The particle scale of 

each subdomain is in the range of 1.2 to 1.5 times the neighbouring subdomain, 

whereas larger differences in the particle scale would cause too much 

interpenetration of the subdomains and a poor transfer of stresses at the subdomain 

boundaries.  

 

Figure 35: The subdivided soil domain with different coloured particles to 

highlight each subdomain (left: sliced side view, right: bottom view) 

The skin size for the generation of the neighbor lists is set depending on the largest 

particle radius of the core domain. This reduces the amount of neighbouring 

particles and accelerates the computation, see chapter 2.7. The outermost 

cylindrical wall and the bottom wall have a friction value for sliding of 0.3 and for 

rolling of 0.1. The overburden particles have no friction at all and the penetrator 

has a coefficient of friction for sliding of 0.3, whereas no rolling resistance is 

applied. The rolling resistance between particles and the penetrator is ignored 

because of the small contact area between the grains and the smooth penetrator 

surface. The interparticle parameters are determined by the calibration procedure 

that is described in chapter 3.  

4.2 Validation of particle size scaling for the 

penetration simulation 

The usage of a scaled particle size instead of the real grain size is common for 

geotechnical applications in DEM (Falagush et al. (2015), Ciantia et al. (2016), 

Butlanska et al. (2014)). The upscaling of the particle size is used to reduce the 

total amount of particles and needs to be validated for each model on its own. In 

the simple element tests (e.g. triaxial shear test, oedometer test), where the stress 

distribution is homogeneous, the scaling of the particle size has less influence than 
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in a cone penetration test with local deviations of stress. In the case of simulations 

where the stress is locally induced into the soil, the upscaling should be used with 

caution.  

In geotechnical research, it is known from experiments that particle size 

distribution has an influence on the penetration resistance of a cone penetration. 

This is mostly caused by the difference in the void ratio and stiffness, but less 

attributed to the particle size itself. Bolton et al. (1999) did investigations on the 

effects of different cone diameters on the penetration resistance in Leighton 

Buzzard sand. Different cone diameters B of 19.05, 10 and 6.35 mm were 

investigated to determine the grain size effect using the same material at same 

relative density. The results shown in Figure 36 reveal no particle size effect for 

tests on a sand (d50: 0.225 mm) using cone diameter to mean grain size ratios of 

85, 44 and 28. However, for medium sized particles (d50: 0.4 mm) the ratios of 

cone diameter to grain size of 48 and 25 result in a similar resistance, whereas for 

the ratio of 16 the resistance is slightly higher but within acceptable limits. For the 

large particles (d50: 0.9 mm), the influence of the grain size becomes more 

pronounced for the B/d50 ratio of 7, but is still negligible in comparison to the effect 

of void ratio on the penetration resistance.  
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Figure 36: Grain size effects in Leighton Buzzard sand: (a) fine particles; (b) 

medium and coarse particles. Normalized cone resistance over 

Normalized depth (Bolton et al. 1999). 

The increase of penetration resistance with smaller B/d50 ratio would cause an 

inaccuracy that decreases the penetration rate of a dynamic penetration simulation. 

Thus, the results are on the conservative side by underestimating the penetration 

rate of HP3.  

Several simulations of cone penetration tests with constant velocity are evaluated 

to investigate the effect of particle size scaling in the DEM. These simulations 

differ from the experiments of Bolton et al. (1999) in so far as the particle scale is 

increased and the penetrator diameter is kept constant. Thus, the larger particles 

have more weight than the small scale particles to obtain the same density and the 

same stress state. The stiffness of the particles is also changed at upscaling due to 
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the radius dependent stiffness of the Hertz model. Thus, the same stiffness 

behaviour in the macroscale is obtained.  

Two different models were used for the investigations of particles size effects on 

the penetration resistance. A model using large particle size scales in the range of 

20 to 50 and a model for small particle size scales in the range of 5 to 20 are 

investigated. The penetration rate for the simulations is 1 cm/s for the small scale 

model and 10 cm/s for the large scale model, where the penetration rate in a dry 

cohesionless sand has a minor influence on the penetration resistance until the 

particles inertia gain impact on the resistance. This was also identified from the 

experiments by Bolton et al. (1999), where cone penetration tests with penetration 

rates of 2.5 mm/s and 20 mm/s were performed in a dense dry specimen without 

noticeable deviations in the resistance.  

The particles for the overburden pressure are not applied for the quasistatic cone 

penetration models. The bulk density after gravity loading is about 1450 kg/m3 

with a grain density of 2720 kg/m3. The particles’ Young’s modulus is 0.8 GPa 

and the Young’s modulus of the penetrator and the confining walls is 21 GPa. The 

Poisson’s ratio is set to 0.3 and the coefficient of restitution for damping is 0.1, 

where no distinction between particles and walls is made.  

The penetration simulations using a large scaling of the particle size are modelled 

in a test chamber with 40 cm diameter and a depth of 75 cm. The total penetration 

depth for these simulations is 55 cm, where the penetrator tip dips into the material 

after 5 cm. Thus, the effective penetration depth is about 50 cm. The chamber is 

radially subdivided in cylindrical domains with larger particle scale outwards (see 

Figure 35), as explained already in chapter 4.1. The interparticle friction 

parameters are 0.6 for sliding and 0.4 for rotation. The particle-wall friction 

coefficient for sliding is 0.3 and for rotation is 0.1, whereas the particle-penetrator 

friction coefficient for sliding is 0.3 and for rotation is 0.0. The rolling resistance 

between particles and penetrator is negligible because of the small contact area 

between the grains and the curved shape of the penetrator casing. The investigated 

scale sizes are 50, 30, 25 and 20 with penetrator diameter to mean grain size B/d50 

ratios of 1.2, 2, 2.4 and 3, respectively.  

The particle displacement profiles in Figure 37 show the areas of displaced 

particles. The limited colour range may be exceeded, wherefore the red coloured 

particles are displaced 5 mm or even more. It can be seen that for the smaller 

particle size, the area of displaced particles is smaller, whereas the penetration 

resistance is not directly related to this. The penetration resistance shown in Figure 

38 reveal a converging of the resistive force with a particle scale of 30 and lower. 

Small deviations are attributed to irregularities of the soil structure, as it is in real 

soils. The scattering of the actual resistive force becomes less with smaller 

particles due to a more homogeneous stress distribution. The differences in 

resistance from a particle scale of 30 and 20 is below 10 %. Thus, a penetration 
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simulation using a particle size that is scaled by the factor of 30 yields already well 

approximated results with respect to the penetration resistance. The deformations 

in the soil due to the penetration has a more extensive effect for the coarse-grained 

simulation, when comparing the particles displacements of particle scale 20 and 

30.  

 

Figure 37: Comparison of particles displacements in m for different particle 

scales after 20 cm and 40 cm of penetration 
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Figure 38: Comparison of the penetration resistance using different scale sizes.  

The simulation of the whole test chamber with a scale of particle size lower than 

20 would take too much computation time. Therefore, a small scale model of a 

wall that penetrates into a small soil specimen is used to investigate the influence 

of the particle scale on the penetration resistance and the soil behaviour. The shape 

of the wall from a side view corresponds to the shape of the HP3 penetrator. The 

investigated particle scales are 20, 15, 10 and 5 which correspond to B/d50 ratios 

of 3, 4, 6 and 12. For the small scale model the total penetration depth is 5 cm. The 

particle parameters are similar to those from the large scale model.  

The comparison of the areas of mobilised particles using different scales of the 

particles size is given in Figure 39. It can be seen that the areas of similar particle 

displacements are almost the same, where the exact shape of these areas becomes 

clearer with smaller particle scale. This means that in all simulations the same 

amount of particle volume needs to be pushed in a similar way to penetrate in. A 

similar rupture plane and a good agreement in the resistive force with different 

particle scales validate the coarse-grained model.  
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Figure 39: Comparison of the particles displacements in m after 5 cm 

penetration using different particle scales. 

The penetration resistance for all simulations of different particle scales are 

displayed in Figure 40. The simulations using larger particle scales reveal a larger 

scattering in the resistive force, but the mean value corresponds well in all 

simulations. At the beginning of the penetration, the resistive force of the larger 

scaled models increases a bit faster due to the larger particles that need to be 

mobilised right from the beginning.  
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Figure 40: Comparison of the resistive force during the penetration of the wall 

at different particle scales 

4.3 Simulation of quasistatic cone penetration tests 

The quasistatic cone penetration test is an ideal model to evaluate the influence of 

the soil parameters such as relative density, particle friction and gravity on the 

penetration resistance. The procedure of a cone penetration test is already 

explained in the previous chapters. Briefly summarised, a probe penetrates into the 

sand under a constant velocity, while the resistive force is measured. The 

penetration rate for the simulations is 10 cm/s in vertical direction, unless 

otherwise specified. The penetrator drives centrically into the cylindrical soil 

specimen. The interface friction between the penetrator and the soil is 0.3 for 

sliding, whereas no rolling resistance is assumed in the interface due to the smooth 

surface of the penetrator. Different gravitational constants, soil parameters and 

densities are investigated and the influence on the resistance is analysed. There is 

no overburden pressure applied for the quasistatic penetration. The particles’ radii 

are scaled by a factor of 25.  

The influence of the penetration rate on the resistance is shown in Figure 41. The 

density in this simulations is about 1485 kg/m3 and corresponds to a void ratio of 

0.83, which is a loose packing. The tangential friction parameter is 0.6 and the 

coefficient of rolling resistance is 0.3. It can be seen that the penetration resistance 

is little affected by penetration rates less than 1.6 m/s for a penetration depth up to 

0.3 m. At a depth of 0.3 m, the asymmetric stress distribution results in a varying 
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resistance. The penetrator is only moved vertically and cannot compensate a non-

uniform stress distribution, see Figure 42. If an additional integration of the 

penetrator’s motion in the horizontal plane is considered, it could compensate the 

unilateral stress and thus result in a more unique resistance.  

At a fast insertion of 4 m/s the resistance increases more significant right from the 

beginning. At such fast insertion rates, the inertia force of the particles and 

probably the damping in the normal contact begin to have an impact on the 

resistance. Bolton et al. (1999) found by experiments in dry sand that penetration 

rates of 0.25 cm/s and 2 cm/s yield almost the same resistance, where faster 

insertion rates were not studied. In the simulation model, much higher penetration 

rates are investigated. The negligible effect of the penetration rate holds only for 

dry sand, whereas in saturated sand the fast insertion can produce excess pore 

water pressure depending on the permeability of the material.  

 

Figure 41: Comparison of penetration resistances at different insertion rates for 

quasistatic penetration.  
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Figure 42: Von Mises Stress in Pa. The influence of fabric anisotropy on the 

stress distribution, if the penetrator is not integrated in x- and y-

direction.  

The comparison of the DEM simulations to laboratory results is plotted in Figure 

43. The lab results of the cone penetration are taken from Lichtenheldt et al. (2014). 

They carried out several penetration tests in the 5 m testbed at DLR and determined 

a mean value and a confidence interval of the measurements. In difference to the 

DEM simulations, the results from the lab tests are solely the tip resistance without 

the shaft friction. Therefore, the frictional force is subtracted from the total 

resistance. Two DEM simulations for Earth gravity and a bulk density of 1430 

kg/m3 with a void ratio of 0.9 were done applying different interparticle friction 

parameters. The Friction0604_density1.43 denoted data had a coefficient of 

friction of 0.6 and a rolling resistance value of 0.4. The Friction0705_density1.43 

denoted data had a coefficient of friction of 0.7 and a rolling resistance value of 

0.5 instead. An additional simulation under Martian gravity with a friction 

coefficient of 0.6 and a rolling resistance of 0.4 is denoted by marsgrav, where a 

density of 1453 kg/m3 was achieved. The simulation using the lower friction values 

in Earth gravity fits almost into the confidence interval of the measurements, where 

it has to be considered that without the shaft friction, which is about 10 % of the 

total resistance, the data would fit even better. A simulation with a perfectly 

smooth penetrator surface would not only ignore the shaft friction, but also affect 

the tip resistance. Therefore, the shaft or the tip resistance cannot be identified in 

particular. The simulation using the larger friction parameters is completely 

outside of the confidence interval. From the penetration simulation in Martian 

gravity it can be obtained that the penetration resistance is decreased significantly 
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due to the lower stress level in the soil. This of course has an impact on the 

penetration performance of HP3 and needs to be considered.  

 

Figure 43: The cone resistance in kPa from DEM simulations compared to the 

tip resistance of cone penetration test in the 5 m testbed at DLR 

from Lichtenheldt et al. (2014). 

4.4 Simulation of dynamic penetration of HP3 

The heat flow and physical properties probe (HP3) of the NASA InSight Mission 

is able to penetrate itself into a granular material by an implemented hammering 

mechanism. This driving mechanism is modelled separately above the soil 

specimen in the DEM simulations. The generated driving force depends on the soil 

response, wherefore the simulation of the hammering mechanism is directly 

coupled with the penetrator model in the soil specimen. The setup of the simulation 

can be seen in Figure 44. The coupling between the driving mechanism and the 

penetrator is done by an exchange of velocity and force. Therefore, the velocity of 

the blue coloured particles for the casing is computed and applied to the penetrator 

in the soil, while the force that acts on the penetrator body is applied back to the 

blue particles. Furthermore, rotations of the penetrator are permitted to avoid 

artificial bracing of the penetrator in the soil. It was observed from simulations 

with a locked rotation of the penetrator that directional force chains arise at the tip 

and the back end and generate a torque. These forces would usually cause a rotation 

of the penetrator, whereas for a rotational locking these forces increase the 

horizontal stress and thus the shaft friction is increased.  
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Figure 44: The model of the hammering mechanism above the soil domain. 

The hammer mass in red, the suppressor mass in green and the 

casing in blue.  

The domains of different particle scales are obvious, where no intermixing of 

particles between these domains occur, see also chapter 4.1. The smallest particle 

scale is used in the centre, where the interaction of penetrator and soil takes place. 

The overburden pressure is applied by the particle layer that lies on the soil. The 

penetrator is pushed into the material with a velocity of 0.5 m/s to obtain the initial 

setup for the hammering action. As soon as all oscillations disappeared, the 

simulation of the hammer strokes begins. Therefore, the corresponding springs are 

applied to the particles and accelerate them.  

The penetration rate per stroke cycle is about a few millimetres, which is quite 

small in comparison to the particles’ size. The standard contact models for friction 

and rolling resistance behave highly elastic for small deformations, which leads to 

incorrect results at unloading after each penetration stroke. Hence, it was necessary 

to develop a new contact model that allows for plastic deformation even for small 

displacements. An improved contact model for tangential friction and rolling 

resistance was developed within this work and is explained in more detail in 

chapter 2.5. The main feature of the improved contact model is the plastic 

displacement of particles right from the beginning of the shear or roll motion. The 

model could not yet be used for the simulations due to a discontinuity in the 

moment. The problem of the discontinuity appears only in the three-dimensional 

case and lead to an unstable behaviour of the particles. Therefore, only slightly 

modified versions for sliding friction and rolling resistance were applied. Those 
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models have a limited damping and the current resistive value results from the total 

deformation and is not based on the resistance of the previous time step.  

The DEM model of the HP3 penetration provides information on the penetration 

resistance and the performance of the driving mechanism. The penetration 

resistance depends on the void ratio of the soil, the interparticle friction parameters, 

the stress level and the penetration rate. Whereas the performance of the driving 

mechanism depends on the resistance against the penetration and the shaft friction 

at rebound. The shaft friction is necessary to prevent the probe from a backwards 

motion.  

It was observed from the simulations that depending on the penetration rate 

different soil failure mechanisms appear. Either the penetrator begins to open a 

cavity by pushing the material sideways or the penetration strokes compact the soil 

beneath the penetrator, causing a punching in of the penetrator. The different 

penetration types can be identified by the penetration resistance profile. In the case 

of a cavity opening, the penetration occurs under a more or less constant resistant 

force, whereas a linear increasing resistant force with penetration indicates a 

compaction in front of the penetrator. The results of a simulation of 3 dynamic 

stroke cycles are shown in Figure 45. Each stroke cycle consists of a major stroke 

by the hammer mass at the beginning, followed by some minor strokes of the 

hammer mass and a stroke of the suppressor mass. The first strokes by the hammer 

mass are marked in the plots. The rebound after the strokes varies between the 

cycles, where in the third stroke cycle it can be seen that after the large rebound of 

the first stroke, the second stroke of the suppressor mass penetrates even more. 

This is possibly caused by a loosening of the material due to the large unloading. 

From the force displacement profile at the bottom of Figure 45 different 

penetration types can be observed. The third stroke increases linearly from 40 N 

up to a resistance of 110 N and indicates thus a structural compaction owing to this 

stroke. The second stroke instead penetrates at a more or less constant resistance 

of 60 N, which indicates a cavity opening in front of the tip.  
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Figure 45: Simulation results of 3 stroke cycles. The tip displacement at the top 

and the force displacement curve on the bottom.  

A snapshot of the particles’ displacements at the point of maximum penetration 

during the first hammer stroke is shown in Figure 46. The red coloured particles 

may exceed the displacement of 0.1 mm. It is obtained that the displacements in 

the soil propagate more horizontally than vertically over time. The largest 

displacements appear in the direction of the surface normal of the tip. It would be 

preferred to have less impact on the soil structure in front of the tip to avoid an 

increase of the tip resistance by compacted soil in this area. The induced stress by 

the first hammer stroke is illustrated in Figure 47 and Figure 48 for the vertical and 

the horizontal stress. For this purpose, a snapshot of the corresponding stress was 

taken before the hammer stroke appeared and is subtracted from the stress at the 

time step where the hammer stroke is acting. Figure 47 illustrates the induced 

vertical stress at the time step just after the impact of the hammer mass. It can be 

seen that the induced stress spreads from the tip conically into the ground. The 

vertical stress at the shaft is reduced instead. A similar plot of the horizontal 

induced stress at the time of the first hammer stroke is given in Figure 48. The 
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horizontal stress propagates laterally from the tip, whereas a reduction of the 

horizontal stress appears below the tip and at the cone shoulders. A validation of 

the horizontal stress distribution at the moment of the stroke was done with an 

axisymmetric FEM model of the penetration in PLAXIS, see Figure 49. In the 

FEM simulation a prescribed displacement of 1 mm was applied to the penetrator 

and the dynamic response of the soil was investigated. For the interface, a strength 

reduction factor of 0.8 was used. The used soil model was the Hardening Soil 

Model with small strain stiffness. The friction angle is 31° and the E50
ref stiffness 

is 10 MPa, whereas the un-/reloading stiffness is 30 MPa. A dry density of 

1500 kg/m3 with a void ratio of 0.7 was used. All other parameters were chosen 

based on experience. The values in Figure 49 range from a tensile stress of 2 kPa 

in blue to a compressive stress of -35 kPa in red. White coloured zones exceeded 

the colour range. The stress distribution from the FEM simulation confirms the 

results from the DEM simulation. A reduced horizontal stress in front of the tip 

and at the cone shoulders is obvious. The increased horizontal stress lateral from 

the cone tip is also present in the FEM simulation.  

 

Figure 46: The particles‘ displacements in m due to the first stroke of the 

hammer mass.  
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Figure 47: The induced vertical stress in Pa at the time of the first hammer 

stroke. The maximum values exceed the colour range.  

 

Figure 48: The induced horizontal stress in Pa at the time of the first hammer 

stroke. The maximum values exceed the colour range. 
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Figure 49: Effective radial stress in kPa from a FEM simulation in PLAXIS.  

The dynamic penetration was also investigated in different depth. For this purpose, 

the overburden pressure was adjusted to produce a stress level in the soil that 

corresponds to different depth. From the resistant force during the first hammer 

stroke in Figure 50 an increase of the resistance with depth is obvious. The 

resistance ranges from 100 N to about 220 N for 1 m of overburden to 4 m of 

overburden. Furthermore, an increase of the shaft friction during the rebound of 

the probe is observed. The shaft friction at rebound ranges from about 10 N to 

almost 50 N.  



72 4 The Penetration Model 

 

 

Figure 50: Resistant force due to the first hammer stroke in different depth.  

For the validation of the dynamic penetration simulation, the known penetration 

rates from lab tests at DLR and other simulations of the HP3 penetration were used 

for comparison. Similar simulations of the HP3 penetration were performed by 

Lichtenheldt et al. (2016) and revealed displacements of about 2 mm per stroke 

cycle in a depth of 1 m. The corresponding results in Figure 51 show the 

displacement profile from a DEM simulation compared to results from a one 

dimensional multi body simulation (MBS) and measurements from lab tests. In 

comparison, the second stroke cycle from the simulation results in Figure 45 

yielded a similar penetration of about 2 mm. In contrast, the first and the third 

stroke cycle penetrate only about 1 mm during a full loading cycle. The large 

rebounds after each stroke indicates that the simulation of the dynamic penetration 

has some inaccuracies that can be traced back to the elasticity in the contact 

models. All the elastic behaviour of the particle structure is a result of the 

elasticities in the contact models, since no other elastic behaviour is defined within 

the code.  
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Figure 51: Displacements of HP3 during a stroke cycle from a DEM 

simulation, a 1D multi body simulation (MBS) and from 

measurements of lab tests. The penetration was performed in 1 m 

depth. Lichtenheldt et al. (2016) 

The penetration rate per stroke cycle from the lab tests is determined as a mean 

value of a few penetration cycles. Owing to the fact that the penetration rate is 

determined by optical measurements of points on the trailing cable, the precision 

is too inaccurate to obtain the real penetration curve of each stroke cycle. The 

penetration rate from a full penetration of about 6000 stroke cycles is given in 

Figure 52. With the fact that a stroke cycle appears every 3.6 s, a mean value for a 

single stroke cycle can be determined. In the beginning of the measurements, HP3 

penetrates with a rate of about 2 mm per cycle, whereas in the depth between 3 to 

4 m the penetration rate decays. At a depth of 4 m, the penetration per cycle is 

reduced to a value of about 0.13 mm. The reason for the decay of the penetration 

performance is not clarified yet. It is known from lab tests in the 3 m sample that 

the penetration is not affected by approaching the bottom. Therefore, the tip 

resistance or the shaft friction must have changed somehow. A certain shaft 

friction is necessary for the hammering mechanism of HP3 to absorb the rear-

facing force of the suppressor mass. Thus, a reduction of the shaft friction may 

reduce the penetration rate. The reduction of the shaft friction in dynamic installed 

piles can appear and is known as friction fatigue. The phenomenon of friction 

fatigue is explained in more detail in chapter 5.5.  
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Figure 52: Measured penetration rate of HP3 plotted over time from DLR 

laboratories and penetration curves of constant penetration rates. A 

stroke cycle appears every 3.6 s.  

4.4.1 Plane strain model with prescribed displacements 

The plane strain model of a wall penetration is used to obtain the influence of the 

hammering action onto the soil deformation. Therefore, a wall with a profile of the 

probe penetrates into a 20 cm wide, 4 cm thick and 12 cm high particle domain. 

Periodic boundaries are used in the x-direction with a domain thickness of 4 cm. 

The periodic boundary inserts the particles that leave the domain at the opposite 

boundary. Thus, the horizontal stress in x-direction is the same at the boundaries 

and a plane strain condition is produced. The wall penetrates into the domain with 

a prescribed velocity. Therefore, the velocity profile of a stroke cycle was 

determined first by a dynamic simulation of the HP3 penetration. The velocity 

profile and the corresponding displacement of the probe can be seen in Figure 53. 

The movement of the wall in the horizontal direction is locked.  
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Figure 53: The vertical position of the penetrator from a 3D simulation of a 

hammer cycle at the top and the corresponding velocity at the 

bottom.  

For the preparation of the initial condition, the wall penetrates the first 5 cm with 

a constant velocity of 1 cm/s into the soil domain. After the insertion is done, the 

velocity profile of 10 dynamic stroke cycles is applied. The dynamic penetration 

phase causes about 3 cm of settlements. The soil deformations due to the dynamic 

cycles is observed. 

The plane strain model allows to reduce the soil volume and thus the particles’ size 

can be reduced. The model is no representation of the HP3 penetration but the soil 

deformations are comparable. Furthermore, relative comparisons between 

quasistatic and dynamic penetration can be drawn.  

The particles displacements in Figure 54 reveal that the particles are dragged 

downwards with the penetrator.  
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Figure 54: The particles displacements after a few stroke cycles.  

The comparison of the influence of a dynamic and a quasistatic penetration is given 

in Figure 55. Therefore, a model of a quasistatic penetration with a rate of 1 cm/s 

and a total penetration depth of 8 cm is used as a reference. In the end of the 

quasistatic penetration, the penetrator is kept in its final position for a time to get 

rid of time dependent effects.  

At the top of Figure 55, a checked pattern out of different coloured particles is used 

to obtain the volumetric deformations from 3 cm of penetration. Therefore, the 

particles are coloured with two different colours in the shape of a regular mesh at 

5 cm of penetration. The mesh gets distorted due to further penetration up to a 

depth of 8 cm. The lower level of the free surface and the more compacted mesh 

at the tip and the cone shoulder reveal a higher compaction of the soil due to the 

dynamic penetration than for the quasistatic one.  

The corresponding displacements of the particles can be seen in the centre of 

Figure 55. It shows up that the particles near the penetrator are displaced more in 

the case of the dynamic than in the quasistatic penetration. This displacements are 

restricted to particles close to the penetrator. The particles in far distance from the 

penetrator are displaced to the same extend for the dynamic and the quasistatic 

penetration. This is also an indication for a higher compaction due to the dynamic 

penetration. The dynamic oscillation of the penetrator leads to a drop of particles 



4 The Penetration Model 77 

 

from above, which means that the particles are not just pushed sideways but also 

dragged downwards.  

The Von Mises stress of the particles is shown at the bottom of Figure 55. The 

plots show the stress due to the initial filling phase and the complete penetration. 

It is obtained that the cyclic motion of the dynamic penetration reduces the stress 

near the penetrator. In the case of the quasistatic penetration, horizontal force 

chains are produced and clamp the penetrator. The reduced stress at the dynamic 

penetration can be feasible only with a concurrent compaction of the soil. This 

result confirms the assumption of the higher soil compaction at the dynamic 

penetration. The reduced horizontal stress results in a reduction of the shaft friction 

whereby the axial bearing capacity gets reduced due to the dynamic penetration. 

This was also found by investigations of the Deep Foundation Institute DFI (2015) 

on the bearing capacity of vibratory and impact driven piles. The focus of this 

investigations was on axially loaded piles, where the vibrated piles had about 80 % 

of the capacity of impact driven piles.  

The total resistance for the dynamic and constant driven wall is plotted in Figure 

56. The maximum resistance of the dynamic driven wall exceeds the resistance of 

the constant driven wall only slightly, if the first stroke at 0.05 m depth is 

neglected. The resistance during the second stroke by the suppressor mass is below 

the resistance of the constant driven probe. This is possibly caused due to the 

unloading of the first stroke that loosens the soil.  

The main difference in the dynamic driven case is that after each hammer stroke 

the wall moves a bit upwards and relieves the soil. As a result, the stress in front 

of the penetrator tip is reduced. Furthermore, due to the cyclic motion of the wall 

in the dynamic case, the material gets more sheared and thus more compacted near 

the wall.  
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Figure 55: The deformed soil domain at the top, the particles displacements in 

m at the centre and the Von Mises stress of the particles in Pa at the 

bottom.  
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Figure 56: The resistance of the dynamic and constant driven wall. The 

dynamic penetration begins at 0.05 m depth.  
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5 A Pile Drive Model implemented in 
Matlab 

The pile drive model in Matlab is developed to determine the influence of different 

tip and shaft resistance on the performance of the hammering mechanism. 

Therefore, the hammering mechanism is modelled by a multi-body system using 

spring-dashpot and collision contacts. The outer casing of the penetrator is 

subdivided in many elements to apply different shaft resistances over the length of 

the penetrator. In Figure 57 is a sketch of the penetrator model, where the collision 

contacts are defined between the hammer mass m13 and the tip mass m12 as well as 

between the suppressor mass m14 and an element of the penetrator’s shaft m8. The 

shaft elements, the tip and the rear end are connected by stiff springs representing 

the material stiffness of the penetrator. The soil model is a spring-dashpot 

connection between the penetrator elements and a fixed point, where the spring 

characteristics allows irreversible displacements as soon as a maximum resistance 

is reached.  

 

Figure 57: Sketch of the soil and the penetrator model 

The pile drive model is based on the work of Smith (1962). The difficulty for this 

way of simulation is the determination of the resistive force acting on the tip and 

the shaft of the penetrator during the hammering strokes. The determination of an 

approximated tip resistance has been presented in Poganski et al. (2016) and will 

be explained in the next chapter.  
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5.1 An analytical approach for the penetration 

resistance 

The penetration resistance can be divided in a tip resistance and a shaft friction. 

Both are acting against the penetration of the probe. The approach that is used for 

the estimation of a penetration resistance is the bearing capacity of foundations.  

The tip resistance can be calculated based on Terzaghi’s (1943) theory for a 

bearing capacity of a flat circular shallow foundation, where this approach is not 

valid for the deep penetration. Terzaghi’s equation is usually restricted to a 

maximum footing depth of 3 times the diameter of the foundation. This is due to 

the fact that in deeper foundation the complete ground heave will not occur. 

Instead, the soil will compact locally to accommodate the displaced material. 

Nevertheless, Terzaghi’s equation was used as a first approach for the computation 

of a tip resistance and a shaft friction. The assumptions that are made for the 

bearing capacity by Terzaghi are: 

 Dry soil 

 No inclination of the penetrator 

 Flat tip 

 Vertical penetration force 

 Horizontal surface 

 Horizontally layered soil 

 Infinite half space 

Under these restrictions the equation for the bearing capacity at the tip of the 

penetrator is: 

)2( cqoutip cNtNrNAR     (27) 

with the radius r and the cross-section A of the penetrator, the soil specific weight 

underneath the tip γu, the soil specific weight above the tip γo, the current depth t 

and the cohesion c of the soil. The bearing capacity factors Nγ, Nq and Nc can be 

determined considering the preceding assumptions as: 
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, where φ is the friction angle of the soil and sγ, sq and sc are shape factors of the 

foundation. The shape factors for a circular foundation and a centric origin of the 

force are given by: 
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The additional resistance caused by the shaft friction between soil and penetrator 

can be added to the bearing capacity at the tip to derive the entire bearing capacity 

acting on the penetrator.  

The shaft friction can be computed using the Coulomb’s law of friction by 

integrating the horizontal acting stress over the shaft area and multiply it with the 

coefficient of friction between the penetrator and the surrounding soil. Therefore, 

the horizontal stress needs to be known. A first assumption is that the horizontal 

stress is about the half of the vertical stress. This is based on the approximation for 

normally consolidated soils, where the ratio of horizontal stress σh to vertical stress 

σv can be determined by 
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with the internal friction angle φ. A value of 0.5 corresponds to a friction angle of 

30°. The vertical acting stress can be determined by the soil load at the depth t 

gtv    (36) 

with the soil bulk density ρ and the gravitational constant g. 

This approximation is not valid anymore during the dynamic penetration, due to 

the induced changes in stress by the penetrator, but it is valid for an undisturbed 

material at the beginning of the penetration process.  
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The resistance due to shaft friction Rshaft is given by the integration of the horizontal 

stress over the shaft area Ashaft times the interface friction coefficient µinter.  


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hterinshaft dAtR )(  (37) 

Since the shaft area is subdivided in many elements, the integration can be 

approximated by the sum over all shaft segments:  
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The determination of the real shaft friction force becomes difficult since the 

horizontal stress that acts on the penetrator is influenced by the dynamic load 

cycles. Experiments on monotonic and cyclic driven piles by Vogelsang et al. 

(2017) reveal a friction force at the shaft lower than the prediction from 

equation 37 supposing a medium dense packing with a dry density of 1440 kg/m3 

and an interface friction coefficient between pile and soil of 0.3.  

The penetration resistance for the pile drive model in Matlab increases linearly up 

to a defined maximum resistance at which plastic deformation occurs. The 

difference from this approach of a resistance force to a more sophisticated DEM 

model is shown in Figure 58. The more realistic resistance from the 3D DEM 

model increases slightly during penetration, where elastic and plastic deformation 

are produced at the same time. However, in the Matlab model elastic and plastic 

deformation are separated in time. The elastic part of the resistance in the Matlab 

model is necessary to achieve a stable simulation.  
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Figure 58: Force-Displacement curve over a stroke cycle. (Poganski et al. 

2016) 

From DEM simulation it was also observed that the resistance at the second stroke 

can be less than from the first stroke. This behaviour is not captured yet in the 

Matlab model, so that only a constant maximum resistance can be applied.  

5.2 Time Integration 

The time domain is integrated by an explicit Euler method: 

),( kkk xxfx    (39) 
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where xk denotes the displacement at the calculation step k and ΔT is the time 

increment. The time increment is defined by the highest eigenfrequency of the 

system and is 10 % of the critical time increment ΔTcrit: 
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5.3 Application 

The simple one dimensional pile drive model is mainly used for a fast computation 

of the penetration settlements at different tip and shaft resistances. Therefore, an 

arbitrary tip and shaft resistance can be applied to the penetrator. The simulation 

will determine the settlements per stroke at different penetration resistances. Thus, 

it will reveal the correlation between penetration rate and resistance.  

Furthermore, the influence of the ratio between shaft friction and tip resistances is 

investigated. Therefore, the value of tip resistance and shaft friction is determined 

by previous DEM simulations or approximated by values of penetration resistance 

from cone penetration tests. In experiments by Vogelsang et al. (2017) it can be 

seen that the maximum resistive force at cyclic penetration is close to the resistance 

during a monotonic penetration as long as no friction fatigue occurs. The results 

of the dynamic penetration simulation in chapter 4 reveal that the maximum 

penetration resistance at cyclic loading depends also on the amount of penetration 

per stroke. It is observed that the first stroke of the hammer mass causes larger 

settlements and results in a larger resistance than the second stroke of the 

suppressor mass.  

5.4 Simulation results 

The numerical penetration model in Matlab provides information on the 

movements of the masses of the hammering mechanism and the penetrating probe. 

Thus, the performance of the driving mechanism can be evaluated for different 

resistances. The determination of the penetration resistance itself is more difficult 

and needs more sophisticated models, such as the DEM model for instance.  

The motions of the hammer, suppressor (support) and probe during one stroke 

cycle can be seen in Figure 59. The resistance force was determined by DEM 

simulations in advance. The acceleration of the hammer mass and the reaction onto 

the suppressor mass at the release of the force springs can be observed at the 

beginning. After the hammer mass hits the tip, a displacement of the probe of 2 mm 

occurs. Then, the hammer mass moves upwards and oscillates with the suppressor 

mass. A second stroke due to the suppressor mass is produced after 70 ms. The 

total penetration rate of the probe due to one stroke cycle is about 3 mm.  
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Figure 59: The relative movements of the tip, the hammer and the suppressor 

(support) mass from the Matlab model. (Poganski et al. 2016) 

The energy that is transformed from the hammering mechanism into the movement 

of the probe during a stroke cycle is shown in Figure 60. The second stroke 

accounts for about 20 to 40 % of the total energy, so that the major contribution to 

the penetration is given by the first stroke of the hammer mass. The plot shows 

also the kinetic and potential part of the total energy. The potential energy of the 

springs is first transformed into a kinetic energy of the masses. Then at each stroke, 

the kinetic energy of a mass is transformed into a movement of the penetrator. In 

the end, there is a bit of energy remaining in the hammering system due to the 

preloading of the suppressor mass in its initial position.  
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Figure 60: The kinetic energy of the support mass and the hammer mass as 

well as the potential energy of the break spring and the force springs 

over a full stroke cycle. (Poganski et al. 2016) 

The influence of the ratio between shaft friction and tip friction was investigated 

by means of the Matlab model. Therefore, a total shaft friction of 1 to 10 % of the 

tip resistance were applied, where tip resistance of 80 N, 100 N and 120 N were 

investigated. These resistive forces were the result of cone penetration tests down 

to 1 m using a DEM model. From Figure 61 it can be obtained that the lower tip 

resistance results in a deeper penetration for the first 20 ms but causes also a larger 

rebound due to the lower proportional shaft friction. After the rebound happened, 

the difference in the total penetration due to the first stroke is only minimal. The 

excessive rebound due to a reduction of the relative shaft friction is clearly 

observed for all different tip resistances. This rebound opens a cavity in front of 

the tip that could collapse and reduce the penetration performance. In the Matlab 

model, the cavity stays open and the penetration performance is not impaired. 

Hence, if large rebounds occur, the Matlab model cannot represent the real soil 

behaviour and results in a too large penetration. The soil deformation and the tip 

displacement are given in Figure 62. It appears that the soil only deforms in the 

direction of the penetration, whereas at the rebound of the probe the soil is not 

affected due to unloading or collapse of the cavity. Thus, the second stroke 

generates a deep penetration, without any tip resistance in the beginning until the 

tip of the probe strikes the soil.  
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Figure 61: The penetration of HP3 due to the first stroke of the hammer mass 

for different tip resistance and shaft friction. The shaft friction 

ranges from 0.1 to 0.01 times the tip resistance.  

 

Figure 62: The displacement of the probe tip and the deformation of the soil in 

front of the tip for a tip resistance of 80 N and a shaft friction of 

0.8 N.  
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The lower gravity on Mars will for sure affect the performance of the driving 

mechanism of HP3. Therefore, a simulation of the hammer stroke in Earth, Mars 

and zero gravity environment is performed for different tip resistances. A tip 

resistance of 120 N with a shaft friction of 20 N as well as a tip resistance of 80 N 

with a shaft friction of 15 N are investigated. In Figure 63 are the displacements 

of the penetrator for different gravitational environments. The lower gravity 

increases the rebound effect due to the suppressor mass moving upwards. The 

difference in the penetration rate is not dramatic but becomes more pronounced 

for lower stress levels.  

 

Figure 63: Penetration due to the first stroke of the hammer mass for different 

gravitational environments and resistances. Earth gravity: 9.81 m/s2, 

Mars gravity: 3.71 m/s2, Zero gravity: 0.1 m/s2. 

5.5 Friction fatigue and the influence on the HP3 

performance 

In geotechnical applications, the installation procedure of piles affects the soil 

condition in the vicinity of the pile. Hence, also the bearing capacity is influenced 

by the installation method. From experimental investigations on displacement 

piles in sand by White et al. (2004), the impact of the installation methods on the 

horizontal stress was evaluated. For this purpose, the horizontal stress on a driven 

pile was measured by total pressure cells in several distances to the tip. It was 

clearly observed that a two-way cyclic loading reduced the horizontal acting stress 

in comparison to jacked or monotonic installed piles. The reduction of the 
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horizontal stress was determined to be maximum at a distance of 3 diameters from 

the tip. Behind that point the horizontal acting stress is almost constant. This 

reduction of the horizontal stress due to a dynamic penetration leads to a reduced 

shaft friction and is called “friction fatigue” in literature. This phenomenon appears 

only under cyclic loading and is not present in monotonic installed piles. White et 

al. (2004) investigated the appearance of friction fatigue and the dependency on 

the number of loading cycles for different installation types.  

Further studies on friction fatigue were carried out by Basu et al. (2014). A one-

dimensional finite element model was applied to understand the basic mechanisms 

that causes friction fatigue at cyclic loaded piles. For this purpose, the pile 

installation was simplified to a combination of a cylindrical cavity expansion 

followed by vertical shearing cycles, see Figure 64. Therefore, only the horizontal 

stress acting on the pile shaft was obtained. The complete load history of a dynamic 

penetration can be divided in 3 stages, regarding to a soil element in front of the 

tip. The soil element is first subjected to a cavity expansion to create a space for 

the penetrator. This stage is accompanied by a shearing of the soil element due to 

the interface friction. In the second stage, an unloading of the penetrator causes a 

shear unloading of the soil element and for the two-way cyclic loading even a shear 

load reversal. In the last stage the soil element is subjected to further shearing due 

to more loading cycles. As a result of the shearing reversals the soil is compacted 

and the horizontal stress gets reduced.  

 

Figure 64: Simplified sketch of a dynamic pile installation 

Owing to this load history, the horizontal stress near the tip is increased due to the 

cavity expansion and decays along the shaft with distance to the tip.  

The reduction of the shaft friction may affect the performance of the HP3 

penetration during its installation. It can be obtained from Figure 61 that a reduced 

shaft friction leads to a larger rebound after the first hammer stroke. This back 

motion is imposed by the upwards movement of the suppressor mass. Thus, 



5 A Pile Drive Model implemented in Matlab 91 

 

friction fatigue could appear and the performance of the driving mechanism may 

decay at a certain depth, when the ratio of tip resistance to shaft friction becomes 

critical.  
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6 Concluding remarks 

In this thesis, the discrete element method was investigated with regard to its 

ability for the simulation of dynamic and quasistatic penetration of a probe into a 

dry granular material. The simulation models shall help to understand the 

penetration behaviour of the Heat Flow and Physical Properties Probe (HP3) from 

DLR. HP3 is a thermal probe that will penetrate 3 to 5 m into Martian subsurface. 

The instrument will be on board of the InSight lander in 2018. The numerical 

models enable to have a look inside the soil and allows to back-calculate physical 

properties of the soil from the penetration rate.  

The calibration of a sandy material called Schwarzl UK4 was done to derive a first 

set of parameters as well as to validate the numerical method for the application. 

Three different tests were evaluated for the calibration procedure. An angle of 

repose experiment was used to derive a range of parameters for the interparticle 

friction. The simulation results were barely affected by the particles’ stiffness and 

thus make it possible to determine the coefficient of interparticle friction and 

rolling resistance without dependency on other parameters. The angle of repose 

was about 32 to 33 degrees.  

A triaxial shear test was performed for three different stress levels. The simulation 

results were analysed with respect to theoretical assumptions and compared to lab 

experiments. The critical state friction angle from the simulation results was 

determined to be about 32 degree, which is in good agreement with the slope from 

the angle of repose experiment. However, the comparison to the lab results showed 

some deviations. The lab results for a 100 kPa confining stress were in good 

agreement to the simulations, whereas the results for a 150 kPa confining stress 

had less strength in the lab test and the results for a 200 kPa confining stress 

showed a reduced stiffness.  

Furthermore, an oedometer test was used to determine the particles’ stiffness. The 

vertical stress of a vertically compacted sample was measured and compared. The 

load path contains a primary loading, an unloading and a reloading of the soil 

sample. The primary loading behaviour is well represented by the simulations, 

whereas the unloading of the sample showed too large deformations. The highly 

elastic behaviour at unloading is traced back to the frictional contact models in the 

DEM. Hence, the frictional contact models were investigated and yielded modified 

models that were implemented and tested. Single particle models were investigated 

to obtain a more realistic rolling behaviour of an irregular shaped particle. The 

enhanced contact models were consistently working well in 2D models, whereas 

in the three-dimensional case the contact models appear to have discontinuities. 

Hence, only a slightly modified contact model was used for the penetration 

simulations, where the problem of the highly elastic behaviour could not be solved.  
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The elastic behaviour of the contact models rise to problems as soon as an 

unloading of small interparticular deformations appears. This is the case for the 

oedometer test and the dynamic cone penetration. In the triaxial test and the 

quasistatic cone penetration the interparticular deformations are large enough that 

particles loose contact and the impact of the elastic behaviour is almost negligible.  

A simulation model of the HP3 penetration was developed. The model consists of 

the soil domain and the hammering mechanism. In the soil domain, the resistance 

force on the probe is measured and applied to the hammering mechanism. In the 

model of the hammering mechanism, the driving velocity due to the hammering 

impacts is determined considering the soil resistance from the soil model. The 

driving velocity is then applied to the probe in the soil domain. This coupling 

allows for a real simulation of the penetration, where the driving mechanism 

depends on the soil resistance and the soil resistance depends on the penetration 

due to the driving mechanism. The penetration results of the fully coupled DEM 

model were compared to measurements and similar simulations of HP3 from 

literature.  

Furthermore, quasistatic cone penetration tests were simulated and evaluated with 

the DEM. A comparison of dynamic and quasistatic driven probes was done with 

respect to the soil deformation, stress distribution and penetration resistance. 

Further CPTs with different penetration rates and in different gravitational 

environments were carried out. The quasistatic cone penetration was also used to 

identify the influence of the particle scale onto the penetration resistance.  

A one-dimensional model of the dynamic simulation of HP3 was implemented in 

Matlab to receive fast results for specific resistance values. The model focuses on 

the hammering mechanism and the obtained driving force, whereas the soil 

response is not modelled. Therefore, the soil resistance has to be defined. The soil 

resistance can be estimated from cone penetration tests (CPTs) or from analytical 

solutions. An analytical solution for a shallow penetration under certain 

assumptions was derived in chapter 5.1.  

The Discrete Element Method is suitable for geotechnical applications as long as 

the investigated case can be modelled in a small scale test. The main limitation of 

the method is the amount of particles that can be used. Furthermore, the particle 

size should not be chosen too small in order to use a feasible time step size. For 

the selection of a suitable DEM code, the focus should be on the implemented 

contact models. An implicit DEM code may also be a proper solution, since in this 

case the contact models for sliding and rolling resistance could be realised by step 

functions.  

Another solution for the simulation of CPTs could be the combination of DEM and 

FEM. The large deformations near the penetrator could be modelled by the discrete 

particles whereas the surrounding soil volume is modelled by finite elements. 



94 6 Concluding remarks 

 

Therefore, discrete particles can be fixed to the element nodes in the transition area 

to couple both methods. Moreover, FEM based methods using particle-in-cell or 

remeshing techniques still remain a good possibility for the simulation of large 

deformations. Therefore, the work of Galavi et al. (2017) may give a solution for 

the simulation of a dynamic penetration using the MPM.  
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8 Appendix 

8.1 Simulation model structure 

The structure of the different calibration and penetration models is kept very 

similar. The complete simulation, combining the filling process, consolidation and 

the execution of the test, is loaded in the in.run file. For some models, e.g. the 

oedometer test, the in.run file defines already variables for the simulation to avoid 

changes in the substructure files and to allow a quick adjustment of the main 

parameters. In general, the important parameters that specify the soil behaviour are 

implemented in the in.variables file, where parameters that are defined already in 

the in.run file are commented out. Furthermore, the parameters that define the 

geometry of the boundaries, the particle volume fraction for insertion and the scale 

size of the particles are set within the in.variables file. There are also a few 

parameters defined in the in.variables file that are just important for special models 

and sets the load steps for the oedometer simulation or the parameters for the 

control unit of the stress controlled walls. The stress controlled walls are 

implemented by the fix mesh/surface/stress/servo command and requires a set 

parameters for the PID controller. Those parameters are the proportional, integral 

and differential constant for the PID controller.  

All simulations begin with a file that generates the particle filling. Therefore, a 

particle radius expansion method is used to generate a homogeneous structure, see 

chapter 2.8. The file that models the filling process is named as ‘in.fill’ or for some 

cases with extension ‘in.fill_...’. The in.fill file generates a particle bedding, which 

is different for each model due to differences in the geometry of the boundaries. A 

restart file is generated at the end of the in.fill file to allow for a restart of the 

simulation from the current time step. The restart file is then loaded for the main 

simulation of the test. In some cases a separate consolidation file is used between 

the filling and the execution of the test, where usually an appropriate consolidation 

is already considered in the in.fill file.  

The generation of the particle size distribution is done within the 

in.verteilunglinear file. The particle size distribution is created by 3 radii sizes with 

corresponding mass fractions. In between those 3 radii sizes there are further radii 

and mass fractions defined on a linear interpolation to receive a smooth 

distribution. For simulations with more than one particle size distribution, the 

in.verteilunglineardevide file is used. This is necessary for simulations with 

different scales of the particle size distribution.  

The in.getdensity file can be used to determine the current bulk density of the soil 

skeleton by means of the Voronoi tesselation. The file is suited for the geometry 

of the 3D cone penetration model. The in.getdensity requires the restart file of the 
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filling and computes the density after the filling process. The value of the density 

is stored in a text file called info.txt.  

The important output files for the different simulation models are 

 Dynamic Cone Penetration: outputcheck.txt, molepos.txt 

 Quasistatic Cone Penetration: outputcheck.txt 

 Angle of Repose Test: results.txt 

 Oedometer Test: results/results_oed... 

 Triaxial Shear Test: results.txt 

The content of the output files is different for the most models, therefore a list of 

the content can be found in Table 4.  

Table 4: Output files and the corresponding content in detail 

 Dynamic 

Cone 

Penetration: 

molepos.txt 

Dynamic/Qua

sistatic Cone 

Penetration: 

outputcheck.t

xt 

Angle of 

Repose Test: 

results.txt 

Oedom

eter Test: 

results/

results_oed... 

Triaxia

l Shear Test: 

results.

txt 

1 Time Step Time Step Time Step Time Step Time Step 

2 Tip 

Displacement 

in x [m] 

Penetration 

Resistance in 

x [N] 

Interparticle 

friction 

Stress on 

Stamp [Pa] 

Vertical Force 

at Bottom [N] 

3 Tip 

Displacement 

in y [m] 

Penetration 

Resistance in 

y [N] 

Interparticle 

rolling 

resistance 

Relative 

Strain of 

Stamp [%] 

Cross 

Sectional 

Area [m2] 

4 Tip 

Displacement 

in z [m] 

Penetration 

Resistance in 

z [N] 

Mean Slope 

Value 

 Total Position 

of Bottom 

Wall [m] 

5 Penetration 

Resistance in 

x [N] 

Penetration 

Velocity in x 

[m/s] 

Slope Value 

at Top 

 Horizontal 

Confining 

stress [Pa] 

6 Penetration 

Resistance in 

y [N] 

Penetration 

Velocity in y 

[m/s] 

Slope Value 

at Centre 

 Total Volume 

[m3] 
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7 Penetration 

Resistance in 

z [N] 

Penetration 

Velocity in z 

[m/s] 

Slope Value 

at Bottom 

 Relative 

Axial Strain 

[%] 

8 Incremental 

Time Step 

Incremental 

Time Step 

  Area of Wall 

A [m3] 

9 Incremental 

Hammer 

Displacement 

[m] 

Total Position 

of Penetrator 

in x [m] 

  Area of Wall 

C [m3] 

10 Incremental 

Suppressor 

Displacement 

[m] 

Total Position 

of Penetrator 

in y [m] 

   

11 Incremental 

Penetrator 

Displacement 

[m] 

Total Position 

of Penetrator 

in z [m] 

   

8.2 Modified rolling model sbjp 

#The SBJP model was mainly used for the simulation of HP3 

#ifdef ROLLING_MODEL 

ROLLING_MODEL(ROLLING_SBJP,sbjp,5) 

#else 

#ifndef ROLLING_MODEL_SBJP_H_ 

#define ROLLING_MODEL_SBJP_H_ 

#include "contact_models.h" 

#include <algorithm> 

#include "math.h" 

#include "domain.h" 

#include "math_extra_liggghts.h" 

namespace LIGGGHTS { 
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namespace ContactModels 

{ 

  using namespace LAMMPS_NS; 

  template<> 

  class RollingModel<ROLLING_SBJP> : protected Pointers 

  { 

  public: 

    static const int MASK = CM_CONNECT_TO_PROPERTIES | 

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE; 

    RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup,class 

ContactModelBase *) : 

        Pointers(lmp), coeffRollFrict(NULL) 

    { 

      history_offset = hsetup->add_history_value("rollanglex", "1"); 

      hsetup->add_history_value("rollangley", "1"); 

      hsetup->add_history_value("rollanglez", "1"); 

      hsetup->add_history_value("roll_flag", "0"); 

      hsetup->add_history_value("T_rollangle_x", "1"); 

      hsetup->add_history_value("T_rollangle_y", "1"); 

      hsetup->add_history_value("T_rollangle_z", "1"); 

      hsetup->add_history_value("roll_yield_flag", "0"); 

      hsetup->add_history_value("twist_yield_flag", "0"); 

    } 

    void registerSettings(Settings&) {} 

    void connectToProperties(PropertyRegistry & registry) { 

      registry.registerProperty("coeffRollFrict", 

&MODEL_PARAMS::createCoeffRollFrict); 
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      registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model sbjp"); 

      registry.registerProperty("coeffFrict", 

&MODEL_PARAMS::createCoeffFrict); 

      registry.connect("coeffFrict", coeffFrict,"rolling_model sbjp"); 

      // error checks on coarsegraining 

      if(force->cg_active()) 

        error->cg(FLERR,"rolling model sbjp"); 

    } 

    void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, 

ForceData & j_forces) 

    { 

      double 

r_torque[3],T_torque[3],r_coef,wr_n_i[3],wr_n_j[3],wr_t_i[3],wr_t_j[3]; 

      vectorZeroize3D(r_torque); 

      vectorZeroize3D(T_torque); 

      if(sidata.contact_flags) *sidata.contact_flags |= 

CONTACT_ROLLING_MODEL; 

      const double radi = sidata.radi; 

      const double radj = sidata.radj; 

      double reff=sidata.is_wall ? sidata.radi : (radi*radj/(radi+radj)); 

#ifdef SUPERQUADRIC_ACTIVE_FLAG 

      if(sidata.is_non_spherical) 

        reff = MathExtraLiggghtsSuperquadric::get_effective_radius(sidata); 

#endif 

      if(sidata.is_wall) { 

        const double wr1 = sidata.wr1; 

        const double wr2 = sidata.wr2; 
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        const double wr3 = sidata.wr3; 

        const double radius = sidata.radi; 

        double r_inertia; 

        if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*radius*radius; 

        else  r_inertia = 1.4*sidata.mi*radius*radius; 

        calcRollTorque(r_torque,T_torque,sidata,reff,wr1,wr2,wr3,r_inertia,r_coef); 

/*         

        const double wr_dot_delta_i = sidata.en[0]*wr1 + sidata.en[1]*wr2 + 

sidata.en[2]*wr3; //projection 

  vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i); 

  wr_t_i[0]=wr1 -wr_n_i[0]; 

  wr_t_i[1]=wr2 -wr_n_i[1]; 

  wr_t_i[2]=wr3 -wr_n_i[2]; 

  vectorCopy3D(wr_n_i, wr_n_j); 

  vectorCopy3D(wr_t_i, wr_t_j);*/ 

      } else { 

        double wr_roll[3]; 

        const int i = sidata.i; 

        const int j = sidata.j; 

        const double * const * const omega = atom->omega; 

        const double r_inertia_red_i = sidata.mi*radi*radi; 

        const double r_inertia_red_j = sidata.mj*radj*radj; 

        double r_inertia; 

        if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i * 

r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j); 

        else  r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + 

r_inertia_red_j); 
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        // relative rotational velocity 

        vectorSubtract3D(omega[i],omega[j],wr_roll); 

calcRollTorque(r_torque,T_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_i

nertia,r_coef); 

/* 

  const double wr_dot_delta_i = vectorDot3D(omega[i],sidata.en); 

//projection 

  vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i); 

  vectorSubtract3D(omega[i],wr_n_i, wr_t_i); 

  const double wr_dot_delta_j = vectorDot3D(omega[j],sidata.en); 

//projection 

  vectorScalarMult3D(sidata.en, wr_dot_delta_j, wr_n_j); 

  vectorSubtract3D(omega[j],wr_n_j, wr_t_j);*/ 

  /* 

        const double T_transmit=0.6; 

   if(vectorMag3D(omega[i])<vectorMag3D(omega[j])){ 

      i_forces.delta_torque[0] -= 

T_transmit*(r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]); 

      i_forces.delta_torque[1] -= 

T_transmit*(r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]); 

      i_forces.delta_torque[2] -= 

T_transmit*(r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]); 

      j_forces.delta_torque[0] += r_torque[0]+T_torque[0];//+r_coef*wr_t_j[0]; 

      j_forces.delta_torque[1] += r_torque[1]+T_torque[1];//+r_coef*wr_t_j[1]; 

      j_forces.delta_torque[2] += r_torque[2]+T_torque[2];//+r_coef*wr_t_j[2]; 

  }else{ 

   i_forces.delta_torque[0] -= 

(r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]); 
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   i_forces.delta_torque[1] -= 

(r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]); 

      i_forces.delta_torque[2] -= (r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]); 

      j_forces.delta_torque[0] += 

T_transmit*(r_torque[0]+T_torque[0]);//+r_coef*wr_t_j[0]; 

      j_forces.delta_torque[1] += 

T_transmit*(r_torque[1]+T_torque[1]);//+r_coef*wr_t_j[1]; 

      j_forces.delta_torque[2] += 

T_transmit*(r_torque[2]+T_torque[2]);//+r_coef*wr_t_j[2]; 

  }*/ 

      } 

      i_forces.delta_torque[0] -= (r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]); 

      i_forces.delta_torque[1] -= (r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]); 

      i_forces.delta_torque[2] -= (r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]); 

      j_forces.delta_torque[0] += r_torque[0]+T_torque[0];//+r_coef*wr_t_j[0]; 

      j_forces.delta_torque[1] += r_torque[1]+T_torque[1];//+r_coef*wr_t_j[1]; 

      j_forces.delta_torque[2] += r_torque[2]+T_torque[2];//+r_coef*wr_t_j[2]; 

    } 

    void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&) 

    { 

      if(scdata.contact_flags) *scdata.contact_flags &= 

~CONTACT_ROLLING_MODEL; 

      double * const c_history = &scdata.contact_history[history_offset]; 

      c_history[0] = 0.0; // this is the r_torque_old 

      c_history[1] = 0.0; // this is the r_torque_old 

      c_history[2] = 0.0; // this is the r_torque_old 

      c_history[3] = rand() % 101; //roll_flag [0, 1] 
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      c_history[4] = 0.0; // this is the T_torque_old 

      c_history[5] = 0.0; // this is the T_torque_old 

      c_history[6] = 0.0; // this is the T_torque_old 

      c_history[7] = 0; //total angle shear 

      c_history[8] = 0;//0.0; //k rotational 

    } 

    void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

    void endPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

  private: 

    double ** coeffRollFrict; 

    double ** coeffFrict; 

    int history_offset; 

    inline void calcRollTorque(double (&r_torque)[3],double (&T_torque)[3],const 

SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double wr3, 

double r_inertia, double (&r_coef)) { 

      double wr_n[3],wr_t[3]; 

      const double enx = sidata.en[0]; 

      const double eny = sidata.en[1]; 

      const double enz = sidata.en[2]; 

      const double dt = update->dt; 

      double * const c_history = &sidata.contact_history[history_offset]; // requires 

Style::TANGENTIAL == TANGENTIAL_HISTORY 

      const double rmu = coeffRollFrict[sidata.itype][sidata.jtype]; 

      const double xmu = coeffFrict[sidata.itype][sidata.jtype]; 

      // remove normal (torsion) part of relative rotation 

      // use only tangential parts for rolling torque 

      const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz; 



8 Appendix 109 

 

      wr_n[0] = enx * wr_dot_delta; 

      wr_n[1] = eny * wr_dot_delta; 

      wr_n[2] = enz * wr_dot_delta; 

      wr_t[0] = wr1 - wr_n[0]; 

      wr_t[1] = wr2 - wr_n[1]; 

      wr_t[2] = wr3 - wr_n[2]; 

      // spring (reff depends on wall-particle or particle-particle contact) 

      const double kr = sidata.kt*reff*reff;//sidata.deltan;//*reff;//sqrt(reff);  

     //<<<<<<<<<<<------------------EDIT 

      //r_coef = 0.0; 

      double dr_angle[3];//dr_torque[3]; 

      vectorScalarMult3D(wr_t,dt,dr_angle); 

   //   double dr_angle_mag = vectorMag3D(dr_angle); 

      const double quad_oldrollmag = 

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]); 

      c_history[0] += dr_angle[0]; 

      c_history[1] += dr_angle[1]; 

      c_history[2] += dr_angle[2]; 

  /* 

  const double quad_rollmag = 

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]); 

      if(c_history[7]==1 && quad_oldrollmag<quad_rollmag){   

  const double qxfactor = 1;//quad_oldrollmag/quad_rollmag; 

  c_history[0] *= qxfactor; 

  c_history[1] *= qxfactor; 
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  c_history[2] *= qxfactor; 

  c_history[7] = 0; 

  }else if(c_history[7]==3 && quad_oldrollmag>quad_rollmag){ 

  c_history[0] = 0; 

  c_history[1] = 0; 

  c_history[2] = 0; 

  c_history[7] = 0; 

  }*/ 

   

   r_torque[0] = kr*c_history[0]; 

      r_torque[1] = kr*c_history[1]; 

      r_torque[2] = kr*c_history[2]; 

      // limit max. torque 

      const double r_torque_mag = vectorMag3D(r_torque); 

      const double r_torque_max = fabs(sidata.Fn)*reff*rmu;// 

      if(r_torque_mag > r_torque_max) 

      { 

        if(r_torque_mag != 0.0){ 

        const double factor = r_torque_max / r_torque_mag; 

        r_torque[0] *= factor; 

        r_torque[1] *= factor; 

        r_torque[2] *= factor; 

        // save rolling torque due to spring 

        c_history[0] = r_torque[0]/kr; 

        c_history[1] = r_torque[1]/kr; 
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        c_history[2] = r_torque[2]/kr; 

        /* 

        if(c_history[7] == 2){ 

   c_history[7] = 3; 

  }else if (c_history[7] == 0){ 

   c_history[7] = 2; 

  }*/ 

  }else{r_torque[0]=r_torque[1]=r_torque[2]=0.0;} 

      } else { 

        // dashpot 

        r_coef = 2.0*sqrt(r_inertia*kr); 

        r_torque[0] += r_coef*wr_t[0]; 

        r_torque[1] += r_coef*wr_t[1]; 

        r_torque[2] += r_coef*wr_t[2]; 

        const double c_r_torque_mag = vectorMag3D(r_torque); 

        if(c_r_torque_mag > r_torque_max && c_r_torque_mag!=0) 

        { 

   const double factorial = r_torque_max/c_r_torque_mag; 

   vectorScalarMult3D(r_torque, factorial); 

   c_history[7]=1; 

  } 

      } 

      //=======================================TORSIONAL PART 

   double r_coef_twist; 

   //double iterm = 1.0-sidata.deltan/(2*reff); 
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   const double T_torque_max = 

fabs(sidata.Fn)*xmu*0.65*reff*rmu;//sqrt(1.0-iterm*iterm); 

      const double krT = sidata.kt*reff*reff; 

      double dr_torqueT[3]; 

   double dt_angle[3]; 

      vectorScalarMult3D(wr_n,dt,dt_angle); 

  const double quad_oldtwistmag = 

sqrt(c_history[4]*c_history[4]+c_history[5]*c_history[5]+c_history[6]*c_history

[6]); 

      c_history[4] += dt_angle[0]; 

      c_history[5] += dt_angle[1]; 

      c_history[6] += dt_angle[2]; 

  /* 

  const double quad_twistmag = 

sqrt(c_history[4]*c_history[4]+c_history[5]*c_history[5]+c_history[6]*c_history

[6]); 

      if(c_history[8]==1 && quad_oldtwistmag<quad_twistmag){   

  const double qqfactor = 1;//quad_oldtwistmag/quad_twistmag; 

  c_history[4] *= qqfactor; 

  c_history[5] *= qqfactor; 

  c_history[6] *= qqfactor; 

  c_history[8]=0; 

  }else if(c_history[8]==3 && quad_oldtwistmag>quad_twistmag){ 

  c_history[4] = 0; 

  c_history[5] = 0; 

  c_history[6] = 0; 

  c_history[8]=0; 
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  }*/ 

   T_torque[0] = krT*c_history[4]; 

      T_torque[1] = krT*c_history[5]; 

      T_torque[2] = krT*c_history[6]; 

      const double T_torque_mag = vectorMag3D(T_torque); 

      if(T_torque_mag > T_torque_max) 

      { 

  if(T_torque_mag != 0.0){ 

        const double Tfactor = T_torque_max / T_torque_mag; 

        T_torque[0] *= Tfactor; 

        T_torque[1] *= Tfactor; 

        T_torque[2] *= Tfactor; 

        c_history[4] = T_torque[0]/krT; 

        c_history[5] = T_torque[1]/krT; 

        c_history[6] = T_torque[2]/krT; 

        /* 

        if(c_history[8] == 2){ 

   c_history[8] = 3; 

  }else if (c_history[8] == 0){ 

   c_history[8] = 2; 

  } 

  */ 

  }else{T_torque[0]=T_torque[1]=T_torque[2]=0.0;} 

        r_coef_twist=0.0; 

 }else{ 
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  r_coef_twist=0.0; 

  if(T_torque_max!=0){ 

        r_coef_twist = 0.3* 2.0 * sqrt(r_inertia*krT); 

  } 

 } 

    T_torque[0] += r_coef_twist*wr_n[0]; 

        T_torque[1] += r_coef_twist*wr_n[1]; 

        T_torque[2] += r_coef_twist*wr_n[2]; 

     //=======================================end of torsional part 

        double c_T_torque_mag = vectorMag3D(T_torque); 

        if(c_T_torque_mag > T_torque_max && c_T_torque_mag!=0) 

        { 

   double factorialT = T_torque_max/c_T_torque_mag; 

   vectorScalarMult3D(T_torque, factorialT); 

   c_history[8]=1; 

  } 

    } 

  }; 

} 

} 

#endif // ROLLING_MODEL_SBJP_H_ 

#endif 

8.3 Modified rolling model stone2 

#ifdef ROLLING_MODEL 

ROLLING_MODEL(ROLLING_STONE2,stone2,6) 
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#else 

#ifndef ROLLING_MODEL_STONE2_H_ 

#define ROLLING_MODEL_STONE2_H_ 

#include "contact_models.h" 

#include <algorithm> 

#include "math.h" 

#include "domain.h" 

#include "math_extra_liggghts.h" 

namespace LIGGGHTS { 

namespace ContactModels 

{ 

  using namespace LAMMPS_NS; 

  template<> 

  class RollingModel<ROLLING_STONE2> : protected Pointers 

  { 

  public: 

    static const int MASK = CM_CONNECT_TO_PROPERTIES | 

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE; 

    RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup, class 

ContactModelBase *) : Pointers(lmp), coeffRollFrict(NULL), coeffFrict(NULL), 

treach_flag(false)//, Ref_T(0.0), kr_O(0.0) 

    { 

      history_offset = hsetup->add_history_value("r_torquex_old", "1"); 

      hsetup->add_history_value("r_torquey_old", "1"); 

      hsetup->add_history_value("r_torquez_old", "1"); 

      hsetup->add_history_value("the_flag", "1"); 

      hsetup->add_history_value("kr", "1"); 
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      hsetup->add_history_value("kr_O", "1"); 

      hsetup->add_history_value("firsttouch","1"); 

      hsetup->add_history_value("kt", "1"); 

      hsetup->add_history_value("r_torquey_direction", "1"); 

      hsetup->add_history_value("r_torquez_direction", "1"); 

      hsetup->add_history_value("transmit_torque_i", "1"); 

      hsetup->add_history_value("transmit_torque_j", "1"); 

      hsetup->add_history_value("T_torquex_old", "1"); 

      hsetup->add_history_value("T_torquey_old", "1"); 

      hsetup->add_history_value("T_torquez_old", "1"); 

    } 

    void registerSettings(Settings&) {} 

    void connectToProperties(PropertyRegistry & registry) { 

      registry.registerProperty("coeffRollFrict", 

&MODEL_PARAMS::createCoeffRollFrict); 

      registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model stone2"); 

      registry.registerProperty("coeffFrict", 

&MODEL_PARAMS::createCoeffFrict); 

      registry.connect("coeffFrict", coeffFrict,"tangential_model history"); 

      // error checks on coarsegraining 

      if(force->cg_active()) 

        error->cg(FLERR,"rolling model stone2"); 

    } 

    void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, 

ForceData & j_forces) 

    { 
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      double r_torque[3],T_torque[3], transmittingratio_i, transmittingratio_j, 

r_coef,r_coef_twist,wr_n_i[3],wr_n_j[3],wr_t_i[3],wr_t_j[3]; 

//tipreach_flag=false; 

      vectorZeroize3D(r_torque); 

      vectorZeroize3D(T_torque); 

      if(sidata.contact_flags) *sidata.contact_flags |= 

CONTACT_ROLLING_MODEL; 

      #ifdef SUPERQUADRIC_ACTIVE_FLAG 

      if(sidata.is_non_spherical) 

        reff = MathExtraLiggghtsSuperquadric::get_effective_radius(sidata); 

#endif 

      if(sidata.is_wall) { 

        const double wr1 = sidata.wr1; 

        const double wr2 = sidata.wr2; 

        const double wr3 = sidata.wr3; 

        const double radius = sidata.radi; 

        double r_inertia; 

        if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*radius*radius; 

        else  r_inertia = 1.4*sidata.mi*radius*radius; 

        

calcRollTorque(r_torque,T_torque,sidata,radius,wr1,wr2,wr3,r_inertia,transmitti

ngratio_i,transmittingratio_j,r_coef,r_coef_twist); 

        transmittingratio_i=1; 

        const double wr_dot_delta_i = sidata.en[0]*wr1 + sidata.en[1]*wr2 + 

sidata.en[2]*wr3; //projection 

  vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i); 

  wr_t_i[0]=wr1 -wr_n_i[0]; 

  wr_t_i[1]=wr2 -wr_n_i[1]; 
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  wr_t_i[2]=wr3 -wr_n_i[2]; 

  vectorCopy3D(wr_n_i, wr_n_j); 

  vectorCopy3D(wr_t_i, wr_t_j); 

      } else { 

        double wr_roll[3]; 

        const int i = sidata.i; 

        const int j = sidata.j; 

        const double radi = sidata.radi; 

        const double radj = sidata.radj; 

        const double reff = sidata.is_wall ? radi : 

min(radi,radj);//(radi*radj/(radi+radj)); 

        const double * const * const omega = atom->omega; 

         

        const double r_inertia_red_i = sidata.mi*radi*radi; 

        const double r_inertia_red_j = sidata.mj*radj*radj; 

        double r_inertia; 

        if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i * 

r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j); 

        else  r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + 

r_inertia_red_j); 

        // relative rotational velocity 

        vectorSubtract3D(omega[i],omega[j],wr_roll); 

calcRollTorque(r_torque,T_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_i

nertia,transmittingratio_i,transmittingratio_j,r_coef,r_coef_twist); 

        transmittingratio_i=1; 

      const double wr_dot_delta_i = vectorDot3D(omega[i],sidata.en); //projection 

      vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i); 
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      vectorSubtract3D(omega[i],wr_n_i, wr_t_i); 

      const double wr_dot_delta_j = vectorDot3D(omega[j],sidata.en); //projection 

      vectorScalarMult3D(sidata.en, wr_dot_delta_j, wr_n_j); 

      vectorSubtract3D(omega[j],wr_n_j, wr_t_j); 

      } 

      i_forces.delta_torque[0] -= (r_torque[0]*transmittingratio_i + T_torque[0] + 

r_coef*wr_t_i[0] + r_coef_twist*wr_n_i[0]); 

      i_forces.delta_torque[1] -= (r_torque[1]*transmittingratio_i + T_torque[1] + 

r_coef*wr_t_i[1] + r_coef_twist*wr_n_i[1]); 

      i_forces.delta_torque[2] -= (r_torque[2]*transmittingratio_i + T_torque[2] + 

r_coef*wr_t_i[2] + r_coef_twist*wr_n_i[2]); 

      j_forces.delta_torque[0] += r_torque[0]*transmittingratio_i + T_torque[0] + 

r_coef*wr_t_j[0] + r_coef_twist*wr_n_j[0]; 

      j_forces.delta_torque[1] += r_torque[1]*transmittingratio_i + T_torque[1] + 

r_coef*wr_t_j[1] + r_coef_twist*wr_n_j[0]; 

      j_forces.delta_torque[2] += r_torque[2]*transmittingratio_i + T_torque[2] + 

r_coef*wr_t_j[2] + r_coef_twist*wr_n_j[0]; 

/*      i_forces.delta_F[0] += r_F[0]; 

      i_forces.delta_F[1] += r_F[1]; 

      i_forces.delta_F[2] += r_F[2]; 

      j_forces.delta_F[0] -= r_F[0]; 

      j_forces.delta_F[1] -= r_F[1]; 

      j_forces.delta_F[2] -= r_F[2];*/ 

    } 

    void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&) 

    { 

      if(scdata.contact_flags) *scdata.contact_flags &= 

~CONTACT_ROLLING_MODEL; 
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      double * const c_history = &scdata.contact_history[history_offset]; 

      c_history[0] = 0.0; // this is the r_torque_old 

      c_history[1] = 0.0; // this is the r_torque_old 

      c_history[2] = 0.0; // this is the r_torque_old 

      c_history[3] = 0; 

      c_history[4] = 0.0;//kr=0.0; 

      c_history[5] = 0.0;//kr_O=0.0; 

      c_history[6] = 0; //firsttouch 

      c_history[7] = 0.0; // this is the r_torque_xdirection 

      c_history[8] = 0.0; // this is the r_torque_ydirection 

      c_history[9] = 0.0; // this is the r_torque_zdirection 

      c_history[10] = 1.0; // 

      c_history[11] = 1.0; // 

      c_history[12] = 0.0; // this is the r_torque_old 

      c_history[13] = 0.0; // this is the r_torque_old 

      c_history[14] = 0.0; // this is the r_torque_old 

    } 

    void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

    void endPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

  private: 

    double ** coeffRollFrict; 

    double ** coeffFrict; 

    int history_offset; 

 bool treach_flag; 

    inline void calcRollTorque(double (&r_torque)[3],double (&T_torque)[3],const 

SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double 
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wr3,double r_inertia,double (&transmittingratio_i),double (&transmittingratio_j), 

double (&r_coef), double (&r_coef_twist)) { 

      double wr_n[3],wr_t[3]; 

      double Ref_T, kr_O; 

       const double dt = update->dt; 

      double * const c_history = &sidata.contact_history[history_offset]; // requires 

Style::TANGENTIAL == TANGENTIAL_HISTORY 

      double edges=6; 

      double correctionfactor; 

      if(sidata.is_wall) {correctionfactor=1;edges*=2;} else {correctionfactor=0.5;} 

      const double rmu= coeffRollFrict[sidata.itype][sidata.jtype]; 

      const double xmu = coeffFrict[sidata.itype][sidata.jtype]; 

      double Jn = edges/(2*(M_PI-2))*4; 

      const double r_torque_max_dash = fabs(sidata.Fn)*reff*rmu; 

    

   double omegamax=100; //mas omega das abgebildet werden soll 

   double kr = 

sidata.kt*reff*reff;//sqrt(kr_O*kr_O/4+M_PI*kr_O/(omegamax*edges*dt))-

kr_O/2;//2*Jn*reff*fabs(sidata.Fn); 

   kr_O = fabs(sidata.Fn)*reff*rmu*edges/2;//inclination of the cosine curve   

kr*r_torque_max*edges/(kr*M_PI - r_torque_max*edges); 

    

   const double r_torque_max = 

M_PI*kr_O/((kr_O/kr+1)*edges);//M_PI*r_torque_max_dash*Jn/(rmu*edges/2

+2*Jn);//most important 

   double torque_direction[3]; 

   double transmittingtorqueratio_i,transmittingtorqueratio_j; 

      //starting with a random torque magnitude and direction of torque 
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      if(c_history[6]==0){ 

  double normal_vec[3]; 

  int coni = sidata.i; 

  int conj = sidata.j; 

  normal_vec[0] = sidata.en[0]; 

  normal_vec[1] = sidata.en[1]; 

  normal_vec[2] = sidata.en[2]; 

  double init_direction[3],directionxyz[3]; 

      srand((coni+1)*(conj+2));//*time(NULL)); 

      double perc_init_r_torque = rand() % 101; 

      directionxyz[0] = (rand() % 101) - 50; 

      directionxyz[1] = (rand() % 101) - 50; 

      directionxyz[2] = (rand() % 101) - 50; 

   vectorCross3D(normal_vec, directionxyz, init_direction); 

      vectorNormalize3D(init_direction); 

      double init_r_torque = r_torque_max_dash*perc_init_r_torque/100; 

      c_history[0] = init_direction[0]*init_r_torque; // this is the r_torque_old 

      c_history[1] = init_direction[1]*init_r_torque; // this is the r_torque_old 

      c_history[2] = init_direction[2]*init_r_torque; // this is the r_torque_old 

      //c_history[3] = rand() % 2; 

      double randx= rand() % 101; 

      double randy= rand() % 101; 

      //transmittingtorqueratio_j= transmittingtorqueratio_i;//rand() % 101; 

      transmittingratio_i=randx/100; 

      transmittingratio_j=randy/100; 
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      transmittingtorqueratio_i=cos(randx/100*M_PI/3); 

      transmittingtorqueratio_j= 1-transmittingtorqueratio_i; 

      if(sidata.is_wall) { 

   transmittingtorqueratio_i=1; 

   transmittingtorqueratio_j=1; 

   } 

      c_history[10]=transmittingratio_i; 

   c_history[11]=transmittingratio_j; 

    c_history[6]=1; 

   } 

   transmittingratio_i = c_history[10]; 

   transmittingratio_j = c_history[11]; 

      const double enx = sidata.en[0]; 

      const double eny = sidata.en[1]; 

      const double enz = sidata.en[2]; 

      //bool treach_flag; 

//      double maxoverlapc = reff*0.0823922; //=reff*(1/cos(22.5°)-1) 

      // remove normal (torsion) part of relative rotation 

      // use only tangential parts for rolling torque 

      const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz; //projection 

      wr_n[0] = enx * wr_dot_delta; 

      wr_n[1] = eny * wr_dot_delta; 

      wr_n[2] = enz * wr_dot_delta; 

      wr_t[0] = wr1 - wr_n[0]; 

      wr_t[1] = wr2 - wr_n[1]; 
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      wr_t[2] = wr3 - wr_n[2]; 

      // spring (reff depends on wall-particle or particle-particle contact) 

      double c_history_mag = 

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]); 

      //const double r_torque_max = fabs(sidata.Fn)*reff*rmu;//edit + konstant 

 // double kr_fit =kr; 

      double dr_torque[3],dr_F[3];//, wr_tsqu[3]; 

//   double maxforce=maxoverlapc*sidata.kn/200;//*sidata.deltan; 

//     double kF=maxforce*edges/M_PI; 

      vectorScalarMult3D(wr_t,dt*kr,dr_torque); 

      double omega_mag = vectorMag3D(wr_t); 

  treach_flag=c_history[3]>0.5?1:0; 

      if(treach_flag==false){ 

       if(c_history[4]!=0){ 

   r_torque[0] = c_history[0]*kr/c_history[4] + dr_torque[0]; 

   r_torque[1] = c_history[1]*kr/c_history[4] + dr_torque[1]; 

   r_torque[2] = c_history[2]*kr/c_history[4] + dr_torque[2]; 

  }else{ 

   r_torque[0] = c_history[0] + dr_torque[0]; 

   r_torque[1] = c_history[1] + dr_torque[1]; 

   r_torque[2] = c_history[2] + dr_torque[2];} 

  } 

      // limit max. torque 

      const double r_torque_mag = vectorMag3D(r_torque); 

     // const double r_torque_max = fabs(sidata.Fn)*reff*rmu;//edit + konstant 
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   if(rmu==0){vectorZeroize3D(r_torque); 

     c_history[3]=0;} 

     else{//____________________________________Start of my Rolling Model 

        double maxtorque_dif; 

  if(treach_flag==true){ 

  if(c_history[5]!=0){ 

  maxtorque_dif = kr_O/c_history[5];} 

  else{maxtorque_dif = 1;} 

   vectorScalarMult3D(wr_t,dt*kr_O,dr_torque); 

  r_torque[0] = c_history[0]*maxtorque_dif - 

dr_torque[0];//*kr_ratio;//   

  r_torque[1] = c_history[1]*maxtorque_dif - 

dr_torque[1];//*kr_ratio;//   

  r_torque[2] = c_history[2]*maxtorque_dif - 

dr_torque[2];//*kr_ratio;//   

   double directioncheck = c_history[0]*r_torque[0] + 

c_history[1]*r_torque[1] + c_history[2]*r_torque[2]; 

  if(directioncheck<0){ 

   double randxs= rand() % 101; 

   double randys= rand() % 101; 

   transmittingratio_i = cos(randxs/100*M_PI/3); 

   transmittingratio_j = cos(randys/100*M_PI/3); 

   c_history[10]=transmittingratio_i; 

   c_history[11]=transmittingratio_j; 

  } 

  } 

        else if(r_torque_mag > r_torque_max && treach_flag==0){ 
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   //equation shortened 

   double kr_O_d_kr_Ox = M_PI/edges*kr_O/r_torque_mag-

kr_O/kr;//M_PI/edges*kr_O/r_torque_mag-edges*rmu/(4*Jn); // always use 

R_TORQUE_MAG 

    

   r_torque[0] *= kr_O_d_kr_Ox; 

   r_torque[1] *= kr_O_d_kr_Ox; 

   r_torque[2] *= kr_O_d_kr_Ox; 

    

   c_history[3]=1; 

   } 

//------------------------------------------------------------------------------------  

 double r_stifftorque_mag = vectorMag3D(r_torque); 

if(r_stifftorque_mag > r_torque_max && treach_flag == 1) 

    {  //equation shortened 

     vectorCopy3D(r_torque, torque_direction); 

      double kr_d_krx = 

M_PI/edges*kr/r_stifftorque_mag-kr/kr_O;//M_PI/edges*kr/r_stifftorque_mag-

4*Jn/(edges*rmu); // always use R_STIFFTORQUE_MAG 

   //  if(kr_d_krx>0){ 

      r_torque[0] *= kr_d_krx; 

      r_torque[1] *= kr_d_krx; 

      r_torque[2] *= kr_d_krx; 

      c_history[3]=0; 

 //    } 

  /*   else{ 

      r_torque[0] *= 0; 
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      r_torque[1] *= 0; 

      r_torque[2] *= 0; 

      c_history[3]=0; 

     }*/ 

     //c_history[7] = torque_direction[0]; 

     c_history[8] = torque_direction[1]; 

     c_history[9] = torque_direction[2]; 

    } 

   double nabla_torque[3]; 

   nabla_torque[0] = c_history[0]-r_torque[0]; 

   nabla_torque[1] = c_history[1]-r_torque[1]; 

   nabla_torque[2] = c_history[2]-r_torque[2]; 

      // save rolling torque due to spring 

      c_history[0] = r_torque[0]; 

      c_history[1] = r_torque[1]; 

      c_history[2] = r_torque[2]; 

      c_history[4] = kr; 

   c_history[5] = kr_O; 

      //flattening: 

 //transmittingtorqueratio_j = 1-transmittingtorqueratio_i; 

 const double torque_mag=vectorMag3D(r_torque);/* 

 if(torque_mag>r_torque_max_dash && torque_mag!=0) 

 { 

  r_torque[0] *= r_torque_max_dash/torque_mag; 

  r_torque[1] *= r_torque_max_dash/torque_mag; 
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  r_torque[2] *= r_torque_max_dash/torque_mag; 

 } 

 */ 

 if(torque_mag<r_torque_max_dash/4 && treach_flag == 1) //keine 

beschleunigungen 

 { 

  c_history[3]=0; 

 } 

double acderatio= 1.0;//0.6;//1.0/exp(omega_mag/0.5); //<<---ratio between 

accelerating and decelerating torque [0,1] 

double rotationflag = r_torque[0]*wr_t[0] + r_torque[1]*wr_t[1] + 

r_torque[2]*wr_t[2]; 

if(rotationflag<0){ 

  r_torque[0] *= acderatio; 

  r_torque[1] *= acderatio; 

  r_torque[2] *= acderatio; 

 } 

//damping on each atom seperately see top 

        if(c_history[3]==0 && r_torque_max!=0 && torque_mag<r_torque_max){ 

        r_coef = 1.0 * 2 * sqrt(r_inertia*kr) * (1-torque_mag/r_torque_max);//0.08 

minimal zum ausdämpfen von oszillation zweier partikel 

        // add damping torque 

//        r_torque[0] += r_coef*wr_t[0]; 

//        r_torque[1] += r_coef*wr_t[1]; 

//        r_torque[2] += r_coef*wr_t[2]; 

  }else{ 

  r_coef = 0.0 * 2 * sqrt(r_inertia*kr);// 
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        // add damping torque 

//        r_torque[0] += r_coef*wr_t[0]; 

//        r_torque[1] += r_coef*wr_t[1]; 

//        r_torque[2] += r_coef*wr_t[2]; 

  } 

  //instead of damping reduced accelerating torque 

}//_______________________________________________________________

______End of my Rolling Model 

//torsional part 

   const double T_torque_max = fabs(sidata.Fn)*reff*xmu*0.65; 

      const double krT = sidata.kt*reff*reff/2;//T_torque_max/(omegamax*dt);// 

/M_PI*90; 

      double dr_torqueT[3]; 

      vectorScalarMult3D(wr_n,dt*krT,dr_torqueT); 

         if(c_history[7]!=0){ 

   T_torque[0] = c_history[12]*krT/c_history[7] + 

dr_torqueT[0]; 

   T_torque[1] = c_history[13]*krT/c_history[7] + 

dr_torqueT[1]; 

   T_torque[2] = c_history[14]*krT/c_history[7] + 

dr_torqueT[2]; 

  }else{ 

   T_torque[0] = c_history[12] + dr_torqueT[0]; 

   T_torque[1] = c_history[13] + dr_torqueT[1]; 

   T_torque[2] = c_history[14] + dr_torqueT[2];} 

      // limit max. torque 

      const double T_torque_mag = vectorMag3D(T_torque); 
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      if(T_torque_mag > T_torque_max) 

      { 

        //printf("[%d] %e > %e\n", update->ntimestep, r_torque_mag, 

r_torque_max); 

        const double factor = T_torque_max / T_torque_mag; 

        T_torque[0] *= factor; 

        T_torque[1] *= factor; 

        T_torque[2] *= factor; 

        c_history[12] = T_torque[0]; 

        c_history[13] = T_torque[1]; 

        c_history[14] = T_torque[2]; 

        c_history[7] = krT; 

        r_coef_twist=0; 

 }else{ 

        // save rolling torque due to spring 

        c_history[12] = T_torque[0]; 

        c_history[13] = T_torque[1]; 

        c_history[14] = T_torque[2]; 

        c_history[7] = krT; 

  r_coef_twist=0; 

  if(T_torque_max!=0){ 

        r_coef_twist = 0.3 * 2 * sqrt(r_inertia*kr) * (1-

T_torque_mag/T_torque_max);//minimal zum ausdämpfen von oszillation zweier 

partikel 

        // add damping torque 

  //      T_torque[0] += r_coef_twist*wr_n[0]; 

   //     T_torque[1] += r_coef_twist*wr_n[1]; 
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  //      T_torque[2] += r_coef_twist*wr_n[2]; 

  } 

        // no damping / no dashpot in case of full mobilisation rolling angle 

  } 

/* 

const double T_twisttorque_delta = r_torque[0]*enx+ r_torque[1]*eny + 

r_torque[2]*enz; //projection 

      r_torque[0] -= enx * T_twisttorque_delta; 

      r_torque[1] -= eny * T_twisttorque_delta; 

      r_torque[2] -= enz * T_twisttorque_delta;*/ 

    } 

  }; 

} 

} 

#endif // ROLLING_MODEL_EPSD_H_ 

#endif 

8.4 Modified rolling model dahl2 

#ifdef ROLLING_MODEL 

ROLLING_MODEL(ROLLING_DAHL2,dahl2,8) 

#else 

#ifndef ROLLING_MODEL_DAHL2_H_ 

#define ROLLING_MODEL_DAHL2_H_ 

#include "contact_models.h" 

#include <algorithm> 

#include "math.h" 
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#include "domain.h" 

#include "math_extra_liggghts.h" 

namespace LIGGGHTS { 

namespace ContactModels 

{ 

  using namespace LAMMPS_NS; 

  template<> 

  class RollingModel<ROLLING_DAHL2> : protected Pointers 

  { 

  public: 

    static const int MASK = CM_CONNECT_TO_PROPERTIES | 

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE; 

    RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup,class 

ContactModelBase *) : 

        Pointers(lmp), coeffRollFrict(NULL) 

    { 

      history_offset = hsetup->add_history_value("rollanglex", "1"); 

      hsetup->add_history_value("rollangley", "1"); 

      hsetup->add_history_value("rollanglez", "1"); 

      hsetup->add_history_value("plastic_anglex", "1"); 

      hsetup->add_history_value("plastic_angley", "1"); 

      hsetup->add_history_value("plastic_anglez", "1"); 

      hsetup->add_history_value("stored_anglex", "1"); 

      hsetup->add_history_value("stored_angley", "1"); 

      hsetup->add_history_value("stored_anglez", "1"); 

      hsetup->add_history_value("delta_anglex", "1"); 
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      hsetup->add_history_value("delta_angley", "1"); 

      hsetup->add_history_value("delta_anglez", "1"); 

      hsetup->add_history_value("T_rollanglex", "1"); 

      hsetup->add_history_value("T_rollangley", "1"); 

      hsetup->add_history_value("T_rollanglez", "1"); 

      hsetup->add_history_value("T_plastic_anglex", "1"); 

      hsetup->add_history_value("T_plastic_angley", "1"); 

      hsetup->add_history_value("T_plastic_anglez", "1"); 

      hsetup->add_history_value("T_stored_anglex", "1"); 

      hsetup->add_history_value("T_stored_angley", "1"); 

      hsetup->add_history_value("T_stored_anglez", "1"); 

      hsetup->add_history_value("T_delta_anglex", "1"); 

      hsetup->add_history_value("T_delta_angley", "1"); 

      hsetup->add_history_value("T_delta_anglez", "1"); 

      hsetup->add_history_value("free", "0"); 

      hsetup->add_history_value("losbrechmoment", "0"); 

    } 

    void registerSettings(Settings&) {} 

    void connectToProperties(PropertyRegistry & registry) { 

      registry.registerProperty("coeffRollFrict", 

&MODEL_PARAMS::createCoeffRollFrict); 

      registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model dahl2"); 

      registry.registerProperty("coeffFrict", 

&MODEL_PARAMS::createCoeffFrict); 

      registry.connect("coeffFrict", coeffFrict,"rolling_model dahl2"); 

      // error checks on coarsegraining 
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      if(force->cg_active()) 

        error->cg(FLERR,"rolling model dahl2"); 

    } 

    void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, 

ForceData & j_forces) 

    { 

      double 

r_torque[3],T_torque[3],r_coef,wr_n_i[3],wr_n_j[3],wr_t_i[3],wr_t_j[3]; 

      vectorZeroize3D(r_torque); 

      vectorZeroize3D(T_torque); 

      if(sidata.contact_flags) *sidata.contact_flags |= 

CONTACT_ROLLING_MODEL; 

      const double radi = sidata.radi; 

      const double radj = sidata.radj; 

      double reff=sidata.is_wall ? sidata.radi : (radi*radj/(radi+radj)); 

#ifdef SUPERQUADRIC_ACTIVE_FLAG 

      if(sidata.is_non_spherical) 

        reff = MathExtraLiggghtsSuperquadric::get_effective_radius(sidata); 

#endif 

      if(sidata.is_wall) { 

        const double wr1 = sidata.wr1; 

        const double wr2 = sidata.wr2; 

        const double wr3 = sidata.wr3; 

        const double radius = sidata.radi; 

        double r_inertia; 

        if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*radius*radius; 

        else  r_inertia = 1.4*sidata.mi*radius*radius; 
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        calcRollTorque(r_torque,T_torque,sidata,reff,wr1,wr2,wr3,r_inertia,r_coef); 

/*         

        const double wr_dot_delta_i = sidata.en[0]*wr1 + sidata.en[1]*wr2 + 

sidata.en[2]*wr3; //projection 

  vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i); 

  wr_t_i[0]=wr1 -wr_n_i[0]; 

  wr_t_i[1]=wr2 -wr_n_i[1]; 

  wr_t_i[2]=wr3 -wr_n_i[2]; 

  vectorCopy3D(wr_n_i, wr_n_j); 

  vectorCopy3D(wr_t_i, wr_t_j);*/ 

      } else { 

        double wr_roll[3]; 

        const int i = sidata.i; 

        const int j = sidata.j; 

        const double * const * const omega = atom->omega; 

        const double r_inertia_red_i = sidata.mi*radi*radi; 

        const double r_inertia_red_j = sidata.mj*radj*radj; 

        double r_inertia; 

        if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i * 

r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j); 

        else  r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + 

r_inertia_red_j); 

        // relative rotational velocity 

        vectorSubtract3D(omega[i],omega[j],wr_roll); 

        

calcRollTorque(r_torque,T_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_i

nertia,r_coef); 
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/* 

  const double wr_dot_delta_i = vectorDot3D(omega[i],sidata.en); 

//projection 

  vectorScalarMult3D(sidata.en, wr_dot_delta_i, wr_n_i); 

  vectorSubtract3D(omega[i],wr_n_i, wr_t_i); 

  const double wr_dot_delta_j = vectorDot3D(omega[j],sidata.en); 

//projection 

  vectorScalarMult3D(sidata.en, wr_dot_delta_j, wr_n_j); 

  vectorSubtract3D(omega[j],wr_n_j, wr_t_j);*/ 

      } 

      i_forces.delta_torque[0] -= (r_torque[0]+T_torque[0]);//+r_coef*wr_t_i[0]); 

      i_forces.delta_torque[1] -= (r_torque[1]+T_torque[1]);//+r_coef*wr_t_i[1]); 

      i_forces.delta_torque[2] -= (r_torque[2]+T_torque[2]);//+r_coef*wr_t_i[2]); 

      j_forces.delta_torque[0] += r_torque[0]+T_torque[0];//+r_coef*wr_t_j[0]; 

      j_forces.delta_torque[1] += r_torque[1]+T_torque[1];//+r_coef*wr_t_j[1]; 

      j_forces.delta_torque[2] += r_torque[2]+T_torque[2];//+r_coef*wr_t_j[2]; 

    } 

    void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&) 

    { 

      if(scdata.contact_flags) *scdata.contact_flags &= 

~CONTACT_ROLLING_MODEL; 

      double * const c_history = &scdata.contact_history[history_offset]; 

      c_history[0] = 0.0; // dangle 

      c_history[1] = 0.0; // dangle 

      c_history[2] = 0.0; // dangle 

      c_history[3] = 0.0; // 

      c_history[4] = 0.0; // 
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      c_history[5] = 0.0; // 

      c_history[6] = 0.0; // 

      c_history[7] = 0.0; // 

      c_history[8] = 0.0;// 

      c_history[9] = 0.0; 

      c_history[10] = 0.0; 

      c_history[11] = 0.0; 

      c_history[12] = 0.0; // Tdangle 

      c_history[13] = 0.0; // Tdangle 

      c_history[14] = 0.0; // Tdangle 

      c_history[15] = 0.0; // 

      c_history[16] = 0.0; // 

      c_history[17] = 0.0; // 

      c_history[18] = 0.0; // 

      c_history[19] = 0.0; // 

      c_history[20] = 0.0;// 

      c_history[21] = 0.0; 

      c_history[22] = 0.0; 

      c_history[23] = 0.0; 

      c_history[24] = 0; 

      c_history[25] = 0; 

    } 

    void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

    void endPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

  private: 
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    double ** coeffRollFrict; 

    double ** coeffFrict; 

    int history_offset; 

    inline void calcRollTorque(double (&r_torque)[3],double (&T_torque)[3],const 

SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double wr3, 

double r_inertia, double (&r_coef)) { 

      double wr_n[3],wr_t[3]; 

      double losbrechmoment; //110% = 1.1 

      double old_roll[3],d_old_roll[3]; 

      const double enx = sidata.en[0]; 

      const double eny = sidata.en[1]; 

      const double enz = sidata.en[2]; 

      double tangentialdirection[3]; 

      const double dt = update->dt; 

      double * const c_history = &sidata.contact_history[history_offset]; // requires 

Style::TANGENTIAL == TANGENTIAL_HISTORY 

      const double rmu = coeffRollFrict[sidata.itype][sidata.jtype]; 

      const double xmu = coeffFrict[sidata.itype][sidata.jtype]; 

      bool nulldurchgang=0; 

   losbrechmoment=1.0; 

      // remove normal (torsion) part of relative rotation 

      // use only tangential parts for rolling torque 

      const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz; 

      wr_n[0] = enx * wr_dot_delta; 

      wr_n[1] = eny * wr_dot_delta; 

      wr_n[2] = enz * wr_dot_delta; 

      wr_t[0] = wr1 - wr_n[0]; 
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      wr_t[1] = wr2 - wr_n[1]; 

      wr_t[2] = wr3 - wr_n[2]; 

      // spring (reff depends on wall-particle or particle-particle contact) 

      const double kr = sidata.kt*reff*reff *2;     

   //<<<<<<<<<<<------------------EDIT 

      r_coef = 2.0*sqrt(r_inertia*kr); 

    

      double dr_angle[3]; 

      vectorScalarMult3D(wr_t,dt,dr_angle); 

      //rotate the rolling 

  double quad_oldrollmag = 

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]); 

  double normalpart = c_history[0]*enx + c_history[1]*eny + 

c_history[2]*enz; 

        tangentialdirection[0] = c_history[0] - normalpart * enx; 

        tangentialdirection[1] = c_history[1] - normalpart * eny; 

        tangentialdirection[2] = c_history[2] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

  c_history[0] = quad_oldrollmag * tangentialdirection[0]; 

  c_history[1] = quad_oldrollmag * tangentialdirection[1]; 

  c_history[2] = quad_oldrollmag * tangentialdirection[2]; 

  quad_oldrollmag = 

sqrt(c_history[3]*c_history[3]+c_history[4]*c_history[4]+c_history[5]*c_history

[5]); 

  normalpart = c_history[3]*enx + c_history[4]*eny + 

c_history[5]*enz; 

        tangentialdirection[0] = c_history[3] - normalpart * enx; 
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        tangentialdirection[1] = c_history[4] - normalpart * eny; 

        tangentialdirection[2] = c_history[5] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

  c_history[3] = quad_oldrollmag * tangentialdirection[0]; 

  c_history[4] = quad_oldrollmag * tangentialdirection[1]; 

  c_history[5] = quad_oldrollmag * tangentialdirection[2]; 

  quad_oldrollmag = 

sqrt(c_history[6]*c_history[6]+c_history[7]*c_history[7]+c_history[8]*c_history

[8]); 

  normalpart = c_history[6]*enx + c_history[7]*eny + 

c_history[8]*enz; 

        tangentialdirection[0] = c_history[6] - normalpart * enx; 

        tangentialdirection[1] = c_history[7] - normalpart * eny; 

        tangentialdirection[2] = c_history[8] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

  c_history[6] = quad_oldrollmag * tangentialdirection[0]; 

  c_history[7] = quad_oldrollmag * tangentialdirection[1]; 

  c_history[8] = quad_oldrollmag * tangentialdirection[2]; 

  quad_oldrollmag = 

sqrt(c_history[9]*c_history[9]+c_history[10]*c_history[10]+c_history[11]*c_his

tory[11]); 

  normalpart = c_history[9]*enx + c_history[10]*eny + 

c_history[11]*enz; 

        tangentialdirection[0] = c_history[9] - normalpart * enx; 

        tangentialdirection[1] = c_history[10] - normalpart * eny; 

        tangentialdirection[2] = c_history[11] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

  c_history[9] = quad_oldrollmag * tangentialdirection[0]; 
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  c_history[10] = quad_oldrollmag * tangentialdirection[1]; 

  c_history[11] = quad_oldrollmag * tangentialdirection[2]; 

  //############################## end of rotations 

  d_old_roll[0] = c_history[0]; 

  d_old_roll[1] = c_history[1]; 

  d_old_roll[2] = c_history[2]; 

  c_history[0] += dr_angle[0]; 

  c_history[1] += dr_angle[1]; 

  c_history[2] += dr_angle[2]; 

  old_roll[0] = c_history[3]; 

  old_roll[1] = c_history[4]; 

  old_roll[2] = c_history[5]; 

  c_history[3] += dr_angle[0]; 

  c_history[4] += dr_angle[1]; 

  c_history[5] += dr_angle[2]; 

  c_history[9] += dr_angle[0]; 

  c_history[10] += dr_angle[1]; 

  c_history[11] += dr_angle[2]; 

  const double rollmagat = 

sqrt(c_history[0]*c_history[0]+c_history[1]*c_history[1]+c_history[2]*c_history

[2]); 

  double magnitde = 

sqrt(c_history[3]*c_history[3]+c_history[4]*c_history[4]+c_history[5]*c_history

[5]); 

  const double 

compnulldurchgang=c_history[0]*old_roll[0]+c_history[1]*old_roll[1]+c_histor

y[2]*old_roll[2]; 
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 if(compnulldurchgang<0||(c_history[0]*d_old_roll[0]+c_history[1]*d_old

_roll[1]+c_history[2]*d_old_roll[2])<0){ 

   nulldurchgang=1; 

   } 

  if(nulldurchgang==1){ 

   double buff_roll[3]; 

   buff_roll[0] = old_roll[0]-d_old_roll[0]; 

   buff_roll[1] = old_roll[1]-d_old_roll[1]; 

   buff_roll[2] = old_roll[2]-d_old_roll[2]; 

   c_history[3] = c_history[9] + c_history[6]; 

   c_history[4] = c_history[10] + c_history[7]; 

   c_history[5] = c_history[11] + c_history[8]; 

 if((buff_roll[0]*c_history[3]+buff_roll[1]*c_history[4]+buff_roll[2]*c_his

tory[5])>0){ 

   c_history[3] = c_history[0]; 

   c_history[4] = c_history[1]; 

   c_history[5] = c_history[2]; 

   } 

   c_history[6] = buff_roll[0]; 

   c_history[7] = buff_roll[1]; 

   c_history[8] = buff_roll[2]; 

   c_history[9] = c_history[0]; 

   c_history[10] = c_history[1]; 

   c_history[11] = c_history[2]; 

  } 

  double rsht = c_history[0]*enx + c_history[1]*eny + 

c_history[2]*enz; 
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        tangentialdirection[0] = c_history[0] - rsht * enx; 

        tangentialdirection[1] = c_history[1] - rsht * eny; 

        tangentialdirection[2] = c_history[2] - rsht * enz; 

        vectorNormalize3D(tangentialdirection); 

  const double rollmag = 

sqrt(c_history[3]*c_history[3]+c_history[4]*c_history[4]+c_history[5]*c_history

[5]); 

  //unloading/reloading 

  r_torque[0] = kr*c_history[0]; 

  r_torque[1] = kr*c_history[1]; 

  r_torque[2] = kr*c_history[2]; 

   

   double r_torque_max; 

      if((kr/2*rollmag)>(losbrechmoment*fabs(sidata.Fn)*reff*rmu)){ 

    r_torque_max = fabs(sidata.Fn)*reff*rmu; 

    c_history[3] *= r_torque_max/kr*2 /rollmag; 

          c_history[4] *= r_torque_max/kr*2 /rollmag; 

          c_history[5] *= r_torque_max/kr*2 /rollmag; 

   }else{ 

    r_torque_max = kr/2*rollmag; 

   } 

    

   const double r_torque_mag = vectorMag3D(r_torque); 

   if(r_torque_mag > r_torque_max) 

      { 

        if(r_torque_mag != 0.0 && kr!=0){ 
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        const double factor = r_torque_max / r_torque_mag; 

        r_torque[0] *= factor; 

        r_torque[1] *= factor; 

        r_torque[2] *= factor; 

        // save rolling torque due to spring 

        c_history[0] = r_torque[0]/kr; 

        c_history[1] = r_torque[1]/kr; 

        c_history[2] = r_torque[2]/kr; 

  }else{ 

   vectorZeroize3D(r_torque); 

   //c_history[0]=c_history[1]=c_history[2]=0; 

   } 

   }else{ 

    r_coef = 2.0*sqrt(r_inertia*kr); 

  } 

  r_torque[0] += r_coef*wr_t[0]; 

        r_torque[1] += r_coef*wr_t[1]; 

        r_torque[2] += r_coef*wr_t[2]; 

        const double r_mag_withdamp = vectorMag3D(r_torque); 

        //double signofdirection = 

((r_torque[0]*tangentialdirection[0]+r_torque[1]*tangentialdirection[1]+r_torque

[2]*tangentialdirection[2])>0) ? 1 : -1; 

         

        const double Fr_coulomb = fabs(sidata.Fn)*reff*rmu; 

        if (r_mag_withdamp > losbrechmoment*Fr_coulomb) { 

          const double ratiod = Fr_coulomb / r_mag_withdamp; 
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          r_torque[0] *= ratiod; 

          r_torque[1] *= ratiod; 

          r_torque[2] *= ratiod; 

        } 

      //=======================================TORSIONAL PART 

   bool nulldurchgangtwist; 

   double normaldirection[3]; 

   double r_coef_twist; 

   //double iterm = 1.0-sidata.deltan/(2*reff); 

   const double T_torque_max_Coulomb = 

fabs(sidata.Fn)*xmu*0.65*reff*rmu;//sqrt(1.0-iterm*iterm); 

      const double krT = sidata.kt*reff*reff; 

      double dr_torqueT[3]; 

   double dt_angle[3]; 

      vectorScalarMult3D(wr_n,dt,dt_angle); 

  //rotate the rolling 

  double quad_oldtwistmag = 

sqrt(c_history[12]*c_history[12]+c_history[13]*c_history[13]+c_history[14]*c_

history[14]); 

  normalpart = c_history[12]*enx + c_history[13]*eny + 

c_history[14]*enz; 

        normaldirection[0] = normalpart * enx; 

        normaldirection[1] = normalpart * eny; 

        normaldirection[2] = normalpart * enz; 

        vectorNormalize3D(normaldirection); 

  c_history[12] = quad_oldtwistmag * normaldirection[0]; 

  c_history[13] = quad_oldtwistmag * normaldirection[1]; 
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  c_history[14] = quad_oldtwistmag * normaldirection[2]; 

  quad_oldtwistmag = 

sqrt(c_history[15]*c_history[15]+c_history[16]*c_history[16]+c_history[17]*c_

history[17]); 

  normalpart = c_history[15]*enx + c_history[16]*eny + 

c_history[17]*enz; 

        normaldirection[0] = normalpart * enx; 

        normaldirection[1] = normalpart * eny; 

        normaldirection[2] = normalpart * enz; 

        vectorNormalize3D(normaldirection); 

  c_history[15] = quad_oldtwistmag * normaldirection[0]; 

  c_history[16] = quad_oldtwistmag * normaldirection[1]; 

  c_history[17] = quad_oldtwistmag * normaldirection[2]; 

  quad_oldtwistmag = 

sqrt(c_history[18]*c_history[18]+c_history[19]*c_history[19]+c_history[20]*c_

history[20]); 

  normalpart = c_history[18]*enx + c_history[19]*eny + 

c_history[20]*enz; 

        normaldirection[0] = normalpart * enx; 

        normaldirection[1] = normalpart * eny; 

        normaldirection[2] = normalpart * enz; 

        vectorNormalize3D(normaldirection); 

  c_history[18] = quad_oldtwistmag * normaldirection[0]; 

  c_history[19] = quad_oldtwistmag * normaldirection[1]; 

  c_history[20] = quad_oldtwistmag * normaldirection[2]; 

  quad_oldtwistmag = 

sqrt(c_history[21]*c_history[21]+c_history[22]*c_history[22]+c_history[23]*c_

history[23]); 
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  normalpart = c_history[21]*enx + c_history[22]*eny + 

c_history[23]*enz; 

        normaldirection[0] = normalpart * enx; 

        normaldirection[1] = normalpart * eny; 

        normaldirection[2] = normalpart * enz; 

        vectorNormalize3D(normaldirection); 

  c_history[21] = quad_oldtwistmag * normaldirection[0]; 

  c_history[22] = quad_oldtwistmag * normaldirection[1]; 

  c_history[23] = quad_oldtwistmag * normaldirection[2]; 

  c_history[12] += dt_angle[0]; 

  c_history[13] += dt_angle[1]; 

  c_history[14] += dt_angle[2]; 

       const double twistmagat = 

sqrt(c_history[12]*c_history[12]+c_history[13]*c_history[13]+c_history[14]*c_

history[14]); 

  double magnitdetwist = 

sqrt(c_history[15]*c_history[15]+c_history[16]*c_history[16]+c_history[17]*c_

history[17]); 

  const double 

compnulldurchgangT=c_history[12]*c_history[15]+c_history[13]*c_history[16]

+c_history[14]*c_history[17]; 

  if(compnulldurchgangT<0){//||(magnitde==0.0 && 

vectorDot3D(oldroll,dr_angle)<0)){ 

   nulldurchgangtwist=1; 

   } 

  if(nulldurchgangtwist==1){ 

   double buff_twist[3]; 

   buff_twist[0] = c_history[15]; 

   buff_twist[1] = c_history[16]; 
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   buff_twist[2] = c_history[17]; 

   c_history[15] = c_history[21] + c_history[18]; 

   c_history[16] = c_history[22] + c_history[19]; 

   c_history[17] = c_history[23] + c_history[20]; 

 if((buff_twist[0]*c_history[15]+buff_twist[1]*c_history[16]+buff_twist[2

]*c_history[17])>0){ 

   c_history[15] = c_history[12]; 

   c_history[16] = c_history[13]; 

   c_history[17] = c_history[14]; 

   } 

   c_history[18] = buff_twist[0]; 

   c_history[19] = buff_twist[1]; 

   c_history[20] = buff_twist[2]; 

   c_history[21] = 0.0; 

   c_history[22] = 0.0; 

   c_history[23] = 0.0; 

  } 

  c_history[15] += dr_angle[0]; 

  c_history[16] += dr_angle[1]; 

  c_history[17] += dr_angle[2]; 

  c_history[21] += dr_angle[0]; 

  c_history[22] += dr_angle[1]; 

  c_history[23] += dr_angle[2]; 

  double rshtT = c_history[12]*enx + c_history[13]*eny + 

c_history[14]*enz; 

        normaldirection[0] = rshtT * enx; 
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        normaldirection[1] = rshtT * eny; 

        normaldirection[2] = rshtT * enz; 

        vectorNormalize3D(normaldirection); 

 const double twistmag = 

sqrt(c_history[15]*c_history[15]+c_history[16]*c_history[16]+c_history[17]*c_

history[17]); 

   T_torque[0] = krT*c_history[12]; 

      T_torque[1] = krT*c_history[13]; 

      T_torque[2] = krT*c_history[14]; 

      double T_torque_max;//T_torque_max_Coulomb 

      if((krT/2*twistmag)>(losbrechmoment*T_torque_max_Coulomb)){ 

    T_torque_max = fabs(sidata.Fn)*reff*rmu; 

    c_history[3] *= T_torque_max/krT*2 /twistmag; 

          c_history[4] *= T_torque_max/krT*2 /twistmag; 

          c_history[5] *= T_torque_max/krT*2 /twistmag; 

   }else{ 

    T_torque_max = krT/2*twistmag; 

   } 

      const double T_torque_mag = vectorMag3D(T_torque); 

      if(T_torque_mag > T_torque_max) 

      { 

  if(T_torque_mag != 0.0){ 

        const double Tfactor = T_torque_max / T_torque_mag; 

        T_torque[0] *= Tfactor; 

        T_torque[1] *= Tfactor; 

        T_torque[2] *= Tfactor; 
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        c_history[12] = T_torque[0]/krT; 

        c_history[13] = T_torque[1]/krT; 

        c_history[14] = T_torque[2]/krT; 

  }else{T_torque[0]=T_torque[1]=T_torque[2]=0.0;} 

 }else{ 

        r_coef_twist = 0.3* 2.0 * sqrt(r_inertia*krT); 

 } 

  r_coef_twist = 0.3* 2.0 * sqrt(r_inertia*krT); 

    T_torque[0] += r_coef_twist*wr_n[0]; 

        T_torque[1] += r_coef_twist*wr_n[1]; 

        T_torque[2] += r_coef_twist*wr_n[2]; 

     //=======================================end of torsional part 

        const double c_T_torque_mag = vectorMag3D(T_torque); 

        if(c_T_torque_mag > losbrechmoment*T_torque_max_Coulomb) 

        { 

   double factorialT = 

T_torque_max_Coulomb/c_T_torque_mag; 

   vectorScalarMult3D(T_torque, factorialT); 

  } 

 //######################################## 

    } 

  }; 

} 

} 

#endif // ROLLING_MODEL_DAHL2_H_ 

#endif 
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8.5 Modified tangential model dahl 

#ifdef TANGENTIAL_MODEL 

TANGENTIAL_MODEL(TANGENTIAL_DAHL,dahl,4) 

#else 

#ifndef TANGENTIAL_MODEL_DAHL_H_ 

#define TANGENTIAL_MODEL_DAHL_H_ 

#include "contact_models.h" 

#include "math.h" 

#include "update.h" 

#include "global_properties.h" 

#include "atom.h" 

namespace LIGGGHTS { 

namespace ContactModels 

{ 

  template<> 

  class TangentialModel<TANGENTIAL_DAHL> : protected Pointers 

  { 

    double ** coeffFrict; 

    int history_offset; 

  public: 

    static const int MASK = CM_CONNECT_TO_PROPERTIES | 

CM_SURFACES_INTERSECT | CM_SURFACES_CLOSE; 

    TangentialModel(LAMMPS * lmp, IContactHistorySetup * hsetup,class 

ContactModelBase *c) : Pointers(lmp), 

      coeffFrict(NULL), 

      heating(false), 
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      heating_track(false), 

      cmb(c) 

    { 

      history_offset = hsetup->add_history_value("shearx", "1"); 

      hsetup->add_history_value("sheary", "1"); 

      hsetup->add_history_value("shearz", "1"); 

      hsetup->add_history_value("plastic_shearx", "1"); 

      hsetup->add_history_value("plastic_sheary", "1"); 

      hsetup->add_history_value("plastic_shearz", "1"); 

      hsetup->add_history_value("stored_shearx", "1"); 

      hsetup->add_history_value("stored_sheary", "1"); 

      hsetup->add_history_value("stored_shearz", "1"); 

      hsetup->add_history_value("delta_shearx", "1"); 

      hsetup->add_history_value("delta_sheary", "1"); 

      hsetup->add_history_value("delta_shearz", "1"); 

      hsetup->add_history_value("free", "0"); 

      hsetup->add_history_value("losbrechmoment", "0"); 

    } 

    inline void registerSettings(Settings& settings) 

    { 

        settings.registerOnOff("heating_tangential_dahl",heating,false); 

        settings.registerOnOff("heating_tracking",heating_track,false); 

        //TODO error->one(FLERR,"TODO here also check if right surface model 

used"); 

    } 

    inline void connectToProperties(PropertyRegistry & registry) 
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    { 

      registry.registerProperty("coeffFrict", 

&MODEL_PARAMS::createCoeffFrict); 

      registry.connect("coeffFrict", coeffFrict,"tangential_model dahl"); 

    } 

    inline void surfacesIntersect(const SurfacesIntersectData & sidata, ForceData & 

i_forces, ForceData & j_forces) 

    { 

      // normal forces = Hookian contact + normal velocity damping 

      const double enx = sidata.en[0]; 

      const double eny = sidata.en[1]; 

      const double enz = sidata.en[2]; 

      double tangentialdirection[3]; 

      bool nulldurchgang=0; 

      double losbrechmoment; //110% = 1.1 

      double old_shear[3],dx_old_shear[3]; 

      // shear history effects 

      if(sidata.contact_flags) *sidata.contact_flags |= 

CONTACT_TANGENTIAL_MODEL; 

      double * const shear = &sidata.contact_history[history_offset]; 

  const double dt = update->dt; 

  losbrechmoment=1.0; 

      if (sidata.shearupdate && sidata.computeflag) { 

   

  // rotate shear displacements //normal part entfernen 

  double shrmagbefore = sqrt(shear[0]*shear[0] + shear[1]*shear[1] + 

shear[2]*shear[2]); 
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  double normalpart = shear[0]*enx + shear[1]*eny + shear[2]*enz; 

        tangentialdirection[0] = shear[0] - normalpart * enx; 

        tangentialdirection[1] = shear[1] - normalpart * eny; 

        tangentialdirection[2] = shear[2] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

        shear[0] = shrmagbefore * tangentialdirection[0]; 

        shear[1] = shrmagbefore * tangentialdirection[1]; 

        shear[2] = shrmagbefore * tangentialdirection[2]; 

        shrmagbefore = sqrt(shear[3]*shear[3] + shear[4]*shear[4] + 

shear[5]*shear[5]); 

        normalpart = shear[3]*enx + shear[4]*eny + shear[5]*enz; 

        tangentialdirection[0] = shear[3] - normalpart * enx; 

        tangentialdirection[1] = shear[4] - normalpart * eny; 

        tangentialdirection[2] = shear[5] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

        shear[3] = shrmagbefore * tangentialdirection[0]; 

        shear[4] = shrmagbefore * tangentialdirection[1]; 

        shear[5] = shrmagbefore * tangentialdirection[2]; 

        shrmagbefore = sqrt(shear[6]*shear[6] + shear[7]*shear[7] + 

shear[8]*shear[8]); 

        normalpart = shear[6]*enx + shear[7]*eny + shear[8]*enz; 

        tangentialdirection[0] = shear[6] - normalpart * enx; 

        tangentialdirection[1] = shear[7] - normalpart * eny; 

        tangentialdirection[2] = shear[8] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

        shear[6] = shrmagbefore * tangentialdirection[0]; 
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        shear[7] = shrmagbefore * tangentialdirection[1]; 

        shear[8] = shrmagbefore * tangentialdirection[2]; 

        shrmagbefore = sqrt(shear[9]*shear[9] + shear[10]*shear[10] + 

shear[11]*shear[11]); 

        normalpart = shear[9]*enx + shear[10]*eny + shear[11]*enz; 

        tangentialdirection[0] = shear[9] - normalpart * enx; 

        tangentialdirection[1] = shear[10] - normalpart * eny; 

        tangentialdirection[2] = shear[11] - normalpart * enz; 

        vectorNormalize3D(tangentialdirection); 

        shear[9] = shrmagbefore * tangentialdirection[0]; 

        shear[10] = shrmagbefore * tangentialdirection[1]; 

        shear[11] = shrmagbefore * tangentialdirection[2]; 

   //####################################end of rotation 

        dx_old_shear[0] = shear[0]; 

        dx_old_shear[1] = shear[1]; 

        dx_old_shear[2] = shear[2]; 

        shear[0] += sidata.vtr1 * dt; 

        shear[1] += sidata.vtr2 * dt; 

        shear[2] += sidata.vtr3 * dt; 

        old_shear[0] = shear[3]; 

        old_shear[1] = shear[4]; 

        old_shear[2] = shear[5]; 

        shear[3] += sidata.vtr1 * dt; 

        shear[4] += sidata.vtr2 * dt; 

        shear[5] += sidata.vtr3 * dt; 

        shear[9] += sidata.vtr1 * dt; 
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        shear[10] += sidata.vtr2 * dt; 

        shear[11] += sidata.vtr3 * dt; 

      } 

      const double shrmag = sqrt(shear[0]*shear[0] + shear[1]*shear[1] + 

shear[2]*shear[2]); 

      const double kt = sidata.kt *2.0;      

   //*pow(fabs(sidata.Fn),2.0/3.0); 

      const double xmu = coeffFrict[sidata.itype][sidata.jtype]; 

       const double magnitde = sqrt(shear[3]*shear[3] + shear[4]*shear[4] + 

shear[5]*shear[5]); 

  const double 

compnulldurchgang=shear[0]*shear[3]+shear[1]*shear[4]+shear[2]*shear[5];//sh

ear[0]*old_shear[0]+shear[1]*old_shear[1]+shear[2]*old_shear[2]; 

 

 if(compnulldurchgang<0/*||(shear[0]*dx_old_shear[0]+shear[1]*dx_old_s

hear[1]+shear[2]*dx_old_shear[2])<0*/){ 

   nulldurchgang=1; 

   } 

  if(nulldurchgang==1){ 

   double buff_shear[3]; 

   buff_shear[0] = old_shear[0]-dx_old_shear[0]; 

   buff_shear[1] = old_shear[1]-dx_old_shear[1]; 

   buff_shear[2] = old_shear[2]-dx_old_shear[2]; 

   shear[3] = shear[9] + shear[6]; 

   shear[4] = shear[10] + shear[7]; 

   shear[5] = shear[11] + shear[8]; 

 if((buff_shear[0]*shear[3]+buff_shear[1]*shear[4]+buff_shear[2]*shear[5

])>0){ 

   shear[3] = shear[0]; 
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   shear[4] = shear[1]; 

   shear[5] = shear[2]; 

   } 

   shear[6] = buff_shear[0]; 

   shear[7] = buff_shear[1]; 

   shear[8] = buff_shear[2]; 

   shear[9] = shear[0]; 

   shear[10] = shear[1]; 

   shear[11] = shear[2]; 

  } 

        double rsht = shear[0]*enx + shear[1]*eny + shear[2]*enz; 

        tangentialdirection[0] = shear[0] - rsht * enx; 

        tangentialdirection[1] = shear[1] - rsht * eny; 

        tangentialdirection[2] = shear[2] - rsht * enz; 

        vectorNormalize3D(tangentialdirection); 

      const double shearedmag = sqrt(shear[3]*shear[3] + shear[4]*shear[4] + 

shear[5]*shear[5]); 

   const double gammat = sidata.gammat; 

      // tangential forces = shear 

      double Ft1 = -(kt * shear[0]); 

      double Ft2 = -(kt * shear[1]); 

      double Ft3 = -(kt * shear[2]); 

  //yield algorithm 

      const double Ft_shear = sqrt(Ft1 * Ft1 + Ft2 * Ft2 + Ft3 * Ft3); 

      double Ft_friction; 

      if((kt/2*shearedmag)>(losbrechmoment*xmu*fabs(sidata.Fn))){ 
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    Ft_friction = xmu * fabs(sidata.Fn); 

    shear[3] *= Ft_friction/kt*2 /shearedmag; 

          shear[4] *= Ft_friction/kt*2 /shearedmag; 

          shear[5] *= Ft_friction/kt*2 /shearedmag; 

   }else{ 

    Ft_friction = kt/2*shearedmag; 

   } 

      //plastic shear 

      if (Ft_shear > Ft_friction) { 

        if (shrmag != 0.0 && kt != 0.0) { 

          const double ratio = Ft_friction / Ft_shear; 

          if(heating) 

          { 

            sidata.P_diss += (vectorMag3DSquared(shear)*kt - 

ratio*ratio*vectorMag3DSquared(shear)*kt) / (update->dt); 

            if(heating_track && sidata.is_wall) cmb-

>tally_pw((vectorMag3DSquared(shear)*kt - 

ratio*ratio*vectorMag3DSquared(shear)*kt) / (update-

>dt),sidata.i,sidata.jtype,2); 

            if(heating_track && !sidata.is_wall) cmb-

>tally_pp((vectorMag3DSquared(shear)*kt - 

ratio*ratio*vectorMag3DSquared(shear)*kt) / (update->dt),sidata.i,sidata.j,2); 

          } 

          Ft1 *= ratio; 

          Ft2 *= ratio; 

          Ft3 *= ratio; 

          shear[0] = -Ft1/kt; 

          shear[1] = -Ft2/kt; 



8 Appendix 159 

 

          shear[2] = -Ft3/kt; 

        } 

        else{Ft1 = Ft2 = Ft3 = 0.0;} 

      } 

      else 

      { 

        if(heating) 

        { 

            sidata.P_diss += 

gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*sidata.vtr3); 

            if(heating_track && sidata.is_wall) cmb-

>tally_pw(gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*s

idata.vtr3),sidata.i,sidata.jtype,1); 

            if(heating_track && !sidata.is_wall) cmb-

>tally_pp(gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*si

data.vtr3),sidata.i,sidata.j,1); 

        } 

      } 

        Ft1 -= (gammat*sidata.vtr1); 

        Ft2 -= (gammat*sidata.vtr2); 

        Ft3 -= (gammat*sidata.vtr3); 

        const double Ft_shear_withdamp = sqrt(Ft1 * Ft1 + Ft2 * Ft2 + Ft3 * Ft3); 

        //double signofdirection = 

((Ft1*tangentialdirection[0]+Ft2*tangentialdirection[1]+Ft3*tangentialdirection[

2])>0) ? 1 : -1; 

        const double Ft_coulomb = xmu * fabs(sidata.Fn); 

        if (Ft_shear_withdamp > losbrechmoment*Ft_coulomb) { 

          const double ratiod = Ft_coulomb / Ft_shear_withdamp; 
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          Ft1 *= ratiod; 

          Ft2 *= ratiod; 

          Ft3 *= ratiod; 

        } 

        //############################ End of Edit 

      // forces & torques 

      const double tor1 = eny * Ft3 - enz * Ft2; 

      const double tor2 = enz * Ft1 - enx * Ft3; 

      const double tor3 = enx * Ft2 - eny * Ft1; 

      #ifdef SUPERQUADRIC_ACTIVE_FLAG 

          double torque_i[3]; 

          if(sidata.is_non_spherical) { 

            double xci[3]; 

            double Ft_i[3] = { Ft1,  Ft2,  Ft3 }; 

            vectorSubtract3D(sidata.contact_point, sidata.pos_i, xci); 

            vectorCross3D(xci, Ft_i, torque_i); 

          } else { 

            torque_i[0] = -sidata.cri * tor1; 

            torque_i[1] = -sidata.cri * tor2; 

            torque_i[2] = -sidata.cri * tor3; 

          } 

      #endif 

      // return resulting forces 

      if(sidata.is_wall) { 

        const double area_ratio = sidata.area_ratio; 
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        i_forces.delta_F[0] += Ft1 * area_ratio; 

        i_forces.delta_F[1] += Ft2 * area_ratio; 

        i_forces.delta_F[2] += Ft3 * area_ratio; 

        #ifdef SUPERQUADRIC_ACTIVE_FLAG 

                i_forces.delta_torque[0] += torque_i[0] * area_ratio; 

                i_forces.delta_torque[1] += torque_i[1] * area_ratio; 

                i_forces.delta_torque[2] += torque_i[2] * area_ratio; 

        #else 

                i_forces.delta_torque[0] = -sidata.cri * tor1 * area_ratio; 

                i_forces.delta_torque[1] = -sidata.cri * tor2 * area_ratio; 

                i_forces.delta_torque[2] = -sidata.cri * tor3 * area_ratio; 

        #endif 

      } else { 

        i_forces.delta_F[0] += Ft1; 

        i_forces.delta_F[1] += Ft2; 

        i_forces.delta_F[2] += Ft3; 

        j_forces.delta_F[0] += -Ft1; 

        j_forces.delta_F[1] += -Ft2; 

        j_forces.delta_F[2] += -Ft3; 

        #ifdef SUPERQUADRIC_ACTIVE_FLAG 

                double torque_j[3]; 

                if(sidata.is_non_spherical) { 

                  double xcj[3]; 

                  vectorSubtract3D(sidata.contact_point, sidata.pos_j, xcj); 

                  double Ft_j[3] = { -Ft1,  -Ft2,  -Ft3 }; 
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                  vectorCross3D(xcj, Ft_j, torque_j); 

                } else { 

                  torque_j[0] = -sidata.crj * tor1; 

                  torque_j[1] = -sidata.crj * tor2; 

                  torque_j[2] = -sidata.crj * tor3; 

                } 

                i_forces.delta_torque[0] += torque_i[0]; 

                i_forces.delta_torque[1] += torque_i[1]; 

                i_forces.delta_torque[2] += torque_i[2]; 

                j_forces.delta_torque[0] += torque_j[0]; 

                j_forces.delta_torque[1] += torque_j[1]; 

                j_forces.delta_torque[2] += torque_j[2]; 

        #else 

                i_forces.delta_torque[0] = -sidata.cri * tor1; 

                i_forces.delta_torque[1] = -sidata.cri * tor2; 

                i_forces.delta_torque[2] = -sidata.cri * tor3; 

                j_forces.delta_torque[0] = -sidata.crj * tor1; 

                j_forces.delta_torque[1] = -sidata.crj * tor2; 

                j_forces.delta_torque[2] = -sidata.crj * tor3; 

        #endif 

      } 

    } 

    inline void surfacesClose(SurfacesCloseData & scdata, ForceData&, 

ForceData&) 

    { 

      // unset non-touching neighbors 
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      // TODO even if shearupdate == false? 

      if(scdata.contact_flags) *scdata.contact_flags &= 

~CONTACT_TANGENTIAL_MODEL; 

      double * const shear = &scdata.contact_history[history_offset]; 

      shear[0] = 0.0; 

      shear[1] = 0.0; 

      shear[2] = 0.0; 

      shear[3] = 0.0; 

      shear[4] = 0.0; 

      shear[5] = 0.0; 

      shear[6] = 0.0; 

      shear[7] = 0.0; 

      shear[8] = 0.0; 

      shear[9] = 0.0; 

      shear[10] = 0.0; 

      shear[11] = 0.0; 

      shear[12] = 0.0; 

      shear[13] = 0.0; 

    } 

    inline void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

    inline void endPass(SurfacesIntersectData&, ForceData&, ForceData&){} 

   protected: 

    bool heating; 

    bool heating_track; 

    class ContactModelBase *cmb; 

  }; 
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} 

} 

#endif // TANGENTIAL_MODEL_DAHL_H_ 

#endif 

8.6 MatLab model for pile driving 

%run.m 

clear all 

close all 

#GUI 

soilmodel='eigen'; 

nstrokes=1; 

moledepth=0;                   %m       Actual mole depth moledepth per element 

Tipresistance=80; 

Shaftfriction=15; 

global rho_soil 

global phi_soil 

global cohesion 

global grav 

global I_D 

global KO 

%nstrokes=2;                            %number of stroke cycles 

ngrid=1;                               %Spatial grid resolution 

npoints=12*ngrid+2;                    %Number of grid points 

nplot=(npoints-2)/ngrid;               %Number of plotted elements 

sim_TIME=500e-3;                       %Simulation Time in sec for one stroke cycle 
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sim_strokecycle=5;                     %Time between two strokes 

%time_real=zeros(1,nstrokes); 

hitelement=3; %element hit by supportmass 

%Length interval: 

L_shaft=0.400;                %m  Length of mole 

deltaL=L_shaft/(npoints-3);   %m  Space interval 

%***************************************************************

******* 

%Length of support element and hammer element: 

Lsup=2e-3;%unwichtig 

Lram=0.5e-3;%unwichtig 

%Constants: 

grav=9.80665;#3.71;#9.80665;                  %m/s^2   Gravitational acceleration 

gravity=grav; 

%SOIL 

E_soil=120e6;                   %Pa      dynamic Young's modulus of loose sandy soil 

nu_soil=0.25;                  %1       Poisson ratio of loose sandy soil 

G_soil=E_soil/(2*(1+nu_soil)); %Pa      shear module of the soil 

cohesion=0; 

phi_soil=32*(pi/180); 

KO=1-sin(phi_soil); 

rho_soil=1360; 

rho_grain=2720; 

%for spherical particles e_max=1 and e_min=0.33 

e_max=1; 

e_min=0.33; 
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e_act=rho_grain/rho_soil-1; 

I_D=(e_max-e_act)/(e_max-e_min); 

phi_inter_phi_soil=atan(0.3)/phi_soil;%2/3; 

%MOLE 

E_mole=200e8;                  %Pa      Young's modulus of mole material (stainless 

steel) 

rad_mole=13.5e-3;              %m       Radius of mole 

A_mole=pi*rad_mole^2;          %m       Cross section area of mole 

alpha=60/180*pi;               %rad     Sohlneigung, tip angle 

effectiveDepth=2;%10*rad_mole;     %loose soil <10*D dense soil <20*D 

%Geometry: 

%Note: positive x-direction is from the surface into the soil! 

A_cushion=pi*rad_mole^2;      %m       Cross section area of cushion block 

L_cushion=0.0138;%deltaL;    %m       Thickness of cushion block (same as other 

elements) 

%L_cushion=deltaL;             %m       Thickness of cushion block (same as other 

elements) 

%Global parameters: 

%Spring properties 

Kf=6222;                    %N/m  Spring constant of percussion spring 

Kb=73;                      %N/m  Spring constant of support spring 

Lfu=35.00e-3;               %m    Uncompressed length of percussion spring 

Lfp=20.00e-3;               %m    Precompressed length of percussion spring 

Lfc=20.00e-3;               %m    Compressed length of percussion spring 

Lbu=108.00e-3;              %m    Uncompressed length of support spring 

Lbp=52.35e-3;               %m    Precompressed length of support spring 

Lbc=29.35e-3;               %m    Compressed length of support spring 
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%Masses: 

M_casing=276e-3;            %kg    Total mass of housing 

M_shaftsegment=M_casing/(npoints-3);     %kg    Mass of one any interior tube 

segment; 

M_tip=24e-3;%2*M_shaftsegment;           %kg    Mass of MOLE tip; 

M_ram=110e-3;                            %kg    Mass of ram (hammer) 

M_support=460e-3;                        %kg    Support mass 

%Coefficients of restitution for hammer and tube cap: 

e1=0.1; 

e2=0.1; 

%Calculate friction resistance along tube segments: 

                             %kg/m^3  Soil density 

%phi_friction=atan(0.4);%14*(pi/180);                   %rad     Angle of friction 

between soil and PEN-tube 

%tanphi=tan(phi_friction); 

sigma=zeros(1,npoints); 

tip=npoints-2; 

hammer=npoints-1; 

support=npoints; 

%Spring constants: 

    E_cushion=E_mole;             %Pa      Young's modulus of PEN-tube top element; 

    J_tip=0.5;                                   %s/m     Soil damping constant at the tip 

    J_wall=0.15;                                 %s/m     Soil damping constant along the 

moles's side wall (friction) 

K_shaftsegment=(A_mole*E_mole)/deltaL;       %N/m     Spring constant of PEN-

tube segments 
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K_cushion=(A_cushion*E_cushion)/L_cushion;   %N/m     Spring constant of 

cushion material 

check_Irho=(e_act<e_min)+(e_act>e_max); 

if check_Irho>0 

    error('Your density index is too large or too small, check your rho_soil and 

rho_grain') 

end 

    deltat=2*pi*sqrt(M_shaftsegment/(K_shaftsegment))/40;%s  Timestep 

    ntmax=round(sim_TIME/deltat);                         %Number of timesteps 

    time=(0:deltat:deltat*(ntmax));       %s Time 

%---------------------------------------Boundary conditions----------------- 

%Initial conditions: 

mass=zeros(1,npoints);      %mass in kg 

mass(npoints-1)=M_ram; 

mass(1:npoints-3)=M_shaftsegment; 

mass(npoints-2)=M_tip; 

mass(npoints)=M_support; 

% 

K=zeros(1,npoints);         % stiffness of pile 

K(1:npoints-3)=K_shaftsegment; 

K(npoints-1)=Kf; 

K(npoints)=Kb; 

K(npoints-2)=K_cushion; 

Ksoil=zeros(1,npoints-2);  %stiffness of soil 

Jsoil=zeros(1,npoints-2);  %soil damping 

Jsoil(1:npoints-3)=J_wall; 
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Jsoil(npoints-2)=J_tip; 

V=zeros(ntmax,npoints); 

D=zeros(ntmax,npoints); 

    D(1,npoints-1)=-(Lfu-Lfp); 

C=zeros(1,npoints); 

F=zeros(ntmax,npoints); 

R=zeros(ntmax,npoints); 

Z=zeros(ntmax,npoints); 

Dsoil=zeros(ntmax,npoints); 

hitforce=zeros(ntmax,1); 

hitoverlap=0; 

%moledepth_init=0.5;                           %m       Initial depth of mole upper end in 

soil 

% initialpositions=[D(1,:)',zeros(npoints,1)]; 

% for ii=2:npoints-2 

% initialpositions(ii,1)=initialpositions(ii-1,1)+deltaL; 

% end 

% initialpositions(npoints-1,1)= D(1,npoints-1)+L_shaft; 

% initialpositions(npoints,1)=D(1,npoints)+Lbu; 

% initialpositions(npoints,2)=1; 

% initialpositions(npoints-1,2)=1; 

% %plot initial conditions 

% scatter(initialpositions(:,2),initialpositions(:,1)) 

% xlim([-4, 5]) 

% set(gca,'YDir','reverse'); 

flag=0; 
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flags=zeros(npoints-3,1); 

C1max=C(npoints-2); 

C2max=hitoverlap; 

tipDepth=zeros(nstrokes,1); 

%soil layers 

layer.number_of_layers=2; 

layer.top=zeros(layer.number_of_layers,1); 

layer.bot=zeros(layer.number_of_layers,1); 

layer.rho=zeros(layer.number_of_layers,1); 

layer.phi_soil=zeros(layer.number_of_layers,1); 

layer.cohesion=zeros(layer.number_of_layers,1); 

%cohesion dry = [0 - 5000] cohesion wet = [0 - 15000] 

%cohesion wet clay = [10000 - 40000] 

%_____________user input 

layer.top(1)=11; 

layer.bot(1)=12; 

layer.rho(1)=1460; 

layer.phi_soil(1)=phi_soil; 

layer.cohesion(1)=cohesion; 

layer.e_max(1)=1; 

layer.e_min(1)=0.33; 

layer.rho_grain(1)=2720; 

layer.top(2)=15; 

layer.bot(2)=20; 

layer.rho(2)=1600; 
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layer.phi_soil(2)=phi_soil; 

layer.cohesion(2)=cohesion; 

layer.e_max(2)=1; 

layer.e_min(2)=0.33; 

layer.rho_grain(2)=2720; 

%------------------------------------------------------------- 

for il=1:layer.number_of_layers 

layer.I_D(il)=(layer.e_max(il)-(layer.rho_grain(il)/layer.rho(il)-

1))/(layer.e_max(il)-layer.e_min(il)); 

end 

check_rho=find((layer.I_D<0)+(layer.I_D>1)); 

if check_rho>0 

    error(['Your density index is too large or too small, check your rho_soil and 

rho_grain of layer ' num2str(check_rho)]) 

end 

if length(layer.top)~=layer.number_of_layers 

    error('The variable layer.number_of_layers does not correspond to the number 

of defined layers') 

end 

for stroke=1:nstrokes 

%[rho_soil_u,phi_soil_u,cohesion_u]=get_soilprop_u(moledepth+deltaL+(npoin

ts-3-1)*deltaL,layer);    %rho_soil under tip 

for i=1:npoints-3 

%    

[rho_soil_i,phi_soil_i,cohesion_i,KO_i]=get_soilprop_i(moledepth+deltaL/2+(i-

1)*deltaL,layer); 

%    sigma(i)=sigma_v(moledepth+deltaL/2+(i-1)*deltaL, layer); 

    sigma(i)=(moledepth+deltaL/2+(i-1)*deltaL)*rho_soil*grav; %ersatz 
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%    phi_inter=phi_soil_i*phi_inter_phi_soil; 

    Ru_shaftsegment(i)=Shaftfriction/(npoints-

3);%KO_i*sigma(i)*rad_mole*(2*pi)*deltaL*tan(phi_inter);    %K_0 consider 

    end; 

    tipposition=moledepth+deltaL+(npoints-3-1)*deltaL; 

%    sigma(npoints-2)=sigma_v(tipposition, layer); %flat tip 

    %trailing cable 

%Ru_shaftsegment(1)=Ru_shaftsegment(1)+moledepth*2*pi*rad_mole*sigma_

v(moledepth, layer)/2*0.1; 

    %Mohr-Coulomb criteria 

    yield_soil=sigma(npoints-3)*(1+KO)/2*sin(phi_soil)+cohesion*cos(phi_soil);                

%Pa      yield stress of the soil 

    shear_soilpile=yield_soil/10;  %Pa      shear stress at soil-pile interface 

    alpha=60/180*pi; 

    switch soilmodel 

       case 'Grundbruch nach �NORM' 

%        bearingcapacityflattip  %for layered soil just bearingcapacityflattip 

        %Qu_soil=3/4*Qu_soil; 

       case 'lokales Scherversagen nach MC' 

%        mohrcoulomb3 

        case 'Meyerhof' 

%        bearingcapacityMeyerhof 

        case 'eigen' 

        Qu_soil=Tipresistance/A_mole; 

    end 

    Ru_tip=Qu_soil*A_mole;         %N       Ultimate soil resistance at mole tip 
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    Q_tip=(1+nu_soil)/(2*E_soil)*yield_soil*rad_mole;                    %m Soil quake 

at tip calculated from material parameters  (maximal elastic ground deformation) 

    rad_disturbed=rad_mole*10;                                          %m Disturbed region 

around mole ; 

    Q_shaft=shear_soilpile/G_soil*rad_mole*log(rad_disturbed/rad_mole);  %m 

Soil quake at boundary segments calculated from material parameters 

    K_tip=Ru_tip/Q_tip;                         %N/m     Spring constant of soil at the tip 

    %end of updating soil properties 

% 

    Ksoil(npoints-2)=K_tip; 

    K_wall=zeros(1,npoints); 

    for i=1:npoints-3 

    K_wall(i)=Ru_shaftsegment(i)/Q_shaft;    %N/m     Spring constants of soil 

along shaft segments 

    end; 

    Ksoil(1:npoints-3)=K_wall(1:npoints-3); 

for n=1:ntmax           % do timestep 

    %----------------Schlag Top  Druck ist positiv 

    C(npoints-1)=(D(n,npoints) - D(n,npoints-1)); %percussion spring 

    F(n,npoints-1) = C(npoints-1)*K(npoints-1); 

    C(npoints)=(D(n,1) - D(n,npoints)+(Lbu-Lbp)); %support spring 

    F(n,npoints) = C(npoints)*K(npoints); 

    %Federn koennen nicht kuerzer als compressed length sein: 

                        if C(npoints)>(Lbu-Lbc) 

                            D(n,npoints)=D(n,1)-(Lbp-Lbc); 

                            C(npoints)=(Lbu-Lbc); 

                            F(n,npoints) = C(npoints)*K(npoints); 
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                        end 

                        if C(npoints-1)>(Lfu-Lfc) 

                            D(n,npoints-1)=D(n,npoints)-(Lfu-Lfc); 

                            C(npoints-1)=(Lfu-Lfc); 

                            F(n,npoints-1) = C(npoints-1)*K(npoints-1); 

                        end 

    for i=1:npoints-3      % calculate all mole springforces in this timestep 

      C(i) = D(n,i) - D(n,i+1); 

      F(n,i) = C(i)*K(i); 

    end; 

    C(npoints-2)=(D(n,npoints-1) - D(n,npoints-2));          %cushion spring 

(hammer-tip contact) 

    if C(npoints-2)>=0 

         m_mean1=mass(npoints-1)*mass(npoints-2)/(mass(npoints-

2)+mass(npoints-1)); 

         gamma_n1=sqrt(4*m_mean1*K_cushion/(1+(pi/log(e1))^2)); 

         F(n,npoints-2)=K(npoints-2)*C(npoints-2) - gamma_n1*(V(n,npoints-2)-

V(n,npoints-1));    %step (a)  and step (d) 

    if F(n,npoints-2)<0 

       F(n,npoints-2)=0;      %step (f) no tension of spring 

    end 

    else 

        F(n,npoints-2)=0; 

    end 

    hitoverlap=D(n,npoints)-D(n,hitelement); 

      if(hitoverlap<=0) 

        hitforce(n)=0; 
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      else 

m_mean=mass(hitelement)*mass(npoints)/(mass(hitelement)+mass(npoints)); 

            gamma_n=sqrt(4*m_mean*K_cushion/(1+(pi/log(e2))^2)); 

            hitforce(n)=hitoverlap*K_cushion - gamma_n*(V(n,hitelement)-

V(n,npoints));    %step (a)  and step (d) 

            if hitforce(n)<0 

            hitforce(n)=0;      %step (f) no tension of spring 

            end 

      end 

            %Soil resistance at tip 

       if (Dsoil(n,npoints-2)<(D(n,npoints-2)-Q_tip)) 

           Dsoil(n,npoints-2)=D(n,npoints-2)-Q_tip; 

           flag=1; 

       end 

         if flag==0 

         R(n,npoints-2)=(D(n,npoints-2)-Dsoil(n,npoints-2))*Ksoil(npoints-2)* (1 + 

Jsoil(npoints-2)*V(n,npoints-2)); 

         elseif flag==1 

         R(n,npoints-2)=(D(n,npoints-2)-Dsoil(n,npoints-2))*Ksoil(npoints-2) + 

Jsoil(npoints-2)* Ksoil(npoints-2)* Q_tip*V(n,npoints-2); 

         end 

                    if R(n,npoints-2)<0 

                        R(n,npoints-2)=0; 

                    end 

         Dsoil(n+1,npoints-2)=Dsoil(n,npoints-2);   

        %Soil resistance and plastic displacement via friction along tube 

        for i=1:npoints-3   
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            if(Dsoil(n,i)>(D(n,i)+Q_shaft)) %Routine #1  plastic displacement 

            Dsoil(n,i)=D(n,i)+Q_shaft; 

            flags(i)=1;   

            elseif(Dsoil(n,i)<(D(n,i)-Q_shaft)) 

            Dsoil(n,i)=D(n,i)-Q_shaft; 

            flags(i)=1; 

            end 

         if flags(i)==0 %linear elastic 

         R(n,i)=(D(n,i)-Dsoil(n,i))*Ksoil(i)* (1+Jsoil(i)*V(n,i)); 

         elseif flags(i)==1 

         R(n,i)=(D(n,i)-Dsoil(n,i))*Ksoil(i) + Jsoil(i)* Ksoil(i)* Q_shaft*V(n,i); 

         end     

         Dsoil(n+1,i)=Dsoil(n,i); 

        end 

%::::::::::::::::::::::::::::::::::::::::::::INTEGRATION:::::::::::::::::::::::::::::  

         Z(n,1) = -F(n,npoints)-F(n,1)-R(n,1) + gravity*mass(1); %Druckkraft ist 

positiv!! 

         for i=2:npoints-3 

          if(i==hitelement) 

          Z(n,i)=F(n,i-1)-F(n,i)-R(n,i) + hitforce(n) + gravity*mass(i); 

          else 

          Z(n,i)=F(n,i-1)-F(n,i)-R(n,i) + gravity*mass(i); 

          end 

         end 

         Z(n,npoints-2)=F(n,npoints-3)+F(n,npoints-2)-R(n,npoints-2) + 

gravity*mass(npoints-2);   %tip 
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         Z(n,npoints-1)=-F(n,npoints-2)+F(n,npoints-1) + gravity*mass(npoints-1);                 

%hammer 

         Z(n,npoints)=-F(n,npoints-1)+F(n,npoints) - hitforce(n) + 

gravity*mass(npoints);       %support mass 

        % 

        %Velocities:   

    V(n+1,:) = V(n,:) + Z(n,:)./mass*deltat; 

    D(n+1,:) = D(n,:) + deltat*V(n+1,:); 

    PotEnergy=1/2*Kf*C(npoints-1)*C(npoints-

1)+1/2*Kb*C(npoints)*C(npoints); 

    KinEnergy=1/2*M_ram*V(n,npoints-1)*V(n,npoints-

1)+1/2*M_support*V(n,npoints)*V(n,npoints); 

    TotEnergy=PotEnergy+KinEnergy; 

end 

disp('finished stroke') 

disp(stroke) 

moledepth=moledepth+D(end,npoints-2); 

tipDepth(stroke)=moledepth+L_shaft; 

end 

% plot(tipDepth,'x') 

realtime=0:3.75:3.75*nstrokes-1; 

savefile=strcat('output.mat'); 

save(savefile, 'D', 'time') 

totset=D(end,12); 

#save('-ascii','-append', 'results/results.txt','counter', 'totset') 

%plots 

plot(time,D(:,12),'linewidth',2) %tip displacements 
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hold on 

plot(time,D(:,13),'r','linewidth',2) %hammer displacements 

plot(time,D(:,14),'g','linewidth',2) %supportmass displacements 

plot(time,Dsoil(:,npoints-2),'k','linewidth',2) 

set(gca,'YDir','reverse'); 

h=legend('Tip','Soil')#,'hammer','support') 

xlabel('Time [s]','fontsize',16) 

ylabel('Displacements [m]','fontsize',16) 

grid on 

set (h, "fontsize", 14) 

set(gca, "fontsize", 12) 

xlim([0,0.14]) 

ylim([-0.005,0.006]) 

#ylim([-0.016,0.006]) 

% plot(F(:,12)) %force on tip 

% plot(Dsoil(:,1),'k') 

% hold on 

% plot(D(:,1)) 

plot(f04reibung.time,f04reibung.D(:,12),'linewidth',2) 

hold on 

set(gca,'YDir','reverse'); 

plot(f03reibung.time,f03reibung.D(:,12),'r','linewidth',2) 

plot(f02reibung.time,f02reibung.D(:,12),'g','linewidth',2) 

plot(f01reibung.time,f01reibung.D(:,12),'k','linewidth',2) 

%plot(f00reibung.time,f00reibung.D(:,12),'c','linewidth',2) 
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legend('\mu_{inter}=0.4','\mu_{inter}=0.3','\mu_{inter}=0.2','\mu_{inter}=0.1') 

xlabel('Time [s]') 

ylabel('Displacements [m]') 

 


