
Seema Jehan

Model-Based Testing and Debugging of
SOA Business Processes

Dissertation

Graz University of Technology

Institute for Software technology

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Franz Wotawa
Evaluator: Prof. Dr. Inmaculada Medina-Bulo

Graz, April 2017

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

01/08/2017

01/08/2017

Abstract

Testing of SOA-based processes still face issues of limited controllability and
observability. There are number of solutions suggested to tackle this problem.
However, most of these approaches suffer from high test case generation and
execution costs. The target here is to come up with a cost-effective functional
testing approach for SOA workflows. In this respect two model-based test
case generation algorithms for sequential and concurrent BPEL processes
have been proposed. These algorithms are based on constraint representation
of BPEL control flow graph, where one is structure-based and other follows
random test case generation approach. Moreover, this thesis also analyzes
three test suite reduction algorithms. The aim here is to reduce regression
testing cost, which keeps on increasing as business processes evolve. In
the end, we present a light-weight model-based debugging approach for
locating functional faults in SOA business processes.

v

Abstract (German)

Das Testen von SOA-basierten Prozessen steht nach wie vor mit Fragen
der eingeschränkten Steuerbarkeit und Beobachtbarkeit. Es gibt eine Reihe
von Lösungen, die vorgeschlagen werden, um dieses Problem anzuge-
hen. Die meisten dieser Ansätze leiden jedoch unter hohen Testfall- und
Ausführungskosten. Ziel ist es, mit einem kostengünstigen Funktionstest-
Ansatz für SOA-Workflows zu kommen. In dieser Hinsicht wurden zwei
modellbasierte Testfall-Erzeugungsalgorithmen für sequentielle und gle-
ichzeitige BPEL-Prozesse vorgeschlagen. Diese Algorithmen basieren auf
der Einschränkungsdarstellung des BPEL-Kontrollflussgraphen, wobei eine
strukturbasierte und andere der zufälligen Testfallgenerierungsansatz folgt.
Darüber hinaus analysiert diese Arbeit auch drei Test-Suite Reduktionsalgo-
rithmen. Ziel ist es, die Regressions-Testkosten zu senken, die sich weiter
steigern, wenn sich die Geschäftsprozesse entwickeln. Am Ende präsentieren
wir einen leichten modellbasierten Debugging-Ansatz zur Lokalisierung
von Funktionsstörungen in SOA-Geschäftsprozessen.

vii

Acknowledgements

First and foremost, I am deeply indebted to ALLAH (the exceedingly
merciful) for all blessings in my life. My entire family also deserves my
sincere gratitude for their love, support and encouragement.

I am extremely grateful to my advisor, Franz Wotawa, for his perpetual
support through out Ph.D. studies. His motivation and guidance helped
me through many difficult times in my research and writing of this thesis.
Besides my advisor, I would like to thank the members of my defense com-
mittee, Prof. Inmaculada Medina-Bulo and Prof. Denis Helic, for reviewing
my thesis and to supervise the exam.

Further thanks go to Ingo Pill and Birgit Hofer for their professional con-
sultation. I also wish to thank my colleagues Iulia Nica and Josip Bozic for
their friendly advice. I must thank Petra Pichler for always being welcoming
and courteous.

I would also like to thank Austrian Science Fund (FWF) for funding part
of the project Augmented Diagnosis and Testing for SOAs (Audit 4 SOAs)
under grant P23313-N23.

ix

Contents

Abstract (German) vii

Abstract v

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Thesis Statement . 4

1.4 Contributions . 4

1.5 Organization . 5

2 Service-Oriented Architectures 7
2.1 Introduction . 7

2.2 A brief history of SOAs . 8

2.2.1 Early SOA . 9

2.2.2 Second generation of SOA 10

2.2.3 Contemporary SOA . 11

2.3 SOA basics . 11

2.3.1 First generation Web services technology 12

2.3.2 Second generation Web services technology 19

2.4 SOA challenges . 29

3 Preliminaries and Related Work 31
3.1 Testing Preliminaries . 32

xi

Contents

3.2 Testing trends of SOA Applications 36

3.2.1 Symbolic Execution Approach 37

3.2.2 Model Checking Approach 39

3.2.3 Petri Net Approach . 40

3.2.4 Graph-based Approach 40

3.2.5 Contract-based Approach 42

3.2.6 Search-based Approach 42

3.3 Debugging Definitions . 44

3.4 Diagnosis of SOA Applications 46

3.5 Conclusions . 48

4 Model-based SOA Testing 49
4.1 Introduction . 49

4.2 Architecture . 51

4.3 Definitions . 53

4.4 Test Case Generation using constraints 57

4.4.1 Sequence Structure . 58

4.4.2 Flow Structure . 69

4.5 Experimental Setup . 76

4.6 First Results . 78

4.7 Random Testing of Sequential programs 80

4.7.1 Introduction . 82

4.7.2 Experimental Results . 85

4.7.3 Conclusions . 90

4.8 Random Testing of Concurrent programs 90

4.8.1 Introduction . 90

4.8.2 Empirical Evaluation . 92

4.8.3 Discussion . 97

4.9 Conclusions . 98

5 Test Suite Reduction 101
5.1 Introduction . 101

5.2 Related research . 102

5.3 Preliminaries . 105

5.4 Redundancy elimination . 107

5.4.1 LinMIN Algorithm . 107

5.4.2 BinarySearch Algorithm 109

xii

Contents

5.4.3 Delta-Debugging Algorithm 110

5.5 Empirical Evaluation . 110

5.6 Conclusions . 116

6 Model-Based SOA Debugging 121
6.1 Introduction . 121

6.2 Definitions . 123

6.3 The Debugging Approach . 126

6.4 Experiments . 133

6.5 Conclusions . 138

7 Conclusions 141
7.1 Results summary . 141

7.2 Open Questions and Future Work 144

List of Definitions 145

List of Theorems and Lemmas 147

Bibliography 149

xiii

List of Tables

4.1 Examples Details . 79

4.2 Empirical results obtained . 81

4.3 Experimental results for the AllPath TCG algorithm. 87

4.4 Experimental results for the random TCG algorithm. 89

4.5 Experimental results for the StructRuns TCG algorithm. . . 94

4.6 Experimental results for the RandomRuns TCG algorithm
with len = 40. 95

4.7 Infeasible paths for the RandomRuns TCG algorithm. 97

5.1 Experimental results for Redundancy Reduction algorithm. . 113

6.1 Single Faults Diagnoses. 136

6.2 Results for programs with single and double faults. 140

xv

List of Figures

2.1 Twitter Service . 8

2.2 An early SOA Model . 10

2.3 Contemporary SOA Model taken from [Leitner et al., 2013] . 12

2.4 Web Service roles . 14

2.5 A short example of an XML Schema. 16

2.6 A SOAP message. 17

2.7 WSDL components taken from [WSDL, 2001]. 18

2.8 An Executable BPEL process 22

2.9 BPEL process definition . 24

2.10 Receive Activity . 25

2.11 Reply Activity . 26

2.12 InvokeActivity . 27

2.13 AssignActivity . 28

2.14 IfActivity . 28

2.15 WhileActivity . 28

4.1 The BPEL Example . 50

4.2 The BPELTesterFigure . 52

4.3 A Sequence activity . 58

xvii

LIST OF FIGURES

4.4 TCG algorithm that considers all paths. 59

4.5 AllPathsSUB algorithm for computing all paths for a Flow
Graph G up to a given pre-defined length MaxLen. 60

4.6 Path 1: c(π) for low-risk and low amount loan requests. . . . 64

4.7 Path 2: c(π) for high-risk and low amount loan requests. . . . 64

4.8 Path 3: c(π) for high amount loan requests. 64

4.9 MINION constraints for Path 1. 65

4.10 MINION constraints for Path 2. 65

4.11 MINION constraints for Path 3. 65

4.12 Technical view of the Bank Loan Business Process. 66

4.13 Flow activity . 69

4.14 Flow Example . 70

4.15 Our structural TCG algorithm StructRuns 73

4.16 Run 1: c(π) for the first guard to be active. 74

4.17 Run 2: c(π) for the second guard to be active. 74

4.18 MINION constraints for Run 1. 75

4.19 MINION constraints for Run 2. 75

4.20 Flow Example Test Case . 79

4.21 Coverage vs. path length for the ATM example. 81

4.22 TCG algorithm based on random paths. 84

4.23 AllPaths TCG alg: activity coverage and mutation score vs.
path length . 88

4.24 TCG algorithm RandomRuns based on random paths. 92

4.25 RandomRuns: Mutation score as function of the number of
test cases for BMI . 97

xviii

LIST OF FIGURES

5.1 The minimum, maximum, and average mutation score for the
CALC2 example with varying subset size 108

5.2 The probability for a subset of the original test suite of CALC2
to have a mutation score larger than 85.0 108

5.3 LINMIN - A linear search procedure for test suite minimization111

5.4 BinSearch – A Binary search procedure for test suite mini-
mization . 112

5.5 DELTAMIN – Using delta debugging for test suite minimization112

5.6 The test suite reduction for the CALC2 example with varying
alpha . 114

5.7 The minimum, maximum, and average mutation score for the
CALC2 example with solSize=3 and varying subset size 117

5.8 The probability for a subset of the original test suite of CALC2
with solSize=3 to have a mutation score larger than 85.0 . . . 117

5.9 AllRandomPaths – Using random subsets for test suite gener-
ation . 118

5.10 The minimum, maximum, and average mutation score for the
CALC2 example with solSize=5 and varying subset size 119

5.11 The probability for a subset of the original test suite of CALC2
with solSize=5 to have a mutation score larger than 85.0 . . . 119

5.12 The test suite reduction for the CALC2 example for multiple
tests per feasible path . 120

6.1 BPEL Flow Graph of the Triangle Example Process 122

6.2 Annotated Flow Graph Representation 128

6.3 A graphical presentation of the running example’s single-fault
diagnoses. 132

6.4 BPEL Flow Graph of the Bank Loan Business Process 134

xix

LIST OF FIGURES

6.5 Comparison of the trace size and diagnoses size for faulty
programs. 137

xx

1 Introduction

1.1 Motivation

Service-oriented Architectures (SOAs) have changed today’s computing in
an evolutionary manner. The popularity of the SOA paradigm is noteworthy
by the exponential growth of social networking companies like Twitter,
Facebook and Amazon cloud web services [Cloud, 2013]. According to a
study from [Corporation(IDC), 2015], the world wide Big Data technology
and services market growth is expected to reach $48.6 billion in year 2019.
The peculiar features of SOA-based systems such as ultra-late binding,
Quality of Service (QoS) aware composition, runtime discovery of services,
and service level agreement (SLA) automated negotiations are considered
the driving force for this emerging paradigm [Canfora and Penta, 2009a].
The wide acceptance of the service-oriented paradigm also depends on the
fact that the traditional concept of software ownership is rapidly shifting to
software provision, where a software is charged as a service rather than as a
product. This shift provides on one hand greater flexibility in software use;
but also raises many challenges for assuring reliability of software charged
as a service.

The predominant way of assuring reliability of service-based software has
been monitoring these services and applying repair actions on runtime
[Console et al., 2007], [Friedrich et al., 2010b]. Although monitoring helps
in building self-healing and self-repairing systems, it is unable to give
confidence that a system would work before its deployment. Besides that, it
also requires to maintain recovery actions for all possible exceptional events,
which is realistically not possible [Canfora and Penta, 2009a]. This calls for
cost-effective testing strategies for not only minimizing exceptional events

1

1 Introduction

set; but also maintaining the same quality assurance level. There are well-
established testing strategies developed for web-based systems, distributed
systems, and component-based systems [Myers, 1979]. Unfortunately, these
traditional testing techniques are not able to cope with the dynamic and
intrinsic nature of SOA-based systems [Canfora and Penta, 2006].

There are many challenges associated with testing applications built on
SOA principles: First, the services business logic is hidden, making it
a “black-box” for the tester; and due to this limited observability, gen-
erating models from service descriptions is cumbersome and inefficient
[Canfora and Penta, 2009a]. Second predominant issue is the limited con-
trol over the service; services change independently from each other, making
integration testing harder and laborious. Third, the cost of testing SOA-
based systems is much higher than the traditional software systems because
services are charged on per-use basis. In addition to that, exhaustive testing
might lead to denial-of-service system behavior [Canfora and Penta, 2009a].
As a result testing is ignored all together in many situations, making such
applications more vulnerable to cyber attacks [Lowis and Accorsi, 2011].
This requires us to adapt current testing methodologies in order to suit the
need of SOA-based systems.

Although this problem has been investigated before, but a vast majority
of presented testing approaches failed to provide an experimental evalu-
ation [Bozkurt et al., 2013]. According to [Canfora and Penta, 2009a], high
cost involved in testing is a prime reason, why runtime-verification has
become a norm in SOA-based applications. This thesis presents a cost effi-
cient model-based functional testing of SOA applications with a focus on
an empirical evaluation.

Once a fault, either functional or non-functional, is observed in the test-
ing phase, the fault-localization and repair of SOA-based environments
has also been an active research area in academia. The complete sce-
nario for diagnosing SOA environments involves many stages: diagnosing
faults, repairing faults and recovery stage [Friedrich et al., 2010a]. How-
ever, the cost of generating diagnostic models is quite high [Nica, 2010].
It becomes even more challenging when it comes to the service-oriented
architectures as discussed by Friedrich et al. in [Mayer et al., 2012]. The
most recent work on that was conducted under a european project called

2

1.2 Problem Statement

WS-DIAMOND [Diamond, 2010]. The main focus of the project was to
build a platform for monitoring, diagnosis and self-healing of web services
[Modafferi et al., 2006]. In contrast to their work, our diagnosis approach
combines trace analysis with constraint solving for fault localization in order
to improve overall diagnosis performance.

The work can be of interest to different stakeholders involved in SOA
such as developer, who can use models to generate unit tests with limited
cost; service provider, who can generate tests from service specifications;
integrator, who can use the approach to reduce the high testing cost.

The work presented in this thesis is a part of the project called Augmented
Diagnosis and Testing of SOAs (Audit4SOAs) funded by the Austrian
Science Fund (FWF). It was a collaboration project between Institute of
Software Technology TU Graz and Distributed Systems Group at Vienna
University of Technology. The target of the project was to provide model-
based techniques for testing and debugging of service-oriented architectures.
The objective of the thesis was to develop a testing and diagnosis strategy
of SOA processes defined in Business process execution language (BPEL).

1.2 Problem Statement

The first problem area examined in this thesis is about observability and
controllability for SOA business processes. These are serious issues, because
SOA applications need to ensure a certain level of ”Trust”, and testing
is one way of resolving this issue [Bozkurt et al., 2013]. The focus was on
the development of an automated model-based testing solution for BPEL
compositions with an emphasis on a strong empirical analysis. How can
partial behavior of SOA business processes be addressed in the test suite
generation process?

The second issue explored in this work is about optimizing the automated
test suite generation. Since the prevalent SOA tools need high execution
times due to the complex and distributive nature of business compositions,
it is important to generate efficient test suites before hand. The goal is to

3

1 Introduction

reduce the generated test suite size, while maintaining the same quality
criterion. How can test suites be optimized?

The third issue studied is related to model-based debugging of BPEL com-
positions. Basically, the purpose of any testing activity is to find faults in
a given system, once this is done, the diagnosis step takes over, and is
responsible for figuring out possible reasons behind the observed fault. We
had two targets in the context of debugging service compositions: first, the
problem of debugging partial behavioral models is studied; second, a light-
weight model-based debugging approach for diagnosing BPEL functional
faults is presented. How can partial behavioral models be diagnosed in a
cost-effective way?

1.3 Thesis Statement

The applicability of functional testing and debugging of service composi-
tions can be increased using constraint-based approach, with the help of an
optimized test suite generation and diagnostic methods.

1.4 Contributions

The contribution has been three-folds. First, we studied the problem of
extracting models from the partial service behavior of BPEL compositions,
with a focus on a strong empirical analysis. Second, we presented a light-
weight model-based debugging approach for finding functional faults in
BPEL compositions, again with a particular focus on an empirical analysis.
In the end, we analyzed the issue of test suite redundancy, a reason for high
cost involved in testing; and presented our solution to the problem.

The emphasis of our research was to present a light-weight testing and
debugging approach for SOA applications, which can be easily adapted in
the industry. Below is the list of conference and workshop publications to
tackle the above stated research questions:

4

1.5 Organization

• An overview of different issues regarding testing of SOA applications
is published in the paper titled, ”Fifty shades of grey in SOA testing”
[Wotawa et al., 2013].
• A constraint-based method of formal representation about BPEL com-

positions is presented in, ”SOA grey box testing- a constraint-based
approach” [Jehan et al., 2013b].
• A detailed description of the model generation using a typical SOA

case study is published in the paper titled, ”Functional SOA testing
based on constraints” [Jehan et al., 2013a].
• The question of whether a random testing approach is better than the

structured testing approach is examined in the paper, ”SOA testing
via random paths in BPEL models ” [Jehan et al., 2014].
• The formal representation of both sequential and concurrent constructs

in BPEL composition with a focus on the empirical analysis is pub-
lished in the paper titled, ”BPEL Integration Testing” [Jehan et al., 2015].
• The fault-localization of functional faults using a light-weight debug-

ging approach is presented in the paper, ”Functional Diagnosis of SOA
BPEL Processes” [Hofer et al., 2014].
• A more generalized analysis of the debugging approach is published

in the paper titled, ”Focussed Diagnosis for Failing Software Tests”
[Hofer et al., 2015].
• A preliminary work on a problem of reducing the redundancy in test

suites is published in the paper titled, ”Analyzing the reduction of test
suite redundancy” [Pill et al., 2015].

1.5 Organization

The structure of the thesis is as follows: In Chapter 2, an introduction to the
Service-oriented Architectures (SOAs) is presented. Chapter 3 presents an
overview of related research in the field of testing and diagnosis of SOAs
in general and Business Process Execution Language (BPEL) in particular.
The contribution of this thesis with respect to the model-based testing
approach is explained in Chapter 4. The issue of test suite redundancy and
the analysis of different algorithms for cost-effective testing is discussed in
Chapter 5. In the end, a light-weight debugging approach for diagnosing

5

1 Introduction

BPEL functional faults is presented in Chapter 6. The summary of results
obtained and open questions left in the discourse of this work are outlined
in Chapter 7.

6

2 Service-Oriented Architectures

2.1 Introduction

”Ufone” is one of the largest GSM (Global System for Mobile commu-
nication) mobile service provider with around 24 million customers in
Pakistan [Ufone SOA Integration, 2012]. It has a network coverage across
10,000 locations. Also, its services are available in more than 160 countries
world wide. In order to provide their customers real-time service and reduce
the churn rate1, the company decided for moving the critical operational
systems such as customer relationship management (CRM), network pro-
visioning and billing towards SOA. With the successful implementation of
SOA, Ufone can now handle around 1.5 million transactions per day.

Another successful realization of SOAs can be observed by an online so-
cial networking service, ”Twitter” [Dorsey, 2006]. This social networking
service facilitates 302 million users (May 2015, wikipedia) world-wide to
send and receive short text messages in real time. The company started in
year 2006, and has grown ten times between year 2010 and year 2013, with
a record number of 400,000,000 tweets per day. This exponential growth
in the number of users brought various challenges, such as poor concur-
rency and latency. Another major issue was that different parts of the
service were developed in different languages such as Java [Gosling, 1995],
Ruby [Matsumoto, 1995], Scala [Odersky, 2004] and Javascript [Eich, 1995].
These challenges were mainly because of the tight coupling between various
components of the organization. Twitter testing team lead Jeremy Cloud
discussed in his talk [Cloud, 2013], how SOA helped them to cope with the
aforementioned challenges of scalability and concurrency. As a result, the
Twitter service, which previously could handle just twenty tweets per second

1the annual percentage rate at which customers stop subscribing to a service.

7

2 Service-Oriented Architectures

Figure 2.1: Twitter Service Decomposition

(TPS) and 400 queries per second (QPS) in year 2006, could manage 1,000

TPS and 12,000 QPS by year 2010 [Humble, 2011]. Figure 2.1 displays one
of the core APIs based on SOA principles, used in the Twitter application,
for providing real-time tweets to the clients.

The chapter is divided as follows: Section 2.2 presents a short history behind
the SOA paradigm. A detailed description of basic SOA terms used in the
scope of this work is presented in Section 2.3. The last Section 2.4 lists some
of the challenges faced by SOAs.

2.2 A brief history of SOAs

With the pervasiveness of devices like smart phones, tablets, and web
applications in our every day life, the object-oriented paradigm was a
hinderance to solve the cross-platform problems. This need fueled the
emergence of distributed computing (component technology), whereby
the client and server objects need not to be executed on the same ma-
chine [Daigneau, 2011]. This gave birth to technologies like Java Remote
Method Invocation (RMI) [JavaRMI, 1997], Common Object Request Broker
Architecture (CORBA) [CORBA, 1991], and Microsoft Component Object
Model/Distributed Common Object Model (COM/DCOM) [COM, 1993].

8

2.2 A brief history of SOAs

Although this shift from “local objects to distributed objects” solved the
portability issue among different programming languages and platforms,
but only worked given the client and server objects were using the same
underlying platform [Englander, 2002]. Moreover, it gave birth to new issues
like effective load-balancing and memory utilization by the server object.
In order to solve issues arising from distributed computing, the concept of
web services was introduced in year 2001, which should be independent
of underlying technology and can solve interoperability issues. This new
concept of loosely-coupled, distributed and heterogeneous web applications
laid the basics for popularity of SOAs [Raman, 2009].

Another vital factor in the success of SOA has been the exponential growth of
World Wide Web, through which businesses started expanding, connecting
different parts of the world, and shortening physical distances by expanding
their services around the globe. This growth with a passage of time required
an architecture, which can better facilitate the continuous integration of
new functionality to the business. Some typical examples for this shift are
the most famous companies like Amazon, eBay, Facebook, Twitter and
Google. Today their services have billions of users around the globe, and
have become a part of our every day life.

SOA history can be divided into three generations; the early SOA model
(2001- 2005) was the era of web service technology; the second generation
of SOA (2005 -2010) focused on service composition and related standards
for QoS, security and reliability; the third generation covers the time span
from year 2010 onwards.

2.2.1 Early SOA

The emergence of SOA is tightly coupled with the development of Web
service technologies and standards. It happened at the time of emergence
of distributed computing, when there was a strong need to exchange the
information stored in one computer over a network in a portable format. A
Web service represents a basic unit in a SOA-based business process, where
the main purpose of a web service is to perform a certain task in response to
a certain request from another web service. According to [Englander, 2002],

9

2 Service-Oriented Architectures

Figure 2.2: An early SOA Model

Web services represent, ”server functions with published interfaces, needed
to access their capabilities using standardized protocol”.

The early SOA model is composed of three main components: services;
service registry; and service consumers as shown in Figure 2.2. The ser-
vices descriptions are expressed in Web Services Description Language
(WSDL) [WSDL, 2001], a form of XML document, and are stored in a reg-
istry. The service consumers can look up the registry for available services,
and should be able to connect to the desired service via message protocols
like SOAP (Simple Object Access Protocol) [SOAP, 2007] or REST (REpre-
sentational State Tranfer) [Fielding, 2000]. The bindings were static in this
era. This era was taken over by the service compositions era as depicted in
Figure 2.3.

2.2.2 Second generation of SOA

The second generation of SOA encompasses the time period from year 2005

to year 2010. In this period non-functional requirements of SOA processes
such as service composition, message security and reliability were main
research topics. In this respect, Business Process Execution Language (BPEL)
came out as an industry standard. The research focussed on the orchestration

10

2.3 SOA basics

of business processes and related issues. More details about BPEL are
presented in Section 2.3.2.

2.2.3 Contemporary SOA

The third generation of SOA covers the time span after 2010. In this era,
business processes just became a part of the big picture presented in Fig-
ure 2.3. On the front end, the user interacts with a web interface, but in
the background, there are many different components working together
in synergy in order to facilitate a user. Depending on the size of the par-
ticular SOA implementation, the number of back-end components may
vary. In a small infrastructure, we may have just a couple of business
processes co-ordinating different web services running on the intranet.
These web services could perform a variety of functions such as billing
services, customer-relationship management service or computational ser-
vices wrapping up the functionality of already running legacy systems.
In large-scale organizations, usually enterprise service buses (ESBs) are
used for enterprise integration. Some of the key features of a message bus
include loose coupling among diverse web services by using XML as a
communication language. It also supports synchronous and asynchronous
communication with the help of standardized message routing services.
A more detailed overview of ESB and its integration into business can be
looked up in [Balepur Venkatanna Kumar, 2010].

2.3 SOA basics

Service-oriented Architecture (SOA) is more like an architectural style
rather than a specific technology; for it is a collection of laws and policies to
implement a model-driven service development [Josuttis, 2007]. In order to
be self-contained, we review the relevant SOA terms and definitions within
the scope of this thesis.

11

2 Service-Oriented Architectures

Service
Registry

Business Processes

Message Bus

Service Monitor

Frontend Application

CRM
Service

Services

Aggregator

Billing
Service

Mediators

Compute
Service 1

Compute
Service 2

Backend Applications

Figure 2.3: Contemporary SOA Model taken from [Leitner et al., 2013]

2.3.1 First generation Web services technology

There exist many definitions explaining the SOA paradigm in the literature.
Some of them are listed in this section. According to Organization for the
Advancement of Structured Information Standards Reference Model (OASIS
RM): [Model, 2006]:

”Service-Oriented Architecture (SOA) is a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different
ownership domains.”

The ”distributed capabilities” are also termed as Web services, and are
considered the fundamental building blocks of any SOA. [Erl, 2007] defines
SOA as follows:

”Service-Oriented Architecture represents a distinct form of technology
architecture designed in support of service-oriented solution logic which is

12

2.3 SOA basics

comprised of services and service compositions shaped by and designed in
accordance with service-orientation.”

Since service lies at the heart of any service-oriented solution, it is important
to understand first the concept of a service.

Web Services

A Web service is defined by W3C2 as follows:

”A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards” [W3C, 2011].

According to another definition from [Erl, 2005]: ”A Web service is com-
posed of three main components: a service contract, which contains publicly
available functions in the form of WSDL document; a business logic part,
which encompasses the implementation details; a message processing logic,
using message passing protocol like SOAP or REST”.

A Web service can act as a service provider, or a service consumer or both
(incase of service compositions). Figure 2.4 depicts different roles a Web
service can perform based on its usage.

The basic Web service technology stack comprises of technologies: Web
Services Description Language (WSDL), XML Schema Definition language
(XSD), Simple Object Access Protocol (SOAP), Universal Description, Dis-
covery, Integration (UDDI) [Erl, 2005]. All of these technologies use XML
as an underlying language. The brief explanation of these Web services
technologies is as follows:

2World Wide Web Consortium: https://www.w3.org/

13

2 Service-Oriented Architectures

Figure 2.4: Web Service roles taken from [Erl, 2005]

14

2.3 SOA basics

XML Schema Definition

XML stands for extensible markup language3 and is considered as a “lingua
franca” for distributed systems [Hewitt, 2009]. With XML, it is possible to
describe the data in a standardized way that is also portable over a network.
The success of XML lies in the platform independent data model. It was
designed such as to address extensibility issues in earlier markup languages
such as HTML. Extensibility means that one can describe the content specific
to one’s application in a standard way.

The structure of an XML document can be specified in an XML schema,
which is designed to express the restrictions on the elements defined in
any XML document. A detailed description of a correct XML document, its
constituent elements, the ordering of defined elements, possible constraints
on already specified elements can be looked up on the official website of
the World Wide Web consortium4.

A simple XML document can be seen in Figure 2.5. Schema is the root
element of every XML document. The root element may contain further
elements of either simple type or complex type. A simple element is an
XML element that can contain only text. The text can be of different types
such as string, integer, boolean, date and time. It can not contain further
elements. The complex type element, on the contrary, can contain simple
types, where each element must also have a valid datatype specified in the
form of an xml schema. The XML schema must not only be well-formed,
but also valid against the XML Schema in order to be used by any XML
tool.

SOAP protocol

SOAP is a message-based exchange protocol. It stands for Simple Object
Access Protocol [SOAP, 2007]. SOAP messages are XML documents called
envelopes. Every SOAP message must conform to the SOAP specifica-
tion. According to the specification, a valid message must have three main

3www.w3schools.com/xml/
4http://www.w3.org/

15

2 Service-Oriented Architectures

1 <?xml version=” 1 . 0 ” ?>
2 <xs:schema xmlns:xs=” h t t p : //www. w3 . org /2001/XMLSchema”>
3 <xs:element name=” input ”>
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name=” to ” type=” x s : s t r i n g ”/>
7 <xs:element name=”from” type=” x s : s t r i n g ”/>
8 <xs:element name=”heading” type=” x s : s t r i n g ”/>
9 <xs:element name=”body” type=” x s : s t r i n g ”/>

10 </xs:sequence>
11 </xs:complexType>
12 </xs:element>
13 </xs:schema>

Figure 2.5: A short example of an XML Schema.

components Envelop, Header, and Body. The “Envelop” element is the root
element of any SOAP message, and encapsulates the “Header” and the
“Body” elements as shown in Figure 2.6. A detailed description of the
SOAP message-passing protocol can be looked up in [Englander, 2002]
or in [Balepur Venkatanna Kumar, 2010]. Like XML, SOAP messages are
also platform-neutral and are independent of the implementation of the
sender and receiver [Englander, 2002]. In principle, it is independent of
the underlying transfer protocol, but is mostly used with the Hypertext
Transfer Protocol (HTTP) [Berners-Lee, 1989] for communication on the web.
There are also other binding protocols like Simple Mail Transfer Protocol
(SMTP) [RFC, 1982], File Transfer Protocol (FTP) [Bhushan, 1985] available,
but HTTP remains the most widely used protocol to date.

WSDL

WSDL stands for Web Service Description Language [WSDL, 2001]. ”It is
an XML-based interface definition language that is used for describing the
functionality offered by a web service”(Wikipedia). A WSDL document
enables the loose coupling between web services by encapsulating the
internal functionality of a service. A typical WSDL document is composed
of six elements; types, message, portType, binding, port and service. All

16

2.3 SOA basics

1 <?xml version=” 1 . 0 ” ?>
2 <SOAP−ENV:Envelope >
3 <SOAP−ENV:Header>
4 . . .
5 . . .
6 </SOAP−ENV:Header>
7 <SOAP−ENV:Body>
8 . . .
9 . . .

10 <SOAP−ENV:Fault>
11 . . .
12 . . .
13 </SOAP−ENV:Fault>
14 . . .
15 </SOAP−ENV:Body>
16

17 </SOAP ENV:Envelope>

Figure 2.6: A SOAP message.

these elements are inter-related to each other and can be classified into
two parts; an abstract part and a concrete part. An abstract part of a WSDL
document describes the interface level operations provided by web services
using portType definition. These operations are linked to input and output
messages used by the web service for exchange of communication with
other web services. The Types section is used to define the data types of
input and output variables used in the respective messages section. In order
to execute the web service implementation, the concrete part is required,
which is composed of three further elements. The Binding section refers to
the physical transport protocol used for the on-the-wire communication.
The bindings can be specified using multiple protocols such as HTTP, or
SOAP. Also, multiple bindings can be made available for the same portType
operations. The services element contains the link to the specific web address
to access the web service functionality.

17

2 Service-Oriented Architectures

1 <d e f i n i t i o n s>
2

3 <types>
4 </types>
5

6 <message>
7 </message>
8

9 <portType>
10 <operat ions>
11 </operat ions>
12 </portType>
13

14 <binding>
15 </binding>
16

17 <s e r v i c e s>
18 </ s e r v i c e s>
19

20 </ d e f i n i t i o n s>

Figure 2.7: WSDL components taken from [WSDL, 2001].

18

2.3 SOA basics

UDDI

Like SOAP and WSDL, Universal Discovery, Description and Integration
(UDDI) [UDDI, 2001] is considered a basic block of a web service stack.
As the name suggests, it is used for storing, accessing and retrieving web
services. However, UDDI has not got industry acceptance like SOAP and
WSDL [Erl, 2005].

REST

REST stands for ”REpresentational State Transfer”. It was first introduced by
Roy T. Fiedling in year 2000, who claimed in his Ph.D. thesis that: ” the REST
architectural style has been used to guide the design and development of
the architecture of the modern Web” [Fiedling, 2000]. Twitter and Amazon
are two examples of REST protocol. The success of REST services depends
on many factors: they are stateless, they should not store state on the
server; the REST-based services don’t require WSDL; the resources are
used to build the RESTful architecture, each having a unique identifier
URI; Last but not the least, REST protocol discourages the use of cookies,
rather, stresses on using the hypermedia to store the application state. REST
unlike WSDL, SOAP, and XML Schema is not a specification. A detailed
discussion of RESTful architecture and REST-based services can be read
in [Richardson and Ruby, 2007].

2.3.2 Second generation Web services technology

The sole purpose of building web services was to provide loose coupling,
interoperability, reusability, and discoverability between heterogeneously-
built autonomous services. The first generation of web service technology
lack reliable messaging protocol. Therefore, the second generation of Web
services focussed on extensions for security at message level, transport
and network level. These extensions were offered by specifications such as
Web Services Security (WS-Security), Web Services Secure Conversation
(WS-SecureConversation), and Web Services Security Policy (WS-Security
Policy) [Erl, 2005]. Another notable contribution was the development of

19

2 Service-Oriented Architectures

Business Process Execution Language for Web Services (BPEL4WS). Being
part of WS-* extensions stack, BPEL4WS is sometimes also written as WS-
BPEL, or even BPEL for short. BPEL emerged as an industry standard for
the execution of long running, complex business processes spanning over a
large period of time.

WS-BPEL

WS-BPEL is an XML-based language for the definition and execution of
business processes. The sole purpose of BPEL is the composition of het-
erogeneous web services in order to achieve a business goal. Although
there are also other workflow languages such as Business Process Mod-
eling Notation (BPMN) [OMG, 2005], Yet Another Workflow Language
(YAWL) [ter Hofstede, 2010], WS-BPEL is the OASIS standard. It contains
constructs of both workflow languages and programming languages. Ac-
cording to [Juric and Krizevnik, 2010], some of the design goals of BPEL
were: the description of a business logic through composition of services,
handling of synchronous and asynchronous long-running processes, invoca-
tion of processes in sequential and parallel fashion, the parallel execution of
activities depending on the synchronization conditions, and the correlation
of requests to particular instances within a business process.

History of WS-BPEL

Before the emergence of WS-BPEL, web services were already adapted in
the industry. There was lot of work published [Bozkurt et al., 2013] until
2005, when IBM and Microsoft proposed a language for the composition
of individual web services to achieve a business level integration. The
aim was to provide a standard language to deal with reliable messaging
problems. This new language was created purposefully to remove problems
in the already used workflow languages such as WSFL [Leymann, 2001]
by IBM and XLANG [Microsoft, 2001] by Microsoft. WSFL (Web Services
Flow Language) was meant for directed graphs, and XLANG was a block-
structured language. In BPEL language, one finds both directed graphs and
block-structured approaches for modeling.

20

2.3 SOA basics

WS-BPEL Preliminaries

The most important concept in understanding WS-BPEL is the term “pro-
cess” itself. According to [Harvey, 2005], a process denotes “a program
running in an operating system, responsible for processing a request over
some interval of time”. The term process definition defines behavior of the
process, whereas the term process instance refers to “an occurrence of a
process to a specific input”. For example, each instance of a loan business
process refers to a specific loan request. Moreover, an execution engine
is employed to “create and run instances of a given process definition”.
And each single step in a process, such as approving a loan is defined as
an“activity”.

Types of BPEL processes

There are two main types of BPEL processes: an abstract process, and an
executable process. An abstract process is only a protocol definition, whereby
an executable process is actually executed in a process engine. The primary
difference between a typical web service and a BPEL process is that the
user only has the description of a web service, but can never access the
internal functionality of a web service. However, the functional logic of a
BPEL process is available as an XML document. In fact a BPEL process itself
is exposed as a web service. An executable BPEL process is shown in Figure
2.8. There are two types of files in an executable BPEL process:

• WSDL files for the specification of web service interfaces, including
portTypes and operations, related to the business process.
• BPEL file(s) for the specification of a process definition in an XML

format.

WS-BPEL Constructs-Activities

A WS-BPEL file is divided into two basic parts, i.e., one part describes the
structure of the business process, and the second part describes the binding
to actual services responsible for execution of a certain functionality. The

21

2 Service-Oriented Architectures

Figure 2.8: An Executable BPEL process taken from [Harvey, 2005]

22

2.3 SOA basics

document is composed of basic and structured activities. The basic activities
include receive, reply, invoke, throw and wait. The structured activities include
constructs like while, sequence, flow and pick. The basic difference between
the sequence and the flow activity is the order of the execution of activities.
A flow construct is used to define a set of activities that can be executed
concurrently. The pick activity is responsible for handling external events
such as alarm or messages. A basic skeleton of a BPEL is shown in Figure 2.9.
A detailed description of all BPEL constructs and their practical usage can
be looked up in [Erl, 2005].

A typical BPEL process has four main parts: partnerLinks, variables, fault-
Handlers, and any number of structured or basic activities. The partnerLinks
are defined in order to make a BPEL process interact with other processes.
In addition to that, the variables section is meant for defining data variables
used by the process definition. In case of any exception, a fault handling
mechanism can be defined in a faultHandlers section. This is generally fol-
lowed by one or more structured activities such as sequence, if, while, pick
or flow. These activities can be nested in any combination or order. Let us
briefly describe the most common activities:

Receive Activity

A Receive activity is typically the starting activity within any business
process. It is used for receiving requests from partner processes. As shown
in Figure 2.10, the mandatory fields for any Receive activity are the name of
the partnerLink, and the operation that the partner business process is calling.
The incoming request message will be stored in a variable field.

Reply Activity

A Reply activity is an “activity that returns a synchronous reply to an in-
coming web service call triggered by a receive” [Harvey, 2005]. This activity
is mandatory in a request-reply operation, in which the business process is
required to send back a reply to the calling partner process. For that reason,

23

2 Service-Oriented Architectures

1 <process>
2

3 <partnerLinks>
4 . . .
5 </partnerLinks>
6

7 <v a r i a b l e s>
8 . . .
9 </ v a r i a b l e s>

10

11 <faul tHandlers>
12 . . .
13 </faul tHandlers>
14

15 <sequence>
16 <r e c e i v e . . . >
17 <invoke . . . >
18 <ass ign . . . >
19 < i f>
20 <while>
21 <reply . . . >
22 . . .
23 </sequence>
24 . . .
25 </process>

Figure 2.9: BPEL process definition

24

2.3 SOA basics

1 <r e c e i v e partnerLink=”NCName”
2 portType=”QName” ?
3 operat ion=”NCName”
4 v a r i a b l e =”BPELVariableName” ?
5 c r e a t e I n s t a n c e =” yes | no” ?
6 messageExchange=”NCName” ?
7 standard−a t t r i b u t e s>
8 standard−elements
9 <c o r r e l a t i o n s>?

10 <c o r r e l a t i o n s e t =”NCName” i n i t i a t e =” yes | j o i n | no”?/>+
11 </ c o r r e l a t i o n s>
12 <fromParts>?
13 <fromPart part=”NCName” t o V a r i a b l e=”BPELVarName”/>+
14 </fromParts>
15 </ r e c e i v e>

Figure 2.10: Receive Activity

it is linked to the same partnerLink element as specified in a Receive activity.
Figure 2.11 depicts a snippet of Reply activity from BPEL specification.

Invoke Activity

An Invoke activity is meant for calling the partner business process operation.
This can be a one-way operation or a request-response scenario, in which
Invoke must wait until a response is received. As shown in Figure 2.12, both
inputVariable and outputVariable fields are optional.

Assign Activity

An Assign activity as illustrated in Figure 2.13 is used for updating variable
values. An assign activity can contain one or more copy constructs.

25

2 Service-Oriented Architectures

1 <reply partnerLink=”NCName”
2 portType=”QName” ?
3 operat ion=”NCName”
4 v a r i a b l e =”BPELVariableName” ?
5 faultName=”QName” ?
6 messageExchange=”NCName” ?
7 standard−a t t r i b u t e s>
8 standard−elements
9 <c o r r e l a t i o n s>?

10 <c o r r e l a t i o n s e t =”NCName” i n i t i a t e =” yes | j o i n | no”?/>+
11 </ c o r r e l a t i o n s>
12 <t o P a r t s>?
13 <t o P a r t part=”NCName” fromVariable=”BPELVarName”/>+
14 </ t o P a r t s>
15 </reply>

Figure 2.11: Reply Activity

If Activity

An If activity as shown in Figure 2.14 is used for selecting one activity
among a set of choices. When a condition attribute is set to ”true”, the nested
activities are executed like any other programming language.

WhileActivity

A While activity 2.15 is similar to any imperative programming language,
and is used for repetition of activities as long as the loop condition remains
true.

Limitations of BPEL

It is important to note that BPEL is only useful in describing or modeling the
functional aspects of a process. It is not well suited for specifying the non-
functional properties associated with any process like security requirements
and Service-level-agreements (SLAs).

26

2.3 SOA basics

1 <invoke partnerLink=”NCName”
2 portType=”QName” ?
3 operat ion=”NCName”
4 inputVar iab le=”BPELVariableName” ?
5 outputVariable=”BPELVariableName” ?
6 standard−a t t r i b u t e s>
7 standard−elements
8 <c o r r e l a t i o n s>?
9 <c o r r e l a t i o n s e t =”NCName” i n i t i a t e =” yes | j o i n | no” ?

10 pat tern=” request | response | request−response ”?/>+
11 </ c o r r e l a t i o n s>
12 <catch faultName=”QName” ?
13 f a u l t V a r i a b l e =”BPELVariableName” ?
14 faultMessageType=”QName” ?
15 faul tElement=”QName” ?>∗
16 a c t i v i t y
17 </catch>
18 <c a t c h A l l>?
19 a c t i v i t y
20 </c a t c h A l l>
21 <compensationHandler>?
22 a c t i v i t y
23 </compensationHandler>
24 <t o P a r t s>?
25 <t o P a r t part=”NCName” fromVariable=”BPELVarName”/>+
26 </ t o P a r t s>
27 <fromParts>?
28 <fromPart part=”NCName” t o V a r i a b l e=”BPELVarName”/>+
29 </fromParts>
30 </invoke>

Figure 2.12: InvokeActivity

27

2 Service-Oriented Architectures

1 <ass ign v a l i d a t e =” yes | no” ? standard−a t t r i b u t e s>
2 standard−elements
3 (
4 <copy keepSrcElementName=” yes | no” ? ignoreMissingFromData=” yes | no” ?>
5 from−spec
6 to−spec
7 </copy>
8 |
9 <extensionAssignOperat ion>

10 assign−element−of−other−namespace
11 </extensionAssignOperation>
12)+
13 </ass ign>

Figure 2.13: AssignActivity

1 < i f standard−a t t r i b u t e s>
2 standard−elements
3 <condi t ion exprLang=”anyURI” ?>bool−expr</condi t ion>
4 a c t i v i t y
5 <e l s e i f>∗
6 <condi t ion exprLang=”anyURI” ?>bool−expr</condi t ion>
7 a c t i v i t y
8 </ e l s e i f>
9 <e l s e>?

10 a c t i v i t y
11 </ e l s e>
12 </ i f>

Figure 2.14: IfActivity

1 <while standard−a t t r i b u t e s>
2 standard−elements
3 <condi t ion exprLang=”anyURI” ?>bool−expr</condi t ion>
4 a c t i v i t y
5 </while>

Figure 2.15: WhileActivity

28

2.4 SOA challenges

Furthermore, the BPEL language received a lot of criticism from the testing
community as it is described in a natural language [Lapadula et al., 2008],
which makes it hard to formalize different constructs. Despite of this fact,
BPEL remains an OASIS standard for composition of heterogeneous, dis-
parate web-services. There is another issue with BPEL compositions, i.e.,
their tight coupling with WSDL-based web services. And, because of this
limitation, BPEL can not work well with semantic web services or for that
matter REST-based web services.

2.4 SOA challenges

While the decomposition of required functionality into services give dif-
ferent teams more autonomy, i.e, helped Twitter attain higher levels of
concurrency, it opened new challenges for testing these “loosely-coupled”
services. [Daigneau, 2011] describes various types of dependencies among
web services such as functional, temporal and URI coupling. According to
[Josuttis, 2007], ”Loosely coupled distributed systems are harder to develop,
maintain, and debug”. He argues that the goal of introducing loose-coupling
was to reduce dependencies among different parts of a large-distriubted sys-
tem. For example, asynchronous communication is the most common form
of loose-coupling in SOAs. But, asynchronous messages must be handled
appropriately; first the reply must be associated with the original request,
second the state of the original request must be stored in order to process
the reply in the proper context. The situation might get worse when the
order of request-reply messages is altered, or if some messages do not arrive
at all. Handling all such possibilities at development level, and later on at
testing and debugging would mean additional cost and complexity.

[Canfora and Penta, 2009a] listed various challenges associated with SOA
applications. The first challenge is the limited observability of the services’
code, for users do not possess access to the internals of the implementa-
tion. Similarly, end users have no control over consumed services, because
these services are executed on the providers end. Moreover, the services’
implementations can be updated without an end-user awareness, and this
can pose an extra overhead regarding regression testing at the Integrator

29

2 Service-Oriented Architectures

end. Above all, the testing cost of such dynamic and hybrid large-scale
applications is quite high, both at the service and composition level.

In addition to the previous mentioned challenges, SOA applications must
be tested for Quality of Service (QoS) attributes, such as response time,
availability, system load, cost and other attributes specified in service-level
agreements. Our focus has been on the functional aspects of SOA-based
processes.

30

3 Preliminaries and Related Work

Software testing coupled with verification and validation has been con-
sidered inevitable in any software development life cycle. Software testing
means “the process of analyzing a product to verify that it satisfies speci-
fied requirements or to identify differences between expected and actual
results” [IEEE, 1983]. Verification is “the process of determining whether or
not the products of a given phase of a software development process fulfill
the requirements established during the previous phase”. Validation, on the
other hand, means “the process of evaluating software at the end of its devel-
opment process to ensure compliance with its requirements” [IEEE, 1983].

Testing is a commonly practiced verification technique, in which the system
under test is executed with selective inputs, and the resulting output is
compared with expected results, in order to verify the requirements stated
in the specifications. Although there have been well-established testing
techniques and methods to ensure software quality and reliability, test-
ing is still considered the most difficult, laborious and error-prone part
of a typical software development process [Myers et al., 2011]. With the
rise of service-oriented computing, the problem of software testing has be-
come more intricate and complex than ever. For example inherent features
such as limited controllability and observability have further complicated
the functional testing of SOA business processes [Hierons and Ural, 2008],
[Hierons and Ural, 2009].

Once the fault is identified, naturally one is interested in finding out prob-
able reasons behind the occurred fault. In this way, the diagnosis process
complements a testing process. There are various challenges specific to di-
agnosing business processes. For example, the complete specification of the
input/output of composed services is not available. Moreover, the diagnosis
needs to consider the state of a web service in fault-localization, diagnosis

31

3 Preliminaries and Related Work

and also repair actions [Friedrich et al., 2010b]. In this Chapter, we present
issues and challenges specific to the functional testing and debugging of
SOA-based business processes. We present a light-weight debugging ap-
proach for detection of behavioral functional faults in BPEL compositions.

This Chapter is organized as follows: First, some general definitions from
software testing are presented in Section 3.1. Later, related work available
in the context of SOA testing is discussed in Section 3.2. Similarly, the
relevant debugging definitions are given in Section 3.3. This is followed by
the related work in the diagnosis of service-oriented processes in Section 3.4
respectively. We present conclusions in Section 3.5.

3.1 Testing Preliminaries

Software testing is ”the process of executing a program with the intent
of finding errors” [Myers et al., 2011]. The term ”Error” basically means
source responsible for deviation of the system under test from its expected
behavior. According to [IEEE, 1983]: an error is “the difference between a
computed, observed, or measured value or condition and the true, specified,
or theoretically correct value or condition. There can be many different types
of errors, and according to [Goodenough and Gerhart, 1975], can be broadly
classified as performance and logical errors. These errors can be observed
by: either a missing path; a wrongly taken path; a missing computation,
and a wrongly computed value. An error can result in software containing
a fault, which is defined as “an incorrect step, process, or data definition
in a program”. Similarly, a fault is responsible for a failure, which denotes
an incorrect behavior of a program. The exact definition of a failure is “the
inability of a system or component to perform its required function within
the specified performance requirements” [IEEE, 1983].

According to [Adrion et al., 1982], a complete verification of any program
is only possible through ”exhaustive Testing”. As this goal is in reality
not possible, determining the scope of any testing activity is of utmost
importance. Some of key challenges in testing involve generating test data,
measuring the test data quality, automating test execution, and prioritizing
test case selection [Myers et al., 2011].

32

3.1 Testing Preliminaries

The first step is the selection of the test data which serves as an input
to the system under test. As a second step, it is important to determine
if the test data uncovers faults or not. This is known as the “test oracle”
problem [Howden, 1978]. Similarly, measuring the quality of test data helps
in deciding when to stop testing, because complete testing is not possible
in practice. Two such methods are: statistical methods or deterministic
methods [Adrion et al., 1982]. The statistical methods are random in nature
as compared to deterministic methods, in which test data must reproduce
same results under the given set of conditions. Since testing covers almost
50% of the software development cycle [Myers et al., 2011], automation of
the testing process is useful in reducing the testing effort, time and cost.
Likewise test case prioritization goal is to lower down the testing cost by
discovering more errors with less number of tests.

[DeMillo et al., 1978] presented two hypotheses in their paper; “competent
programmer hypothesis” and a “coupling effect”. They argued that program-
mers are ”close to correct”, and based on this assumption, they claim that
the frequency of simple errors is alway higher than the complex ones. Or
putting differently, simple errors are ”coupled” with complex errors. So, it
makes more sense to look for these simple errors, which lead to the complex
one eventually. This lead to another question, that is, which errors should
we test for? This question can be hard to answer, as it mainly depends on the
nature of the underlying program or system. For example, for embedded
systems, functional testing might be enough to test most of the functionality,
but in SOA-based environments, functional testing must go hand in hand
with the non-functional testing of software attributes like response-time,
network-faults, and testing cost. This thesis is about functional testing of
SOA-based systems, and is aimed at complementing non-functional testing
of such systems.

Test data generation: There are three main types of test data generation
techniques, i.e., black-box, white-box, and grey-box. Black-box testing is
a functional analysis technique, and is useful when the internal logic of
the SUT is not available. This type of testing is done in scenarios, where
inputs and expected outputs are known, but not the internal program
structure. This implies that test data is generated from requirements or
design specifications only, because it stresses only on the external behavior
of the system under test. An exhaustive Black-box testing would consider

33

3 Preliminaries and Related Work

all possible test inputs to test for the expected result (oracle), which is
impossible for larger programs. Hence, methodologies like boundary value
analysis, equivalence partitioning are employed to measure the test data
adequacy [Myers et al., 2011]. The advantage of using black-box testing is
that no prior programming knowledge is required. One drawback is that
tester might not be able to test certain parts of the code due to visibility
problem. It might also happen that unnecessary tests are generated to test
certain software functionality.

White-box approach, on the other hand, is a structural analysis technique, and
is used when the source-code of the program under test is available. It is
called white-box, because the internal structure of the program is known
prior to testing. The classical techniques applied in the context of white-box
testing include mutation testing, API testing. The target of selecting test
cases is the execution of every path in the program; which is realistically
not possible especially in programs with loops. Therefore the test suite
adequacy is measured with the help of some code coverage criteria such as
branch coverage, statement coverage or path coverage [Myers et al., 2011].
For example 100% branch coverage implies that all branches in the control
flow graph of the system under test have been executed once. This certainly
provides some confidence in the testing approach, but is not complete
since the same branch can be tested with different sets of inputs yielding
unexpected results. The approach is mostly applied to the unit level. The
disadvantage of using white-box approach is that missing functionality from
the specification or requirement documents can not be detected. In addition
to that, a thorough understanding of the SUT implementation is required to
generate useful tests.

There is a third kind of testing approach, grey-box testing, in which partial
information about the internal structure of the program is available. In the
context of this thesis, the control-flow logic of a BPEL process is available,
but the underlying functioning of the involved web services is a black-
box. Hence we suggest grey-box testing approach for testing SOA business
process.

There are also many types of testing with different testing goals: functional
testing checks if a software conforms to its requirements specifications. Non-
functional testing evaluates a software for non-functional requirements such

34

3.1 Testing Preliminaries

as performance, load, and scalability. Regression testing is to ensure if a
software fulfills its design specification after changes such as configuration
or software updates. Integration testing is performed “when individual
software modules are combined and tested as a unit” (Wikipedia).

Test data adequacy: Once the test data is generated using either static analysis
such as symbolic execution, model-checking, or dynamic analysis method,
the next step in the testing process is to determine the effectiveness of
the generated test suite. This can be done in many ways depending on
the budget of the particular project. The two commonly used methods are
coverage analysis and mutation analysis.

Mutation analysis: [DeMillo et al., 1978] were the first to introduce this
technique. The idea is as follows: First, by applying syntax changes to the
original program, many possibly faulty copies of the program under test
are generated. These altered versions of the original program are called
“mutants”. These mutants are generated according to certain mutation oper-
ators [Boubeta-Puig et al., 2011]. Each mutation operator denotes different
fault class, and the goal is to generate mutants representing different fault
classes. Second, the generated mutants are tested with the test suite in order
to determine if the test suite can differentiate between the original program
and mutants or not. A mutant is termed “killed” if a test case can distinguish
it from the original program. And the total number of killed mutants over
non-equivalent mutants denote the adequacy score or the“mutation score”.
The higher the mutation score, the better the quality of the test suite. The
mutants which the test suite can not distinguish from the original program
are called “equivalent mutants”. The scope of mutation testing is limited
in practice primarily because of high computational cost. In addition to
that, it is still undecidable whether an equivalent mutant is equivalent to
the original program or not [Budd and Angluin, 1982]. The survey gives
a comprehensive overview of the the work done in the field of mutation
testing since its origin [Jia and Harman, 2011].

The ”SUT” or ”program”, in the context of this thesis, means software
artifacts such as BPEL source code, schema definitions of the composed
web services and WSDL specifications. In general, this could mean the
requirement documents, stating the functional and non-functional quality
attributes of the project under consideration. The expected behavior of the

35

3 Preliminaries and Related Work

SUT is extracted from the structure of a BPEL process document and related
artifacts. Once we have the model out of a BPEL specification, we derive
the possible input/output relationship using the constraint-based approach
discussed in detail in next Chapter 4.

3.2 Testing trends of SOA Applications

Testing approaches can be divided into many different types aiming at
testing different behavior of the system under test. With respect to SOA-
based or service-centric systems, one of the earliest survey was published
by [Canfora and Penta, 2006]. This survey gives a glimpse of testing issues
from the perspective of functional and non-functional point-of-view. Also
another survey done by same authors [Canfora and Penta, 2009a] provides a
good overview of testing challenges posed by such system from viewpoint of
different stakeholders. A detailed account of various testing approaches used
in the service-oriented architecture can be found in [Bozkurt et al., 2013]. In
both of these surveys, the underlying issue discussed in SOA testing is that
of “trust”.

This lack in trust comes from the limited observability and controllability of
SOA-based systems. The limited observability means that users or testers
have no knowledge about the internal implementation of the service. There-
fore a tester can not apply white-box approaches to verify that the service
indeed comply to the agreed service level agreements (SLAs). The limited
controllability comes from the fact that a service provider can change the
service behavior without prior notification to users. As a result, users may
experience unexpected changes in the service functional or non-functional
behavior.

In classical testing techniques, the issue of limited observability and con-
trollability is not that much of an issue as in service-oriented architec-
tures [Hierons and Ural, 2008], [Hierons and Ural, 2009]. In scope of this
work, functional testing approach for the BPEL compositions has been ex-
plored. We report on the approaches that are closely related to our approach
in the context of test case generation, execution and diagnosis of BPEL
compositions.

36

3.2 Testing trends of SOA Applications

There is a lot of research already done in testing SOA applications; this
work intersects mainly with model-based test case generation approaches.
The survey [Bozkurt et al., 2013] classifies model-based testing and formal
verification of web services into symbolic execution, model-checking and
petri-nets. A short description of each of these testing approaches is pro-
vided in the corresponding section. This work is based mainly on symbolic
execution principles, and also partially on contract-based testing of com-
posed web services. Moreover, we make use of some work done in unit
testing and fault-based testing for the test suite execution step.

3.2.1 Symbolic Execution Approach

Symbolic execution is a program analysis technique testing programs on
symbolic inputs rather than concrete input values. In addition to that, a path
condition is stored whenever a branch condition is executed. The purpose
for storing the path condition is to maintain path constraints. Once all
constraints are encoded as a constraint satisfaction problem, a constraint
solver is used for the concrete test case generation.

The idea of symbolic execution for program testing was first introduced by
James King [King, 1976] to test programs for infinite large classes of inputs.
The approach is also called static symbolic execution, for it only analyses
the source code of the program to predict the program behavior. Among the
classical symbolic execution tools, SELECT [Boyer et al., 1975] can handle
only sequential programs with limited number of input data types.

One drawback of using static symbolic execution is that it can not model
the behavior of external system calls. The dynamic symbolic execution aims
at modeling not only the program structure, but also the unknown program
behavior such as interactions with the environment. While our work is based
on classical symbolic execution, the usage of dynamic symbolic execution for
test input generation has been explored extensively. DART was the first tool
built on the idea of dynamic symbolic execution [Godefroid et al., 2005a].
DART (Directed Automated Random Testing) works on dynamic symbolic
execution with concrete inputs, collects symbolic constraints on the input
to generate feasible paths using a constraint solver. It searches for different

37

3 Preliminaries and Related Work

variants of the previous input to search for other possible execution paths.
The goal is to find all feasible execution paths. Unlike static symbolic
execution, dynamic symbolic execution has the advantage of deriving new
test inputs without any test driver. Also, the behavior of environment can be
modeled to test the dynamic program execution such as pointer analysis and
library function calls. The tool was developed to test C implementation.

Path explosion is another problem associated with static symbolic execu-
tion. [Sen and Agha, 2006] introduced the term concolic testing, which is a
hybrid of symbolic and concrete execution. They developed a tool called
CUTE, which basically extends DART by introducing concolic testing for
unit testing of C programs. Like DART, CUTE uses both concrete and sym-
bolic test inputs to leverage limitations of the symbolic execution. The tool
has two versions, CUTE supports testing of C programs, and jCUTE is used
for testing multithreaded Java programs. They use partial-order reduction
techniques to reduce the number of infinite generated paths.

[Tillmann and De Halleux, 2008] presented a white box test generation tool
(Pex) for .NET environments. Pex was developed to generate parametrized
unit tests for .NET environments, whereby pointer access and floating point
arithmetic often yield to unknown program behavior, which can not be
reasoned with static symbolic execution. The feasibility of execution paths
is determined using the constraint solver Z3 [De Moura and Bjørner, 2008].
However, it does not work in non-deterministic environments or for concur-
rent programs.

One of the limitations of symbolic execution is the complexity of constraints
generation in case of programs containing loops or recursion. There are
many search techniques (heuristic search, partial order and symmetry reduc-
tion search) discussed in the literature to reduce the number of generated
paths. The interested reader can look up the Cadar et. al [Cadar et al., 2011]
which provides an extensive overview of the state-of-the-art symbolic exe-
cution techniques.

In the SOA domain, symbolic execution tools face the challenge of handling
dynamic behavior of the environment. [Bentakouk et al., 2011] suggested a
black-box oriented conformance testing using a SMT (Satisfiability Modulo
Theories) solver for constraint-based generation out of BPEL compositions.

38

3.2 Testing trends of SOA Applications

They use symbolic transition systems as an underlying formal model for
the behavioral representation of the system.

The survey [Zakaria et al., 2009] by Zakaria et al. gives a very good compar-
ison of different unit testing approaches applied to BPEL processes. A key
issue they pointed out is the lack of an empirical evaluation. Surprisingly,
only one out of 27 considered studies provides results on real-life BPEL
processes.

3.2.2 Model Checking Approach

Model checking is a popular technique used nowadays for the verification of
software [Clarke and Lerda, 2007]. It was initially developed to verify finite-
state concurrent systems [Clarke et al., 1983]. It has been used since then,
for verifying both hardware and software systems. A model-checker takes
two inputs: a state transition graph of some hardware (circuit) or a software
program, and the specification, represented as temporal logical formulas.
The goal of a model checker is to figure out if the specified formula holds
true for the given model. A witness is a path in the execution model where
the formula is satisfied. Similarly a counterexample is a path provided by the
model checker, in which the specified formula does not hold true. These
counter-examples are typically used as test cases for testing software.

There are many model-checkers used in practice today. A widely discussed
model-based technique exploited in the context of web service testing is
model checking [Bozkurt et al., 2013]. The general idea behind its applica-
tion is to translate BPEL specifications into a formal modeling language like
PROMELA [Garcia-fanjul et al., 2006] and test criteria into a formal property
language like LTL [Pnueli, 1977]. Both specifications and properties then
serve as an input to the SPIN model checker. The model checker provides
counterexamples for the test case generation. Zhen et al. [Zheng et al., 2007]
applied the same idea to web services and BPEL processes. There is a more
enhanced work by same authors, in which Zhou et al. also address the state
space explosion problem inherent with model checking [Zhou et al., 2007].
Moreover, they also developed a tool for the generation of JUnit test cases
for automated test execution.

39

3 Preliminaries and Related Work

There are many advantages [Clarke, 2008] of model checking: It is faster
than theorem proving, and even works in case of partial specifications.
And, if the formula is not verified by the model, the model checker gives
a counterexample to guide the user in locating fault in the model. So,
model-checkers can be very useful in debugging software. Also, verifying
concurrent properties is nearly impossible using manual approaches. But,
the advantages come at the price of the state space explosion. The state space
explosion problem refers to an exponential number of states generated by
model checkers, which has a negative impact on the applicability of model
checking to software. The problem can be addressed using techniques like
bounded model checking [Clarke et al., 2012]. Besides, there is second issue,
i.e., the formal specifications are hardly available.

3.2.3 Petri Net Approach

Petri nets are another modeling means for graphical representation of com-
munication between distributed, and concurrent systems. Some typical
examples include communication protocols, distributed-database systems
and concurrent programs [Murata, 1989]. Therefore it is useful in determin-
ing problems related to concurrent behavior such as reachability, liveness,
and soundness.

Model-based testing techniques using Petri Nets have also been explored
extensively. Petri Nets are used for modeling concurrent processes, and can
be categorized into Plain Petri Nets [Ouyang et al., 2007], Colored Petri Nets
[Yang et al., 2005] and High-level Petri Nets. Dong [Dong, 2009] developed
a tool for test case generation of BPEL processes using High-level Petri Nets.
The basic approach is to build a reachability graph from which test cases
can be extracted. The approach has a very high space complexity.

3.2.4 Graph-based Approach

Graphs can be employed for coverage-based testing of programs. It is
a useful structural testing technique, where the idea is to represent the
program formally in a graph-like structure, and the test data is generated

40

3.2 Testing trends of SOA Applications

so as to test possibly all branches, or paths present in the model of the
software under test. Considering the fact that some paths are infeasible, the
main goal of such an approach is to attain maximum coverage such as path,
statement, or decision [Adrion et al., 1982]. Both model checking and Petri
nets require formal specifications of the system under test to be available,
which is unfortunately not always possible. On the contrary graph-based
approach does not have any such restriction. It only requires some coverage
criteria and an underlying structure of the system under test.

Yuan et al. [Yuan Yuan and Sun, 2006] presented a graph search-based test
case generation of BPEL processes that makes use of matrix transformations
of control flow graphs, path coverage, and the classification of nodes in the
graph depending on incoming and outgoing edges. Yuan et al.’s approach
is close to ours in two ways. First, they suggest to transform a BPEL pro-
gram to a control flow graph. Second, they generate test data using the Lp
constraint solver [Berkelaar,], which is later on combined with test paths
to generate abstract test cases. However, our approach differs from Yuan’s
work. Although we use the path coverage criterion for test path generation,
we further add pre- and post condition contracts to test paths, in order to
handle the test oracle problem. In addition, we use the Minion constraint
solver [Gent et al., 2006] to generate test data instead of relying on Lp.

Another closely related work is from Yan et al. [Yan et al., 2006], which
relies on an extended Control Flow Graph (XCFG). The idea behind their
work is to extract all sequential paths from the XCFG, and to combine them
into concurrent test paths. From these concurrent test paths they collect
constraints using backward substitution. In our approach, we transform
each sequential path directly into a set of constraints, which is checked for
satisfiability directly using the Minion constraint solver. If constraints are
not satisfiable, we discard the corresponding path. Otherwise, the constraint
solver returns values for all variables used to execute the path, which we
directly register as a test case in the test suite under construction.

41

3 Preliminaries and Related Work

3.2.5 Contract-based Approach

Contract-based testing techniques are also relevant to our work. Design-by-
contract is a well-known software engineering technique for more reliable
testing [Meyer, 1992]. In this approach, the developer needs to provide
contracts, i.e., the pre-conditions and post-conditions, that must hold true
before and after any access to the developed software component. The
post-conditions can be very useful in the specification of test oracles, i.e.,
the expected test output. However, these contracts by the developer and the
provider entail high costs, and are often ignored.

In the context of SOAs, this idea has been applied mainly in web service test-
ing. For example, [Heckel and Lohmann, 2005] argue that contracts applied
at the model level are useful in the automated generation of test oracles,
but can be very costly to implement. Also, assertions are easier to apply
in OWL-WS technology but are difficult to implement in a WSDL-based
process model [Bozkurt et al., 2013]. Dai et al. combine this approach with
Petri Nets [Dai et al., 2007]. They specify contracts using an OWL-S model
and transform them into Petri Nets. The test cases are generated based on a
Petri Net behavioral analysis.

Although there have been many approaches in defining contracts for web-
services testing, there is still no Design by Contract standard for SOA
[Bozkurt et al., 2013]. We combine contract-based testing with symbolic ex-
ecution in our approach. The tester can specify contracts, i.e., pre- and post-
conditions on the model derived from the BPEL specification. This addi-
tional information can increase the quality of generated tests by providing
the required inputs and expected outputs for the external web services.

3.2.6 Search-based Approach

The Search-based approach is also a well known software engineering
technique for test data generation. A search-based approach employs a
metaheuristic search techniques for generating test inputs specific to a test
goal. “A metaheuristic is a higher-level procedure or heuristic designed
to find, generate, or select a heuristic (partial search algorithm) that may

42

3.2 Testing trends of SOA Applications

provide a sufficiently good solution to an optimization problem, especially
with incomplete or imperfect information or limited computation capacity”
(Wikipedia). The test goal can be configured using a fitness function. Some
typical meta-heuristic search techniques include genetic algorithms, simu-
lated annealing and tabu search [McMinn, 2004]. It is widely used in many
testing types, such as functional testing, regression testing, web testing and
interaction testing.

The paper from Canfore et. al. [Di Penta et al., 2007] explores search-based
testing of SOA systems in order to trigger SLA violations using genetic
algorithm. They discuss their approach on two case studies. The approach
might produce some false negatives due to multiple invocations of a ser-
vice. They use two fitness functions based on the black-box and the white-
box approach to cause SLA violations. They claim that the white-box ap-
proach performs better than the black-box. McMinn et. al. have presented a
novel search-based approach for generating string data type as test inputs
such as dates, banking codes, identity cards, social-security numbers etc.
for testing ten java projects [McMinn et al., 2012]. Harmann and Bozkurt
[Bozkurt and Harman, 2011] propose a tool about generating realistic test
data and compare the effectiveness with randomly generated test inputs.
They exploit existing web services for generating realistic input data.

[Blanco et al., 2009] applied the Scatter search to derive test cases for BPEL
compositions. Instead of a control flow graph, they use a state graph to
represent the business process logic and generate test cases considering the
branch coverage criterion. Basically, the search process works on randomly
generated solutions for each transition, the goal is to cover all transitions,
but the search can be stopped when the maximum number of test cases
have been achieved.

Although the problem of testing SOAs has been investigated thoroughly,
the lack of real-world case-studies is the biggest bottleneck in comparing
the effectiveness of different testing approaches [Bozkurt et al., 2013].

43

3 Preliminaries and Related Work

3.3 Debugging Definitions

Debugging is an integral part of any software development lifecycle. The
main focus of any debugging technique is to detect, localize and possibly cor-
rect faults revealed in software testing phase [DeMillo et al., 1996]. There are
many well-known debugging approaches such as slicing-based [Korel, 1990],
spectrum-based [Abreu et al., 2009], delta debugging [Cleve and Zeller, 2005],
and model-based software debugging [Mayer and Stumptner, 2007].

Model-based software debugging derives its roots from model-based diag-
nosis. Model-based Diagnosis is used in diagnosing probable reasons behind
the observed fault. The earliest work in the field of diagnosis can be found
three decades ago, when Davis et. al. proposed a diagnosis approach for
finding faults in digital circuits based on the structure and behavior of the
system [Davis, 1984]. In his words: A model is an ”understanding of how
a system should work”, which is used to detect the misbehavior of the
system [Davis, 1993].

In other words, a model is a representation of the correct behavior of the
physical system. A set of observations depicting any malfunctioning of the
actual system can be used on the model to explain the cause behind the
fault. The possible explanations obtained from the model are known as
“diagnoses”. The description of a faulty system can be expressed in various
ways such as first-order logic or temporal called first principles.

A general theory of diagnosis from first principles was first proposed by
[Reiter, 1987]. He presented a generalized algorithm for diagnosis based
on conflicting sets obtained from the contradiction in system descriptions
and observations, which was later on corrected by [Greiner et al., 1989].
This algorithm uses the term “conflicts” to denote inconsistent parts of
the model given a set of observations, i.e., inputs and expected outputs.
And, uses a theorem prover to find the conflicts. There are three main
components needed for computing diagnosis, i.e., system components,
system descriptions and observations.

There is a common assumption in model-based diagnosis that all infor-
mation regarding system description and faults is available. However, this
might not be true in reality [de Kleer and Williams, 1987]. Most of these

44

3.3 Debugging Definitions

approaches use hitting-set algorithm for computing explanations from con-
flicts. As the hitting-set algorithm has high space complexity, there have
been approaches to compute diagnoses using tree-structured algorithms
[Stumptner and Wotawa, 2001].

In the context of software debugging, program slicing has been widely dis-
cussed in academia in order to locate software bugs [Tip, 1995]. A Slice,
according to [Weiser, 1982] is an executable subset of a program P, which
contains all relevant statements with respect to some slicing criterion. A
slicing criterion is specified by a set of variables at some location in a program.
The purpose is to focus only on statements which actually influence the par-
ticular variable(s) at a specific program location. Hence, all other statements
become irrelevant in the debugging context, thereby reducing the program
size to be analyzed. There are two major types of slicing: static and dynamic.
The [Weiser, 1982] approach is a static one, as it considers all possible inputs
for the variable of interest v. [Korel and Laski, 1988] suggested an approach,
which only considers run-time input given to the program for computing
slices of a particular variable v. The added advantage of this approach is
further reduction in the slice size, along with precise tracking of dynamic
data structures such as arrays [Tip, 1995]. For a detailed survey of different
program slicing techniques, we refer the interested reader to the survey
done by [Tip, 1995].

The original scope of the model-based diagnosis was finding faults in
physical systems. [Wotawa, 2002] showed the relevance of the diagnosis
approach in finding faults in software programs. He argued that hitting-
sets are equivalent to “slices” used in dynamic slicing for the software
debugging. The program statements in a slice would represent components
in a dependency-based model. A failing test case would represent the set of
observations.

In this work, we use model-based debugging approach using dynamic slic-
ing. The debugging approach presented in [Wotawa et al., 2012] is adapted
to service-oriented architecture needs. And the dynamic slicing is considered
because of reduced runtime costs.

45

3 Preliminaries and Related Work

3.4 Diagnosis of SOA Applications

There have been many efforts in providing a comprehensive diagnostic
framework for diagnosis, monitoring and repair activities of SOA pro-
cesses. The most recent work on that was conducted under a european
project called WS-DIAMOND1. The main focus of the project had been
to build a platform for monitoring, diagnosis and self-healing of web ser-
vices [Modafferi et al., 2006]. They introduced a plug-in so as to overcome
shortcomings of the standard BPEL engine, by augmenting its repair fea-
tures. [Console et al., 2007] as a part of the DIAMOND project, describes
the decentralized architecture for model-based diagnosis. All participating
services are assumed to have a local Diagnoser, and to maintain loose-
coupling principle, a global Diagnoser is responsible for communication
between all participating components. As a part of the project, Ardagna et
al. [Ardagna et al., 2007] described a framework for adaptive web service
processes. In [Li et al., 2009], the authors present a decentralized diagnosis
approach for BPEL processes, [Travé-Massuyès et al., 2006] considered the
question of how to define diagnosability of systems and its use for diag-
nosing web services. Ardissono et al. [Ardissono et al., 2008] discussed the
question of enhancing web service compositions using diagnosis.

[Friedrich et al., 2010b] proposed an alternative approach to diagnose pro-
cesses with partial known behavior and claim to outperform dependency-
based methods. They use CLP(FD) constraint solver for obtaining minimal
diagnoses from the execution trace of a failed business process. To make up
for the partially known behavior of web services, they introduce a set of pos-
sible behavior themselves in order to make the dependency-based method
work. Our work makes use of a minion constraints solver [Gent et al., 2006],
where we add the missing information using table constraints. In a more
recent work, [Mayer et al., 2012] computed the complexity of their approach
to be second level of the polynomial hierarchy. They argue that dependency-
based models are not capable of capturing true semantics of partial models
because of the highly dynamic nature of distributed systems. They use
discrete-event system models as a foundation for their work, but unlike typ-
ical ”diagnosis-model” determines the normal or faulty nature of an event

1http://wsdiamond.di.unito.it/

46

3.4 Diagnosis of SOA Applications

from execution. They believe that partial models can be better diagnosed or
repaired using answer set programming [van Harmelen et al., 2007] rather
than constraint satisfaction.

[Yan et al., 2009] also make use of discrete event systems to model the
BPEL processes. However, they employ synchronized automata to represent
process trajectories, and diagnose the faulty process using consistency-based
systems. They categorize exceptions as either ”time-out” (due to network
fault or the remote web service) or ”business logic”, i.e., faults within the
workflow activities. They focus in their work on ”business logic” faults. We
also make use of dynamic slicing [Korel, 1990] combined with diagnosis
[Wotawa, 2002] in our diagnostic model. But, in contrast to their work, we
use graph-based approach for modeling the service process.

In another work, [Friedrich et al., 2010a] et. al. generate repair plans for
failed executed processes. They propose a model-based planning strategy
for not only diagnosing faults, but also generating a repair plan for faulty
processes. The approach includes both design-time information of the pro-
cess structure and run-time monitoring. They argue that it is not possible
to guess all faults at the design-time. For that, they suggested a heuristic-
based reasoner, which determines the effect of ”non repairable” activities
on ”repairability” of process definitions. In addition, they also include the
run-time execution history for the ”generic repair ” plan generation.

Our work is more related to the work done by [Friedrich, 2010], that diag-
noses the behavior of faulty service-based processes using logic program-
ming. Their solution first finds diagnoses for the occurred fault, then all
diagnoses are given as an input to the repair generator. The repair generator
part is responsible for selecting the most suitable repair suggestion as a
compensation for the failed or partially executed process. They use disjunc-
tive logic programming (DLV)[Leone et al., 2006] for repair generation. We
model the activities with in a business process using constraints.

In contrast to these papers, we describe a solution that combines dynamic
slicing with model-based diagnosis for improving the overall diagnosis per-
formance. Hence, it can be considered similar to the approach Wotawa et al.
proposed for debugging Java programs [Wotawa, 2002]. We are particularly
interested in debugging functional faults in BPEL compositions. The focus

47

3 Preliminaries and Related Work

was to build light-weight debugger for diagnosing faults in BPEL partial
models.

3.5 Conclusions

In this chapter, we presented related work in the context of model-based
testing and debugging of SOA business processes. One of the main issues in
testing SOA compositions is the high cost at the integrator side. Model-based
testing can greatly reduce the cost by automating the test generation process.
Also the coverage achieved by model-based testing tools is much higher than
randomly or manually generated tests. Furthermore, formal verification
techniques such as model-checking, petri nets and symbolic execution, can
be combined with model-based testing for test-case generation and test-
coverage analysis. These approaches can greatly reduce the testing costs,
as they can be performed offline. The oracle problem can be addressed
using contract-based approaches in the testing of SOA processes. Hence,
model-based testing and verification of service composition combined with
contract-based approaches can better cope with the issue of ”Trust” in
testing. However, the contracts should be provided by the developer or
the provider, so as to reduce the testing cost at the integrator end. Further
details about the approach are presented in Chapter 4.

Regarding debugging of service compositions, related work concentrates
on the monitoring, diagnosis and repair of web services. We present a
light-weight debugging approach which can reduce the debugging cost.
The approach takes execution traces of BPEL compositions, and employs a
model-based debugging approach to look for probable causes of functional
faults. More details about our approach are presented in Chapter 6.

48

4 Model-based SOA Testing

4.1 Introduction

A typical SOA-based system consists of a multitude of services, business-
processes, message busses, registries and service monitors owned by mul-
tiple stakeholders [Leitner et al., 2013]. In the context of SOAs reliability,
observability and controllability are the two major issues faced by indus-
try as well as the research community [Hierons and Ural, 2009]. According
to [Bozkurt et al., 2013], limited observability and controllability raise the
issue of ”Trust”, and testing is one way of building the confidence that the
implementation conforms to specifications. However, due to the intricate
nature of SOA-based systems, the testing process is not as straightforward
as with traditional software systems [Canfora and Penta, 2006]. In a tradi-
tional testing process, the system under test is generally owned by one
stakeholder, and the implementation is also available, but in case of SOAs it
is not the case, rather the system under test is composed of many loosely
coupled web services owned by many stakeholders.

To illustrate the problem, let us consider the Bank Loan example depicted
in Figure 4.1, taken from [Bpe, 2012]. The corresponding process starts
upon receiving a loan request from a client as follows: Loan requests below
10.000 credits are sent to the corresponding BPEL service calculateRisk. This
service computes risk related to a particular client based on information
like the clientID and the loan amount. The requests from low risk clients
are approved immediately. Those from high risk clients or with amounts
starting at 10.000 credits are sent to another service thoroughAssessment. This
service is responsible for thorough assessment before a decision is made.

The problem lies in the fact that implementation details about these two
essential services are unavailable, as a result the effect of calling web ser-

49

4 Model-based SOA Testing

Figure 4.1: The Bank Loan BPEL Process

vices calculateRisk and thoroughAssessment is unknown. This is part of the
information we aim to attach to the model via pre- and postcondition con-
tracts. For our example, we assume calculateRisk to suggest a low risk
for clients with excellent bank records, or whenever the amount is below
1000 credits. This can be easily captured in pre- and postconditions (see
Section 4.4) attached to the corresponding process component.

The Chapter is organized as follows: In Section 4.2, we present overall archi-
tecture of our approach. Section 4.3 describes underlying definitions used
in our approach. This is followed by the test case generation in Section 4.4.
Section 4.5 explains the experimental setup and results obtained from first
experiments are discussed in Section 4.6. We compare structured and ran-
dom testing of sequential and concurrent BPEL processes in Sections 4.7,
and 4.8. Section 4.9 presents conclusions.

The content of this Chapter has been published in the following papers.

• Fifty shades of grey in SOA testing [Wotawa et al., 2013].
• SOA grey box testing- a constraint-based approach [Jehan et al., 2013b].
• Functional SOA testing based on constraints [Jehan et al., 2013a].
• BPEL Integration Testing [Jehan et al., 2015].
• SOA testing via random paths in BPEL models [Jehan et al., 2014].

50

4.2 Architecture

4.2 Architecture

Model-based testing (MBT) is a popular approach for testing complex sys-
tems, as it helps structuring the test design process and building common
understanding among different stakeholders [Binder et al., 2015]. In prac-
tise ”Model-based testing encompasses the processes and techniques for
the automatic derivation of abstract test cases from abstract models, the
generation of concrete tests from abstract tests, and the manual or auto-
mated execution of the resulting concrete test cases [Utting et al., 2012]”.
According to this definition, MBT is a three step process: model generation,
test generation and test execution.

Our model-based testing architecture comprising BPELTester along with
links to external tools is illustrated in Figure 4.2. It is composed of three
modules: Analysis module, Test Suite generator and Test executor. The Analysis
module is responsible for building the model. It takes the SOA definitions
comprising BPEL and WSDL files and converts them into a control flow
graph representation that might be annotated using pre- and post conditions
of service invocations. Each node in a control flow graph represents an
activity in the BPEL process.

The Test Suite Generator module is responsible for test generation. It derives
abstract test cases (paths) that represent particular traversals through the
control flow graph. Each such traversal represents a particular execution
of the SOA process model. In order to compute corresponding test cases,
paths in the control flow graph are translated into constraint representation.
Our constraint representation makes use of static single assignment form as
explained in [Nica, 2010]. Afterwords, this constraint representation of paths
is used as input to the MINION constraint solver [Gent et al., 2006], which
computes all the necessary inputs and expected outputs that characterize
such an execution.

The test execution is done by the Test2Unit module. The module derives
the appropriate input for the BPELUnit [Lübke, 2006] tool that is used for
actually executing generated tests. This tool plays an important role in the
results analysis as this module is also responsible for generating the test
suite for the MuBPEL tool that is a mutation testing tool for BPEL language.
We rely on this tool to measure the quality of the generated test suite by

51

4 Model-based SOA Testing

BPEL /
WSDL

BPELUnit
Test Suite

Analysis
Module

Test Suite
Generator

Test2Unit

MINION
Constraint
Solver

BPELUnit

Control
Flow
Graph

Test Suite

BPELTester

MuBPEL

Figure 4.2: The BPELTesterarchitecture.

checking if it can distinguish between a mutant and the original program.
The quality is measured through the mutation score of the generated test
suite. For further details about the actual implementation and the working
of the mutation tool, we refer the interested reader to the tool website
[BPEL Mutation tool, 2011].

52

4.3 Definitions

4.3 Definitions

As mentioned in the previous section, the first part in our test case genera-
tion method is the extraction of a control flow graph from the BPEL source
code. The control flow graph serve as our reasoning model.

Definition 1 (BPEL Flow Graph). A BPEL Flow Graph G is a tuple (V, E, vs, F,
ΓA, ΓC), where vertices v ∈ V represent BPEL process activities, E is the set of
edges e = (vi ∈ V, vj ∈ V) which correspond to the connections between BPEL
activities, vs ∈ V is the start vertex, F ⊆ V is the set of graph G’s leaf vertices,
and ΓA as well as ΓC are functions that map vertices to activity assignments and
conditions respectively.

A BPEL Flow Graph captures all the possible executions between the defined
vertices in a given process. In our case, a vertex v stores all the information
relevant to a corresponding BPEL activity. And a use-case consists of a
particular sequence of vertices from the start vertex vs to the end vertex vF.
A path π is formally defined as follows.

Definition 2 (Path). Given a BPEL Flow Graph G, a sequence of vertices π =
v1v2 . . . vn is a path in G iff (1) for all i ∈ {1, . . . , n} we have vi ∈ V, (2) the
sequence starts with the start vertex vs, i.e., v1 = vs, (3) vn is a leaf vertex, i.e.,
vn ∈ F, and (4) for all i ∈ {1, . . . , n− 1} we have (vi, vi+1) ∈ E .

A user has to select the start and the end vertex in order to extract corre-
sponding paths between the selected vertices. Once we have all the possible
paths between the selected vertices, we need to make sure, if such a path
is feasible or not [King, 1976]. For that purpose, we need to define a path
condition c(π) that comprises π’s vertices’ assignments and conditions.

Definition 3 (Path Condition). Given a path π = v1 . . . vn of some BPEL
Flow Graph G, path π’s path condition c(π) is a sequence of assignments and
conditionals of π’s vertices defined as c(π) = ΓA(v1) ∪ ΓC(v1) . . . ΓA(vn) ∪
ΓC(vn).

Variables in a path condition are replaced by indexed variables in order to
ensure static single assignment form (SSA) [Brandis and Mössenböck, 1994].

53

4 Model-based SOA Testing

A static single assignment form ensures that every variable is defined only
once in a program. This means whenever a variable is defined, i.e., occurs
at the right side of an assignment, the corresponding index is incremented.
This makes the translation of the path and its path condition c(π) to a
constraint representation much easier. Depending on the satisfiability of a
path condition, we can define a feasible path formally as follows.

Definition 4 (Feasible Path). A path π in a BPEL Flow Graph G is feasible if its
path condition c(π) is satisfiable.

The above stated definitions were used in the test suite generation of se-
quential BPEL programs. However, we needed to adapt these definitions in
order to take care of concurrency issues between various parallel branches
for concurrent BPEL processes. Such flow constructs allow for possibly
concurrent branches that are activated by individual and optional guards. If
such guards are not specified, we assume them to be True for simplifying
our description.

An extended BPEL flow graph allow us to encompass both the sequence
and flow structures, whereby the partial knowledge about the vertices V
can be specified using γC(v ∈ V) and γA(v ∈ V).

Definition 5 (An Extended BPEL Flow Graph). An Extended BPEL Flow
Graph G is a tuple (V, B, E, v0, F, γC(v ∈ V), γA(v ∈ V), γP(v ∈ V), γG(v ∈
B), γB(v ∈ V \ B)), where V is a finite set of vertices representing BPEL process
activities, B ⊂ V is the finite set of fork activity vertices (where a run might
branch), E ⊆ V ×V is a finite set of directed edges representing the connections
between BPEL activities (edge e = (v1, v2) ∈ E connects v1 to v2), v0 ∈ V is
the start vertex, F ⊆ V is the set of leaf vertices (with no outgoing edges), and
the functions γC(v) and γA(v) map vertices v ∈ V to activity conditions and
assignments respectively. If v is in B, γP(v ∈ V) returns the complementing join
activity vertice (and vice versa), and ⊥ otherwise. Function γG(v ∈ B) returns
a list of tuples (ei, TGei) for all of a fork vertice v’s outgoing edges ei and their
transition guards TGei (if there is no guard specified, we assume True so that this
branch is always enabled). For any vertice v in V \ B, the function γB(v ∈ V \ B)
returns the closest predecessor in B if there is such a node, and ⊥ otherwise.

If there are no concurrent computations, an actual execution follows a path
in the flow graph as of Def. 2 in order to derive corresponding test cases

54

4.3 Definitions

by searching for a satisfying variable assignment to the conditions and
assignments encountered along a path.

Definition 6 (Finite Path). A finite path π of length n in an Extended BPEL
flow graph G as of Def. 5 is a finite sequence π = π1π2...πn such that (1) for any
0 < i ≤ n: πi ∈ V, (2) π1 = v0, (3) for any 0 < i < n, the edge e = (πi, πi+1) is
in E, and (4) πn ∈ F. |π| denotes the length of a path π. We use f (π) to refer to
the last vertex in π.

Definition 7 (Finite Path Segment). A finite path segment π in an Extended
BPEL flow graph G is defined like a path, but does not have to start in G’s initial
state v0, and neither is f (π) required to be in F of G.

Unlike sequence activity, the flow construct allows parallel branches to be
active simultaneously. Therefore, we introduce the following definition of a
run.

Definition 8 (Finite Run). A finite run r of length n in an Extended BPEL
Flow Graph G as of Def. 5 is a finite sequence r = r1r2...rn such that (1) for any
0 < i ≤ n: ri ∈ V, (2) r1 = v0, (3) rn ∈ F, and (4) for any 0 < i < n, either the
edge e = (ri, ri+1) is in E, or if γB(pi) 6= ⊥ then there has to be some i < j ≤ n
such that (a) there is no i < k < j with rk = γP(γB(ri)) and (b) edge e = (ri, rj)
is in E. |r| denotes the length of run r. With f (r) we refer to the last vertex in r.

A finite run in a flow activity can be considered analogous to the notion
of a path in definition 2 for a sequence activity. Since the order of parallel
branches is not defined, a finite run only ensures the partial order in a
single branch. Like a path (see definition 2) in a sequence activity, a run r
might also be infeasible. Therefore, we also need to check if a run’s collected
assignments and conditions are possible.

Definition 9 (Feasible Run). A feasible run r is a run as of Def. 8 s.t. the
conditions and assignments encountered along the run are feasible. It is complete,
iff for all satisfied transition guards TGei at all v ∈ B visited by r, the corresponding
branch started by edge ei is present in r.

A corresponding satisfying assignment for a complete run r defines a valid
test case. In a sequence activity, test cases can be generated from any feasible

55

4 Model-based SOA Testing

path 4 in a flow graph. Likewise, in a flow activity, we derive test cases from
feasible paths π in G, but in order to compute π’s constraints, we model all
the branches within a flow activity, where only the ones belonging to a path
π need to be active.

Definition 10 (Run Constraints). For a path π = π1π2...πn in some Extended
BPEL flow graph G as of Def. 5, we create the run-constraints C(π) as follows.
For each l ∈ γG(πi) of a πi ∈ B, we define a branching variable bl. Let scope be an
initially empty list of these branching variables, where we can append a variable
bl via append(scope, bl), and ask for the last variable with bl = last(scope) (which
will be ⊥ if the list is empty) as well as remove the last variable via drop(scope).
Furthermore, let stop be an initially empty list of vertices in G which we can access
with the same functions as scope. Then let C(π) be the union of the constraints as
derived by traversing π from π1 to f (π) (possibly recursively) as of Def. 11, where
in recursive calls the original path can be referred to as πo, and where variables are
replaced by indexed variables in order to implement a static single assignment form
(see [Brandis and Mössenböck, 1994]).

In order to compute run constraints for a f low activity, we need to take care
of three things: First, the local scope of variables defined in each branch
should be maintained. Second, if the current branch is not a part of the
run, we need to propagate values of all variables defined in that branch,
so that their SSA representation before the fork activity should match the
representation after the join activity. This is due to the fact, that we model
all branches in a f low activity, irrespective of the fact if that branch is active
or not. Third, in case the current branch is active in a particular run, then we
need to update corresponding conditions and assignments in that branch
stored in Π.

Definition 11 (Run Scope). For a given path segment π in G, its branching
variables and lists scope and stop, we do the following: Let Π be an initially empty
list of tuples (v, bm, π′) such that v is a vertex, bm is a branching variable, and π′

is a path segment in G. Then, traversing π from π1 to f (π) do as follows.

1. if πi = last(stop), then for each (πi, bm, π′) in Π do: First, remove (πi, bm, π′)
from Π, and then add constraints for π′ as of this Definition for a local scope
having bm as it sole element, computing the local branching variables for π′,
and assuming a local empty stop list. When there is no more (πi, bm, π′) in
Π, call drop(scope) and drop(stop).

56

4.4 Test Case Generation using constraints

2. if πi /∈ B then (a) add constraints γC(πi) ∪ γA(πi) if last(scope) = ⊥
and proceed with Step 1 for πi+1, or (b) add constraints (bl → γC(πi)) ∪
(bl → γA(πi)) ∪ (¬bl → γ′A(πi)) for bl = last(scope) 6= ⊥ and γ′A(πi)
replacing every assignment of a variable in γA(πi) with an assignment of
the variable’s old value (so that we are always synchronized in respect of the
SSA indices when arriving at the join activity, regardless of which branch
was active).

3. if πi ∈ B then do as follows. For l = ((πi, πi+1), TGl) ∈ γG(πi), add
the constraints bl → TGl and TGl → bl, and append bl to scope, append
γP(πi) to stop, but add the constraint bl only if π = πo. Then find for each
m = ((πi, v), TGm) ∈ γG(πi) s.t. m 6= l a path segment π′ leading from v
to γP(πi), and add the tuple (γP(πi), bm, π′′) s.t. π′′ equals π′ but with the
last vertex (γP(πi)) removed to Π, as well as add constraints bm → TGm
and TGm → bm.

Once the run constraints for a path π are collected, we can check the feasi-
bility of all the run constraints using the constraint solver [Gent et al., 2006],
and store all the feasible branches as test cases. MINION is an out of the
box, open source constraint solver, whose syntax requires a little more effort
on modeling the constraints, e.g., it does not support different operators to
be used within one constraint. Because of that, more than one constraint
may be needed to model certain operators like addition and subtraction.

The test suite generation of a f low activity is different from that of a
sequence activity in a way that we need to synchronize the assignments and
conditionals of all the concurrent branches in a run r.

Definition 12 (Test Case and Test Suite). A test case for a BPEL Flow Graph G
is a variable assignment that makes a complete run r (or a path p) in G feasible. A
test suiteTS is a set of test cases.

4.4 Test Case Generation using constraints

The test case generation for BPEL processes has been investigated thor-
oughly. Most of the work on test case generation of BPEL compositions
use formal verification tools such as petri-net or model checkers to derive

57

4 Model-based SOA Testing

1 <sequence standard−a t t r i b u t e s>
2 standard−elements
3 a c t i v i t y +
4 </sequence>

Figure 4.3: A Sequence activity

test cases [Bozkurt et al., 2013]. Exploiting constraints for testing has already
been considered in the literature. Gotlieb and colleagues [Gotlieb et al., 1998]
presented an approach for extracting test cases from programs using a con-
straint representation of source code. Our work is similar, as we also rely
on constraints for automated test data generation. However, the application
domains are different, and the extraction of constraints has to take care of
partial specifications.

A BPEL process can be abstract or executable: An abstract process is par-
tially specified and is not intended to be executed; an executable process,
on the contrary, has to be fully specified. An executable process is com-
posed of basic and structured activities. Among the structured activities,
two very common structures are the sequence activity and flow activity.
In a Sequence activity, all encompassing activities have to be performed
sequentially, whereas a Flow activity is defined to execute more than one
activity in parallel. Because of that, our test-case generation process for
sequential BPEL processes is different from that of concurrent BPEL pro-
cesses. Another important activity is Invoke activity, which is meant for
communication of the the business process with its partner processes or
web services. The communication could be either one-way (asynchronous)
or a two-way (synchronous) process. In Sections 4.4.1, 4.4.2, we outline our
constraint-based solution to derive functional tests from the control flow
graph representation of an executable synchronous BPEL process.

4.4.1 Sequence Structure

A Sequence activity is a structured activity which contains other basic
and structured activities as shown in Figure 4.3. The activities need to be

58

4.4 Test Case Generation using constraints

1: procedure AllPaths(G, MaxLen, vs)
2: initialize test suite S← ∅
3: compute the set P← AllPathsSUB(G, MaxLen,π,P,vs)
4: for each path π ∈ P do
5: Compute the path constraints C(π)
6: check the satisfiability of path constraints C(π)
7: if C(π) is satisfiable then
8: add a satisfying assignment (a test case) to S
9: end if

10: end for
11: return test suite S.
12: end procedure

Figure 4.4: TCG algorithm that considers all paths.

executed in a strictly defined manner. A sequence activity can contain nested
sequence activities, where + symbol denotes one or more activities.

Figure 4.4 comprises our test case generation algorithm used only for
sequential BPEL processes. The algorithm takes the BPEL Flow Graph G
and the maximum path length MaxLen as inputs and computes feasible
test cases. Note that MaxLen has to be equal or larger than the length of
the smallest path in G from the start to an end vertex. The algorithm is
search-based and traverses the flow graph using a depth-first search strategy
for extracting paths. Afterwards, path conditions are computed and checked
for consistency. If the path condition is feasible, the variable assignments
that result from such a check are saved as a test case. Finally, the algorithm
returns a test suite.

In the following, we discuss the different steps of the algorithm and those
activities that have to be carried out in more detail. The approach is sim-
ilar to symbolic execution, already discussed in Section 3.2.1. Similar to
symbolic execution, conditions are computed which belong to a particular
execution path. In our case, we convert each path condition into a constraint
satisfaction problem (CSP). The conversion takes place in two steps: first,
the BPEL flow graph constructs are converted to an intermediate representa-
tion, called static single assignment (SSA). The detailed explanation of SSA
representation of Java programs into MINION can be found in [Nica, 2010].

59

4 Model-based SOA Testing

1: procedure AllPathsSUB(G, MaxLen, π, P, vcurr)
2: if |π| ≥ MaxLen then
3: return
4: end if
5: append vcurr to path π
6: if vcurr matches vF then
7: add path π to set P
8: return
9: end if

10: for each OutEdge of vcurr in G do
11: vcurr ← voutEdge
12: call AllPathsSUB(G, MaxLen, π, P, vcurr)
13: end for
14: end procedure

Figure 4.5: AllPathsSUB algorithm for computing all paths for a Flow Graph G up to a
given pre-defined length MaxLen.

Since BPEL is a mixture of a workflow and a programing language. There-
fore, the programming language constructs can be handled much like the
[Nica, 2010] approach with few subtle differences. For example, we do not
do the loop unrolling, rather the loop execution is defined by the path length
provided by the tester. Our conversion algorithm works as follows.

• SSA conversion: The static single assignment (SSA) form is an interme-
diate representation of a program such that no two left-side variables
share the same name. This intermediate representation enables an
easier conversion into a CSP. The basic rules used for the conversion
of a BPEL path into its SSA representation are listed below:

– We convert an Assign activity by adding an index to a To variable
each time the variable is defined, i.e., declared as the To variable.
If a variable is redefined, the index is incremented so as to satisfy
the SSA property. The index of a From variable, i.e., referenced
variable is equal to the last definition of the variable.

– We convert Receive and Reply activities into assignments.
– Invoke is easily converted into assignments, where the right hand

side variable is the “input variable” and the left side variable is

60

4.4 Test Case Generation using constraints

the “output variable”.
– We convert the structured activity If in two steps: 1) the condition

is saved in an auxiliary variable. 2) each assign or invoke activity
is converted according to the above rule. 3) The condition variable
is set to true in case of an “if ” or “else if” branch, but to false in
case of an “else” branch.

– The while structure is converted similarly to If, with the exception
that the condition is always set to true. The loop is repeated up
till the maximum length specified by the tester.

– The Flow activity construct is modeled different from that of
other constraints. First, the transition guards are converted into
If structure. Since there can be more than one branch in a flow
construct. The algorithm makes sure that each branch is active
once, e.g., the condition variable is set to true, in order to model
the concurrent behavior into constraints. However, note that,
our implementation assumes that parallel branches do not have
shared variables. Under this assumption, the concurrent behavior
can be modeled much like a sequence activity with the exception
that all branches have to be modeled for each run.

• Constraint conversion: The second step involves the conversion of SSA
statements into their corresponding constraints. The representation of
the conditions and assignments resulting from the SSA conversion as
constraints is simple and requires basically nothing else than a direct
mapping from variables to constraint variables and from the conditions
to assignments to their respective representation. In order to illustrate
the constraint conversion we show the constraint representation for
the path from the Bank Loan example using MINION constraints. The
constraint ineq(x, y, k) ensures that x ≤ y + k, and eq states that
both variables used as parameters have to have the same value.

The conversion steps outlined above can be best understood with the help
of the loan example introduced in the start. The flow graph of the loan
example is given in Figure 4.12.

For this example there are three possible paths: (1) loanRequest, amount >=

10000, thoroughAssessment, loan[decision], (2)loanRequest, amount < 10000,

61

4 Model-based SOA Testing

calculateRisk, risk == low, loan[approve], and (3) loanRequest, amount <

10000, calculateRisk, risk != low, thoroughAssessment, loan[decision].

Let us consider path (2), making the following assumptions regarding the
BPEL components’ behavior: Component loanRequest has an empty pre-
condition and amount > 0 as post-condition. Component calculateRisk’s
behavior is given only partially: up to 1000 credits, the risk is assumed to be
low. This partial specification can be formalized using the post-condition
amount < 1000 → risk == low. For calculateRisk the pre-condition is
assumed to be empty. Taking into consideration the pre- and post-condition
as well as the conditions related to other BPEL components, we obtain the
following conditions for path (2):

1: amount 0 > 0

2: amount 1 = amount 0

3: amount 1 < 10000

4: amount 1 < 1000→ risk 0 == low

5: risk 0 == low

6: loan 0 == approved

We use MINION to check for a variable evaluation that satisfies all con-
straints. For path (2), the assignment amount 0=1, amount 1=1, risk 0=low,
loan 0=approved is such an evaluation. Obviously, amount 0 = 1 with the
expected output loan 0 = approved is a valid test case and exactly ensures
executing its corresponding path.

The flow graph for our running example is quite similar to the graphical
representation of the original process in Figure 4.1. The vertices for this
process are defined by the following activities: receiveInput (vrI), AssignLoan
(vAL), IfLoan (vIL) and (vElse IL), AssignInRisk (vAIR), InvokeRiskService (vIRS),
AssignOutRisk (vAOR), IfLowRisk (vILR) and (vElse ILR), AssignApproved (vAA),
AssignInAssess (vAIA), InvokeAssessRisk (vIAR), AssignOutAssess (vAOA), and
replyOutput (vrO).

We store all data related to a particular activity with the corresponding
vertex, i.e., input variables, output variables, assignments, as well as condi-
tions for structured activities if, else if, and while. Essential are also the pre-

62

4.4 Test Case Generation using constraints

and post conditions related to an activity. The conditions for vertex vrI (the
receiveInput activity) are defined, for example, as follows:

Pre-condition: $input_loan > 0

Post-condition: $loan = $input_loan

While due to the pre-condition only loan requests with positive amounts are
allowed, the post condition ensures that the local variable “loan” is assigned
the actual loan amount. For these pre- and post conditions we use the same
language as is used for BPEL expressions, i.e., XPATH [Xpa, 2011], where
we currently support the usual Boolean operations. In addition, auxiliary
information about Invoke activities is added in the form of pre- and post
conditions. That is, for the calculateRisk service, the expected behavior is
defined via the (partial) postcondition (loan ≥ 1000) ∨ (risk == 0).

In our running example a low-risk low-amount request is treated via the
following path (Path 1): π = vrIvALvILvAIRvIRSvAORvILRvAAvrO.

We will use such paths to derive our test cases. That is, as a first step, a
search-based algorithm traverses the graph in a depth-first search manner
in order to extract the paths from vs to the leaf vertices. For our running
example there are three such possible paths, i.e, the first for low-amount
low-risk requests leading to an immediate response approving the request,
the second and third paths requiring a more thorough assessment.

For the three paths in our exemplary business process, the corresponding
path conditions are given in Figures 4.6, 4.7, and 4.8 respectively.

A corresponding variable assignment satisfying c(π) for Path 3, and thus a
test case, is the following one:

input = 10001

loan = 10001

AssessRiskPLRequest = 10001

output = AssessRiskPLResponse

63

4 Model-based SOA Testing

1 vrI : input0 > 0
2 vAL : loan1 = input0
3 vIL : loan1 < 10000
4 vAIR : CalculateRiskPLRequest1 = clientID0
5 vIRS : loan1 < 1000
6 vAOR : risk1 = CalculateRiskPLResponse0
7 vILR : risk2 = 0
8 vAA : approvalResult1 = 1
9 vrO : output1 = approvalResult1

Figure 4.6: Path 1: c(π) for low-risk and low amount loan requests.

1 vrI : input0 > 0
2 vAL : loan1 = input0
3 vIL : loan1 < 10000
4 vAIR : CalculateRiskPLRequest1 = clientID0
5 vIRS : loan1 < 1000
6 vAOR : risk1 = CalculateRiskPLResponse0
7 vElse ILR :!(risk2 = 0)
8 vAIA : AssessRiskPLRequest1 = loan1
9 vIAR : loan1 ≥ 1000

10 vAOA : AssessRiskPLResponse1 = 1
11 vrO : output1 = AssessRiskPLResponse1

Figure 4.7: Path 2: c(π) for high-risk and low amount loan requests.

1 vrI : input0 > 0
2 vAL : loan1 = input0
3 vElse IL :!(loan1 < 10000)
4 vAIA : AssessRiskPLRequest1 = loan1
5 vAOA : AssessRiskPLResponse1 = 1
6 vrO : output1 = AssessRiskPLResponse1

Figure 4.8: Path 3: c(π) for high amount loan requests.

64

4.4 Test Case Generation using constraints

1 ineq(0, input0,−1)
2 eq(loan1, input0)
3 ineq(loan1, 10000,−1)
4 eq(CalculateRiskPLRequest1, clientID0)
5 ineq(loan1, 1000,−1)
6 eq(risk1, CalculateRiskPLResponse0)
7 eq(risk2, 0)
8 eq(approvalResult1, 1)
9 eq(output1, approvalResult1)

Figure 4.9: MINION constraints for Path 1.

1 ineq(0, input0,−1)
2 eq(loan1, input0)
3 ineq(loan1, 10000,−1)
4 eq(CalculateRiskPLRequest1, clientID0)
5 ineq(loan1, 1000,−1)
6 eq(risk1, CalculateRiskPLResponse0)
7 diseq(risk2, 0)
8 eq(AssessRiskPLRequest1, loan1)
9 ineq(1000, loan1,−1)

10 eq(AssessRiskPLResponse1, 1)
11 eq(output1, AssessRiskPLResponse1)

Figure 4.10: MINION constraints for Path 2.

1 ineq(0, input0,−1)
2 eq(loan1, input0)
3 ineq(10000, loan1, 0)
4 eq(AssessRiskPLRequest1, loan1)
5 eq(AssessRiskPLResponse1, 1)
6 eq(output1, AssessRiskPLResponse1)

Figure 4.11: MINION constraints for Path 3.

65

4 Model-based SOA Testing

Figure 4.12: Technical view of the Bank Loan Business Process.

66

4.4 Test Case Generation using constraints

Analysis

Lemma 1 (ComputingAllpaths). The set P in Algorithm 4.4 contains all paths
π s.t. |π| ≤ MaxLen.

Proof. In Line 3 of Algorithm 4.4 we call the AllPathsSUB algorithm given
in Figure 4.5. This algorithm only returns sets of size <= MaxLen. Hence,
any path in P can never exceed MaxLen and the lemma must hold.

Lemma 2 (CheckSatisfiability). Each path π included in a test suite S is a feasible
path in a flow graph G.

Proof. For lemma 2 we can argue that only paths where the feasibility check
has been done can pass (lines 4-10). Hence, the lemma has to hold.

Lemma 3 (Valid Solution). A test in a test suite S created via algorithm AllPaths
for some BPEL flow graph G is a satisfiable variable assignment of a feasible path
in G.

Proof. Line 6 and 7 in Algorithm 4.4 make sure that only satisfiable assign-
ments are test cases.

Theorem 4 (AllPathsSoundness). The AllPaths algorithm is sound such that
only feasible paths of length less than MaxLen are added to the test suite S.

Proof. The proof follows from lemma 1 to 3 directly. We compute all paths.
They are feasible and lead to test cases as of definition 5.

Theorem 5 (AllPathsCompleteness). The AllPaths algorithm 4.4 is complete.
That is, no feasible path is excluded from the result.

67

4 Model-based SOA Testing

Proof. Similarly using Lemma 1, it can be seen that step 3 of the algorithm
performs exhaustive depth-first search to find all paths. Since some of paths
might be infeasible, based on Lemma 2, step 5 ensures that all feasible
paths are included in the result. Hence, there is no missing path. Figure 4.5
illustrates the AllPathsSUB algorithm, where we take the last vertex of the
current path π and recursively call the algorithm on a copy of this path by
adding a successor vertex at the end.

Regarding the termination of AllPaths algorithm shown in Figure 4.4, we can
see that step 3 in the algorithm makes sure that all paths up till MaxLen are
generated, where the MaxLen is larger than the shortest path in a flow graph
G. Due to depth-first search and the fact that search is bounded by MaxLen,
it can be argued that the search terminates in finite time. For loop in step 4

checks the feasibility of all paths included in a set P, which is bounded by
MaxLen parameter, hence is finite and terminates. Step 5 concerns whether
path constraints are satisfiable or not. This involves converting a path π
into corresponding SSA representation πSSA, and translating πSSA into
constraint representation πCO. Both of these steps terminate because of
finite path length. The last part is about calling constraint solver to find
a solution for πCO of a path π. If there is no solution possible, loop will
check for the feasibility of the next path. The termination of the for loop
is dependent on the termination of constraint solver call. In the end, all
feasible paths are added in a test suite S.

The complexity of the algorithm can be computed by summing up the
complexities of steps 3 to 6. Let us assume that there are |V| number of
vertices and |E| number of edges in a flow graph G, then the size of flow
graph becomes |G| = |V|+ |E|. Step 3 computes all paths up till certain
MaxLen which in worst-case can lead to exponential paths when MaxLen is
larger than the longest path in a flow graph G. Step 5 in the algorithm can
be performed in polynomial time since it involves simple conversion from
conditions and assignments (path conditions) to SSA form, and later from
SSA form to Constraints representation. Step 6 involves call to constraint
solver for finding a solution. Therefore the overall complexity would be
O(|V|MaxLen) + O(|C(π)|) + ConstraintSolver(M), where O(|V|MaxLen) rep-
resents an upper bound of the set P, O(|C(π)|) denotes the number of
path conditions for all paths included in the set P, and ConstraintSolver(M)

68

4.4 Test Case Generation using constraints

1 <flow standard−a t t r i b u t e s>
2 standard−elements
3 <l i n k s>?
4 <l i n k name=”NCName”/>+
5 </ l i n k s>
6 a c t i v i t y +
7 </flow>

Figure 4.13: Flow activity

denotes the time required to solve the MINION model M comprising of vari-
ables, their domains and corresponding constraints(VAR, DOM, CON).

The test case generation algorithm as illustrated in Figure 4.4 can model
only sequential processes. Therefore in order to cater for Flow structure, we
adapted the modeling process as explained in the next Section 4.4.2.

4.4.2 Flow Structure

According to the BPEL specification document, a Flow activity is meant to
execute more than one activity in parallel as shown in Figure 4.13. In order
to define control dependencies among child activities, Links construct can
be used. Each such Link can be activated when the corresponding transition
condition is active. If no condition is specified, that link is assumed to be
true.

The semantics of a BPEL Flow activity are depicted in Figure 4.14. The
flow activity defines two branches that are triggered if their respective
guards (x < 10 and y < 10) are activated. Both variables x and y are
assigned new values in each branch, which are reused after join activity.
An execution then follows a run in the graph, where, in contrast to a
path as we have been using in our earlier work for sequential programs
[Jehan et al., 2014, Wotawa et al., 2013], more than one branch may be active
simultaneously.

Deriving a flow graph from the BPEL process, and annotating it with our
partial knowledge about called web services (and other available knowledge)

69

4 Model-based SOA Testing

x=1$ y$=$1$

r$=$x$+$y$

x$=$input-x$
y$=$input-y$

y$<$10x<10

Figure 4.14: Flow Example

in the form of pre- and postconditions (to be added as conditions and
assignments), our test case generation algorithms still select paths, but to
a corresponding run’s model we add also all the parallel branches that
might be traversed as well (depending on the actual assignment and the
corresponding evaluation of the guards). Deriving a satisfying variable
assignment for a constraint representation of this model, we can derive
a corresponding test case, and in turn, following different strategies for
choosing paths, test suites.

Assuming there is no interaction between the parallel branches, we can
derive the variant given in Figure 4.15, supporting also parallel computa-
tions. The StructRuns algorithm is thus also search-based, and the only
difference is that we derive run-constraints as of Def. 10 instead of collecting
only the assignments and conditions along the path itself (path-constraints)
as in AllPaths algorithm shown in Figure 4.4. If such a run-constraints
model is satisfiable, the relevant corresponding variable assignments are
saved as a test case.

70

4.4 Test Case Generation using constraints

Lemma 6 (ComputingAllruns). The set P in the algorithm contains all runs π
s.t. |π| ≤ MaxLen.

Proof. Line 3 in StructRuns as illustrated in Figure 4.15 computes the set P
in an extended BPEL flow graph G which as of def. 5 and 8 contains all runs
π s.t. |π| ≤ MaxLen. Because of the fact that |π| can not exceed MaxLen,
such a run can not exist. It is complete, iff for all satisfied transition guards
TGei at all v ∈ B visited by r, the corresponding branch started by edge ei is
present in r. Also according to def. 11 all parallel branches are modeled and
synchronized.

Lemma 7 (CheckRunSatisfiability). Each path π included in a test suite S is a
feasible run in an extended flow graph G.

Proof. Only paths where the feasibility check as of def. 9 has been done can
included in the test suite S(lines 4-9). Hence, the lemma has to hold.

Theorem 8 (StructRunsSoundness). The StructRuns algorithm is sound such
that only feasible runs of length less than MaxLen are added to the test suite S.

Proof. The proof follows from lemma 6 and 7 directly. We compute all runs.
They are feasible and lead to test cases as per definition 12.

Theorem 9 (StructRunsCompleteness). The StructRuns algorithm is complete.
That is, no feasible run is excluded from the result.

Proof. Similarly using Lemma 6, it can be seen that step 3 of the algorithm
performs exhaustive depth-first search to find all runs. Since some of runs
might be infeasible, based on Lemma 7, steps (4-9) ensure that all feasible
runs are included in the result.

71

4 Model-based SOA Testing

Regarding the termination of StructRuns algorithm in Figure 4.15, we can
see that step 3 in the algorithm generates all paths up till MaxLen, where the
MaxLen is larger than the shortest path in an extended flow graph G. Hence,
it can be argued that the search terminates in finite time. For loop in step 4

checks the feasibility of all runs included in the set P, which is bounded by
MaxLen parameter, hence is finite and terminates. Step 5 concerns whether
run-constraints are satisfiable or not. Both of these steps terminate because
of finite run length. The last part is about calling constraint solver to find a
solution for run-constraints as of def. 10 and all feasible runs are added in
the test suite S.

The complexity of the algorithm can be computed by summing up the com-
plexities of steps 3 to 5. Let us assume that there are |V| number of vertices
and |E| number of edges in a flow graph G, then the size of flow graph be-
comes |G| = |V|+ |E|. Step 3 computes all runs up to certain MaxLen which
in worst-case can lead to exponential paths when MaxLen is larger than the
longest path in an extended flow graph G. Step 5 involves call to constraint
solver for finding a solution for the run-constraints. Therefore the over-
all complexity would be O(|V|MaxLen) + O(|C(π)|) + ConstraintSolver(M),
where O(|V|MaxLen) represents an upper bound of the set P, O(|C(π)|) de-
notes the sum of path conditions for all runs included in the set P, and
ConstraintSolver(M) denotes the time required to solve the MINION model
M.

With flow activity it is possible to execute activities in parallel. However,
the execution is not completely parallel. The reason for that is the branches
do not execute in concurrent threads. That means one thread starts when-
ever a fork activity is observed until it reaches some blocking activity like
invoke. At this point another thread starts executing the other branch. This
restriction is to ensure thread safety of BPEL process variable. In addition
to that every fork activity is followed by a join activity, which provides
synchronization between parallel branches. The flow activity completes
when all branches in a flow have finished processing. The algorithm in
Figure 4.15 makes sure that all outgoing branches between a forking node
and its corresponding join node in a run along with guards is modeled.
Since we do not know which guard is active in the current run, we model all
guards in any run computed by the StructRuns algorithm in Figure 4.15.

72

4.4 Test Case Generation using constraints

1: procedure StructRuns(G, MaxLen)
2: initialize test suite S← ∅
3: compute the set P of all paths π s.t. |π| ≤ MaxLen, where for vertices

v ∈ B, we create for each (ei, TGei) in γG(v), a path s.t. TGei is enabled.
4: for each path π ∈ P do
5: check the satisfiability of run-constraints C(π) as of Def. 10

6: if C(π) is satisfiable then
7: add a corresponding test case to S
8: end if
9: end for

10: return test suite S.
11: end procedure

Figure 4.15: Our structural TCG algorithm StructRuns

For example in Figure 4.14, the algorithm computes three possible runs
depending on the guard condition. That is, in the first run, we say that the
first guard x < 10 must be true and the second guard y < 10 may or may
not be true. Similarly, in the second run, the first guard x < 10 may be
active, but the second guard y < 10 must be true. Also, there is another run,
in which both guards may or may not be active. Under this assumption, we
get two feasible runs shown in Figures 4.16, and 4.17 respectively.

The vertices for this process are defined by following activities: receiveInput
(vrI), IfG (vIG), AssignX (vAX), IfG2 (vIG2), AssignY (vAY), replyOutput (vrO).

In our flow example the first branch is triggered via the following run
(Run1): π = vrIvIGvAXv?IG2vAYvrO.

We will use such runs to derive our test cases. That is, as a first step, a
search-based algorithm traverses the graph in a depth-first search manner
in order to extract the runs from the fork node v f to the join node vj. For
the possible runs in our flow process, the corresponding run conditions are
given in Figures 4.16, and 4.17 respectively. The constraint representation
of both runs is detailed in Figures 4.18 and 4.19. Note that, in case any
guard is not triggered, we have to propagate the variable values in the
respective branch, in order to synchronize the indices at the join node. A

73

4 Model-based SOA Testing

1 vrI : x0 = inputx
2 vrI : y0 = inputy
3 vIG : x0 < 10
4 vAX : x1 = 1
5 vIG2 :?(y0 < 10)
6 vAY : y1 = 1
7 vrO : r1 = x1 + y1

Figure 4.16: Run 1: c(π) for the first guard to be active.

1 vrI : x0 = inputx
2 vrI : y0 = inputy
3 vIG :?(x0 < 10)
4 vAX : x1 = 1
5 vIG2 : y0 < 10
6 vAY : y1 = 1
7 vrO : r1 = x1 + y1

Figure 4.17: Run 2: c(π) for the second guard to be active.

corresponding variable assignment satisfying c(π) for Run 1, and thus a
test case, is the following one:

input_x = 0

input_y = 10

r = 11

The basic assumption that must hold in order to use our approach for testing
BPEL f low activity is that there are no shared variables; i.e., if a variable x
is redefined in a branch A, then the variable x should not be redefined in
any other branch within a current f low activity.

74

4.4 Test Case Generation using constraints

1 eq(x1, inputx)
2 eq(y1, inputy)
3 rei f y(ineq(x1, 10,−1), cond1)
4 eq(cond1, 1)
5 rei f yimply(eq(x2, 1), cond1)
6 rei f y(ineq(y1, 10,−1), cond2)
7 rei f y(eq(cond2, 0), cond3)
8 rei f yimply(eq(y2, 1), cond2)
9 rei f y(eq(y2, y1), cond3)

10 weightedsumgeq([1, 1], [x2, y2], r1)
11 weightedsumgeq([1, 1], [x2, y2], r1)

Figure 4.18: MINION constraints for Run 1.

1 eq(x1, inputx)
2 eq(y1, inputy)
3 rei f y(ineq(x1, 10,−1), cond1)
4 rei f y(eq(cond1, 0), cond2)
5 rei f yimply(eq(x2, 1), cond1)
6 rei f y(eq(x2, x1), cond2)
7 rei f y(ineq(y1, 10,−1), cond3)
8 eq(cond3, 1)
9 rei f yimply(eq(y2, 1), cond3)

10 weightedsumgeq([1, 1], [x2, y2], r1)
11 weightedsumleq([1, 1], [x2, y2], r1)

Figure 4.19: MINION constraints for Run 2.

75

4 Model-based SOA Testing

4.5 Experimental Setup

WS-BPEL is a product of many XML specifications: WSDL 1.1. is used
to represent the BPEL process as well as partner processes and services;
XML Schema 1.0 represents the BPEL data model; XPATH is an expression
language; and XSLT is meant to provide data manipulation. The BPEL
artifacts need execution engine for deployment. There are many propri-
etary and open-source BPEL tools available. Among these proprietary tools,
the most notable ones are IBM WebSphere process server [WebSphere, 2006],
Oracle BPEL process manager [Oracle Process Server, 2010], and ActiveEnd-
points [Active Endpoints, 2010]. Among open-source tools, we have Apache
ODE [ODE, 2006] and Orchestra [OW2, 2012].

We make use of Eclipse BPEL designer [BPELDesigner, 2006] which provides
support for defining and editing of BPEL processes. Since the designer
comes as an Eclipse plug-in, it can be deployed on an open-source engine
like Apache ODE [ODE, 2006], which itself executes as a web application
under the application server like Tomcat [Tomcat, 2006]. The setup requires
Java 6 or higher for execution. In addition to that we used Glass fish server
[GlassFish, 2006] for executing the partner web services. For running exper-
iments, we used following versions of the aforementioned software.

• Eclipse BPEL Designer 1.0.3
• Apache ODE 1.3.5
• Apache TOMCAT 7

• GlassFish 3.1 Application Server
• BPELUnit 1.6.0
• MuBPEL 1.2.2
• Minion Constraint Solver 1.6.1

Once the BPEL process is up and running, we can perform testing using
our test suite. The quality of the generated test suite can be measured by
the unit coverage tool for BPEL process [Lubke et al., 2009], [Lübke, 2006].
The tool can be downloaded as an Eclipse plug-in or as a command-line tool.
The tool supports two testing modes, real-time and simulated testing mode.
The tool requires user to input manual test cases, which can be executed
either on actually running business process or on mock processes. We make

76

4.5 Experimental Setup

use of the command-line version of the tool for assessing the activity and
branch coverage of our generated test suite. The good thing about the tool
is that one can choose the deployer, i.e., Apache ODE, ActiveBPEL, Oracle, or
Fixed in case the user takes the responsibility of the deployment itself.

There can be some problem regarding testing of URLS, which may cause
a test suite to fail, that is, if the port on which the process is deployed is
busy, or if any web service is down for some reason. Make sure that all web
services are up and running, or if you are using mock services, the service
endpoints must be specified according to the tutorial guidelines. For our
test suite to be executed, it is important that the unit testing tool passes the
test suite. Other wise, the coverage results might be different. Alternatively,
the plug-in version of the tool can be installed in order to verify the results
from our tool (which includes the command-line version). As mentioned in
a survey by [Bozkurt et al., 2013], the tool has a problem of oracle. As we
already have expected output from test suite generator module, our approach
can overcome the oracle specification problem.

In addition to the unit testing tool, we also use mutation testing tool for BPEL
processes [BPEL Mutation tool, 2011]. The tool comes as a command-line
version with an embedded instance of ActiveBPEL engine. The download
and installation on a Mac machine can be tricky, if one wishes to use
different execution engine than ActiveBPEL. Since ActiveBPEL is acquired by
ActiveEndpoints [Active Endpoints, 2010], and is sold only as a commercial
tool to organizations migrating to SOA, we had to make MuBPEL work with
Apache ODE. It is to be noted that MuBPEL instance runs on port 8080, the
other BPEL engine must be executed on some other port. Also the execution
takes a long time. It might be a bottleneck, if the test suite size is larger, or
if the number of mutants for the subject process exceeds certain number.
Another problem encountered was that some mutant might block the port,
which could bring the test execution process to halt. Although, we tried
to set the maximum time limit of 20 ms for each mutant, but sometimes
the MuBPEL tool would not continue the execution. The only solution
would then be to stop both MuBPEL and the Tomcat instances running
the ApacheODE web application. The tool also has a repository of some
small-sized BPEL processes from different vendors. We have included few
of those examples in our test experiments. In addition, only synchronous

77

4 Model-based SOA Testing

BPEL processes were found to be stable. This is why our experiments do
not include any asynchronous process.

There were many challenges faced during the experimental setup. First,
there is a lack of benchmark BPEL examples to be used as an underlying
subject data [Bozkurt et al., 2013]. Each execution engine comes with a
couple of small-sized business processes, but fail to provide some large-
scale examples to measure the effectiveness of different approaches. Second,
there were many ambiguities observed in BPEL specifications document
and open source BPEL engines [Lapadula et al., 2008, Hallwyl et al., 2010],
which hampered the integration of the mutation tool with our approach.
Last but not the least, the string datatype, which is quite often used in
the message exchange between web services and BPEL processes further
complicated the test case generation step.

The test suite execution requires inputs and expected outputs from the
BPEL process. The BPELUnit tool requires user to specify these inputs and
expected outputs for each test case via eclipse plug-in. We however generate
test suite automatically using the command line version of the tool. Basically
the test suite execution module employs the conversion algorithm, which
traverses all feasible paths and converts each receive activity into a send
activity, and each reply activity into a corresponding receive condition as
required by the BPEL Unit Test Suite. Furthermore, we add for any invoke
activity the corresponding partner track information to the XML test suite.

An example test case for run 2 described in the Flow example is shown in
Figure 4.20. The data tag stores test inputs sent to the BPEL process such as
test inputs x and y. The expected value is defined using the receive tag.

4.6 First Results

In this section, we report first empirical results obtained using the Java
implementation of our BPELTester tool. We considered three examples in
our evaluation of sequential processes: LoanApproval, ATM1, and a simple
hand-crafted example comprising a while statement within the process

1http://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.atm.html

78

4.6 First Results

1 <tes:data >

2 <flo:FlowRequest >

3 <flo:Input_x >10</flo:Input_x >

4 <flo:input_y >0</flo:input_y >

5 </flo:FlowRequest >

6 </tes:data >

7 </tes:send >

8 <tes:receive fault="false">

9 <tes:condition >

10 <tes:expression >// flo:FlowResponse </tes:expression >

11 <tes:value >’11’</tes:value >

12 </tes:condition >

13 </tes:receive >

Figure 4.20: Flow Example Test Case

Table 4.1: Examples Details

Prog BPEL Activites Used

Loan Receive, Reply, Assign, If, Else, Invoke, Sequence

Atm Receive, Reply, Assign, If, Else if, While, Invoke, Sequence

While Receive, Reply, Assign, While, Sequence

Flow Receive, Reply, Assign, Flow

definition. Table 4.1 list the activities used in these examples. The results
from the flow activity are taken from our paper [Jehan et al., 2015].

In Table 4.2 we summarize the obtained test generation results, i.e., the
number of BPEL activities in any process n, the number of paths p, the
maximum path length MaxLen varying from 10 to 50 (in case of examples
with while loops), the minimum and maximum path lengths of the BPEL
process minP and maxP, and the minimum and maximum numbers of
MINION constraints minC and maxC. totalT represents the total time in
milliseconds it took to generate the executable test cases. The time for
checking the paths’ feasibility via constraint solving was always very small
ranging from 11 to 26 milliseconds and is thus omitted in the table.

Cardoso [Cardoso, 2006] explained the complexity of BPEL processes us-

79

4 Model-based SOA Testing

ing the control flow complexity (CFC) metric. The test execution tool
described in [Lubke et al., 2009] supports test coverage metrics like ac-
tivity, branch, link and handler coverage. Since having a large number
of tests is undesirable for testing web services due to the related costs
[Canfora and Penta, 2009b], we investigated our test suites’ quality with
respect to coverage via the tool described in [Lubke et al., 2009]. For all
considered examples, we attained 100% activity and branch coverage by just
the minimum set of paths. In particular, activity and branch coverage for
the Loan and While examples reach 100% for the smallest path length with
only 3 paths. For the more complex ATM example, we obtain 100% coverage
for a minimum path length of 19 with 13 generated paths (see Table 4.2).
The coverage progression as a function of the path length is given for the
ATM example in Figure 4.21.

The obtained empirical results are promising and indicate the usefulness of
our approach. Even for smaller path lengths, we obtained coverage of 100%,
where it took less than 1 second for computing the test suite. It is worth
noting that executing the tests took twice the time for generating the test
suite.

We used AllPaths algorithm to generate tests from sequential activities. The
results show the number of generated tests is huge. And we need to perform
some analysis to cut down the number of tests and improve the coverage of
the generated test suite. For parallel activities, we make use of StructRuns
algorithm, so as to cater for the simultaneous execution of parallel branches.
In next Section, we analyze our random testing approach for sequential
programs.

4.7 Random Testing of Sequential programs

A big challenge in testing SOA-based system is the testing time required to
ensure the desired functionality of the overall system. Because of the fact
that most service-oriented systems are meant to be accessed through web
interfaces, the runtime performance becomes crucial. Be it social networking
services such as Twitter, Facebook or Linked-In or commerce companies such
as Amazon, users need to be assured that they receive service within given

80

4.7 Random Testing of Sequential programs

0 5 10 15 20 25

0

25

50

75

100

branch coverage

activity coverage

COVERAGE

PATH LENGTH

Figure 4.21: Coverage vs. path length for the ATM example.

Table 4.2: Empirical results obtained

Prog n MaxLen p minP maxP minC maxC totalT

Loan 16 10 3 8 10 8 11 160

Atm 27 10 1 9 9 10 10 57

20 17 9 20 10 22 1,312

30 132 9 30 10 33 9,150

40 1,367 9 40 10 46 108,983

50 12,950 9 50 10 57 1,372,059

While 8 10 3 8 10 13 16 169

20 28 8 20 13 28 2,028

30 78 8 30 13 45 6,194

40 153 8 40 13 62 13,703

50 253 8 50 13 75 23,849

Flow3 11 15 2 11 11 11 11 243

81

4 Model-based SOA Testing

time. This means, the back-end testing of the whole system needs to meet
strict time constraints. There are numerous approaches discussed in the
literature to meet-up this challenge. We compare random testing with
structure-based testing and discuss results from this comparative analysis
in Section 4.7.2.

4.7.1 Introduction

Random testing has been effectively used in practice to aid automated
testing of functional programs. [Claessen and Hughes, 2000] introduced a
tool (QuickCheck) for an automated random testing of Haskell programs.
The tool is able to verify formal properties specified as Haskell functions.
These properties can be used as test oracles (e.g., if a test has passed or
not). The authors have included a number of case-studies to show the
effectiveness of their tool. However, they believe that the effectiveness of
random testing is largely dependent on the distribution of the test data.

[Godefroid et al., 2005b] developed a tool called DART for directed auto-
mated random testing of C programs, thereby eliminating the need to write
test drivers. They argue that test drivers are difficult to write, therefore
unit testing is ignored causing serious reliability issues. Their approach is
also able to perform dynamic program analysis, and if necessary generate
new test inputs along alternative program paths, thereby alleviating the
common issue of ”low coverage” with the random testing approach. It has
been shown to uncover errors like assertion violations and non-termination.
They claim to discover 65 % of about 600 available functions in the oSIP
library. In contrast to these papers, we apply random testing on a model
obtained from the source code directly.

Although mutation testing is effective in measuring the test suite quality, the
required time for computing the mutation score of the test suite generated
by our AllPaths algorithm described in Figure 4.4 is quite high. Therefore,
the random approach might help to attain a reasonable mutation score
within less time.

Our random TCG algorithm shown in Figure 4.22 requires three parameters:
a BPEL flow graph G, the maximum path length MaxLen, and the required

82

4.7 Random Testing of Sequential programs

randomTests numTC for the resulting test suite S. The first two parameters,
G and maximum path length MaxLen are same as that in AllPaths algorithm
(see Figure 4.4). The random Algorithm only generates specific number of
tests defined by numTC, thereby reducing the test suite generation time. It
is important to understand the role of MaxLen, because theoretically any
length can be chosen, we have set a value higher than the longest path for
examples. Due to random selection of paths, a single path might get selected
many times. Like AllPaths algorithm, we make use of the minion constraint
solver to find satisfying statements about the feasible paths in G, which are
stored in a test suite.

Lemma 10 (RandomTestSuiteSize). The test suite S contains only random test
cases s.t. |S| < numTC.

Proof. Line 4 in algorithm ensures that test suite size does not exceed
numTC.

Lemma 11 (ComputingFeasibleRandompaths). The algorithm illustrated in
Figure 4.22 contains all feasible random paths π s.t. |π| < MaxLen.

Proof. Lines 6 makes sure that |π| does not exceed MaxLen. In Line 7, we
select randomly a successor vertex v out of V ∃e = (f (π), v) ∈ E. The vertex
v is appended at the end of π as long as |π| < MaxLen. Lines 9 to 13 checks
for the feasibility of the random path whenever a leaf vertex f (π) is reached.
Hence, only feasible randomly selected paths are included in the test suite
S.

Theorem 12 (RandomPathsCorrectness). RandomPaths algorithm 4.22 is cor-
rect. That is, all feasible random paths of length less than MaxLen are included in
the result S s.t. |S| < numTC.

Proof. The proof follows directly from Lemma 10, where only random test
cases s.t. |S| < numTC are added to the test Suite S. Hence, the algorithm
is sound. Similarly, making use of Lemma 11, it can be argued that the

83

4 Model-based SOA Testing

1: procedure RandomPaths(G, Len, numTC)
2: initialize test suite S← ∅
3: initialize MaxLen← random(0, Len)
4: while |S| < numTC do
5: initialize π ← v0
6: while |π| < MaxLen do
7: pick random v ∈ V s.t. ∃e = (f (π), v) ∈ E
8: add v to π: π ← πv
9: if f (π) ∈ F then

10: if C(π) is satisfiable then
11: add a satisfying assignment to S
12: end if
13: end if
14: end while
15: end while
16: return test suite S
17: end procedure

Figure 4.22: TCG algorithm based on random paths.

algorithm is also complete, because it only all feasible random paths s.t.
|π| ≤ MaxLen.

The termination of the RandomPaths algorithm 4.22 is ensured by while
conditions in line 4 and 6, e.g., only paths upto numTC are generated, where
the length of each random path can not exceed MaxLen. The MaxLen is
some random number between 0 and the specified Len. The complexity of
the algorithm would be O(|V|MaxLen) + O(|C(π)|) + ConstraintSolver(M),
where O(|V|MaxLen) represents an upper bound on the number of random
paths, |C(π)| = ⋃

(0<i<numTC) ΓA(πi) ∪ ΓC(πi) denotes the sum of path
conditions for random paths bounded by numTC, and ConstraintSolver(M)
represents the time required to solve the MINION model M.

84

4.7 Random Testing of Sequential programs

4.7.2 Experimental Results

The main focus of the comparative analysis of structured and the random
approach was to analyze the performance of both approaches in terms of
unit-coverage and the mutation score.

For our experiments, we used several SOA examples and converted also
a software example to fit our environment. The processes were developed
using Eclipse BPEL process editor and were deployed on Apache ODE
engine. For computing activity and mutation coverage, we used BpelUnit
[Lübke, 2006] and MuBPEL[BPEL Mutation tool, 2011] tools.

The three SOA examples Loan, LoanCov and SquaresS are available from
the mutation tool repository [BPEL Mutation tool, 2011], where we used
the Loan example also in [Jehan et al., 2013a]. While LoanCov is a slight
variation of the Loan example, SquaresS computes the obvious arithmetic
function. The fourth SOA example ATM is a simplified version of the process
discussed in [ATM,]. With Triangle, we implemented also a typical example
from software engineering studies like [Langdon et al., 2010]. This process
decides for a given triangle whether it is equilateral, isosceles or scalene.
The activity types involved in the different examples include Receive, Reply,
Assign, If, Else if, While, Invoke, and Sequence. For the computation of
reported numbers we used a 13” MacBook Pro (Late 2011) with a 2.4 GHz
Intel Core i5, 4 GB 1333 MHz DDR3, running OS X 10.7.2.

The results obtained from AllPaths algorithm are shown in Table 4.3. The
example size is denoted by n, whereas the given maximum path length is
labeled as MaxLen. The number of paths for the chosen maximum length
is represented by p, miP and maP stand for the minimum and maximum
lengths of derived paths respectively. Similarly, the minimum and maximum
numbers of constraints derived for any path are reported as miC and maC
respectively, and TotalT defines the total time in milliseconds used to derive
test suite S. The most vital numbers added are for Cov and Mut that give us
the percentage of activities covered as well as the number of killed mutants,
respectively.

The results indicate that by increasing MaxLen, both coverage and mutation
score values increase, but, at the cost of increasing computation times and a

85

4 Model-based SOA Testing

larger test suite. Figure 4.23 describes the relationship between these two
measures. That is, by increasing path length, both coverage and mutation
scores increase. It can be also be observed, that unit coverage of 100% is
achieved, but mutation score never exceeded 90 percent. This is because of
the surviving mutants, which could not be killed by the test suite. Consid-
ering that detection of equivalent mutants is a non-decidable problem, a
mutation score of 100% is practically not possible. The only way to check
for equivalent mutants is through manual inspection.

The detailed results of the random TCG algorithm are shown in Table 4.4.
Due to random selection of the feasible paths, we took an average of ten
executions per row. The needed number of random tests is defined by rP,
where miP and maP represent the minimum and the maximum path in
the obtained ten executions. Likewise, the minCov and maxCov means the
coverage obtained for the minimum and the maximum random path. avgCov
is the average value of the minimum and maximum coverage. The standard
deviation in the obtained mutation score is represented by stdev.

The experiments were carried out to observe the effect of a combined
increase of the maximum path length and the number of random tests. It
was observed that the random approach is good at reducing the computation
time, but at the same time the mutation score is also declined. For example,
in case of LoanCov example, the avgMut was dropped at 48,35% as compared
to 71% for the “structural” AllPath approach. The same trend was observed
in case of Atm example, where an average mutation score of 46,05%, in
contrast to 87,87% with the AllPaths algorithm was observed. In addition to
this, the minMut and maxMut of 23,63% and 68,48%, indicated high standard
deviation for the computed mutation score. Only in case of SquareS example,
the results were more or less same as that of AllPaths algorithm. The results
show that the structural approach performs better than the random one in
the context of our experimental setup. In the next chapter 5, we focus at
identifying interesting combinations of both approaches.

86

4.7 Random Testing of Sequential programs

Table 4.3: Experimental results for the AllPath TCG algorithm.

Prog n MaxLen p miP maP miC maC totalT Cov Mut

Loan 16 10 3 8 10 8 11 160 100 88.76

Atm 27 10 1 9 9 12 12 57 40 23.63

15 5 9 15 12 20 322 75 67.87

19 13 9 19 12 28 878 100 87.27

SquareS 7 10 3 7 10 11 19 312 100 89.65

15 5 7 15 11 26 368 100 89.65

20 8 7 20 11 39 641 100 89.65

LoanCov 27 10 3 8 10 8 10 166 64 44.26

15 5 8 13 8 13 290 100 71.03

20 5 8 13 8 13 290 100 71.03

Triangle 22 10 1 7 7 7 7 366 38 11.97

15 4 7 15 7 15 801 92 66.46

20 5 7 16 7 16 722 100 74.85

87

4 Model-based SOA Testing

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

10	 10	 15	 20	 10	 15	 20	 10	 15	 20	 10	 15	 20	

Loan	 Atm	 SquareSum	 LoanCov	 Triangle	

Pe
rc
en

ta
ge
	 (%

)	

Path	 Length	

Coverage	

KillMutants	

Figure 4.23: AllPaths TCG alg: activity coverage and mutation score vs. path length

88

Table 4.4: Experimental results for the random TCG algorithm.

Prog n Len rP miP maP miC maC totalT minCov maxCov avgCov minMut maxMut avgMut stdev

Loan 16 20 1 8 12 8 12 102 36 71 53.5 24.71 55.05 39.88 21.45

30 2 8 12 8 12 277 36 92 53.5 24.71 74.15 49.43 34.95

40 3 8 12 8 12 200 37 100 53.5 24.71 88.76 56.73 45.29

Atm 27 20 1 9 22 13 31 68 37 66 51.5 18.18 63.63 40.91 32.13

30 2 9 22 13 30 104 37 70 53.5 23.63 46.06 34.84 15.86

40 3 9 28 13 42 169 37 77 57 23.63 68.48 46.05 31.71

SquareS 7 20 1 7 13 11 19 70 100 100 100 82.75 88.50 85.62 4.06

30 2 7 13 11 19 142 100 100 100 82.75 89.65 86.2 4.87

40 3 7 21 11 31 241 100 100 100 82.75 89.65 86.2 4.87

LoanCov 27 20 1 8 13 8 13 58 26 43 34.5 20.21 28.41 24.31 5.79

30 2 8 13 8 13 120 42 77 59.5 23.49 47.54 35.51 17.01

40 3 8 13 8 13 166 26 91 58.5 26.77 55.73 41.25 20.47

50 5 8 13 9 13 385 47 84 65.5 34.97 61.74 48.35 18.92

Triangle 22 20 1 7 16 7 16 574 38 69 53.5 11.97 50 30.98 26.89

30 2 7 15 7 15 402 40 77 58.5 35.92 52.09 44.01 11.43

40 3 7 12 7 16 1032 69 85 77 49.40 63.47 56.43 9.94

4 Model-based SOA Testing

4.7.3 Conclusions

In this Section, we compared our test-case generation process considering all
paths in a BPEL control-flow graph with a random path selection. The aim
was to reduce the high time required for AllPaths algorithm. According to
the results obtained from the comparison, the random did require less run-
time, but the mutation coverage was comparatively quite low as compared
to the allpath selection. Second, high fluctuation in the standard deviation
was observed, which shows that the test suite size plays an important role
in a totally random approach. Not only this, the experimental setup was
found to be quite complex and time consuming. The next Section considers
the percentage of infeasible paths and apply the random concept also on
the flow constructs by extending the empirical results.

4.8 Random Testing of Concurrent programs

4.8.1 Introduction

In previous Section 4.7, we presented a random search-based algorithm
for sequential BPEL processes and compared its performance with the
structural approach 4.4 of exploring all paths in a control flow graph. In
this Section, we extend our work on parallel BPEL processes and compare
the performance of different test suite generation approaches. The general
idea of the algorithm remains the same, that is to traverse a BPEL process’
flow graph in order to extract the necessary inputs and expected outputs
for actual executions. However, regarding testing the Flow processes, we are
interested in runs in the control flow graph, where more than one branch
may be active at a given time.

In order to apply random testing of BPEL flow structure, we tailored the
algorithm in Figure 4.15. The RandomRuns algorithm like StructRuns

is also search-based. Also, the run-constraints are derived using the same
Def. 10 instead of collecting only the assignments and conditions along the
path itself as of Def. 2. Similarly, only the satisfiable run-constraints along
with the corresponding variable assignments are saved as test cases. The

90

4.8 Random Testing of Concurrent programs

only difference between RandomRuns and StructRuns is that instead of
considering all of feasible runs in Figure 4.15, we evaluate the effectiveness
of random approach. Specifically, do we attain better coverage and mutation
score with the random approach or not? The RandomRuns algorithm in
Figure 4.22 like the RandomPaths algorithm extracts a desired number of
random test cases, limited in length by a given parameter.

Lemma 13 (ComputingFeasibleRandomruns). The algorithm illustrated in
Figure 4.24 contains all feasible random runs π s.t. |π| < MaxLen.

Proof. Lines 5 makes sure that |π| does not exceed MaxLen. In Line 6, we
select randomly a successor vertex v out of V such that ∃e = (f (π), v) ∈ E.
The vertex v is appended at the end of π as long as |π| < MaxLen. Lines 8

to 14 checks for the feasibility of the random path whenever a leaf vertex
f (π) is reached. Hence, only feasible randomly selected runs are included
in the test suite S.

Theorem 14 (RandomRunsCorrectness). RandomRuns algorithm 4.24 is cor-
rect. That is, all feasible random runs of length less than MaxLen are included in
the result S s.t. |S| < numTC.

Proof. The proof follows directly from Lemma 10, where only random test
cases are added to the test Suite S s.t. |S| < numTC. Hence, the algorithm
is sound. Similarly, making use of Lemma 13, it can be argued that the
algorithm is also complete, because it includes all feasible runs s.t. |π| <
MaxLen.

The termination of RandomRuns algorithm 4.24 is ensured by while condi-
tions in line 3 and 5, e.g., only runs up to numTC are generated, where the
length of each random run can not exceed MaxLen. The MaxLen is some
random number between 0 and the specified Len. The complexity of the al-
gorithm would be O(|V|MaxLen) +O(|C(π)|) + ConstraintSolver(M), where
O(|V|MaxLen) represents an upper bound on the number of random runs,
|C(π)| = ⋃

(0<i<numTC) ΓA(πi) ∪ ΓC(πi) denotes the sum of path conditions

91

4 Model-based SOA Testing

1: procedure RandomRuns(G, Len, numTC)
2: initialize test suite S← ∅
3: while |S| < numTC do
4: initialize path π ← v0
5: while |π| < MaxLen do
6: pick random v ∈ V s.t. ∃e = (f (π), v) ∈ E
7: add v to π: π ← πv
8: if f (π) ∈ F then
9: if run-constraints C(π) (see Def. 10) are satisfiable then

10: add a corresponding test case to S
11: end if
12: else
13: increment infeasible paths
14: end if
15: end while
16: end while
17: return test suite S
18: end procedure

Figure 4.24: TCG algorithm RandomRuns based on random paths.

for random runs bounded by numTC, and ConstraintSolver(M) represents
the time required to solve the MINION model M.

4.8.2 Empirical Evaluation

The main objective of empirical evaluation was to compare the performance
of StructRuns and RandomRuns algorithms. We evaluated the approach
by varying the rP parameter while keeping the length parameter fixed.
Moreover the example set is extended by including BPEL processes with
Flow constructs.

For our empirical evaluation, we considered ten examples of synchronous
BPEL processes. These examples include activities like Receive, Reply, As-
sign, If, Else if, While, Invoke, Sequence and Flow. In addition to Loan,
LoanCov and SquaresS, SquaresS, and ATM, we have two more sequential

92

4.8 Random Testing of Concurrent programs

BPEL process, i.e., Bmi and Calc. Bmi is a famous example taken from
software testing papers, whereas, Calc implements basic calculator function-
alities, i.e., addition, subtraction, multiplication, and division for given input
values. The examples Flow and Flow3 are simple hand-crafted examples
using Flow construct, whereas Order is a variant of an Ordering Service
from the BPEL specification document.

Tables 4.5 and 4.6 offer the experiments’ details when using the StructRuns

and RandomRuns algorithms respectively. The number of a BPEL process’
activities is given by n, the desired maximum path length by mL, the number
of derived paths is labeled p, the minimum and maximum lengths of
derived paths are given in columns labeled miP and maP respectively, and
the minimum and maximum numbers of constraints derived for any path
are reported as miC and maC respectively. GenT defines the total time in
milliseconds it took us to derive a corresponding test suite S. The most
interesting values, however, are those for Cov and Mut that give us the
percentage of covered activities and killed mutants, respectively.

The overall test execution time the mutation tool took to compute mutation
coverage (in milliseconds) is given in the columns labeled ExecT. That is, for
the RandomRuns algorithm, we computed 10 samples per row and report
the minimum, maximum, and average values for coverage and mutation
scores respectively, with also GenT referring to the average value over these
10 samples. For the mutation score, we also report on the standard deviation
stdev. In Table 4.6, rP defines the desired amount of test cases.

The results depicted in Tables 4.5 and 4.6 are useful in drawing following
conclusions: First, the test suite generation time can be considered negligible
as compared to the time required by the mutation tool. For example, the test
suite generation time for nearly all examples is always less than a second,
but the test execution is on average never less than half an hour. Therefore,
it would not be wrong to say that SOA tools seem to be bottleneck when it
comes to test execution. This holds true even in case of smaller examples like
SquareSandBMI. Second, in case of both the algorithms, StructRuns and
RandomRuns, test case generation time is almost the same. But, on average
the StructRuns algorithm shows better coverage and mutation scores as
compared to the RandomRuns algorithm nearly for all examples.

93

4 Model-based SOA Testing

Table 4.5: Experimental results for the StructRuns TCG algorithm.

Prog n mL p miP maP miC maC GenT Cov Mut ExecT

Loan 16 10 2 8 9 9 11 176 76.9 68.50 629,271

15 3 8 12 9 13 227 100.0 87.64 966,228

20 3 8 12 9 13 247 100.0 87.64 962,418

Atm 27 10 1 9 9 12 12 68 35.2 21.77 468,613

15 5 9 15 12 20 569 100.0 80.64 2,411,368

20 5 9 15 12 20 985 100.0 80.64 2,442,709

SquareS 7 10 3 7 10 12 17 200 100.0 88.51 726,955

15 5 7 15 12 32 566 100.0 89.65 1,279,305

20 8 7 19 12 42 830 100.0 89.65 2,421,234

LoanCov 27 10 3 8 10 11 11 293 64.0 52.54 1,346,072

15 5 8 13 11 15 433 100.0 71.03 1,971,916

20 5 8 13 11 15 467 100.0 71.03 1,971,476

Triangle 22 10 1 7 7 9 9 354 38.0 12.34 870,823

15 4 7 15 9 25 477 92.0 66.04 2,289,147

20 5 7 16 9 26 718 100.0 71.03 2,651,180

Bmi 15 10 5 7 9 9 9 485 100.0 90.00 1,081,270

Calc 30 10 4 5 10 6 20 248 40.0 38.63 1,633,480

15 9 5 15 6 32 591 100.0 98.37 3,496,140

Flow 11 15 1 11 11 14 14 156 83.3 54.00 450,463

Flow3 11 15 2 11 11 11 11 243 100.0 83.30 326,788

OrderFlow 24 25 2 24 24 41 41 378 100.0 61.00 366,954

94

4.8 Random Testing of Concurrent programs

Table 4.6: Experimental results for the RandomRuns TCG algorithm with len = 40.

Prog n rP miP maP miC maC GenT miCov maCov avgCov miMut maMut avgMut stdev ExecT

Loan 16 1 8 12 9 13 451.0 46.1 69.2 51.49 24.71 52.80 39.21 15.28 526,905

2 8 12 9 13 445.0 46.1 76.9 66.89 24.71 68.53 55.16 17.51 696,221

3 8 12 9 13 641.0 46.1 100.0 86.14 24.71 87.64 67.41 17.13 884,560

Atm 27 1 9 14 11 20 479.0 41.1 52.9 50.54 21.77 45.96 33.70 12.58 447,316

3 9 15 11 20 644.4 35.2 76.4 54.66 21.77 66.12 48.22 15.03 1,111,243

5 9 15 11 20 897.5 47.0 100.0 65.85 48.38 80.64 59.59 9.74 1,821,139

SquareS 7 3 7 13 12 27 405.3 100.0 100.0 100.00 83.90 89.65 88.50 1.71 808,907

5 7 25 12 57 728.2 100.0 100.0 100.00 83.90 89.65 88.85 1.80 1,232,068

8 7 21 12 47 872.9 100.0 100.0 100.00 88.50 89.65 89.54 0.36 1,930,244

LoanCov 16 3 8 13 11 15 926.3 47.3 89.4 64.15 33.33 55.73 43.98 11.77 1,325,958

5 8 13 11 15 811.3 47.3 94.7 75.74 34.97 61.74 52.89 7.82 1,884,014

Triangle 22 1 7 12 9 15 475.0 33.3 66.6 50.00 12.96 45.37 26.47 15.04 1,002,234

4 7 15 9 26 654.0 33.3 83.3 74.20 12.96 58.95 44.41 14.39 1,818,729

5 7 15 9 26 646.0 75.0 91.6 85.00 37.96 69.75 59.35 9.86 2,722,881

7 7 15 9 26 915.4 75.0 91.6 84.10 37.34 65.74 57.75 7.78 2,800,813

Bmi 15 1 7 9 9 9 158.7 60.0 60.0 60.00 29.09 52.72 42.09 9.99 406,481

3 7 9 9 9 737.7 60.0 80.0 74.00 45.45 72.72 64.27 10.61 733,752

5 7 9 9 9 700.0 70.0 90.0 83.00 60.90 81.81 73.18 7.68 1,049,588

7 7 9 9 9 797.4 80.0 100.0 87.00 62.72 90.00 77.72 7.59 1,436,189

10 7 9 9 9 816.8 90.0 100.0 92.00 80.90 90.00 83.00 3.71 2,240,604

12 7 9 9 9 678.5 90.0 100.0 97.00 80.90 90.00 87.27 4.39 2,645,961

15 7 9 9 9 852.7 90.0 100.0 98.00 80.90 90.00 88.18 3.83 2,737,402

17 7 9 9 9 877.1 90.0 100.0 97.00 80.90 90.00 87.27 4.39 3,726,332

Calc 30 4 5 25 6 38 703.6 35.0 70.0 46.00 29.73 57.18 39.90 10.28 1,529,496

9 5 24 6 56 822.7 40.0 100.0 68.00 38.23 84.64 59.31 15.72 2,930,746

Flow 11 1 11 11 13 23 768.4 83.3 83.3 83.30 54.54 54.54 54.54 1.17 374,245

Flow3 11 1 11 11 11 17 545.5 50.0 83.3 66.65 42.66 52.00 43.60 6.56 283,808

2 11 11 13 19 884.7 83.3 100.0 91.65 52.00 70.66 67.73 5.65 333,727

Order 24 1 23 23 42 42 826.6 47.0 94.1 65.84 40.84 52.11 45.35 5.81 264,348

2 23 23 42 42 1059 47.0 100.0 82.33 42.25 60.56 52.53 7.99 348,207

95

4 Model-based SOA Testing

During the experiments, we encountered issue of infeasible paths, particu-
larly for lengths longer than 20. The results computed for the Calc example
are shown in Table 4.7. Here, we observed no infeasible paths in case of the
StructRuns algorithm put to a path length of 20. But, for theRandomRuns

algorithm, the number of infeasible paths increase if the maximum path
length is increased. The issue appears more often in case of longer test
case. For instance, with |S| = 4, we have 3 infeasible paths out of 10 ran-
dom samples. The number increases to 8 infeasible paths for a test suite
of size 9. Furthermore, the achieved mutation score is just 80%, which led
us to an interesting question, that is how many more random paths do we
need in order to attain the same mutation score as with the StructRuns

algorithm.

In order to investigate that question, we considered the BMI BPEL process,
and test suite sizes rP of 1, 3, 5 7, 10, 12 ,15, and 17 (see Table 4.6). The cov-
erage attained for 12 to 17 paths was roughly the same, with the execution
time increasing from approximately 45 minutes to 62 minutes on average.

In Figure 4.25 we summarize our findings using a box plot diagram, where
the grey box indicates the bounds given by the average value and the
standard deviation. The obtained results show that, for 7 test cases or
more, the random algorithm provided the same 100% activity coverage
and maximum mutation score of around 90% as with the StructRuns

algorithm. For 12 test cases and above, the average mutation score also starts
converging to the values obtained by StructRuns algorithm. However,
the RandomRuns algorithm took almost double time for generating a test
suite with similar average performance. For instance, the random approach
took 700 milliseconds on average for computing five paths, where as the
StructRuns took (smaller) 485 milliseconds to compute 5 paths for a given
maximum length of 10. Not only this, the the StructRuns attained a higher
mutation score of 90% percent as compared to an average mutation score
of 73.18% (ranging between 60.9 and 81.81 percent) by the RandomRuns

algorithm.

It is also worth mentioning that there were many surviving mutants for
each of the examples used in our empirical evaluation. The highest achieved
mutation score was 90%. In order to investigate the non killed mutants,
we inspected the surviving mutants manually for the BMI example. We

96

4.8 Random Testing of Concurrent programs

Table 4.7: Infeasible paths for the RandomRuns TCG algorithm.

Prog rP min InP max InP avg InP

Calc 4 0 3 0.4

Calc 9 0 8 1.4

Figure 4.25: RandomRuns: Mutation score as function of the number of test cases for BMI

found out that by adding five additional test cases, we were able to reach a
mutation score of 95%. The remaining mutants were equivalent ones. Hence,
we conclude that there is still room for improving the test case generation
process, in order to deliver an algorithm with a better performance.

4.8.3 Discussion

The focus of our experiments was the comparison of two test suite generation
algorithms for synchronous executable BPEL processes. The first algorithm,
StructRuns is used to derive test suite comprising of all feasible paths up
to certain length, while the second algorithm, the RandomRuns aimed at
deriving specific number of test cases considering only a random selection
of feasible paths of certain length. The StructRuns algorithm performed
better both in terms of test-case generation and execution time. For example,

97

4 Model-based SOA Testing

the BMI example, the test-case generation time of 3 random paths is almost
same as that of 5 random paths, but the test execution time has almost
doubled. Not only does the random approach longer to construct test cases,
the attained coverage and mutation score was also considerable low as
compared to the structural approach. That is, using StructRuns algorithm,
we attained mutation score of 90% with just 5 tests, while the RandomRuns

failed to achieve the same average mutation score with 17 tests. Hence, we
can conclude from the experiments that the high execution times should
be reduced by employing smarter test-case generation strategies. Second,
our approach does not perform well using longer paths as allowed in
the random approach, rather the shorter paths favored in the structural
approach gave better results. Therefore, a hybrid approach combining both
the structural and random approach should be explored for an optimized
performance.

4.9 Conclusions

The model-based testing is employed to derive test cases from the SOA
process. Model-based testing and verification using symbolic execution is a
widely investigated area in testing of business workflows. This is because of
three main reasons: first, with formal verification, the integrator, a middle-
man between the service provider and the consumer, can reduce the testing
cost by verifying the unreachable parts of the code offline. This is important,
because the malfunctioning of any part of the workflow, may lead to severe
problems in the monitoring phase. Second, the verification technique is used
to derive test inputs, thereby reducing the testing cost. Third, the approach
has a high coverage with small number of paths.

We showed that the BPEL process definitions can be represented as set of
constraints, which served as a model for our approach. The model along
with the test case represented the constraint-satisfaction problem, and solu-
tions can be extracted using a constraint solver. Furthermore, we judge the
quality of the generated test-suite using the unit-coverage analysis and mu-
tation testing SOA tools. The approach was tested on a number of sequential
and parallel executable BPEL processes. The test case generation time was

98

4.9 Conclusions

negligible as compared to the test execution time. In order to overcome high
test execution cost, we suggest a number of test suite reduction techniques
in the next chapter. The goal would be to reduce the size of the test suite,
while maintaining the same coverage and mutation scores. Our approach
requires multiple positive test cases for the mutation tool to be applied for
judging the quality of the generated test suite.

There are, however, few limitations observed during the experiments. That
is, due to non-availability of real-world case studies, the experiments are
performed on the synthetic examples only, so it became difficult to compare
our approach with other approaches suggested by different research groups.
Second, the experiments were performed using open-source SOA tools,
which might be not be as stable as the proprietary tools available from Oracle
and IBM. Third, like most of the test generation approaches, we derive model
from the executable composition code rather than from the requirements
document. However, the assertions can be added to any activity in the
workflow, which can serve as test oracles.

99

5 Test Suite Reduction

5.1 Introduction

Test suite minimization is the task of finding a smaller test suite that still
fulfills the properties of the original test suite but which requires less test
cases. Minimizing test suites is important in practical applications of testing
for reducing the time required for carrying out all the tests. This holds
especially in cases with strict time requirements for example when carrying
out nightly-builds that should be deployed next day to the customers. In
such a case not only time requirements are important. It has also to be
ensured that the reduced test suite has more or less equally good failure
detection capabilities than the original one. Because of the fact that we would
only be able to compare the failure detection rates of two test suite when
executing both, which would not be possible in the mentioned scenario, test
suite minimization usually considers properties of test suites like coverage
or mutation score. Here the underlying assumption is that these properties
can be used as a quality measure of test suites.

Any test suite that we are able to reduce via removing tests while keep-
ing its degree of failure detection capabilities obviously stores redundant
information. As a consequence test suite minimization based on test case
deletion aims at eliminating all redundancies from the test suite. Therefore,
we formally introduce redundancy for test suite relying on quality measures
and discuss some algorithms that can be used for redundancy elimination
while still fulfilling certain properties like coverage or mutation score. Some
parts of the content in this Chapter has been published in the following
paper.

• ”Analyzing the reduction of test suite redundancy” [Pill et al., 2015].

101

5 Test Suite Reduction

5.2 Related research

Test suite minimization is the task of identifying and later on eliminating
redundant test cases from the original test suite. This is required because as
software is constantly evolving the corresponding test suite grows accord-
ingly, making re-testing an expensive task. This is why test suite minimiza-
tion has been a subject of wide interest as part of regression testing, which
aims at re-testing a software after modifications.

Regression testing faces new challenges in SOAs for many reasons: First,
traditional regression testing is performed in a white-box manner, which
due to observability issues in SOA domain can only be performed at the
developer side. That means integrator or consumer do not have realistic test
suites. Second, due to controllability problem, it is even not possible to
decide at the consumer side when is it appropriate to perform regression
teasing in the first place [Canfora and Penta, 2006]. Third, the cost of service
invocation is the main bottleneck in dynamic service composition testing,
especially if services are charged on per-use basis [Bozkurt, 2013]. Concur-
rency issues in service-based compositions is another important area of
interest.

Regression testing can be classified as test suite minimization (reduction), test
suite selection, or test suite prioritization. Test suite minimization purely
focusses on elimination of redundant test cases, test suite selection, on the
other hand, does not remove any test case, rather selects only appropriate
tests for testing the modified or added functionality. Test suite prioritization
focusses on test ordering to maximize certain properties like coverage or
fault-detection.

[Rothermel et al., 2002] formally defined test suite reduction as follows: Given
a test suite T, a set of test case requirements r1, r2, ..., rn that must be satisfied
to provide the desired test coverage of the program, and subsets of T,
T1, T2..., Tn, one associated with each of the ris such that any one of the
test cases tj belonging to Ti can be used to test ri. The problem is to find a
representative set of test cases from T that satisfies all ris. The optimal test
suite reduction is the one, which contains at least one test case requirement
tj from each subset Ti. The problem is considered analogous to the finding
of minimal hitting-set problem. Considering the fact, that this itself is a

102

5.2 Related research

NP- complete problem, different heuristics have been suggested to reduce
software maintenance costs [Yoo and Harman, 2012].

Due to limited observability, most of regression testing approaches are based
on Graph Walk Approach (GWA)[Rothermel and Harrold, 1997]. This ap-
proach was first suggested for regression test selection, and does not require
access to the source-code. [Ruth and Tu, 2007] applied a slight variation
of GWA for regression testing of web services. Their approach require
CFGs from all participating parties. [Wang et al., 2008] suggested an ap-
proach for regression testing of BPEL compositions based on breadth-
first search. Their work is also based on [Rothermel and Harrold, 1997]
approach. [Lin et al., 2006] discussed the safe regression testing of Java-
based web services employing an end-to-end approach.

Test suite prioritization focusses on the permutation of test cases in order
to maximize testing objective. This prioritization could be coverage-based,
history-based, or probability-based. Some prominent test suite prioritization
algorithms include greedy algorithms, meta heuristics and evolutionary search
approaches [Yoo and Harman, 2012]. Greedy algorithms follow the greedy prin-
ciple of incrementally adding test cases to an empty space so as to maximize
the desired metric. But, they might fail to come up with an optimal test
case ordering always. Meta heuristic techniques find solution to combinatorial
problems at an economical cost. The target of evolutionary search algorithms
is to follow the survival of the fittest strategy for test suite prioritization.

[Heimdahl and George, 2004] derived model-based tests from formal speci-
fications of a ”Flight guidance system”. They claim that although test suite
reduction is helpful in reducing the test suite size while maintaining the
same coverage. However, the fault detection capabilities of the reduced test
suite is also effected. [Hou et al., 2008] is one of the earliest work done on
test case prioritization in the context of service compositions. Since there is
an upper bound on the number of requests a web service can be called in a
certain period of time, their approach does the test case selection using the
Integer Linear Programming (ILP) using the given time slots. An enhanced
work from the same authors is presented in [Zhang et al., 2009], the focus
remains the same, that is, how to select a subset of the original test suite
in order to reduce regression testing costs within the time constraint. They

103

5 Test Suite Reduction

model the problem as a constraint system with the objective of increas-
ing the statement coverage of a test suite satisfying the time constraint.
[Mei et al., 2009] proposed two black-box test case prioritization techniques
making use of tag information present in the WSDL document of invoked
web services on a set of BPEL programs.

In the context of SOAs, [Ruth et al., 2007] discussed the use of call graphs to
tackle the concurrency issue arising from service compositions. Many ap-
proaches for test suite reduction, selection and prioritization have been pro-
posed, but none of them presents a complete solution [Bozkurt et al., 2013].
The tester needs to do cost-benefit analysis considering several parameters,
such as test suite coverage, cost of test suite execution, and also the cost of
service invocations.

Program Slicing is a debugging technique to reduce the faulty program only
to relevant statements for a particular variable v at a program location l. The
slice for a variable x only contains the control and data dependencies of that
variable. Although slice needs to be computed only once, but the program
dependencies in real programs are too large in size. In case of programs
with pointers, the situation becomes worse [Zeller, 2002]. It is important
to note that all regression testing approaches which require access to the
source-code such as dynamic program slicing are not applicable in SOAs
regression testing [Yoo and Harman, 2012].

Zeller introduced a divide-and-conquer debugging technique, which fo-
cusses on reducing the test input in order to locate faults in a program
[Zeller, 2002]. Interestingly enough, the approach needs no knowledge of
the program source-code and data and control dependencies like traditional
slicing techniques. All it needs is a passing run and a failing run, and
systematic study of program states in both runs. The approach proves to be
more useful in practice than program slicing. But, it requires more test runs
for a single program, and is slower than program slicing techniques.

In on-line testing, there is a cost of every call to the invoked web service,
which can be avoided using offline testing, whereby the tests are executed
using mock services. In offline testing, the cost can be reduced at the expense
of precision. Our work mainly intersects with test suite reduction techniques,
where the focus is to apply mutation-score-based test suite minimization.

104

5.3 Preliminaries

We present three different algorithms to reduce the test suite size while
keeping the failure detection capabilities with in some pre-defined range.

5.3 Preliminaries

We assume a program under test (PUT) Π written in a certain programming
language. For the execution of a program Π on a certain input I we introduce
the function JK, which returns an output O, i.e., JΠK(I) = O. The inputs and
outputs of a program are set of pairs (x, v) where x is a variable and v its
value. Every input and output is only allowed to specify exactly one value
for each variable. A test case TC for a program Π is a pair (I, OE) where I is
an input and OE is a set of pairs (x, v) where v is the expected value for a
variable x. Note OE might not specify a value for all variables. However, it is
not allowed to specify two values for one variable. A test case TC = (I, OE)
is said to be a passing test case for a program Π if the computed output
based on input I is not in contradiction with the expected output OE, i.e.,
JΠK(I) ⊇ OE. A test case that is not a passing test case is said to be a failing
test case. A test suite TS for a program Π is a set of test cases. In our work
we do not make use of distinguishing test cases accordingly to failing or
passing. We assume that all test cases of a test suite are equally important
for quality assurance.

As already briefly discussed in the introduction, we are interested in elimi-
nating all redundancies from a given test suite. Hence, we have to formally
define what redundancy mean. Obviously, redundancy has to do with el-
ements of a test suite that are not relevant for its purpose. Because of the
fact that the purpose of a test suite is its capability for detecting a fault in a
program, we have to first define a measure for the failure detection capabil-
ity of a test suite TS for a given program Π. We do this by introducing a
function m that maps a test suite and a program to a number that ideally
corresponds to the failure detection capability. In practice m might be a
certain coverage metric like statement of condition coverage or the mutation
score. The redundancy of a test suite corresponds to the degree of test cases
that can be eliminated from the test suite without substantially changing
the value returned when from function m. The degree of reduction can be

105

5 Test Suite Reduction

defined as the number of test cases that can be removed from the original
test suite. The following definition of reduction makes use of a boundary
value α, which is for stating the allowed deviation from the computed value
of m for the original test suite.

Definition 13 (Reduction). Given a test suite TS for a program Π, a function m
measuring the failure detection capability of TS, and a boundary value α ≥ 0. The
reduction ρ of TS is defined as follows:

ρ(TS)α = |TS| −min{|TS′||TS′ ⊆ TS ∧m(TS′, Π) + α ≥ m(TS, Π)}

Using reduction we can easily define redundancy as relative value.

Definition 14 (Redundancy). The redundancy rr of a test suite TS for a program
Π, a function m and a boundary value α is defined as follows:

rr(TS)α =
ρ(TS)α

|TS|

Obviously rr is a value between 0 and 1 where 0 indicates that there is no
redundancy in a test suite and 1 that all test cases can be removed. Hence, a
value of 1 can never be reached in practice.

Before investigating on algorithms for test suite redundancy elimination we
did some experiments using BPEL programs and our test suite generation
algorithms. In particular we had been interested in having a look at the
degree of redundancy of generated test suites. Moreover, we randomly
selected subsets of the original test suites in order to have a look at the
decline of the failure detection capabilities. In our initial experiments we
used mutation score for estimating the failure detection capability. The
results of the experiments for program CALC2 are given in Figure 5.1 and
Figure 5.2. In Figure 5.1 the minimum, maximum, average mutation score
for subsets of size 1 to 12 are given. The size of the original test suite is 13.
We see that there is a decline of the mutation score starting with a subset
size of 6 to 7. A similar behavior can be observed from Figure 5.2 where the
probability of having a mutation score greater than 0.85 for the different
subsets are depicted. We computed the probabilities from randomly selected

106

5.4 Redundancy elimination

10 subsets of a particular size. We see that even for larger subsets there is
no guarantee to select the right ones that do not reduce mutation score.
However, starting from subsets of size 7 the probability becomes lower
than 0.5. The reduction for this test suite and CALC2 is 7 (=13 - 6) and the
redundancy 0.538 (= 7

13).

5.4 Redundancy elimination

There are many different ways for eliminating redundancies from test
suite. In this section, we introduce three different algorithms. Two of them
are search-based and employ random selection. The third is the modified
version of Delta-debugging algorithm by [Zeller, 2002].

5.4.1 LinMIN Algorithm

In Figure 5.3 we have a search algorithm for randomly selecting a subset that
is smaller by one element. There are four inputs to algorithm: the original
test suite TS, of program Π, mutation score m, and margin value α.

The algorithm first unmarks all test cases in a test suite. The while loop in
step 4 iteratively checks all elements in a test suite until the influence on m
is larger than given. Since the test suite size is finite, so it can be argued that
the loop is also finite and terminates. Steps 5 and 6 randomly marks one
test case and remove it from the test suite. Step 7 checks the influence of the
mutation score m of the resulting test suite, that is if no negative influence
on m can be observed take this subset and randomly remove one element.
Otherwise, the marked test case is added back to the test suite. Since the
algorithm randomly removes one element from the test suite, the resulting
ordering might not be the optimal, therefore we computed an average of 10

execution for the empirical evaluation of different examples.

The worst-case time complexity of while loop is O(|N|), where |N| denotes
the number of test cases in a test suite TS. The complexity of the function
call m(TS, Π) is O(|S| ∗ |M|), where |S| represents the size of the test suite,
and |M| is the total number of mutants for a program Π.

107

5 Test Suite Reduction

Figure 5.1: The minimum, maximum, and average mutation score for the CALC2 example
with varying subset size

Figure 5.2: The probability for a subset of the original test suite of CALC2 to have a mutation
score larger than 85.0

108

5.4 Redundancy elimination

Theorem 15 (LinMINCorrectness). LinMIN algorithm illustrated in Figure 5.3
is complete and sound.

Proof. The while loop in line 4 marks each test case ti ∈ TS iteratively and
computes the effect of removing each marked test case from TS. The size
of TS is finite, hence the loop terminates. The algorithm is sound, because
the if condition in line 7 makes sure that the removed test case ti is added
back to TS in case the (m(TS, Π) + α < maxRR). That means the algorithm
always produces a subset with a mutation score <= the original test suite
TS. Due to random-selection of unmarked elements in a test suite, it might
not produce optimal reduced test suite every time. Therefore, the algorithm
needs to be executed multiple times to achieve better average reduction. The
algorithm ensures a minimized test suite that still provides an acceptable
failure detection rate according to the function m.

5.4.2 BinarySearch Algorithm

BinarySearch algorithm shown in Figure 5.4 implements binary search over
the subset size. First, a subset of size |TS|/2 is selected randomly from TS.
If the resulting subset does not influence m substantially, select a subset of
size |TS|/4. Otherwise, select a subset of size |TS| ∗ 3/4, etc. The objective
is the same, that is to ensure a minimized test suite that still provides an
acceptable failure detection rate according to the function m. However, in
contrast to LinMIN algorithm, the execution time is much smaller, as the
search space is reduced to half in every step. The downside of the approach
is that it might not always find the subset set(t) with maxRR. As a result,
the test suite returned might not alway have the desired mutation score.
However, the chance reduces by increasing the subset size as discussed
in the empirical evaluation section 5.5. The worst-case time complexity of
binary search is O(logN), where it takes logN time to find the required
subset in worst-case.

109

5 Test Suite Reduction

5.4.3 Delta-Debugging Algorithm

Figure 5.5 illustrates the tailored version of Delta-Debugging. The original
algorithm [Zeller, 2002] automates the “scientific” way of debugging. It
takes a fairly large input that causes failure and aims at finding a smaller
input that still produces the fault. The target is to find software changes that
lead to failures.

The original delta-debugging algorithm takes a program and a faulty test
case as an input. The faulty test case includes all possible changes, and aims
at finding the minimal change set (configuration) causing the fault. It marks
each test one of the three statuses: passing, failing or unresolved. It starts by
dividing the input into two parts, and continues to increase the granularity
of the search space until the failure causing input is identified. The approach
is based on divide and conquer principle, and helps in locating faults in a
software. The worst-case complexity of original minimization algorithm is
O(|c|2), where c represents number of changes to the program. In the best
case it has same complexity as that of a binary search algorithm.

In our case, we customize the delta-debugging algorithm for testing pur-
poses. Using the delta-debugging minimization algorithm, we compute
function m of each subset ts of a test suite TS. We mark the selected subset
as either failing or passing. That is, a test is failing, if its mutation score
combined with the deviation margin α is equal or greater than the maxRR
of the test suite TS. Otherwise the subset is marked as passing. The search
continues with the failing subset of test cases until a minimum subset of
test cases is found, which still provides the required mutation score.

5.5 Empirical Evaluation

The target of an empirical evaluation was to investigate the degree of redun-
dancy of generated test suites. Moreover, we randomly selected subsets of
the original test suites in order to have a look at the decline of the failure
detection capabilities. As discussed in Section 5.3, a redundancy of 0.538

was observed for CALC2 example. As a second step, we applied algorithms
discussed in Section 5.4 to compare their reduction capabilities. There are

110

5.5 Empirical Evaluation

1: procedure LinMIN(TS = {t1, . . . , tn}, a program Π, a function m, and
a boundary value α)

2: Let maxRR← m(TS, Π).
3: Unmark all test cases in TS.
4: while There exists an unmarked test case ti ∈ TS do
5: Mark ti.
6: Remove ti from TS.
7: if (m(TS, Π) + α < maxRR) then
8: Add ti to TS.
9: end if

10: end while
11: return TS
12: end procedure

Figure 5.3: LINMIN - A linear search procedure for test suite minimization

two important parameters, that is, alpha and the subset size. The parame-
ter alpha shows the boundary value for desired mutation score. That is
alpha = 0 for maxRR = 85 would mean, that only subsets of mutation score
> 85% would be accepted. By relaxing the value to, lets say 5, we make the
algorithm include sets with mutation score> 80% in the solution. Note that
initially we only considered subset size, e.g. 10 permutations of the original
test suite in order to keep the execution time minimum.

Table 5.1 states the test suite reduction achieved by all three redundancy
algorithms. The boundary value is denoted by α, and the varying subset size
is labeled |Set|. The number of test values generated by Minion constraint
solver for each test case is represented by |Sol|. Similarly, the original
test suite size is denoted by |TS|. The reduced test suite size obtained
using redundancy algorithms is labeled by |TS|LM, |TS|BS, and |TS|DD
respectively. Likewise the time taken in milliseconds by these algorithms is
represented by TLM(ms), TBS(ms), and TDD(ms) respectively.

111

5 Test Suite Reduction

1: procedure BinarySearch(TS = {t1, . . . , tn}, a program Π, a function
m, and a boundary value α)

2: Let maxRR← m(TS, Π).
3: Set low = 0
4: Set high = maxSetSize− 1
5: while low <= high do
6: mid = low + (high− low)/2
7: set(ts)← rand(set(TS, Π))
8: if (m(set(ts), Π) + α < maxRR) then
9: low = mid + 1

10: end if
11: if (m(set(ts), Π) + α > maxRR) then
12: high = mid− 1
13: end if
14: if (m(set(ts), Π) + α == maxRR) then
15: return set(ts)
16: end if
17: end while
18: end procedure

Figure 5.4: BinSearch – A Binary search procedure for test suite minimization

1: procedure Delta-Debugging(TS = {t1, . . . , tn}, a program Π, a func-
tion m, and a boundary value α)

2: Let maxRR← m(TS, Π).
3: Define the testing function test as follows:

test(ts) =
{
× if (m(set(ts), Π) + α ≥ maxRR)√

otherwise

4: return ddmin(〈t1, . . . , tn〉)
5: end procedure

Figure 5.5: DELTAMIN – Using delta debugging for test suite minimization

112

5.5
E

m
pirical

E
valuation

Table 5.1: Experimental results for Redundancy Reduction algorithm.

Prog α |Set| |Sol| |TS|MAX |TS|LM TLM(ms) |TS|BS TBS(ms) |TS|DD TDD(ms)

Calc2 0 10 1 13 11 4271 10 3561 6 3112

5 10 1 13 11 3957 10 3699 4 4975

10 10 1 13 11 4642 7 3829 4 4237

Calc2 0 10 3 33 24 27417 20 10047 6 8418

5 10 3 33 17 20276 13 6962 5 9033

10 10 3 33 9 19115 12 7754 4 7731

Calc2 0 10 3 33 23 22362 18 6918 6 6193

0 20 3 33 22 29752 19 6813 6 7305

0 30 3 33 23 38704 17 7623 6 7439

Calc2 0 10 5 53 33 91921 39 6346 6 10237

5 10 5 53 33 90832 23 6575 5 8082

10 10 5 53 19 90352 23 8116 4 7983

Calc2 0 10 5 53 37 83582 39 5877 6 9074

0 20 5 53 37 150439 39 9160 6 10431

0 30 5 53 33 246889 39 10064 6 10825

113

5 Test Suite Reduction

0	
2	
4	
6	
8	

10	
12	
14	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

0	 0	 0	 5	 5	 5	 10	 10	 10	

	 T
es
tS
ui
te
	 S
iz
e	

Alpha	

Test	 Suite	 Reduc2on	 	

OriginalTS	

ReducedTS	

Figure 5.6: The test suite reduction for the CALC2 example with varying alpha

Figure 5.6 illustrates the reduction attained for single solution. It can be
seen that the LinMIN algorithm 5.3 does not reduce the test suite by varying
alpha, whereas the BinarySearch algorithm 5.4 reduces the test suite size
considerably. However, the Binary Search might not always find a subset
with desired mutation score. The Delta-Debugging algorithm 5.5 outper-
forms the other two with maximum reduction of size 4. The execution times
are reported in first three rows of Table 5.1.

This led us to another question of increasing the solution size (number of
variable assignments for a feasible path) in order to investigate the effect
on the maximum mutation score of the generated test suite, and the perfor-
mance of redundancy algorithms in case of larger subsets. Therefore in third
step, we changed our test-case generation algorithm by allowing multiple
tests per path. Prior to that, we always had one satisfying assignment per
feasible path. For experiments, we tailored the algorithm to allow for more
than one number of solutions per feasible path. The purpose was to compare
the mutation score of different test suites.

The AllRandomPaths algorithm 5.9 takes three parameters, i.e., MaxLen,
setSize, and solSize. The MaxLen parameter defines the length of the maxi-
mum path that could be searched by the algorithm. The setSize determines

114

5.5 Empirical Evaluation

the number of subsets to be generated randomly. The generated subsets
represents the number of test suites. Note that, we only execute the test
suite of max. subset size for the analysis. The third parameter solSize defines
the number of test values generated by the constraint solver. For our experi-
ments, we chose solutions of size 1, 3 and 5. That means, for one test case,
we asked constraint solver for different test values, and study the impact on
the attained coverage. The algorithm 5.9 is a sort of an amalgam of previous
two algorithms, i.e., AllPaths 4.4 and RandomPaths 4.22.

It is observed that by allowing maximum solutions of size 3 per feasible path,
the original AllRandomPaths algorithm 5.9 generated in total 322 test suites,
with a maximum subset size of 33 for the same maximum length 20. A slight
increase in the mutation coverage (88%) is observed. Figure 5.7 illustrates the
minimum, maximum, and average mutation score for the CALC2 example
larger than (85%). Starting from |TS| = 13, there is noticeable decline in the
mutation score to 85.39 avg. Similarly in Figure 5.8 it can be seen that for
larger subsets there is no guarantee of selecting subsets that do not reduce
mutation score. However, starting from |TS| = 13, the probability becomes
lower than (80%). The reduction for this test suite and CALC2 is 20 (=33 -
13) and the redundancy 0.606 (= 20

33).

The results from LinMIN, BinarySearch and Delta-Debugging algorithms can
be looked up in Table 5.1. Note that the alpha is initially set to zero and the
subset size is varied from 10 to 30. Afterwards, the parameter alpha is varied
between 0 and 10 while keeping the subset size to 10. Figures 5.12a and
5.12b show the reduction attained by redundancy elimination algorithms
with varying boundary value alpha and subset size.

It is observed that upon changing alpha, we get further reduction in DeltaDe-
bugging algorithm, since we need less number of tests to attain the same
maxRR. Similarly, LinMIN also performs better on changing alpha, but
shows no improvement on varying the subset size. Also, this algorithm
takes longer to compute than the other two algorithms. BinarySearch algo-
rithm, on the other hand, always finds a subset with “maxRR” on increasing
the subset size, but it does not always find the required set upon changing
alpha. Although the addition of multiples tests per path increases the redun-
dancy in the test suite, but LinMIN and BinarySearch algorithms converge
better with larger test suite. Interestingly, the Delta-Debugging algorithm is

115

5 Test Suite Reduction

not effected by increasing the test suite size. The execution time is however
doubled for all algorithms by increasing the subset size.

Similarly, upon increasing the number of test inputs to 5 for each feasible
test path (originally 13), the mutation coverage does not increase, however,
the maximum number of tests suites is increased to 521 with a maximum
subset of size 53. The minimum, maximum, average mutation score for
subsets of size 1 to 52 are reported in Figure 5.10. From |TS| = 23, there is
noticeable decline in the mutation score to 85.79 avg. Also, the probability
of having a mutation score greater than 0.85 for different subsets is shown
in Figure 5.11. The reduction for this test suite |TS| = 23 and CALC2 is 30

(=53 - 23) and the redundancy 0.566 (= 30
53).

One issue was observed, i.e., the number of maximum killed mutants with
3 solutions per path is 270. The number reduces to 269 with 5 solutions per
path. Originally, in the test suite with single solution we had 268 maximum
killed mutants. So, the mutation score does not really increase by adding
more tests to the suite. Figures 5.12c and 5.12d show the reduction attained
by redundancy elimination algorithms by varying boundary value alpha
and subset size. Both LinMIN, BinarySearch perform better on increasing the
alpha size, but Delta-Debugging is insensitive to changes in the solution size,
alpha and subset size. However, the execution times increases exponentially
on increasing subsetSize (see Table 5.1).

5.6 Conclusions

In this Chapter we discussed the regression testing limitations in terms of
SOA-based programs along with the related work done in this domain. Most
of the regression testing techniques are based on the structure of a program,
which might not be possible for all SOA-based programs. Similarly, there
are other concerns like traditional approaches assume deterministic inputs,
which is impossible for dynamic SOAs implementations. We evaluated test
suite redundancy of different test suites and applied redundancy elimination
algorithms to remove redundant test cases while maintaining the failure
detection capabilities within specified limit.

116

5.6 Conclusions

Figure 5.7: The minimum, maximum, and average mutation score for the CALC2 example
with solSize=3 and varying subset size

Figure 5.8: The probability for a subset of the original test suite of CALC2 with solSize=3

to have a mutation score larger than 85.0

117

5 Test Suite Reduction

1: procedure AllRandomPaths(G, MaxLen, setSize, solSize)
2: initialize test suite S← ∅
3: compute the set P of all paths π s.t. |π| ≤ MaxLen.
4: for each path π ∈ P do
5: check the satisfiability of path constraints C(π)
6: if C(π) is satisfiable then
7: for call Constraint Solver for solSize do
8: add each satisfying assignment (a test case) to S
9: end for

10: end if
11: end for
12: store test suite S.
13: generate random subsets sets of the test suite S s.t. |set| ≤ setSize
14: return subsets sets of the original test suite S
15: end procedure

Figure 5.9: AllRandomPaths – Using random subsets for test suite generation

118

5.6 Conclusions

Figure 5.10: The minimum, maximum, and average mutation score for the CALC2 example
with solSize=5 and varying subset size

Figure 5.11: The probability for a subset of the original test suite of CALC2 with solSize=5

to have a mutation score larger than 85.0

119

5 Test Suite Reduction

0	
5	
10	
15	
20	
25	
30	
35	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

0	 0	 0	 5	 5	 5	 10	 10	 10	

Te
st
	 S
ui
te
	 S
iz
e	

Alpha	

OriginalTS	

RedTS	

(a)CALC2 example with varying alpha
for SolSize=3

0	
5	

10	
15	
20	
25	
30	
35	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

10	 10	 10	 20	 20	 20	 30	 30	 30	

Te
st
	 S
ui
te
	 S
iz
e	

Subset	 Size	

OriginalTS	

RedTS	

(b)CALC2 example with varying subset
Size for SolSize=3

0	

10	

20	

30	

40	

50	

60	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

0	 0	 0	 5	 5	 5	 10	 10	 10	

Te
st
	 S
ui
te
	 S
iz
e	

Alpha	

OriginalTS	

RedTS	

(c)CALC2 example with varying alpha
for SolSize=5

0	

10	

20	

30	

40	

50	

60	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	

Li
nM

in
	

Bi
nS
ea
rc
h	

De
lD
eb

	
10	 10	 10	 20	 20	 20	 30	 30	 30	

Te
st
	 S
ui
te
	 S
iz
e	

Subset	 Size	

OriginalTS	

RedTS	

(d)CALC2 example with varying subset
Size for SolSize=5

Figure 5.12: The test suite reduction for the CALC2 example for multiple tests per feasible
path

120

6 Model-Based SOA Debugging

6.1 Introduction

While Testing is focussed on finding faults in a given system, diagnosis
is about figuring out possible reasons behind observed faults. Once the
fault has been localized, an ideal diagnostic engine should also provide
repair possibilities for occurred faults. Unfortunately, due to ever increasing
system maintenance costs, this three step process is neglected altogether
[Nica, 2010]. It becomes even more challenging when it comes to service-
oriented architectures as discussed by Friedrich et al. in [Mayer et al., 2012].
This is mainly because of the fact that SOA-based processes are designed
as service-providers rather than service-owners. This particular feature of
any SOA-based process, although on one hand provides loose-coupling
between service-components, complicates the diagnostic activity on the
other hand. Hence, the diagnostic approach must deal with the problem of
partial behavior.

Figure 6.1 depicts the flow graph of a well-known software engineering
problem modeled as a sequential BPEL process. The corresponding program
takes the triangle’s sides’ lengths as input, and classifies the triangle to be
equilateral, isosceles, or scalene. The example makes use of an external
web service, called InvokeValid. The program takes three inputs, i.e., the
lengths of the triangle’s sides a, b, and c. Let us assume that we want to
classify the isosceles triangle such that a=2, b=2, and c=1. Unfortunately
and unexpectedly, however, our “faulty” program returns an error message
instead (“=NEG”, respectively “No triangle”), due to a programming error.
That is, for condA we wrote (a0 < 0) ∧ (b0 > 0) ∧ (c0 > 0) instead of (a0 >
0) ∧ (b0 > 0) ∧ (c0 > 0), such that the program takes the corresponding
else branch for condA due to the condition evaluating to false instead of true

121

6 Model-Based SOA Debugging

for our example. Our fault detection approach employs dynamic slicing on
the constraint-representation of the BPEL flow graph. The target is to find
contradicting variable assignments responsible for the fault.

RecInput	

IfCond
A	

=NO	

=EQ	

IfCond
C	

=NEG	

Else	

Then	

Then	

AssignInput	

IfCond
B	 Else	

=SC	

Else	

Then	

=IS	

IfCond
D	

Then	

Else	

InvokeValid	

Figure 6.1: BPEL Flow Graph of the Triangle Example Process

The Chapter is organized as follows: The basic definitions in the context of
our approach are revisited in Section 6.2. Section 6.3 describes the under-
lying architecture of our approach. Section 6.4 explains the experimental
setup and results obtained from the empirical evaluation. Conclusions are
presented in Section 6.5.

The content of this chapter has been published in following papers:

122

6.2 Definitions

• Functional Diagnosis of SOA BPEL Processes [Hofer et al., 2014]. Here,
the focus was to derive a debugging approach for finding functional
faults in BPEL processes. The key issue addressed was to diagnose
partial behavior models of BPEL compositions.
• Focussed Diagnosis for Failing Software Tests [Hofer et al., 2015]. In

this paper, we generalize our debugging approach using a control flow
graph model of a faulty program.

6.2 Definitions

Unlike testing, our diagnostic model represents the sequential business
processes only. The BPEL model is represented by a Control Flow Graph
G, where further information can be easily added to functions γC(v) and
γA(v) mapping vertices v ∈ V to a statement’s conditions and assignments
respectively. With G capturing the control flow structure of a program, a
path π in G defines a valid scenario.

The path constraints and the feasible path for our example are shown in
example 1 and example 2 respectively. With the given inputs, as shown in
the example 2, the path constraints highlighted in Figure 6.1 are satisfiable.
Since a wrong path π is executed, the debugging approach focusses on
finding the constraints responsible for the fault.
Example 1.
a0 = in1
b0 = in2
c0 = in3
(a0 < 0) ∧ (b0 > 0) ∧ (c0 > 0) = false
output0 = “No triangle”

Example 2. Our running example’s input I = {a = 2, b = 2, c = 1} results in
the grey-shaded path as of Figure 6.1.

For the debugging problem, we require additional information about the
failed scenario, such as, the trace of the faulty program execution and the
test case, which triggered the particular path in a flow graph G. We can
formalize both trace and a test case as follows:

123

6 Model-Based SOA Debugging

Definition 15 (Trace). The trace T in G for a program execution Π is defined as
the path in G allowed for the input part of Π.

Definition 16 (Test Case). A test case is a tuple τ = (I, O) where I (sometimes
we will write also I(τ)) is the set of value assignments to input variables, and O is
the set of expected values for the output variables. A test case fails iff the observed
output O′ deviates from O, s.t. O′ 6= O.

There are three main components needed to model the debugging problem:
a set of components COMP; a set of system descriptions SD representing
the faulty behavior of the system; and observations OBS about the expected
system behavior. In this way, the model-based debugging swaps the roles of
a model and observations as compared to model-based diagnosis originally
proposed by [Reiter, 1987]. In MBSD, the model, i.e., the execution trace
T is assumed to be incorrect, and the observation OBS denote the correct
behavior of the system. In this regard, the activities included in the execution
trace T define the system components COMP, and the path constraints C(π)
as shown in the example 1, would represent the system descriptions SD.
Similarly, the predicate ¬AB(ci)⇒ NominalBehavior(ci), defines the correct
behavior of the constraints, and OBS denote the expected system behavior.
The system is considered to be at fault iff SD∪OBS∪ {¬AB(ci)|ci ∈ COMP}
is inconsistent.

Definition 17 (Diagnosis). A diagnosis for (SD, COMP, OBS) is a subset-
minimal set ∆ ⊆ COMP such that SD ∪OBS ∪ {¬AB(ci)|ci ∈ COMP \ ∆} is
consistent.

In the context of software debugging, the program slicing has been widely
discussed in academia in order to locate software bugs [Tip, 1995]. Program
Slicing refers to the computation of all possible values of a variable v at any
specific program location. [Weiser, 1982] first introduced the term ”slices”
as a programmer practice to debugging. The idea was simple, yet powerful,
as it allows to concentrate only on program statements, which actually
influence the particular variable at a specific program location. Hence,
all other statements become irrelevant in the debugging context, thereby
reducing the program size to be analyzed.

124

6.2 Definitions

There are two major types of slicing: static and dynamic. The approach
suggested by [Weiser, 1982] is a static one, as it considers all possible inputs
for the variable of interest v. [Korel and Laski, 1988] suggested an approach,
which only takes into account the run-time input given to the program,
while computing the slices for a particular variable v. The added advantage
of this approach is further reduction in the slice size, along with the precise
tracking of dynamic data structures such as arrays[Tip, 1995].

In another work, [Korel and Rilling, 1998] compared different dynamic slic-
ing approaches in practice. However, it may happen, that a dynamic slice
is not complete because of non-executable paths in a given control-flow
graph. There are some extensions, like relevant slicing [Zhang et al., 2005]
to cater for this problem. Also, computing a minimal slice is an undecidable
problem[Korel and Rilling, 1998]. For a detailed survey of different pro-
gram slicing techniques, we refer the interested reader to the survey done
by [Tip, 1995]. In the following, we explain our model-based debugging
approach for locating functional faults in (BPEL) flow graph.

Although model-based diagnosis was initially introduced to diagnose faults
in hardware systems, it can also be used effectively to diagnose software
faults [Wotawa, 2002]. In his work, he showed how the model-based diagno-
sis [Reiter, 1987]and program slicing[Weiser, 1982] can be merged together
to avail the benefits of both techniques. He argued that slices for particular
variables can represent conflicts in the hitting-set algorithm.

In this way, we can reduce the time needed to compute conflicts out of
a model. Since slices are not minimal, model-based diagnosis can help
in finding single fault diagnosis. The approach proves useful in case of
dependency-based model. Our approach adapts the dependency-based
model approach in two major ways: first we have partial model of the
BPEL composition. Second, instead of a hitting-set algorithm, we model the
debugging problem as a constraint-satisfaction problem.

125

6 Model-Based SOA Debugging

6.3 The Debugging Approach

Similar to Testing, our diagnosis approach is also constraint-based. The
constraints systems have been very popular in artificial intelligence commu-
nity. They are, nowadays, widely used in verification, testing, configuration
of phone networks, recommended systems, as well as in the diagnosis of
the hardware and software systems. There are various constraints solvers
(Minion, Choco, Yices) available in the market, to meet the needs of a variety
of diverse application domains [Nica, 2010].

Our central reasoning concept is based on the constraint representation of
a BPEL flow graph as of definition 1. However, we tailor the approach
already discussed for the testing of SOA applications as discussed in
Chapter 4. Our approach is similar to the debugging approach presented
by [Hofer and Wotawa, 2012] and [Wotawa et al., 2012]. Although both ap-
proaches employ dynamic slicing: the former approach make use of exe-
cution traces to compute slices using hitting-set algorithm [Reiter, 1987],
and a constraint solver to compute the minimal diagnosis; the latter, on the
other hand, derives constraints from the source-code of a program. Both
of these approaches employ the dependency-graph analysis for computing
constraints. Our work is an amalgam of the two in a way that, we derive
constraints from the BPEL source-code, but instead of modeling all possible
paths in a flow graph, we rely on the particular execution trace. In addition
to that our work employs modeling of the partial information of calls to
external web services. The previously discussed approaches work on the
dependency-based model of the underlying program. However, the variable-
dependency analysis is not enough for our model [Yan et al., 2009]. For
that purpose, we tailor the constraint solving approach proposed by these
approaches as follows.

The control flow graph contains both basic and structured activities, which in
our case can be annotated using pre- and post conditions. These contracts are
particularly helpful in reasoning about the partial functionality of invoked
web services. Since the BPEL process logic is available, one might consider
our approach to be a white-box, but, as a matter of fact a large portion of a
system’s functionality is hidden in external web services. Because of that,
we prefer to name our approach as grey-box. A BPEL process only knows

126

6.3 The Debugging Approach

about inputs/outputs of external web services, hence the diagnosis of these
hidden/grey portions of the process becomes harder. [Mayer et al., 2012].

Before going into the definitions, we present an overview of the suggested
approach in Figure 6.2. Consider this to be a control flow graph representa-
tion of a BPEL process, where the highlighted path is faulty but a feasible
path π, as per definition 2, which meets all path constraints defined in
3 along π. We diagnose single paths rather than a complete model. And,
everything aside π is a black box. In the first step, the path π is translated
to constraints, which become components ci in our model. The behavior
of these components is represented by the predicate AB(ci). Moreover, the
trace T is divided into segments based on branching points. For that, we in-
troduce the intrace variable intracei, which basically determines if a segment
si is part of the diagnosis or not.

Our debugging approach assumes that we have an execution trace T which
contradicts the expected behavior of a failing test case τ. In order to diagnose
the root cause of any deviation from the expected execution path, we
segment the execution trace T using a boolean variable intracei in order to
keep track of the branching conditions. Basically, the purpose is to identify
those segments in the trace T, which fall out of the desired path. The first
segment has necessarily to be a part of each and every scenario.

Definition 18 (Segmented Path). A segmented path (π, S) in G is a tuple such
that π is a path, and S is the set of branching points si of π in G that divide the
path into enumerated segments as follows. The branching points si are numbered
according to their distance from π0, the enumeration starting with 1. The first
segment, numbered 0 starts at π0 and ends with s1. Starting with segment 1, a
segment i starts right after si, and ends with either si+1 or the path’s end.

Example 3. The path constraints from Example 1 are divided into 2 segments. The
first segments contains:

1 a0 = in1
2 b0 = in2
3 c0 = in3
4 (a0 < 0) ∧ (b0 > 0) ∧ (c0 > 0) = f alse

The second segment contains:

127

6 Model-Based SOA Debugging

s	

s0	

s1	

intrace0	

intrace1	

Figure 6.2: Annotated Flow Graph Representation

128

6.3 The Debugging Approach

5 output0 = “No triangle”

Now let us define the specific diagnosis problem and our corresponding
technical implementation.

Definition 19 (DiagnosisProblem). A control flow graph diagnosis problem
is a tuple (G, τ), where G is a CFG, and T is a trace from a failing test case τ.

The debugging problem can be modeled using the following constraint
satisfaction encoding. The main difference of our approach with the one
discussed in [Wotawa et al., 2012] is the introduction of intrace variable. The
target is to differentiate between different segments in the execution trace
of an unexpected output.

Definition 20 (DiagnosisCSP). A constraint satisfaction encoding CSP(G, τ)
for a control flow graph diagnosis problem (G, τ) is defined as follows:

1. let (T, S) be a segmented path for the trace T for τ in G
2. let the set of variables V contain all the variables in C(T), as well as Boolean

variables intracei for all of (T, S)’s segments as of Definition 18.
3. let C′(T) be the path constraints C(T) altered s.t. for any individual con-

straint c ∈ C(T) of segment i, we add a predicate ABc and do as follows:

a) if c is not a branching constraint from some s ∈ S, then c gets replaced
by ¬intracei ∨ABc ∨ c.

b) if c is the branching constraint from si ∈ S, then c gets replaced by
the following set of constraints: ¬intracei → ¬intracei+1, ABc →
¬intracei+1 and ¬intracei ∨ ABc ∨ (c ↔ ◦intracei+1) - with ◦ being
the expected polarity of intracei+1 when constraint c is satisfied.

4. then let CSP(G, τ) be the combined constraints of C′(π) and τ as well as
the constraint intrace0.

Now let us have a look at the corresponding CSP for our running example.

Example 4. The constraints as of Def. 20 for our running example are as follows:

129

6 Model-Based SOA Debugging

¬intrace0 ∨ AB1 ∨ a0 = in1
¬intrace0 ∨ AB2 ∨ b0 = in2
¬intrace0 ∨ AB3 ∨ c0 = in3
¬intrace0 → ¬intrace1
AB4 → ¬intrace1
¬intrace0 ∨ AB4∨

(a0 < 0) ∧ (b0 > 0) ∧ (c0 > 0)↔ ¬intrace1
¬intrace1 ∨ AB5 ∨ output0 = “No triangle”
in1 = 2
in2 = 2
in3 = 3
output0 = “isosceles”
intrace0

As discussed earlier, we make use of the constraint-based representation
[Wotawa et al., 2012] for computing diagnoses. However, we adapt the con-
straint satisfaction problem according to definition 20, where constraints
are directly derived from the BPEL source code. [Nica et al., 2013] showed
that such direct approaches might perform better than the diagnosis ap-
proach based on conflict-based computation. Algorithm shown in Figure 1

illustrates the corresponding computation of diagnoses.

Theorem 16 (GetDiagnosesCorrectness). GetDiagnoses(M, n) Algorithm il-
lustrated in Figure 1 is correct.

Proof. Algorithm starts with CSP(G, τ) and let the solver determine satisfy-
ing assignments that are limited in active abnormal predicates.The line 3

of the algorithm is used to effectively limit the sum of active abnormal
predicates to the desired cardinality i. A single query to the solver delivers
all the solutions for a specified cardinality. Thus, starting with a cardinality
of one, we increment the cardinality limit until we reach the given upper
bound for the diagnosis cardinality. All solutions are stored (Line 5) and the
constraints for the corresponding blocking clause (i.e. basically a logic or
over the negated abnormal predicates in a diagnosis) are attached to the
model, in order to ensure the diagnoses’ subset-minimality (Line 6). Hence,
Lines 5 and 6 ensure the completeness and soundness of Algorithm. Due
to for loop in Line 2, Algorithm terminates in finite time. The worst-case
complexity would be exponential.

130

6.3 The Debugging Approach

Algorithm 1 GetDiagnoses(M, n)

Input: A constraint system M and the upper bound of the diagnosis
cardinality n
Output: All minimal diagnoses up to the predefined cardinality n

1: Let DS be {}
2: for i = 1→ n do

3: M’ = M ∪
{(

|π|
∑

j=1
ABj

)
== i

}
4: D = Solve(M’)
5: DS = DS ∪ D
6: M = M ∪ ¬ (∨d∈D(d))
7: end for
8: return DS

Example 5. Deploying algorithm 1 on the CSP as of Definition 20 for our
running example results in the computation of the three single fault diagnoses
AB1, AB4, and AB5.

Using our diagnosis approach, we can tell if a particular segment is a part of
the trace or not. For example, as shown in Figure 6.3, the disabled segments
by the intrace variable are displayed in grey. It is also clear, that there are
three single-fault explanations for the particular scenario: First, the input
value might be wrong; Second, the branching constraint might be incorrect;
Third, we might have an incorrect output value.

Definition 21 (Extended Diagnosis). An extended diagnosis for a control
flow graph diagnosis problem (G, τ) as of Def. 19 is a tuple (∆, TS, INTRACE),
where ∆ is a diagnosis (see Def. 17) in the predicates ABi for the CSP as of Def. 20
derived from (G, τ), TS refers to the segmented path/trace derived for CSP(G, τ),
and INTRACE is the corresponding minterm in the intrace variables (cf Def. 20)
describing which segments are in the path πcorr depicted by ∆.

The debugging approach takes into consideration only the binary branching
decisions. Programming constructs like switch and pick in BPEL, the exact
choice to be taken remains part of future work. Moreover, our debugging

131

6 Model-Based SOA Debugging

(a)Diagnosis AB1: incorrect input value

(b)Diagnosis AB4: incorrect branching constraint

(c)Diagnosis AB5: incorrect output value

Figure 6.3: A graphical presentation of the running example’s single-fault diagnoses.

132

6.4 Experiments

encoding can not be applied for non-deterministic constructs like Flow
where more than one paths can be active simultaneously. Also, our approach
focusses on debugging single paths rather than the complete model. The
choice was made so as to reduce the runtime diagnosing costs.

6.4 Experiments

For evaluating our approach, we built a corresponding prototype that
extracts a BPEL flow graph from a corresponding process and translates it
to MINION constraints. MINION (we used version 1.6.1) is an open source
project, and supports arithmetic, logic, and relational operators over Boolean
and Integer variables. All experiments were carried out on a MacBook Pro
(Late 2011) with a 2.4 GHz Intel Core i5, 4 GB 1333 MHz DDR3, running
OS X 10.7.2.

As a first step, we took three programs; two from software engineering
domain, i.e., Triangle, BMI, and the one from SOA papers. We injected
single faults manually to create different faulty but executable versions of
the aforementioned programs. In Figure 6.4 you can see the BPEL flow
graph of the Bank Loan Process. Its main objective is to approve, delay, or
reject loan requests based on client’s history. Loan requests for less than
10 000 are approved immediately, if the client has a credible history (then
there is a low risk involved in granting it). For all other requests, an external
service (Assessor) is invoked. The output of this external service would be
“approved”, “pending”, or “reject”.

For scenario Loan-V1, we changed the IfLoan condition from loan ≤ 10 000
to loan 6= 10 000. The test case t with I = {loan = 1 000 000, clientId = 20} as
input and the expected output E = {reject} unveils this fault, as the faulty
version results in the output O = {approved}. That is, the mutated program
takes a different branch and calls the“Risk” web service rather than the
“Assessor” service, resulting in the actual output O = {approved}.

For Loan-V2, the IfLoan condition was changed from loan ≤ 10 000 to
loan > 10 000. For input I = {loan = 1 000 000, clientId = 20}, the expected
output was E = {reject}, but the altered program returned O = {approved}.

133

6 Model-Based SOA Debugging

RecInput	

IfLoan	

InvokeRisk	

Approved	

Low	
Risk	

Invoke	
Assessor	

Assign	
Output	

Then	

Then	

AssignLoan	

Figure 6.4: BPEL Flow Graph of the Bank Loan Business Process

Again the different branch chosen by the program results in the actual
output would be O = {approved} derived by a different assessment variant.
For scenario Loan-V4, we changed the IfLoan condition from loan ≤ 10 000 to
loan ≤ 100 000. The test case with input I = {loan = 100 000, clientId = 20}
was expected to take the “Else” branch and based on the loan amount give
the output E = {pending}. But, since the IfLoan condition was mutated, the
“Then” branch was taken and the “Risk” web service derived the actual
output O = {approved}. Mutating the LowRisk condition from risk = 0 to
risk = 1 yielded the mutated program for scenario Loan-V5. The test case t
with input I = {loan = 1 000, clientId = 21}, was expected to yield output
E = {pending}, but the mutated LowRisk condition resulted in the actual
output O = {approved}.

BMI is a small BPEL process that computes the Body Mass Index (BMI)
from two parameters: height and weight. Based on the value returned by
invoked web service, the process decides if the provided result should be
“underweight”, “healthy”, “overweight”, “obese”, or “very obese”.

134

6.4 Experiments

For our tests, we used the following scenarios. For BMI-V1, we changed
(mutated) the IfUnderWeight condition from bmiVal ≤ 19 to bmiVal 6= 19.
For input I = {weight = 105, height = 160}, the expected output was
E = {very obese}, but due to the mutation, the program led to output
O = {underweight}. Mutating the IfHealthy condition from bmiVal ≤ 25 to
bmiVal > 25 yielded the faulty process of scenario BMI-V3. The revealing
test case had I = {weight = 75, height = 160} as input, and E = {overweight}
as expected output. Contradicting E, the actual output was O = {healthy}.
For BMI-V4, we changed the IfUnderWeight condition from bmiVal ≤ 19
to bmiVal = 19. The input I = {weight = 50, height = 160} was expected
to yield in output E = {healthy}, but the mutated program returned O =
{underweight} instead. The same IfUnderWeight condition was changed to
bmiVal > 19 for scenario BMI-V5. The revealing test case had as input I =
{weight = 75, height = 160} with the experienced output O = {underweight}
contradicting the expected one E = {overweight}.

For the Triangle example as explained in the introduction, we considered
following mutations. In TRI-V1, condA (a0 > 0) ∧ (b0 > 0) ∧ (c0 > 0)
was changed to (a0 < 0) ∧ (b0 > 0 ∧ (c0 > 0). The test case with input
I = {a = 2, b = 2, c = 3} was expected to give output E = {IS} (i.e.
“isosceles”). The mutated program, however, returned O = {NEG} (i.e.
“No triangle”) as output. Incase of TRI-V2, condA condition was mutated
to (a0 > 0) ∧ (b0 < 0) ∧ (c0 > 0). The failing test case had an input
I = {a = 1, b = 1, c = 1}, where the expected output was E = {EQ} (i.e.
“equilateral”). Contradicting E, the program returned the incorrect output
O = {NEG}. In TRI-V3, condA was changed to (a0 > 0)∧ (b0 > 0)∧ (c0 < 0)
, again the revealing test case having I = {a = 1, b = 1, c = 1} as input and
E = {EQ} as expected output. Likewise for TRI-V1 and TRI-V2, the actual
output was O = {NEG} contradicting E. For TRI-V4 the condC was changed
from (a0 = b0) ∧ (b0 = c0) to (a0 = b0) ∨ (b0 = c0). The revealing test case
t had I = {a = 2, b = 2, c = 1} as an input, and was expected to return
E = {IS}, but due to the mutation, the program returned O = {EQ}.

One can argue that the number of constraints presented in this work are
rather small. In SOA domain, however, most of the system’s functionality is
wrapped in web services, about which we have partial information only. The
prime purpose of a business process is to integrate different web services
in order to achieve a business goal. In particular this means, the focus of

135

6 Model-Based SOA Debugging

Table 6.1: Single Faults Diagnoses.

Program Inputs Outputs WS S S′ CO Obs Var AllSols T min (s) T max (s) T avg (s)

Loan-V1 2 1 2 9 9 17 3 14 7 0.129246 0.135582 0.1326410

Loan-V2 2 1 2 9 9 17 3 14 7 0.243236 0.302773 0.2548036

Loan-V4 2 1 2 9 9 17 3 14 8 0.023699 0.027242 0.0252019

Loan-V5 2 1 2 9 9 17 3 14 7 0.021730 0.025869 0.0238879

Bmi-V1 2 1 1 8 8 15 3 11 4 0.008145 0.009979 0.0088565

Bmi-V3 2 1 1 9 9 18 3 13 7 0.008578 0.010395 0.0092091

Bmi-V4 2 1 1 8 8 15 3 11 6 0.008361 0.010359 0.0091162

Bmi-V5 2 1 1 8 8 15 3 11 6 0.008381 0.009963 0.0091609

Tri-V1 3 1 1 5 5 12 4 10 3 0.003844 0.005370 0.0043121

Tri-V2 3 1 1 5 5 12 4 10 3 0.004226 0.005441 0.0043277

Tri-V3 3 1 1 5 5 12 4 10 3 0.003918 0.005127 0.0043014

Tri-V4 3 1 1 10 10 21 4 21 10 0.004029 0.006739 0.0048355

a business process is on integration of the involved web services’ in- and
outputs.

Table 6.1 shows the results of our experiments. The total numbers of pro-
gram’s inputs and outputs are given as Inputs and Outputs in the table. WS
refers to the number of external web services invoked by the BPEL process.
The number of constraints and variables derived for a path are reported as
CO and VAR, and Obs represents number of observations. Column AllSols
reports on the number of all possible single fault solutions for a particular
example. Similarly, T min (s) and T max (s) define minimum and maximum
time in seconds needed to compute diagnoses, where T avg (s) is the average
total time over ten runs.

For our results we had some interesting findings. First, the execution time
taken by our approach for diagnosing BPEL process is negligible in contrast
to the time needed for testing such BPEL examples [Jehan et al., 2014].
Second, the diagnosis approach worked best for the BMI-V1 example, where
our diagnoses removed half of statements from the diagnostic scope. For
other variants, the reduction was about 25 %. Incase of the running example
“Triangle”, we got a reduction of 40 % for three programs, but in TRI-V4,
not a single statement could be excluded from the search for the fault.

Figure 6.5 compares the trace size and diagnoses size for all program

136

6.4 Experiments

variants used in our experiments. This figure shows that the amount of
components needed to be investigated could be reduced.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

Lo
an
-‐V1
	

Lo
an
-‐V2
	

Lo
an
-‐V4
	

Lo
an
-‐V5
	

Bm
i-‐V
1	

Bm
i-‐V
3	

Bm
i-‐V
4	

Bm
i-‐V
5	

Tri
-‐V1
	

Tri
-‐V2
	

Tri
-‐V3
	

Tri
-‐V4
	

N
um

be
r	 o

f	 S
ta
te
m
en

ts
	

Programs	

Trace	 Size	 Diagnoses	

Figure 6.5: Comparison of the trace size and diagnoses size for faulty programs.

As a second step, we extended the example set with three more programs.
The Geo example computes area and circumference of a circle or a square
discussed in our paper [Hofer et al., 2015]. Tcas is a SOA variant of the
well-known traffic collision avoidance system used in many software engi-
neering examples1. The calculator (Calc) example demonstrates additions,
subtractions, divisions and multiplications as well as control structures like
if-then-else and while.

For experiments, we introduced single or double faults in all examples.
Table 6.2 shows our results when searching for single and double fault
diagnoses. Depending on the injected fault and the specific scenario, there

1see also http://sir.unl.edu/

137

6 Model-Based SOA Debugging

are not always single and double fault diagnoses. Column F indicates the
number of faults injected for a specific sample. The total number of inputs
and outputs to a program are given in column I/O. Column S indicates
the number of statements in the diagnosis problem’s execution trace. The
number of constraints and variables derived for the trace are reported in
the columns C and V. For single fault (|∆| = 1) and double fault diag-
noses (|∆| = 2) we report in the corresponding columns on the number
of solutions found, as well as the average time in milliseconds over three
computations.The approach’s diagnostic performance for the single fault
scenarios is indicated in column R by means of the reduction in statements
that have to be considered by using the following formula:

Reduction = 1− |single fault diagnoses|
|executed statements|

In other words, this means how many statements out of the executed ones
we could eliminate from consideration. For double fault scenarios, we need
to establish a more appropriate metric and thus do not report corresponding
numbers. The corresponding files can be downloaded from the following
link2.

We draw several conclusions from the experimental analysis: First, the
time needed to compute the diagnosis is negligible, which makes it an
attractive choice for augmenting any SOA debugging engine; second, we
observed average reduction of 22 % to 50 % in nearly all examples, making
an attractive average reduction of 39.07 %. For TCAS, the reduction got as
high as 89.1 %. The specific structure of the Calc example did not allow for
any reduction.

6.5 Conclusions

Similar to testing, we modeled our debugging approach as a constraint-
satisfaction problem with an underlying model being the program’s control
flow graph.The approach requires the execution trace of a faulty program

2http://a4s.ist.tugraz.at/downloads/ieaaie15.zip

138

6.5 Conclusions

with at least one test case. The partial behavior of the called web services is
specified using the auxiliary data in the form of pre- and post conditions.
We assume that the specification documents are provided for the debugging
purposes. Moreover, we make use of existential constraints in addition to
propagated constraints to model the debugging problem. In order to reduce
the debugging cost, we debug only a single execution’s trace in a control
flow graph, rather than a full temporal model proposed by DIAMOND
project. Considering the fact that actual business processes tend to be long
running workflows, we segment the trace in different segments. The purpose
is to inform the user about probable positions in the flow graph, where a
program might have deviated from the intended flow.

The first experiments using SOA and software engineering examples showed
promising results. However, the approach can be extended in many ways:
For example, the effect of weak and strong pre- and post- conditions is a
planned future work. Also, we presently work on a weak fault model with
functional faults, strong fault models specifying non-functional properties
like SLA agreements can be useful for SOA domain. Also, the approach is
general enough and can be applied to functional debugging of any software
program. One limitation of our approach is that it only works for sequential
processes. A fruitful extension could be done by extending the approach to
debug non-deterministic control-flow graphs. Since we make use of dynamic
slicing in our work, it can be interesting to compare our work with other
slicing-based debugging approaches for SOA programs.

139

6 Model-Based SOA Debugging

Table 6.2: Results for programs with single and double faults.

Program F I/O S C V |∆| = 1 |∆| = 2 R(%)# Tavg(ms) # Tavg(ms)
Loan-V1 1 2/1 9 17 12 8 19.03 0 218.97 11.0
Loan-V2 1 2/1 9 17 12 8 15.52 0 14.15 11.0
Loan-V3 2 2/1 8 15 12 3 18.84 4 15.82

Loan-V4 2 2/1 8 15 12 3 17.85 4 15.99

Loan-V5 2 2/1 8 15 12 3 15.37 0 12.54

Loan-V6 2 2/1 8 15 12 3 15.81 0 12.89

Bmi-V1 1 2/1 8 15 11 4 10.93 0 3.86 50.0
Bmi-V2 1 2/1 9 18 13 7 12.50 0 4.56 22.2
Bmi-V3 1 2/1 8 15 11 6 12.33 0 4.21 25.0
Bmi-V4 1 2/1 8 15 11 6 12.07 0 4.08 25.0
Bmi-V5 2 2/1 8 15 11 4 8.95 0 4.08

Bmi-V6 2 2/1 8 15 11 4 8.73 0 3.93

Bmi-V7 2 2/1 8 15 11 4 9.29 0 3.87

Bmi-V8 2 2/1 8 15 11 4 8.88 0 3.72

Tri-V1 1 3/1 5 12 10 3 4.31 0 3.28 40.0
Tri-V2 1 3/1 5 12 10 3 4.33 0 3.15 40.0
Tri-V3 1 3/1 5 12 10 3 4.30 0 3.37 40.0
Tri-V4 1 3/1 10 29 21 10 4.53 0 3.36 0.0
Tri-V5 2 3/1 5 12 10 2 4.52 1 3.80

Tri-V6 2 3/1 5 12 10 2 4.53 1 3.77

Tri-V7 2 3/1 5 12 10 2 3.97 1 3.17

Tri-V8 2 3/1 5 12 10 2 4.22 1 3.21

Geo-V1 1 2/2 5 13 10 2 5.52 2 6.48 60.0
Geo-V2 1 2/2 5 13 10 2 7.21 2 6.51 60.0
Geo-V3 2 2/2 5 13 10 2 9.47 1 5.46

Geo-V4 2 2/2 5 13 10 3 9.70 0 4.16

Geo-V5 2 2/2 5 13 10 1 8.21 5 12.15

Geo-V6 2 2/2 5 15 10 1 7.74 2 9.34

Tcas-V1 1 12/1 74 98 71 14 597.86 15 6200.84 81.0
Tcas-V2 1 12/1 74 98 71 18 602.45 2 4402.64 75.6
Tcas-V3 1 12/1 74 98 71 8 527.77 12 6374.44 89.1
Tcas-V4 1 12/1 74 98 71 18 653.73 9 4891.03 75.6
Tcas-V5 1 12/1 75 103 73 18 619.85 9 4217.57 76.0
Tcas-V15 2 12/1 75 96 77 7 413.66 13 3632.64

Tcas-V40 2 12/1 73 90 73 13 613.24 9 2135.63

Calc-V1 1 3/1 12 27 22 12 2.87 0 2.38 0.0
Calc-V2 1 3/1 8 22 19 8 2.79 0 1.78 0.0
Calc-V3 1 3/1 13 35 27 13 19.68 0 5.33 0.0
Calc-V4 2 3/1 12 28 18 12 2.32 0 2.36

Calc-V5 2 3/1 15 39 27 15 3.13 0 3.60

140

7 Conclusions

7.1 Results summary

The thesis addresses following key challenges with respect to reliability of
SOA-based processes.

1. Test case generation and execution
2. Test case minimization
3. Model-based Debugging

One of many hurdles in testing SOA-based processes is that of limited
observability, that is, services’ business logic is hidden making it a black-box
for the tester. Even at workflow level, where the basic workflow logic is avail-
able, major portion of functionally still lies in external services. Since these
services are basic building blocks of any SOA workflow, appropriate testing
strategies have been an area of research for a decade. Another challenge
related to effective testing of SOA-based workflows is the limited control
over these services. Based on SOA principle of loose-coupling, services
change independently making integration testing more intricate than in
traditional software. This limited observability makes test case generation
more challenging, because generating models from service descriptions
is cumbersome and inefficient. Similarly, restricted control over external
services in any SOA-based process poses serious threat to efficient test case
execution.

There are number of solutions suggested to tackle this issue: We propose
model-based grey-box testing solution, which is a combination of verifica-
tion and testing for SOA processes. Formal verification helps in detecting
unreachable parts in service workflows, and is widely investigated by many

141

7 Conclusions

researchers for efficient test suite generation. Our work employs graph-
based approach to generate control flow graph out of BPEL workflow. This
is particularly useful in SOAs where formal specifications of system un-
der test are hardly available. In order to generate test data, we make use
of state-of-art MINION constraint solver. Since workflow model contains
partial behavioral information, that is, the functioning of external services
called in working is not available, we make use of pre- and post-conditions
to augment BPEL model. These contracts provided by the developer or ser-
vice providers can be employed to solve the observability issues regarding
services participating in a workflow. These contracts are also of greater help
to integrator both in verifying external services contracts and in specify-
ing test oracles. Tester can easily add these contracts on BPEL flow graph
representation in our tool BPELTester.

Once tester has augmented BPEL control flow graph model, our tool pro-
vides different options for test case generation. There are two main algo-
rithms, that is, AllPaths and RandomPaths for generating test paths (abstract
test cases) on BPEL control flow graph model. The purpose was to compare
structured and random approaches for test case generation. Both algorithms
have further two variants, that is, each for sequential and concurrent BPEL
processes. Incase of AllPaths algorithm, tester needs to input the MaxLen
parameter, which specifies the maximum path length searched by algorithm.
The model along with the test case represents the constraint-satisfaction
problem. The feasibility of these test paths is checked with the help of
MINION constraint solver, which also generates test inputs (executable test
cases) in case of feasible test paths. For RandomPaths, instead of MaxLen,
tester needs to specify the required number of random paths for some fixed
MaxLen parameter. For test execution, we rely on external tools, that is,
BPELUnit and MuBPEL. BPELUnit measures the unit coverage of our gener-
ated test suites, and MuBPEL is a mutation testing tool. We observed that the
structure-based algorithm performed better both in attained coverage and
execution time. We achieved 100% coverage in all of the examples, but the
highest achievable mutation score was about 90%. The test case generation
time was negligible as compared to the test execution time. Moreover, offline
testing can be useful to a number of SOA stakeholders, that is, developers,
providers and integrators, thereby reducing the testing cost.

142

7.1 Results summary

Another issue is high testing cost of SOA applications. This could imply
either cost of testing at service level; i.e. cost of invoking real services every
time; or cost of testing at composition level, where Integrator needs to make
sure that all the services in the composition are functioning according to
service-level- agreements. There is strong need for solutions that can reduce
both such costs.

Test suite minimization based on test case deletion aims at eliminating
all redundancies from the test suite. Therefore minimizing test suites is
important for reducing high test execution cost involved SOAs regression
testing. Regression testing can be classified as test suite minimization (re-
duction), test suite selection, or test suite prioritization. First, by employing
AllRandomPaths algorithm, we randomly selected subsets of original test
suites in order to have a look at the decline of failure detection capabilities.
AllRandomPaths takes two parameter, that is, setSize and solSize in addition
to MaxLen. The setSize determines the number of subsets to be generated
randomly. The generated subsets represent the number of test suites. Note
that, we only execute the test suite of max. subset size for the analysis. The
third parameter solSize defines the number of test values generated by the
constraint solver. For our experiments, we chose solutions of size 1, 3 and
5. That means, for one test case, we asked constraint solver for different
test values, and study the impact on the attained coverage. The initial study
observed redundancy of 0.538 in one of the examples. We computed the
probabilities from randomly selected 10 subsets of a particular size. We see
that even for larger subsets there is no guarantee to select the right ones
that do not reduce mutation score.

Then, we applied three test suite reduction algorithms, that is, LinMIN,
BinarySearch and Delta-Debugging. The target was to reduce the test suite
size keeping the quality measuring attributes such as unit coverage and
mutation scores within specified range. It was observed that upon changing
alpha, we get maximum reduction in Delta-Debugging algorithm, since we
need less number of tests to attain the maximum reduction rate. Similarly,
LinMIN also performs better on changing alpha, but shows no improvement
on varying the subset size. Also, this algorithm takes longer to compute
than the other two algorithms. BinarySearch algorithm, on the other hand,
always finds a subset with desired reduction on increasing the subset size,
but it does not always find the required set upon changing alpha.

143

7 Conclusions

Although addition of multiples tests per path increases redundancy in the
test suite, but LinMIN and BinarySearch algorithms converge better with
larger test suite. Interestingly, the Delta-Debugging algorithm is not effected
by increasing the test suite size. The execution time is however doubled for
all algorithms by increasing the subset size.

In the context of debugging service compositions, we also adapted a model-
based approach in combination with dynamic slicing technique. The focus
was to present a light-weight debugging solution for locating functional
faults in service compositions. The approach requires an execution trace
along with one test case. We observed an average reduction of 39.07% in
our examples with a negligible time overhead.

7.2 Open Questions and Future Work

There are many ways to extend the work presented in the thesis:

First, one of the key challenge in testing SOAs is the lack of real-world
case-studies. Although there has been a lot of research done in devising
new testing methodology for SOA-based applications, but 71% of the publi-
cations had no empirical evaluations. This absence of benchmark examples
made the comparative analysis of different testing techniques next to im-
possible.

Second, in the context of test case generation, we generate test inputs based
on boundary-value analysis and constraints-based reasoning. However, in
some scenarios, real test data (RTD) would be desirable, in generating
realistic test data. This is particularly useful in case of ”string” data types.

Third, debugging process should consider Flow constructs. But, the most
important step should be availability of some benchmark suites. With out
real-world problems, it would not be fair to compare and contrast different
testing and debugging methodologies.

144

List of Definitions

1 Definition (BPEL Flow Graph) 53

2 Definition (Path) . 53

3 Definition (Path Condition) . 53

4 Definition (Feasible Path) . 54

5 Definition (An Extended BPEL Flow Graph) 54

6 Definition (Finite Path) . 55

7 Definition (Finite Path Segment) 55

8 Definition (Finite Run) . 55

9 Definition (Feasible Run) . 55

10 Definition (Run Constraints) . 56

11 Definition (Run Scope) . 56

12 Definition (Test Case and Test Suite) 57

13 Definition (Reduction) . 106

14 Definition (Redundancy) . 106

15 Definition (Trace) . 124

16 Definition (Test Case) . 124

17 Definition (Diagnosis) . 124

18 Definition (Segmented Path) . 127

145

LIST OF DEFINITIONS

19 Definition (DiagnosisProblem) 129

20 Definition (DiagnosisCSP) . 129

21 Definition (Extended Diagnosis) 131

146

List of Theorems and Lemmas

1 Lemma (ComputingAllpaths) 67

2 Lemma (CheckSatisfiability) . 67

3 Lemma (Valid Solution) . 67

4 Theorem (AllPathsSoundness) 67

5 Theorem (AllPathsCompleteness) 67

6 Lemma (ComputingAllruns) 71

7 Lemma (CheckRunSatisfiability) 71

8 Theorem (StructRunsSoundness) 71

9 Theorem (StructRunsCompleteness) 71

10 Lemma (RandomTestSuiteSize) 83

11 Lemma (ComputingFeasibleRandompaths) 83

12 Theorem (RandomPathsCorrectness) 83

13 Lemma (ComputingFeasibleRandomruns) 91

14 Theorem (RandomRunsCorrectness) 91

15 Theorem (LinMINCorrectness) 109

16 Theorem (GetDiagnosesCorrectness) 130

147

Bibliography

[ATM,] Jboss example. http://docs.jboss.com/jbpm/bpel/v1.1/

userguide/tutorial.atm.html. 85

[Xpa, 2011] (2011). Xml path language (xpath) 2.0. http://www.w3.org/TR/
xpath20/. 63

[Bpe, 2012] (2012). Eclipse bpel designer tutorial. http:

//servicetechnologies.wordpress.com/exercises/. 49

[Abreu et al., 2009] Abreu, R., Zoeteweij, P., Golsteijn, R., and van Gemund,
A. J. C. (2009). A practical evaluation of spectrum-based fault localization.
J. Syst. Softw., 82(11):1780–1792. 44

[Active Endpoints, 2010] Active Endpoints (2010). Active VOS engine.
http://www.activevos.com. 76, 77

[Adrion et al., 1982] Adrion, W. R., Branstad, M. A., and Cherniavsky, J. C.
(1982). Validation, verification, and testing of computer software. ACM
Comput. Surv., 14(2):159–192. 32, 33, 41

[Ardagna et al., 2007] Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., and
Plebani, P. (2007). Paws: A framework for executing adaptive web-service
processes. IEEE Software, 24(6):39–46. 46

[Ardissono et al., 2008] Ardissono, L., Bocconi, S., Console, L., Furnari, R.,
Goy, A., Petrone, G., Picardi, C., Segnan, M., and Dupré, D. T. (2008).
Enhancing web service composition by means of diagnosis. In Business
Process Management Workshops, Lecture Notes in Business Information
Processing, pages 468–479. 46

[Balepur Venkatanna Kumar, 2010] Balepur Venkatanna Kumar,
Prakash Narayan, T. N. (2010). Implementing SOA Using Java EE.
Prentice Hall. 11, 16

149

BIBLIOGRAPHY

[Bentakouk et al., 2011] Bentakouk, L., Poizat, P., and Zaı̈di, F. (2011).
Checking the behavioral conformance of web services with symbolic
testing and an smt solver. In Proceedings of the 5th International Conference
on Tests and Proofs, TAP’11, pages 33–50, Berlin, Heidelberg. Springer-
Verlag. 38

[Berkelaar,] Berkelaar, M. lp solve, a public domain mixed integer linear
program solver. available at http://groups.yahoo.com/group/lp solve/.
41

[Berners-Lee, 1989] Berners-Lee, T. (1989). Hypertext Transfer Protocol.
https://www.w3.org/Protocols/. 16

[Bhushan, 1985] Bhushan, A. (1985). File Transfer Protocol. https://tools.
ietf.org/html/rfc959. 16

[Binder et al., 2015] Binder, R. V., Legeard, B., and Kramer, A. (2015). Model-
based testing: Where does it stand? Commun. ACM, 58(2):52–56. 51

[Blanco et al., 2009] Blanco, R., Garcia-Fanjul, J., and Tuya, J. (2009). A first
approach to test case generation for bpel compositions of web services us-
ing scatter search. In International Conference on Software Testing, Verification
and Validation Workshops, 2009. ICSTW ’09., pages 131–140. 43

[Boubeta-Puig et al., 2011] Boubeta-Puig, J., Medina-Bulo, I., and Garcı̀a-
Domı̀nguez, A. (2011). Analogies and differences between mutation
operators for WS-BPEL 2.0 and other languages. In IEEE Fourth Interna-
tional Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2011, pages 398–407. 35

[Boyer et al., 1975] Boyer, R. S., Elspas, B., and Levitt, K. N. (1975). Se-
lect—a formal system for testing and debugging programs by
symbolic execution. In Proceedings of the International Conference on Reliable
Software, pages 234–245, New York, NY, USA. ACM. 37

[Bozkurt, 2013] Bozkurt, M. (2013). Cost-aware pareto optimal test suite
minimisation for service-centric systems. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation, pages 1429–1436. ACM.
102

150

BIBLIOGRAPHY

[Bozkurt and Harman, 2011] Bozkurt, M. and Harman, M. (2011). Auto-
matically generating realistic test input from web services. In International
Symposium on Service-Oriented System Engineering (SOSE), 2011, pages
13–24. 43

[Bozkurt et al., 2013] Bozkurt, M., Harman, M., and Hassoun, Y. (2013).
Testing and verification in service-oriented architecture: a survey. Software
Testing, Verification and Reliability, 23(4):261–313. 2, 3, 20, 36, 37, 39, 42, 43,
49, 58, 77, 78, 104

[BPEL Mutation tool, 2011] BPEL Mutation tool (2011). Mubpel- a mutation
testing tool for ws-bpel. https://neptuno.uca.es/redmine/projects/

sources-fm/wiki/MuBPEL. 52, 77, 85

[BPELDesigner, 2006] BPELDesigner (2006). Eclipse BPEL designer. https:
//eclipse.org/bpel/. 76

[Brandis and Mössenböck, 1994] Brandis, M. M. and Mössenböck, H.
(1994). Single-pass generation of static assignment form for structured
languages. ACM TOPLAS, 16(6):1684–1698. 53, 56

[Budd and Angluin, 1982] Budd, T. A. and Angluin, D. (1982). Two notions
of correctness and their relation to testing. Acta Informatica, 18(1):31–45.
35

[Cadar et al., 2011] Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C. S.,
Sen, K., Tillmann, N., and Visser, W. (2011). Symbolic execution for
software testing in practice: Preliminary assessment. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE ’11, pages
1066–1071, New York, NY, USA. ACM. 38

[Canfora and Penta, 2009a] Canfora, G. and Penta, M. (2009a). Software
engineering. chapter Service-Oriented Architectures Testing: A Survey,
pages 78–105. Springer-Verlag, Berlin, Heidelberg. 1, 2, 29, 36

[Canfora and Penta, 2009b] Canfora, G. and Penta, M. (2009b). Software
engineering. chapter Service-Oriented Architectures Testing: A Survey,
pages 78–105. Springer-Verlag, Berlin, Heidelberg. 80

151

BIBLIOGRAPHY

[Canfora and Penta, 2006] Canfora, G. and Penta, M. D. (2006). Testing
services and service-centric systems: Challenges and opportunities. IT
Professional, 8(2):10–17. 2, 36, 49, 102

[Cardoso, 2006] Cardoso, J. (2006). Complexity analysis of bpel web pro-
cesses. Software Process: Improvements and Practice Journal, 12:35–49. 79

[Claessen and Hughes, 2000] Claessen, K. and Hughes, J. (2000).
Quickcheck: A lightweight tool for random testing of haskell pro-
grams. In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming, ICFP ’00, pages 268–279, New York, NY, USA.
ACM. 82

[Clarke, 2008] Clarke, E. M. (2008). 25 years of model checking. chapter The
Birth of Model Checking, pages 1–26. Springer-Verlag, Berlin, Heidelberg.
40

[Clarke et al., 1983] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1983).
Automatic verification of finite state concurrent system using temporal
logic specifications: A practical approach. In Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’83, pages 117–126, New York, NY, USA. ACM. 39

[Clarke et al., 2012] Clarke, E. M., Klieber, W., Nováček, M., and Zuliani, P.
(2012). Model Checking and the State Explosion Problem, pages 1–30. Springer
Berlin Heidelberg, Berlin, Heidelberg. 40

[Clarke and Lerda, 2007] Clarke, E. M. and Lerda, F. (2007). Model check-
ing: Software and beyond. 13(5):639–649. 39

[Cleve and Zeller, 2005] Cleve, H. and Zeller, A. (2005). Locating causes
of program failures. In Proceedings of the 27th International Conference on
Software Engineering, ICSE ’05, pages 342–351, New York, NY, USA. ACM.
44

[Cloud, 2013] Cloud, J. (2013). Decomposing twitter- adventures
in service-oriented architecture. http://www.slideshare.net/InfoQ/

decomposing-twitter-adventures-in-serviceoriented-architecture.
1, 7

152

BIBLIOGRAPHY

[COM, 1993] COM (1993). Common Object Model. https://www.

microsoft.com/com/. 8

[Console et al., 2007] Console, L., Picardi, C., and Dupré, D. T. (2007). A
framework for decentralized qualitative model-based diagnosis. In IJCAI,
pages 286–291. 1, 46

[CORBA, 1991] CORBA (1991). Common Object Request Broker Architec-
ture. http://www.omg.org/cgi-bin/doc?formal/98-12-01. 8

[Corporation(IDC), 2015] Corporation(IDC), I. D. (2015). Worldwide big
data technology and services market. http://www.idc.com/getdoc.jsp?
containerId=prUS40560115. 1

[Dai et al., 2007] Dai, G., Bai, X., Wang, Y., and Dai, F. (2007). Contract-
based testing for web services. In Computer Software and Applications
Conference, 2007. 31st Annual International, volume 1, pages 517 –526. 42

[Daigneau, 2011] Daigneau, R. (2011). Service Design Patterns: Fundamental
Design Solutions for SOAP/WSDL and RESTful Web Services. Addison-
Wesley Professional, 1 edition. 8, 29

[Davis, 1984] Davis, R. (1984). Diagnostic reasoning based on structure and
behavior. Artif. Intell., 24(1-3):347–410. 44

[Davis, 1993] Davis, R. (1993). Retrospective on ”diagnostic reasoning based
on structure and behavior”. Artif. Intell., 59(1-2):149–157. 44

[de Kleer and Williams, 1987] de Kleer, J. and Williams, B. C. (1987). Diag-
nosing multiple faults. Artificial Intelligence, 32(1):97–130. 44

[De Moura and Bjørner, 2008] De Moura, L. and Bjørner, N. (2008). Z3: an
efficient smt solver. In Proceedings of TACAS’08, pages 337–340, Berlin,
Heidelberg. Springer-Verlag. 38

[DeMillo et al., 1978] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing programmer. Com-
puter, 11:34–41. 33, 35

153

BIBLIOGRAPHY

[DeMillo et al., 1996] DeMillo, R. A., Pan, H., and Spafford, E. H. (1996).
Critical slicing for software fault localization. In Proceedings of the 1996
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA ’96, pages 121–134, New York, NY, USA. ACM. 44

[Di Penta et al., 2007] Di Penta, M., Canfora, G., Esposito, G., Mazza, V.,
and Bruno, M. (2007). Search-based testing of service level agreements.
In Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’07, pages 1090–1097, New York, NY, USA. ACM.
43

[Diamond, 2010] Diamond (2010). Web service diagnosis, monitoring, and
diagnosability. http://wsdiamond.di.unito.it/. 3

[Dong, 2009] Dong, W. (2009). Test case generation method for bpel-based
testing. In International Conference on Computational Intelligence and Natural
Computing, 2009. CINC ’09., volume 2, pages 467 –470. 40

[Dorsey, 2006] Dorsey, J. (2006). Twitter inc.-social networking service.
https://twitter.com/. 7

[Eich, 1995] Eich, B. (1995). Java script programming language. https:

//www.javascript.com/. 7

[Englander, 2002] Englander, R. (2002). Java and SOAP. O’Reilly Media, Inc.
9, 16

[Erl, 2005] Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology,
and Design. Prentice Hall PTR, Upper Saddle River, NJ, USA. 13, 14, 19,
23

[Erl, 2007] Erl, T. (2007). SOA Principles of Service Design. Prentice Hall PTR.
12

[Fiedling, 2000] Fiedling, R. T. (2000). Architectural styles and the de-
sign of network-based software architectures. http://www.ics.uci.edu/
~fielding/pubs/dissertation/top.htm. 19

[Fielding, 2000] Fielding, R. T. (2000). REpresentational State Trans-
fer. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_

arch_style.htm. 10

154

BIBLIOGRAPHY

[Friedrich, 2010] Friedrich, G. (2010). Repair of service-based processes -an
application area for logic programming. 47

[Friedrich et al., 2010a] Friedrich, G., Fugini, M., Mussi, E., Pernici, B., and
Tagni, G. (2010a). Exception handling for repair in service-based processes.
Software Engineering, IEEE Transactions on, 36(2):198–215. 2, 47

[Friedrich et al., 2010b] Friedrich, G., Mayer, W., and Stumptner, M. (2010b).
Diagnosing process trajectories under partially known behavior. In Pro-
ceedings of the 2010 Conference on ECAI 2010: 19th European Conference on
Artificial Intelligence, pages 111–116, Amsterdam, The Netherlands, The
Netherlands. IOS Press. 1, 32, 46

[Garcia-fanjul et al., 2006] Garcia-fanjul, J., Tuya, J., and Riva, C. D. L. (2006).
Generating test cases specifications for bpel compositions of web services
using spin. 39

[Gent et al., 2006] Gent, I. P., Jefferson, C., and Miguel, I. (2006). Minion:
A fast scalable constraint solver. In In: Proceedings of ECAI 2006, pages
98–102. 41, 46, 51, 57

[GlassFish, 2006] GlassFish (2006). Glassfish application server. https:

//glassfish.java.net/. 76

[Godefroid et al., 2005a] Godefroid, P., Klarlund, N., and Sen, K. (2005a).
Dart: Directed automated random testing. SIGPLAN Not., 40(6):213–223.
37

[Godefroid et al., 2005b] Godefroid, P., Klarlund, N., and Sen, K. (2005b).
Dart: Directed automated random testing. SIGPLAN Not., 40(6):213–223.
82

[Goodenough and Gerhart, 1975] Goodenough, J. B. and Gerhart, S. L.
(1975). Toward a theory of test data selection. In Proceedings of the
International Conference on Reliable Software, pages 493–510, New York, NY,
USA. ACM. 32

[Gosling, 1995] Gosling, J. (1995). Java programming language. https:

//www.oracle.com/java/. 7

155

BIBLIOGRAPHY

[Gotlieb et al., 1998] Gotlieb, A., Botella, B., and Rueher, M. (1998). Auto-
matic test data generation using constraint solving techniques. In ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages
53–62. 58

[Greiner et al., 1989] Greiner, R., Smith, B. A., and Wilkerson, R. W. (1989).
A correction to the algorithm in Reiter’s theory of diagnosis. Artificial
Intelligence, 41(1):79–88. 44

[Hallwyl et al., 2010] Hallwyl, T., Henglein, F., and Hildebrandt, T. (2010).
A standard-driven implementaion of ws-bpel 2.0. In Proceedings of the
2010 ACM Symposium on Applied Computing, SAC ’10, pages 2472–2476,
New York, NY, USA. ACM. 78

[Harvey, 2005] Harvey, M. (2005). Essential Business Process Modeling.
O’Reilly Media, Inc. 21, 22, 23

[Heckel and Lohmann, 2005] Heckel, R. and Lohmann, M. (2005). Towards
contract-based testing of web services. Electron. Notes Theor. Comput. Sci.,
116:145–156. 42

[Heimdahl and George, 2004] Heimdahl, M. P. and George, D. (2004). Test-
suite reduction for model based tests: Effects on test quality and impli-
cations for testing. In Proceedings of the 19th IEEE international conference
on Automated software engineering, pages 176–185. IEEE Computer Society.
103

[Hewitt, 2009] Hewitt, E. (2009). Java SOA Cookbook - SOA implementation
recipes, tips, and techniques. O’Reilly Media, Inc. 15

[Hierons and Ural, 2009] Hierons, R. and Ural, H. (2009). Overcoming con-
trollability problems with fewest channels between testers. Computer
Networks, 53(5):680–690. 31, 36, 49

[Hierons and Ural, 2008] Hierons, R. M. and Ural, H. (2008). The effect of
the distributed test architecture on the power of testing. The Computer
Journal, 51(4):497–510. 31, 36

[Hofer et al., 2014] Hofer, B., Jehan, S., Pill, I., and Wotawa, F. (2014). Func-
tional diagnosis of a SOA’s BPEL processes. In 25th International Workshop
on Principles of Diagnosis (DX). 5, 123

156

BIBLIOGRAPHY

[Hofer et al., 2015] Hofer, B., Jehan, S., Pill, I., and Wotawa, F. (2015). Fo-
cused diagnosis for failing software tests. In Ali, M., Kwon, Y. S., Lee,
C.-H., Kim, J., and Kim, Y., editors, Current Approaches in Applied Artifi-
cial Intelligence, volume 9101 of Lecture Notes in Computer Science, pages
712–721. Springer International Publishing. 5, 123, 137

[Hofer and Wotawa, 2012] Hofer, B. and Wotawa, F. (2012). Combining
slicing and constraint solving for better debugging: The conbas approach.
Adv. Software Engineering. 126

[Hou et al., 2008] Hou, S.-S., Zhang, L., Xie, T., and Sun, J.-S. (2008). Quota-
constrained test-case prioritization for regression testing of service-centric
systems. In IEEE International Conference on Software Maintenance, ICSM
2008., pages 257–266. IEEE. 103

[Howden, 1978] Howden, W. E. (1978). Theoretical and empirical studies of
program testing. IEEE Transactions on Software Engineering, (4):293–298. 33

[Humble, 2011] Humble, C. (2011). Twitter shifting more code to jvm, citing
performance and encapsulation as primary drivers. http://www.infoq.
com/articles/twitter-java-use. 8

[IEEE, 1983] IEEE (1983). IEEE Standard Glossary of Software Engi-
neering Terminology, Institute of Electrical and Electronics Engineers.
ANSI/IEEEStd729-1983. 31, 32

[JavaRMI, 1997] JavaRMI (1997). Java api. https://docs.oracle.com/

javase/tutorial/rmi/. 8

[Jehan et al., 2014] Jehan, S., Pill, I., and F.Wotawa (2014). SOA testing via
random paths in BPEL models. In 10th Workshop on Advances in Model
Based Testing; 2014 IEEE Seventh Int. Conf. on Software Testing, Verification
and Validation Workshops (ICSTW), pages 260–263. 5, 50, 69, 136

[Jehan et al., 2013a] Jehan, S., Pill, I., and Wotawa, F. (2013a). Functional
SOA testing based on constraints. In 8th Int. Workshop on Automation of
Software Test (AST), pages 33–39. 5, 50, 85

[Jehan et al., 2013b] Jehan, S., Pill, I., and Wotawa, F. (2013b). SOA grey box
testing - a constraint-based approach. In 5th Int. Workshop on Constraints
in Software Testing, Verification and Analysis; 2013 IEEE Sixth Int. Conf.

157

BIBLIOGRAPHY

on Software Testing, Verification and Validation Workshops (ICSTW), pages
232–237. 5, 50

[Jehan et al., 2015] Jehan, S., Pill, I., and Wotawa, F. (2015). BPEL Integration
Testing. In 18th International Conference on Fundamental Approaches to
Software Engineering (FASE), pages 69–83. 5, 50, 79

[Jia and Harman, 2011] Jia, Y. and Harman, M. (2011). An analysis and
survey of the development of mutation testing. IEEE Trans. Softw. Eng.,
37(5):649–678. 35

[Josuttis, 2007] Josuttis, N. (2007). SOA in Practice: The Art of Distributed
System Design. O’Reilly Media, Inc. 11, 29

[Juric and Krizevnik, 2010] Juric, M. B. and Krizevnik, M. (2010). WS-BPEL
2.0 for SOA Composite Applications with Oracle SOA Suite 11G. Packt
Publishing. 20

[King, 1976] King, J. C. (1976). Symbolic execution and program testing.
Commun. ACM, 19(7):385–394. 37, 53

[Korel, 1990] Korel, B. (1990). Automated software test data generation.
IEEE Trans. Softw. Eng., 16(8):870–879. 44, 47

[Korel and Laski, 1988] Korel, B. and Laski, J. (1988). Dynamic program
slicing. Information Processing Letters, 29(3):155–163. 45, 125

[Korel and Rilling, 1998] Korel, B. and Rilling, J. (1998). Dynamic program
slicing methods. Information & Software Technology, 40(11-12):647–659. 125

[Langdon et al., 2010] Langdon, W. B., Harman, M., and Jia, Y. (2010). Effi-
cient multi-objective higher order mutation testing with genetic program-
ming. J. Syst. Softw., 83(12):2416–2430. 85

[Lapadula et al., 2008] Lapadula, A., Pugliese, R., and Tiezzi, F. (2008). A
formal account of ws-bpel. In Proceedings of the 10th International Conference
on Coordination Models and Languages, COORDINATION’08, pages 199–
215, Berlin, Heidelberg. Springer-Verlag. 29, 78

[Leitner et al., 2013] Leitner, P., Schulte, S., Dustdar, S., Pill, I., Schulz, M.,
and Wotawa, F. (2013). The dark side of SOA testing: Towards testing
contemporary SOAs based on criticality metrics. In 2013 5th International

158

BIBLIOGRAPHY

Workshop on Principles of Engineering Service-Oriented Systems (PESOS),
pages 45–53. xvii, 12, 49

[Leone et al., 2006] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,
Perri, S., and Scarcello, F. (2006). The dlv system for knowledge represen-
tation and reasoning. ACM Transactions on Computational Logic (TOCL),
7(3):499–562. 47

[Leymann, 2001] Leymann, F. (2001). Web Services Flow Language. http:
//xml.coverpages.org/WSFL-Guide-200110.pdf. 20

[Li et al., 2009] Li, Y., Ye, L., Dague, P., and Melliti, T. (2009). A decentralized
model-based diagnosis for bpel services. In 21st International Conference
on Tools with Artificial Intelligence, 2009. ICTAI ’09., pages 609–616. 46

[Lin et al., 2006] Lin, F., Ruth, M., and Tu, S. (2006). Applying safe re-
gression test selection techniques to java web services. In International
Conference on Next Generation Web Services Practices, pages 133–142. IEEE.
103

[Lowis and Accorsi, 2011] Lowis, L. and Accorsi, R. (2011). Vulnerability
analysis in SOA-Based Business Processes. IEEE Transactions on Services
Computing, 4(3):230–242. 2

[Lübke, 2006] Lübke, D. (2006). Bpel unit. http://bpelunit.github.com.
51, 76, 85

[Lubke et al., 2009] Lubke, D., Singer, L., and Salnikow, A. (2009). Calcu-
lating bpel test coverage through instrumentation. In ICSE Workshop on
Automation of Software Test, 2009. AST ’09., pages 115 –122. 76, 80

[Matsumoto, 1995] Matsumoto, Y. (1995). Ruby programming language.
https://www.ruby-lang.org/. 7

[Mayer et al., 2012] Mayer, W., Friedrich, G., and Stumptner, M. (2012). On
computing correct processes and repairs sing partial behavioral models.
In ECAI 2012 - 20th European Conference on Artificial Intelligence. Including
Prestigious Applications of Artificial Intelligence (PAIS-2012) System Demon-
strations Track, Montpellier, France, August 27-31 , 2012, pages 582–587. 2,
46, 121, 127

159

BIBLIOGRAPHY

[Mayer and Stumptner, 2007] Mayer, W. and Stumptner, M. (2007). Model-
based debugging – state of the art and future challenges. Electron. Notes
Theor. Comput. Sci., 174(4):61–82. 44

[McMinn, 2004] McMinn, P. (2004). Search-based software test data genera-
tion: a survey. Software Testing, Verification and Reliability, 14(2):105–156.
43

[McMinn et al., 2012] McMinn, P., Shahbaz, M., and Stevenson, M. (2012).
Search-based test input generation for string data types using the re-
sults of web queries. In 5th Int. Conf. on Software Testing, Verification and
Validation (ICST), 2012, pages 141–150. 43

[Mei et al., 2009] Mei, L., Chan, W.-K., Tse, T., and Merkel, R. G. (2009).
Tag-based techniques for black-box test case prioritization for service
testing. In 2009 Ninth International Conference on Quality Software, pages
21–30. IEEE. 104

[Meyer, 1992] Meyer, B. (1992). Applying ”design by contract”. Computer,
25(10):40–51. 42

[Microsoft, 2001] Microsoft (2001). XLANG. https://msdn.microsoft.

com/en-us/library/aa577463.aspx. 20

[Modafferi et al., 2006] Modafferi, S., Mussi, E., and Pernici, B. (2006). Sh-
bpel: a self-healing plug-in for ws-bpel engines. In MW4SOC, volume
184, pages 48–53. ACM. 3, 46

[Model, 2006] Model, O. R. (2006). The oasis reference model for service
oriented architecture 1.0. http://docs.oasis-open.org/soa-rm/v1.0/

soa-rm.pdf. 12

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE, 77(4):541–580. 40

[Myers, 1979] Myers, G. J. (1979). Art of Software Testing. John Wiley & Sons,
Inc., New York, NY, USA. 2

[Myers et al., 2011] Myers, G. J., Sandler, C., and Badgett, T. (2011). The Art
of Software Testing. Wiley Publishing, 3rd edition. 31, 32, 33, 34

160

BIBLIOGRAPHY

[Nica et al., 2013] Nica, I., Pill, I., Quaritsch, T., and Wotawa, F. (2013). The
route to success - a performance comparison of diagnosis algorithms. In
International Joint Conference on Artificial Intelligence, pages 1039–1045. 130

[Nica, 2010] Nica, M. (2010). On the Use of Constraints in Automated Program
Debugging. PhD thesis, IST- TU Graz. 2, 51, 59, 60, 121, 126

[ODE, 2006] ODE (2006). Apache ode. http://ode.apache.org/. 76

[Odersky, 2004] Odersky, M. (2004). Scala programming language. https:
//www.scala-lang.org/. 7

[OMG, 2005] OMG (2005). Business Process Modeling Noration. www.bpmn.
org/. 20

[Oracle Process Server, 2010] Oracle Process Server (2010). Oracle BPEL
Process Manager. http://www.oracle.com/technetwork/middleware/

bpel. 76

[Ouyang et al., 2007] Ouyang, C., Verbeek, E., van der Aalst, W. M. P., Breu-
tel, S., Dumas, M., and ter Hofstede, A. H. M. (2007). Formal semantics
and analysis of control flow in ws-bpel. Sci. Comput. Program., 67(2-3):162–
198. 40

[OW2, 2012] OW2 (2012). Orchestra ow2. http://orchestra.ow2.org/

xwiki/bin/view/Main/WebHome. 76

[Pill et al., 2015] Pill, I., Jehan, S., Wotawa, F., and Nica, M. (2015). Ana-
lyzing the reduction of test suite redundancy. In 2015 IEEE International
Symposium on Software Reliability Engineering Workshops, ISSRE Workshops,
Gaithersburg, MD, USA, November 2-5, 2015, page 65. 5, 101

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer Science (FOCS), pages 46–57.
39

[Raman, 2009] Raman, T. V. (2009). Toward 2w, beyond web 2.0. Commun.
ACM, 52(2):52–59. 9

[Reiter, 1987] Reiter, R. (1987). A theory of diagnosis from first principles.
Artif. Intelligence, 32(1):57–95. 44, 124, 125, 126

161

BIBLIOGRAPHY

[RFC, 1982] RFC (1982). Simple Mail Transfer Protocol. https://en.

wikipedia.org/wiki/Simple_Mail_Transfer_Protocol. 16

[Richardson and Ruby, 2007] Richardson, L. and Ruby, S. (2007). RESTful
Web Services. O’Reilly Media, Inc. 19

[Rothermel and Harrold, 1997] Rothermel, G. and Harrold, M. J. (1997). A
safe, efficient regression test selection technique. ACM Transactions on
Software Engineering and Methodology (TOSEM), 6(2):173–210. 103

[Rothermel et al., 2002] Rothermel, G., Harrold, M. J., Von Ronne, J., and
Hong, C. (2002). Empirical studies of test-suite reduction. Software Testing,
Verification and Reliability, 12(4):219–249. 102

[Ruth et al., 2007] Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata,
M., and Tu, S. (2007). Towards automatic regression test selection for web
services. In 31st Annual International Computer Software and Applications
Conference, 2007. COMPSAC 2007., volume 2, pages 729–736. IEEE. 104

[Ruth and Tu, 2007] Ruth, M. and Tu, S. (2007). A safe regression test
selection technique for web services. In Second International Conference
on Internet and Web Applications and Services, 2007. ICIW’07., pages 47–47.
IEEE. 103

[Sen and Agha, 2006] Sen, K. and Agha, G. (2006). Cute and jcute: Concolic
unit testing and explicit path model-checking tools. In Proceedings of the
18th International Conference on Computer Aided Verification, CAV’06, pages
419–423, Berlin, Heidelberg. Springer-Verlag. 38

[SOAP, 2007] SOAP (2007). Simple Object Access Protocol. https://www.

w3.org/TR/soap12/. 10, 15

[Stumptner and Wotawa, 2001] Stumptner, M. and Wotawa, F. (2001). Diag-
nosing tree-structured systems. Artificial Intelligence, 127(1):1 – 29. 45

[ter Hofstede, 2010] ter Hofstede, A. (2010). Yet Another Workflow Lan-
guage. http://yawlfoundation.org//. 20

[Tillmann and De Halleux, 2008] Tillmann, N. and De Halleux, J. (2008).
Pex: White box test generation for .net. In Proceedings of the 2Nd In-
ternational Conference on Tests and Proofs, TAP’08, pages 134–153, Berlin,
Heidelberg. Springer-Verlag. 38

162

BIBLIOGRAPHY

[Tip, 1995] Tip, F. (1995). A survey of program slicing techniques. Journal of
Programming Languages, 3:121–189. 45, 124, 125

[Tomcat, 2006] Tomcat (2006). Apache tomcat. http://tomcat.apache.

org/. 76

[Travé-Massuyès et al., 2006] Travé-Massuyès, L., Escobet, T., and Olive, X.
(2006). Diagnosability analysis based on component-supported analytical
redundancy relations. IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 36(6):1146–1160. 46

[UDDI, 2001] UDDI (2001). Universal Description Discovery and Integra-
tion. https://www.oasis-open.org/committees/uddi-spec/. 19

[Ufone SOA Integration, 2012] Ufone SOA Integration (2012). Ufone soa in-
tegration. http://www.techlogix.com/PDFs/casestudy/case%20study%

20-%20BPM%20-%20SOA%20Ufone.pdf. 7

[Utting et al., 2012] Utting, M., Pretschner, A., and Legeard, B. (2012). A
taxonomy of model-based testing approaches. Softw. Test. Verif. Reliab.,
22(5):297–312. 51

[van Harmelen et al., 2007] van Harmelen, F., van Harmelen, F., Lifschitz,
V., and Porter, B. (2007). Handbook of Knowledge Representation. Elsevier
Science, San Diego, USA. 47

[W3C, 2011] W3C (2011). Web services glossary. https://www.w3.org/TR/
2004/NOTE-ws-gloss-2004021. 13

[Wang et al., 2008] Wang, D., Li, B., and Cai, J. (2008). Regression testing of
composite service: An xbfg-based approach. In IEEE Congress on Services
Part II, 2008. SERVICES-2., pages 112–119. IEEE. 103

[WebSphere, 2006] WebSphere (2006). Ibm websphere process server. http:
//www-01.ibm.com/software/integration/wps/. 76

[Weiser, 1982] Weiser, M. (1982). Programmers use slices when debugging.
Communications of the ACM, 25(7):446–452. 45, 124, 125

[Wotawa, 2002] Wotawa, F. (2002). On the relationship between model-
based debugging and program slicing. Artif. Intell., 135(1-2):125–143. 45,
47, 125

163

BIBLIOGRAPHY

[Wotawa et al., 2012] Wotawa, F., Nica, M., and Moraru, I. (2012). Auto-
mated debugging based on a constraint model of the program and a test
case. J. Log. Algebr. Program., pages 390–407. 45, 126, 129, 130

[Wotawa et al., 2013] Wotawa, F., Schulz, M., Pill, I., Jehan, S., Leitner, P.,
Hummer, W., Schulte, S., Hoenisch, P., and Dustdar, S. (2013). Fifty shades
of grey in SOA testing. In 9th Workshop on Advances in Model Based Testing;
2013 IEEE Sixth Int. Conf. on Software Testing, Verification and Validation
Workshops (ICSTW), pages 154–157. 5, 50, 69

[WSDL, 2001] WSDL (2001). Web Services Description Language. https:
//www.w3.org/TR/wsdl. xvii, 10, 16, 18

[Yan et al., 2006] Yan, J., Li, Z., Yuan, Y., Sun, W., and Zhang, J. (2006).
Bpel4ws unit testing: Test case generation using a concurrent path anal-
ysis approach. In 17th International Symposium on Software Reliability
Engineering, 2006. ISSRE ’06, pages 75–84. IEEE Computer Society. 41

[Yan et al., 2009] Yan, Y., Dague, P., Pencolé, Y., and Cordier, M. (2009). A
model-based approach for diagnosing fault in web service processes. Int.
J. Web Service Res., 6(1):87–110. 47, 126

[Yang et al., 2005] Yang, Y., Tan, Q., and Xiao, Y. (2005). Verifying web
services composition based on hierarchical colored petri nets. In Pro-
ceedings of the first international workshop on Interoperability of heterogeneous
information systems, IHIS ’05, pages 47–54, New York, NY, USA. ACM. 40

[Yoo and Harman, 2012] Yoo, S. and Harman, M. (2012). Regression testing
minimization, selection and prioritization: a survey. Software Testing,
Verification and Reliability, 22(2):67–120. 103, 104

[Yuan Yuan and Sun, 2006] Yuan Yuan, Z. L. and Sun, W. (2006). A graph-
search based approach to bpel4ws test generation. In Software Engineering
Advances, International Conference on, page 14. 41

[Zakaria et al., 2009] Zakaria, Z., Atan, R., Ghani, A. A. A., and Sani, N.
F. M. (2009). Unit testing approaches for bpel: A systematic review.
In Proceedings of the 2009 16th Asia-Pacific Software Engineering Conference,
APSEC ’09, pages 316–322, Washington, DC, USA. IEEE Computer Society.
39

164

BIBLIOGRAPHY

[Zeller, 2002] Zeller, A. (2002). Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT symposium on Founda-
tions of software engineering, pages 1–10. ACM. 104, 107, 110

[Zhang et al., 2009] Zhang, L., Hou, S.-S., Guo, C., Xie, T., and Mei, H.
(2009). Time-aware test-case prioritization using integer linear program-
ming. In Proceedings of the eighteenth international symposium on Software
testing and analysis, pages 213–224. ACM. 103

[Zhang et al., 2005] Zhang, X., He, H., Gupta, N., and Gupta, R. (2005).
Experimental evaluation of using dynamic slices for fault localization. In
Sixth International Symposium on Automated & Analysis-Driven Debugging
(AADEBUG), pages 33–42. 125

[Zheng et al., 2007] Zheng, Y., Zhou, J., and Krause, P. (2007). A model
checking based test case generation framework forweb services. Infor-
mation Technology: New Generations, Third Int. Conference on, 0:715–722.
39

[Zhou et al., 2007] Zhou, J., Zheng, Y., and Krause, P. (2007). An automatic
test case generation framework for web services. Journal of Software, 2(3).
39

165

	Abstract
	Abstract (German)
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Thesis Statement
	Contributions
	Organization

	Service-Oriented Architectures
	Introduction
	A brief history of SOAs
	Early SOA
	Second generation of SOA
	Contemporary SOA

	SOA basics
	First generation Web services technology
	Second generation Web services technology

	SOA challenges

	Preliminaries and Related Work
	Testing Preliminaries
	Testing trends of SOA Applications
	Symbolic Execution Approach
	Model Checking Approach
	Petri Net Approach
	Graph-based Approach
	Contract-based Approach
	Search-based Approach

	Debugging Definitions
	Diagnosis of SOA Applications
	Conclusions

	 Model-based SOA Testing
	Introduction
	Architecture
	Definitions
	Test Case Generation using constraints
	Sequence Structure
	Flow Structure

	Experimental Setup
	First Results
	Random Testing of Sequential programs
	Introduction
	Experimental Results
	Conclusions

	 Random Testing of Concurrent programs
	Introduction
	Empirical Evaluation
	Discussion

	Conclusions

	Test Suite Reduction
	Introduction
	Related research
	Preliminaries
	Redundancy elimination
	LinMIN Algorithm
	BinarySearch Algorithm
	Delta-Debugging Algorithm

	Empirical Evaluation
	Conclusions

	Model-Based SOA Debugging
	Introduction
	Definitions
	The Debugging Approach
	Experiments
	Conclusions

	Conclusions
	Results summary
	Open Questions and Future Work

	Bibliography

