
Martin Winter

Fully-dynamic aimGraph

Efficient memory management and algorithmic validation

of a dynamic graph framework on GPUs

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dr.techn. Markus Steinberger

Institute for Computer Graphics and Vision

Univ.-Prof. Dr.techn. Dieter Schmalstieg

Institute for Computer Graphics and Vision

Graz, Austria, Nov. 2017

Abstract

In this thesis a new, dynamic graph data structure for the Graphics Processing Unit (GPU)

is presented. It is built to deliver high update rates while keeping a low memory footprint

using autonomous memory management directly on the GPU.

The data structure is fully-dynamic, allowing not only for edge but also vertex updates.

By transferring the memory management to the GPU, efficient updating of the graph

structure and fast initialization times are enabled as no additional kernel calls or realloca-

tion procedures are necessary since they are handled directly on the device. Edge updates

can either be performed sequentially or concurrently due to the exclusive access policy

enforced for adjacency data.

In comparison to previous work, our optimized approach allows for significantly lower

initialization times (up to 300x faster for tested graphs) and much higher update rates

for significant changes (up to 30x faster for tested graphs) to the graph structure and

about equal rates for small changes. Furthermore, building on a queuing scheme, cur-

rently unused memory can be returned to the memory manager, further reducing the

memory requirements. The framework provides different update implementations tailored

specifically to different graph properties. This enables over 100 million edge updates per

second and permits keeping tens of millions of vertices and hundreds of millions of edges in

memory without transferring data back and forth between device and host. We evaluate

algorithmic performance using a PageRank and a static triangle counting implementa-

tion. Due to their use in a multitude of problem domains, dynamic graphs structures

are becoming increasingly important. The presented framework allows users to efficiently

operate and work with such massive graphs, harnessing the massively parallel compute

capabilities of modern GPUs, at an affordable price compared to their High-Performance

Computing (HPC) cluster counterparts.

Keywords. GPGPU, dynamic graphs, independent memory management, graph algo-

rithms

iii

Kurzfassung

Diese Arbeit präsentiert eine neue Datenstruktur auf der GPU zur Repräsentation von

dynamischen Graphen. Der Fokus liegt dabei auf hohen Änderungsraten sowie einem

geringen Speicherverbrauch mit unabhängigem Speichermanagement direkt auf der GPU.

Die Datenstruktur ist dabei voll dynamisch, somit können nicht nur Kanten hinzugefügt

bzw. gelöscht werden, selbiges funktioniert auch mit Knoten.

Durch das Verschieben des Speichermanagements auf die GPU werden das

effiziente Aktualisieren der Graphstruktur sowie schnelle Initialisierungszeiten

ermöglicht, denn dadurch entfallen zusätzliche Kernel-Aufrufe sowie zusätzliche

Re-Allokierungsprozeduren. Das Aktualisieren von Kanten kann sowohl sequentiell als

auch parallel ablaufen, da durch das Absperren der Kantenspeicherbereiche der exklusive

Zugriff gewährt wird.

Verglichen mit vorheriger Arbeit kann dieser optimierte Zugang zu Graphverwaltung auf

der GPU viel geringere Initialisierungszeiten (bis zu 300 mal schneller) bieten sowie

größere Aktualisierungsraten bei größeren Änderungen (bis zu 30 mal schneller für

getestete Graphen) an der Graphenstruktur und annähernd gleiche Raten bei kleinen

Änderungen.

Ungenützter Speicher kann außerdem wieder an den Speichermanager übergeben

werden. Hier wird ein Queuing-Verfahren genutzt um Indizes zu speichern und

wiederzuverwenden. Das Framework bietet unterschiedliche Aktualisierungsmethoden

an, welche speziell auf unterschiedliche Grapheigenschaften ausgelegt sind.

Dadurch können (bei den getesteten Graphen) mehr als 100 Millionen Aktualisierungen

pro Sekunde ermöglicht werden sowie mehr als 10 Millionen Knoten und mehrere 100

Millionen an Kanten gleichzeitig im Speicher gehalten werden. Zwei Algorithmus-

Implementierungen (PageRank und static triangle counting) sind vorhanden um

algorithmische Leistungsfähigkeit zu demonstrieren.

In der heutigen Zeit existieren immer mehr Problemstellungen, welche dynamische

v

vi

Graphen nutzen um wichtige Metriken und Kennzahlen zu berechnen. Die vorgestellte

Arbeit ermöglicht es dem Benutzer, effizient mit großen Graphen zu arbeiten und dabei

die massiv parallelen Fähigkeiten moderner GPUs zu nutzen. All das, verglichen mit

HPC Clustern mit mehreren Central Processing Unit (CPU)s, zu einem vergleichsweise

leistbaren Preis.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis dissertation.

Date Signature

Acknowledgments

First and foremost I would like to thank Ass.Prof. Dr.techn. Markus Steinberger, who

was my advisor on this thesis. I am especially grateful to be given the opportunity to

independently work on this big project. Not only did he frequently offer helpful advise and

continued to support me in all situations when working on this thesis, he also gave me the

opportunity to develop the project in major parts independently, exploring new directions,

approaches and avenues on my own. In weekly meetings we discussed the progress and

the outlook and it was an incredible joy working with and for him. But I also am grateful

for his incredible dedication to his job, always reachable (even on weekends) and always a

few tips or some words of encouragement in line. Nothing better could have happened to

me when I decided to apply for a topic in early 2017, getting such a knowledgeable and

caring advisor made this work possible in the first place.

I would also like to extend my gratitude to both Markus and Univ.-Prof. Dr.techn. Dieter

Schmalstieg for giving me the opportunity to travel to Germany and to Boston, to present

the results of my master’s project at an international conference which not only was

interesting but also rewarding, as the paper received a ”Best Student Paper” award in the

end.

I also have to thank my long time friends from university, Daniel Freßl, Thomas Neff and

Thomas Pichler, not only did I spend most of my time at the university with them in the

last 5 years, working on assignments, lunching at a near diner, having fun, they also were

a source of encouragement and always provided help for my master thesis and project.

I also want to thank my family, starting with my parents Gerlinde and Walter, who always

supported and encouraged me to strive for the best and make the best of every day. Their

support allowed me to make the decision to switch my studies after the first year, which

definitely was a great idea in retrospect and also focus on my studies without the need

to earn a lot of money to sustain every day life. And also my brother Andreas and sister

Anna, who both brought so much joy to my life and I can depend on in every situation,

ix

x

both incredible, young people.

And last but not least, I’d like to thank my girlfriend Vera, who endured my working long

hours, often on the weekend, constantly not having enough time to spend with her. She

supported me in everything I did in the last years and if I worked too much or something

did not go according to plan, she was always there to put me back on my feet, but also

when everything was going right, she shared my joy. She is a huge inspiration to me and

every second we spend together gives me so much joy and strength, this work also would

not have been possible without her.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 3

1.3 Graphs . 4

1.3.1 Graph types . 5

1.3.2 Scope of application . 5

2 Related Work 7

2.1 Static Graph Frameworks on the GPU . 7

2.2 Dynamic Graph Frameworks on the GPU 8

2.2.1 cuSTINGER . 8

2.3 Algorithms . 10

2.3.1 Triangle Counting . 11

2.3.2 PageRank . 11

3 aimGraph 13

3.1 Memory Layout . 14

3.1.1 Memory Manager . 14

3.1.2 Vertex Data . 15

3.1.3 Edge Data . 16

3.1.3.1 Edge Types . 17

3.1.4 Temporary data . 18

3.1.5 Queues . 18

3.2 Initialization . 19

3.3 Graph Types . 19

3.4 Edge Insertion . 20

xi

xii

3.5 Edge Deletion . 21

3.6 Vertex Insertion . 22

3.7 Vertex Deletion . 24

4 Memory Management 27

4.1 Fully dynamic updates . 28

4.2 Concurrent updates . 28

4.3 Efficient memory management . 28

4.3.1 Efficiency Comparison . 29

4.3.1.1 Uniform Updates . 29

4.3.1.2 Sweep Updates . 30

4.3.1.3 Random Updates . 30

5 Comparison to cuSTINGER 35

5.1 Memory footprint . 36

5.2 Initialization . 36

5.3 Edge Updates . 36

5.3.1 Concurrent Updates . 37

5.4 Vertex Updates . 37

6 Performance 39

6.1 Initialization . 40

6.2 Edge insertion . 42

6.2.1 Overallocation . 43

6.3 Edge Deletion . 44

6.4 Overall performance . 45

6.5 Concurrent Updates . 46

6.6 Vertex Insertion . 47

6.7 Vertex Deletion . 47

7 Algorithms 51

7.1 Work-Balance Preprocessing . 51

7.2 Algorithm Performance . 53

7.2.1 Static Triangle Counting - STC . 53

7.2.1.1 Discussion . 55

7.2.2 PageRank . 55

7.2.2.1 Discussion . 56

8 Conclusion & Future Work 57

8.1 Conclusion . 57

8.2 Future Work . 58

xiii

A List of Acronyms 61

B List of Publications 63

B.1 2017 . 63

Bibliography 65

List of Figures

1.1 CPU hardware model compared to GPU hardware model [13] 2

3.1 Visualization of the device memory layout as managed by the memory man-

ager . 13

3.2 Visualization of a vertex management data structure, mandatory properties

are shaded . 15

3.3 Visualization of a page and edge data structure using the Array of Struc-

tures (AOS) approach, mandatory properties are shaded. The last 4 Bytes

on a page are reserved to hold the next page index 16

3.4 Visualization of a page and edge data using the Structure of Arrays (SOA)

approach. The last 4 Bytes on a page are reserved to hold the next page

index . 17

3.5 Visualization of an index queue with front and back pointer 18

4.1 Page allocation count over 100 update iterations with uniform update strat-

egy. Both approaches grow as insertion is more likely, but the queuing

approach grows slower. 31

4.2 Page allocation count over 100 update iterations with sweep update strat-

egy. The queuing approach can return empty pages once the insertions

target different sections. 32

4.3 Page allocation count over 100 update iterations with random update strat-

egy. Over time the queuing approach uses less memory compared to the

standard approach. 33

6.1 Performance measurement for edge insertions, using a batch size of 100.000

and 1.000.000, showing cuSTINGER compared to the best aimGraph

implementation . 42

xv

xvi LIST OF FIGURES

6.2 Vertex Insertion with batchsize 1.000.000, cuSTINGER is depicted with

different overallocation factors (50%, 25%, 15% and 5%), the numbers in

the bars represents the average number of additional elements allocated per

adjacency with this factor . 43

6.3 Performance measurement for edge deletions, using batch size 100.000 and

1.000.000, showing cuSTINGER compared to the best aimGraph imple-

mentation . 44

6.4 Performance comparison between sequential edge insertion and deletion and

concurrent updates for a batchsize of 100.000 46

6.5 Vertex insertion for batchsizes 1.000 — 10.000 — 100.000 48

6.6 Vertex insertion for batchsizes 1.000 — 10.000 — 100.000 48

6.7 Vertex deletion in an undirected graph for batchsizes 1.000 — 10.000 —

100.000 . 49

6.8 Vertex deletion in an undirected graph for batchsizes 1.000 — 10.000 —

100.000 . 49

6.9 Vertex deletion in a directed graph for batchsizes 1.000 — 10.000 — 100.000 50

6.10 Vertex deletion in a directed graph for batchsizes 1.000 — 10.000 — 100.000 50

7.1 Visualization of the overhead introduced by work balancing, bars represent-

ing the pages allocated in memory for the given graph, the line represents

the time needed for the work balancing . 52

7.2 Comparison between three different implementations for aimGraph (naive,

balanced and warpsized), cuSTINGER, CSR as well as the performance

ratio of cuSTINGER to the best aimGraph implementation. 53

7.3 Comparison between three different implementations for sorted aimGraph

(naive, balanced and warpsized), cuSTINGER, CSR as well as the perfor-

mance ratio of cuSTINGER to the best sorted aimGraph implementation. 54

7.4 PageRank Calculation Performance comparison 56

List of Tables

5.1 Feature comparison between cuSTINGER and aimGraph 35

6.1 Graphs used for performance measurement 40

6.2 Initialization time in ms for aimGraph and cuSTINGER 40

6.3 Performance comparison for aimGraph and cuSTINGER including over-

all performance . 45

xvii

1
Introduction

Contents

1.1 Motivation . 1

1.2 Outline . 3

1.3 Graphs . 4

1.1 Motivation

In today’s world, large, ever-changing data structures are in common use and dynamic

graphs are used to represent a multitude of problem domains, including

• Communication network,

• Social-Media network,

• Biological network,

• Intelligence network

As modern graphics cards become ever more ubiquitous and comparatively inexpensive,

massively parallel computing devices are available to deal with problems posed in such

large-scale domains.

The need to turn to massively parallel architectures like the GPU also has its root in

limitations of the hardware. In the past, it was expected that every new hardware gener-

ation increases its clock speed and transistor count. But, while the transistor count keeps

growing exponentially, the clock speed has hit the so-called power wall [18]. This means

that clock speed cannot increase or even decreases with a higher transistor count due to

power and thermal limitations. Consequently, a significant speed-up is only possible by

exploiting parallelism in algorithms. This is especially true as newer generations of GPUs

1

2 Chapter 1. Introduction

spend their increased transistor count on more and more processing cores.

In general, the GPU has gained a lot of traction outside the computer graphics market as

a general purpose processor. The programming model is tailored to the underlying hard-

ware architecture, which works as a Single Instruction - Multiple Data (SIMD) processor.

This is one of the reasons why the GPU is well suited to deal with problems with high

data parallelism.

High data parallelism refers to problem domains where a lot of identical work has to be

performed on large sets of data. As graphs are increasing in size, data parallelism increases

subsequently as well.

Figure 1.1: CPU hardware model compared to GPU hardware model [13]

Furthermore, the throughput-oriented architecture of the GPU fits the graph domain very

well. The GPU works with thousands of threads, drawing from comparatively small caches

and relying on much simpler control logic compared to the CPU, as can be seen in Figure

1.1. But since most algorithms and management work on graphs comprises of simple op-

erations that have to be performed on millions of objects, this highlights the benefits of

the GPU as a general purpose processor.

The advantages of the GPU are already utilized in many different static graph libraries

and algorithms take advantage of this massive parallelism. However, most deal only with

the static use case as performance on the GPU is predicated on optimization. This means

being able to manage thread divergence, memory locality and optimal work distribution,

which becomes highly difficult in a dynamic use case, where the memory layout and work

effort are changing all the time.

In a dynamic setting there exist currently two different frameworks (as of writing this

thesis), cuSTINGER[8] and a previous version of aimGraph [21]. Both frameworks are

partially dynamic, utilising static vertex management data and offering update function-

ality for edge data only.

1.2. Outline 3

1.2 Outline

In this thesis we present an agile and fast, dynamic graph solution on the GPU with low

memory requirements and autonomous memory management. The presented framework

is fully dynamic, hence it allows for both vertex and edge updates.

Our current implementation uses the Compute Unified Device Architecture (CUDA) [13]

programming language, but could also be implemented using Open Computing Language

(OpenCL) [10]. The proposed solution is built from the ground up to achieve maximum

performance on the GPU, allocating the free device memory upfront with a single call to

cudaMalloc() in the beginning and managing all device memory directly on the GPU.

Dynamic memory used for adjacency data is managed using variable-size pages, free vertex

and page indices are stored in respective queues for later re-use. This alleviates individual

reallocation calls needed to increase dynamic memory for individual vertices in the updat-

ing stage. Furthermore, it allows the framework to perform insertions and deletions with

a single kernel call respectively for edge updates.

The same is true for vertices, but here additional kernel calls are used for maintenance

work. The host just provides update data to the framework and the update procedure is

handled independently on the GPU. An added benefit of this methodology, in addition to

alleviating additional management interventions from the host, is the fact that users do

not need to care about memory management themselves. The system provides not only a

mechanism to hold and update the graph data structure on the GPU, but also the ability

to place temporary data (e.g. edge updates, algorithmic data) on the device without the

need to allocate or free this memory segment later on. Requesting a new area of memory

is as simple as requesting a pointer to a provided block of memory.

The general memory layout is tailored to the architecture of the GPU, providing a

vertex management segment at the beginning of the device memory that even allows

locking on a per-vertex basis, if so required. This vertex management data is stored in an

AOS approach as even the vertex management data is dynamic. Vertices can be allocated

from the memory manager or returned to it to be placed in a queue.

The adjacency per vertex itself is stored in a combination of an edge block array and

an edge block list on pages in memory. The actual memory layout can both represent an

AOS as well as an SOA approach. The right choice depends on the access characteristics

of the task at hand. The page size is flexible and can be tailored to the specific graph

application, with smaller pages reducing the memory overhead and larger pages reduc-

ing traversal overhead. This paging approach allows for efficient memory access within

a block but retains the flexibility to resize the adjacency with little overhead in case of

reallocation.

The framework currently provides three different semantic modes for graphs. This permits

options to include weight, type and timestamp information into the structure, enabling

greater expressiveness at the cost of higher memory requirements. Depending on graph

properties (like the average degree per vertex), different update implementations are pro-

4 Chapter 1. Introduction

vided that are optimized for the different properties. If the average size of an adjacency

per vertex is small, a different update algorithm performs better when compared to large

adjacencies. These optimizations can be adjusted by the user depending on the use case,

different update strategies can also be mixed and matched for insertion and deletion or

consecutive calls.

Building upon a queuing approach for both page and vertex indices, the framework has the

flexibility to not only increase the memory requirements during run-time but also free up

unneeded memory. This contributes further to the low memory requirements, especially

over time, as graphs may grow and shrink back in certain regions in a long term use case.

The framework is also thoroughly evaluated using different edge and vertex update strate-

gies. Additionally, two algorithm implementations are provided that show the suitability

of the framework even for memory-intensive algorithms.

1.3 Graphs

Before diving into the actual description of the framework, a few fundamental terms are

examined to provide context in terms of notation and vocabulary.

A graph G is a structure used to represent objects that may form a pair-wise relationship.

The objects are typically referred to as vertices (also nodes) and a relationship between

two vertices is called an edge. Each edge consists of exactly two elements from the set of

all vertices V .

Hence, we can define a graph G as the set of all vertices V and set of all edges E, given as

G = (V,E) (1.1)

There exist various forms of graphs, including (a few relevant to this thesis)

• Undirected graph:

Edges do not have an orientation (e.g. edge (x, y) is identical to (y, x) for vertices

x, y ∈ V)

• Directed graph:

Edges have an orientation (e.g. edge (x, y) is different from (y, x) for vertices x, y ∈
V)

• Simple graphs:

Undirected graph, multiple edges and loops are disallowed

• Weighted graph:

Edges and/or vertices are assigned a number, referred to as a weight

Following the same idea of weighted graphs, it is also possible to assign more and

different properties to vertices and/or edges. These are referred to as semantic graphs

in this thesis, the number and kind of properties can vary depending on the application.

1.3. Graphs 5

1.3.1 Graph types

Different application domains require different graph types, these include

• Static graph:

A static graph is set up and does not change after the initialization

• Streaming graph:

A streaming graph is set up initially but can be updated over time by inserting new

edges and/or vertices, changes arrive as a stream of updates

• Dynamic graph:

Similar to a streaming graph, but here updates are typically released as batches

onto the graph structure

This thesis focuses especially on dynamic graphs, as this definition also includes stream-

ing graphs by simply batching up an incoming update stream.

1.3.2 Scope of application

Graphs are used in a multitude of different application domains.The list below includes a

few that benefit from dynamic graphs

• Communication networks

– Vertices can be mobile devices in the network with the connections between

devices or cell towers represented by edges

• Social-Media networks

– Vertices may represent people with edges representing friend relationships be-

tween individuals or groups

• Biological networks

– Modelling Protein-Protein Interaction (PPI), vertices represent proteins and

edges the actual interactions between proteins

• Intelligence networks

– Vertices may represent players in such a network with edges representing the

interaction between players

and many more. Such application domains change frequently and also require high update

rates to be feasible.

2
Related Work

Contents

2.1 Static Graph Frameworks on the GPU 7

2.2 Dynamic Graph Frameworks on the GPU 8

2.3 Algorithms . 10

This section introduces related work in the area of graph frameworks, both static and

dynamic, as well as a few algorithms of interest.

2.1 Static Graph Frameworks on the GPU

There is a variety of static graph data structures available on the GPU, including

• nvGraph

– nvGraph[12] (NVIDIA Graph Analytics library) offers implementations of

three different, widely-used algorithms, supporting up to 2 billion edges (us-

ing a NVIDIA Tesla M40 with 24 GBs of VRAM). The three algorithms are

page rank, single source shortest path as well as single source widest path on the

GPU and is freely available as part of the CUDA toolkit.

• GasCL

– GasCL[4] represents a vertex-centric graph model on the GPU. It is built using

OpenCL, supporting the ”think-like-a-vertex” programming model.

• BlazeGraph

– BlazeGraph[19] offers a high-performance graph database, using its own

domain-specific language, DASL, to implement advanced analytics with

high-level functionality.

7

8 Chapter 2. Related Work

• BelRed

– BelRed[5] addresses the problem that significant manual effort is required for

users to build graph application on the GPU. This is done by offering a library

of software building blocks which can be used to build graph applications on

the GPU.

• Gunrock

– Gunrock[20] is a CUDA library for graph processing using highly optimized

operators for graph traversal while achieving a balance between performance

and applicability to a wide range of problems.

2.2 Dynamic Graph Frameworks on the GPU

2.2.1 cuSTINGER

cuSTINGER[8] is a new graph data structure focussing on dynamic graphs and

represents a GPU implementation of STINGER.

Spatio-Temporal Interaction Networks and Graphs Extensible Representation

(STINGER)[1] is a high performance data structure designed for efficient handling of

dynamic graphs. It uses a blocked linked list approach to store the adjacency data per

vertex. In its advancement, GTSTINGER[7], an internal memory manager is used for

allocating such edge blocks to the individual vertices. GTSTINGER shows that high

update rates are possible on the CPU, outperforming several leading graph databases,

including shared and distributed-memory based approaches.

cuSTINGER addresses the key issues of the STINGER data structure on the GPU,

switching from edge block lists to edge block arrays, interleaving the vertex management

data and allocating individual edge block arrays as a whole.

The initialization process occurs on the host by allocating individual arrays for the

individual properties of the vertices, representing the static vertex management data,

organised in a SOA way.

After initialization, the adjacency for each vertex is allocated from the host and the

adjacency data is copied over to the device. The general memory layout bears similarities

to the Compressed Sparse Row (CSR) format in the way edges are stored in edge arrays,

similar to the adjacency array of CSR. The difference stems from the fact that individual

properties are stored in a SOA fashion as this offers better aligned memory access if just

a single feature is required. Different meta-data modes are provided to represent different

graph types

• Simple: This mode stores the bare graph structure using just the destination vertex

in the edge data array

• Weights: This mode adds the support for weights to the simple mode

2.2. Dynamic Graph Frameworks on the GPU 9

• Semantic: Additionally to weights, this mode adds support for type information

and also two timestamps per edge, which increases the size required per edge signif-

icantly

cuSTINGER offers a single update implementation which is based on starting warpsized

(32 threads) blocks for concurrent adjacency access, but this approach suffers from low

occupancy. Additionally, for small to medium sized adjacencies (≤ 50 vertices per adja-

cency), this leads to an unnecessarily large number of stalling threads per update.

Furthermore, the management data structures are unnecessarily large and contribute to

the significant memory usage. As memory management is primarily performed on the

CPU, reallocation becomes a significant performance factor. The device can only set flags

if reallocation is required. The actual management then is performed sequentially on the

host, with sequential calls to cudaMalloc() and cudaMemCpy().

cuSTINGER tries to deal with this issue by over-allocating 50% more edges per adja-

cency (and also over-allocate with each reallocation). This helps in the beginning or for

small update batches, but hampers performance especially in continuous mode or for large

update batches. Additionally, this places tighter restrictions on the size of graphs, as this

over-allocation becomes significant for larger graphs with a large number of vertices.

10 Chapter 2. Related Work

2.3 Algorithms

Managing graphs on the GPU is one thing, but most of the time not just the pure rep-

resentation is desirable. A requirement in a certain problem domain may be to efficiently

derive different metrics using algorithms. There exist various kinds of algorithms oper-

ating on graphs that report on graph properties or analyse different metrics in a graph,

including

• Triangle Counting

– Is mainly used as a building block to find the clustering coefficients, counts

triangles within a graph, a triangle in an undirected graph G = (V,E) is given

as

x, y, z ∈ V, (x, y), (y, z), (x, z) ∈ E ⇒ (x, y, z)triangle (2.1)

• PageRank

– Used to rank websites in search results for Google by counting number and

quality of links to a page

• Connected Components

– Finds subgraphs within a graph, where each vertex has a path to other vertices

within the subgraph, but not within the supergraph

• Single-source shortest path

– Tries to find a path between two vertices such that the sum of weights of the

edges along the path is minimized

• Betweeness centrality

– Is a measure of centrality in a graph based on shortest paths

• Community detection

– Communities (or clusters) are groups of vertices with a higher probability of

being connected with members of their group, compared to vertices outside of

their group

This thesis will focus on the first two algorithms to validate the algorithmic perfor-

mance of aimGraph, both are described in more detail in the following two paragraphs.

2.3. Algorithms 11

2.3.1 Triangle Counting

Triangle counting in a graph is a useful metric, mainly used to measure how connected a

vertex is within a graph. Typically it is used as a building block for clustering coeffi-

cients, which is a widely used social network analytic for finding key players in a network

based on their local connectivity.

A triangle in an undirected graph G = (V,E) is given as

x, y, z ∈ V, (x, y), (y, z), (x, z) ∈ E ⇒ (x, y, z)triangle (2.2)

The global clustering coefficients hence can be defined as the sum of the ratios of the

number of triangles over all possible triangles

CCglobal =
1

|V |
∑
v∈V

tri(v)

deg(v) · (deg(v)− 1)
(2.3)

so the local clustering coefficient per vertex v is defined as

CClocal(v) =
tri(v)

deg(v) · (deg(v)− 1)
(2.4)

2.3.2 PageRank

PageRank[3] is an algorithm developed by and named after Larry Page, one of the founders

of Google. It offers a way of measuring the importance of web pages according to the

number (and also quality) of links to each page. This assumes that important websites

are more likely to be linked to by other sites.

It assigns a weight to each site E, referred to as the PageRank P (E). Compared to

other similar algorithms, PageRank does not count all links equally and normalises by the

number of links on a page.

The formal definition is given as (assuming we consider Page A that is linked to by pages

B,C, and D, L(B) denotes the number of out-bound links of page B and d is a dampening

factor that tries to model how likely a person is to continue clicking on a link):

PR(E) = (1− d) + d ·

(
PR(B)

L(B)
+

PR(C)

L(C)
+

PR(D)

L(D)

)
(2.5)

3
aimGraph

Contents

3.1 Memory Layout . 14

3.2 Initialization . 19

3.3 Graph Types . 19

3.4 Edge Insertion . 20

3.5 Edge Deletion . 21

3.6 Vertex Insertion . 22

3.7 Vertex Deletion . 24

In the following section we sketch the design and general idea behind aimGraph

(autonomous, independent management of dynamic Graphs on the GPU) and focus on

the initial memory setup and layout, the update implementations as well as performance

relevant optimizations. This section is followed by a comparison to cuSTINGER, a look

at performance differences and memory management optimisations as well as an evaluation

using different algorithms.

Figure 3.1: Visualization of the device memory layout as managed by the memory manager

13

14 Chapter 3. aimGraph

3.1 Memory Layout

aimGraph initializes the system with a single GPU memory allocation, the size of this

memory block is configurable, shown in Figure 3.1. This can encompass as much memory

as is freely available on the device or leave memory available for other applications. All

other necessary allocation calls are handled internally on the device by requesting memory

from the memory manager. Memory is managed using a simple memory manager, which is

initialized on the CPU (setting up the edge mode, the block size, kernel launch parameters,

etc.) and then placed at the beginning of the large block of memory previously allocated

on the device.

It holds a pointer to the beginning and end of the allocated device memory as well as

offsets for the stack and queues. Additionally, it also stores all the necessary management

data and provides access to the queuing structures holding usable vertex indices or free

page indices. Using this autonomous memory management approach, the framework can

facilitate all dynamic memory needs directly on the GPU. This significantly reduces the

run-time overhead by removing all individual allocation calls from the host.

Calls that otherwise would have been performed sequentially from the CPU can now be

parallelised directly on the GPU using atomic access to management variables or the

respective queues.

Earlier versions of this project [21] offered a similar approach, comparable to traditional

memory management as seen in CPU C/C++ programs. Static data was placed at the

bottom, the dynamic area was placed right after the static data, while the temporary data

on the stack grew from the top downwards.

This has been superseded by the fully-dynamic memory model, as now even vertices

are considered dynamic and can be inserted/removed from the graph structure. Now even

the vertex management data structures build on an AOS approach. Additionally, queuing

structures are introduced capable of holding free vertex or page indices to allow for more

efficient memory management.

3.1.1 Memory Manager

The memory manager is the central management unit on the GPU. It is allocated first

from the host and takes over control over the allocated block of memory. For this use

it is placed directly at the beginning of this large block. As such the memory manager

can be passed to kernel calls on the GPU and provide access to the different memory

regions as it holds all the necessary memory management information required to place

vertices and edges in memory. Furthermore, it also includes graph properties like number

of vertices/edges in memory, number of free pages and much more.

3.1. Memory Layout 15

3.1.2 Vertex Data

This is an area that was completely redesigned starting from an earlier version [21]. Pre-

viously, vertex management data was considered static, similar to cuSTINGER[8], and

individual vertex properties were stored in adjacent arrays in memory.

device memory

m
em
_m
an

pa
ge
 0
4

pa
ge
 0
3

pa
ge
 0
2

pa
ge
 0
1

pa
ge

qu
eu
e

ve
rt
ex

qu
eu
e

st
ac
k

ve
rt
ex
 0
1

ve
rt
ex
 0
2

ve
rt
ex
 0
3

ve
rt
ex
 0
4

lock memory
index neighbours capacity weight

optional
type
optional

vertex

Figure 3.2: Visualization of a vertex management data structure, mandatory properties are
shaded

To make this graph structure fully-dynamic and allow for vertices to be inserted/deleted

from the structure, this approach switches from a SOA approach to an AOS approach.

This enables the dynamic placement of vertices at a free position or at the end of the array

and deletion also poses no problem. Free vertex positions can be placed in the vertex

queue to be reused later by a subsequent vertex insertion procedure. This dynamic area

is placed memory-aligned right after the memory manager, each structure holds a certain

set of parameters (some of them optional).

The parameters in question are

• lock: Algorithms/Updates can restrict access to individual vertices using this lock,

also used for concurrent updates to adjacency

• memindex: Holds the page index of the first page, where the adjacency data starts

• neighbours: Holds the number of neighbours in the adjacency

• capacity: Holds the maximum number of neighbours in the adjacency with the

current page allocation

• weight(optional): A weight can be assigned to each vertex

16 Chapter 3. aimGraph

• type(optional): A type can be assigned to each vertex

3.1.3 Edge Data

The edge data segment remains the same in functionality but changes its position and

directionality of growth compared to the previous release. Now it grows from top to

bottom, starting right after the stack area, hence vertex and edge data grow towards each

other.

Two different memory layouts are provided. If multiple properties per edge are required,

the AOS approach, as shown in Figure 3.3, provides better memory access characteristics.

On the other hand, if just a single property is needed, using SOA, as shown in Figure 3.4,

is advantageous. For simple graphs, both approaches are identical.

device memory

m
em
_m
an

pa
ge
 0
4

pa
ge
 0
3

pa
ge
 0
2

pa
ge
 0
1

pa
ge

qu
eu
e

ve
rt
ex

qu
eu
e

st
ac
k

ve
rt
ex
 0
1

ve
rt
ex
 0
2

ve
rt
ex
 0
3

ve
rt
ex
 0
4

ed
ge
da
ta
 0
1

ed
ge
da
ta
 0
2

ed
ge
da
ta
 0
3

ed
ge
da
ta
 0
4

ed
ge
da
ta
 0
5

ed
ge
da
ta
 0
6

ed
ge
da
ta
 0
7

ed
ge
da
ta
 0
8

ed
ge
da
ta
 0
9

ed
ge
da
ta
 1
0

ed
ge
da
ta
 1
1

ed
ge
da
ta
 1
2

ne
xt
 p
ag
e

in
de
x

page

edgedata

destination weight
optional

type
optional

timestamp 01
optional

timestamp 02
optional

Figure 3.3: Visualization of a page and edge data structure using the AOS approach, mandatory
properties are shaded. The last 4 Bytes on a page are reserved to hold the next page index

3.1. Memory Layout 17

device memory

m
em
_m
an

pa
ge
 0
4

pa
ge
 0
3

pa
ge
 0
2

pa
ge
 0
1

pa
ge

qu
eu
e

ve
rt
ex

qu
eu
e

st
ac
k

ve
rt
ex
 0
1

ve
rt
ex
 0
2

ve
rt
ex
 0
3

ve
rt
ex
 0
4

destination weight optional type optional timestamp01 optionaltimestamp02 optional

ne
xt
 p
ag
e

in
de
x

page

Figure 3.4: Visualization of a page and edge data using the SOA approach. The last 4 Bytes on
a page are reserved to hold the next page index

3.1.3.1 Edge Types

• Simple: This mode stores the bare graph structure using just the destination vertex

• Weights: This mode adds the support for weights to the simple mode

• Semantic: Additionally to weights, this mode adds support for type information

and also two timestamps per edge

Edge data is managed in pages, the page size depends on the application and the size of

individual edge data structures. Each page stores adjacency data and uses the last 4 Bytes

to indicate the location of the following page. This makes this approach a combination of

a linked list and an adjacency array and allows for memory locality for vertices within an

array. At the same time, this strategy avoids reallocation of the whole page if augmenta-

tion is required. Another page can be allocated by simply updating the index at the end

of the last page per adjacency. Pages can also be deallocated by simply returning such a

page index to the page queue.

For a simple adjacency, storing just the destination vertex, 64 Bytes suffice to hold in-

formation for 15 edges per page. For semantic graphs, a larger page size is chosen to

accommodate more vertices per page. Additionally, different update mechanisms profit

from different memory block sizes. Depending on the update strategy and the average size

of the adjacency per vertex, the page size is tuned to strike a balance between performance

and memory footprint.

In the initialization step, even this adjacency data can be set up with maximum parallelism

using an exclusive prefix scan to determine the memory requirements for each adjacency

list in a pre-computation step.

18 Chapter 3. aimGraph

3.1.4 Temporary data

In the initialization phase, but also for updating the graph and algorithms running on the

graph, additional temporary data may be required. This can be for example edge updates

(consisting of source and destination vertex data) or an array holding the triangle count

per vertex to calculate the overall triangle count within a graph structure. Temporary

data allocation has also changed significantly compared to the last revision [21]. On the

one hand there is the stack data area of fixed size, as can be seen in Figure 3.1, on the

other hand there is also dynamic area growing from the bottom.

The memory manager holds a stack pointer pointing to a specific position in allocated

memory (right before the two queuing structures). It can use this pointer to deal out

shares of this memory to algorithms or for pushing updates to the graph structure. On

the other hand, if the vertex management data does not change for a certain operation

on the framework (like for simple edge insertion/deletion or algorithms), data can also be

placed directly after the last vertex data structure in memory. This can help reduce the

pre-set size of the stack, as this area is fixed in size with the new memory layout. Keeping

this area as small as possible is crucial to keep the memory footprint as small as possible.

3.1.5 Queues

To enable efficient memory management, allowing the framework to return empty page or

vertex indices to the system, index queues are introduced.

Figure 3.5: Visualization of an index queue with front and back pointer

As shown in Figure 3.5, the queue is set up with a fixed size and acts like a ringbuffer.

Hence indices are calculated using the modulus of the size of the given queue.

In that way, it is possible to enqueue elements in the back and dequeue elements from the

front. If the queue is empty, a new page index or a new vertex index is acquired from

the memory manager directly, otherwise both can be acquired from the respective vertex

queue or the page queue. Using this approach, changes in growth in the graph don’t

affect the required memory size as much as the previous approach would have, as a graph

can grow in specific areas and shrink back and this memory will be available for other

vertices later on again.

3.2. Initialization 19

3.2 Initialization

At the start of the application, a graph is parsed into an intermediary CSR format. Right

after that a preprocessing kernel is started to calculate the memory requirements per

vertex. This includes computing the number of neighbours and from that the capacity

and page requirements per vertex in parallel. Using the block requirements and

an exclusive prefix sum scan, the overall memory offsets for all individual edge block

lists can be computed. Using all this information, the initialization kernel can be run

completely in parallel without regard for locking, while the CSR format is transferred into

the aimGraph format.

3.3 Graph Types

At this point in time, aimGraph supports three different graph types

• Simple

• Weighted (weight per vertex and edge)

• Semantic (weight per vertex and edge and timestamps per edge)

This variety of options is implemented using templated classes and methods. Most func-

tionality is independent of the concrete representation of edges and vertices themselves,

just the modification functionality is realized via overloaded functions. Depending on the

use case, one of these more advanced modes can be selected at the cost of an increased

memory footprint. Choosing a larger sized edge type also increases the basic page size to

accommodate a larger number of edges per page.

The framework can easily be extended to more advanced graph types by introducing new

vertex and edge structures and providing overloads for the graph traversal functionality

as well as accessing the vertex and edge data.

20 Chapter 3. aimGraph

3.4 Edge Insertion

Edge updates in the current setup require a single lock per vertex to combat concurrent

reads/writes to the adjacency, neighbours and capacity as shown in Algorithm 1. Access

to the memory manager on the other hand simply requires atomic memory access to get

a new page, if the current capacity cannot accommodate the new update and the page

queue is empty.

Algorithm 1: Edge insertion using locking

Data: edge update batch
Result: Edges inserted into graph
Edge updates put onto stack;
while lock acquired do

read neighbours & capacity;
for vertices v in adjacency do

if v == DELETIONMARKER or index ≥ neighbours then
remember index;

if v == edge update then
found duplicate, ignore;
break;

advance in adjacency;

if !edgeInserted and !duplicateFound then
if page queue.dequeue() then

get page from page queue;

else
get page from Memory Manager;

update adjacency, index, capacity & neighbours;

else if !duplicateFound then
insert element at index;

release lock;

For edge updates that are close to a uniform random distribution, inserting 1.000.000

edges can be achieved in a few milliseconds (detailed results in Section 6.2). Even when

accessing the memory manager heavily to adjust the size of individual adjacencies, per-

formance does not suffer significantly. We provide two implementations, optimized for

different adjacency list counts. The first, which is the standard insertion mode, is shown

in Algorithm 1. It completes each individual update using a single thread. This approach

is especially fast for small to medium sized adjacency lists (≤ 50 vertices). If the average

size per adjacency grows larger, the traversal of the graph structure becomes the bottle-

neck. Thus, for larger adjacency list sizes, we use an entire warp (32 threads) for the

update. In this case, the for-Loop is reduced to a loop over pages and the memory access

3.5. Edge Deletion 21

pattern within pages can be optimized to always request a full cacheline per warp at

once.

3.5 Edge Deletion

Edge Deletion works in a similar manner to edge insertion, the major difference is that in

the most basic form it can be achieved without locking. This approach is detailed in Algo-

rithm 2, showing the standard approach using 1 thread per update without compaction.

Previously, the framework did not return empty pages to the memory manager, but simply

reused them when edges are inserted for the same node again. In this way, it could avoid

access to the memory manager completely during deletion.

As this thesis places an even greater focus on a low memory footprint and introduces a

queuing structure to reuse page indices, empty pages are returned to the memory manager.

This approach can be seen in Algorithm 3. With this approach, for each deletion update

the affected adjacency is compacted and free pages are returned to be used again later on.

As with the insertion process, two different implementations are provided, one launching

a single thread per update and the other launching a full warp per update, depending

on the average size of the adjacency. The code listings show the deletion process for the

standard launch. When launching a full warp per update, the for-Loop is once again re-

duced and allows for better memory locality as a whole cacheline is fetched by the warp

instead of individual calls to the same region by a thread in a loop.

Algorithm 2: Edge deletion without locking

Data: edge update batch
Result: Edges deleted from graph
Edge updates put onto stack;
read capacity;
for vertices v in adjacency do

if v == edge update then
atomically update adjacency & neighbours;
one thread decreases neighbours;
break;

advance in adjacency;

22 Chapter 3. aimGraph

Algorithm 3: Edge deletion with compaction

Data: edge update batch
Result: Edges deleted from graph
Edge updates put onto stack;
while lock acquired do

read neighbours;
shuffle index = neighbours - 1;
for vertices v in adjacency do

if v == edge update then
advance iterator to shuffle index in adjacency;
v ← iterator;
iterator ← DELETIONMARKER;
decrease neighbours;
if shuffle index mod page size == 0 then

page queue.enqueue(page index);
decrease capacity;

break;

advance in adjacency;

3.6 Vertex Insertion

Vertex insertion consists of three separate kernel calls, as compared to edge updates which

only require a single kernel call. This is necessary as duplicate checking becomes more

difficult in this case, as can be seen in Algorithm 4.

Algorithm 4: Vertex Insertion

Data: vertex update batch
Result: Vertex inserted into graph
Copy Vertex updates onto stack;
if sorting enabled then

thrust::sort(vertex updates);
duplicateCheckingInGraphSorted<<<>>>(vertex updates, graph);
duplicateCheckingInBatchSorted<<<>>>(vertex updates);

else
duplicateCheckingInBatch<<<>>>(vertex updates);
duplicateCheckingInGraph<<<>>>(vertex updates, graph);

vertexInsertion<<<>>>(vertex updates, graph);
Copy mapping back to host;
if sorting enabled then

Copy vertex updates back to host;

3.6. Vertex Insertion 23

The reason for that is that vertex insertion updates arrive on the device with a given

host identifier and should receive a new device identifier, detailing the position of the new

vertex. This mapping step involved here now mandates the outsourcing of the duplicate

checking. This way this check can be performed much more efficiently. Without this

outsourcing it would be necessary to either lock the whole graph structure, essentially

performing the update sequentially, or would require expensive checks after the insertion

process due to the high levels of concurrency. Duplicates can occur within a batch or from

batch to graph, both have to be checked before the insertion process.

Algorithm 5: Vertex Insertion Kernel

Data: vertex update batch
Result: Vertex inserted into graph and page allocated per new vertex
Retrieve Vertex update from stack;
if update == DELETIONMARKER then

update already handled;
return

if vertex queue.dequeue() then
get vertex index from vertex queue;

else
get fresh vertex index from Memory Manager;

if page queue.dequeue() then
get page index from page queue;

else
get fresh page index from Memory Manager;

clean page by setting DELETIONMARKERs;
set Vertex Data;
return device identifier and mapping;

The actual vertex insertion process is straightforward as can be seen in Algorithm 5. The

framework starts by acquiring a new device index and a new page index for each valid

vertex update. Both first contact the respective queues for previously deleted indices, if a

queue is empty, the memory manager supplies a fresh index.

Each page is cleaned at first (elements are set to an invalid entry, this is only used to

stay compatible with the previous implementation not based on the queuing approach)

and then the vertex is set up according to the update data. Last but not least, the new

mapping (host identifier to device identifier) is reported back to the host.

24 Chapter 3. aimGraph

3.7 Vertex Deletion

Deletion once again does not need to concern itself with duplicates, as this can be enforced

using atomic operations.

Algorithm 6: Vertex Deletion

Data: vertex update batch
Result: Vertex deleted from graph
Copy Vertex updates onto stack;
if sorting enabled then

thrust::sort(vertex updates);

vertexDeletion<<<>>>(vertex updates, graph);
if graph is directed then

if sorting enabled then
deleteVertexMentionsSorted<<<>>>(vertex updates, graph);

else
deleteVertexMentions<<<>>>(vertex updates, graph);

compaction<<<>>>(graph);
Copy mapping back to host;

But contrary to vertex insertion, deleting a vertex not only changes vertex management

data but also has implications for adjacency data.

Deleting a vertex also includes deleting all mentions of said vertex from the graph struc-

ture and compacting the data structure, as can be seen in Algorithm 6.

In the undirected case these vertex mentions can be deleted directly in the deletion pro-

cedure, as can be seen in Algorithm 7. This is possible as all vertex mentions are directly

known from the adjacency, and as no duplicates are present in the graph, this can even

be done without locking.

If the graph is directed, only the allocated pages per vertex are returned to the respective

queue. An additional kernel call is required as in this case the positions of vertex mentions

are not obvious just from the adjacency. This way it is more efficient to start a further

kernel specifically dealing with deleting these mentions. To avoid unnecessary locking pro-

cedures during this additional deletion step, the actual clean up (compaction step) is also

performed in a separate kernel call. Compaction is required to potentially free up pages

that then can be returned to the memory manager and placed back in the queue.

Last but not least, the now free vertex index is returned to the respective queue and the

mapping change is reported back to the host.

3.7. Vertex Deletion 25

Algorithm 7: Vertex Deletion Kernel

Data: vertex update batch
Result: Vertex deleted from graph and pages returned to queue
Retrieve Vertex update from stack;
if update == DELETIONMARKER then

update already handled;
return

if atomicExch(identifier, DELETIONMARKER) == DELETIONMARKER
then

deletion already handled;
return

if graph is directed then
return pages to page queue;
mentions handled in separate kernel;

else
iterate over adjacency;
foreach vertex in adjacency do

Find source vertex in adjacency and delete;

vertex queue.enqueue(identifier);
return mapping update;

4
Memory Management

Contents

4.1 Fully dynamic updates . 28

4.2 Concurrent updates . 28

4.3 Efficient memory management 28

The following section compares the different approaches to memory management as

seen in the previous implementation[21] compared to the current implementation.

Both approaches have in common that management is performed independently on the

GPU, only requiring a supply of update data to its update procedures from the host.

The memory manager in both cases also serves the same purpose and is near identical.

The memory layout has changed significantly (as shown in Section 3.1 in Figure 3.1),

but the base functionality is still present and (if needed) can be operated without the

improvements added as part of this thesis.

The biggest changes are

• Fully dynamic: The framework is now fully dynamic, it is possible to update vertex

and edge data in the graph structure, compared to just edge data

• Concurrent updates: Due to the exclusive access policy enforced for adjacency

access it is possible to perform edge insertion and deletion updates concurrently

• Efficient memory management: The framework now employs a queuing ap-

proach to manage memory more efficiently

27

28 Chapter 4. Memory Management

4.1 Fully dynamic updates

Previously, vertex management data was considered static (as is the case with

cuSTINGER). This has been changed in this version. It is now possible to insert and

delete vertices from the structure. This is especially helpful in use cases where the actual

nodes or players in such a network can vary significantly.

Telecommunication network A possible use case for fully dynamic graphs presents

itself with telecommunication networks. Modelling such a network via a graph structure

to retrieve metrics necessary for load balancing for example, the goal would be to derive

such metrics from a real-time representation of the graph. And since users not only can

move around in the network and change connections (insert/delete edges), but also turn off

their device or loose the signal, it becomes necessary to be able to change the active users

in this network. Being able to insert or delete vertices from a graph is highly beneficial in

this case.

4.2 Concurrent updates

With the new memory management approach and the requirement for compaction in the

deletion step, both update procedures utilize an exclusive access policy when updating the

adjacency. This enables the framework to perform both procedures in parallel, enabled in

two different variations

• Single kernel: Especially older hardware generations cannot guarantee concurrent

execution of different kernels on the GPU, to actively test concurrent access this

single kernel approach is used which, depending on the update data, performs in-

sertion and deletion in a single kernel. Additionally, using a single kernel alleviates

kernel launch overhead as the complete update procedure requires just a single kernel

launch.

• cudaStreams: Using separate streams, each dealing with insertion or deletion re-

spectively, newer hardware generations can also perform concurrent updates on the

framework this way.

4.3 Efficient memory management

The goal of the previous implementation of aimGraph was to provide maximal update

performance (also to be comparable to cuSTINGER both started with the same re-

quirements and abilities). But since a big focus of aimGraph is not only performance

measured in seconds, but also keeping the memory footprint as low as possible, the new

approach puts a much bigger focus on efficient memory management.

This is especially important in case of dynamic graphs, as these can grow and shrink in

4.3. Efficient memory management 29

size over time. These varying theoretical memory requirements should be reflected in the

actual memory requirements of the framework. Additionally, as graphs can grow in spe-

cific regions and shrink back again just to grow somewhere else, this would leave vast areas

of memory allocated to parts of the structure unused that would be needed in different

sections.

Using the new queuing approach, not only pages but also vertex positions can be re-

turned to the memory manager, offering vastly more efficient memory management. This

opens up the possibility of long-term usage of larger graphs in memory, which was previ-

ously not possible.

4.3.1 Efficiency Comparison

To evaluate the different memory requirements in different usage scenarios, three different

testcases were deployed

• Uniform: Each iteration performs edge insertion and edge deletion sequentially with

a batch size of 1.000.000, the insertion updates are generated by a call to rand(),

the deletion updates generate the edge source the same way, the edge destination is

chosen randomly from the chosen adjacency itself.

• Sweep: Each iteration once again performs edge insertion and edge deletion sequen-

tially with a batch size of 1.000.000, deletion updates are generated the same way as

in the uniform testcase, but insertion updates always focus on a small index region

(e.g. the first tenth of vertex indices
(
0 – numberV ertices

10

)
as the edge source) for a

few rounds and then focusses on the next region
(
numberV ertices

10 – 2 · numberV ertices
10

)
and so on. This means that the insertion updates sweep over the whole index range

while the deletion updates always target the complete index range.

• Random: Each iteration performs edge insertion OR edge deletion at random, the

updates themselves are once again generated by a call to rand().

All approaches have in common that insertion is more likely than deletion. This originates

from the fact the batchsize is at least 10 times larger than the number of vertices in all

three approaches. This means that the likelihood that edge deletion updates target the

same edge multiple times is quite likely, the likelihood that edge insertion updates produce

duplicates on the other hand are not particularly high. Hence, graphs tend to grow with

these approaches in general.

4.3.1.1 Uniform Updates

Using the uniform approach, one can see in Figure 4.1 that both memory management

strategies start out with the exact identical page count in the first round. After the initial

setup, both grow nearly uniformly as expected, but the queuing approach grows slower as

some pages can be returned to the memory manager.

30 Chapter 4. Memory Management

4.3.1.2 Sweep Updates

As shown in Figure 4.2, the starting point is once again identical to the uniform approach.

After that, the sweep becomes visible, the standard approach grows in size in the targeted

regions and does not grow back. Conversely, the queuing approach slowly returns the

pages to the memory manager once deletions free up pages. Here the greatest overall

difference can be seen as areas grow and shrink much more extensively.

4.3.1.3 Random Updates

Figure 4.3 shows the random approach and once again the queuing approach uses signif-

icantly less memory compared to the standard approach over time.

4.3. Efficient memory management 31

1 5001 10001 15001 20001 25001 30001

Ver ces 0 - 4583

Ver ces 9166 - 13749

Ver ces 18332 - 22915

Ver ces 27498 - 32081

Ver ces 36664 - 41247

Ver ces 45830 - 50413

Ver ces 54996 - 59579

Ver ces 64162 - 68745

Ver ces 73328 - 77911

Ver ces 82494 - 87077

Ver ces 91660 - 96243

Ver ces 100826 - 105409

Ver ces 109992 - 114575

Pages Allocated

Pages allocated

Round: 0 - Queuing Round: 0 - Standard

0 5000 10000 15000 20000 25000 30000

Vertices 0 - 4583

Vertices 9166 - 13749

Vertices 18332 - 22915

Vertices 27498 - 32081

Vertices 36664 - 41247

Vertices 45830 - 50413

Vertices 54996 - 59579

Vertices 64162 - 68745

Vertices 73328 - 77911

Vertices 82494 - 87077

Vertices 91660 - 96243

Vertices 100826 - 105409

Vertices 109992 - 114575

Pages Allocated

Pages allocated

Round: 50 - Queuing Round: 50 - Standard

0 5000 10000 15000 20000 25000 30000

Vertices 0 - 4583

Vertices 9166 - 13749

Vertices 18332 - 22915

Vertices 27498 - 32081

Vertices 36664 - 41247

Vertices 45830 - 50413

Vertices 54996 - 59579

Vertices 64162 - 68745

Vertices 73328 - 77911

Vertices 82494 - 87077

Vertices 91660 - 96243

Vertices 100826 - 105409

Vertices 109992 - 114575

Pages Allocated

Pages allocated

Round: 99 - Queuing Round: 99 - Standard

Figure 4.1: Page allocation count over 100 update iterations with uniform update strategy. Both
approaches grow as insertion is more likely, but the queuing approach grows slower.

32 Chapter 4. Memory Management

0 50000 100000 150000 200000 250000

Ver ces 0 - 4583

Ver ces 9166 - 13749

Ver ces 18332 - 22915

Ver ces 27498 - 32081

Ver ces 36664 - 41247

Ver ces 45830 - 50413

Ver ces 54996 - 59579

Ver ces 64162 - 68745

Ver ces 73328 - 77911

Ver ces 82494 - 87077

Ver ces 91660 - 96243

Ver ces 100826 - 105409

Ver ces 109992 - 114575

Pages Allocated

Pages allocated

Round: 0 - Queuing Round: 0 - Standard

0 50000 100000 150000 200000 250000

Vertices 0 - 4583

Vertices 9166 - 13749

Vertices 18332 - 22915

Vertices 27498 - 32081

Vertices 36664 - 41247

Vertices 45830 - 50413

Vertices 54996 - 59579

Vertices 64162 - 68745

Vertices 73328 - 77911

Vertices 82494 - 87077

Vertices 91660 - 96243

Vertices 100826 - 105409

Vertices 109992 - 114575

Pages Allocated

Pages allocated

Round: 50 - Queuing Round: 50 - Standard

0 50000 100000 150000 200000 250000

Vertices 0 - 4583

Vertices 9166 - 13749

Vertices 18332 - 22915

Vertices 27498 - 32081

Vertices 36664 - 41247

Vertices 45830 - 50413

Vertices 54996 - 59579

Vertices 64162 - 68745

Vertices 73328 - 77911

Vertices 82494 - 87077

Vertices 91660 - 96243

Vertices 100826 - 105409

Vertices 109992 - 114575

Pages Allocated

Pages allocated

Round: 99 - Queuing Round: 99 - Standard

Figure 4.2: Page allocation count over 100 update iterations with sweep update strategy. The
queuing approach can return empty pages once the insertions target different sections.

4.3. Efficient memory management 33

0 5000 10000 15000 20000 25000 30000

Vertices 0 - 4583

Vertices 9166 - 13749

Vertices 18332 - 22915

Vertices 27498 - 32081

Vertices 36664 - 41247

Vertices 45830 - 50413

Vertices 54996 - 59579

Vertices 64162 - 68745

Vertices 73328 - 77911

Vertices 82494 - 87077

Vertices 91660 - 96243

Vertices 100826 - 105409

Vertices 109992 - 114575

Pages Allocated

Pages allocated

Round: 0 - Queuing Round: 0 - Standard

0 5000 10000 15000 20000 25000 30000

Vertices 0 - 4583

Vertices 9166 - 13749

Vertices 18332 - 22915

Vertices 27498 - 32081

Vertices 36664 - 41247

Vertices 45830 - 50413

Vertices 54996 - 59579

Vertices 64162 - 68745

Vertices 73328 - 77911

Vertices 82494 - 87077

Vertices 91660 - 96243

Vertices 100826 - 105409

Vertices 109992 - 114575

Pages Allocated

Pages allocated

Round: 50 - Queuing Round: 50 - Standard

0 5000 10000 15000 20000 25000 30000

Vertices 0 - 4583

Vertices 9166 - 13749

Vertices 18332 - 22915

Vertices 27498 - 32081

Vertices 36664 - 41247

Vertices 45830 - 50413

Vertices 54996 - 59579

Vertices 64162 - 68745

Vertices 73328 - 77911

Vertices 82494 - 87077

Vertices 91660 - 96243

Vertices 100826 - 105409

Vertices 109992 - 114575

Pages Allocated

Pages allocated

Round: 99 - Queuing Round: 99 - Standard

Figure 4.3: Page allocation count over 100 update iterations with random update strategy. Over
time the queuing approach uses less memory compared to the standard approach.

5
Comparison to cuSTINGER

Contents

5.1 Memory footprint . 36

5.2 Initialization . 36

5.3 Edge Updates . 36

5.4 Vertex Updates . 37

This section provides a comparison between the new version ofaimGraph and

cuSTINGER by examining the respective memory footprints and composition, as well

as the time spent initializing and updating the graph structure and is followed by an

evaluation of the performance differences.

cuSTINGER aimGraph

Updates partially-dynamic fully-dynamic

Memory Management Primarily CPU GPU

Reallocation sequential on CPU parallel on GPU

Overallocation 50% not used

Memory Efficiency Only increases in size Flexible size

Adjacency access Atomic Locking

may result in invalid graph

Table 5.1: Feature comparison between cuSTINGER and aimGraph

35

36 Chapter 5. Comparison to cuSTINGER

5.1 Memory footprint

One of the biggest differences stems from the way memory allocation is performed in

general. cuSTINGER performs sequential calls to cudaMalloc() from the CPU to

allocate the management data and all individual edge blocks. Especially for graphs with

more than a million vertices this is a significant overhead, compared to the single allocation

in aimGraph. Another big difference lies in the memory footprint.

cuSTINGER uses pointers to

• locate attributes

• point to individual edge blocks

• point to data members within an edge block (especially prevalent in semantic mode)

This increases the size of the management data and also requires a full block (of 64

bytes) just to hold member pointers. aimGraph on the other hand uses an indexing

system (reducing the size per pointer/index from 8 Bytes to 4 Bytes). Additionally, it

also eliminates the member pointers and additional attribute pointers by combining an

efficient indexing scheme and reinterpreting memory on the fly using casts to achieve the

same functionality at a fraction of the memory cost.

5.2 Initialization

As previously mentioned, aimGraph performs a single device memory allocation and

can perform the whole setup in parallel on the GPU with little overhead. In comparison,

cuSTINGER needs to allocate each individual edge block list from the CPU. This means

also performing the pre-computation entirely on the CPU and only the actual setup of the

data structure occurs on the GPU. However, as there is no offset-indexing scheme, even

this kernel launch cannot utilize the GPU to its full potential, leading to an enormous

performance difference in the initialization stage.

5.3 Edge Updates

Here once again, the different strategy in allocating memory pays off for aimGraph.

Updates can be achieved in a single kernel launch with a single lock per vertex when

inserting edges and even without a lock in the deletion process when no compaction

is required. With compaction, both update approaches use locking to guarantee graph

integrity. cuSTINGER, on the other hand, launches at least one kernel, which cannot

utilize the whole GPU due to the lack of locking. However, this strategy also incurs a

heavy penalty if duplicates are present or reallocation is required. In this case, new space

must be allocated using cudaMalloc() and the whole edge block array of the given vertex

needs to be copied over. In the worst case 5 kernel launches are required to deal with all

5.4. Vertex Updates 37

eventualities, leading to significantly lower update rates for highly volatile situations.

The performance difference is not as pronounced, as detailed in Section 6.2, in cases where

there are no duplicates in the batch, no reallocation is necessary and the average size of

an adjacency is large (≥ 50), as just a single kernel launch is required. However, in these

cases there is still a chance to produce invalid graphs for duplicates in a batch. This may

occur as there is no locking or contention resolution mechanism in place. Depending on

the actual behaviour of the hardware thread scheduler as well as number of updates per

adjacency, this problem may show up more or less often.

5.3.1 Concurrent Updates

As mentioned in Section 5.3, cuSTINGER does not utilize locking for updating the

adjacency. Insertion positions are determined atomically, edge deletion also does not take

into account additive changes to an adjacency while operating on it.

As aimGraph locks the adjacency per vertex to be updated, it can also perform updates

(both insertion & deletion) in parallel. This can further reduce the execution time as just

a single kernel launch is required, cutting down the overhead associated with additional

launches.

5.4 Vertex Updates

Due to the layout of the vertex management data (as mentioned in Section 2.2.1),

cuSTINGER is only partially-dynamic as a graph framework. The SOA approach

makes it impossible to insert or delete vertices. In the paper [8], vertex insertions and

deletions are mentioned as possible through edge update variations. However, this only

allows for deleting the complete adjacency data of a vertex (which does not necessarily

imply a deleted vertex), inserting a new vertex is not possible (only updating an existing

vertex with new management data).

Contrary to that, aimGraph is fully-dynamic and allows for vertex insertion as well

as deletion, as detailed in Section 3.6 and Section 3.7. This is possible due to the more

modular structure of the memory layout, based on an AOS approach, used for the vertex

management data.

6
Performance

Contents

6.1 Initialization . 40

6.2 Edge insertion . 42

6.3 Edge Deletion . 44

6.4 Overall performance . 45

6.5 Concurrent Updates . 46

6.6 Vertex Insertion . 47

6.7 Vertex Deletion . 47

The performance measurements were conducted using a NVIDIA R© GTX 780 GPU (3

GB V-RAM), an Intel Core
TM

i7 -3770K CPU using 16 GB of DDR3-1600 RAM. The GTX

780 is a Kepler based card with Compute Capability (CC) 3.5, and equipped with 2496

CUDA Cores on 12 Streaming Multiprocessor (SM)s. Although this is considered con-

sumer hardware, the goal is to show differences between aimGraph and cuSTINGER.

Performance on more powerful professional equipment is expected to be even higher.

The graphs used were taken from the 10th DIMACS Graph Implementation Challenge[2].

They represent a cross section of different problem domains, a selection used for perfor-

mance testing is highlighted in Table 6.1.

Both frameworks use an identical testing methodology for edge updates, starting with

initialization, followed by the generation of random edge updates, which are subsequently

added to the graph and then removed again. This is done 10 times and the results are

averaged to produce the overall results. Only the calls to the initialization and update

functions were measured. This includes copying update data to device, but excludes the

update generation. This whole process is repeated 10 times and averaged again, hence the

performance numbers shown display the average time of 10 rounds of initialization and

100 rounds of edge insertions and deletions respectively.

39

40 Chapter 6. Performance

Name Network Type —V— —E—

Luxembourg Road 115k 239k
coAuthorsCiteseer Citation 227k 815k

coAuthorsDBLP Citation 299k 1.95M
ldoor Matrix 952k 45.57M

audikw1 Matrix 943k 76.71M
delaunay n20 Triangulation 1.04M 3.14M
rgg n 2 20 s0 Random Geometric 1.04M 6.89M

hugetric-00000 Dynamic Simulation 5.82M 8.73M
delaunay n23 Triangulation 8.38M 25.16M

Germany Road 12M 24.74M
nlpkkt120 Matrix 3.5M 93.3M
nlpkkt160 Matrix 8M 221.17M

Table 6.1: Graphs used for performance measurement

6.1 Initialization

As shown in Table 6.2, the different memory setup procedure pays off the most in the

initialization step. In all cases aimGraph is able to outperform cuSTINGER by a

significant margin.

Name Initialization Initialization
(ms) (ms)

aimGraph cuSTINGER

Luxembourg 2.16 110.5
coAuthorsCiteseer 3.96 218.5

coAuthorsDBLP 4.57 289.6
ldoor 48.24 1 053.2

audikw1 77.58 1 108.6
delaunay n20 9.35 1 092.4
rgg n 2 20 s0 16.42 1 108.5

hugetric-00000 29.85 6 814.6
delaunay n23 63.55 10 178.3

Germany 45.80 14 010.7
nlpkkt160 228.13 out of memory

Table 6.2: Initialization time in ms for aimGraph and cuSTINGER

The highest advantage is achieved when processing a large number of vertices with a

comparatively low number of edges. Analysing the street network germany, aimGraph

is more than 300 times faster. Even for a low number of vertices with a high degree

6.1. Initialization 41

(referencing the sparse matrices ldoor and audikw1), the speed up achieved still reaches

double digits.

This can be attributed to the fact that aimGraph works autonomously on the GPU

and can parallelize the setup process. In contrast, cuSTINGER performs its setup

process from the host with individual initialization calls per vertex, calculating memory

requirements and allocating memory from the host directly. Additionally, aimGraph

has a significantly lower memory footprint. Thus larger graphs can be kept in memory

compared to cuSTINGER as can be seen for the sparse matrix network nlpkkt160.

42 Chapter 6. Performance

6.2 Edge insertion

The first eight cases in Figure 6.1 show where aimGraph has a clear performance ad-

vantage. This is the case if the degree per vertex is not very large, as in those cases the

over-allocation strategy of cuSTINGER does not provide enough space for the insertion

operations. Here, both frameworks have to reallocate which is much faster using aim-

Graph, as everything is done on the GPU in one kernel. cuSTINGER has to reallocate

from the CPU and also copy over entire edge blocks.

0,1

1

10

100

1000

Luxembourg Germany coAuthorsDBLP coAuthorsCiteseer delaunay_n20 delaunay_n23 rgg_n_2_20_s0 hugetric-00000 ldoor audikw1

m
s

Graphs

Edge Inser!on 100.000 | 1.000.000

cuSTINGER (0.1M) aimGraph (0.1M) cuSTINGER (1M) aimGraph (1M)

Figure 6.1: Performance measurement for edge insertions, using a batch size of 100.000 and
1.000.000, showing cuSTINGER compared to the best aimGraph implementation

cuSTINGER has an advantage due to their over allocation policy in the last two cases,

as it allocates 50% more to reduce the need for reallocation later on. This becomes a

factor if there is a comparatively low number of vertices compared to the number of edges

(as seen with the sparse matrices ldoor and audikw1 used in this example). But even in

these cases, cuSTINGER does not achieve the same update rate as aimGraph. This

is true even though we actually have to perform memory allocations, which involve more

complex traversal mechanisms and locking. More on that in Section 6.2.1.

Additionally, as cuSTINGER does not use any form of race condition avoidance, invalid

graph structure might arise in some cases. Depending on GPU scheduling, duplicates

within batches are not detected and remain in the graph. The behavior of aimGraph is

independent of scheduling and keeps a more compact memory layout.

Another factor, which becomes performance relevant, is the difference in adjacency traver-

6.2. Edge insertion 43

sal. Due to the more modular structure of aimGraph, the traversal of individual edge

lists takes longer compared to the array traversal of cuSTINGER. This results from

the fact that the indexing scheme behind connecting multiple pages into a contiguous list

requires extra cycles.

For testing purposes, turning off/down the memory overallocation of cuSTINGER de-

creases performance up to a factor of 100 as shown in Section 6.2.1. Similar behaviour can

be observed by changing the update strategy by first inserting 10 batches of updates and

then removing them again. This also worsens performance for cuSTINGER significantly,

while aimGraph does not see a major effect on its performance.

Overall, it can be noted that cuSTINGER only performs well when it works within

its overallocation boundaries and for larger sized adjacencies. Otherwise its performance

drops significantly.

6.2.1 Overallocation

0 022 38
11

19
7 11

3

4

1

10

100

1000

ldoor audikw1

m
s

Graphs

Overalloca on

aimGraph cuSTINGER(50%) cuSTINGER(25%) cuSTINGER(15%) cuSTINGER(5%)

Figure 6.2: Vertex Insertion with batchsize 1.000.000, cuSTINGER is depicted with different
overallocation factors (50%, 25%, 15% and 5%), the numbers in the bars represents the average
number of additional elements allocated per adjacency with this factor

As mentioned previously, cuSTINGER uses an overallocation strategy to mask the

performance hits from reallocating individual adjacencies. Figure 6.2 shows the perfor-

mance numbers for the two sparse matrices (ldoor and audikw1) for different overallo-

cation factors used by cuSTINGER. The numbers in the bars represent the average

number of additional elements allocated per adjacency.

44 Chapter 6. Performance

For the standard configuration, cuSTINGER now allocates on average 22 or 38 addi-

tional elements in the given cases. Both graphs host about one million vertices and the

update procedure flip-flops between insertion and deletion batches the size of one million.

Combined with the large number of additional elements, this reduces the likelihood of

reallocation immensely, as it becomes rather unlikely that a single adjacency grows more

than the additional element allocated.

If this overallocation factor is reduced from 50% down to 5%(as depicted in Figure 6.2),

the performance difference between aimGraph and cuSTINGER grows significantly.

6.3 Edge Deletion

In case of deletions, the performance difference is slightly less pronounced compared to the

insertion process, as can be seen in Figure 6.3. This is due to the fact that deletions always

work without rearranging the general memory layout and also there exists no possibility of

adding/removing duplicates. This also means that the performance difference for deletion

using different graphs is also much smaller and the overall performance difference between

cuSTINGER and aimGraph itself remains nearly unchanged as well.

0,1

1

10

100

Luxembourg Germany coAuthorsDBLP coAuthorsCiteseer delaunay_n20 delaunay_n23 rgg_n_2_20_s0 hugetric-00000 ldoor audikw1

m
s

Graphs

Edge Dele!on 100.000 | 1.000.000

cuSTINGER (0.1M) aimGraph (0.1M) cuSTINGER (1M) aimGraph (1M)

Figure 6.3: Performance measurement for edge deletions, using batch size 100.000 and 1.000.000,
showing cuSTINGER compared to the best aimGraph implementation

aimGraph employs two different deletion strategies, the first four cases launch a single

thread per update, as the average adjacency is comparatively small to medium sized. Un-

der these circumstances adjacency traversal is less important compared to stalling threads.

6.4. Overall performance 45

The performance benefit is therefore greatest for very small adjacencies per vertex and

becomes less prominent for larger adjacencies. The other six cases use the warpsized

approach, launching warpsized blocks, as in those cases the adjacency traversal is crucial

to performance. Once again, performance is about 2× faster compared to cuSTINGER

for the tested graphs. The main difference to cuSTINGER is the single kernel launch

(compared to two launches for cuSTINGER) and the more efficient duplicate checking

and update implementation with higher occupancy.

6.4 Overall performance

The following Table 6.3 shows an overall comparison of cuSTINGER and aimGraph.

This provides a listing of the timings for the entire test set for edge insertion and edge

deletion with a batchsize of 1.000.000, as well as an overall timing including the initial-

ization time, timing measurements given in seconds. Measurements in both cases include

transferring update data to the device.

Graphs Insertion Deletion Insertion Deletion Overall Overall
aimGraph aimGraph cuSTINGER cuSTINGER aimGraph cuSTINGER

1.000.000 1.000.000 1.000.000 1.000.000 1.000.000 1.000.000
in seconds in seconds in seconds in seconds in seconds in seconds

luxembourg 0.585 0.524 20.279 2.882 1.131 24.266
germany 1.014 0.706 10.613 3.041 2.178 153.664

coAuthorsD. 0.685 0.623 14.637 3.001 1.354 20.534
coAuthorsC. 1.062 0.404 7.142 2.929 1.505 12.256
delaunay 20 0.920 0.407 11.213 3.155 1.421 25.292

delaunay n23 2.038 0.667 15.279 2.995 3.341 118.452
rgg n. 1.002 0.477 4.499 2.770 1.593 18.354

hugetric. 1.016 0.434 1.976 2.964 1.748 73.086
ldoor 1.976 0.813 2.189 3.073 3.271 16.315

audikw1 2.057 0.981 2.416 3.263 3.813 16.765

Table 6.3: Performance comparison for aimGraph and cuSTINGER including overall perfor-
mance

As noted in Table 6.3, aimGraph is able to deliver more than 100 million updates per

second in more than half of the tested cases. Even though these measurements include

the time required for initializing the graph ten times throughout the testing procedure. In

the closest cases, aimGraph still holds a performance edge of more than 4x which grows

to more than 70x due to the parallel initialization procedure.

Overall it can be noted that aimGraph performs particularly well for graphs with a

large number of vertices and comparatively small to medium sized adjacencies. But even

for graphs with large adjacencies the performance difference to cuSTINGER remains

significant, albeit not as large.

46 Chapter 6. Performance

6.5 Concurrent Updates

aimGraph bases its update approach on an exclusive access policy to the adjacency data

(except if no compaction is required, then deletion can be done without locking). Due to

this setup it is possible to allow for concurrent edge insertion and deletion on a graph, as

each adjacency is protected by a lock.

Figure 6.4 shows a comparison between the concurrent update approach (using a single

kernel for both insertion and deletion) and sequential edge insertion and deletion with a

batchsize of 100.000. The standard update procedure with compaction enabled is utilized

here to examine the performance difference. It is demonstrated that the concurrent ap-

proach outperforms the sequential approach in every case, but not by a big margin. This

difference can be explained by the reduced overhead of the concurrent approach as just a

single kernel launch is required and all updates are passed to the copy engine of the device

also just once and not twice.

0

2

4

6

8

10

12

0

2

4

6

8

10

12

luxembourg coAuthorsCiteseer coAuthorsDBLP delaunay_n20 delaunay_n23 hugetric-00000 rgg_n_2_20_s0 ldoor audikw1 germany

m
s

m
s

Graphs

Concurrent Updates | Standard Update (+ Compac!on)

Batchsize 100.000

Inser!on Dele!on Concurrent Updates

Figure 6.4: Performance comparison between sequential edge insertion and deletion and concur-
rent updates for a batchsize of 100.000

6.6. Vertex Insertion 47

6.6 Vertex Insertion

The actual process of vertex insertion is comparatively straight forward with the given

framework, as detailed in Section 3.6. Most time is spent on correctness measures, checking

duplicates within the update batch and between update batch and the graph.

Figures 6.5 and 6.6 show the different timings for the given graphs, split up into the

different algorithm stages.

The insertion process for all tested batchsizes and graphs always stays below 1 ms, but

especially for graphs with a larger number of vertices the duplicate checking between

batch and graph becomes the bottleneck. Because of that an additional sorting stage is

introduced beforehand, this notably speeds up both duplicate checking stages, as both can

then utilize binary search to check correctness. Even with this optimization the duplicate

checking dominates in graphs with a larger number of vertices. For small graphs the

additional stage introduces more overhead than can be gained in performance. Hence in

such cases this stage is not executed.

As these correctness stages require most of the processing time, the execution time and

the number of vertices in the graph are directly correlated.

6.7 Vertex Deletion

Vertex Deletion is a little bit more complicated compared to vertex insertion, as it does

not suffice to delete the existing vertex management data per vertex. Additionally, all

mentions to the vertex in the graph must be deleted.

Figures 6.7 and 6.8 show the performance numbers for vertex deletion in case of an undi-

rected graph, Figures 6.9 and 6.10 offer performance numbers for directed graphs.

In both cases the same graphs are used, the difference results out of the assumptions that

can be made in the undirected case (each edge in an adjacency can be found in reverse

as well). In this case the vertex mentions are deleted directly in the deletion kernel, this

prolongs the vertex deletion stage.

For directed graphs there is an extra step involved, as it is not directly obvious where the

directed edges might reside in memory. This additional kernel once again profits from

sorting the updates if the graphs become larger, utilizing binary search in the deletion

process. For smaller graphs this optimization is not used, as once again the overhead

introduced outweighs the benefits gained.

48 Chapter 6. Performance

0

1

2

3

4

5

6

m
s

Graphs (Batchsizes 1.000 | 10.000 | 100.000)

Vertex Inser!on

Batchsize 1.000 | 10.000 | 100.000

Inser!on Duplicates in Batch Duplicates in Graph Sor!ng

Figure 6.5: Vertex insertion for batchsizes 1.000 — 10.000 — 100.000

0

1

2

3

4

5

6

m
s

Graphs (Batchsizes 1.000 | 10.000 | 100.000)

Vertex Inser!on

Batchsize 1.000 | 10.000 | 100.000

Inser!on Duplicates in Batch Duplicates in Graph Sor!ng

Figure 6.6: Vertex insertion for batchsizes 1.000 — 10.000 — 100.000

6.7. Vertex Deletion 49

0

5

10

15

20

25

30

35

m
s

Graphs (Batchsizes 1.000 | 10.000 | 100.000)

Vertex Dele!on (Undirected)

Batchsize 1.000 | 10.000 | 100.000

Dele!on Compac!on

Figure 6.7: Vertex deletion in an undirected graph for batchsizes 1.000 — 10.000 — 100.000

0

5

10

15

20

25

30

35

m
s

Graphs (Batchsizes 1.000 | 10.000 | 100.000)

Vertex Dele!on (Undirected)

Batchsize 1.000 | 10.000 | 100.000

Dele!on Compac!on

Figure 6.8: Vertex deletion in an undirected graph for batchsizes 1.000 — 10.000 — 100.000

50 Chapter 6. Performance

0

10

20

30

40

50

60

m
s

Graphs (Batchsizes 1.000 | 10.000 | 100.000)

Vertex Dele!on (Directed)

Batchsize 1.000 | 10.000 | 100.000

Dele!on Vertex Men!ons Compac!on Sor!ng

Figure 6.9: Vertex deletion in a directed graph for batchsizes 1.000 — 10.000 — 100.000

0

10

20

30

40

50

60

m
s

Graphs (Batchsizes 1.000 | 10.000 | 100.000)

Vertex Dele!on (Directed)

Batchsize 1.000 | 10.000 | 100.000

Dele!on Vertex Men!ons Compac!on Sor!ng

Figure 6.10: Vertex deletion in a directed graph for batchsizes 1.000 — 10.000 — 100.000

7
Algorithms

Contents

7.1 Work-Balance Preprocessing . 51

7.2 Algorithm Performance . 53

The following section starts by introducing a scheme to enable the framework to balance

the workload according to the pages allocated, detailed in Section 7.1. In Section 7.2 an

algorithmic performance comparison between cuSTINGER and aimGraph is provided,

whereas aimGraph provides naive and balanced implementations of the algorithms given.

7.1 Work-Balance Preprocessing

The GPU operates using a throughput-oriented design, hence distributing work as well

as possible to all threads is highly beneficial to performance. As a lot of operations and

algorithms have to traverse the adjacencies of individual vertices, just starting a thread

per vertex does not distribute work adequately. This is especially true if those adjacencies

become longer or vary highly in size. Due to the underlying architecture utilizing a SIMD

approach, it is necessary to keep thread divergence at bay.

Hence, a work balancing scheme is introduced that calculates an offset scheme to locate

individual pages in memory. This can then be used to start one thread per page in memory.

This is done by providing offset vectors to the threads, so that each thread receives the

vertex index in question as well as the page number for that vertex.

Figure 7.1 shows the performance overhead introduced by this preprocessing step as well

as the pages allocated in memory.

51

52 Chapter 7. Algorithms

0

0,5

1

1,5

2

2,5

3

3,5

0

2000000

4000000

6000000

8000000

10000000

12000000

luxembourg coAuthorsCiteSeer coAuthorsDBLP delaunay_n20 delaunay_n23 hugetric rgg_n_2_20_s0 ldoor audikw1 germany nlpkkt120

m
s

P
a

g
e

s
a

ll
o

ca
te

d

Graphs

Work Balance Overhead

Pages allocated Overhead introduced by preprocessing

Figure 7.1: Visualization of the overhead introduced by work balancing, bars representing the
pages allocated in memory for the given graph, the line represents the time needed for the work
balancing

Figure 7.1 shows that there is an obvious and clear correlation between the overhead

introduced and the pages in memory. However, the benefit gained also grows much more

in cases with more pages in memory. For the tested graphs, the performance overhead falls

somewhere between 0.5 ms and 3.0 ms. Most of this overhead results from the prefix-sum

scan required to get the total number of vertices as well as the offsets.

7.2. Algorithm Performance 53

7.2 Algorithm Performance

7.2.1 Static Triangle Counting - STC

In this section, six different variants of STC are compared. Two of them are included

in the cuSTINGER framework [9] and are based on a list intersection algorithm called

Intersect Path.

The underlying data structures are

• CSR: One implementation uses the CSR format as an underlying data structure

• cuSTINGER: The other implementation is based on the cuSTINGER framework

The algorithm operates on two stages of parallelism. The first stage balances the vertices

on the multiprocessors and the second stage balances the adjacency access using different

block sizes. One drawback of the given algorithm is the requirement that adjacencies

have to be sorted for it to work.

0,01

0,1

1

10

100

0,1

1

10

100

1000

10000

100000

luxembourg germany hugetric delaunay_n20 delaunay_n23 coAuthorsDBLP coAuthorsCiteSeer ldoor audikw1 nlpkkt120

m
s

Graphs

STC Performance

aimGraph (Naive | Balanced | Warpsized | Combined) | cuSTINGER | CSR | Ra!o

aimGraph | naive aimGraph | balanced aimGraph | warpsized aimGraph | combined

cuSTINGER CSR cuSTINGER / Best aimGraph

Figure 7.2: Comparison between three different implementations for aimGraph (naive, balanced
and warpsized), cuSTINGER, CSR as well as the performance ratio of cuSTINGER to the
best aimGraph implementation.

The other four implementations are based on aimGraph. The actual algorithm imple-

mentation is straight forward and does not require any preconditions like sorting, the four

implementations differ in the following way:

• Naive: Straight forward implementation, one thread per adjacency

54 Chapter 7. Algorithms

• Balanced: One thread per page, introduces overhead due to the index computation

but distributes work more evenly

• Warpsized: One warp (32 threads) per page, more efficient memory access, but

also more stalling threads

• Combined: Combines the balanced and the warpsized approach, hence a warp

per page is started

0,01

0,1

1

10

100

0,1

1

10

100

1000

10000

100000

luxembourg germany hugetric delaunay_n20 delaunay_n23 coAuthorsDBLP coAuthorsCiteSeer ldoor audikw1 nlpkkt120

m
s

Graphs

STC sorted Performance

aimGraph sorted (Naive | Balanced | Warpsized | Combined) | cuSTINGER | CSR | Ra!o

aimGraph | naive aimGraph | balanced aimGraph | warpsized aimGraph | combined

cuSTINGER CSR cuSTINGER / Best aimGraph

Figure 7.3: Comparison between three different implementations for sorted aimGraph (naive,
balanced and warpsized), cuSTINGER, CSR as well as the performance ratio of cuSTINGER
to the best sorted aimGraph implementation.

The performance numbers are recorded in Figure 7.2. The line plot represents the per-

formance factor between cuSTINGER and the best aimGraph implementation for the

given use case.

aimGraph is able to outperform cuSTINGER in the first five cases, as those cases have

comparatively small adjacencies (on average ≤ 15). The next two cases are closer but

cuSTINGER pulls slightly ahead with a growing adjacency count. In these cases, work

balancing is required as the adjacency size varies more and there are a few very large adja-

cencies (multiple 100 and for coAuthorsCiteSeer even one adjacency ≥ 1000). The last

three cases are clearer, as all have larger adjacencies (45, 76 and 27 edges per adjacency

on average), in this case sorting significantly reduces the workload for cuSTINGER

compared to aimGraph.

7.2. Algorithm Performance 55

Introducing sorting into the aimGraph implementations, as can be seen in 7.3, improves

performance in all cases, now aimGraph is able to outperform cuSTINGER in the first

six cases with one close case and even the last three cases are now less than 5× slower

compared to cuSTINGER.

The remaining difference stems from the fact that the underlying memory layout of

cuSTINGER allows for random access to the adjacency data. This way it is possible to

reduce the search overhead from O(n) to O(ld(n)) for n elements in an adjacency.

aimGraph on the other hand has to perform page traversal in the case of random access

to the adjacency, hence for larger adjacencies decisive overhead is introduced. Currently,

implementations that assume sorted adjacencies do the same linear traversal from begin-

ning to end, but may break earlier, if the search index becomes larger than the current

element in the adjacency.

7.2.1.1 Discussion

• aimGraph is well suited even for memory intensive algorithms, if the average size

of an adjacency does not grow incessantly (average size ≤ 20 edges per adjacency)

• For unbalanced graphs, using work balancing can significantly reduce execution

times

• aimGraph performs very well for graphs with smaller adjacencies due to the focus

on a smaller memory footprint

• aimGraph is not well suited for random adjacency access

– If random adjacency access is required, page traversal should be limited as much

as possible

∗ Try to re-use adjacency iterators

∗ Increase page size to limit need for traversal

7.2.2 PageRank

As detailed in Section 2.3.2, PageRank is a fairly straightforward algorithm concerning

its implementation. The algorithm has to traverse the adjacencies of all vertices and

compute the contributions of all relationships for each vertex.

This means that every edge is touched exactly once, the same is true for every vertex,

the only point of convergence remains the PageRank vector itself used to sum up the

contributions.

Figure 7.4 shows the direct comparison between cuSTINGER, a naive implemen-

tation (one thread per vertex, traverse adjacency and compute contributions) and a

balanced implementation (preprocessing step required, one thread per page, only

traverse page and compute contributions) using aimGraph.

56 Chapter 7. Algorithms

0

1

2

3

4

5

6

7

0,5

5

50

luxembourg coAuthorsCiteSeer coAuthorsDBLP delaunay_n20 delaunay_n23 hugetric-00000 rgg_n_2_20_s0 ldoor audikw1 germany nlpkkt120

m
s

PageRank Performance

aimGraph (naive | Balanced) | cuSTINGER

aimGraph | Naive aimGraph | Balanced cuSTINGER cuSTINGER / Best aimGraph

Figure 7.4: PageRank Calculation Performance comparison

Even the naive implementation using aimGraph is able to outperform cuSTINGER

for the given graphs, but the performance difference narrows for larger graphs as

cuSTINGER employs a balanced approach as well. The balanced implementation

delivers better performance in cases where on average multiple pages are used per

adjacency, this is especially noticeable for the two sparse matrices, ldoor and audikw1.

For graphs with small adjacencies, especially the two street networks, luxembourg and

germany, the preprocessing step introduces more overhead as a disadvantage as what

could be gained from a more balanced kernel, as the launch will be near identical to the

naive approach in these cases.

7.2.2.1 Discussion

• As PageRank has moderate memory access requirements, aimGraph does not re-

quire optimisations to perform well

• Unbalanced and larger graphs once again profit from using work balancing

– For smaller graphs the overhead negates the performance benefits

• aimGraph is able to outperform cuSTINGER in every tested scenario

8
Conclusion & Future Work

Contents

8.1 Conclusion . 57

8.2 Future Work . 58

8.1 Conclusion

aimGraph is a memory-efficient, fully dynamic graph solution with autonomous memory

management directly on the GPU. Compared to previous work [21], the framework is now

fully-dynamic. This means that not only edge updates, but also vertex updates are sup-

ported at very high update rates. All of that is possible without transferring the graph

data structure to and from the host for updating.

The solution is purpose-built for the GPU, reducing memory requirements as much as

possible. This is achieved by using an indexing structure instead of pointers and manag-

ing the device memory directly on the device, without the need for copying and allocating

new pages from the host. In this way, edge updates can be achieved with a single kernel

call. Additionally, now both insertions and deletions can be performed concurrently in

a single kernel call. Vertex updates can also be achieved with little overhead. Vertices

and all references to them can be deleted from the structure or new vertices added to it.

Furthermore, concurrent initialization of the graph structure is possible due to the direct

management of memory on the GPU, reducing the setup time significantly.

The current implementation supports different semantic modes for vertices and edges

(including simple, weighted and semantic graphs). Additionally, different update method-

ologies are provided to developers that can be selected for specific workloads or different

graph types to tune performance in every scenario. To verify new implementations, differ-

ent verification methods are included as well. To validate algorithmic performance on the

data structure, two algorithm implementations (PageRank and static triangle counting)

57

58 Chapter 8. Conclusion & Future Work

are provided.

In its current state, aimGraph is able to outperform its competitor in all tested graphs

(tested on a NVIDIA R© GTX 780 with 3GB VRAM) in edge update rate (2x to 20x higher

update rate) as well as initialization time (10x to 300x faster initialization time). Fur-

thermore, it adds the ability to update vertices as well, while remaining more memory

efficient by using an advanced memory management scheme based on a queuing approach.

The framework can hold tens of millions of vertices and hundreds of millions of edges in

memory (on the given consumer-level GPU and depending on the semantic mode).

It is able to process 20 - 100 million edge insertion per seconds and between 50 - 150 mil-

lion edge deletions per second. Vertex updates can also surpass a few million updates per

second, but depend more on the size of the graph due to verification methods required. As

shown in Section 7.2, aimGraph also performs very well in memory-intensive algorithms,

the only caveat being that random access to the adjacency does not perform as well.

Overall, aimGraph offers an efficient and fast, fully dynamic graph framework with a fo-

cus on efficient and autonomous memory management directly on the GPU. Using different

update implementations, the framework delivers high update rates tailored to different use

cases and graph properties, for both vertex and edge updates.

8.2 Future Work

To further update and expand the capabilities, the objective is to investigate the use of

a mega-kernel approach, launching just a single kernel and distributing the resources

on the fly, directly on the GPU. Doing so would eliminate the need for separate kernel

launches from the host all together, reducing the overhead associated with a kernel launch.

Additionally, this would allow the usage of the framework in an even more autonomous

way, frequently reporting back different metrics that are derived from algorithms running

in constant time intervals. Furthermore, this would also incorporate the possibility of

updating the graph structure and running algorithms simultaneously.

Another objective would be to assess the possibility of using multiple GPUs for aim-

Graph. This would allow the framework to access significantly more memory which in

turn enables bigger graphs to be kept in memory. However, this would require challenging

changes to the memory layout to be able to distribute the work across multiple GPUs.

The goal would be to find a beneficial work distribution while also focussing on adjacency

locality as much as possible.

Another area of interest would be the usage of out-of-core graphs, referring to graphs

that cannot be held in memory in their entirety. This would allow for even bigger graphs

to be used with aimGraph.

Last but not least, the goal would be to provide further algorithm implementations,

currently the framework offers multiple variants of triangle counting, comparing to versions

by cuSTINGER [9],[14], as well as a PageRank implementation. Further algorithms of

8.2. Future Work 59

interest would include connected components [16], single-source shortest path[6], betwee-

ness centrality for static graphs[15], betweeness centrality for dynamics graphs[11] and

community detection[17].

A
List of Acronyms

AOS Array of Structures xv, 3, 14–16, 37, 61

CC Compute Capability 39, 61

CPU Central Processing Unit vi, xv, 2, 8, 9, 14, 35,

36, 39, 42, 61

CSR Compressed Sparse Row 8, 19, 61

CUDA Compute Unified Device Architecture 3, 7, 8,

61

GPU Graphics Processing Unit iii, v, vi, xv, 1–3, 7,

8, 10, 13, 14, 28, 35, 36, 39, 41, 42, 51, 57, 58,

61

HPC High-Performance Computing iii, vi, 61

OpenCL Open Computing Language 3, 7, 61

PPI Protein-Protein Interaction 5, 61

SIMD Single Instruction - Multiple Data 2, 51, 61

SM Streaming Multiprocessor 39, 61

SOA Structure of Arrays xv, 3, 8, 15–17, 37, 61

STINGER Spatio-Temporal Interaction Networks and

Graphs Extensible Representation 8, 61

61

B
List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications.

B.1 2017

Autonomous, Independent Management of dynamic Graphs on GPUs

Martin Winter, Rhaleb Zayer and Markus Steinberger

In: Proceedings of IEEE High Performance Computing Conference (HPEC’17)

September 2017, Boston, USA

(Accepted for oral presentation, received Best Student Paper Award)

Abstract: In this paper, we present a new, dynamic graph data structure, built to

deliver high update rates while keeping a low memory footprint using autonomous memory

management directly on the GPU. By transferring the memory management to the GPU,

efficient updating of the graph structure and fast initialization times are enabled as no

additional kernel calls or reallocation procedures are necessary since they are handled

directly on the device. In comparison to previous work, this optimized approach allows

for significantly lower initialization times (up to 300x faster) and much higher update

rates for significant changes to the graph structure and equal rates for small changes.

The framework provides different update implementations tailored specifically to different

graph properties, enabling over 100 million of updates per second and keeping tens of

millions of vertices and hundreds of millions of edges in memory without transferring data

back and forth between device and host.

63

BIBLIOGRAPHY 65

Bibliography

[1] Bader, D., Berry, J., Amos-Binks, A., Chavarria-Miranda, D., Hastings, C., Madduri,

K., and Poulos, S. (2009). Stinger: Spatio-temporal interaction networks and graphs

(sting) extensible representation. In Tech. Rep. Georgia Institute of Technology. (page 8)

[2] Bader, D. A., Meyerhenke, H., Sanders, P., and Wagner, D. (2013). Graph parti-

tioning and graph clustering. 10th dimacs implementation challenge workshop. In ser.

Contemporary Mathematics, no. 588. (page 39)

[3] Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search

engine. In Computer Networks and ISDN Systems. Stanford University. (page 11)

[4] Che, S. (2014). Gascl: A vertex-centric graph model for gpus. In IEEE High Perfor-

mance Embedded Computing Workshop (HPEC). (page 7)

[5] Che, S., Beckmann, B. M., and Reinhardt, S. K. (2014). Belred: Constructing gpgpu

graph applications with software building blocks. In IEEE High Performance Embedded

Computing (HPEC). (page 8)

[6] Davidson, A., Baxter, S., Garland, M., and Owens, J. D. (2014). Work-efficient parallel

gpu methods for single-source shortest paths. In 28th IEEE International Parallel and

Distributed Processing Symposium (IPDPS). (page 59)

[7] Ediger, D., McColl, R., Riedy, J., and Bader, D. A. (2012). Stinger: High performance

data structure for streaming graphs. In IEEE High Performance Extreme Computing

Conference (HPEC). Georgia Institute of Technology. (page 8)

[8] Green, O. and Bader, D. (2016). custinger: Supporting dynamic graph algorithms for

gpus. In Conference Paper. Georgia Institute of Technology. (page 2, 8, 15, 37)

[9] Green, O., Yalamanchili, P., and Munguia, L. (2014). Fast triangle counting on the gpu.

In IEEE Fourth Workshop on Irregular Applications: Architectures and Algorithms.

(page 53, 58)

[10] Group, K. (2017). OpenCL - The open standard for parallel programming of heteroge-

neous systems. https://www.khronos.org/opencl/. [Online; accessed 21-May-2017].

(page 3)

[11] McLaughlin, A. and Bader, D. (2014). Revisiting edge and node parallelism for

dynamic gpu graph analytics. In IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW). (page 59)

[12] NVIDIA (2016). nvGraph. https://developer.nvidia.com/nvgraph. [Online; ac-

cessed 12-May-2017]. (page 7)

https://www.khronos.org/opencl/
https://developer.nvidia.com/nvgraph

66

[13] NVIDIA (2017). NVIDIA CUDA Programming Guide. http://docs.nvidia.com/

cuda/cuda-c-programming-guide/. [Online; accessed 01-May-2017]. (page xv, 2, 3)

[14] Polak, A. (2015). Counting triangles in large graphs on gpu. In arXiv preprint.

(page 58)

[15] Sariyüce, A. E., Kaya, K., Saule, E., and Catalyürek, . V. (2013). Betweenness cen-

trality on gpus and heterogeneous architectures. In 6th Workshop on General Purpose

Processor Using Graphis Processing Units. (page 59)

[16] Soman, J., Kishore, K., and Narayanan, P. (2010). A fast gpu algorithm for graph

connectivity. (page 59)

[17] Soman, J. and Narang, A. (2011). Fast community detection algorithm with gpus

and multicore architectures. In IEEE International Parallel and Distributed Processing

Symposium (IPDPS). (page 59)

[18] Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s journal, pages 202–210. (page 1)

[19] SYSTAP, L. (2017). BlazeGraph. https://www.blazegraph.com/. [Online; accessed

01-May-2017]. (page 7)

[20] Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., and Owens, J. D. (2015).

Gunrock: A high-performance graph processing library on the gpu. In ACM SIGPLAN

Notices, vol. 50. (page 8)

[21] Winter, M., Zayer, R., and Steinberger, M. (2017). Autonomous, independent man-

agement of dynamic graphs on gpus. In 2017 IEEE High Performance Extreme Com-

puting Conference (HPEC ’17). Graz University of Technology. (page 2, 14, 15, 18, 27,

57)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.blazegraph.com/

	Introduction
	Motivation
	Outline
	Graphs
	Graph types
	Scope of application

	Related Work
	Static Graph Frameworks on the GPU
	Dynamic Graph Frameworks on the GPU
	cuSTINGER

	Algorithms
	Triangle Counting
	PageRank

	aimGraph
	Memory Layout
	Memory Manager
	Vertex Data
	Edge Data
	Edge Types

	Temporary data
	Queues

	Initialization
	Graph Types
	Edge Insertion
	Edge Deletion
	Vertex Insertion
	Vertex Deletion

	Memory Management
	Fully dynamic updates
	Concurrent updates
	Efficient memory management
	Efficiency Comparison
	Uniform Updates
	Sweep Updates
	Random Updates

	Comparison to cuSTINGER
	Memory footprint
	Initialization
	Edge Updates
	Concurrent Updates

	Vertex Updates

	Performance
	Initialization
	Edge insertion
	Overallocation

	Edge Deletion
	Overall performance
	Concurrent Updates
	Vertex Insertion
	Vertex Deletion

	Algorithms
	Work-Balance Preprocessing
	Algorithm Performance
	Static Triangle Counting - STC
	Discussion

	PageRank
	Discussion

	Conclusion & Future Work
	Conclusion
	Future Work

	List of Acronyms
	List of Publications
	2017

	Bibliography

