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Abstract

Objective Lipid Data Analyzer identifies lipids and their structure based on mass spec-

trometry. A bottle neck of the analysis was the Savitzky-Golay Filter which is used

for smoothening the raw data of the chromatogram. This implementation is needed

to detect the begin and the end of a peak in the chromatogram without chang-

ing the shape and position of the peak significantly. The aim was to speed-up the

calculation by filtering in parallel.

Methods To reach the goal, the GPU (Graphic Processing Unit) was invoked to perform

the calculation by using the programming model CUDA (Compute Unified Device

Architecture). The existing Java code was ported to the C-like programing model.

A native library was created which was included into the existing project and tested

on three different platforms. If a CUDA capable device is installed, the library is

called which uses the GPU.

Results The GPU version of the algorithm led to a speed-up between 7-170 depending on

the input data and available graphics card. When smoothing a whole chromatogram

file the CUDA version led to a speed-up of 6.5-43 compared to the Java version. Due

to different floating point representations there are numerical deviations compared

to the Java implementation. From 8084 lipids 28 differ in their result by more than

0.1 %. In average the deviation of the peak area is 0.05 % and the maximum 1.56

%.

Conclusion Enabling the GPU using CUDA leads to a noticeable speed-up of the anal-

ysis. The degree of performance enhancement is although very depending on the

type of data which is processed and also on the used hardware.

Key Words: Savitzky-Golay; CUDA; Lipid Data Analyzer; Bioinformatics
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1 Introduction

The Human Genome Project unraveled the DNA base pair sequence of the human genome.

This laid the foundations for studying the human genome with computers to help under-

standing diseases, for identification of mutations, to design medication and simulating

their effects and advancement in forensic, to name but a few. With the invention of next

generation sequencing (NGS) [1] it was possible to sequence 20 megabases in a 5-hour

run. About ten years later an Illumina Hiseq 4000 [2] sequences now up to one terabases

in three days. Due to this fast improvement the amount of data is roughly doubling ev-

ery six months. The NCBI Gene Expression Omnibus (GEO) database already contains

more than a million samples of diseased and healthy tissue which is publicly available to

researchers. This gene expression data is used for analyses and classifications which is

done by bioinformatic applications. Not only the huge amount of data makes it a time

consuming task but also the complexity of solving it too. For example the Nussinov [3]

and also the Zuker [4] RNA folding algorithm have a time complexity of O(n3), where n

is the length of the folded sequence. One way to shorten this time consuming tasks is to

find better algorithms which is not trivial. A more common and easier way is to enhance

the computational power.

Besides sequence alignment and prediction of molecular structures several other impor-

tant fields which involve bioinformatics exist. Lipidomics with the goal to understand the

physiological and pathological mechanics of lipids and their metabolites in single cells and

in the whole organism. With molecular dynamics it is possible to investigate molecular

processes to enable a rational design of new materials, test analytical theories or to get

a insight into molecular mechanisms. For finding lead compounds in drug discovery or

prediction of protein complex structures molecular docking is used. Among other things

it is also necessary to simulate mRNA movement within the cytoplasm or the bacterial

chemotaxis.

The improvement of the clock speed of CPUs (central processing unit) came nearly to

a standstill in the last years. Power consumption and heating problems are the main

issue. A workaround for that is to parallelize the computational tasks. A GPU (graphics

processing unit) is well suited for this kind of operations since up to several hundred cores

can work simultaneously at the same time.

Varré et al. [5] show how more efficient bioinformatics applications can be developed.

They also give some insights into many-core processor architectures and parallelism.
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Arenas et al. [6] provide a preview of the use of GPUs and also give an overview of soft-

ware systems. Fang et al. [7] present a comprehensive performance comparison between

CUDA and OpenCL.

1.1 Central Processing Unit vs. Graphics Processing Unit

Due to increasing power consumption and heating problems with higher CPU frequencies

[8] the clock speed increase came nearly to a standstill. The speed up of modern proces-

sors is ensured by using multiple processors which work in parallel. This can be achieved

by using multi-core or many-core processors on a normal workstation or by performing

the calculations on a compute cluster.

Thanks to the gaming industry, which is using real-time, high-resolution and three-

dimensional graphics, a solution with higher memory bandwidth and more computing

power than a CPU is available at a low price in the form of GPUs. They are now stan-

dard in every personal computer and have up to hundreds of processor cores which provide

high parallelism and hence a huge speed-up. CPUs are more suitable to perform opera-

tions with low latency (in short time). GPUs on the other hand provide a high throughput

(no. of operations per time). With this approach the Moore’s Law [9] can be maintained.

Moore stated that complex integrated circuits with minimal components costs will double

regularly every 12 to 24 mounts.

In the following text the CPU Intel R© Core
TM

i7-6700K and the GPU NVIDIA GeForce

GTX 970 are compared (Table 1 including NVIDIA GP102 Titan X). These are at the

time of writing state of the art computer components. The CPU has 4 cores and can han-

dle 8 threads whereas the GPU has 1500 cores. Even though the CPU has a clock rate

of 4 GHz and the GPU of 1 GHz it is possible to achieve considerable accelerations when

performing calculations on the GPU. Power consumption is important as well. With 90

W and 113 GFLOPS (Giga Floating Point Operations Per Second) the CPU has a perfor-

mance per watt of 1.25 GFLOPS/W. The GPU, however, consumes 145 W and executes

3494 GFLOPS which leads to 24 GFLOPS/W.

Despite the advantages of the GPU there are some restrictions. GPUs use the single

introduction, multiple data (SIMD) [10] programming model where all processors execute

the same instruction with different data at the same time. Additionally, coding is different

and algorithms have to be adapted.
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Applying scientific computations on a GPU which are normally solved on CPUs is called

GPGPU (general-purpose computing on graphics processing units). Early adoptions of

computationally challenging scientific problems have been made for dynamic simulation

in physics, signal and image processing and visualization techniques [11].

Table 1: Comparison of CPU Intel R© Core
TM

i7-6700K, the GPU NVIDIA GeForce GTX 970
and NVIDIA GP102 Titan X

Feature CPU GTX 970 GP102

Cores 4 1,500 3,584

Clock rate (GHz) 4 1 1.4

GPLOPS 113 3,494 10,970

Power consumtion (W) 90 145 250

GFLOPS/W 1.25 24 40.6

DRAM (GB) - 4 12

1.2 Ways to Code for Acceleration

To implement algorithms on the GPU several frameworks are provided. The most pop-

ular programming model is Compute Unified Device Architecture (CUDA) [12] (released

in 2007) from NVIDIA which is however restricted to NVIDIA products. Apart from

that the Open Computing Language (OpenCL) [13] (specified in 2008 by the Khronos

Group) can be used across heterogeneous platforms consisting of central processing units

(CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-pro-

grammable gate arrays (FPGAs) and other processors or hardware accelerators. Another

programming standard is OpenACC (Open Accelerators) [14] where directive pragmas

can be used to copy variables to/from the GPU and specify which for-loops should be

accelerated. Thrust [15] is a C++ template library for CUDA based on the Standard

Template Library (STL). Other available programming interfaces for GPGPU are C++

AMP [16], DirectCompute [17], Jacket [18], OpenHMPP [19] and WebCL [20].

For the most GPGPU implementations CUDA and OpenCL are used. Therefore further

work in this study focuses on these two topics.
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1.2.1 CUDA and OpenCL

CUDA and OpenCL have different programming interfaces, consisting of code executed

on the GPU (the kernel) and code running on the CPU. Converting a CUDA kernel to

an OpenCL kernel takes just minimal modifications. The remaining GPU-related code,

like setting up the GPU and data transfer, requires some more modifications.

The CPU and GPU with the related storage are declared as host and device respectively.

In both programming interfaces the host controls the device. Many independent threads

which run the device code, are hierarchically grouped into blocks. The blocks are orga-

nized in grids. Not only computation has its hierarchy, but also memory. The host uses

the RAM which is referred to as host memory. Before executing a kernel the required data

has to be transferred from the host memory to the global device memory. All threads

within a grid can access the global memory. For speed-up parts of the global memory

can be copied to the faster shared memory where every thread within a block has access.

The fastest memory is the local memory which can be just used by a single thread. A

schematic hierarchy is shown in Figure 1. In OpenCL thread, block and grid are named

work item, work group and index space respectively. OpenCL also defines the platform

which are all processors in a heterogeneous system (host plus devices).

Block (0,0) Block (1,0)

Global Memory

Shared Memory Shared Memory

Local Memory Local Memory

Thread(0,1) Thread(1,1)

Local Memory Local Memory

Thread(0,0) Thread(1,0)

Local Memory Local Memory

Thread(0,1) Thread(1,1)

Local Memory Local Memory

Thread(0,0) Thread(1,0)

Figure 1: Schematic hierarchy of CUDA. In this example the grid holds two blocks with 2x2
threads each. Every thread has access to its own local memory, the shared memory in the related
block and to the global memory (adapted from [21]).
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For launching a kernel on the GPU, depenent on the programming interface, several pre

and post processing steps are needed. With CUDA memory needs to be allocated on the

devics global memory. Before executing the kernel the data needs to be transferred to

the global memory. After the calculation is done the result is copied back to the host. In

addition to the steps that are needed for CUDA, OpenCL needs several more (Table 2).

A more detailed comparison with a SAXPY code example can be found in the Appendix

(List 1, 2). SAXPY stands for “Single-Precision A·X Plus Y“ and is a specification of the

Basic Linear Algebra Subprograms (BLAS). It is used as the “Hello World!“ for parallel

computing where a vector is multiplied with a scalar and another vector is added (1).

~y ← α~x+ ~y (1)

Table 2: Comparison of the needed operations for CUDA and OpenCL to prepare, load and run
a kernel and moving the memory between host and device.

CUDA OpenCL Operation

• Get information about platform and devices available on system

• Select device to use

• Create an OpenCL command queue

• • Create memory buffers on device

• • Transfer data from host to device

• Create kernel program object

• Build (compile) kernel in-line (or load precompiled binary)

• Create OpenCL kernel object

• Set kernel arguments

• • Execute one or more kernels

• • Read kernel memory and copy to host memory

1.2.2 Hardware Implementation of CUDA

The CUDA C programming guide [22] provides a detailed explanation of GPGPU, the pro-

gramming model, programming interface, hardware implementation, performance guide-

lines and other helpful information. For this section this guideline served as a reliable

source.

When a kernel grid is launched, the blocks of the grid are enumerated and distributed

to a scalable array of multithreaded Streaming Multiprocessors (SMs). A multiprocessor
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consists of a different amount of CUDA cores depending on the compute capability (typ-

ically 32-192 CUDA cores). Threads within a thread block and multiple thread blocks

(max. depending on the compute capability) execute concurrently on one multiprocessor.

One thread block cannot be distributed onto two multiprocessors. After a thread block

terminates, a new block is launched on the free multiprocessor.

Warps, which consists of 32 parallel threads, are created, managed, scheduled and exe-

cuted by the multiprocessor. The multiprocessor partitions new thread blocks which are

ready to execute into warps with their own warp scheduler. The scheduler schedules the

executions of the thread. Depending on the compute capability there are 1, 2 or 4 warp

schedulers for each multiprocessor. On a fully loaded GPU the number of threads can

exceed the number of CUDA cores per multiprocessor. The multiprocessor will then have

several threads ”in flight”. A warp with ready threads is selected by a warp scheduler to

execute its next introduction. This selection occurs at every instruction issue time. At

lower compute capability the number of CUDA cores in a multiprocessor is less than the

size of a warp (8, 16 cores). Therefore it can take several clock cycles to issue a single

instruction for the whole warp.

Latency is the number of clock cycles it takes to execute the next instruction within a

warp. Full utilization is archived when at every clock cycle during a latency period all

warp schedulers issue an instruduction on any warp. Latency increases when the input

operands are not available yet e.g. input operands are written by some previous instruc-

tion(s) whose execution has not completed yet (11-22 clock cycles), or some input operand

resides in off-chip memory (200-800 clock cycles).

A warp executes the same instruction for each thread at a time. When all 32 threads

agree with their execution path full efficiency is realized. If the path of threads in a warp

diverge through a data-dependent conditional branch the distinct executions are processed

serially. Threads that are not on the path are disabled. After completion of each branch

the threads converge back to a single one and all threads run parallel again. Divergence

of a branch only occurs within a warp. Different warps are not effected by each other and

act independently whether the code path is common or disjoint.

Threads of a warp are either called active or inactive (disabled). The active ones are on

that warp’s current execution path whereas the inactive ones are not.

During the whole lifetime of a warp the execution context (program counters, registers,
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etc.) processed by a multiprocessor is maintained on-chip. That is why switching from

one execution context to another has no cost.

1.3 Lipid Data Analyzer

Lipids are in general hydrophobic substances due to their long hydrocarbon residues. In

living organisms lipids are responsible for the structure in cell membranes, serve as a

energy storage and are used as signal molecules. Most biological lipids are amphiphilic

which means that they consist of a lipophilic hydrocarbon radical and a polar hydropho-

bic headgroup. As a result they build in polar solvents like water lipisomes, micelles or a

lipid bilayer. Fats represent a subset of lipids.

The research of lipidome gives insight in the physiological and pathological processes like

metabolic diseases and neurocognitive diseases but also healing effects for multiple sclero-

sis. Lipids in tissue, organs and body fluids can be detected through mass spectrometry

(MS, MS2).

The Liquid chromatography-mass spectrometry (LC-MS) is an analytical chemistry tech-

nique which combines two approaches to quantify compounds. These two techniques and

the intensity build the three dimensional data of LC-MS. Through liquid chromatography,

compounds in mixtures get separated because of its physical separation capabilities. The

mass spectrometry has mass analysis capabilities to get information about the structural

identity, so this technique is used for biochemical to identify organic and inorganic com-

ponents. Therefore this technique is used in biotechnology, environment monitoring, food

processing, and pharmaceutical, agrochemical, cosmetic industries.

With the fast improvement of high-throughput measurement technologies, a high amount

of data is collected which needs to be processed. LC-MS is capable of monitoring quantita-

tive changes in hundred of lipids simultaneously. To process the data, there are currently

two approaches for quantification commonly used: extracting m/z profiles or m/z spectra.

For example SECD (Spectrum Extraction from Chromatographic Data) extracts the m/z

spectra in a manually chosen area and LIMSA (LIpid Mass Spectrum Analysis) analyzes

the output [23, 24]. The latter method extracts the information from the liquid chro-

matograms like mzMine2 [25, 26].

To use the full potential of LC-MS it is reasonable to use all three dimensions for analyzing
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the data. The three dimensions consist of the retention time, m/z ratio and the intensity.

Lipid Data Analyzer (LDA) [27] applies this approach. Using all three dimensions, it

is easier to distinguish between overlapping peaks, which occurs where the lipids have

double bounds.

A computational bottle neck in LDA is the Savitzky-Golay filter [28] which is used to

smooth the profiles in m/z-direction and the chromatograms in retention time direction.

With this method the signal-to-noise ratio can be increased without degrading the un-

derlying information. This is needed for the peak border detection to work properly by

keeping the peak almost at the same place and at the same hight. With a simple low-pass

filter the peak would loose noticeably on height and may shift slightly.

To calculate the peak area, LDA performs several steps where some involve the Savitzky-

Golay filter (marked with *). Figure 2 illustrates these points.

1. A chromatogram with a broad m/z-range gets extracted.*

2. For every peak in that chromatogram the time is determined.

3. At the time of a peak a m/z-profile with a narrow time-range is extracted.*

4. In this profile the peak and the m/z-peak borders are calculated.

5. Two chromatograms are extracted.* A broad one with the width of the previous

calculated m/z-peak borders and a narrow one around the peak. From these two

chromatograms the time borders are determined.

6. From the previous determined peak borders in m/z- and time-direction further

points in the m/z-time plane are found out which are on the peak border as well.

7. Through these points an ellipse is fitted.

8. Every intensity within this ellipse is added and the background is subtracted. The

result is the final peak area.

The Savitzky-Golay filter fits a polynomial to a set of points. These points are in a certain

range around the point which should be smoothed. The value of the polynomial, at the

position of the point which should be smoothed, is the smoothed value. If the points are

evenly spaced a mask can be applied with precalculated weights. Otherwise, as it is in

LDA, the polynomial fit has to be calculated for every point with a least square fit.
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Figure 2: The graph illustrates the m/z-time plane of a LC-MS. The two ellipses represent two
peaks where the bigger one is the one to quantify. With a broad m/z range the chromatogram
A is extracted. At the time of the peak a narrow m/z profile B is extracted and the borders
are defined. Around the peak of B a broad and a narrow chromatogram C, D with the width
c, d are extracted. From these chromatograms the borders are defined. An ellipse is fit into
the border points. The intensities within this ellipse are contributed to the total peak intensity.
Image taken from [27].
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1.4 Aims of the Thesis

The overall aim of the thesis is to speed-up the smoothing of chromatograms in LDA

which are using the Savitzky-Golay filter, which is the bottleneck of the program, by

transferring the computation to the GPU by using CUDA.

Specifically the following should be achieved:

• Get familiar with the Java code of LDA, especially with the filter implementation

• Implementing a C version of the filter including verification

• Implementation of the filter in CUDA including verification

• Create native library which can be loaded from Java for Windows, Mac OS X and

Linux

• Integration of the library in LDA

• Determination of speed-up for a single chromatogram and for a whole data file

• Validation of the result
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2 Methods

2.1 Savitzky–Golay Filter

The Savitzky-Golay filter [28] performs a polynomial regression to fit piecewise a poly-

nomial function into a set of given points. An analytical solution to this least-squares

calculation is available. For each data point a polynomial is fit to the data with the least

square method. When the data points are equally spaced the convolution coefficients can

be calculated in advance which are depending on the number of neighboring data points

and the degree of the polynomial which should be used. These convolution coefficients

can also be found in the publication of Savitzky et al. [28]. The data points have to be an

odd number where the smoothed point is the central point of the sub-set. The coefficients

can be applied with a moving window over the data points.

The general filter equation by Savitzky and Golay can be defined as follows (Equation 2).

gi =

m+1
2∑

n=−m+1
2

Cnfi+n,
m+ 1

2
≤ i ≤ l − m+ 1

2
(2)

Where gi is the smoothed data point at position i, m is the number of neighboring data

points (need to be odd), n are the positions of the neighboring points, C are the filter

coefficients, f are the raw data points and l the length of data set.

To calculate the solution the polynomial a0 + a1i+ · · ·+ aM i
M should be fit to the data

values fi+n, where M is the degree of the polynomial. The smoothed data point will be

the value of the polynomial at n = 0 which corresponds to a0. To get the solution of the

fitting the design matrix A is created (Equation 3).

Anj = (t(i+ n)− t(i))j n = −m+ 1

2
, . . . ,

m+ 1

2
j = 0, . . . ,M (3)

Where t(i) is the time at the position i. Taking the time into account a solution can be

found even if the data points are not equally spaced. To get the vector a, the following

normal equation with the design matrix A and the raw values f can be derived (Equation

4).

a = (AT · A)−1 · AT · f (4)

The filter coefficients C are elements of the matrix (AT ·A)−1 ·AT . The normal equation

can be solved with LU decomposition and backsubstitution. With the calculated vector

11



a the smoothed value can be determined by getting the first element of the vector a0.

Varying the window width and changing the smoothing coefficients the way of smooth-

ing can be changed. The Savitzky-Golay filter can perform like a polynomial smoothing,

moving average calculation as well as a smoothed differentiation.

The great advantage of the Savitzky-Golay filter is that it does not cut off high frequen-

cies. Maxima, minima and the dispersion stay almost the same and the signal-to-noise

ratio is increased as well.

2.2 Development Environment

The implementation should be done on the three major operating systems. LDA is de-

signed to work on Windows, Mac OS X and Linux using Java. Therefore the development

environment was prepared for each of these operating systems (Table 3).

For developing a library which invokes CUDA the appropriate software is needed. The

NVIDA CUDA Compiler (NVCC) compiles the CUDA specific device code. The standard

C code is delivered to a C compiler like the GNU Compiler Collection (GCC) on Linux

and OS X or Microsoft Visual C on Windows. NVCC is part of the CUDA Toolkit which

can be downloaded from the NVIDIA web page [29].

For writing the actual code an integrated development environment (IDE) is advanta-

geous. On Linux and Mac OS X the development platform NVIDIA Nsight powered by

the Eclipse platform [30] is part of the toolkit as well. On Windows it is necessary to in-

stall the version of Microsoft Visual Studio that fits the needed CUDA version in advance

to work properly.

For the Linux library the code was compiled on a server since no desktop computer was

available with Linux and a NVIDIA GPU. On both computers NVCC was installed and

Nsight on the local computer. The local and the remote system need to have a matching

operating system and the same CUDA version. A Windows remote needs a Windows

local system as a Unix remote needs a Unix local system. It is possible to code local and

transfer the files via git [31] to the remote system. This can be done automatically when

building the library in Nsight.
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The CUDA code is platform independent and can be copied between the operating sys-

tems without any changes. Changes are only needed if functions are used which need a

recent compute capability of the GPU.

2.3 Result Verification

For single chromatograms the raw data gets printed in the console and compared between

the CPU version and the GPU version to be sure, that the input is the same. After the

smoothing with the Savitzky-Golay filter, the print out of the smoothed values can be

compared again. With the result the relative deviation of the GPU implementation can

be calculated.

The integration in LDA gets verified by comparing the output files. LDA saves the results

in .xlsx files which includes detailed information about the found lipids. All peak areas

of the test files get compared and the relative deviation can be calculated (Equation 5).

d =
|AGPU − ACPU |

ACPU

(5)

Where d refers to the relative deviation, AGPU to the peak area calculated by the GPU

and ACPU to the peak area calculated by the CPU.

2.4 Time Measurement

For single chromatograms the time measurement wanted to be done in the C implemen-

tation. But the CUDA function clock(), which counts the elapsed clock cycles, resulted

to 0. The measurement got moved to Java close to the JNI call and was done with

System.nanoTime().

LDA has already a time measurement implemented and prints it out in the console at every

run. This time measurement served as comparison for the CPU and GPU implementation.
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Table 3: The used hardware and software for compiling and testing the Savitzky-Golay library. The used CUDA toolkits for all OSs which
contain the compiler and IDE can be downloaded from the CUDA Toolkit Archive [29].

Specification Windows macOS Linux

local remote

OS Win7 Enterprise SP1 MacOS verion 10.10.3 Arch Linux
4.8.6-1-ARCH

Debian GNU/Linux 8
(jessie)

CPU Intel Core i5-4330M @ 2.8 GHz Intel Core Duo E8435
@ 3.06 GHz

Intel Core i5 M 480
@ 2.667 GHz

Intel Xeon E5-2630 v2
@ 2.60 GHz

GPU Quadro K610M GeForce GT 130 Radeon HD
5400/6300 Series

Tesla K20Xm

CUDA cores 192 48 2688

GPU Clock 954 MHz 500 MHz 732 MHz

DRAM 1 GB 768 MB 2 GB

Compute capability 3.5 1.1 3.5

nvcc V8.0.60 V6.5.12 V7.5.17 V7.5.17

IDE Microsoft Visual Studio 15
V14.0.25431.01
Nsight Visual Studio Edition
5.2.0.16321

Nsight V6.5
(Eclipse Edition)

Nsight V7.5
(Eclipse Edition)
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3 Results

Reverse engineering of LDA revealed that the Savitzky-Golay is used in several steps in

the peak detection and peak area calculation (Figure 2). After clarifying where the filter

is used the next step was to check at which point it would be appropriate to transfer

the calculation to the GPU. The function which is performing the smoothing of a single

chromatogram (Listing 3) proofed to be the best choice.

The function performs the steps from raw data processing to the smoothed data point

and uses the retention time, the raw data, the time range and the smoothing repetitions

(Algorithm 1, Figure 4). The retention time is the time a specific compound spends in the

column during a chromatography. The raw data corresponds to the intensity of a data

point. The data points within the time range are used to fit the polynomial. The func-

tion also is able to smooth the spectrum several times which is designated as smoothing

repetitions.

To calculate the smoothed value for a given point the points within the time range are

determined. These points are used for the polynomial fitting (Figure 3). Therefore a

design matrix is created from the time positions of these points. With the design matrix

and the raw data a normalequation can be established which can be solved with a LU

decomposition and backsubstitution.

In many cases there is no need to smooth the whole chromatogram, but just a short part

of it, eg. just the region around a peak. Therefore it is necessary to calculate the indices

of the start and stop point of the given time span.

In the serial implementation (Figure 4a) a loop iterates over every single raw data point

which should be smoothed. In the parallel version (Figure 4b) each point is handled in-

dividually by different threads of the GPU.
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Figure 3: Smoothing of a single datapoint: All these steps are performed on the GPU with a
single thread. The data point that should be smoothed is at 9.2694 s and the range is 3 s. The
points at 6.8687 s and 11.6723 s are in this range. For fitting the polynomial five points are
needed. Therefore the point at 4.4407 s at the lower end and 13.5017 s at the upper end are
added. The polynomial is fit into these 5 points. The value of the polynomial at the position
9.2694 s is the smoothed value.
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(a) (b)

Figure 4: Flowchart of the function for the Savitzky-Golay filter. In both implementations the time range and smoothing repetitions are
provided from the LDA at the start as well as the retention time and the raw data from a file. The preprocessing is handled in both
implementations on the CPU. The serial polynomial fitting (a) is done with a loop and one data point after the other is smoothed. Whereas
the parallel implementation (b) tries to fit as much points as possible at the same time on the GPU.
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Algorithm 1: Savitzky-Golay filter running on the GPU with precalculation steps done on the CPU.

Input : retention time, raw data, time range, smoothing borders
Output: smoothed value
/* Precalculation steps on the CPU */

threshold← min(raw data);
if smoothing borders 6= raw data borders then

smoothing borders← smoothing borders+ time rang + 10 indices;
end
calculate grid dimension dependent on smooth length;
calculate shared memory size;
copy retention time and raw data to device;
foreach repetition step do

/* Kernel running on the GPU to precalculate the powers */

foreach raw data point per CUDA thread do
if raw data point > 1 then

precalculated power ← raw data point
1
4 ;

else
precalculated power ← 1;

end

end
/* Kernel running on the GPU to smooth a data point */

foreach raw data point per CUDA thread do
smoothing points← raw data point+ points in time range;
copy retention time and raw data from global to shared memory;
/* Creation of the normal equation and solving it */

create matrix from retention time and raw data;
matrix decomposition;
create vector from retention times, smoothing points and precalculated power;
smoothed value← matrix and vector backsubstitution;

end

end

3.1 Implementation with Various Test Drivers

Porting Java Code to C Code

Several test drivers were created to get stepwise to the full implementation. Translating

the Java function to a C function was essential since CUDA can use the C syntax rules.

To test the translated code a single chromatogram was smoothed and compared with the

result from Java code.
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Porting from CPU to GPU

The for loop, which iterated over every point in the chromatogram for smoothing, was

parallelized. At this point it was necessary to assign the appropriate memory (local,

shared, global) on the GPU for each parameter and array. Memory was allocated in dif-

ferent hierarchical levels to see if it might give improvements regarding the speed. Other

GPU specific changes have been made (Pages 21ff.). The filter parameter and array which

were transferred to the device have been checked. The smoothed result was compared

against the Java results. In this test driver the time of the different calculation steps

were measured to see which part was the most time consuming one. The results of the

calculation steps itself were examined as well to see if the algorithm itself can be adjusted

to speed-up. The initialization time was measured as well. The Tesla GPU on Linux took

between 3 and 5 seconds and the Quadro on Windows just around 500 ms.

Java Native Interface

To access the GPU from Java a Java Native Interface (JNI) [32] was created, to commu-

nicate over the C-library with CUDA. Therefore a class was written in Java (example in

Listing 4) which contained the function names with a native declaration of the dynamic

library which needed to be accessed from Java. The header file (example in Listing 5)

for the C code was generated from the Java class by using the program javah [33]. The

generated header file is derived from the native declared function names, the package and

the class name and must not be changed. The C code with the CUDA calls was compiled

as a dynamic library. When the class is created during the runtime of Java the library

gets loaded and its functions can be used. The transfer of the function parameters and

array and the returned smoothed array were controlled concerning their correctness.

Multithreading on the CPU

LDA performs the analysis using multiple threads. Each thread is handling one mass of

interest. Multiple threads were created in this test driver where each thread was access-

ing the same instance of the native library. Therefore each thread got his own address

pointing to its allocated area on the global memory on the graphics card. With this setup

multiple tests were performed. The impact of speed influencing parameters have been

observed. The block size, the length of the chromatogram, the number of smoothings for

each chromatogram (repetitions), the total amount of chromatograms and the number of

threads used (Pages 23ff.).
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Whole Chrom File Processing

Until that point just specific chromatograms have been processed multiple times in one

run for testing purpose. A chrom file was loaded and the chromatograms got smoothed.

Therefore the already implemented classes from maspectras were used. LDA makes use of

general MS-signal-analysis algorithms of MASPECTRAS [34, 35], and extends them by

various peak border detection methods and by a 3D-algorithm for peak integration [27].

All needed classes were copied and adapted to load the file and process its data. First

the classes where the smoothing is called were added. Step-by-step the missing classes

were checked if they were needed for this test driver. If they were required they have been

added. This was repeated until all classes that were needed for reading and processing a

chromatogram were added. In this test environment the program was able to run with

or without the assistance of the GPU. The speed-up and values of the smoothing results

between the CPU and the GPU run have been compared.

LDA Integration

The native library was integrated into LDA where it is appropriate to work. Minor

changes to the derived classes enables the usage of the graphics processing unit.

At the beginning of LDA a query is done to check if a CUDA capable device is installed.

First the Savitzky-Golay class is created which tries to load the dynamic library. The li-

brary will first look after the CUDA runtime library cudart.dll/libcudart.so/libcudart.dylib

(dependent on the operating system). This library tries to invoke the NVIDIA driver. If

no driver is installed an unsatisfied linking error is thrown. This error is caught and the

useCuda flag is set to false, indicating CUDA will not be used. If all necessary libraries

can be loaded a function is called that counts the available devices. If zero devices are

detected the flag is set to false as well. The user is informed as well that the following

calculation is done without any assistance of a graphics card. Otherwise the library with

the GPU implementation can be used and the calculations are done on the graphics card.

The functions of MASPECTRAS, that call the Savitzky-Golay filter, were re-implemented

in LDA. At the position where the smoothing was called an if statement checks the use-

Cuda flag. If no CUDA device is present the Java implementation was used. If there is a

CUDA capable device the functions from the dynamic library are called.
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3.2 Speed Comparison within the Savitzky-Golay Filter

The Savitzky-Golay filter is a sequence of different calculation steps. Each step was in-

vestigated, if a speed-up of the algorithm itself could be established. The creation of the

design matrix A took 50% of the calculation time. All elements of the counter diagonal

of this matrix had the same value (Equation 6). This is when the indizes of aij have the

same value k = i+ j. In the implementation every element of the main diagonal and the

elements above have been calculated. So it happened that the same value was calculated

several times. After code refactoring the value for each counter diagonal was calculated

once (bold in equation 6) and stored at every associated diagonal element.

A =


a00 a01 . . . a0j

a10 a11 . . . a1j
...

...
. . .

...

ai0 ai1 . . . aij

 =


a0 a1 . . . ak

2

a1 a2 . . . ak
2
+1

...
...

. . .
...

a k
2

a k
2
+1 . . . ak

 (6)

Rewriting the creation of the design matrix A led to a speed-up of a factor of 1.3 (Table

4).

Table 4: Relative execution time of the different steps in the Savitzky-Golay filter before and
after optimizing the creation of the matrix. A kernel call is 100%.

before
optimization

after
optimization

Initiation of the variables 1.40% 1.87%

Calculation of the boundaries 3.86% 5.14%

Creation of the matrix 50.35% 33.88%

LU decomposition 8.85% 11.78%

Creation of the vector 29.69% 39.54%

LU back substitution 5.85% 7.79%

3.3 Speed Comparison within Different Settings

3.3.1 GPU Specific Code Changes

By plainly copying and adapting the Java code to CUDA computation time decreased by

a factor of 2 which was not expected. To work against this issue the way a GPU works
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should be considered (Table 5).

The size of some arrays depend on the order of the polynomial which is fitted to the data

points. First the memory of these arrays was allocated on the device which led to a slow

down of the whole implementation. The next step was allocating the memory from the

host on the global memory which led to a speed-up of 7.81. Last but not least the arrays

had a fixed size, so that calculations with the maximum order are possible, and stored on

the local memory. The last step accelerated the code to a speed-up of 9.71.

In GPU programming if statements and resulting branching should be avoided. At dif-

ferent points in the algorithm the same if statement was executed multiple times which

led to perform the same calculation multiple times as well. If the raw data value was

greater than 1 the fourth root of the value was multiplied with another parameter. The

else statement was empty and the parameter stayed unchanged. In the revised version

the fourth root of the raw data was set to the value power if the raw data was greater

than 1. Otherwise power was set to one. In the code, everywhere where needed, power

was just multiplied instead of working off the if statement. Additionally the function

pow(x, 1/4), which calculates the fourth root, was replaced with rsqrt(rsqrt(x)), which

calculates two times the reciprocal of the square root of a value which equals the fourth

root. This change improved the speed to a factor of 10.85.

The last improvement was moving the values of the chromatogram and the precalculated

power from the global memory to the shared memory. With all the previous changes this

led to a speed-up of 13.44. All these tests have been examined with one thread, a block

size of 128, a chromatogram with the length of 2688 and 8 repetitions.

Table 5: Speed-up of the Savitzky-Golay filter at different stages of the GPU optimization.

Change Speed-up

Plain copy from CPU to GPU 0.58

+ Move dynamic memory allocation from kernel to host 7.81

+ Fixed memory size on local memory 9.71

+ Avoided branching 10.85

+ Moved global memory to shared memory 13.44
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3.3.2 Variation of Parameters

The parameters that will change from calculation to calculation are the length of the chro-

matogram, the repetitions and the number of chromatograms which should be smoothed.

Depending on the GPU the block size may vary. CUDA provides a function that de-

termines, depending on the specific GPU and the used kernel function, which block size

is optimal. This can be done with cudaOccupancyMaxPotentialBlockSize(). The CPU

differ from the capability of handling multiple threads. Each thread is taking care of one

mass of interest and invokes the GPU when the Savitzky-Golay filter is needed. All these

parameters were changed in a certain range to see the effect. With longer chromatograms

and more repetitions the speed-up increases linearly (Figure 5). Varying the block size

and the number of chromatograms had nearly no effect (Figure 5, Figure 6). Increasing

the number of CPU threads leads to exponential decay to a fixed speed-up (Figure 5).
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Figure 5: Speed-up changes by varying several parameters. The length of the smoothed chro-
matogram (a), the repeats (b), the block size (c) and the number of threads (d) have been
increased. The default values have been a chromatogram with the length of 2688, 8 repetitions,
a block size of 224 and a single thread.

The number of chromatograms was increased on all three systems to compare their GPUs

(Figure 6, Table 6). The measured calculation times and the speed-ups of the three

different GPUs stayed for each operating system nearly the same. The Tesla graphics
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processor has the most CUDA cores and has been used to simulate the other two GPUs

to get a hardware independent comparison with a different amount of CUDA cores. When

launching the kernel the number of threads have been limited to the amount of CUDA

cores of the comparing GPU. Windows is using a Quadro with 192 cores and the Mac

uses a GeForce with 48 cores (hardware specifications in Table 3). The speed-ups of the

simulated GPUs on the Tesla are lower than on the native GPUs (Figure 6, Table 7).
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Figure 6: Speed-up during varying the number of single chromatograms on the operating systems
Linux (a), Windows (b) and Mac OS X (c). The yellow line shows a run with the Tesla on Linux
with restricting the GPU to just call as many threads as there are cores on the compared GPU.
The number of threads are manually restricted to have a hardware independent comparison with
identical conditions.
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Table 6: Speed-up when invoking the Savitzky-Golay filter with a different number of chromatograms and with different GPUs and operating
systems. The chromatogram length has been 2688, 8 repetitions, a blocksize of 224 and a single thread.

Number of Linux / Tesla K20Xm Windows / Quadro K610M Mac OS X / GeForce GT 130

Chromatograms Java CUDA speed-up Java CUDA speed-up Java CUDA speed-up

1 mean,ms 389.9 3.3 120.0 855.1 4.9 174.5 331.2 36.0 9.2

SD,ms 5.5 0.4 36.7 1.8 28.9 1.1

3 mean,ms 1036.5 9.7 107.4 2435.2 18.4 141.6 863.1 109.9 7.9

SD,ms 8.8 0.7 30.0 8.3 20.5 1.2

10 mean,ms 2967.7 29.2 101.8 8084.6 57.1 141.6 2780.0 158.8 17.5

SD,ms 74.8 1.6 81.6 9.5 27.5 96.5

30 mean,ms 8732.0 86.8 100.6 23759.0 162.0 146.7 8246.5 350.5 23.5

SD,ms 200.7 2.7 458.3 10.9 25.9 264.0

100 mean,ms 28390.8 254.9 111.4 74617.5 496.7 150.2 27650.4 1687.7 16.4

SD,ms 325.4 4.2 13791.1 6.0 518.5 218.8

300 mean,ms 82372.4 767.7 107.3 225194.7 1463.5 153.9 81977.2 3069.3 26.7

SD,ms 553.5 10.9 47509.3 19.4 202.4 533.6

1000 mean,ms 270689.2 2491.9 108.6 7772769.9 4816.7 160.4 274093.9 7709.5 35.6

SD,ms 1299.2 21.8 7434.6 79.4 3481.1 344.5

25



Table 7: Calculation done with the Tesla with restricting the GPU to just call as many threads
as there are cores on the compared GPU. The restriction has been the number of CUDA cores on
Windows (Quadro, 192 cores) and on Mac (GeForce, 48 cores). The threads have been manually
restricted to have a hardware independent comparison with identical conditions. Mean gives the
time spent for the calculation with its standard deviation (SD). Speed-up between the Java and
CUDA version is listed. The ratio to the speed-up of the comparing GPU is listed as well.

Number of Number of Threads

Chromatograms 48 192 2688

1 mean,ms 85.7 24.0 3.3

SD,ms 0.7 0.4 0.4

speed-up 4.5 16.3 120.0

ratio 2.4 4.9 1.0

3 mean,ms 256.3 71.4 9.7

SD,ms 1.1 0.6 0.7

speed-up 4.0 14.5 107.4

ratio 2.3 3.9 1.0

10 mean,ms 852.7 234.1 29.2

SD,ms 3.7 1.7 1.6

speed-up 3.5 12.7 101.8

ratio 5.4 4.1 1.0

30 mean,ms 2554.1 700.6 86.8

SD,ms 8.3 5.4 2.7

speed-up 3.4 12.5 100.6

ratio 7.3 4.3 1.0

100 mean,ms 8507.1 2305.9 254.9

SD,ms 48.2 15.7 4.2

speed-up 3.3 12.3 111.4

ratio 5.0 4.6 1.0

300 mean,ms 25511.9 6959.2 767.7

SD,ms 116.3 46.7 10.9

speed-up 3.2 11.8 107.3

ratio 8.3 4.8 1.0

1000 mean,ms 85101.3 23296.5 2491.9

SD,ms 398.0 101.2 21.8

speed-up 3.2 11.6 108.6

ratio 11.0 4.8 1.0
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Multiple CPU Threads

GPU specific tasks, like memory copying between the devices and kernel invocations, are

executed sequentially when using multiple CPU threads [22] (Table 8). With a single

thread the graphics card specific tasks can be processed as soon as they needed to. When

using several CPU threads they start to block each other. So it happens that a thread is

occupying the GPU while another one also wants to access it. Therefore the new thread

has to wait, until the other thread has finished using the GPU. Each CPU thread wanting

to run kernels on the GPU has its own CUDA context. Different contexts cannot run

simultaneously on the GPU, therefore one kernel is executed after the other.

Table 8: The GPU functions can just be executed sequentially. When using multiple CPU
threads they start to block each other. H2D is the copy process from host to device, K is the
kernel and D2H is the copying back the data from device to host.

Thread 1 CPU H2D K D2H CPU

Thread 2 CPU H2D K D2H CPU

To run CUDA operations simultaneous streams can be used [22]. Asynchronous CUDA

commands can be called which lead to an more efficient use of the graphics card. In the

current implementation one stream is used which leads to the above described behavior.

When the CUDA commands are called from the same context multiple streams can be

used (Table 9). Depending on the compute capability the number of concurrent kernel

executions can range from 4 up to 128. GPUs using the fermi [36] and more recent ar-

chitectures are able to do this. These are the compute capabilities 2.0 to the most recent

(Table 14 in [22]).

Table 9: Multiple streams can execute simultaneously several CUDA operations to get even a
higher parallelism. H2D is the copy process from host to device, K1 and K2 refer to the called
kernels and D2H is the copying back the data from the device to the host.

Stream 1 H2D K1 K2 D2H

Stream 2 H2D K1 K2 D2H
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3.4 Speed of Full Chromatogram Files

In the final implementation not just single chromatograms are calculated but a whole

chromatogram file in which lipids were to be identified. Since all the steps to the finished

implementation are done and it is known how the implementation reacts to various factors

it is now interesting to know how the speed-up is during a whole run. Files were used like

in an every day work environment.

With the full integration of the GPU version into LDA 12 chrom files were analyzed. Six

measured with an OrbiTrap and six with a QTrap from a previously performed wet-lab

experiment were used for the evaluation. The speed-up of the different types of files

ranged from around 7 for the Orbitrap files to 30-40 for the QTrap files (Table 11). The

distribution of the chromatogram lengths have been different for Orbitrap and QTrap

(Table 10). In general Orbitrap has more short chromatograms than long chromatograms

whereas the distribution for QTrap is the other way round.

Table 10: Distribution of smoothed chromatograms according to their length by measuring full
chrom files. The calculation was done with a OrbiTrap negative, OrbiTrap positive, QTrap
negative and QTrap positive file.

File Smoothing Smoothed Amount of Smoothed

Length Chromatograms Chromatograms

OrbiTrap negative 200 103,656 91.1 %

1279 10,093 8.9 %

OrbiTrap positive 200 335,066 95.3 %

1469 16,431 4.7 %

QTrap negative 137 50,978 38.2 %

475 4,964 3.7 %

1200 77,544 58.1 %

QTrap positive 193 49,676 39.5 %

1200 76,104 60.5 %
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Table 11: LDA was fed with 12 chrom files of 4 categories and run with the Java and the CUDA implementation. The tests were performed
on Windows with the Quadro K610M.

File Java CUDA Speed-up

(min:sec) (min:sec)

Orbitrap negative / 113,749 chromatograms in 002[..]

002 liver2-1 Orbitrap CID neg.chrom 30:18 4:11 7.24

003 liver2-1 Orbitrap CID neg.chrom 30:12 4:05 7.34

004 liver2-1 Orbitrap CID neg.chrom 29:57 4:07 7.28

Orbitrap positive / 351,497 chromatograms in 002[..]

002 liver2-1 Orbitrap CID pos.chrom 72:04 10:41 6.75

003 liver2-1 Orbitrap CID pos.chrom 72:32 11:01 6.58

004 liver2-1 Orbitrap CID pos.chrom 73:02 11:17 6.47

QTrap negative / 133,486 chromatograms in [..]021[..]

Data20151002 QTrap Liver-021 QTrap Liver1-1 neg.chrom 458:15 10:39 43.03

Data20151002 QTrap Liver-022 QTrap Liver1-1 neg.chrom 446:04 10:17 43.38

Data20151002 QTrap Liver-023 QTrap Liver1-1 neg.chrom 432:25 10:06 42.81

QTrap positive / 125,780 chromatograms in [..]002[..]

Data20151002 QTrap Liver-002 QTrap Liver1-1 pos.chrom 419:04 13:13 31.71

Data20151002 QTrap Liver-003 QTrap Liver1-1 pos.chrom 434:55 13:40 31.82

Data20151002 QTrap Liver-004 QTrap Liver1-1 pos.chrom 449:32 13:45 32.69
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3.5 Deviations

The smoothed chromatograms of the GPU implementation are numerically not identical

to ones from the Java implementation. In median the deviation was 10−6 where the drift

went up at the borders of a full chromatogram smooth. The first and the last values of a

completely smoothed chromatogram could in rare cases differ by up to 10%. The largest

differences were observed when a zero-crossing happened at the first or last element of the

smoothing array. For example, when after a smoothing with the Java implementation the

value of the first element is greater than zero and the one with the CUDA implementation

has at that position a zero. The values following are greater than zero. When after the

next smoothing repetition the values at the beginning are all greater than zero it is very

likely that the deviation is high.

From every lipid the area and the result of isotope 0, 1 and sometimes 2 was calculated.

In total this leads to different peak areas of the found lipids. From 8084 found lipids

28 differ more than 0.1% at the area under the curve. All lipids in the negative mode

OrbiTrap samples were quantified correctly, with a slightly deviation of the calculation

(Table 12).
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Table 12: The numeric results of the Java implementation and the CUDA implementation have been compared. From the four different
groups the number of input lipids, the number of peak area deviations and the number of lipids in which this occurred compared to the
total amount of found lipids is listed. The maximum and average deviation is listed as well. The median has been 0 for all areas.

Group Peak Area Deviation/ Total Maximum Average

File in # Lipids Lipids Deviation Deviation

Orbitrap negative (2280 input lipids)

002 liver2-1 Orbitrap CID neg.chrom 0/0 520 3.05E − 5 1.44E − 7

003 liver2-1 Orbitrap CID neg.chrom 0/0 480 5.32E − 5 1.78E − 7

004 liver2-1 Orbitrap CID neg.chrom 0/0 547 9.63E − 5 2.65E − 7

Orbitrap positive (2947 input lipids)

002 liver2-1 Orbitrap CID pos.chrom 5/2 1201 1.81E − 1 4.30E − 5

003 liver2-1 Orbitrap CID pos.chrom 0/0 1187 1.04E − 5 1.16E − 7

004 liver2-1 Orbitrap CID pos.chrom 1/1 1062 7.91E − 3 1.81E − 6

QTrap negative (2280 input lipids)

Data20151002 QTrap Liver-021 QTrap Liver1-1 neg.chrom 9/5 143 1.50E − 1 6.80E − 4

Data20151002 QTrap Liver-022 QTrap Liver1-1 neg.chrom 0/0 309 5.91E − 6 1.64E − 7

Data20151002 QTrap Liver-023 QTrap Liver1-1 neg.chrom 2/1 280 4.79E − 3 6.51E − 6

QTrap positive (2570 input lipids)

Data20151002 QTrap Liver-002 QTrap Liver1-1 pos.chrom 17/7 672 5.26E − 1 4.90E − 4

Data20151002 QTrap Liver-003 QTrap Liver1-1 pos.chrom 20/7 1155 1.56E − 0 2.45E − 3

Data20151002 QTrap Liver-004 QTrap Liver1-1 pos.chrom 14/5 528 1.53E − 0 1.79E − 3
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4 Discussion

By moving the Savitzky-Golay filter to the GPU, LDA could achieve a considerable speed-

up. Dependent on the testing input files the acceleration reached from 6 to 43. Since

several parameters change from one run to the next, the impact has been determined.

Numerical deviations occurred from the CUDA version compared to the Java version.

The current implementation of LDA is written in Java to be available for the three most

used desktop operating systems Windows, Mac OS X and Linux. CUDA can be accessed

from C, C++, Fortran and Python. At the time of writing CUDA is officially not support-

ing Java. A Java native interface is needed to access the library and the CUDA functions

to smooth the chromatogram. To invoke the GPU and being able to use CUDA a native

library was implemented that can be called from Java.

4.1 GPU Accelerated Bioinformatics Algorithms

A recent literature review reports that the speed-up achieved with a GPU implementation

ranges from 0.3 to 20,000 and has a median of 23 (Figure 7) [37]. The acceleration depends

on the on hand on the complexity of the algorithm. On the other hand it depends on

the amount of data which has to be processed and transferred between host and device

memories. Moving an algorithm to a GPU can even result in a slow-down.

0 50 100 150
speed−up

Figure 7: Speed-up of bioinformatics algorithms implemented on the GPU compared to the
CPU implementation. Figure taken from [37].

4.2 Filter Migration to the GPU

Two options have been considered for migrating the current implementation of the Savitzky-

Golay filter to the graphics card. One was moving the whole chromatogram into the GPU

storage and let each thread calculate a single lipid. Another option was moving just the
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calculation of a single chromatogram to the GPU.

Moving the whole chromatogram into the GPU storage would have been too complex

since multiple classes would have been moved to the GPU. Although it is possible to

construct classes on the GPU another problem could have been the size of the memory.

Older graphics cards can run out of memory faster with bigger chrom files. Another prob-

lem is the divergence again. The whole code has many parts where the calculation path

can differ heavily from one lipid to the next. This is a situation that should be strongly

avoided on GPUs.

Migration just the smoothing of a single chromatogram to the GPU focuses on the bot-

tleneck of the analysis. The little changes to the existing code made it also less prone

to produce implementation errors from porting the code to the graphics card. With the

less code moved to the GPU the path divergence of threads within a warp can also be

decreased since less branching occurs.

4.3 Hardware and Software Preparation

For Linux the programming was done remotely because no Linux desktop computer with

a CUDA capable device was present. The same CUDA version needs to be installed on

the local and remote computer as well as the same type of operating system needed to be

installed. Since the server was running with Debian Linux the local system needed to be

Unix based as well. Because Ubuntu 16.04 LTS had troubles during several installation

attempts with the AMD graphics driver, the Arch Linux operating system was installed.

The Arch User Repository (AUR) provided the required CUDA version 7.0. Nsight and

nvcc was part of the installation of the toolkit and after configuring git and Nsight the

remote programming was ready.

For the installation of CUDA on Windows a compiler and the IDE Microsoft Visual Studio

needed to be installed. The very important step in this process is to check if the versions

of Windows, Microsoft Visual Studio and CUDA are compatible and which CUDA version

is able to run on the desired GPU. It is also important to follow the installation order by

installing first Microsoft Visual Studio and second the CUDA toolkit.

On the used Mac OS X system the current version 8.0 of CUDA was not compatible

with the graphics card. So CUDA 6.5 was downloaded from the CUDA archive [29].
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This archive provides every released CUDA version, so it is even possible to develop and

compile CUDA code for older NVIDIA graphics cards. For Mac OS X no major pre in-

stallation steps are required.

4.4 Test Driver

Porting Java Code to C Code

Java version of the filter code was reimplemented in C because CUDA uses the C syn-

tax rules. Since the programming languages are not that different the translation was

straightforward. In addition to the syntax, the attributes used in Java, had to be changed

to function parameters for functions that needed these values.

Porting from CPU to GPU

In general porting the functions from the C host code to the GPU with CUDA was eas-

ier than expected. However, just plain porting without considering the special needs of

a GPU can result in a slow down. The spatial TAU-leaping in crowded compartments

simulator of Pasquale et al. [38] had a similar problem. In their implementation the

speed-up reached from 0.3-24. For the Savitzky-Golay library the slow-down was caused

by the dynamic allocation of arrays on the local memory during the runtime of the kernel.

The size of the arrays were dependent on the order of the polynomial which got to be fit

into the raw data points. These arrays are used to solve the normal equation. Even tough

the arrays are very small they had a comparative big impact. In total maximal 34 floats

and 5 ints were dynamically allocated per thread. After identifying that the allocation

was the problem it was moved from the device to the host. Like the raw data and the

retention time these arrays are now allocated on the global memory of the device by the

host. This led to a significant speed-up. But there was still a better solution. Since the

arrays need nearly no memory space the maximum array size got hard coded even when

the whole arrays are not used at every calculation. With this solution the fastest memory

on the GPU, the local memory, is used.

One has to pay attention to the different memories of the GPU and how to use them. To

take full advantage of the graphics card the way of operation has to be kept in mind. Dy-

namic allocation on the local memory in the kernel is not the most efficient way of using

the graphics card. Every thread has to allocate the memory dynamically during every

calculation. A better solution is to allocate the memory dynamically from the host on the

devices global memory. Doing this the memory is allocated once for the whole calculation.
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Otherwise the allocation has to be performed as often as points are smoothed. If the array

size does not exceed the size of the local memory, then the array can be created with a

fixed size, even when only parts of the whole array is used. The advantage of the local

memory is that it is the fastest memory on the GPU.

It has been noticed that the first call of a CUDA function takes a lot longer than the

subsequent calls. The reason for this behavior is that the CUDA runtime initialization

is done when the first time a runtime function is called. All functions calls afterwards

need no further initialization. During the first call a CUDA context is created and if

necessary the device code is just-in-time compiled and loaded into device memory. When

comparing the run time of the CPU and GPU implementation the initialization time was

not measured.

Using the CUDA function clock() for the time measurement in the CUDA library led to a

run time of 0 clock cycles which is very unlikely. The reason for that is that the compiler

and assembler do perform instruction re-ordering. So it happened that the start and stop

calls ended up next to each other resulting in 0 clock cycles.

By investigating the results of the different calculation steps the design matrix seemed to

make the same calculation several times. After rewriting the code the calculation is done

once and the rest of the matrix gets filled with the calculated values.

Some if statements led to calculating the same calculation multiple times. This was

avoided by making the if statement once and replacing the original once.

Changing the function pow(x, 1/4) to rsqrt(rsqrt(x)) is suggested in the CUDA C Best

Practice Guide [39] since the performance is higher as well as the accuracy.

Java Native Interface

A Java Native Interface JNI was needed to access the GPU from Java, since Java is

not officially supported by CUDA. The created function names from javah have to be

used in the library so that Java can communicate with the library. To work with the

parameters and arrays which are passed to the library they have to be converted to the

corresponding C data types. Here it is important to know, that some functions which

convert these arrays need their own free functions, otherwise a memory leak will arise. In

this certain case every GetObjectArrayElement() needs a DeleteLocalRef() and every

GetF loatArrayElements() needs a ReleaseF loatArrayElements(). The rest can be the
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same as it would be a standard C-program.

Multithreading on the CPU

Using multiple threads on the CPU was already an enhancement of the old implementa-

tion. Now every thread on the CPU is moving the calculation of the Savitzky-Golay filter

to the library and furthermore to the GPU. Since multiple threads are accessing the same

library at the same time the result of the smoothed chromatograms was non predictable.

The simultaneous library access from the CPU threads was overwriting each others mem-

ory on the GPU. To avoid this, every CPU thread allocates its own memory on the global

GPU storage. The address of the global memory gets saved in the Savitzky-Golay JNI

Java class.

Whole Chrom File Processing

The previous test driver just used a set of a few chromatograms, which could be extend

and shortened to test the different accelerations of different chromatogram lengths. It was

also possible to change the number of chromatograms itself which should be smoothed. To

apply the GPU implementation in a more realistic test case, a testing environment was cre-

ated that loads a chrom file, handles the preprocessing, smooths multiple chromatograms

and detects the peaks like in the LDA. But in the real environment the chromatograms

have to be extracted from a chrom file. For each peak several chromatograms have to be

extracted in m/z-direction and retention time direction.

LDA Integration

The last step was integrating the dynamic library into the LDA. With the previous

test drivers it was no big effort to do this task. The difference was that classes from

MASPECTRAS had to be extended and to check at the beginning of LDA if a CUDA

capable device is present.

4.5 Speed-Up with Different Settings

Certain parameters change the speed of the calculation significantly and others have nearly

no effect. With every new chromatogram file, the program is fed with, the parameters may

change and lead to different processing times. The combination of the varying parameters

also effect the speed-up of the new implementation. Korpar et al. [40] implemented a

sequence alignment algorithm with CUDA and observed a similar behavior. Depending

on the sequence sizes the calculation reached a speed-up between 440-960.
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4.5.1 Chromatogram Length

One of these changing parameters is the chromatogram length. The length does not only

change from chrom file to chrom file but also within a single run of a file. Not only the

full length of chromatograms in time direction are smoothed but also shorter ones in time

direction and profiles in m/z direction, to detect a peak and calculate the final peak area

(Pages 7ff.). With longer chromatograms the speed-up is increasing nearly linear (Figure

5). This can be explained with the fact that with increasing length of the chromatogram

the time that is spent on the CPU is proportionally getting less. The pure calculation

time is higher which is the reason of the performance enhancement. Also for a higher

amount of smoothed data points for each chromatogram the interactions between the

CPU and GPU are getting proportionally less. For example storing data on the GPU,

calling a kernel and copying the data back from the GPU.

4.5.2 Number of Repetitions

Another parameter that changes with nearly every call of the Savitzky-Golay function is

the number of repetitions. The raw data is not smoothed just once but multiple times.

Again it has a similar effect as before (Figure 5). With an increasing number of rep-

etitions the speed-up is increasing nearly linear as well. The reasons are also similar.

In relation to a single repetition a higher number of repetitions increases relatively the

time on the GPU. Since the GPU performs a smoothing calculation more efficiently, the

relatively longer time on the GPU leads to a higher speed-up. Another reason is that less

data is copied between host and device. With a single repetition the raw data has to be

copied from the host to the device. After one smoothing round the smoothed data has to

be copied back to the host. With higher smoothing repetitions proportionally less time

is spent with copying. Once the data is uploaded to the GPU the graphics device can

perform as many smoothing repetitions as wanted. Only after all the calculations have

been done the smoothed data has to be copied back.

4.5.3 Block Size

The block size is a hardware specific parameter, that does not change from one calcula-

tion to the next. It just varies between different computer setups. One way to choose a

good block size is to aim for high GPU occupancy. Occupancy is the ratio of the number

of active warps per multiprocessor to the maximum number of warps that can be active

on the multiprocessor at once. The function cudaOccupancyMaxPotentialBlockSize() just
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needs to know the kernel that is going to be launched and it can calculate the block size

that fits the function best regarding the occupancy. Nevertheless a high occupancy does

not guarantee the best performance. Even though the block size is fixed for a certain

computer in this test the block size was changed to see which effects do occur. The speed-

up does not change significantly when using different block sizes (Figure 5). During the

tests the block sizes have been chosen to be a multiple of 32 threads. The reason for this

is that the GPU manages the calculation in warps which are groups of 32 threads.

4.5.4 Multiple CPU Threads

Most state of the art desktop computers are capable of CPU multi threading. LDA is

making use of this to already enhance the speed. Therefore it was also of interest how

the implementation reacts to a different amount of CPU threads. The speed-up is going

down when increasing the number of CPU threads (Figure 5). After a certain amount of

threads the speed-up stays on a steady level. The decreasing speed-up does not mean,

that a higher number of CPU threads leads to a longer processing time. With more CPU

threads the whole calculation is still done in a shorter time.

4.5.5 Number of Chromatograms

A parameter that changes very likely at every run is the number of chromatograms which

need to be smoothed. It always depends on how many lipids are examined in an analysis

run. The speed-up on three different computer setups was tested (Figure 6, Table 6).

The speed-up depends strongly on the system the calculation is performed on. It is not

just the hardware components but also the software which is running on the operating

system. After a certain number of chromatograms the speed-up stayed nearly on a same

level. On the Mac OS X computer the speed-up is increasing whereas on the other two

systems the speed-up is decreasing.

Regarding the hardware it can be said that the performance of the CPU and GPU of

the particular systems have to be compared. When taking a look at the hardware spec-

ifications (Table 3) it can be guessed that the performance of the CPU to the GPU is

relatively higher on the Mac than on the other computers. CPUs have a comparable clock

speed between 2.6 to 3 GHz but the GPU of the Mac has very few CUDA cores and a

slow clock rate. For the comparably weak GPU, the least speed-up is observed. But even

though the graphics card is underpowered it provides a improvement which accelerates
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the implementation by roughly a factor of 25 for a single chromatogram. When compar-

ing the MS Windows based computer with the Linux computer the initial guess would be

that Linux could perform a higher speed-up due its more powerful graphics card. But the

reality looks different. In the tests windows could reach a higher speed-up. The reason

for that is that different Java HotSpot VM (virtual machine) are installed on these two

systems. There are two options for the HotSpot VM which are the client VM and the

server VM [41]. Both use the same code base of the HotSpot runtime environment but

use different compilers. The client one is suited for desktop computers. It is designed to

optimize the start-up of the program to make it fast, has less performance when used on

very long calculations. The server implementation whereas is optimized the other way

around. It does not matter if the start-up is taking a little bit longer as long as the long

time calculation is faster. In the tests windows is running the Java HotSpot Client VM

whereas Linux is running the Java HotSpot Server VM.

The second circumstance that attracts attention is that the speed-up varies with changing

the number of chromatograms. This could be explained because micro benchmarks have

been performed which should not be done [42]. Java HotSpot starts by interpreting and

running the program. During runtime it detects hot spots which are pieces of code that

are looped over a lot. This code is then compiled. Either the compiled code is replaced

after calling the method/loop another time or during the running loop which is called

”on stack replacement”. Therefore the program delivers a different speed-up for a dif-

ferent number of chromatograms. For one chromatogram no hot spot is identified but

with higher repetitions of calculations the interpretation can be replaced with a compiled

version.

4.5.6 Hardware Independent Comparison

To deal with the previous discussed differences of the hardware and software and just see

the differences with a different amount of CUDA cores, the number of threads have been

restricted (Figure 6, Table 7). As many threads with a kernel as CUDA cores available

on the graphics card were launched. For the GPU of the Mac the kernel was launched

with 48 threads since the related GPU has 48 CUDA cores. For the GPU of the win-

dows computer the kernel was launched with 192 threads. The simulation of the graphics

cards shows little acceleration. In the actual implementation for every smoothing point a

thread is started. This is possible even when there are less CUDA cores than threads. The

threads are scheduled by CUDA and it takes care that all calculations are done as fast
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as possible. By restricting the number of threads a single thread has to smooth multiple

points. Since the scheduling was performed manually and not by CUDA the speed-up

was considerable worse.

4.6 Speed-Up with whole Chromatogram Files

The speed-up was measured for various chrom files measuerd on OrbiTrap and QTrap

platforms in positive and negative ion mode. The speed-up of the OrbiTrap files was in

general lower than the speed-up of the QTrap files (Table 11). Not just the times were

measured but also the length of the smoothed chromatograms (Table 10). Since the length

of the chromatograms influence the speed-up of a single chromatogram (Figure 5) the dif-

ferent speed-ups of the whole file can be explained. The amount of short chromatograms

(around 200 data points) compared to longer chromatograms (around 1300 data points)

are on OrbiTrap way much higher (around 90%) than on the QTrap (around 40%). As

seen as in the comparison between different chromatogram lengths, short chromatograms

have a lower acceleration whereas longer chromatograms lead to a higher speed-up. Since

the amount of short chromatograms is relatively higher in the OrbiTrap files the calcula-

tion have a speed-up that is less than the one from QTrap. The longer chromatograms

originate from smoothing of the whole chromatogram to find initial peaks. The shorter

smooth lengths come from the calculation of the peak area.

4.7 Deviation of the Numeric Result of the Chromatogram

Numerical deviation between a CUDA and the CPU implementation have also been ob-

served by Oliveira et al. [43]. They made computer simulations of cardiac electrophysiol-

ogy, computed the error between the implementations and observed that CUDA derived

less than a factor of 5 · 10−5 compared to the CPU.

4.7.1 Single Chromatogram

The reason for deviations is that the operands and functions from CUDA have an equal or

lower accuracy than the IEEE-compliant calculation. In the CUDA Programming Guide

appendix D [22] the error bounds for all mathematical functions are listed. The ”+”-

operand was just used with integers for indexing and has no influence in the result. Few

”-” were used for indexing and actual calculation of values where the error is a maximum
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of 0.5 ULP (Unit in the last place). ”*” is used for indexing as well but has already more

invocations for multiplying values than the previous operands and has the same maximum

error of 0.5 ULP as ”+”. Approximately as often as ”*” is called ”/” is called as well with

the difference that the error bounds go up to a maximum of 2 ULP. The function rsqrt()

is called twice for each smoothing point which is very little. Since it has a maximum

error of 1 ULP it is of nearly no consequence compared to the next function. The critical

calculation that is responsible for the different calculation results is the calculation of the

power which is used in the solving of the normal equation. The function used is powf()

and has a maximum of 8 ULP. The calculation is also done very often. 100 times for each

smoothing point is not unusual. The calculation of powf(x, 1/4) was already omitted by

using rsqrt(rsqrt(x)) instead. There are workarounds to get more precise results which

have the drawback that they lead to a performance drop.

Points with a higher deviation are usually the points at the beginning and end of a fully

smoothed chromatogram. Compared to the rest of the chromatogram the relative position

of the window, for choosing the raw parameters, changes to the point which should be

smoothed. In the middle of the chromatogram the window is symmetrically around the

smoothing point. Towards the end this structure change. Since the window has no points

left it just keeps the same position for the last calculations. Just the smoothing point is

going forward. Respectively the window is not symmetrical around the smoothing point

anymore. At the very end the window is just at one side, but still has the same width.

One step of establishing the normal equation is calculating distances between each point

in the window and the smoothing point. These distances get multiplied with each other.

Since the window is not symmetrical anymore around the smoothing point but moved to

just one side the distances are roughly doubled which leads to the multiplication in way

higher numbers. These large numbers get also fed to the powf() function with a high

error-proneness. This interaction of high numbers and using them in an inexact function

lead to a higher deviation at the beginning and end of the smoothed chromatogram.

4.7.2 Full Chromatogram

The errors of the previous section can accumulate and lead to an error of the detec-

tion of the lipids when processing the whole chromatogram (Table 12). 8,084 lipids have

been found where from 28 lipids at least one value differs more than 0.1%. In total these

are 68 values. There was no correlation whether the deviations occur in high or low peaks.
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4.8 Conclusion

With the very fast growing amount of data that is generated for lipidomics it is necessary

to find a way to keep up and process the data faster. The data processing is necessary to

evaluate the measurements and get out more information. The CPU was the main pro-

cessing unit when it comes to calculation of data. Since the CPU speed-up is physically

coming to its limits other options have to be considered.

The GPU provides a high throughput of data which is very convenient for processing a

huge amount of data. The restriction that the same command is applied to multiple data

points is in this kind of data processing not a big drawback since this is happening in

many calculations. But the way how a GPU works have to be kept in mind.

CUDA enables a way that code can simply be ported to the GPU. It will run on the

dedicated device with minor code changes. But achieving the best performance is not

straight forward. At first the position of the storage has to be decided for every used

variable. Some are obvious to find a place to store them, but others may need some

different approaches and tests to find the best fitting position.

An additional way to accelerate the code even more is using streams. Streams enable the

GPU to perform several CUDA commands at the same time. Therefore new data can be

uploaded to the GPU when an old kernel is still running. It is even possible to run several

kernels at the same time. But this is just possible when a single CPU thread is managing

the streams. In the LDA the calculations of the single CPU threads had to be rewritten

to calculate several masses of interest at the same time to sent multiple calculations to

the GPU.

LDA with the new implemented library has a significant speed-up depending on the in-

put. For specific data sets, it was possible to reduce calculation time from over 7 hours

to just 10 minutes. Even tough there are minor numerical deviations of the results the

implementation can be seen as an improvement of the software.
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[5] Varré JS, Schmidt B et al.: Manycore High-Performance Computing in Bioinformatics. In

Advances in Genomic Sequence Analysis and Pattern Discovery Edited by Elnitski L, Piontkivska

H et al., Singapore. World Scientific, 2011 , 1–18.

[6] Arenas MG, Mora AM et al.: GPU Computation in Bioinspired Algorithms: A Review. In

Advances in Computational Intelligence Edited by Cabestany J, Rojas I et al., Berlin, Heidelberg.

Springer, 2011. 433–440.

[7] Fang J, Varbanescu AL et al.: A Comprehensive Performance Comparison of CUDA and

OpenCL. In International Conference on Parallel Processing (ICPP) . IEEE, 2011: 216–225.

[8] Gelsinger P: Microprocessors for the New Millennium: Challenges, Opportunities, and

New Frontiers. In International Solid-State Circuits Conference (ISSCC) , San Francisco, CA,

USA. IEEE, 2001: 22–25.

[9] Moore GE: Cramming More Components onto Integrated Circuits. Electronics 1965. 114–

117.

[10] Flynn MJ: Some Computer Organizations and Their Effectiveness. IEEE Transactions on

Computers 1972. C-21(9): 948–960.

[11] Owens JD, Luebke D et al.: A Survey of General-Purpose Computation on Graphics Hard-

ware. Comput Graph Forum 2007. 26(1): 80–113.

[12] CUDA Zone. https://developer.nvidia.com/cuda-zone, Date accessed: 2016-10-18.

[13] OpenCL. https://www.khronos.org/opencl/, Date accessed: 2016-10-18.

[14] OpenACC Home. http://www.openacc.org/, Date accessed: 2016-10-18.

[15] Thrust. https://thrust.github.io/, Date accessed: 2016-10-18.

[16] C++ AMP. https://msdn.microsoft.com/en-us/library/hh265137.aspx, Date accessed: 2016-

10-18.

[17] DirectCompute. https://developer.nvidia.com/directcompute, Date accessed: 2016-10-18.

[18] Jacket. http://www.omatrix.com/jacket.html, Date accessed: 2016-10-18.

43

http://www.illumina.com/
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
http://www.openacc.org/
https://thrust.github.io/
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://developer.nvidia.com/directcompute
http://www.omatrix.com/jacket.html


[19] Dolbeau R, Bihan S et al.: HMPP(TM): A Hybrid Multi-core Parallel Programming En-

vironment. In Workshop on General Purpose Processing on Graphics Processing Units (GPGPU)

, Washington, DC, USA. ACM, 2007: 1–5.

[20] WebCL. https://www.khronos.org/webcl/, Date accessed: 2016-10-18.

[21] Payne JL, Sinnott-Armstrong NA et al.: Exploiting Graphics Processing Units for Compu-

tational Biology and Bioinformatics. Interdiscip Sci 2010. 2(3): 213–220.

[22] CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html, Date accessed: 2017-08-16.

[23] Haimi P, Uphoff A et al.: Software Tools for Analysis of Mass Spectrometric Lipidome

Data. Anal Chem 2006. 78(24): 8324–8331.

[24] Haimi P, Chaithanya K et al.: Instrument-Independent Software Tools for the Analysis of

MS–MS and LC–MS Lipidomics Data. Methods Mol Biol 2009. 580: 285–294.

[25] Katajamaa M, Miettinen J et al.: MZmine: Toolbox for Processing and Visualization of

Mass Spectrometry Based Molecular Profile Data. Bioinformatics 2006. 22(5): 634–636.

[26] Pluskal T, Castillo S et al.: MZmine 2: Modular Framework for Processing, Visualizing,

and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinformatics

2010. 11(1): 395.
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Appendices

The comparison of the SAXPY code example are listed for CUDA (Listing 1) and OpenCL

(Listing 2).

Listing 1: SAXPY example for CUDA

/* SAXPY code example from https :// devblogs.nvidia.com/parallelforall/

easy -introduction -cuda -c-and -c/ */

#include <stdio.h>

// The declaration specifier __global__ defines a kernel. This code

// will be copied to the device and will be executed there in parallel

__global__

void saxpy(int n, float a, float *x, float *y)

{

// The indexing of the single threads is done with the following

// code line

int i = blockIdx.x*blockDim.x + threadIdx.x;

// Each thread is executing just one position of the arrays

if (i < n) y[i] = a*x[i] + y[i];

}

int main(void)

{

// Creating a huge number

int N = 1<<20;

float *x, *y, *d_x , *d_y;

// Allocate an array on the *host* of the size of N

x = (float *) malloc(N*sizeof(float));

y = (float *) malloc(N*sizeof(float));

// Allocate an array on the *device* of the size of N

cudaMalloc (&d_x , N*sizeof(float));

cudaMalloc (&d_y , N*sizeof(float));

// Filling the array of the host

for (int i = 0; i < N; i++) {

x[i] = 1.0f;

y[i] = 2.0f;

}

// Copy the host array to the device array
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cudaMemcpy(d_x , x, N*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_y , y, N*sizeof(float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements. The triple chevrons dedicates how

// the threads are grouped on the device

saxpy <<<(N+255) /256, 256>>>(N, 2.0f, d_x , d_y);

// Copy the result from the device to the host

cudaMemcpy(y, d_y , N*sizeof(float), cudaMemcpyDeviceToHost);

// Display the result to the screen

for(i = 0; i < N; i++)

printf("%f\n", y[i]);

// Free the memory on the host and device

free(x);

free(y);

cudaFree(d_x);

cudaFree(d_y);

}

Listing 2: SAXPY example for OpenCL (main)

// SAXPY code example from

// https :// www.packtpub.com/books/content/hello -opencl

#include <stdio.h>

#include <stdlib.h>

#ifdef __APPLE__

#include <OpenCL/cl.h>

#else

#include <CL/cl.h>

#endif

#define VECTOR_SIZE 1024

// OpenCL kernel which is run for every work item created.

const char *saxpy_kernel =

"__kernel \n"

"void saxpy_kernel(float alpha , \n"

" __global float *A, \n"

" __global float *B, \n"

" __global float *C) \n"

"{ \n"

" //Get the index of the work -item \n"
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" int index = get_global_id (0); \n"

" C[index] = alpha* A[index] + B[index ]; \n"

"} \n";

int main(void) {

int i;

// Allocate space for vectors A, B and C

float alpha = 2.0;

float *A = (float *) malloc(sizeof(float)*VECTOR_SIZE);

float *B = (float *) malloc(sizeof(float)*VECTOR_SIZE);

float *C = (float *) malloc(sizeof(float)*VECTOR_SIZE);

for(i = 0; i < VECTOR_SIZE; i++)

{

A[i] = i;

B[i] = VECTOR_SIZE - i;

C[i] = 0;

}

// Get platform and device information

cl_ platform_id * platforms = NULL;

cl_ uint num_platforms;

//Set up the Platform

cl_ int clStatus = clGetPlatformIDs (0, NULL , &num_platforms);

platforms = (cl_ platform_id *)

malloc(sizeof(cl_ platform_id)*num_platforms);

clStatus = clGetPlatformIDs(num_platforms , platforms , NULL);

//Get the devices list and choose the device you want to run on

cl_ device_id *device_list = NULL;

cl_ uint num_devices;

clStatus = clGetDeviceIDs( platforms [0], CL_DEVICE_TYPE_GPU ,

0,NULL , &num_devices);

device_list = (cl_ device_id *)

malloc(sizeof(cl_ device_id)*num_devices);

clStatus = clGetDeviceIDs( platforms [0], CL_DEVICE_TYPE_GPU ,

num_devices , device_list , NULL);

// Create one OpenCL context for each device in the platform

cl_ context context;

context = clCreateContext( NULL , num_devices ,

device_list , NULL , NULL , &clStatus);

// Create a command queue
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cl_ command_queue command_queue = clCreateCommandQueue

(context , device_list [0], 0,

&clStatus);

// Create memory buffers on the device for each vector

cl_ mem A_clmem = clCreateBuffer(context , CL_MEM_READ_ONLY ,

VECTOR_SIZE * sizeof(float),

NULL , &clStatus);

cl_ mem B_clmem = clCreateBuffer(context , CL_MEM_READ_ONLY ,

VECTOR_SIZE * sizeof(float),

NULL , &clStatus);

cl_ mem C_clmem = clCreateBuffer(context , CL_MEM_WRITE_ONLY ,

VECTOR_SIZE * sizeof(float),

NULL , &clStatus);

// Copy the Buffer A and B to the device

clStatus = clEnqueueWriteBuffer(command_queue , A_clmem , CL_TRUE , 0,

VECTOR_SIZE * sizeof(float), A, 0,

NULL , NULL);

clStatus = clEnqueueWriteBuffer(command_queue , B_clmem , CL_TRUE , 0,

VECTOR_SIZE * sizeof(float), B, 0,

NULL , NULL);

// Create a program from the kernel source

cl_ program program = clCreateProgramWithSource(context , 1,

(const char **)&saxpy_kernel , NULL , &clStatus);

// Build the program

clStatus = clBuildProgram(program , 1, device_list , NULL , NULL , NULL);

// Create the OpenCL kernel

cl_ kernel kernel = clCreateKernel(program , "saxpy_kernel", &clStatus);

// Set the arguments of the kernel

clStatus = clSetKernelArg(kernel , 0, sizeof(float), (void *)&alpha);

clStatus = clSetKernelArg(kernel , 1, sizeof(cl_ mem),

(void *)&A_clmem);

clStatus = clSetKernelArg(kernel , 2, sizeof(cl_ mem),

(void *)&B_clmem);

clStatus = clSetKernelArg(kernel , 3, sizeof(cl_ mem),

(void *)&C_clmem);

// Execute the OpenCL kernel on the list

size_t global_size = VECTOR_SIZE; // Process the entire lists
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size_t local_size = 64; // Process one item at a time

clStatus = clEnqueueNDRangeKernel(command_queue , kernel , 1,

NULL , &global_size , &local_size ,

0, NULL , NULL);

// Read the cl memory C_clmem on device to the host variable C

clStatus = clEnqueueReadBuffer(command_queue , C_clmem , CL_TRUE , 0,

VECTOR_SIZE * sizeof(float), C, 0,

NULL , NULL);

// Clean up and wait for all the comands to complete.

clStatus = clFlush(command_queue);

clStatus = clFinish(command_queue);

// Display the result to the screen

for(i = 0; i < VECTOR_SIZE; i++)

printf("%f * %f + %f = %f\n", alpha , A[i], B[i], C[i]);

// Finally release all OpenCL allocated objects and host buffers.

clStatus = clReleaseKernel(kernel);

clStatus = clReleaseProgram(program);

clStatus = clReleaseMemObject(A_clmem);

clStatus = clReleaseMemObject(B_clmem);

clStatus = clReleaseMemObject(C_clmem);

clStatus = clReleaseCommandQueue(command_queue);

clStatus = clReleaseContext(context);

free(A);

free(B);

free(C);

free(platforms);

free(device_list);

return 0;

}
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The Java code (Lisitng 3) which got ported to a library invocing the GPU without the

code for LU decomposition and LU backsubstitution.

Listing 3: Java code, which got ported to the library. The function Smooth() and

calcBoundIndex() stayed on the CPU and the rest was moved to the GPU. Another imple-

mentation of calcBoundIndex() was needed on the GPU which can be used by the GPU.

/**

* Smoothes a rough chromatogram within a time range.

* @param range

* number of seconds around given points

* @param repeats

* number of smooth runs for each point

*/

public void Smooth(float range , int repeats , boolean copyRawDataFirst)

{

float threshold;

int i, j;

// =============================================================

// Calculate the minimum y value and

// store it into threshold:

// =============================================================

threshold = Value [0][1];

for (i=0; i<ScanCount; i++){

if(Value[i][1]< threshold) threshold = Value[i][1];

}

if (copyRawDataFirst) copyRawData ();

// =============================================================

// Smooth each point around the given time range

// =============================================================

for (j=0; j<repeats; j++)

{

int startScan = 0;

int stopScan = ScanCount;

if (startSmoothScan_ >-1)

startScan = startSmoothScan_;

if (stopSmoothScan_ >-1)

stopScan = stopSmoothScan_;

precalcPows_ = new float[Value.length ];
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int preCalcStart = calcBoundIndex(startScan ,range ,false) -10;

if (preCalcStart <0) preCalcStart = 0;

int preCalcStop = calcBoundIndex(stopScan ,range ,true)+10;

if (preCalcStop >ScanCount) preCalcStop =ScanCount;

for (i=preCalcStart; i<preCalcStop; i++)

precalcPows_[i] = (float)Math.pow(Value[i][2], 0.25);

for (i=startScan; i<stopScan; i++)

Value[i][3] = SmoothDataPoint(i, range , threshold);

for (i=startScan; i<stopScan; i++)

Value[i][2] = Value[i][3];

}

}

private int calcBoundIndex(int dtIndx , float range , boolean posDirection

){

int boundIndex = dtIndx;

if (posDirection){

while (boundIndex <(ScanCount -1)

&& (Value[boundIndex ][0] - Value[dtIndx ][0])<range)

++ boundIndex;

}else{

while (boundIndex >0

&& (Value[dtIndx ][0] - Value[boundIndex ][0])<range)

--boundIndex;

}

return boundIndex;

}

/**

* smoothes rough spectrum at a specific point.

*

* @param dtIndx

* Index of point to be smoothed

* @param range

* number of seconds around given points

* @param threshold

* minumum value to pass back

* @return

* smoothed value

*/

private float SmoothDataPoint(int dtIndx , float range , float threshold)
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{

int order = 4;

int lower , upper;

float val;

// =============================================================

// get boundary

// =============================================================

lower = calcBoundIndex(dtIndx ,range ,false);

upper = calcBoundIndex(dtIndx ,range ,true);

while(upper -lower <10)

{

if (lower >0) --lower;

if (upper <ScanCount -1) ++ upper;

if( lower <=0 && upper >=ScanCount -1) break;

}

// =============================================================

// get filter value

// =============================================================

order = order < upper -lower -1 ? order : upper -lower -1;

if(order < 1) return Value[dtIndx ][2];

else val = SavGolFilter(dtIndx , lower , upper , order);

if(val > threshold) return val;

else return threshold;

}

/**

* Does a Savitzky Golay Filter around a given point

*

* @param dtIndx

* Index of point

* @param lower

* lower range border

* @param upper

* upper range border

* @param order

* order of polynome

* @return

53



* smoothed value

*/

private float SavGolFilter(int dtIndx , int lower , int upper , int order)

{

float mtrx [][];

float vec[];

float x = Value[dtIndx ][0];

int indx [];

float sum;

float adding = 0;

int i, j, k;

indx = new int[order +1];

vec = new float[order +1];

mtrx = new float[order +1][ order +1];

// =================================================================

// get "mtrx"

// =================================================================

for (i=0; i<= order; i++)

{

for (j=i; j<= order; j++)

{

sum = 0;

for (k=lower; k<= upper; k++)

{

adding = 0f;

for (int l=0; l<(i+j); l++){

if (l==0)

adding = (Value[k][0] - x);

else

adding = adding *( Value[k][0] - x);

}

if ((i+j) ==0) adding = 1f;

if (Value[k][2] > 1)

adding = adding * precalcPows_[k];

sum += adding;

}

mtrx[i][j] = sum;

mtrx[j][i] = sum;
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}

}

// =================================================================

// LU decomposition

// =================================================================

myLUDcmp(mtrx , order+1, indx);

// =================================================================

// get "vec"

// =================================================================

for (i=0; i<= order; i++)

{

sum = 0;

for (k=lower; k<= upper; k++)

{

if (Value[k][2] >1)

sum += (float)(Math.pow(Value[k][0]-x, i)

* Value[k][2]

* Math.pow(Value[k][2], 0.25f));

else

sum += (float)Math.pow(Value[k][0]-x, i)

* Value[k][2];

}

vec[i] = sum;

}

// =================================================================

// LU backsubstition

// =================================================================

myLUBksb(mtrx , order+1, indx , vec);

x = vec [0];

return x;

}
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For the JNI a Java class needs to be created and functions called in the library need to be

declared as native. After compiling with javac the header file can be created with javah

which includes a machine generated header file. A minimal working example is provided

in Listing 4 and 5

Listing 4: An example Java file for JNI. The Java file needs to be compiled (javac) before it is

translated to a .h file (javah). The functions for the native library need to be declared as native.

public class HelloJNI {

static {

System.loadLibrary("hello"); // Load native library at runtime

}

// Declare a native method

private native void sayHello ();

public static void main(String [] args) {

new HelloJNI ().sayHello (); // invoke the native method

}

}

Listing 5: The machine generated .h file from the Java example file.

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class HelloJNI */

#ifndef _Included_HelloJNI

#define _Included_HelloJNI

#ifdef __cplusplus

extern "C" {

#endif

/*

* Class: HelloJNI

* Method: sayHello

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_HelloJNI_sayHello

(JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif
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