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Abstract

An efficient determination of the genotype is important to many studies. Rather than
sequencing the whole genome of an individual, genetic markers such as SNPs (single
nucleotide polymorphism) are used for analysis. RAD (restriction site associated DNA) tags
are DNA sequences, which are next to a restriction endonuclease recognition site. Restriction
site associated DNA sequencing (RAD-seq) in combination with RAD analysis pipelines
offer an efficient and robust way for the determination of genetic markers. In this thesis, an
overview of existing RAD analysis pipelines is given and a comparison between the pipelines
Stacks, PyRAD, ipyrad and dDocent is performed. The pipelines were compared by taking
a look at the loci the pipelines recovered, phylogenetic and population structure results.

Runtimes and memory footprint of the pipelines are also in the focus of this comparison.

Analyses for simulated and empirical data were performed. dDocent recovered more usable
loci than the other pipelines and is also overall the fastest pipeline. But dDocent does not
come with build-in functions for generating phylogenetic or population structure files.
Stacks was also very fast except for one analysis. It also recovered the highest number of
overall loci. PyRAD was the slowest pipeline for most of the data sets. But it recovered
a relatively high number of loci. ipyrad performed much faster than PyRAD but it did
not recover as many loci as PyRAD. The results of the pipelines overlapped strongly for
the simulated data sets. But only the results of one of the empirical data sets did show a
relatively high overlap. In general, Stacks had the largest memory footprint and was the
only analysis pipeline that required more than the available 8 GB of memory on the test

system.

Key words
RAD-seq; ddRAD-seq; Stacks; PyRAD; ipyrad; dDocent; rtd; Rainbow; species tree; popula-

tion structure
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1 Introduction

The genotype is the genetic makeup of an individual or a specific gene. An efficient
determination of the genotype is crucial to many studies such as clinical diagnostics and
genotype-phenotype association. Sequencing the whole genome of a large number of
individuals is often not possible due to limited resources. But a large number of individuals
is needed to achieve high statistical power. Hence genetic markers are used to analyse
the genome of an individual [1]. Often single nucleotide polymorphisms (SNPs) are used
as genetic markers. RAD-seq offers an efficient way to find and determine such genetic

markers.

1.1 RAD and ddRAD

Restriction site associated DNA (RAD) tags are short DNA sequences, which neighbour
a commonly used restriction endonuclease recognition site. A restriction endonuclease
recognises a specific short DNA-sequence (just a few bases long) and cuts the DNA-molecule
at that position. The recognition site depends on the used restriction endonuclease. If a
RAD tag is associated with sequence polymorphisms, it can be used as a genetic marker
and is called RAD marker. With next generation sequencing, the sequencing of RAD tags
can be massively parallelized, this is called RAD sequencing (RAD-seq) [2]. In general is
RAD-seq designed for interrogating 0.1 to 10% of a genome [3]. Thereby RAD-seq allows to
massively lower the sequencing efforts and cost. A good example is the study of Antarctic
krill populations [4]. In that study more than 95 Antarctic Krill samples with a genome of
the size of 50 Gb were sequenced. 6.8M 100bp Illumina Reads per sample were generated

by using the restriction endonuclease Sbfl. The Illumina Reads were analysed for variant
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Figure 1.1: Fragment generation with restrictions enzymes. For RAD-seq(A) only one restriction enzyme is
used, while ddRAD-seq(B) uses two. Precise and repeatable size selection offers a better fragment

select based on the chosen size-selection range in case of ddRAD-seq (Image adapted form [1]).

sites and filtered so that a core set of 2.1k SNPs remained for further genomic analyses.
Sequencing the whole genome of an Antarctic Krill sample would cost about $28, 000 if we
assume a coverage of 40 and sequencing costs of $14 per 1 Gb, which were the sequencing
costs in October 2015 [5]. RAD-seq in comparison amounts to only $9.52 per sample (based

on the 680 Mb generated for a sample).
Double Digest Restriction Associated DNA (ddRAD) Sequencing

In the case of ddRAD two different restriction enzymes are used. The resulting fragments
are cut with the restriction enzymes at both sites (Figure 1.1). This eliminates the random
shearing and end repair of the DNA. The ddRAD-seq also allows to only select fragments

of a certain length.

Combining precise and repeatable size selection with sequence-specific fragmentation offers
two further advantages. The first one is that the probability of sampling both directions
from the same restriction site is low, because only a small fraction of the fragments will
fall in the chosen size-selection range. This reduces sampling of immediately neighbouring
regions and thereby only half as many reads are required to reach high-confidence sampling

of a SNP associated with a restriction enzyme cut site [1]. The second advantage is that
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fragments with the same size from different samples can be expected to come from the
same genomic region. These advantages make ddRAD-seq more efficient and robust against
under-sampling than RAD-seq and offers at least a five fold reduction of library preparation

cost [1].

RAD and ddRAD pipelines are used for the determination of the genotype of individuals or
samples. There are several RAD and ddRAD analysis pipelines available such as Stacks [6],
PyRAD [7], rtd [1], ipyrad [8], dDocent [9] and Rainbow [10]. In section 3.1 a short overview

of the workflow of these pipelines is given.

1.2 Aims of the Project

The overall goal of this master thesis is to get an overview over existing ddRAD analysis

pipelines and perform a comparison. Specifically, the following points should be achieved:

1. Getting acquainted with the terminology and workflow of ddRAD experiments and
analysis.

2. Perform an literature research on existing ddRAD analysis pipelines.

Setting up a test system with selected pipelines

Test the pipelines with simulated and empirical data sets.

LU o o

Compare the pipelines in terms of

a) Ease of set-up and usage

b) Number of overall recovered loci
¢) Number of usable loci

d) Runtime

e) Memory requirements

Comparison of the overlap of usable loci
Comparison of the phylogenetic results

Comparison of the population structure results

o *® N S

Determine if these pipelines allow to analyse a large number of samples on ordinary

PC or laptop.
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The pipelines were installed on a laptop running Ubuntu 14.04 LTS (64bit) with 8GB RAM
and an Intel Core i5-2410M CPU (2.30GHz x 4).

2.1 Sample Data

For this project, both simulated and empirical data was used. The simulated data was taken
from the PyRAD tutorials [11]. The tutorials the data was taken from are SE (single-end)
RAD Tutorial v.3.0 [12], SE ddRAD Tutorial v.3.0.4 [13], PE (paired-end) ddRAD Tutorial
v.3.0.4 [14] and PE ddRAD w/ merged reads Tutorial v.3.0.4 [15].

The simulated data sets comprise 12 individuals each. Two of the data sets are single-ended
and two are paired-ended. One of the PE data sets contains overlapping forward and reverse
reads. (Table 2.1). The phylogenetic tree of the 12 individuals is presented in SE ddRAD
Tutorial v.3.0.4 [13]. The 12 individuals form 3 populations of 4 individuals each (Figure

2.1).

The empirical data sets were retrieved from the NCBI sequence read archive (SRA) and
came from the studies SRPo35472 (Ber-SE) [16, 18, 19] and SRP068035 (Seb-PE) [17, 20]. Both
sets are ddRAD data sets. Because of the limited computational resources, only subsets of

the empirical datasets were used.

In focus of the Ber-SE study is the plant species Berberis alpina. Additionally to the B. alpina
the genome of the species B. moranensis, B. trifolia and B. pallida was sequenced using

single-end ddRAD-seq. In total, the study comprises 96 individuals. The majority of this
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Figure 2.1: Species tree of the simulated data. This figure is adapted from the Species tree presented in SE

ddRAD Tutorial v.3.0.4 [13] and shows the phylogenetic relation between the 12 samples.

individuals belonged to the B. alpina species [18, 19]. For this study, a subset of 8 individuals

was used (Tables 2.2 and 2.3).

The Seb-PE study was conducted to characterise the sex determination system in the sister
species Sebastes chrysomelas and S. carnatus. They performed paired-end ddRAD-seq of the
genomic DNA from 40 individuals [20]. The subset used for this study only contained 8

individuals (Tables 2.2 and 2.3).

Additional analyses were performed to test how computational limitations affect the
pipelines. To this end, additional samples of the Seb-PE data set were used to determine
the maximum number of samples or reads the pipelines can analyse on the used hardware.
Alternatively, it was investigated if it is possible to perform an analyses on all 40 samples
of the SRP068035 (Seb-PE) data set. For both the extended Seb-PE and the reduced Seb-PE
data set, the same pipeline parameters were used. The extended Seb-PE data set was only
used to determine the limitations of the pipelines and hardware. No further comparison

between the results of these analyses were performed.
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Table 2.3: Summary of the subsets of the empirical data sets Ber-SE and Seb-PE.

2 Methods

Project || RUN Species #Reads
SRR1121343 | Berberis alpina 457,256
SRR1121345 | Berberis moranensis 387,102
SRR1121355 | Berberis alpina 432,639
SRR1121359 | Berberis alpina 409,883

Ber-SE
SRR1121364 | Berberis alpina 527,204
SRR1121369 | Berberis alpina 158,508
SRR1121370 | Berberis alpina 450,469
SRR1121373 | Berberis alpina 262,034
SRR3091916 | Sebastes chrysomelas | 2 x 1,241,311
SRR3091918 | Sebastes carnatus 2x 1,261,765
SRR3091926 | Sebastes carnatus 2x 937,847

Seb.PE SRR3091928 | Sebastes carnatus 2x 930,441
SRR3091930 | Sebastes carnatus 2 x 1,098,500
SRR3091938 | Sebastes chrysomelas | 2 x 1,249,476
SRR3091940 | Sebastes chrysomelas | 2 x 922,310
SRR3091941 | Sebastes chrysomelas | 2 x 1,352,825

2.2 Pre-processing

The data sets PE-ddRAD_m and Seb-PE were processed by PEAR [21] (Paired-End reAd
mergeR) before they were put through the pipelines. PEAR merges overlapping paired-end
reads. It takes as input the forward and reverse reads of a paired-end data set and produces
four output files. The four files contain assembled reads (forward and reverse read were
merged), discarded reads and the two files for unassembled forward reads and unassembled
reverse reads. In case of the PE-ddRAD_m data set only the assembled reads were used for
the analyses. In case of the Seb-PE data set the assembled reads were used for analyses like
those in the PE-ddRAD_m data set and the unassembled were used for analyses like those

in the PE-ddRAD.

With PEAR, the user can set the minimum length for the merged/assembled reads. This
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means that two reads only get merged when the resulting read is longer or equally long than
the specified minimum length. The minimum length was set to 100 for the PE-ddRAD_m
data set and 101 for the Seb-PE data set. The minimum length was chosen based on the
length of the reads, because in case of double digested RAD tags it would not make sense if
merged /assembled reads end up shorter than the original forward and reverse reads. So
the minimum length was set to the length of the reverse reads, because they are longer than

the forward reads.

The non-overlapping paired-end forward and reverse reads from the data sets PE-ddRAD
and Seb-PE (only the unassembled reads) were concatenated into one file and processed
like single-end reads. The Seb-PE assembled reads will further be noted as the data set
Seb-PE_m and the concatenated unassembled reads of the Seb-PE data set will simply be
noted as Seb-PE.

Reads of the merged data sets had to be trimmed to the same length because Stacks can
only perform analysis on data sets with a constant read length within each sample [22]. This
was done with the Stacks script process_shortreads (see section 2.3.2). The trimmed data
sets were processed by Stacks, PyRAD, ipyrad and dDocent and untrimmed data sets were
only processed by PyRAD, ipyrad and dDocent because these pipelines can handle reads
with varying lengths.

2.3 Stacks

Stacks version 1.41 was used, because it was the most recent version at the time the project

was started. It was downloaded from [23].

Stacks comes with a web interface, which presents the results of the Stacks pipeline. To use

the web interface Apache, MySQL, PHP and Perl are required.

2.3.1 Running Stacks

Stacks is designed modularly, which modules need to be used depends on the type of

analysis that is performed. There are four sets in which the modules can be grouped.
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Raw Reads: These are programs, which are used to clean and filter raw sequence data.

Core: The Core programs can be seen as the main Stacks pipeline. They have the task to
build loci (ustacks), create the catalog of loci (cstacks) and match samples against the catalog
(sstacks). The Core also includes programs for genetic mapping or population genomics

analysis.

Execution control: These programs run the whole pipeline by running the Stacks compo-

nents individually.

Utilities: The utilities are programs for things like: indexing database, exporting Stacks data

and building paired-end contigs.

Before the pipeline is run a few preparations need to be done. If Stacks is used with the web

interface, you need to create a MySQL database:

mysql -e "CREATE DATABASE <database_name>"

mysql <database name> < /usr/local/share/stacks/sql/stacks.sql

<database_name> needs to be replaced by a proper name for the database. However the
name of the database should end with ”_radtags”, this makes it easy to set up database
permissions. Note: Without the suffix ”_radtags” the database is not visible on the main page
of the web interface. (This step can be skipped if Stacks is used without the web interface

and the results do not need to be saved in a database)

There also might be some preparations for the sample data necessary. process_radtags
needs to be executed if it is raw data, that needs to be demultiplexed and cleaned. Otherwise,

if your data is already cleaned you can skip this step.

The pipeline is run by executing the denovo_map script, or if the sample data is mapped
against a reference genome by executing the ref map script. These scripts execute the
individual steps (like eg. ustacks, cstacks and sstacks) of the pipeline in the right order for

the given sample data.
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2.3.2 Parameter settings

The simulated data sets were not demultiplexed and therefore needed to be processed
by process_radtags. The process_radtags parameters (Table A.2) depend on the data set

(single/paired end and restriction enzymes).

The most important parameters [24] for the denovo_map script are:

e Minimum stack depth of coverage (-m)
The minimum number of raw reads required to form an exactly matching stack.
e Distance Allowed Between Stacks (-M)
The maximum number of nucleotides that may differ between two stacks in order to
merge them.
e Distance Between Catalog Loci (-n)
Loci in the catalog get merged into one locus, if they have a smaller distance (distance

= number of different nucleotides) than the “Distance Between Catalog Loci” number.

There are also some other denovo_map parameters. Those which were used for the analysis

are summarised in Table A.1.
For all data sets the denovo_map parameters -m 6 -M 13 -N 15 -n 15 were used.

Since Stacks can only perform analysis on datasets with a constant read length within each
sample [22] and the results of the PEAR merges do differ in their read length, these reads
must be trimmed to the same length. This trimming is done by process_shortreads. The pa-
rameters of process_shortreads were -r -c¢ -q and -t <min_length>. For <min_length>,
the same value as the minimum length in PEAR was set. Analyses of the trimmed data sets

were also performed with the other pipelines.

10
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2.4 PyRAD

PyRAD version 3.0.66 was used for this project, because it was the latest version at the time

the project was started. It was downloaded from [11].

PyRAD needs two additional programs MUSCLE [25] and VSEARCH [26] (or USEARCH
[27]) and also two common Python packages Numpy [28] and Scipy [29].

2.4.1 Running PyRAD

Before the pipeline can be run a parameter file must be created. This can be done by the

following command:

pyrad -n

This creates a parameter file with the name params.txt. This file can be edited with any text

editor. For a further description of the parameter file see section 2.4.2.

The PyRAD pipeline consists of 7 individual steps. These steps are all executed in succession

when using the command:

pyrad —-p params.txt

The steps can also be performed individually by using the parameter -s. For example with

the following command only the first step is performed:

pyrad -p params.txt -s 1

The -s parameter can also be used to execute more than one step:

pyrad -p params.txt -s 234567

This command performs the steps 2-7, which is useful if one is working with already

demultiplexed data sets since the first step just demultiplexes the raw sample data.

11
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2.4.2 Parameter settings

For PyRAD all parameters are in the parameter file (created via pyrad -n). Overall there are
37 different parameters. In the parameter file there is one parameter per line and the line
also contains a short description (including the affected steps) for the parameter. The first
14 Parameters are required and the others are optional. A description of the parameters is

summarised in the appendix (Table A.3).

The parameters, which were the same for all data sets are shown in Table 2.4.

Table 2.4: Parameters for the PyRAD analysis. These parameters were used for all analyses.

Parameter | Value Description

7 4 | Number of processors

Minimum coverage for a cluster

9 4 | Maximum number of low quality sites

10 .85 | Clustering threshold

12 1 | Minimum taxon coverage

13 3 | Maximum shared polymorphic sites

30 Output formats

Additional parameters for the analyses are shown in Table 2.5.

12



Table 2.5: PyRAD parameters for the individual analyses.

2 Methods

Parameter
Data set
6 (Restriction 11 18 (Path to 24 (Maximum of
cutsite overhang) | (Datatype) | demultiplexed data) | heterozygous sites)
SE-RAD TGCAG rad 8
SE-ddRAD TGCAG,AATT | ddrad 10
location of
PE-ddRAD TGCAG,AATT | ddrad concatenated forward 10
and reverse reads
PE-ddRAD_m location of merged
TGCAG,AATT | ddrad 10
trimmed reads
PE-ddRAD_m location of merged
TGCAG,AATT | ddrad 10
untrimmed reads
location of already
Ber-SE AATTC,TAA ddrad demultiplexed sample 10
data
Seb-PE_m location of assembled
CATGC,AATT | ddrad 10
trimmed data
Seb-PE_m location of assembled
CATGC,AATT | ddrad 10
untrimmed data
location of
Seb-PE CATGC,AATT | ddrad 10
concatenated data

2.5 ipyrad

The ipyrad version 0.5.15 was used for this project, because it was the latest version at the

time the project was started. It was downloaded from [8].

ipyrad requires additional Python packages and executables (Table 2.6).

13
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Table 2.6: Summary of the ipyrad dependencies. ipyrad depends on third party software and Python packages.

Python Packages Executables
package-name | reference || software-name | reference
Numpy [28] || VSEARCH [26]
Scipy [29] || MUSCLE [25]
Pandas [30] || bwa [31]
Sphinx [32] || SMALT [33]
ipyparallel [34] || samtools [35]
jupyter [36] || bedtools [37]
Cython [38] | hdfs [30]
Hspy [40] || mpich [41]
Toyplot [42] - -

2.5.1 Running ipyrad

The ipyrad pipeline is very similar to run as the PyRAD pipeline. First a parameter file has

to be created:

ipyrad -n <assembly_name>

<assembly_name> must be replaced with the chosen name for this assembly. This command
creates a parameter file called params-<assembly name>.txt, which holds all parameters

for the given assembly. For further details on the parameter file see section 2.5.2.

To run all 7 individual steps of ipyrad the following command can be used:

ipyrad -p params-<assembly name>.txt -s 1234567

The -s parameter allows to choose which of the steps should be preformed. For example

the following command only runs the frist two steps:

ipyrad -p params-<assembly name>.txt -s 12

The -r parameter can be used to show a summary of the results of the analysis.

ipyrad -p params-<assembly name>.txt -r

14
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With the -b parameter a new branch can be created. Branching can be used to efficiently
assemble multiple data sets under a range of parameter settings. If an analysis is repeated
with different parameters, a new branch should be created. Only the steps whose results
are affected by the changed parameters must be executed on the new branch. Because the
new branch can use the data of the previous steps form the original branch. The following

commands show an example where after the first two steps a new branch is created.

ipyrad -n <assembly_name>
ipyrad -p params-<assembly name>.txt -s 12

ipyrad -p params-<assembly name>.txt -b <newbranch name>

ipyrad -p params-<assembly name>.txt -s 34567

ipyrad -p params-<newbranch name>.txt -s 34567

2.5.2 Parameter settings

All parameters for ipyrad are saved in a parameter file. There are a total of 28 parameters.

Details about the individual parameters can be found in the appendix (Table A.4).

In Table 2.7 all non default parameters for the different analyses are shown.

2.6 dDocent

The dDocent version 2.2.10 was used for this project, because it was the latest version at the

time the project was started. It was downloaded from [43].

dDocent relies heavily on third party software and therefore provides a script which installs

all the required software. The programs dDocent depend on are summarized in Table 2.8.

15
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Table 2.7: All non default parameters for the different analysis in ipyrad.

l Data set [ Parameter [ Value H Data set [ Parameter [ Value
. 3 Location of already
2 Location of raw FASTQ files 4
demultiplexed sample data
3 Location of the barcode file 7 ddrad
SE-RAD 9 4 8 AATTC, TAA
21 1 Ber-SE 9 4
24 3 20 10,10
27 Lp s vk 21 1
2 Location of raw FASTQ files 24 3
3 Location of the barcode file 27 Lp s vk
7 ddrad 4 Location of assembled data
8 TGCAG, AATT 7 ddrad
SE-ddRAD
9 4 8 CATGC, AATT
Seb-PE_m
21 1 9 4
(trimmed and
24 3 20 10,10
untrimmed)
27 Lp s vk 21 1
Location of concatenated
4 24 3
forward and reverse reads
7 ddrad 27 Lp s vk
8 TGCAG, AATT 4 Location of concatenated data
PE-ddRAD
9 4 7 ddrad
21 1 8 CATGC, AATT
2,
4 3 Seb-PE 2 4
27 Lp s vk 20 10,10
4 Locationof merged reads 21 1
7 ddrad 24 3
PE-ddRAD_m 8 TGCAG,AATT 27 Lp s vk
(timmed and 9 4
untrimmed) 21 1
24 3
27 Lp s vk

Table 2.8: Summary of the required software needed to execute dDocent.

Required Software

Software Reference || Software Reference
FreeBayes [44] || Rainbow [10]
vcflib [45] || gnuplot [46]
Trimmomatic [47] || seqtk [48]
mawk [49] || cd-hit [50]
bwa [31] || bedtools [37]
samtools [35] || bamtools [51]
VCFtools [52] || GNU-parallel [53]
PEAR [21]
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2.6.1 Running dDocent

The raw data has to be pre-processed before dDocent can perform the analysis. The raw
reads must be demultiplexed and the input files must follow a strict naming policy so that
dDocent can use them. The dDocent homepage [43] suggests to use process_radtags from
Stacks pipeline for the demultiplexing but other demultiplexing software can be used as
well. The demultiplexed data must have one (SE) or two (PE) gzipped FASTQ file(s) for each

individual.

The files must be named following the naming convention. The name consists of a population
identifier and an individual identifier. The two identifiers must be separated by an ’_’. In short
the files have to look like <population identifier> <individual identifier>.F.fq.gz
for the forward reads and <population identifier> <individual identifier>.R.fq.gz
for the reverse reads where <population identifier> and <individual identifier> are

replaced with their population and individual identifiers.

dDocent can be run simply by using the following command, once the data is prepared:

]dDocent

When that command is executed a dialogue starts which asks the user for the values of the

different parameters one by one.

Alternatively the pipeline can also be executed with a configuration file:

dDocent <config.file>

The configuration file must follow a specific format (Appendix A.1.1). If dDocent is executed
with a configuration file only two dialogue inputs are necessary. For the first the software
presents the number of unique sequences in relation to their coverage (counted within
individuals) and the user can define a cutoff value for the minimum coverage. For the
second dDocent presents the number of remaining unique sequences in relation to the

coverage of the individuals and the user can again choose a cutoff value.
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2.6.2 Parameter settings

dDocent was run with a configuration file for each analysis. The configuration file must
follow a specific format (example in Appendix A.1.1). Most of the parameters were the same
for all analyses and are presented in Table 2.9. Only the Trimming option was set to "yes’ for

the data sets Ber-SE, Seb-PE_m trimmed, Seb-PE_m untrimmed and Seb-PE.

Table 2.9: Parameters used for all dDocent parameters. The "Trimming’ parameter was set to “yes’ for the

empirical data sets.

Parameter Value
Number of Processors 4
Maximum Memory 0
Trimming no; yes
Assembly yes
Type_of_Assembly SE
Clustering_Similarity 0.85
Mapping_Reads yes
Mapping_Match_Value 1
Mapping_MisMatch_Value 3
Mapping_GapOpen_Penalty 5
Calling_SNPs yes
Email emilian jungwirth@student.tugraz.at

Two more parameters are needed to run dDocent which are entered via the command
line dialogue. The first parameter is the minimum coverage of unique sequences (counted
within individuals) which was set to 6. The second parameter is the minimum number of

individuals where a sequence must be present which was set to 1.

The data sets were pre-processed in the same way as for the Stacks analyses, because the

data had to be pre-processed and the dDocent documatation suggests process_radtags.

18



2 Methods

2.7 Determination of runtime and memory requirements

The runtime and memory requirements of the analyses are both determined with the Linux
command time (/usr/bin/time). The time command keeps track of the time and memory
a program requires. The output of the time command consist of various time values such as
elapsed real time between invocation and termination, user CPU time and system CPU time.
In addition, some memory and I/O statistics are presented. In this study, only the elapsed
real time (runtime) and the maximum resident set size (maximum memory requirements)

were documented for each analyses.

2.8 Comparison of loci sequences

Stacks and dDocent create a consensus sequence for every locus, while PyRAD and ipyrad
represents loci differently, they shows a consensus sequence for every sample, where the
locus is present. To compare pipelines, a FASTA file for each pipeline was created, one
containing the consensus sequences of Stacks, one containing the consensus sequences
of dDocent, one containing only the first sequence of each locus of the PyRAD loci and
another one, which contained only the first sequence of each locus of the ipyrad loci. This
means that the consensus sequences and the first sample sequences may differ in their SNPs.
Therefore BLASTN [54], which tolerates minor differences between two sequences, was
used to compare the FASTA files. The BLAST searches were performed in both direction for
all pipelines for example Stacks against a PyRAD database and vice versa. For BLAST the
default parameters were used except for the parameter -word_size which was reduced to
14. This was necessary because otherwise matching sequences would not align because they
differ in their SNPs. Beside form SNP differences there might also be differences at the other
sites because PyRAD and ipyrad replace low quality sites with the wild card character "N’.
Stacks and dDocent do not replace low quality sites. Hence PyRAD and ipyrad sequences

may differ at more sites than just the SNP sites from the sequences of Stacks and dDocent.

The BLAST search results were filtered so only matches with a minimum alignment length
remain, to ensure that the matching loci align over more than just the minimum exactly

matching 14 nucleotides. The minimum alignment length was set to approximately 80% of
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the loci length. This results in a minimum alignment length of 63 for the Ber-SE data set

and 72 for the other data sets.

From the results Venn diagrams were created, which show how much the results of the

pipelines overlap. The Venn diagrams were created with the R package VennDiagram [55].

2.9 Tree generation

Phylogenetic trees were generated from phylip [56] files of the pipeline results. Examples
on phylip files can be found in the appendix section A.6. In PyRAD and ipyrad you can
specify phylip as the output format or just use the wildcard character * to generate all

output formats (Tables tables A.3 and A.4).

A phylip file can be generates with Stacks using the following command:

populations -P <stacks_dir> -M <popmap> -b 1 -k -t 36 --phylip_var_all

<stacks_dir> was replaced with the path to the directory containing the Stacks files and

<popmap> with the path to the population map file.

dDocent does not come with a function to generate a phylip file. The phylip file for dDocent
was generated with a modified version of the python script vcf_to_phylip.py [57] from
the output vcf file (Final.recode.vcf) of dDocent. But this only works for the empirical
data sets, because dDocent does perform a basic SNP filtering which results in an empty or
nearly empty Final.recode.vcf file for the simulated data sets. Apparently, the simulated
data sets are too uniform so most of the loci get filtered [58]. This means that an unfiltered

vcf file had to be created, which was done by the following commands:

samtools view -@1 -b -1 -L mapped.bed -o split.temp.bam cat-RRG.bam
samtools index split.temp.bam

freebayes -b split.temp.bam -t mapped.bed -v unfiltered.vcf -f reference.fasta

-m 5 -9 5 -E 3 --min-repeat-entropy 1 -V --populations popmap -n 10

The vcf_to_phylip.py script was modified to include variant sites which are longer than just

one nucleotide and also variant sites which contain a single indel in the generated phylip
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tile. All necessary modification are in the parse_vcf function of the vcf_to_phylip.py script

(Appendix Listing A.1).

The phylip files were further processed by the program RAxML [59], which generates a
tree and saves it in a file using the newick tree format. The substitution model GTRCAT was
specified. As algorithm, the default 'rapid hill-climbing” was used. The trees were finally
plotted using the R package phytools [60].

Stacks was not able to create the phylip file for all loci of the Seb-PE data set, because it ran
out of memory. Therefore the phylip file was created for only those loci which are present
in all 8 samples. The other pipelines were able to create the phylip file for all loci, but for

better comparability, the minimum sample coverage of the loci was also set to 8 samples.

The trees were also compared using the dist.topo function of the R package ape [61]. The
dist.topo function returns the topological distance. By default, it uses the PH85 method [62]
to determine the topological distance. The PH85 method defines the distance as twice the
number of different bipartitions between the two trees and does not take the branch length

into account.

The trees of the simulated data sets were compared to the reference tree presented in the
SE-ddRAD PyRAD tutorial [13] (Figure 2.1) and the trees of the empirical data sets were

compared to the trees of the other pipelines for the same data set.

2.10 R-Environment

The species trees and Venn diagrams were created using R, a framework for statistical
analysis [63]. For this, R version 3.3.2 was used. The packages and functions used are

summarised in Table 2.10.
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Table 2.10: Species trees and Venn diagrams were generated with the following R packages and functions.

Non default parameters

Package Version Used functions Describtion Reference
Paramter name [ Value
area1, area2, Cross.area, .
according to the data
category
euler.d FALSE
Used for creating a scaled FALSE
draw.pairwise.venn | Venn diagram with | cex c(2,2,2)
two sets cat.dist ¢(0.09,0.09)
cat.cex c(2,2)
print.mode percent
sigdigs
VennDiagram 1.6.17 898 5 [55]
areai, areaz, areas,
niz, n23, ni3, ni23, according to the data
category
euler.d FALSE
Used for creating a
. . . scaled FALSE
draw.triple.venn Venn diagram with
cex c(2,2,2,2,2,2,2)
two sets
cat.dist ¢(0.17,0.16,0.05)
cat.cex c(2,2,2)
print.mode percent
sigdigs 3
Used to create a grobs gTree(children=venn.plot)
i bind(c(NA,NA,NA),
proper margin layout.matrix rbind(c( )
gridExtra 1221 grid.arrange around the Venn c(NA,1,NA),c(NANA,NA)) [64]
diagram plots widths <(3,15,3)
heights (3,15, 3)
To read in the
read.tree output tree file of file RAXML output tree
RAXML
phytools 0.5.64 Used to reroot the tree MyTree (output of read.tree) [60]
reroot tree and make it root_node
bifurcated node.number (=MyTree$Nnode/2+
length(MyTree$tip.label))
MyTh dge.length[which
position yTree$edge.length[which(
MyTree$edge[,2] == root_node)]
tree rooted_tree (output of reroot)
direction downwards
type phylogram
plot To plot the Tree use.edge.length TRUE
ape 4.0 cex 15 [61]
show.node.label TRUE
tip.color=ifelse(rooted -tree$tip.label
i %in% species, “red”,”blue”)
tip.color
(sample labels in species is an array of
those sample labels which should be red)
Tree one for the comparison
. To determine the X
dist.topo ) . (output of RAXML)
topological distance -
Tree two for the comparison
between two trees y

(output of RAXML)
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2.11 fastStructure

The results of the pipelines were further used for inferring the population structure of the
data sets. This is done with the variational framework fastStructure [65]. The version 1.0-4 of
fastStructure was used, which was the most recent version at the time the project was started.
fastStructure offers three Python scripts structure.py, chooseK.py and distruct.py for
analysing the data sets. The structure.py script is the main script. It performs the actual
structure analysis. To choose the appropriate number of populations the chooseK. py script
can be used. It provides two different suggestions for the population number K. One is based
on the marginal likelihood of the data and the other is the minimum number of populations
that have a cumulative ancestry contribution of at least 99.99% [65]. For visualisation of the
results the distruct.py script is used. The distruct.py script generates distruct plots [66]

for the results of the structure.py script.

The input for the structure.py script must be either in the plink [67] bed format or the
original Structure format. An Example for a Structure file can be found in the Appendix
A.5. In PyRAD and ipyrad you can specify Structure as the output format or just use the
wildcard character * to generate all output formats (Tables tables A.3 and A.4).

To generate a Structure file with Stacks the following command is needed:

populations -P <stacks.dir> -M <popmap> -b 1 -k -t 36 —--structure

--write_single_snp

<stacks_dir> needs to be replaced with the path to the directory containing the Stacks
tiles and <popmap> with the path to the population map file. Unfortunately it was again
not possible to create a structure file of all loci for the Seb-PE data set with Stacks. So the

structure file for Stacks was generated from only those loci which cover all 8 samples.

For dDocent, the plink bed file format was used. To create the plink files plink 1.9 [68] was
used. Plink needs as input a vcf file and a reference FASTA file. dDocent generates a reference
file which contains the consensus sequences of the loci and a vcf file (Final.recode.vcf).
The vcf file Final.recode.vcf does not contain all variant sites, because dDocent performs
a basic filtering step. This filtering step, unfortunately, causes problems for the simulated

data sets, because it filters almost all SNPs. Therefore an unfiltered vcf file had to be created
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for the simulated data sets (see section 2.9). The plink files were created with the following

command:

2 Methods

plink -vcf <vcf-file> --reference <reference.fasta> --allow-extra-chr

Non default values and description of the parameters of the scripts are provided in Table

2.11.

Table 2.11: Values and description of the Parameters for the fastStructure scirpts structure.py, chooseK.py

and distruct.py.

names of the samples

Script Parameter Value description
-K Numbers from 1 to 8 Number of populations
—input Name of the structure output | Path to the input file(s)
structure.py of the pipelines
—output Name of the output file Path for the output files
—full To output all variational pa-
rameters
—format str or bed The format of the input file.
Either bed (default) or str
chooseK.py —input Name of the output file of | Path to the input file(s)
structure.py
-K Number of Population sug- | number of populations
gested by chooseK.py
distruct.py
-input Name of the output file of | Path to the input file
structure.py
—output Name of the output svg file | Path for the output file
—popfile File, which contains the | File with known categorical

labels
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3.1 RAD analysis pipelines

There are several analysis pipelines for RAD and ddRAD reads. Following is a short overview

for the Stacks, PyRAD, rtd, Rainbow, ipyrad and dDocent pipelines.

A RAD and ddRAD analysis pipeline needs to perform certain general steps (Figure 3.1).

The demultiplexing step does not necessarily be part of the pipeline because most of the

data will already be demultiplexed at the beginning of the analysis.

Performed for each Sample separately

Sample Filterin 'Clystering
Demultiplexing I ! 9 within Sample

of overlapping
PE reads

Merging/Filtering o
Filtering )
for diploids SNP Calling
i i Further Analyses
acr(<:)lsusS tggr?]%les F'iTtIQﬁLg (Phylogenetic analysis,
Structure analysis etc.)

Figure 3.1: The flow diagram with the basic steps of RAD and ddRAD data analysis. Data is often already de-

multiplexed so the demultiplexing step show in grey can be skipped. The results of a RAD/ddRAD

pipeline are used for further analyses which is shown with a grey block at the end of the pipeline.
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3.1.1 Stacks

This section is a summary of the workflow of Stacks based on the paper ”Stacks: Building

and Genotyping Loci De novo From Short-Read Sequences” [6].

The way Stacks works is most easily explained with the schematic shown in Figure 3.2.

oS S B
— = e

Stack 1 Stack 2 Stack 3 Stack X

A___T—Do,o o o

Locus 1 Locus 2 Locus X

B i!g-:h‘i C @) g
. '1 &
Stack 2 o «o 6
e o gremancacy _ pccamesny
A > G : g
Stack N 2 a F
: . y
G CaraLoc
Parent1 +* * —
! 2 2 > B B _.E ﬂ.,_
j - I Locus 2
Locus 3 —
Parent2 ** * B . i —
E | LocusN oo n'e;
. - Hapiotypes: [} ROGENY | .

Figure 3.2: Schematic of the Stacks work flow. (A) Exactly matching stacks are created from reads of an
individual. (B) These stacks get broken down into k-mers to create a dictionary. A list of potentially
matching stacks can be created by again breaking down stacks into k-mers and querying them
against the dictionary. (C) Matching stacks get merged to form putative loci. (D) Filtering of the
putative loci based on their diplodidy and coverage. (E) Secondary reads (secondary reads are
reads which could not form a proper stack in step A) are matched with the putative loci and the
SNPs of the loci are identified. (F) A consensus sequence for each locus is created. The steps A
to F needs to be performed on each individual separately. (G) A set/catalog of all possible loci is
created from the outputs of the steps A to F of every individual. (H) Every individual gets matched

against the catalog (Image taken from [6]).
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Identifying stacks, inferring loci

e Creating the ustacks:
The ustacks (unique stacks) program reads cleaned sequences from a FASTA or
FASTQ file and creates exactly matching stacks (exactly matching means that
each sequence in a stack is exactly the same). These exactly matching stacks are
called unique stacks. Those unique stacks, that have fewer reads in them as a
configurable threshold (stack-depth parameter), are disassembled and the reads
are set aside. The reads in the unique stacks are called primary stacks and the
reads, that are set aside, are called secondary reads.
Furthermore, ustacks excludes those stacks, whose coverage is two standard
deviations above the mean depth of coverage (and also those stacks that differ
in just one nucleotide from those extremely deep stacks), because they usually
represent repetitive sequences (Figure 3.2A).

e Creating a dictionary:
Ustacks breaks the sequences of each stack into overlapping k-mers (fragments of
the length k) and loads them into a dictionary. Each k-mer of a stack gets queried
against the k-mer dictionary to find other stacks with matching k-mers (Figure
3.2B).

e Aligning the stacks:
Stacks, which pair with a sufficient number of matching k-mers, get aligned. Some
of the stacks may align with multiple other stacks. Aligned stacks get merged
and represent putative loci. The putative loci are displayed as a graph where
the nodes represent unique stacks and the edges are weighted by the nucleotide
distance between the stacks (Figure 3.2C).

e Filtering for diploids:
In a diploid genetic cross, only loci with one (homozygous) and two (heterozy-
gous) stacks should exist. Merged stacks with more than three (three to allow
some error) unique stacks get analysed by the deleveraging algorithm, which
decides which subset of these stacks represent a locus. The deleveraging algorithm
is also used for merged stacks, which have a coverage higher than two standard

deviations above the mean (figure 3.2D).
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e Matching with the secondary reads:
Finally, the secondary reads get matched against the putative loci. Secondary

reads that do not match any of the putative loci get discarded (Figure 3.2E).

Inferring alleles and haplotypes

e Identifying SNPs:
To identify polymorphisms within a locus ustacks examines for each putative locus
one nucleotide position at a time. Polymorphisms are detected via a maximum
likelihood framework [69] (Figure 3.2E).

e Creating a consensus sequence:
A consensus sequence for each locus is created by ustacks and the SNPs are

recorded (Figure 3.2F).
Aggregating loci into a Catalog

e Stacks performs the steps from Figure 3.2A to F for each individual (e.g. two
parents of a genetic cross, because the progeny of that cross will only have genes
of the two parents). The cstacks (catalog stacks) program merges the output of
ustacks into a catalog to create a set of loci that possibly appear in members of

the population (Figure 3.2G).
Matching the population against the Catalog

o The sstacks (search stacks) program matches every individual in the cross against
the catalog to determine the haplotypes at each locus in every individual (Figure

3.2H).
Calling mappable markers

e The program markers.pl characterizes the loci into 10 classes of mappable mark-

ers (Table 3.1).
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Table 3.1: The 10 different mappable markers

Marker type | Individual 1 | Individual 2 | Number of alleles
ab/aa Heterozygous | Homozygous 2
aa/ab Homozygous | Heterozygous 2
ab/ab Heterozygous | Heterozygous 2
aa/bb Homozygous | Homozygous 2
ab/- Heterozygous | Absent 2
—/ab Absent Heterozygous 2
ab/cc Heterozygous | Homozygous 3
cc/ab Homozygous | Heterozygous 3
ab/ac Heterozygous | Heterozygous 3
ab/cd Heterozygous | Heterozygous 4
3.1.2 PyRAD

The PyRAD Framework consists of seven sequential steps, which are summarized here

based on "PyRAD: assembly of de novo RAD-seq loci for phylogenetic analyses” [7]:

1. De-multiplexing

e In this step the sequences, which are in a (gzipped) FASTQ file, are divided into

separated files by using the sample barcodes.

2. Quality filtering and removal of barcodes, cut sites and adapters

e This step removes barcodes and Illumina adapters and discards low quality
reads by using the quality scores of the bases. Bases with a score below a certain

threshold are changed into “N”s. Reads that contain more “N”s than a user

defined number

are discarded.

3. Clustering within samples and alignment

e Replicate sequences are merged into individual clusters, but the total number
of occurrence is saved. The sequences are clustered by using either VSEARCH
[26] or USEARCH [27] (Note that newer versions than usearch_v.7.0.1090 of
USEARCH are not supported in PyRAD and in general, VSEARCH is recom-
mended). VSEARCH creates clusters (stacks) by matching sequences to a seed
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sequence or creating a new seed. The results of the clustering process are aligned

with MUSCLE [25].
4. Joint estimation of error rate and heterozygosity

e A maximum likelihood equation [70] is used to determine the mean heterozygos-

ity and sequencing error rate.
5. Consensus base calling and paralog detection

e This step creates the consensus sequences for each stack by using the error rate
and heterozygosity.
Stacks are discarded if they have:
a) less than the minimum coverage,
b) more than the allowed number of undetermined sites,
c) more than the allowed number of heterozygosity sites,

d) or more than the allowed number of alleles (two for diploid genomes).
6. Clustering across samples

e The stacks resulting from step 5 are clustered across samples. For the clustering

USEARCH/VSEARCH is used like in step 3.
7. Alignment across samples, filtering and formatting

e The stacks get aligned like in Step 3.

3.1.3 rtd

This summary of the rtd algorithm is based on the paper "Double digest RAD-seq: an
inexpensive method for de novo SNP discovery and genotyping in model and non-model

species” [1].

First all identical sequences are collapsed into a single record, while the number of occur-
rences in each individual is retained. The resulting unique sequences are clustered by a

graph-based distance approach and filtered by a novel “ploidy-aware” quality filter.

The pairwise distances are computed via BLAT [71], which allows the detection of InDel (in-

sertion/deletion) regions. A MCL (Markov Cluster Learning) [72] graph clustering algorithm
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is used to discover groups. The fraction of reads in each cluster reporting haplotypes beyond
the ploidy of the organism is calculated to estimate if the clusters should be discarded. For a
diploid organism, clusters where 9o% of the reads are one of the two most frequent unique

sequences in that cluster, are retained.
Finally MUSCLE [25] is used to align all sequences in a group.

Unfortunately could rtd not be included in the further comparison because it was not
possible to execute the available rtd versions. rtd uses a Google Documents Spreadsheet to
store data and uses the ClientLogin which is no longer supported by Google since April 20,
2012 [73] and leads to an error at the start of a analysis. To run rtd, a migration to OAuth

2.0 would be necessary.

3.1.4 Rainbow

The following summary is based on the paper “Rainbow: an integrated tool for efficient

clustering and assembling RAD-seq reads” [10].

With the Rainbow algorithm, paired-end reads are clustered into groups. Paired-end se-
quencing means that a DNA-sequence is sequenced from both ends. In case of RAD the
restriction site end is considered as the forward paired-end and the other end is considered

as the reverse paired-end.
Rainbow mainly consists of the following steps:

1. Indexing
e For the indexing of the tagged reads a spaced seeds hash table is used.
2. Primary clustering

e All indexed reads are clustered into groups:
A read is added to a group if it has less or equal mismatches than a certain
number. Thereby all potential true clusters a clustered correctly by the primary

clustering.
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3. Top—down cluster division

e A dividing module is used to find sequencing errors. Stacks are built from
the primary clusters and every position gets scanned. At every position the
occurrences of the minor base K and its frequency F is determined. The cluster
is recursively divided at the most significant position (largest K and F below a
minimum requirement). A guided tree is generated, which contains relationship

information of the divided clusters.
4. Bottom-up merging process

e The guided tree from step 3 is used to merge similar clusters in a bottom up
manner. To better determine the similarity of two clusters the reverse paired-ends

are used.
5. Local assembly of final clusters

e For the assembling a greedy algorithm is used. All the final divided reads and
their reverse read partners are pooled. The two reads with the largest overlap
(overlap length and overlap similarity) are merged into a consensus sequence. This
process is repeated until the thresholds for overlap length and overlap similarity

is reached.

Rainbow was not used for further comparisons because it does not perform an actual SNP
calling and would need further software to generate an output for a RAD and ddRAD
analysis. But dDocent, which uses Rainbow, was used for the further analysis. So in a certain

sense, Rainbow is part of the further comparisons.

3.1.5 ipyrad

This summary is based on the information presented at the ipyrad homepage [8].

ipyrad is a completely re-written version of PyRAD that has been optimized in terms of
speed and flexibility. The workflow of the pipeline basically consists of the same seven

sequential steps as PyRAD:

1. De-multiplexing / Loading FASTQ files
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2. Filtering / Editing reads

Clustering / Mapping reads within Samples and alignment
Joint estimation of heterozygosity and error rate

Consensus base calling and filtering

Clustering / Mapping reads among Samples and alignment

N o s

Filtering and formatting output files

3.1.6 dDocent

The following summary is based on the paper “dDocent: a RADseq, variant-calling pipeline

designed for population genomics of non-model organisms” [9] and the dDocent homepage

[43]-

The dDocent pipeline is written in BASH and depends largely on other bioinformatics
software packages. It takes advantage of programs designed specifically for each task of the

analysis. This also makes it possible to update each component separately.

1. Data input requirements

e The data needs to be demultiplexed.
e The data must be in gzipped FASTQ files.
e The name of the files must follow a specific naming convention:
<population identifier> <individual identifier>.F.fq.gz
for the forward reads and
<population identifier> <individual identifier>.R.fq.gz
for the reverse reads.
e To demultiplex different programs can be used such as the process_radtags

script from the Stacks pipeline [6].
2. Quality trimming

e Trimmomatic [47] is used for a quality filtering, which removes low quality bases
and Illumina adapters, if they are present. Initially, dDocent [9] used TrimGalore

[74], but this has been replaced by Trimmomatic in newer versions [43].
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3. De novo assembly

e In this step the reference sequences are assembled. Each reference sequence
represents a consensus sequence of a locus. The de novo assembly can be skipped
if a FASTA file with reference sequences is provided.

e dDocent offers four different assembly methods (Figure 3.3):

— PE (Paired-End without a random shearing step; ddRAD and ezRAD) and
RPE (Paired-End with a random shearing step; original RAD) methods:
The clustering program CD-HIT [50] and the assembly program Rainbow [10]
are used to create the reference sequences. Each of these sequences represent
one of the loci. To check for substantial overlap between the forward and
reverse reads the program PEAR [21] is used.

— OL (Overlapping forward and reverse reads) method: The data set is merged
with PEAR before they it is clustered using CD-HIT.

- SE (Single end) method: The data set is clustered using CD-HIT.

- Data reduction: For the PE methods the reads are concatenated into one
forward and one reverse FASTA file and for the SE method only the forward
reads are used. First the program presents the user the number of unique
sequences in relation to their coverage (counted within the individuals). The
user defines a cutoff for the minimum coverage a sequence must have. The
number of remaining unique sequences in relation to the coverage of the
individuals is shown and a cutoff for the minimum coverage of the individuals

must be defined.
4. Read mapping

e Raw reads are aligned to the reference sequences using the MEM algorithm of

BWA [31].
5. SNP Calling

e Variant sites are called with FreeBayes [44] and saved into a single VCF (variant

call format) file using VCFtools [52].
6. SNP filtering

e dDocent performs a basic filtering so that only those SNPs which are called in at

least 90% of all individuals remain. This is done by using VCFtools.
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(a) (b)

Figure 3.3: dDocent assembly methods: (a) PE method for PE data without a random shearing step (eg. ddRAD
and ezRAD). (b) OL method for overlapping forward and reverse reads. (c) RPE method for PE data
with a random shearing step (original RAD). (d) SE method for SE data. The thick lines represent
the RAD sequences with Illumina adapters (yellow and grey), overhangs of the restriction enzymes
(green and red) and RAD sequence (blue). The reads are represented by the thin lines. The forward

reads are blue and the reverse reads are grey (Images taken from[43]).

3.1.7 Features

The pipelines provide different features. Some features like e.g. sample demutiplexing can
be compensated with third party scripts and programs. dDocent only provides features
for the core RAD analysis and needs additional programs to generate output formats like
phylip or structure files. The pipelines Stacks, PyRAD and ipyrad provide more features
and can generate different output formats. Stacks is the only pipeline which provides a web

interface and a database, but it does not directly support PE reads [75] (Table 3.2).

3.1.8 Support

Stacks, PyRAD and dDocent have Google Groups as their support forum. ipyrad has a
forum on its homepage but ipyrad support can also be found in the PyRAD Users Google
Group (Table 3.3).
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Table 3.2: Feature-list of the pipelines.

Features Stacks | PyRAD | rtd | Rainbow | ipyrad | dDocent
Demultiplexing v v v 3 v ®
PE/SE Support ® 4 v/ 4 v v
Loci building v v v v v v
Filtering for diploids v/ 4 v/ ® v v/
SNP Calling v v v x v v
Parallelization v v v/ v v v/
Creation of phylip files v v 3 x v ®
Creation of structure files 4 4 x x 4 x
Handling of reads with varying lengths | % 4 4 4 4 4
Web interface and Database 4 x x x x x

Table 3.3: Support forums of the analysis pipelines.

Pipeline

Support

Stacks

https://groups.google.com/forum/#!forum/stacks-users

PyRAD

https://groups.google.com/forum/#!forum/pyrad-users

ipyrad

http://ipyrad.readthedocs.io/support.html

dDocent

https://groups.google.com/forum/#!forum/ddocent

rtd

NA

3.2 Results of Stacks analysis

Important aspects of an RAD analysis are: the number of identified and usable loci, the

run time and the memory requirements. Usable loci are those loci which contain a variant

site (e.g. SNPs), because loci without any variant sites do not have any information for

differentiation between the individuals.

Stacks recovered more loci than the other pipelines, but had relatively high memory foot-

prints. The memory requirements for the simulated data sets were more or less constant

with about 1,200 bytes per read or about 290 kB per locus. The memory footprint for the

empirical data sets did vary a lot and reached the hardware limitation for the Seb-PE data

set. Therefore the phylip and structure file of the Seb-PE data set were created using only
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those loci which cover all 8 samples. Stacks is relatively fast compared to the other pipelines,
although it was the slowest for the Seb-PE data set. It needed over 6 days to complete the
Seb-PE analysis (Table 3.4).

Because the computational limits have already been reached with the reduced Seb-PE data

set, no analysis on an extended Seb-PE data set with additional samples was performed.

3.3 Results of PyRAD analysis

PyRAD was for the most part the slowest pipeline. It recovered less loci than Stacks or
dDocent, but more than ipyrad. For the simulated data set, PyRAD required the least memory
off al pipelines. The memory requirements for the empirical data were also relatively low

except for the extended Seb-PE data set were it needed 5.5 GB (Table 3.5).

It was possible to perform the ddRAD analysis with PyRAD for all 40 samples of the
extended Seb-PE data set. The analysis needed about 2.4 days and 5.5 GB of RAM.

3.4 Results of ipyrad analysis

ipyrad was faster than PyRAD, but was slower than Stacks or dDocent. The memory
requirements of ipyrad were higher than those of PyRAD for the simulated data sets. ipyrad

recovered less loci than the other pipelines (Table 3.6).

It was possible to perform the ddRAD analysis with ipyrad for all 40 samples of the extended
Seb-PE data set. The analysis needed about 1.5 days and 1.2 GB of RAM.

3.5 Results of dDocent analysis

dDocent was for the most part the fastest pipeline and also had a relatively low memory
footprint. It also recovered more usable loci for the empirical data sets than the other

pipelines. The memory footprint of dDocent was relatively constant for the simulated data
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sets. dDocent needed 9o - 95 MB for each of the simulated data sets, but the memory

footprint per read and per locus vary a lot between the data sets (Table 3.7).

It was possible to perform the ddRAD analysis with dDocent for all 40 samples of the
extended Seb-PE data set. The analysis needed about 7.7 hours and 1.1 GB of RAM.
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3.6 Estimated size limits for data sets on an ordinary laptop

The pipelines PyRAD, ipyrad and dDocent were able to perform the analysis of the entire
40 samples extended Seb-PE data set. An estimate of the maximum number of samples that
could be analysed by the pipelines was made to better understand the analysis limits of the
pipelines. Stacks was excluded from this estimation, because the computational limits have

already been reached with the reduced Seb-PE data set.

The maximum number of samples that can be analysed by PyRAD, ipyrad and dDocent
were determined by assuming a linear approximation between the required memory and the
number of reads. The linear approximation is only based on the results of the empirical data
sets for each pipeline, because those are represent real data sets better than the simulated
data sets. It was assumed that each sample contains 2,726,773 reads which is the average
number of reads per samples of the entire 40 samples extended Seb-PE data set. For the
operating system 1 GB of RAM was reserved. The maximum number of samples were 50 for
PyRAD, 259 for ipyrad and 473 for dDocent. However this is just a rough estimation and
more runs would be necessary to create a more accurate function and approximation for the

memory prediction (Table 3.8).

Table 3.8: The approximately maximum numbers of samples and reads the pipeline can process. The approxi-
mation is based on the linear function which is derived from the results of the empirical data sets.

The coefficient of determination (R?) is a measure of how well the linear functions the data represent.

linear function:
Pipeline | Max. Samples | Max. reads R?

Memory(reads) [Mbytes]

PyRAD 50 135,745,968 | 4.9 x 107° * #reads + 267 | 0,988
ipyrad 259 706,082,474 | 9.7 %107 x #reads + 151 | 0,98
dDocent 473 | 1,289,112,903 | 4.96 * 107° x #reads + 606 | 0,677

43



3 Results

3.7 Overlap of the results

The Number of recovered loci in respect to the taxon coverage is an important property
of the results the pipeline produce. Each sample is considered as taxon. Ideally, most of
the loci cover many taxa. All loci recovered for the simulated data sets by PyRAD, ipyrad
and dDocent are shared by all samples. Except for the data sets PE-ddRAD_m untrimmed
and PE-ddRAD_m trimmed where dDocent recovered in both case one locus, which is only
found in one sample. Most of the loci recovered for the simulated data sets by Stacks are
shared by all samples, but there are also loci which are only shared by a view samples.
PyRAD, ipyrad and dDocent provide a better taxon coverage than Stacks, because they can
handle InDels (Figures 3.4a to d).

The loci recovered by dDocent for the empirical data sets have in general a much higher
taxon coverage than the loci recovered by the other pipelines. The results of Stacks and
PyRAD show a very similar taxon coverage. The results of ipyrad have the lowest taxon
coverage. In case of the Seb-PE data set is the taxon coverage of the ipyrad loci especially

low, compared to the other pipelines (Figures 3.4e and f).

The taxon coverage is presented as the number of recovered loci, which are shared by least

1,2,3,... samples (Figures 3.4).
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Figure 3.4: Taxon coverage of all four pipelines Stacks, PyRAD, ipyrad and dDocent for the simulated and
empirical data sets. The number of found loci in respect to the taxon coverage for the data sets

SE-RAD (a), SE-ddRAD (b), PE-ddRAD (c), PE-ddRAD_m (d), Ber-SE (e) and Seb-PE (f) is presented.
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3.7.1 Comparison of the recovered loci

Beside of the taxon coverage comparison, the sequences of found usable loci of the pipelines

were compared using BLASTN [54].

Stacks and dDocent create a consensus sequence for every locus, while PyRAD and ipyrad
represent loci differently, they shows a consensus sequence from every sample (at least from
every sample in the locus) per locus. To compare all pipelines, FASTA files were created,
one containing the consensus sequences of Stacks, one containing the consensus sequences
of dDocent, one containing only the first sequence of each locus of the PyRAD loci and one
containing only the first sequence of each locus of the PyRAD loci. If necessary, additional
FASTA files for the trimmed or untrimmed data sets were created. All these sequences, the
consensus sequences and the first sample sequence of the loci, may differ in their SNPs.
Therefore BLASTN, which tolerates minor differences between two sequences, was used
to determine the loci overlap. The BLAST search was performed reciprocally: pipeline A
against a pipeline B database and vice versa and this was done for each pipeline pair. The
BLAST search results were filtered so only matches with an alignment length of at least 80%
of the locus-sequence length were counted. This was done to ensure that the matching loci

align over more than just the minimum exactly matching 14 nucleotides.

Although a pipeline may have more loci than the other pipelines it might not have any
loci that cannot be found in the other pipelines, because sequences can match more than
once for the BLASTN comparison. The reason for this multiple matches are InDels (inser-
tions/deletions) in the sequences. Stacks does not handle InDels, it creates a new locus
for the sequence(s) with the InDel(s). The other pipelines try to assign sequences where
InDels are present to similar sequences where the InDels are not present. So a loci sequence
with InDels might get more than one hit when blasted against another pipeline if the InDel

sequences are not grouped to one loci in the other pipeline.

dDocent and Stacks identified more usable loci than PyRAD and ipyrad. The number of
Stacks loci not found in the results of the other pipelines is for the most part, approximately
equal to the numbers of not found loci of PyRAD and ipyrad, although Stacks identified
more usable loci. dDocent, on the other hand, has higher numbers of loci that were not

found in the results of the other pipelines than PyRAD, ipyrad and Stacks. The recovered
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loci of the pipelines overlap almost entirely for each of the simulated data sets. This is not

the case for the empirical data sets (Table 3.9).

The data from Table 3.9 was used to create Venn diagrams. The Venn diagrams illustrate
the overlap between the pipelines. The results of each of the simulated data sets overlap
almost entirely (Figures 3.5 and A.1). The results of the empirical data sets do not overlap as
much as those of the simulated data sets. But the overlap between the results of Stacks and

dDocent is relatively large (Figures 3.6 and A.2).

Here are only the Venn diagrams for the data sets SE-RAD (Figure 3.5) and Seb-PE (Figures
3.6) presented. The other Venn diagrams can be found in the Appendix (Figures A.1
and A.2).
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Table 3.9: Overlap of the usable loci between the pipelines for the different analysis. The comparison was
performed using BLASTN which tolerates miner differences in the sequences such as SNPs. The

BLASTN search results were filtered for matches with an minimum alignment length of about 80%

of the locus-sequence length to ensure only sophisticated matches are counted.

Number of loci not found by
Number of
Data set Pipeline PyRAD ipyrad dDocent
usable loci Stacks
untr. tr. untr. tr. untr. tr.
Stacks 1,975 — 1 1 0
PyRAD 1,959 0 — 0 0
SE-RAD
ipyrad 1,959 0 0 — 0
dDocent 1,960 0 1 1 -
Stacks 985 - 0 0 0
PyRAD 982 0 - 0 0
SE-ddRAD
ipyrad 982 0 0 — 0
dDocent 983 0 0 0 —
Stacks 1,986 - 0 0 0
PyRAD 1,961 0 - 0
PE-ddRAD
ipyrad 1,959 0 0 —
dDocent 1,965 5 6 6 -
Stacks trimmed 332 - 0 0 0 0 0
PyRAD untrimmed 336 4 — 4 4 0 4
PyRAD trimmed 332 0 0 - 0 0 0 0
PE-ddRAD_m ipyrad untrimmed 333 4 0 4 - 4 0 4
ipyrad trimmed 332 0 0 0 0 — 0 0
dDocent untrimmed 337 5 1 5 1 5 — 4
dDocent trimmed 333 1 1 1 1 1 0 —
Stacks 4,763 - 1,935 2,812 211
PyRAD 2,977 1,559 - 1,503 1,057
Ber-SE
ipyrad 2,646 1,618 1,196 - 1,098
dDocent 6,135 2,405 3,810 4,353 —
Stacks trimmed 377 - 249 | 231 312 | 297 38 8
PyRAD untrimmed 300 177 — 84 162 | 186 122 | 123
PyRAD trimmed 330 196 119 - 210 | 203 155 | 140
Seb-PE_m ipyrad untrimmed 206 142 71 86 — 88 96 96
ipyrad trimmed 201 123 89 73 82 — 100 88
dDocent untrimmed 507 169 321 | 327 393 | 405 — 40
dDocent trimmed 546 183 370 | 353 435 | 433 83 —
Stacks 48,629 — 8,529 19,304 477
PyRAD 47,761 | 12,941 - 16,598 2,324
Seb-PE
ipyrad 33,809 | 10,418 4,028 - 1,744
dDocent 75,118 | 29,345 26,892 39,104 —
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ipyrad (1959) dDocent (1960)

PyRAD (1959) Stacks (1975)

Number of
unique loci:
1960

Figure 3.5: Overlap of the usable consensus sequences of the pipelines Stacks, PYRAD, ipyrad and dDocent in
percentages for the SE-RAD data set.

ipyrad (33809) dDocent (75118)

PyRAD (47761) Stacks (48629)

4.61% 0.0521%

0.182%

Number of
unique loci:
78753

0.161%

Figure 3.6: Overlap of the usable consensus sequences of the pipelines Stacks, PYRAD, ipyrad and dDocent in
percentages for the Seb-PE data set.
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3.7.2 Comparison of species trees

Of further interest are the phylogenetic relations of the species. The phylogenetic relations
are illustrated with species trees. For the length of the vertical edges of these trees the branch
lengths were used. The branch length represents the genetic distance between the samples.
The unit of the branch lengths is nucleotide substitutions per site, which is the number of

substitutions divided by the length of the sequence [76, 77].

The true species tree for the simulated data sets comprises three subtrees of 4 species each
(Figure 3.7). The tree structure of the trees created from the results of the pipelines for
the simulated data sets is identical to the true tree, not considering branch lengths. They
may differ in the horizontal order of the samples, but the order in which the samples are
connected is the same. For example, if we take a look at the subtree of A, B, C and D we
can see that from bottom to top A and B are the first samples, which are connected, then C
and finally D. Although the samples in the trees of the analyses are ordered B, A, C and
D, the order, in which they are connected, is the same (Figure 3.8 and A.3 to A.5 ). The
horizontal distance between two samples does not relate to a genetic distance between these
two samples. The horizontal lines are simply for visualisation of the connection between the
vertical lines [76]. The trees of the simulated data sets all had a PH85 distance of 0 to each

other and to the reference tree presented in figure 3.7 (data not shown).
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Figure 3.7: Species tree of the simulated data. This figure is adapted from the Species tree presented in

SE-ddRAD [13] and shows the phylogenetic relation between the 12 samples.
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Unfortunately, no reference tree is available for the empirical data sets. But it can be
assumed that individuals from the same species should form a subtree. The tree for the
Seb-PE analysis was created by only using those loci which cover all 8 samples, because
otherwise Stacks ran out of memory. Apart from the Seb-PE analysis tree are the trees
not particularly similar (Figures 3.9, 3.10, A.6 and A.7). The PH85 topological distances
between the empirical Stacks, PyYRAD, ipyrad and dDocent trees for the different analysis
are relatively high. But the PH85 distances between the trees of the Seb-PE analysis are

smaller than distances of the other empirical data set analysis (Table 3.10).

Table 3.10: The PH85 topological distances between trees form the different pipelines for the empirical data

sets.
Stacks PyRAD ipyrad

Data Set compared to

PyRAD | ipyrad | dDocent | ipyrad | dDocent | dDocent
Ber-SE 10 10 6 10 8 8
Seb-PE_m untrimmed - - - 10 10 6
Seb-PE_m trimmed 10 10 10 6 10 8
Seb-PE 4 8 6 8 6 4
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Figure 3.8: Species trees of the SE-RAD analysis created with the phylip files of the Stacks (a), PyYRAD (b),

ipyrad (c) and dDocent (d). The Stacks phylip file was created from 2,058 loci and each phylip file

of PyRAD, ipyrad and dDocent was from 2,000 loci.
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Figure 3.9: Species trees of the Ber-SE analysis created with the phylip files of the Stacks (a), PYRAD (b), ipyrad

(c) and dDocent (d). The Stacks phylip file was created from 13,923 loci, the PyYRAD phylip file

from 6,809 loci, the ipyrad phylip file from 5,766 loci and the dDocent phylip file from 4,082 loci

(from the Final.recode.vcf file). Samples of the Berberis alpina spieces are coloured blue and the
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Figure 3.10: Species trees of the Seb-PE analysis created with the phylip files of the Stacks (a), PyYRAD (b),
ipyrad (c) and dDocent (d). The phylip files were created only by using loci, which cover all 8
samples. The Stacks phylip file was created from 33,575 loci, the PyRAD phylip file from 30,285
loci, the ipyrad phylip file from 6,476 loci and the dDocent phylip file from 61,095 loci (from the
Final.recode.vct file which was filtered for a minimum coverage of 8). Samples of the Sebastes

chrysomelas spieces are coloured blue and samples of the Sebastes carnatus species are coloured red.
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3.7.3 fastStructure Results

The result of the fastStructure script chooseK.py are two estimations for the number of
populations: The model complexities K; and Kgc. The model complexity K7 is based on
the marginal likelihood of the data and Kg« is the number of relevant model components,
which is the minimum number of populations that have a cumulative ancestry contribution

of at least 99.99% [65].

In case of the simulated data sets, chooseK.py suggest for the most part 3 populations. The
simulated data sets comprise 3 populations, but two of those populations closer related to
each other than to the third population. The suggested number of populations beside 3 is 2,

in this case are the two closer related populations counted as only one population (Table

3.11).

For the most part did chooseK.py suggest 1 population for the empirical data sets. The
empirical data sets are comprised of 2 different species, which should lead to at least 2

different populations (Table 3.11).

As with the phylip file for the Seb-PE Stacks analysis, it was also only possible to create a
Structure file from only those loci which cover all 8 samples, because otherwise Stacks ran

out of memory.

Table 3.11: Results of the chooseK. py script. Ki and Kgc are suggestions for the number of populations.

Stacks | PyRAD | ipyrad | dDocent

Data set
K¥ | Kge | Kf | Kge | Kf | Kge | K | Kge
SE-RAD 3] 3] 2| 3| 3| 3| 3| 3
SE-ddRAD 2 3| 2 3| 3 3|1 3 2
PE-ddRAD 2 2| 3 3| 3 3| 2 3
PE-ddRAD_m untrimmed - -1 3 3| 3 3|1 3 3
PE-ddRAD_m trimmed 2 3| 3 3| 3 3| 3 3
Ber-SE 1 1 2 3 1 3 1 1
Seb-PE_m untrimmed - -1 1| 1 4| 1 1
Seb-PE_m trimmed 1 1| 1 3] 1 4| 1 1
Seb-PE 1 2] 1 1| 1 1| 1 1
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Distruct graphics were generated using the the fastStructure script distruct.py. For the
simulated analysis, the distruct graphics for 2 and 3 populations generated, because the
suggestions of the chooseK. py script were either 2 or 3 for the these data sets. All samples

were assign the correct population (Figures 3.11 and A.8 to A.10).

For the most part suggested fastStructure a single population for the empirical data sets,
although each data set consist of 2 different species. Because a distruct plot for only 1
population does not carry much information, the distruct plots for the 2 populations and
the other population numbers (besides 1) suggested by chooseK.py are presented instead.

The populations shown in the distruct plots for the empirical data sets do not show a

separation based on the sample species or location, where they were found (Figures 3.13,

A.11 and A.12).
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Figure 3.11: Distruct graphics for the SE-RAD data set. a (Stacks), ¢ (PyRAD), e (ipyrad) and g (dDocent) show
the distruct graphics for 2 populations. b (Stacks), d (PyRAD), f (ipyrad) and h (dDocent) show
the distruct graphics for 3 populations.
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Figure 3.12: Distruct graphics for the Ber-SE data set. The samples are labelled with the last two digits of their
Run number, an abbreviation for their species and an abbreviation for the location where they
were found. The species are abbreviated with alp for Berberis alpina and mor for Berberis moranensis.
The locations are abbreviated with A for Ajusco, CSA for Cerro San Andres, I for Iztaccihuatl and
LM for La Malinche. The shown distruct plots are from: Stacks with 2 population (a), PyYRAD
with 2 populations (b), PYRAD with 3 populations (c), ipyrad with 2 population (d), ipyrad with 3
populations (e) and dDocent with 2 populations (f).
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Figure 3.13: Distruct graphics for the Seb-PE data set. The samples are labelled with the last two digits of
their Run number and an abbreviation for their species. The species are abbreviated with S.car for
Sebastes carnatus and S.chry for Sebastes chrysomelas. Figures a (Stacks), b (PyRAD), ¢ (iyprad) and
d (dDocent) show the distruct graphics for two populations.
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In this thesis, pipelines to analyse RAD and ddRAD data were investigated and their results
compared. 4 simulated and 2 empirical data sets were analysed with Stacks [6], PyYRAD
[7], ipyrad [8], and dDocent [9]. A further pipeline rtd [1] had to be excluded from the
comparison because it was not possible to run the available rtd version. A migration of rtd
to OAuth 2.0 would have been necessary to run it. The Rainbow [10] pipline was not used
directly to analyse the data sets. However, since Rainbow is used by dDocent, it was used
indirectly for the analyses. The identified RAD loci as well as the run time and the memory

footprint of the pipelines were compared.

Stacks identified the highest number of overall loci and was generally relatively fast except
for one analysis. But it had the highest memory footprint and was the only pipeline which
exceeds the available 8 GB of memory on the test system. It is also the only pipeline which
creates a new locus for a sequence with InDels. The other pipelines try to assign sequences

where InDels are present to similar sequences where the InDels are not present.

PyRAD was for most of the analyses the slowest pipeline. But it recovered more loci than

ipyrad.

ipyrad is the successor of PYRAD and is much faster than PyRAD. But it did not identified
as many loci as PyRAD. ipyrad had a higher memory footprint for small data sets but a

much smaller for large data sets.

dDocent was overall the fastest pipeline and recovered more usable loci than the other
pipelines. But it is the only pipeline that does not come with build-in functions for generating
phylogenetic or population structure files. The memory footprint of dDocent was relatively

small.
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4.1 Installation

The Stacks pipeline can run independently and does not need any additional software.
Unlike the other pipelines, Stacks provides an optional web interface, which is used to
visualize data. The web interface depends on additional software and configurations to
work properly: Apache, MySQL, Perl, and PHP. After their installation, the web interface
has to be enabled in the Apache web server and access to the MySQL database has to be

ensured.

PyRAD needs two common Python packages (Numpy and Scipy) and two additional

programs (muscle and vsearch).

ipyrad also needs additional software, but ipyrad and all dependencies can be easily installed
with conda [78]. Conda is a package management and environment management system for
installing software packages and their dependencies. With conda ipyrad can be installed via

a single command.

For dDocent several dependencies are needed, which is not surprising since dDocent relies
heavily on third party software. dDocent comes with a script to install all required third

party software, which is simply executed in a Linux terminal.

rtd is build in python but also requires additional software. It was not possible to set up
or connect a database, because it uses ClientLogin API which is no longer supported by
Google. No workaround was found to overcome this problem. A migration of the pipeline

to OAuth 2.0 would be necessary.

The installation of all four pipelines is straightforward and well documented. However, if
Stacks is installed with the web interface, it needs more effort than PyRAD and especially
more effort than ipyrad and dDoncent because these two can be installed by using conda
or the provided installation script of dDocent. Although the activation of the Stacks web
interface is well described and therefore not that difficult, it requires some effort and is

probably not that easy for someone who is not familiar with Linux.

Updated /newer versions of the pipelines Stacks, ipyrad and dDocent are seem to be regularly

published. No newer versions of PyRAD will be available, because it was discontinued and
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replaced by ipyrad. All four pipelines can be run on a high performance cluster (HPC),
although the installation depends on the cluster and the administrator should be consulted.
Because all four pipelines are invoked via the command line interface, the pipelines can be

executed on a HPC via ssh.

4.2 Support

The pipelines are supported by user forums. Stacks, PYRAD and dDocent are supported
via Google Groups. ipyrad has its own forum on its homepage but ipyrad support can also
be found in the PyRAD Users Google Group. There is no support forum available for rtd

(Table 3.3). The forums offer enough support for most or all needs.

4.3 Pipeline execution

All four pipelines are invoked via the command line interface. The commands for PyRAD
and ipyrad do not vary much for the different analyses because all parameters are stored in
the parameter files for the respective analysis. The same applies for dDocent where most of
the parameters are stored a configuration file as well. Stacks is build modularly and allows
a separate execution of each module. The whole pipeline is invoked with the execution
control programs denovo_map or ref_map. All parameters are handed over to the execution
control program at the start. This makes the execution command of Stacks more complex
than the command of the other three pipelines. To make the command shorter and also save
the parameters of Stacks, a short script was implemented, which executed the denovo_map
program with the appropriate parameters. This has the advantage that the command can be

very simple and also that the parameters are saved.

PyRAD and ipyrad can take all sample data files of a format e.g. fastq.gz of a directory as
input, while in Stacks you either need to specify each sample file or provide a population
map and a sample directory. In the population map, each sample is categorised in a
group/population. If a population map and sample directory are provided than Stacks will

use only those samples of the sample directory, which are also in the population map. So

60



4 Discussion

either way each sample must be specified in Stacks, which might be annoying for data sets
with a huge number of individuals, but also ensures that the analysis is only performed for
the desired data. For dDocent the sample data files must be in the working directory and
must be in gzipped FASTQ file format. The gzipped FASTQ files must also follow a strict
naming convention which could be annoying for larger data sets, although dDocent comes

with a script which helps renaming the demultiplexed sample files.

The runtime of the pipelines varies a lot. For most of the performed analyses, dDocent
turned out to be much faster than any other pipeline. Stacks is faster than PyRAD and ipyrad
except for the Seb-PE analysis where Stacks needed over six days while the second slowest
pipeline PyRAD finished in under 10 hours. During the Stacks analysis of the Seb-PE data
set, the CPU was fully utilised, while for the most part enough RAM was free. Although
ipyrad is much faster than PyRAD it is still very slow compared to dDocent.

Stacks had the highest memory footprints and exceeds the available 8 GB of memory for
the Seb-PE analysis. The other pipelines had much smaller memory footprints. Especially

ipyrad and dDocent only required a relatively small amount of RAM for large data sets.

Performing the analyses on an ordinary laptop

PyRAD, ipyrad and dDocent were able to perform the analysis of the entire 40 samples
extended Seb-PE data set. This shows that RAD/ddRAD analyses can be performed for
large data sets on an ordinary desktop PC or laptop.

PyRAD has a much larger memory footprint for the extended Seb-PE data set than ipyrad
and dDocent. This indicates that ipyrad and dDocent are able to analyse more samples than
PyRAD (Tables tables 3.5 to 3.7). The maximum number of samples that can be analysed
by PyRAD, ipyrad and dDocent was estimated based on the results of the empirical data
sets. A linear approximation between the needed memory and the number of reads was
used for the estimation. More runs would be necessary to create a more accurate non linear
function and approximation for the memory prediction. According to this estimate, dDocent

can analyse larger data sets than PyRAD and ipyrad (Table 3.8).
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4.4 Pipeline Results Overlap

4.4.1 InDel handling

Variants sites are used to differentiate between individuals. The simplest form of a variant
site are SNPs. But insertions/deletions (InDels) are also variant site and can also be used for
differentiation between individuals. Because of that a proper identification and handling of
InDels is important to ensure that all variant sites can be used for further analyses such as

phylogenetic and structure analysis.

Stacks does not really handle InDels, it just creates a new locus for the sequence with the
InDel(s). PyRAD, ipyrad and dDocent instead can handle InDels and try to assign sequences
with an InDel to a locus of a similar sequence where the InDel is not present. But only
dDocent marks an InDel as an variant site of a sequence. PyRAD and ipyrad only mark
polymorphisms as variant sites. This means that loci with only InDels and no SNP will show
up in the usable loci of dDocent but not in the usable loci of PyYRAD and ipyrad. Although
PyRAD and ipyrad do not mark InDels as variant sites they do use them for the generation

of their output files like phylip files.

The different InDel handling of the pipelines also cause multiple BLASTN search hits.
Because Stacks creates a new for sequences with InDels and the other pipelines try to assign
sequences where InDels are present to similar sequences where the InDels are not present.
This has two important effects on the usable loci. If an InDel is near the end of the sequence,
Stacks may align the sequence with those sequences without the InDel, but all the following
mismatches than get incorrectly interpreted as SNPs. Another effect is, that some usable loci
may not be considered usable, because a new locus is created for only one individual, which
has an InDel but no SNPs in that locus. In this case, the locus is not marked as a usable
locus by Stacks, although the locus of the individuals without that InDel has SNPs either

within an individual or across individuals.
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4.4.2 Handling of PE-reads

PE reads may overlap at their ends if the RAD/ddRAD tags are shorter than twice the
sequencing length. Analysing overlapping forward and reverse reads individually may
introduce noise. Because of that it is beneficial, to merge or filter the overlapping reads.
PEAR filters PE data and merges overlapping forward and reverse reads. With the results
of PEAR 3 options are available to proceed the analysis. The first option is to only analyse
the non-merged reads, the second option is to only analyse the merged reads and the third
option is to combine the merged and non-merged data and analyse them. If the majority of
the data does not overlap it is usually not recommended to combine them with the merged
reads, because it may just introduce noise instead of signal. The same applies for a data set

where most of the reads overlap [15].

In case of the Seb-PE data set most of the reads do not overlap. We can see that the results of
the Seb-PE_m trimmed and Seb-PE_m untrimmed data sets are more noisy than the results

of the Seb-PE (unassembled) data set.

4.4.3 Structure analysis

The fastStructure script chooseK.py provides different values for the estimated number
of populations. The model complexity K; is based on the marginal likelihood of the data
and Kge is the number of relevant model components, which is the minimum number of
populations that have a cumulative ancestry contribution of at least 99.99% [65]. In general
is K7 robust in identifying strong structures, while Ky identifies model components of weak

structures.

4.4.4 Simulated data

For the most part, the results of all four pipelines do overlap for the simulated data sets.
Stacks seems to find more loci than PyRAD, ipyrad and dDocent, because Stacks does not

really handle InDels. It just creates a new locus for the sequence(s) with the InDel(s). The
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other pipelines handle InDels better, they try to assign sequences where a InDels are present

to similar sequences where the InDels are not present (Figures 3.5, 3.6, A.1 and A.2.).

If we take closer look at the comparison of the usable loci of the simulated data sets we
observe that Stacks and dDocent tend to have more loci than PyRAD and ipyrad. Stacks
has more loci because it creates a new locus for a sequence with InDels. dDocent has more
usable loci than PyRAD and ipyrad because it marks InDels as variant sites, but PyRAD and
ipyrad do not mark them. For the simulated data, the regular dDocent output could not be
used because dDocent performs a filtering step before the SNP calling. dDocent filters loci
which have a high coverage across the samples, because these tend to be multi copy loci
in real data sets [58]. An unfiltered vcf file therefore had to be generated for the simulated

data sets.

dDocent is the fastest pipeline and on average it is 15 times faster than PyRAD, which is
generally the slowest pipeline. PyRAD has the smallest memory footprint and is on average
6 times smaller than the memory footprint of Stacks. Stacks has except for the PE-ddRAD_m

trimmed data set the largest memory footprint.
Phylogeny:

The species trees of all four pipelines are very similar to the reference tree (Figure 3.7) after
which the simulated data was modelled. If branch lengths are not considered, the topology
of the trees is identical apart from the order of the samples, which is also shown by their
PHS85 distances of 0 to the reference tree (Figures 3.8 and A.3 to A.5 ). This is not surprising

given the fact that the loci overlap as much as they do.
Structure:

The chooseK. py script suggests 2 and 3 populations for the simulated data sets. The sim-
ulated data sets comprise 3 populations, but the suggested 2 population make also sense,
because the third population is the first one which separates from the other two popula-
tions (Figure 3.7). The distruct graphics show that the samples get correctly grouped into
populations (Figures 3.11 and A.8 to A.10).
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4.4.5 Empirical data

The loci for the empirical data do not overlap as much as the loci for the simulated data.
Stacks recorded overall more loci than PyRAD, ipyrad and dDocent. dDocent found nearly
as much loci as Stacks. Although Stacks had the highest number of overall loci the number
of usable loci is only the second largest and is much closer to the number of usable loci

recorded by PyRAD. ipyrad recorded the least amount of loci.

PyRAD only identifies/keeps loci which cover at least 2 individuals. Stacks on the other
hand identifies also loci which only occur in a single individual. In case of the empirical
data sets did Stacks identify many loci, which only cover a single individual. The taxon
coverage of Stacks and PyRAD for 2 - 8 taxa is very similar (Figures 3.4e and f). Most of
the Stacks loci, which cover only a single individual, do not contain a SNP and thereby do
not represent a usable locus. For example did Stacks recover 158,891 loci (Table 3.4) for the
Seb-PE data set, but 41,617 of these loci only cover a single individual. Only 1,457 of these
41,617 loci contain SNPs. This means that the majority of the loci, which cover only a single
individual, are not part of the usable loci set of Stacks. Therefore, the number of usable loci
recovered by Stacks is so close to the number of usable loci recovered by PyRAD, although

Stacks recovered a lot more loci overall than PyRAD.

dDocent does have the most usable loci sequences which can not be found in the results
of the other pipelines. InDels are marked as variant sites by dDocent and they are thereby
counting to the usable loci, but PyRAD and ipyrad do not mark InDels as variant sites. This
means that a sequence with InDels is not part of the usable loci of PyRAD and ipyrad unless
the sequence does also have a polymorphism site. Stacks does not detect InDels at all. The
amount of Stacks loci which can not be found in the dDocent loci is relatively low (Table
3.9). This suggests that the Stacks results are very close to the dDocent results. In the same
way we observe that the results of PyRAD and ipyrad are closer to each other than those
of Stacks. The number of loci that could not be found in ipyrad is relatively high for each
pipeline. This is probably due to the relatively small number of overall and usable loci that

ipyrad recorded for each analysis.

dDocent is significantly faster than the other pipelines except for the data set Seb-PE_m

trimmed where Stacks is the fastest. Stacks is the second fastest of these pipelines except for
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the Seb-PE, where it needed over six days for the analysis while the second longest time of
PyRAD was under 10 hours. PyYRAD and ipyrad are both significantly slower than dDocent
although ipyrad is much faster than PyRAD it is still far behind dDocent.

The memory footprint of each pipeline varies greatly for the empirical data sets. For the
most part Stacks has the highest memory footprint. It also exceeded the available memory
during the generation of the phylip and structure files of the Seb-PE data set. It was only
possible to generate these files from loci which cover all 8 samples. The other pipelines were
able to complete the entire Seb-PE analysis. The analyses of the extended Seb-PE 40 samples
data set could also be completed with PyRAD, ipyrad and dDocent.

Phylogeny:

The branch lengths of the trees represent the genetic distance between the samples. The
unit of the branch lengths is nucleotide substitutions per site, which is the number of
substitutions divided by the length of the sequence [76, 77]. The dDocent trees have the
longest branches. The reason for this is the used vcf_to_phylip.py script which only uses
SNPs and not the whole sequences of the loci to generate the sequences of the phylip file.
This leads to larger genetic distances because the ratio between number of substitutions and
length of the sequence is larger. Stacks, PyRAD and ipyrad use the whole sequences of the
loci to generate the phylip file. The Stacks trees have the shortest branches.

The species trees of the Seb-PE analysis are very similar to each other. The samples form
two sub trees one for the S. carnatus species and one for the S. chrysomelas species. But the
topology of the four trees has differences in their subtrees. The branch lengths of the Seb-PE
Stacks, PyRAD and ipyrad indicate that the samples only have a small genetic distance.
Some of the samples in the subtrees are not on the same position in the different Seb-PE
trees because of the small genetic distances and the variations of the results of the pipelines
(Figure 3.10). The PHS85 topological distance is smaller than those of the other empirical
data sets (Table 3.10).

The Ber-SE analysis trees do not look very similar which is also reflected by the PHS85
distances (Figure 3.9). Most of the trees have a PH85 distance of 10 which is the maximum
PHS85 distance for two trees with 8 tips. In that case the two trees differ in every bipartition.

The distance between the PyRAD and dDocent trees as well as the distance between the
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ipyrad and dDocent trees is with 8 not quit as high as the distances between the others

(Table 3.10).

The trees for the Seb-PE_m analysis have very different branch lengths. Except for the
PyRAD and the ipyrad tree which have branch lengths of the same order of magnitude.
Unfortunately none of these trees separates the two species S. carnatus and S. chrysomelas in
two subtrees. Although the ipyrad tree shows some grouping of the samples based on their
species. The other trees do not show a separation of the two species (Figure A.6 and A.7).
Most of the trees have a high PHS85 distance to each other, but the Stacks and PyRAD tree

are relatively close to each other (Table 3.10).
Structure:

None of the distruct plots for the Ber-SE data set show a separation of the two species B.
alpina and B. moranensis. The results of the structure analysis for the Stacks Structure file
only show one population no matter with which number of population the structure.py
script is executed. The distruct plots for the analysis of the other pipelines show different
populations, but those seem not to be based on the species or location, where they were

found (Figure 3.12).

The phylogenetic information available for the Ber-SE data set does not include all samples.

It does also not include all of the 8 samples used in this thesis (Dendrograms: Appendix S3

of [19]).

The chooseK. py script suggests only one population for the Seb-PE_m data set except for
ipyrad were it suggested four populations and PyRAD were it suggested three populations
for the trimmed data set. The distruct plots for ipyrad with four populations and PyRAD
with three populations do not show a separations based on the species or loaction of the
samples. If fastStructure is performed with 2 as number of populations the distruct graphic
of the Stacks and dDocent results still only show one population. The distruct plot for the
PyRAD and ipyrad Structure files show two population. But the samples are not separated

based on their species into two populations (Figure A.11 and A.12).

The distruct plots for the Seb-PE data set do not show a separation of the two species S.
carnatus and the S. chrysomelas. The distruct plot for Stacks only has one sample in the second

population and the distruct plot for ipyrad and dDocent have only one population. In the
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distruct plot of RyRAD are two populations with each four samples. But those populations

contain samples of the S. carnatus and the S. chrysomelas species (Figure 3.13).

In the original study of the Seb-PE data set was no phylogenetic analysis among the different
individuals performed [20]. The phylogenetic information of this study could have been
used as a reference, if a phylogenetic analysis among the different individuals had been
performed. The two species S. chrysomelas and S. carnatus are very close related. The Fgr-
value between these two species is 0.046, which is about an order of magnitude lower than
comparisons between other closely related Sebastes species [79]. The Fst [80] describes the
differences between populations and takes also the differences within the population into
account. fastStructure could not separate the species into two different populations. The two
species are very closely related, but they each form a subtree in the species trees of the Seb
PE dataset (Figure 3.10). The separation of the species in the species trees indicates that a
separation into two population should be possible. Further investigation would be needed

to clarify the reason why fastStructure could not determine the two populations.
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5 Conclusion

Each pipeline has different advantages and disadvantages:

Stacks had several problems with the Seb-PE data set. Besides the very long run time it was
only possible to run the populations script to generate the phylip file and the structure file
for loci which cover all 8 samples. Stacks performed well for the other data sets, but handles

InDels as loci on its own.

All pipelines except Stacks could complete the analysis of the entire 40 Sample Seb-PE data
set on a state of the art laptop hardware, whereas Stacks does require a high-end computer

server in that case.

PyRAD was the slowest pipeline for most of the data sets. But it recovered a relatively high
number of loci. PyRAD is easy to execute because of all parameters are saved in one file.

But PyRAD was discontinued and replaced by ipyrad.

ipyrad performed much faster than PyRAD but it did not recover as many loci as PyRAD.
ipyrad (like PyRAD) can be executed via a single command which also generates all the

desired output files without any further commands or software.

dDocent recovered more usable loci than any other pipelines and was also the fastest
pipeline (Table 3.7). There is also a very significant overlap between the results of dDocent
and the other pipelines (Table 3.9). One drawback of dDocent is that additional software
and scripts were needed to create input files for the phylogenetic and structure analysis

while the other pipelines had built-in functions for generating these files (Table 3.2).

Indels are handled differently by each pipeline. In that respect, dDocent seems to come

closest in providing the expected results.
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5 Conclusion

If an ordinary desktop PC or laptop is used dDocent would be the best choice. The memory
footprint of dDocent is relatively small and it also was the fastest pipeline. But additional
software is needed to generate desired output files. Because of this more effort is needed for

the set-up of the whole system.
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Appendix A

A.1 Pipeline Parameters

Table A.1: Summary of the Stacks denovo_map parameter.

Parameter Description

-N Maximum distance between aligned secondary reads and primary
stacks.

-T Number of threads to execute.

-B The database, in which the data is loaded.

-t Remove highly repetitive RAD-Tags.

-b Batch id.

-D Description of the batch.

-0 Path to the output directory.

-O Path to the population map.

——samples Path to the directory of the samples. Only samples of the population
map are used.
Table A.2: Summary of the Stacks process_radtags parameter.

Parameter Description

-P The files in the input directory (specified with -p) are paired.

-p Path to the directory of the raw data.

-0 Path to the output directory.

-b Path to the barcode file.

-E Encoding of the quality score (eg. phreds3s).
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Rescue barcodes. In case of an error barcodes and the RAD-Tag are
rescued if the barcode has a distance of less than 2 (2 is the default

value, but it can be changed) to a barcode in the barcode file.

-C Clean the data.
-q Discard low quality reads.
-i The type of the input files.
-renz_1 The used restriction enzyme.
-renz_2 In case of double digestion the second used restriction enzyme.
Table A.3: Summary of the PyRAD parameter.
Number | Name Description Default value
1 working direc- | Path to the working directory. By default “./” | ./
tory which is the current directory.
2 Raw sequence | Path to the directory with the raw sequence | ./*.fastq.gz
data data in it. In case of paired end the pairs
should only differ in “R1” and “R2".
3 Barcodes Location of the barcodes. ./*.barcodes
4 Vsearch / | The command to execute vsearch or usearch. | vsearch
Usearch
Muscle The command to execute muscle. muscle
Restriction cut- | Overhang(s) of the Restriction enzyme cut- | TGCAG
site overhang | site(s). In case of ddRAD both overhangs are
seperated by a comma and the first one is
from the common cutter and the second from
the rare cutter.
7 Processors The number of jobs that will run parallel. For | 2

the non-clustering steps this equals the num-
ber of used processing cores. For the cluster-
ing steps (3 and 6) the number of threads per

job can be set with parameter 37.
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8 Minimum The minimum coverage for a cluster. 6

depth

9 Maximum N | The maximum number of low quality sites | 4
(which are represented by a N) in a sequence.

10 Clustering The clustering threshold used by vsearch for | .88

threshold the sequence clustering. Entered as a deci-
mal, which is calculated by (raw read length
- barcode length - allowed distance between
reads)/(raw read length - barcode length).

11 Datatype Six different options which describe the data | rad
set type. Options: rad, ddrad, gbs, pairddrad,
pairgbs.

12 Minimum Minimum number of samples represented in | 4

taxon cover- | a found locus.
age

13 Maximum The maximaum number of shared polymor- | 3

shared poly- | phic sites in a locus. This is used to detect
morphic sites | potential paralog.

14 Output Prefix | Prefixfor the names of the output files. c88d6m4p3

Only a few of the optional parameters were used
18 Path to demul- | If your data is already cleaned and demulti-
tiplexed data | plex, you can enter the path to the data here
and skip step 1.
21 Strictness  of | The strictness of the filtering in the quality fil- | o
the filter tering step. 0...Only filters by using the qual-
ity score of the bases. 1...Trims of cut sites
and Illumina adapter. 2...Allows some errors
in the cut sites and adapter
24 Maximum of | The maximaum number of heterozygous sites | 5

heterozygous

sites

in a consensus sequence.
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30 Output  for- | The wildcard character * can be used to gen-
mats erate all output formats.
32 Minimum The minimum length a read will be trimmed
length of | to.
trimmed reads
Table A.4: Summary of the ipyrad parameter.
Number | Name Description Default value
0 Assembly Name of the project. Used to name the output | —
name directories.
1 Project direc- | Path to the working directory. By default “./” | ./
tory which is the current directory.
2 Raw sequence | Path to the directory with the raw sequence
data data in it. In case of paired end the pairs
should only differ in “R1” and “R2".
3 Barcodes Location of the barcodes.
4 Path to demul- | If your data is already cleaned and demulti-
tiplexed data | plex, you can enter the path to the data here
and skip step 1.
5 Assembly The assembly method that should be | denovo
method used. (denovo, reference, denovo+reference,
denovo-reference)
6 Reference se- | The reference sequence if a assembly method
quence with reference sequence is selected.
7 Datatype The datatype of the reads. (rad, gbs, ddrad, | rad
etc.)
8 Restriction cut- | Overhang(s) of the Restriction enzyme cut- | TGCAG,

site overhang

site(s). In case of ddRAD both overhangs are
seperated by a comma and the first one is
from the common cutter and the second from

the rare cutter.
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9 Maximum N | The maximum number of low quality sites | 5
(which are represented by a N) in a sequence.
10 Phred Q score | Offset of the phred q score 33
offset
11 Min depth sta- | Minimum depth for the statistical base calling | 6
tistical
12 Min depth ma- | Minimum depth for the majority-rule base | 6
jrule calling
13 Max depth Maximum cluter depth within samples 10000
14 Clustering The clustering threshold used by vsearch for | .85
threshold the sequence clustering. Entered as a deci-
mal, which is calculated by (raw read length
- barcode length - allowed distance between
reads)/(raw read length - barcode length).
15 Max Barcode | Maximum number of allowed barcode mis- | o
mismatch matches.
16 Filter adapters | Filter for adapters or primers (o=no filter- | o
ing,1=filtering or 2=stricter filtering)
17 Filter min trim | Minimum length a read must have after the | 35
length adapter trimming.
18 Max  alleles | Maximum number of of alleles per site in a | 2
consensus consensus sequence.
19 Max Ns con-| Maximum number of N’s (uncalled bases) in | 5, 5
sensus a consensus sequence. (R1, R2)
20 Max Hs con- | Maximum number of H's (heterozygotes) in | 8, 8
sensus a consensus sequence. (R1, R2)
21 Min samples | Minimum number of samples represented in | 4
locus a found locus.
22 Max SNPs lo- | Maximum number of SNP’s per locus. (R1, | 20, 20
cus R2)
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23 Max indels lo- | Maximum number of indels per locus. (R1, | 8, 8
cus R2)
24 Max shared | The maximaum number of heterozygous sites | 0.5
Hs locus per locus.
25 Edit cutsites Edit cut-sites (R1, R2) 0,0
26 Trim overhang | Trim overhang (R1>, <R1, R2>, <R2) 0,0,0,0
27 Output  for- | The wildcard character * can be used to gen- | L, p, s, v
mats erate all output formats.
28 Pop assign file | Path to a populations assignment file.

A.1.1 Example dDocent config file

Number of Processors

4

Maximum Memory

0

Trimming

no

Assembly?

yes

Type_of_Assembly

SE
Clustering_Similarity%
0.85

Mapping_Reads?

yes
Mapping_Match_Value

1
Mapping_MisMatch_Value
3
Mapping_GapOpen_Penalty
5
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Calling_SNPs?
yes
Email

emilian. jungwirth@student.tugraz.at

Modified vcf to phylip script

Listing A.1: Modified parse_vct function of the vef_to_phylip script. Throw this modifications an inclusion
of variant sites which are longer than just one nucleotide and also variant sites which contain a

single indel is achieved.

def parse_vcf(vcf_file):

with open(vcf_file, ) as INFILE:
for line in INFILE:
if line.startswith( ):
continue
if line.startswith( ):
header_line = line.lstrip( ).strip( ) .split( )
print header_line

break

samples = sorted(header_line[9:])

### freebayes wvcf line:
# E3379_L96 43 . ATCG ATTG,ATCA,GTCA,GTCG 4179.3 . AB=BLABLA 0/0:1:

### STACKS wcf line:
# #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT sample_203-ampullaria-Brunei-3
# wun 2312 25 G A . PASS NS=17;AF=0.529,0.471 GT:DP:GL 1/1:32:.,.,.

samples_vcf_idx = {}

for sample in samples:
print sample
vcf_idx = header_line.index(sample)
samples_vcf_idx [sample] = vcf_idx

# print popdict_wvcf_tdzx
# now start the main business of walking through the wcf:
out_columns = []

with open(vcf_file, ) as INFILE:

linecnt = 0

snpcnt = 0
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for line in INFILE:

linecnt += 1

#print linecnt, snpcnt

if line.startswith( )
continue

if len(line) < 2: # empty lines or so
continue

fields = line.strip( ) .split( )

#begin modification

column = []
variants = [fields[3]] + fields[4].split( )
max_length_of_variants,longest_variant = max([(len(x),x) for x in variants])
min_length_of_variants = min([(len(x)) for x in variants])
if max_length_of_variants > min_length_of_variants + 1:

#skip multi nucleodide deletions

continue

for sample in samples:

idxes = [int(x) for x in fields[samples_vcf_idx[sample]].split( ) [0].split( )

not x == ]

if len(idxes) > O:

alleles = [variants[x] for x in idxes ]
sequence =
shift=0
if len(alleles[0]) != len(alleles[1]):
column = [""] * len(samples)
break

for i in range(max_length_of_variants):

if i < len(alleles[0]):

nucleotideO = alleles[0][i-shift]
else:

nucleotideO =
if i < len(alleles[1]):

nucleotidel = alleles[1][i-shift]
else:

nucleotidel =

nucleotide_longest = longest_variant[i]

if len(alleles[0]) < max_length_of_variants:

if nucleotideO !'= nucleotide_longest and nucleotidel != nucleotide_longest:

nucleotideO

nucleotidel

shift += 1
nucleotides = [nucleotideO,nucleotidel]

sequence += get_IUPAC_amb_code ( .join(sorted (nucleotides)) )

if shift > 1
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82 #something went worng skip: possible indel+ ploymorphism miz
83 column = [""] * len(samples)

84 break

85 column.append( sequence )

86 else:

87 string_val = * max_length_of_variants

88 column.append(string_val)

89 snpcnt += len(column[0])

90 out_columns.append (column)

91 | #end modification

92 # columns to rows/lines:

93 outlines = []

94

95 ntaxa = len(samples)

96 len_align = snpcnt

97 header = str(ntaxa) + + str(len_align)

98 outlines.append (header)

99

100 for idx, sample in enumerate (samples):

101 seq = .join( [ x[idx] for x in out_columns ] )
102 out_line = sample + + seq

103 outlines.append (out_line)

104

105 with open(vcf_file + s ) as OUTFILE:
106 OUTFILE.write( .join(outlines))
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A.2 Venn-Diagrams
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Figure A.1: Venn diagrams: Overlap of the usable consensus sequences in percentages for the rest of the
simulated data set. The presented simulated data sets are: SE ddRAD Tutorial v.3.0.4 (a), PE

ddRAD Tutorial v.3.0.4 (b) and PE ddRAD w/ merged reads Tutorial v.3.0.4 with trimmed (c) and
untrimmed (d) reads.
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(a)

ipyrad (2646) dDocent (6153) (b)
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Figure A.2: Venn diagrams for the rest of the empirical data sets. The presented empirical data sets are:

SRPo035472 (Ber-SE) (a), SRP068035 assembled trimmed (Seb-PE_m trimmed) (b) and SRP068035

assembled untrimmed (Seb-PE_m trimmed) (c).
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A.3 Phylogenetic Trees
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Figure A.3: Species trees of the SE ddRAD Tutorial v.3.0.4 analysis created with the phylip files of the Stacks
(a), PyRAD (b), ipyrad (c) and dDocent (d). The Stacks phylip file was created from 1,019 loci and
each phylip file of PyRAD, ipyrad and dDocent was from 1,000 loci.
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(b)
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Species trees of the PE ddRAD Tutorial v.3.0.4 analysis created with the phylip files of the Stacks

(a), PyRAD (b), ipyrad (c) and dDocent (d). The Stacks phylip file was created from 2,142 loci, the

PyRAD phylip file from 2,002 loci, the ipyrad phylip file from 2000 loci and the dDocent phylip

file also from 2000 lodi.
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Figure A.5: Species trees of the PE ddRAD w/ merged reads Tutorial v.3.0.4 analysis created with the phylip
files of the Stacks (a), PYRAD (b), ipyrad (c) and dDocent (d). The Stacks phylip file was created
from 348 loci, the PyRAD phylip file from 340 loci, the ipyrad phylip file from 340 loci and the
dDocent phylip file from 341 loci.
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Figure A.6: Species trees of the Seb-PE_m trimmed analysis created with the phylip files of the Stacks (a),

PyRAD (b), ipyrad (c) and dDocent (d). The Stacks phylip file was created from 893 loci, the

PyRAD phylip file from 456 loci, the ipyrad phylip file from 284 loci and the dDocent phylip file

from 363 loci (form the Final.recode.vct file). Samples of the Sebastes chrysomelas spieces are

coloured blue and samples of the Sebastes carnatus species are coloured red.
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Figure A.7: Species trees of the Seb-PE_m untrimmed analysis created with the phylip files of the PyYRAD
(a), ipyrad (b) and dDocent (c). The PyRAD phylip file from 384 loci, the ipyrad phylip file from
240 loci and the dDocent phylip file from 317 loci (form the Final.recode.vcf file). Samples of
the Sebastes chrysomelas spieces are coloured blue and samples of the Sebastes carnatus species are

coloured red.
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A.4 Distruct Graphics
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Figure A.8: Distruct graphics for the SE ddRAD Tutorial v.3.0.4 data set. In the figures a (Stacks), ¢ (PyRAD), e
(ipyrad) and g (dDocent) the distruct graphics for two populations are shown and in the figures b
(Stacks), d (PyRAD), f (ipyrad) and h (dDocent) the distruct graphics for three populations are

shown.
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Figure A.g: Distruct graphics for the PE ddRAD Tutorial v.3.0.4 data set. In the figures a (Stacks), ¢ (PyRAD), e
(ipyrad) and g (dDocent) the distruct graphics for two populations are shown and in the figures b
(Stacks), d (PyRAD), f (ipyrad) and h (dDocent) the distruct graphics for three populations are

shown.
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Figure A.10: Distruct graphics for the PE ddRAD w/ merged reads Tutorial v.3.0.4 data set. In the figures a
(Stacks), c (PyRAD), e (ipyrad) and g (dDocent) the distruct graphics for two populations are
shown and in the figures b (Stacks), d (PyRAD), f (ipyrad) and h (dDocent) the distruct graphics

for three populations are shown.
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Figure A.11: Distruct graphics for the Seb-PE_m trimmed data set. The samples are labelled with the last two
digits of their Run number and an abbreviation for their species. The species are abbreviated
with S.car for Sebastes carnatus and S.chry for Sebastes chrysomelas. The shown distruct plots are
from: Stacks with 2 population (a), PYRAD with 2 populations (b), PYRAD with 3 populations (c),
ipyrad with 2 populations (d), ipyrad with 4 populations (e) and dDocent with 2 populations (f).
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Figure A.12: Distruct graphics for the Seb-PE_m untrimmed data set. The samples are labelled with the last

two digits of their Run number and an abbreviation for their species. The species are abbreviated
with S.car for Sebastes carnatus and S.chry for Sebastes chrysomelas. The shown distruct plots are
from: PyRAD with 2 populations (a), ipyrad with 2 populations (b), ipyrad with 4 populations (c)
and dDocent with 2 populations (d).
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A.5 Structure-File

In a Structure file the data set is arranged in a matrix. The individual samples are in rows
and the loci are in columns. The alleles of a diploid organism can either be stored in two
consecutive rows, where each locus is in one column, or in one row, where each locus

consists of two consecutive columns [83].

The following example for a Structure file is taken from [83]. It shows sample data for 7

individuals with 5 loci.

loc_a loc_b loc_c loc_d loc_e
George 1 -9 145 66 0 92
George 1 -9 -9 64 0 94
Paula 1 106 142 68 1 92
Paula 1 106 148 64 0 94
Matthew 2 110 145 -9 0 92
Matthew 2 110 148 66 1 -9
Bob 2 108 142 64 1 94
Bob 2 -9 142 -9 0 94
Anja 1 112 142 -9 1 -9
Anja 1 114 142 66 1 94
Peter 1 -9 145 66 0 -9
Peter 1 110 145 -9 1 -9
Carsten 2 108 145 62 0 -9
Carsten 2 110 145 64 1 92
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A.6 Phylip-File
The following two examples are taken from [82]. There are two phylip formats, the inter-
leaved format and the sequential format.

The interleaved format has multiple parts and each part has one line for each sequence.

N

5 42
Turkey AAGCTNGGGC ATTTCAGGGT
Salmo gairAAGCCTTGGC AGTGCAGGGT
H. SapiensACCGGTTGGC CGTTCAGGGT
Chimp AAACCCTTGC CGTTACGCTT

Gorilla AAACCCTTGC CGGTACGCTT

O 0NN N U~ W

10

11

12

GAGCCCGGGC
GAGCCGTGGC
ACAGGTTGGC
AAACCGAGGC
AAACCATTGC

AATACAGGGT
CGGGCACGGT
CGTTCAGGGT
CGGGACACTC
CGGTACGCTT

AT
AT
AA
AT
AA

The sequential format has one whole sequence before the next starts.

N

O 0NN o U A~ W

5 42
Turkey AAGCTNGGGC ATTTCAGGGT
GAGCCCGGGC AATACAGGGT AT
Salmo gairAAGCCTTGGC AGTGCAGGGT
GAGCCGTGGC CGGGCACGGT AT
H. SapiensACCGGTTGGC CGTTCAGGGT
ACAGGTTGGC CGTTCAGGGT AA
Chimp AAACCCTTGC CGTTACGCTT
AAACCGAGGC CGGGACACTC AT
Gorilla AAACCCTTGC CGGTACGCTT

AAACCATTGC CGGTACGCTT AA
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