Seema Jehan

Model-Based Testing and Debugging of
SOA Business Processes

Dissertation

Graz University of Technology

Institute for Software technology

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Franz Wotawa
Evaluator: Prof. Dr. Inmaculada Medina-Bulo

Graz, April 2017

TU

Grazm

This document is set in Palatino, compiled with pdflATEX2e and Biber.

The IATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

Abstract

Testing of SOA-based processes still face issues of limited controllability and
observability. There are number of solutions suggested to tackle this problem.
However, most of these approaches suffer from high test case generation and
execution costs. The target here is to come up with a cost-effective functional
testing approach for SOA workflows. In this respect two model-based test
case generation algorithms for sequential and concurrent BPEL processes
have been proposed. These algorithms are based on constraint representation
of BPEL control flow graph, where one is structure-based and other follows
random test case generation approach. Moreover, this thesis also analyzes
three test suite reduction algorithms. The aim here is to reduce regression
testing cost, which keeps on increasing as business processes evolve. In
the end, we present a light-weight model-based debugging approach for
locating functional faults in SOA business processes.

Abstract (German)

Das Testen von SOA-basierten Prozessen steht nach wie vor mit Fragen
der eingeschrankten Steuerbarkeit und Beobachtbarkeit. Es gibt eine Reihe
von Losungen, die vorgeschlagen werden, um dieses Problem anzuge-
hen. Die meisten dieser Ansatze leiden jedoch unter hohen Testfall- und
Ausfuhrungskosten. Ziel ist es, mit einem kostenguinstigen Funktionstest-
Ansatz fur SOA-Workflows zu kommen. In dieser Hinsicht wurden zwei
modellbasierte Testfall-Erzeugungsalgorithmen fur sequentielle und gle-
ichzeitige BPEL-Prozesse vorgeschlagen. Diese Algorithmen basieren auf
der Einschrankungsdarstellung des BPEL-Kontrollflussgraphen, wobei eine
strukturbasierte und andere der zufalligen Testfallgenerierungsansatz folgt.
Dartber hinaus analysiert diese Arbeit auch drei Test-Suite Reduktionsalgo-
rithmen. Ziel ist es, die Regressions-Testkosten zu senken, die sich weiter
steigern, wenn sich die Geschéftsprozesse entwickeln. Am Ende prasentieren
wir einen leichten modellbasierten Debugging-Ansatz zur Lokalisierung
von Funktionsstorungen in SOA-Geschéaftsprozessen.

Vil

Acknowledgements

First and foremost, | am deeply indebted to ALLAH (the exceedingly
merciful) for all blessings in my life. My entire family also deserves my
sincere gratitude for their love, support and encouragement.

I am extremely grateful to my advisor, Franz Wotawa, for his perpetual
support through out Ph.D. studies. His motivation and guidance helped
me through many difficult times in my research and writing of this thesis.
Besides my advisor, | would like to thank the members of my defense com-
mittee, Prof. Inmaculada Medina-Bulo and Prof. Denis Helic, for reviewing
my thesis and to supervise the exam.

Further thanks go to Ingo Pill and Birgit Hofer for their professional con-
sultation. I also wish to thank my colleagues lulia Nica and Josip Bozic for
their friendly advice. | must thank Petra Pichler for always being welcoming
and courteous.

I would also like to thank Austrian Science Fund (FWF) for funding part
of the project Augmented Diagnosis and Testing for SOAs (Audit 4 SOAS)
under grant P23313-N23.

Contents

Abstract (German) vii
Abstract %
List of Tables Y
List of Figures XVii
1 Introduction 1
1.1 Motivation 1
1.2 Problem Statement 3
1.3 ThesisStatement, 4
1.4 Contributions e 4
15 Organization e 5

2 Service-Oriented Architectures 7
2.1 Introduction 7
2.2 Abriefhistory of SOAs 8
221 Early SOA e 9

2.2.2 Second generation of SOA 10

2.2.3 Contemporary SOA 11

2.3 SOADasiCs e 11
2.3.1 First generation Web services technology 12

2.3.2 Second generation Web services technology 19

24 SOAchallenges, 29

3 Preliminaries and Related Work 31
3.1 Testing Preliminaries 32

Xi

Contents

Xii

3.2 Testing trends of SOA Applications 36
3.2.1 Symbolic Execution Approach 37
3.2.2 Model Checking Approach 39
3.23 Petri Net Approach 40
3.24 Graph-based Approach 40
3.25 Contract-based Approach 42
3.2.6 Search-based Approach 42

3.3 Debugging Definitions 44

3.4 Diagnosis of SOA Applications 46

35 Conclusions 48

Model-based SOA Testing 49

41 Introduction 49

4.2 Architecture 51

43 Definitions 53

4.4 Test Case Generation using constraints 57
441 Sequence Structure oL 58
442 Flow Structure 69

45 Experimental Setup oo 76

46 FirstResults 78

4.7 Random Testing of Sequential programs 80
471 Introduction 82
472 ExperimentalResults. 85
473 Conclusions e 90

4.8 Random Testing of Concurrent programs. 90
48.1 Introduction 90
48.2 Empirical Evaluation 92
483 DISCUSSION e 97

49 Conclusions e 98

Test Suite Reduction 101

51 Introduction 101

52 Relatedresearch 102

53 Preliminaries. 105

54 Redundancy elimination 107
54.1 LinMIN Algorithm 107
5.4.2 BinarySearch Algorithm 109

5.4.3 Delta-Debugging Algorithm

5.5 Empirical Evaluation
56 Conclusions,

6 Model-Based SOA Debugging

6.1 Introduction
6.2 Definitions
6.3 The Debugging Approach
6.4 Experiments
6.5 Conclusions

7 Conclusions

7.1 Resultssummary

7.2 Open Questions and Future Work
List of De nitions
List of Theorems and Lemmas

Bibliography

Contents

145

147

149

Xiii

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

4.7

5.1

6.1
6.2

ExamplesDetails, 79
Empirical results obtained 81
Experimental results for the AllPath TCG algorithm. 87
Experimental results for the random TCG algorithm. 89
Experimental results for the StructRuns TCG algorithm. . . 94
Experimental results for the RandomRuns TCG algorithm

withlen=40. 95
Infeasible paths for the RandomRuns TCG algorithm. 97

Experimental results for Redundancy Reduction algorithm. . 113

Single Faults Diagnoses. 136

Results for programs with single and double faults. 140

XV

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

4.1
4.2
4.3

Twitter Service. L 8
Anearly SOAModel 10
Contemporary SOA Model taken from [Leitner et al., 2013] . 12
Web Serviceroles 14
A short example of an XML Schema.., 16
ASOAP Message. i it 17
WSDL components taken from [WSDL, 2001]. 18
An Executable BPEL process 22
BPEL process definition 24
Receive Activity 25
Reply Activity 26
InvokeActivity 27
AsSIgnACtiVIty 28
IfACtivity e 28
WhileActivity 28
The BPEL Example 50
The BPELTesterFigure 52
A Sequenceactivity L o 58

XVii

LIST OF FIGURES

4.4 TCG algorithm that considers all paths. 59
4.5 AllPathsSUB algorithm for computing all paths for a Flow
Graph G up to a given pre-defined length MaxLen. 60
4.6 Path 1: c(p) for low-risk and low amount loan requests. . .. 64
4.7 Path 2: ¢(p) for high-risk and low amount loan requests. . . . 64
4.8 Path 3: ¢c(p) for high amount loan requests. 64
4.9 MINION constraints for Path 1. 65
4.10 MINION constraints forPath 2. 65
4.11 MINION constraints forPath 3. 65
4.12 Technical view of the Bank Loan Business Process. 66
413 Flow activity e 69
414 Flow Example o oo 70
4.15 Our structural TCG algorithm StructRuns 73
4.16 Run 1: c(p) for the first guard to be active. 74
4.17 Run 2: c(p) for the second guard to be active. 74
4.18 MINION constraintsforRun1. 75
4.19 MINION constraintsforRun2. 75
420 Flow Example TestCase 79
4.21 Coverage vs. path length for the ATM example. 81
4.22 TCG algorithm based on random paths. 84
4.23 AllPaths TCG alg: activity coverage and mutation score vs.
pathlength 88
4.24 TCG algorithm RandomRuns based on random paths. 92

4.25 RandomRuns: Mutation score as function of the number of
testcasesfor BMI 97

Xviii

LIST OF FIGURES

5.1 The minimum, maximum, and average mutation score for the
CALC2 example with varying subset size

5.2 The probability for a subset of the original test suite of CALC2
to have a mutation score larger than85.0

5.3 LINMIN - A linear search procedure for test suite minimization111

5.4 BinSearch — A Binary search procedure for test suite mini-
MIization

5.5 DELTAMIN - Using delta debugging for test suite minimization112

5.6 The test suite reduction for the CALC2 example with varying
alpha e

5.7 The minimum, maximum, and average mutation score for the
CALC2 example with solSize=3 and varying subset size . . .

5.8 The probability for a subset of the original test suite of CALC2
with solSize=3 to have a mutation score larger than 85.0

5.9 AllRandomPaths — Using random subsets for test suite gener-
ation e

5.10 The minimum, maximum, and average mutation score for the
CALC2 example with solSize=5 and varying subset size . . .

5.11 The probability for a subset of the original test suite of CALC2
with solSize=5 to have a mutation score larger than 85.0

5.12 The test suite reduction for the CALC2 example for multiple
tests per feasiblepath.

6.1 BPEL Flow Graph of the Triangle Example Process

6.2 Annotated Flow Graph Representation

6.3 A graphical presentation of the running example’s single-fault
diagnoses. e

6.4 BPEL Flow Graph of the Bank Loan Business Process

. 117

. 117

118

. 119

. 119

XiX

LIST OF FIGURES

6.5 Comparison of the trace size and diagnoses size for faulty
Programs. e e e e

XX

1 Introduction

1.1 Motivation

Service-oriented Architectures (SOASs) have changed today’s computing in
an evolutionary manner. The popularity of the SOA paradigm is noteworthy
by the exponential growth of social networking companies like Twitter,
Facebook and Amazon cloud web services [Cloud, 2013]. According to a
study from [Corporation(IDC), 2015], the world wide Big Data technology
and services market growth is expected to reach $48.6 billion in year 2019.
The peculiar features of SOA-based systems such as ultra-late binding,
Quiality of Service (QoS) aware composition, runtime discovery of services,
and service level agreement (SLA) automated negotiations are considered
the driving force for this emerging paradigm [Canfora and Penta, 2009a].
The wide acceptance of the service-oriented paradigm also depends on the
fact that the traditional concept of software ownership is rapidly shifting to
software provision, where a software is charged as a service rather than as a
product. This shift provides on one hand greater flexibility in software use;
but also raises many challenges for assuring reliability of software charged
as a service.

The predominant way of assuring reliability of service-based software has
been monitoring these services and applying repair actions on runtime
[Console et al., 2007], [Friedrich et al., 2010b]. Although monitoring helps
in building self-healing and self-repairing systems, it is unable to give
confidence that a system would work before its deployment. Besides that, it
also requires to maintain recovery actions for all possible exceptional events,
which is realistically not possible [Canfora and Penta, 2009a]. This calls for
cost-effective testing strategies for not only minimizing exceptional events

1 Introduction

set; but also maintaining the same quality assurance level. There are well-
established testing strategies developed for web-based systems, distributed
systems, and component-based systems [Myers, 1979]. Unfortunately, these
traditional testing techniques are not able to cope with the dynamic and
intrinsic nature of SOA-based systems [Canfora and Penta, 2006].

There are many challenges associated with testing applications built on
SOA principles: First, the services business logic is hidden, making it
a “black-box” for the tester; and due to this limited observability, gen-
erating models from service descriptions is cumbersome and inefficient
[Canfora and Penta, 2009a]. Second predominant issue is the limited con-
trol over the service; services change independently from each other, making
integration testing harder and laborious. Third, the cost of testing SOA-
based systems is much higher than the traditional software systems because
services are charged on per-use basis. In addition to that, exhaustive testing
might lead to denial-of-service system behavior [Canfora and Penta, 2009a].
As a result testing is ignored all together in many situations, making such
applications more vulnerable to cyber attacks [Lowis and Accorsi, 2011].
This requires us to adapt current testing methodologies in order to suit the
need of SOA-based systems.

Although this problem has been investigated before, but a vast majority
of presented testing approaches failed to provide an experimental evalu-
ation [Bozkurt et al., 2013]. According to [Canfora and Penta, 2009a], high
cost involved in testing is a prime reason, why runtime-verification has
become a norm in SOA-based applications. This thesis presents a cost effi-
cient model-based functional testing of SOA applications with a focus on
an empirical evaluation.

Once a fault, either functional or non-functional, is observed in the test-
ing phase, the fault-localization and repair of SOA-based environments
has also been an active research area in academia. The complete sce-
nario for diagnosing SOA environments involves many stages: diagnosing
faults, repairing faults and recovery stage [Friedrich et al., 2010a]. How-
ever, the cost of generating diagnostic models is quite high [Nica, 2010].
It becomes even more challenging when it comes to the service-oriented
architectures as discussed by Friedrich et al. in [Mayer et al., 2012]. The
most recent work on that was conducted under a european project called

1.2 Problem Statement

WS-DIAMOND [Diamond, 2010]. The main focus of the project was to
build a platform for monitoring, diagnosis and self-healing of web services
[Modafferi et al., 2006]. In contrast to their work, our diagnosis approach
combines trace analysis with constraint solving for fault localization in order
to improve overall diagnosis performance.

The work can be of interest to different stakeholders involved in SOA
such as developer, who can use models to generate unit tests with limited
cost; service provider, who can generate tests from service specifications;
integrator, who can use the approach to reduce the high testing cost.

The work presented in this thesis is a part of the project called Augmented
Diagnosis and Testing of SOAs (Audit4SOAs) funded by the Austrian
Science Fund (FWF). It was a collaboration project between Institute of
Software Technology TU Graz and Distributed Systems Group at Vienna
University of Technology. The target of the project was to provide model-
based techniques for testing and debugging of service-oriented architectures.
The objective of the thesis was to develop a testing and diagnosis strategy
of SOA processes defined in Business process execution language (BPEL).

1.2 Problem Statement

The first problem area examined in this thesis is about observability and
controllability for SOA business processes. These are serious issues, because
SOA applications need to ensure a certain level of ”Trust”, and testing
is one way of resolving this issue [Bozkurt et al., 2013]. The focus was on
the development of an automated model-based testing solution for BPEL
compositions with an emphasis on a strong empirical analysis. How can
partial behavior of SOA business processes be addressed in the test suite
generation process?

The second issue explored in this work is about optimizing the automated
test suite generation. Since the prevalent SOA tools need high execution
times due to the complex and distributive nature of business compositions,
it is important to generate efficient test suites before hand. The goal is to

1 Introduction

reduce the generated test suite size, while maintaining the same quality
criterion. How can test suites be optimized?

The third issue studied is related to model-based debugging of BPEL com-
positions. Basically, the purpose of any testing activity is to find faults in
a given system, once this is done, the diagnosis step takes over, and is
responsible for figuring out possible reasons behind the observed fault. We
had two targets in the context of debugging service compositions: first, the
problem of debugging partial behavioral models is studied; second, a light-
weight model-based debugging approach for diagnosing BPEL functional
faults is presented. How can partial behavioral models be diagnosed in a
cost-effective way?

1.3 Thesis Statement

The applicability of functional testing and debugging of service composi-
tions can be increased using constraint-based approach, with the help of an
optimized test suite generation and diagnostic methods.

1.4 Contributions

The contribution has been three-folds. First, we studied the problem of
extracting models from the partial service behavior of BPEL compositions,
with a focus on a strong empirical analysis. Second, we presented a light-
weight model-based debugging approach for finding functional faults in
BPEL compositions, again with a particular focus on an empirical analysis.
In the end, we analyzed the issue of test suite redundancy, a reason for high
cost involved in testing; and presented our solution to the problem.

The emphasis of our research was to present a light-weight testing and
debugging approach for SOA applications, which can be easily adapted in
the industry. Below is the list of conference and workshop publications to
tackle the above stated research questions:

1.5 Organization

An overview of different issues regarding testing of SOA applications
is published in the paper titled, ”Fifty shades of grey in SOA testing”
[Wotawa et al., 2013].

A constraint-based method of formal representation about BPEL com-
positions is presented in, ”SOA grey box testing- a constraint-based
approach” [Jehan et al., 2013b].

A detailed description of the model generation using a typical SOA
case study is published in the paper titled, ”Functional SOA testing
based on constraints” [Jehan et al., 2013a].

The question of whether a random testing approach is better than the
structured testing approach is examined in the paper, "SOA testing
via random paths in BPEL models ” [Jehan et al., 2014].

The formal representation of both sequential and concurrent constructs
in BPEL composition with a focus on the empirical analysis is pub-
lished in the paper titled, "BPEL Integration Testing” [Jehan et al., 2015].
The fault-localization of functional faults using a light-weight debug-
ging approach is presented in the paper, ”Functional Diagnosis of SOA
BPEL Processes” [Hofer et al., 2014].

A more generalized analysis of the debugging approach is published
in the paper titled, ”Focussed Diagnosis for Failing Software Tests”
[Hofer et al., 2015].

A preliminary work on a problem of reducing the redundancy in test
suites is published in the paper titled, ”Analyzing the reduction of test
suite redundancy” [Pill et al., 2015].

1.5 Organization

The structure of the thesis is as follows: In Chapter 2, an introduction to the
Service-oriented Architectures (SOAS) is presented. Chapter 3 presents an
overview of related research in the field of testing and diagnosis of SOAs
in general and Business Process Execution Language (BPEL) in particular.
The contribution of this thesis with respect to the model-based testing
approach is explained in Chapter 4. The issue of test suite redundancy and
the analysis of different algorithms for cost-effective testing is discussed in
Chapter 5. In the end, a light-weight debugging approach for diagnosing

1 Introduction

BPEL functional faults is presented in Chapter 6. The summary of results
obtained and open questions left in the discourse of this work are outlined
in Chapter 7.

2 Service-Oriented Architectures

2.1 Introduction

”Ufone” is one of the largest GSM (Global System for Mobile commu-
nication) mobile service provider with around 24 million customers in
Pakistan [Ufone SOA Integration, 2012]. It has a network coverage across
10,000 locations. Also, its services are available in more than 160 countries
world wide. In order to provide their customers real-time service and reduce
the churn rate!, the company decided for moving the critical operational
systems such as customer relationship management (CRM), network pro-
visioning and billing towards SOA. With the successful implementation of
SOA, Ufone can now handle around 1.5 million transactions per day.

Another successful realization of SOAs can be observed by an online so-
cial networking service, ”Twitter” [Dorsey, 2006]. This social networking
service facilitates 302 million users (May 2015, wikipedia) world-wide to
send and receive short text messages in real time. The company started in
year 2006, and has grown ten times between year 2010 and year 2013, with
a record number of 400,000,000 tweets per day. This exponential growth
in the number of users brought various challenges, such as poor concur-
rency and latency. Another major issue was that different parts of the
service were developed in different languages such as Java [Gosling, 1995],
Ruby [Matsumoto, 1995], Scala [Odersky, 2004] and Javascript [Eich, 1995].
These challenges were mainly because of the tight coupling between various
components of the organization. Twitter testing team lead Jeremy Cloud
discussed in his talk [Cloud, 2013], how SOA helped them to cope with the
aforementioned challenges of scalability and concurrency. As a result, the
Twitter service, which previously could handle just twenty tweets per second

lthe annual percentage rate at which customers stop subscribing to a service.

2 Service-Oriented Architectures

Firehose

Stre amlng [Hosebird I Firehose

Firehose

Track/Follow

Hosebird] [Hosebird l Track/Follow

Track/Follow

Tweek
Service

User Stream

Hosebird | User Stream

User Stream

 Social
Graph

Figure 2.1: Twitter Service Decomposition

(TPS) and 400 queries per second (QPS) in year 2006, could manage 1,000
TPS and 12,000 QPS by year 2010 [Humble, 2011]. Figure 2.1 displays one
of the core APIs based on SOA principles, used in the Twitter application,
for providing real-time tweets to the clients.

The chapter is divided as follows: Section 2.2 presents a short history behind
the SOA paradigm. A detailed description of basic SOA terms used in the
scope of this work is presented in Section 2.3. The last Section 2.4 lists some
of the challenges faced by SOA:s.

2.2 A Dbrief history of SOAs

With the pervasiveness of devices like smart phones, tablets, and web
applications in our every day life, the object-oriented paradigm was a
hinderance to solve the cross-platform problems. This need fueled the
emergence of distributed computing (component technology), whereby
the client and server objects need not to be executed on the same ma-
chine [Daigneau, 2011]. This gave birth to technologies like Java Remote
Method Invocation (RMI) [JavaRMI, 1997], Common Object Request Broker
Architecture (CORBA) [CORBA, 1991], and Microsoft Component Object
Model/Distributed Common Object Model (COM/DCOM) [COM, 1993].

2.2 A brief history of SOAs

Although this shift from “local objects to distributed objects” solved the
portability issue among different programming languages and platforms,
but only worked given the client and server objects were using the same
underlying platform [Englander, 2002]. Moreover, it gave birth to new issues
like effective load-balancing and memory utilization by the server object.
In order to solve issues arising from distributed computing, the concept of
web services was introduced in year 2001, which should be independent
of underlying technology and can solve interoperability issues. This new
concept of loosely-coupled, distributed and heterogeneous web applications
laid the basics for popularity of SOAs [Raman, 2009].

Another vital factor in the success of SOA has been the exponential growth of
World Wide Web, through which businesses started expanding, connecting
different parts of the world, and shortening physical distances by expanding
their services around the globe. This growth with a passage of time required
an architecture, which can better facilitate the continuous integration of
new functionality to the business. Some typical examples for this shift are
the most famous companies like Amazon, eBay, Facebook, Twitter and
Google. Today their services have billions of users around the globe, and
have become a part of our every day life.

SOA history can be divided into three generations; the early SOA model
(2001- 2005) was the era of web service technology; the second generation
of SOA (2005 -2010) focused on service composition and related standards
for QoS, security and reliability; the third generation covers the time span
from year 2010 onwards.

2.2.1 Early SOA

The emergence of SOA is tightly coupled with the development of Web
service technologies and standards. It happened at the time of emergence
of distributed computing, when there was a strong need to exchange the
information stored in one computer over a network in a portable format. A
Web service represents a basic unit in a SOA-based business process, where
the main purpose of a web service is to perform a certain task in response to
a certain request from another web service. According to [Englander, 2002],

2 Service-Oriented Architectures

7 Seryicf: ®
Registry :
#“ =Y
CRM
Service !
Billing) Service
: B R C PRI L ERE T =
Service | SErVices Consumers
Compute _L
Service

Figure 2.2: An early SOA Model

Web services represent, “server functions with published interfaces, needed
to access their capabilities using standardized protocol™.

The early SOA model is composed of three main components: services;
service registry; and service consumers as shown in Figure 2.2. The ser-
vices descriptions are expressed in Web Services Description Language
(WSDL) [WSDL, 2001], a form of XML document, and are stored in a reg-
istry. The service consumers can look up the registry for available services,
and should be able to connect to the desired service via message protocols
like SOAP (Simple Object Access Protocol) [SOAP, 2007] or REST (REpre-
sentational State Tranfer) [Fielding, 2000]. The bindings were static in this
era. This era was taken over by the service compositions era as depicted in
Figure 2.3.

2.2.2 Second generation of SOA

The second generation of SOA encompasses the time period from year 2005
to year 2010. In this period non-functional requirements of SOA processes
such as service composition, message security and reliability were main
research topics. In this respect, Business Process Execution Language (BPEL)
came out as an industry standard. The research focussed on the orchestration

10

2.3 SOA basics

of business processes and related issues. More details about BPEL are
presented in Section 2.3.2.

2.2.3 Contemporary SOA

The third generation of SOA covers the time span after 2010. In this era,
business processes just became a part of the big picture presented in Fig-
ure 2.3. On the front end, the user interacts with a web interface, but in
the background, there are many different components working together
in synergy in order to facilitate a user. Depending on the size of the par-
ticular SOA implementation, the number of back-end components may
vary. In a small infrastructure, we may have just a couple of business
processes co-ordinating different web services running on the intranet.
These web services could perform a variety of functions such as billing
services, customer-relationship management service or computational ser-
vices wrapping up the functionality of already running legacy systems.
In large-scale organizations, usually enterprise service buses (ESBs) are
used for enterprise integration. Some of the key features of a message bus
include loose coupling among diverse web services by using XML as a
communication language. It also supports synchronous and asynchronous
communication with the help of standardized message routing services.
A more detailed overview of ESB and its integration into business can be
looked up in [Balepur Venkatanna Kumar, 2010].

2.3 SOA basics

Service-oriented Architecture (SOA) is more like an architectural style
rather than a specific technology; for it is a collection of laws and policies to
implement a model-driven service development [Josuttis, 2007]. In order to
be self-contained, we review the relevant SOA terms and definitions within
the scope of this thesis.

11

2 Service-Oriented Architectures

. Frontend Application
A

'~.,O->O. ‘ Business Processes

Service Monitor

Vv v Vv Vv

Message Bus O)(—)
i i / Aggregator ;
Mediators f\k| f\k| -

Service
Registry

Billing CRM
Service Service £ RS
Services Compute Compute
: : Service 1 Service 2

v v v v
Backend Applications
—

Figure 2.3: Contemporary SOA Model taken from [Leitner et al., 2013]

2.3.1 First generation Web services technology

There exist many definitions explaining the SOA paradigm in the literature.
Some of them are listed in this section. According to Organization for the
Advancement of Structured Information Standards Reference Model (OASIS
RM): [Model, 2006]:

”Service-Oriented Architecture (SOA) is a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different
ownership domains.”

The “distributed capabilities™ are also termed as Web services, and are
considered the fundamental building blocks of any SOA. [Erl, 2007] defines
SOA as follows:

”Service-Oriented Architecture represents a distinct form of technology
architecture designed in support of service-oriented solution logic which is

12

2.3 SOA basics

comprised of services and service compositions shaped by and designed in
accordance with service-orientation.”

Since service lies at the heart of any service-oriented solution, it is important
to understand first the concept of a service.

Web Services

A Web service is defined by W3C? as follows:

”A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards™ [W3C, 2011].

According to another definition from [Erl, 2005]: ”A Web service is com-
posed of three main components: a service contract, which contains publicly
available functions in the form of WSDL document; a business logic part,
which encompasses the implementation details; a message processing logic,
using message passing protocol like SOAP or REST”.

A Web service can act as a service provider, or a service consumer or both
(incase of service compositions). Figure 2.4 depicts different roles a Web
service can perform based on its usage.

The basic Web service technology stack comprises of technologies: Web
Services Description Language (WSDL), XML Schema Definition language
(XSD), Simple Object Access Protocol (SOAP), Universal Description, Dis-
covery, Integration (UDDI) [Erl, 2005]. All of these technologies use XML
as an underlying language. The brief explanation of these Web services
technologies is as follows:

2World Wide Web Consortium: https.//www.w3.0org/

13

2 Service-Oriented Architectures

14

.

J L
Portions of a Web service acting as a service consumer

-
-

o
:)

Web service transitioning through service consumer and provider roles

Figure 2.4: Web Service roles taken from [Erl, 2005]

2.3 SOA basics

XML Schema De nition

XML stands for extensible markup language® and is considered as a “lingua
franca” for distributed systems [Hewitt, 2009]. With XML, it is possible to
describe the data in a standardized way that is also portable over a network.
The success of XML lies in the platform independent data model. It was
designed such as to address extensibility issues in earlier markup languages
such as HTML. Extensibility means that one can describe the content specific
to one’s application in a standard way.

The structure of an XML document can be specified in an XML schema,
which is designed to express the restrictions on the elements defined in
any XML document. A detailed description of a correct XML document, its
constituent elements, the ordering of defined elements, possible constraints
on already specified elements can be looked up on the official website of
the World Wide Web consortium®.

A simple XML document can be seen in Figure 2.5. Schema is the root
element of every XML document. The root element may contain further
elements of either simple type or complex type. A simple element is an
XML element that can contain only text. The text can be of different types
such as string, integer, boolean, date and time. It can not contain further
elements. The complex type element, on the contrary, can contain simple
types, where each element must also have a valid datatype specified in the
form of an xml schema. The XML schema must not only be well-formed,
but also valid against the XML Schema in order to be used by any XML
tool.

SOAP protocol

SOAP is a message-based exchange protocol. It stands for Simple Object
Access Protocol [SOAP, 2007]. SOAP messages are XML documents called
envelopes. Every SOAP message must conform to the SOAP specifica-
tion. According to the specification, a valid message must have three main

Swww.w3schools.com/xml/
4http://www.w3.0rg/

15

2 Service-Oriented Architectures

1 <?xml version="1.0"7>

2 <xs:schema xmlns:xs="http:/Aww.w3.0rg/2001/XMLSchema”>
3 <xs:element name="input”>

4 <xs:complexType>

5 <Xxs:sequence>

6 <xs:element name="to” type="xs:string”/>

7 <xs:element name="from” type="xs:string”/>

8 <xs:element name="heading” type="xs:string”/>
9 <xs:element name="body” type="Xxs:string”/>

10 </xs:sequence>

11 </xs:complexType>

12 </xs:element>

[y
w

</xs:schema>

Figure 2.5: A short example of an XML Schema.

components Envelop, Header, and Body. The “Envelop” element is the root
element of any SOAP message, and encapsulates the “Header” and the
“Body” elements as shown in Figure 2.6. A detailed description of the
SOAP message-passing protocol can be looked up in [Englander, 2002]
or in [Balepur Venkatanna Kumar, 2010]. Like XML, SOAP messages are
also platform-neutral and are independent of the implementation of the
sender and receiver [Englander, 2002]. In principle, it is independent of
the underlying transfer protocol, but is mostly used with the Hypertext
Transfer Protocol (HTTP) [Berners-Lee, 1989] for communication on the web.
There are also other binding protocols like Simple Mail Transfer Protocol
(SMTP) [RFC, 1982], File Transfer Protocol (FTP) [Bhushan, 1985] available,
but HTTP remains the most widely used protocol to date.

WSDL

WSDL stands for Web Service Description Language [WSDL, 2001]. "It is
an XML-based interface definition language that is used for describing the
functionality offered by a web service”(Wikipedia). A WSDL document
enables the loose coupling between web services by encapsulating the
internal functionality of a service. A typical WSDL document is composed
of six elements; types, message, portType, binding, port and service. All

16

2.3 SOA basics

1 <?xml version="1.0"?>
2 <SOAP ENV:Envelope >

3 <SOAP ENV:Header>
4

5 .

6 </SOAP ENV:Header>
7 <SOAP ENV:Body>

8 .

9 o
10 <SOAP ENV:Fault>
11
12 .
13 </SOAP ENV:Fault>
14 .
15 </SOAP ENV:Body>
16

17 </SOAP_ENV:Envelope>

Figure 2.6: A SOAP message.

these elements are inter-related to each other and can be classified into
two parts; an abstract part and a concrete part. An abstract part of a WSDL
document describes the interface level operations provided by web services
using portType definition. These operations are linked to input and output
messages used by the web service for exchange of communication with
other web services. The Types section is used to define the data types of
input and output variables used in the respective messages section. In order
to execute the web service implementation, the concrete part is required,
which is composed of three further elements. The Binding section refers to
the physical transport protocol used for the on-the-wire communication.
The bindings can be specified using multiple protocols such as HTTP, or
SOAP. Also, multiple bindings can be made available for the same portType
operations. The services element contains the link to the specific web address
to access the web service functionality.

17

2 Service-Oriented Architectures

1 <definitions>

2

3 <types>

4 </types>

5

6 <message>

7 </message>

8

9 <portType>

10 <operations>
11 </operations>
12 </portType>

13

14 <binding>

15 </binding>

16

17 <services>

18 </services>

19

20 </definitions>

Figure 2.7: WSDL components taken from [WSDL, 2001].

18

2.3 SOA basics

UDDI

Like SOAP and WSDL, Universal Discovery, Description and Integration
(UDDI) [UDDI, 2001] is considered a basic block of a web service stack.
As the name suggests, it is used for storing, accessing and retrieving web
services. However, UDDI has not got industry acceptance like SOAP and
WSDL [Erl, 2005].

REST

REST stands for "REpresentational State Transfer”. It was first introduced by
Roy T. Fiedling in year 2000, who claimed in his Ph.D. thesis that: ” the REST
architectural style has been used to guide the design and development of
the architecture of the modern Web” [Fiedling, 2000]. Twitter and Amazon
are two examples of REST protocol. The success of REST services depends
on many factors: they are stateless, they should not store state on the
server; the REST-based services don’t require WSDL,; the resources are
used to build the RESTful architecture, each having a unique identifier
URI; Last but not the least, REST protocol discourages the use of cookies,
rather, stresses on using the hypermedia to store the application state. REST
unlike WSDL, SOAP, and XML Schema is not a specification. A detailed
discussion of RESTful architecture and REST-based services can be read
in [Richardson and Ruby, 2007].

2.3.2 Second generation Web services technology

The sole purpose of building web services was to provide loose coupling,
interoperability, reusability, and discoverability between heterogeneously-
built autonomous services. The first generation of web service technology
lack reliable messaging protocol. Therefore, the second generation of Web
services focussed on extensions for security at message level, transport
and network level. These extensions were offered by specifications such as
Web Services Security (WS-Security), Web Services Secure Conversation
(WS-SecureConversation), and Web Services Security Policy (WS-Security
Policy) [Erl, 2005]. Another notable contribution was the development of

19

2 Service-Oriented Architectures

Business Process Execution Language for Web Services (BPEL4WS). Being
part of WS-* extensions stack, BPEL4WS is sometimes also written as WS-
BPEL, or even BPEL for short. BPEL emerged as an industry standard for
the execution of long running, complex business processes spanning over a
large period of time.

WS-BPEL

WS-BPEL is an XML-based language for the definition and execution of
business processes. The sole purpose of BPEL is the composition of het-
erogeneous web services in order to achieve a business goal. Although
there are also other workflow languages such as Business Process Mod-
eling Notation (BPMN) [OMG, 2005], Yet Another Workflow Language
(YAWL) [ter Hofstede, 2010], WS-BPEL is the OASIS standard. It contains
constructs of both workflow languages and programming languages. Ac-
cording to [Juric and Krizevnik, 2010], some of the design goals of BPEL
were: the description of a business logic through composition of services,
handling of synchronous and asynchronous long-running processes, invoca-
tion of processes in sequential and parallel fashion, the parallel execution of
activities depending on the synchronization conditions, and the correlation
of requests to particular instances within a business process.

History of WS-BPEL

Before the emergence of WS-BPEL, web services were already adapted in
the industry. There was lot of work published [Bozkurt et al., 2013] until
2005, when IBM and Microsoft proposed a language for the composition
of individual web services to achieve a business level integration. The
aim was to provide a standard language to deal with reliable messaging
problems. This new language was created purposefully to remove problems
in the already used workflow languages such as WSFL [Leymann, 2001]
by IBM and XLANG [Microsoft, 2001] by Microsoft. WSFL (Web Services
Flow Language) was meant for directed graphs, and XLANG was a block-
structured language. In BPEL language, one finds both directed graphs and
block-structured approaches for modeling.

20

2.3 SOA basics

WS-BPEL Preliminaries

The most important concept in understanding WS-BPEL is the term *“pro-
cess” itself. According to [Harvey, 2005], a process denotes “a program
running in an operating system, responsible for processing a request over
some interval of time”. The term process definition defines behavior of the
process, whereas the term process instance refers to “an occurrence of a
process to a specific input”. For example, each instance of a loan business
process refers to a specific loan request. Moreover, an execution engine
is employed to *“create and run instances of a given process definition”.
And each single step in a process, such as approving a loan is defined as
an“activity”.

Types of BPEL processes

There are two main types of BPEL processes: an abstract process, and an
executable process. An abstract process is only a protocol definition, whereby
an executable process is actually executed in a process engine. The primary
difference between a typical web service and a BPEL process is that the
user only has the description of a web service, but can never access the
internal functionality of a web service. However, the functional logic of a
BPEL process is available as an XML document. In fact a BPEL process itself
is exposed as a web service. An executable BPEL process is shown in Figure
2.8. There are two types of files in an executable BPEL process:

WSDL files for the specification of web service interfaces, including
portTypes and operations, related to the business process.

BPEL file(s) for the specification of a process definition in an XML
format.

WS-BPEL Constructs-Activities

A WS-BPEL file is divided into two basic parts, i.e., one part describes the
structure of the business process, and the second part describes the binding
to actual services responsible for execution of a certain functionality. The

21

2 Service-Oriented Architectures

22

Travel agency process

| BPEL (XML) I | WsDL I

3 |

<receives
Receive ilinérary

v
I#
Book hotel

B T [T ——

Hotel
W5

Car
Airline

renlal
‘ ws I WS

Figure 2.8: An Executable BPEL process taken from [Harvey, 2005]

2.3 SOA basics

document is composed of basic and structured activities. The basic activities
include receive, reply, invoke, throw and wait. The structured activities include
constructs like while, sequence, flow and pick. The basic difference between
the sequence and the flow activity is the order of the execution of activities.
A flow construct is used to define a set of activities that can be executed
concurrently. The pick activity is responsible for handling external events
such as alarm or messages. A basic skeleton of a BPEL is shown in Figure 2.9.
A detailed description of all BPEL constructs and their practical usage can
be looked up in [Erl, 2005].

A typical BPEL process has four main parts: partnerLinks, variables, fault-
Handlers, and any number of structured or basic activities. The partnerLinks
are defined in order to make a BPEL process interact with other processes.
In addition to that, the variables section is meant for defining data variables
used by the process definition. In case of any exception, a fault handling
mechanism can be defined in a faultHandlers section. This is generally fol-
lowed by one or more structured activities such as sequence, if, while, pick
or flow. These activities can be nested in any combination or order. Let us
briefly describe the most common activities:

Receive Activity

A Receive activity is typically the starting activity within any business
process. It is used for receiving requests from partner processes. As shown
in Figure 2.10, the mandatory fields for any Receive activity are the name of
the partnerLink, and the operation that the partner business process is calling.
The incoming request message will be stored in a variable field.

Reply Activity

A Reply activity is an *“activity that returns a synchronous reply to an in-
coming web service call triggered by a receive” [Harvey, 2005]. This activity
iIs mandatory in a request-reply operation, in which the business process is
required to send back a reply to the calling partner process. For that reason,

23

2 Service-Oriented Architectures

<process>

<partnerLinks>

1

2

3

4

5 </partnerLinks>
6

7 <variables>
8

9 </variables>

10

11 <faultHandlers>

12

13 </faultHandlers>

14

15 <sequence>

16 <receive ... >
17 <invoke ... >
18 <assign ... >
19 <if>

20 <while>

21 <reply ... >

22

23 </sequence>

24

25 </process>

Figure 2.9: BPEL process definition

24

2.3 SOA basics

1 <receive partnerLink="NCName”
2 portType="QName”?

3 operation="NCName”

4 variable="BPELVariableName”?
5 createlnstance="yesjno”?

6 messageExchange="NCName”?

7 standard attributes>

8 standard elements

9 <correlations>?

10 <correlation set="NCName” initiate="yesjjoinjno”?/>+
11 </correlations>

12 <fromParts>?

13 <fromPart part="NCName” toVariable="BPELVarName”/>+
14 </fromParts>

15 </receive>

Figure 2.10: Receive Activity

it is linked to the same partnerLink element as specified in a Receive activity.
Figure 2.11 depicts a snippet of Reply activity from BPEL specification.

Invoke Activity

An Invoke activity is meant for calling the partner business process operation.
This can be a one-way operation or a request-response scenario, in which
Invoke must wait until a response is received. As shown in Figure 2.12, both
inputVariable and outputVariable fields are optional.

Assign Activity

An Assign activity as illustrated in Figure 2.13 is used for updating variable
values. An assign activity can contain one or more copy constructs.

25

2 Service-Oriented Architectures

1 <reply partnerLink="NCName”

2 portType="QName”?

3 operation="NCName”

4 variable="BPELVariableName”?
5 faultName="QName” ?

6 messageExchange="NCName”?

7 standard attributes>

8 standard elements

9 <correlations>?
10 <correlation set="NCName” initiate="yesjjoinjno”?/>+
11 </correlations>
12 <toParts>?
13 <toPart part="NCName” fromVariable="BPELVarName”/>+
14 </toParts>
15 </reply>
Figure 2.11: Reply Activity
If Activity

An If activity as shown in Figure 2.14 is used for selecting one activity
among a set of choices. When a condition attribute is set to true”, the nested
activities are executed like any other programming language.

WhileActivity

A While activity 2.15 is similar to any imperative programming language,
and is used for repetition of activities as long as the loop condition remains
true.

Limitations of BPEL

It is important to note that BPEL is only useful in describing or modeling the
functional aspects of a process. It is not well suited for specifying the non-
functional properties associated with any process like security requirements
and Service-level-agreements (SLAS).

26

16
17
18
19
20
21
22
23
24
25
26
27
28
29

2.3 SOA basics

<invoke partnerLink="NCName”

portType="QName”?
operation="NCName”
inputVariable="BPELVariableName”?
outputVariable="BPELVariableName”?
standard attributes>
standard elements
<correlations>?
<correlation set="NCName” initiate="yesjjoinjno”?
pattern="requestjresponsejrequest response”?/>+
</correlations>
<catch faultName="QName”?
faultVariable="BPELVariableName”?
faultMessageType="QName”?
faultElement="QName” ?>
activity
</catch>
<catchAll=>?
activity
</catchAll>
<compensationHandler=>?
activity
</compensationHandler>
<toParts>?
<toPart part="NCName” fromVariable="BPELVarName”/>+
</toParts>
<fromParts>?
<fromPart part="NCName” toVariable="BPELVarName”/>+
</fromParts>

30 </invoke>

Figure 2.12: InvokeActivity

27

2 Service-Oriented Architectures

1 <assign validate="yesjno”? standard attributes>

2 standard elements

3 (

4 <copy keepSrcElementName="yesjno”?ignoreMissingFromData="yesjno”?>
5 from spec

6 to spec

7 </copy>

8 J

9 <extensionAssignOperation>
10 assign element of other namespace
11 </extensionAssignOperation>
12)+
13 </assign>

Figure 2.13: AssignActivity

1 <if standard attributes>

2 standard elements

3 <condition exprLang="anyURI”?>bool expr</condition>
4 activity

5 <elseif>

6 <condition exprLang="anyURI”?>bool expr</condition>
7 activity

8 </elseif>

9 <else>?

10 activity

11 </else>

12 </if>

Figure 2.14: IfActivity

1 <while standard attributes>

2 standard elements

3 <condition exprLang="anyURI”?>bool expr</condition>
4 activity

5 </while>

Figure 2.15: WhileActivity

28

2.4 SOA challenges

Furthermore, the BPEL language received a lot of criticism from the testing
community as it is described in a natural language [Lapadula et al., 2008],
which makes it hard to formalize different constructs. Despite of this fact,
BPEL remains an OASIS standard for composition of heterogeneous, dis-
parate web-services. There is another issue with BPEL compositions, i.e.,
their tight coupling with WSDL-based web services. And, because of this
limitation, BPEL can not work well with semantic web services or for that
matter REST-based web services.

2.4 SOA challenges

While the decomposition of required functionality into services give dif-
ferent teams more autonomy, i.e, helped Twitter attain higher levels of
concurrency, it opened new challenges for testing these “loosely-coupled”
services. [Daigneau, 2011] describes various types of dependencies among
web services such as functional, temporal and URI coupling. According to
[Josuttis, 2007], ”Loosely coupled distributed systems are harder to develop,
maintain, and debug”. He argues that the goal of introducing loose-coupling
was to reduce dependencies among different parts of a large-distriubted sys-
tem. For example, asynchronous communication is the most common form
of loose-coupling in SOAs. But, asynchronous messages must be handled
appropriately; first the reply must be associated with the original request,
second the state of the original request must be stored in order to process
the reply in the proper context. The situation might get worse when the
order of request-reply messages is altered, or if some messages do not arrive
at all. Handling all such possibilities at development level, and later on at
testing and debugging would mean additional cost and complexity.

[Canfora and Penta, 2009a] listed various challenges associated with SOA
applications. The first challenge is the limited observability of the services’
code, for users do not possess access to the internals of the implementa-
tion. Similarly, end users have no control over consumed services, because
these services are executed on the providers end. Moreover, the services
implementations can be updated without an end-user awareness, and this
can pose an extra overhead regarding regression testing at the Integrator

29

2 Service-Oriented Architectures

end. Above all, the testing cost of such dynamic and hybrid large-scale
applications is quite high, both at the service and composition level.

In addition to the previous mentioned challenges, SOA applications must
be tested for Quality of Service (QoS) attributes, such as response time,
availability, system load, cost and other attributes specified in service-level
agreements. Our focus has been on the functional aspects of SOA-based
processes.

30

3 Preliminaries and Related Work

Software testing coupled with verification and validation has been con-
sidered inevitable in any software development life cycle. Software testing
means “the process of analyzing a product to verify that it satisfies speci-
fied requirements or to identify differences between expected and actual
results” [IEEE, 1983]. Verification is “the process of determining whether or
not the products of a given phase of a software development process fulfill
the requirements established during the previous phase”. Validation, on the
other hand, means “the process of evaluating software at the end of its devel-
opment process to ensure compliance with its requirements” [IEEE, 1983].

Testing is a commonly practiced verification technique, in which the system
under test is executed with selective inputs, and the resulting output is
compared with expected results, in order to verify the requirements stated
in the specifications. Although there have been well-established testing
techniques and methods to ensure software quality and reliability, test-
ing is still considered the most difficult, laborious and error-prone part
of a typical software development process [Myers et al., 2011]. With the
rise of service-oriented computing, the problem of software testing has be-
come more intricate and complex than ever. For example inherent features
such as limited controllability and observability have further complicated
the functional testing of SOA business processes [Hierons and Ural, 2008],
[Hierons and Ural, 2009].

Once the fault is identified, naturally one is interested in finding out prob-
able reasons behind the occurred fault. In this way, the diagnosis process
complements a testing process. There are various challenges specific to di-
agnosing business processes. For example, the complete specification of the
input/output of composed services is not available. Moreover, the diagnosis
needs to consider the state of a web service in fault-localization, diagnosis

31

3 Preliminaries and Related Work

and also repair actions [Friedrich et al., 2010b]. In this Chapter, we present
issues and challenges specific to the functional testing and debugging of
SOA-based business processes. We present a light-weight debugging ap-
proach for detection of behavioral functional faults in BPEL compositions.

This Chapter is organized as follows: First, some general definitions from
software testing are presented in Section 3.1. Later, related work available
in the context of SOA testing is discussed in Section 3.2. Similarly, the
relevant debugging definitions are given in Section 3.3. This is followed by
the related work in the diagnosis of service-oriented processes in Section 3.4
respectively. We present conclusions in Section 3.5.

3.1 Testing Preliminaries

Software testing is “the process of executing a program with the intent
of finding errors” [Myers et al., 2011]. The term “Error” basically means
source responsible for deviation of the system under test from its expected
behavior. According to [IEEE, 1983]: an error is “the difference between a
computed, observed, or measured value or condition and the true, specified,
or theoretically correct value or condition. There can be many different types
of errors, and according to [Goodenough and Gerhart, 1975], can be broadly
classified as performance and logical errors. These errors can be observed
by: either a missing path; a wrongly taken path; a missing computation,
and a wrongly computed value. An error can result in software containing
a fault, which is defined as “an incorrect step, process, or data definition
in a program”. Similarly, a fault is responsible for a failure, which denotes
an incorrect behavior of a program. The exact definition of a failure is “the
inability of a system or component to perform its required function within
the specified performance requirements” [IEEE, 1983].

According to [Adrion et al., 1982], a complete verification of any program
is only possible through “exhaustive Testing”. As this goal is in reality
not possible, determining the scope of any testing activity is of utmost
importance. Some of key challenges in testing involve generating test data,
measuring the test data quality, automating test execution, and prioritizing
test case selection [Myers et al., 2011].

32

3.1 Testing Preliminaries

The first step is the selection of the test data which serves as an input
to the system under test. As a second step, it is important to determine
if the test data uncovers faults or not. This is known as the *“test oracle”
problem [Howden, 1978]. Similarly, measuring the quality of test data helps
in deciding when to stop testing, because complete testing is not possible
in practice. Two such methods are: statistical methods or deterministic
methods [Adrion et al., 1982]. The statistical methods are random in nature
as compared to deterministic methods, in which test data must reproduce
same results under the given set of conditions. Since testing covers almost
50% of the software development cycle [Myers et al., 2011], automation of
the testing process is useful in reducing the testing effort, time and cost.
Likewise test case prioritization goal is to lower down the testing cost by
discovering more errors with less number of tests.

[DeMillo et al., 1978] presented two hypotheses in their paper; “competent
programmer hypothesis” and a “coupling effect”. They argued that program-
mers are ’close to correct”, and based on this assumption, they claim that
the frequency of simple errors is alway higher than the complex ones. Or
putting differently, simple errors are ”coupled” with complex errors. So, it
makes more sense to look for these simple errors, which lead to the complex
one eventually. This lead to another question, that is, which errors should
we test for? This question can be hard to answer, as it mainly depends on the
nature of the underlying program or system. For example, for embedded
systems, functional testing might be enough to test most of the functionality,
but in SOA-based environments, functional testing must go hand in hand
with the non-functional testing of software attributes like response-time,
network-faults, and testing cost. This thesis is about functional testing of
SOA-based systems, and is aimed at complementing non-functional testing
of such systems.

Test data generation: There are three main types of test data generation
techniques, i.e., black-box, white-box, and grey-box. Black-box testing is
a functional analysis technique, and is useful when the internal logic of
the SUT is not available. This type of testing is done in scenarios, where
inputs and expected outputs are known, but not the internal program
structure. This implies that test data is generated from requirements or
design specifications only, because it stresses only on the external behavior
of the system under test. An exhaustive Black-box testing would consider

33

3 Preliminaries and Related Work

all possible test inputs to test for the expected result (oracle), which is
impossible for larger programs. Hence, methodologies like boundary value
analysis, equivalence partitioning are employed to measure the test data
adequacy [Myers et al., 2011]. The advantage of using black-box testing is
that no prior programming knowledge is required. One drawback is that
tester might not be able to test certain parts of the code due to visibility
problem. It might also happen that unnecessary tests are generated to test
certain software functionality.

White-box approach, on the other hand, is a structural analysis technique, and
Is used when the source-code of the program under test is available. It is
called white-box, because the internal structure of the program is known
prior to testing. The classical techniques applied in the context of white-box
testing include mutation testing, API testing. The target of selecting test
cases is the execution of every path in the program; which is realistically
not possible especially in programs with loops. Therefore the test suite
adequacy is measured with the help of some code coverage criteria such as
branch coverage, statement coverage or path coverage [Myers et al., 2011].
For example 100% branch coverage implies that all branches in the control
flow graph of the system under test have been executed once. This certainly
provides some confidence in the testing approach, but is not complete
since the same branch can be tested with different sets of inputs yielding
unexpected results. The approach is mostly applied to the unit level. The
disadvantage of using white-box approach is that missing functionality from
the specification or requirement documents can not be detected. In addition
to that, a thorough understanding of the SUT implementation is required to
generate useful tests.

There is a third kind of testing approach, grey-box testing, in which partial
information about the internal structure of the program is available. In the
context of this thesis, the control-flow logic of a BPEL process is available,
but the underlying functioning of the involved web services is a black-
box. Hence we suggest grey-box testing approach for testing SOA business
process.

There are also many types of testing with different testing goals: functional
testing checks if a software conforms to its requirements specifications. Non-
functional testing evaluates a software for non-functional requirements such

34

3.1 Testing Preliminaries

as performance, load, and scalability. Regression testing is to ensure if a
software fulfills its design specification after changes such as configuration
or software updates. Integration testing is performed “when individual
software modules are combined and tested as a unit” (Wikipedia).

Test data adequacy: Once the test data is generated using either static analysis
such as symbolic execution, model-checking, or dynamic analysis method,
the next step in the testing process is to determine the effectiveness of
the generated test suite. This can be done in many ways depending on
the budget of the particular project. The two commonly used methods are
coverage analysis and mutation analysis.

Mutation analysis: [DeMillo et al., 1978] were the first to introduce this
technique. The idea is as follows: First, by applying syntax changes to the
original program, many possibly faulty copies of the program under test
are generated. These altered versions of the original program are called
“mutants”. These mutants are generated according to certain mutation oper-
ators [Boubeta-Puig et al., 2011]. Each mutation operator denotes different
fault class, and the goal is to generate mutants representing different fault
classes. Second, the generated mutants are tested with the test suite in order
to determine if the test suite can differentiate between the original program
and mutants or not. A mutant is termed “killed” if a test case can distinguish
it from the original program. And the total number of killed mutants over
non-equivalent mutants denote the adequacy score or the*mutation score”.
The higher the mutation score, the better the quality of the test suite. The
mutants which the test suite can not distinguish from the original program
are called “equivalent mutants”. The scope of mutation testing is limited
in practice primarily because of high computational cost. In addition to
that, it is still undecidable whether an equivalent mutant is equivalent to
the original program or not [Budd and Angluin, 1982]. The survey gives
a comprehensive overview of the the work done in the field of mutation
testing since its origin [Jia and Harman, 2011].

The ”SUT” or ”program”, in the context of this thesis, means software
artifacts such as BPEL source code, schema definitions of the composed
web services and WSDL specifications. In general, this could mean the
requirement documents, stating the functional and non-functional quality
attributes of the project under consideration. The expected behavior of the

35

3 Preliminaries and Related Work

SUT is extracted from the structure of a BPEL process document and related
artifacts. Once we have the model out of a BPEL specification, we derive
the possible input/Zoutput relationship using the constraint-based approach
discussed in detail in next Chapter 4.

3.2 Testing trends of SOA Applications

Testing approaches can be divided into many different types aiming at
testing different behavior of the system under test. With respect to SOA-
based or service-centric systems, one of the earliest survey was published
by [Canfora and Penta, 2006]. This survey gives a glimpse of testing issues
from the perspective of functional and non-functional point-of-view. Also
another survey done by same authors [Canfora and Penta, 2009a] provides a
good overview of testing challenges posed by such system from viewpoint of
different stakeholders. A detailed account of various testing approaches used
in the service-oriented architecture can be found in [Bozkurt et al., 2013]. In
both of these surveys, the underlying issue discussed in SOA testing is that
of “trust”.

This lack in trust comes from the limited observability and controllability of
SOA-based systems. The limited observability means that users or testers
have no knowledge about the internal implementation of the service. There-
fore a tester can not apply white-box approaches to verify that the service
indeed comply to the agreed service level agreements (SLAs). The limited
controllability comes from the fact that a service provider can change the
service behavior without prior notification to users. As a result, users may
experience unexpected changes in the service functional or non-functional
behavior.

In classical testing techniques, the issue of limited observability and con-
trollability is not that much of an issue as in service-oriented architec-
tures [Hierons and Ural, 2008], [Hierons and Ural, 2009]. In scope of this
work, functional testing approach for the BPEL compositions has been ex-
plored. We report on the approaches that are closely related to our approach
in the context of test case generation, execution and diagnosis of BPEL
compositions.

36

3.2 Testing trends of SOA Applications

There is a lot of research already done in testing SOA applications; this
work intersects mainly with model-based test case generation approaches.
The survey [Bozkurt et al., 2013] classifies model-based testing and formal
verification of web services into symbolic execution, model-checking and
petri-nets. A short description of each of these testing approaches is pro-
vided in the corresponding section. This work is based mainly on symbolic
execution principles, and also partially on contract-based testing of com-
posed web services. Moreover, we make use of some work done in unit
testing and fault-based testing for the test suite execution step.

3.2.1 Symbolic Execution Approach

Symbolic execution is a program analysis technique testing programs on
symbolic inputs rather than concrete input values. In addition to that, a path
condition is stored whenever a branch condition is executed. The purpose
for storing the path condition is to maintain path constraints. Once all
constraints are encoded as a constraint satisfaction problem, a constraint
solver is used for the concrete test case generation.

The idea of symbolic execution for program testing was first introduced by
James King [King, 1976] to test programs for infinite large classes of inputs.
The approach is also called static symbolic execution, for it only analyses
the source code of the program to predict the program behavior. Among the
classical symbolic execution tools, SELECT [Boyer et al., 1975] can handle
only sequential programs with limited number of input data types.

One drawback of using static symbolic execution is that it can not model
the behavior of external system calls. The dynamic symbolic execution aims
at modeling not only the program structure, but also the unknown program
behavior such as interactions with the environment. While our work is based
on classical symbolic execution, the usage of dynamic symbolic execution for
test input generation has been explored extensively. DART was the first tool
built on the idea of dynamic symbolic execution [Godefroid et al., 2005a].
DART (Directed Automated Random Testing) works on dynamic symbolic
execution with concrete inputs, collects symbolic constraints on the input
to generate feasible paths using a constraint solver. It searches for different

37

3 Preliminaries and Related Work

variants of the previous input to search for other possible execution paths.
The goal is to find all feasible execution paths. Unlike static symbolic
execution, dynamic symbolic execution has the advantage of deriving new
test inputs without any test driver. Also, the behavior of environment can be
modeled to test the dynamic program execution such as pointer analysis and
library function calls. The tool was developed to test C implementation.

Path explosion is another problem associated with static symbolic execu-
tion. [Sen and Agha, 2006] introduced the term concolic testing, which is a
hybrid of symbolic and concrete execution. They developed a tool called
CUTE, which basically extends DART by introducing concolic testing for
unit testing of C programs. Like DART, CUTE uses both concrete and sym-
bolic test inputs to leverage limitations of the symbolic execution. The tool
has two versions, CUTE supports testing of C programs, and jCUTE is used
for testing multithreaded Java programs. They use partial-order reduction
techniques to reduce the number of infinite generated paths.

[Tillmann and De Halleux, 2008] presented a white box test generation tool
(Pex) for .NET environments. Pex was developed to generate parametrized
unit tests for .NET environments, whereby pointer access and floating point
arithmetic often yield to unknown program behavior, which can not be
reasoned with static symbolic execution. The feasibility of execution paths
is determined using the constraint solver Z3 [De Moura and Bjgrner, 2008].
However, it does not work in non-deterministic environments or for concur-
rent programs.

One of the limitations of symbolic execution is the complexity of constraints
generation in case of programs containing loops or recursion. There are
many search techniques (heuristic search, partial order and symmetry reduc-
tion search) discussed in the literature to reduce the number of generated
paths. The interested reader can look up the Cadar et. al [Cadar et al., 2011]
which provides an extensive overview of the state-of-the-art symbolic exe-
cution techniques.

In the SOA domain, symbolic execution tools face the challenge of handling
dynamic behavior of the environment. [Bentakouk et al., 2011] suggested a
black-box oriented conformance testing using a SMT (Satisfiability Modulo
Theories) solver for constraint-based generation out of BPEL compositions.

38

3.2 Testing trends of SOA Applications

They use symbolic transition systems as an underlying formal model for
the behavioral representation of the system.

The survey [Zakaria et al., 2009] by Zakaria et al. gives a very good compar-
ison of different unit testing approaches applied to BPEL processes. A key
issue they pointed out is the lack of an empirical evaluation. Surprisingly,
only one out of 27 considered studies provides results on real-life BPEL
processes.

3.2.2 Model Checking Approach

Model checking is a popular technique used nowadays for the verification of
software [Clarke and Lerda, 2007]. It was initially developed to verify finite-
state concurrent systems [Clarke et al., 1983]. It has been used since then,
for verifying both hardware and software systems. A model-checker takes
two inputs: a state transition graph of some hardware (circuit) or a software
program, and the specification, represented as temporal logical formulas.
The goal of a model checker is to figure out if the specified formula holds
true for the given model. A witness is a path in the execution model where
the formula is satisfied. Similarly a counterexample is a path provided by the
model checker, in which the specified formula does not hold true. These
counter-examples are typically used as test cases for testing software.

There are many model-checkers used in practice today. A widely discussed
model-based technique exploited in the context of web service testing is
model checking [Bozkurt et al., 2013]. The general idea behind its applica-
tion is to translate BPEL specifications into a formal modeling language like
PROMELA [Garcia-fanjul et al., 2006] and test criteria into a formal property
language like LTL [Pnueli, 1977]. Both specifications and properties then
serve as an input to the SPIN model checker. The model checker provides
counterexamples for the test case generation. Zhen et al. [Zheng et al., 2007]
applied the same idea to web services and BPEL processes. There is a more
enhanced work by same authors, in which Zhou et al. also address the state
space explosion problem inherent with model checking [Zhou et al., 2007].
Moreover, they also developed a tool for the generation of JUnit test cases
for automated test execution.

39

3 Preliminaries and Related Work

There are many advantages [Clarke, 2008] of model checking: It is faster
than theorem proving, and even works in case of partial specifications.
And, if the formula is not verified by the model, the model checker gives
a counterexample to guide the user in locating fault in the model. So,
model-checkers can be very useful in debugging software. Also, verifying
concurrent properties is nearly impossible using manual approaches. But,
the advantages come at the price of the state space explosion. The state space
explosion problem refers to an exponential number of states generated by
model checkers, which has a negative impact on the applicability of model
checking to software. The problem can be addressed using techniques like
bounded model checking [Clarke et al., 2012]. Besides, there is second issue,
i.e., the formal specifications are hardly available.

3.2.3 Petri Net Approach

Petri nets are another modeling means for graphical representation of com-
munication between distributed, and concurrent systems. Some typical
examples include communication protocols, distributed-database systems
and concurrent programs [Murata, 1989]. Therefore it is useful in determin-
ing problems related to concurrent behavior such as reachability, liveness,
and soundness.

Model-based testing techniques using Petri Nets have also been explored
extensively. Petri Nets are used for modeling concurrent processes, and can
be categorized into Plain Petri Nets [Ouyang et al., 2007], Colored Petri Nets
[Yang et al., 2005] and High-level Petri Nets. Dong [Dong, 2009] developed
a tool for test case generation of BPEL processes using High-level Petri Nets.
The basic approach is to build a reachability graph from which test cases
can be extracted. The approach has a very high space complexity.

3.2.4 Graph-based Approach

Graphs can be employed for coverage-based testing of programs. It is
a useful structural testing technique, where the idea is to represent the
program formally in a graph-like structure, and the test data is generated

40

3.2 Testing trends of SOA Applications

so as to test possibly all branches, or paths present in the model of the
software under test. Considering the fact that some paths are infeasible, the
main goal of such an approach is to attain maximum coverage such as path,
statement, or decision [Adrion et al., 1982]. Both model checking and Petri
nets require formal specifications of the system under test to be available,
which is unfortunately not always possible. On the contrary graph-based
approach does not have any such restriction. It only requires some coverage
criteria and an underlying structure of the system under test.

Yuan et al. [Yuan Yuan and Sun, 2006] presented a graph search-based test
case generation of BPEL processes that makes use of matrix transformations
of control flow graphs, path coverage, and the classification of nodes in the
graph depending on incoming and outgoing edges. Yuan et al.’s approach
is close to ours in two ways. First, they suggest to transform a BPEL pro-
gram to a control flow graph. Second, they generate test data using the Lp
constraint solver [Berkelaar,], which is later on combined with test paths
to generate abstract test cases. However, our approach differs from Yuan’s
work. Although we use the path coverage criterion for test path generation,
we further add pre- and post condition contracts to test paths, in order to
handle the test oracle problem. In addition, we use the Minion constraint
solver [Gent et al., 2006] to generate test data instead of relying on Lp.

Another closely related work is from Yan et al. [Yan et al., 2006], which
relies on an extended Control Flow Graph (XCFG). The idea behind their
work is to extract all sequential paths from the XCFG, and to combine them
into concurrent test paths. From these concurrent test paths they collect
constraints using backward substitution. In our approach, we transform
each sequential path directly into a set of constraints, which is checked for
satisfiability directly using the Minion constraint solver. If constraints are
not satisfiable, we discard the corresponding path. Otherwise, the constraint
solver returns values for all variables used to execute the path, which we
directly register as a test case in the test suite under construction.

41

3 Preliminaries and Related Work

3.2.5 Contract-based Approach

Contract-based testing techniques are also relevant to our work. Design-by-
contract is a well-known software engineering technique for more reliable
testing [Meyer, 1992]. In this approach, the developer needs to provide
contracts, i.e., the pre-conditions and post-conditions, that must hold true
before and after any access to the developed software component. The
post-conditions can be very useful in the specification of test oracles, i.e.,
the expected test output. However, these contracts by the developer and the
provider entail high costs, and are often ignored.

In the context of SOAS, this idea has been applied mainly in web service test-
ing. For example, [Heckel and Lohmann, 2005] argue that contracts applied
at the model level are useful in the automated generation of test oracles,
but can be very costly to implement. Also, assertions are easier to apply
in OWL-WS technology but are difficult to implement in a WSDL-based
process model [Bozkurt et al., 2013]. Dai et al. combine this approach with
Petri Nets [Dai et al., 2007]. They specify contracts using an OWL-S model
and transform them into Petri Nets. The test cases are generated based on a
Petri Net behavioral analysis.

Although there have been many approaches in defining contracts for web-
services testing, there is still no Design by Contract standard for SOA
[Bozkurt et al., 2013]. We combine contract-based testing with symbolic ex-
ecution in our approach. The tester can specify contracts, i.e., pre- and post-
conditions on the model derived from the BPEL specification. This addi-
tional information can increase the quality of generated tests by providing
the required inputs and expected outputs for the external web services.

3.2.6 Search-based Approach

The Search-based approach is also a well known software engineering
technique for test data generation. A search-based approach employs a
metaheuristic search techniques for generating test inputs specific to a test
goal. “A metaheuristic is a higher-level procedure or heuristic designed
to find, generate, or select a heuristic (partial search algorithm) that may

42

3.2 Testing trends of SOA Applications

provide a sufficiently good solution to an optimization problem, especially
with incomplete or imperfect information or limited computation capacity”
(Wikipedia). The test goal can be configured using a fitness function. Some
typical meta-heuristic search techniques include genetic algorithms, simu-
lated annealing and tabu search [McMinn, 2004]. It is widely used in many
testing types, such as functional testing, regression testing, web testing and
interaction testing.

The paper from Canfore et. al. [Di Penta et al., 2007] explores search-based
testing of SOA systems in order to trigger SLA violations using genetic
algorithm. They discuss their approach on two case studies. The approach
might produce some false negatives due to multiple invocations of a ser-
vice. They use two fitness functions based on the black-box and the white-
box approach to cause SLA violations. They claim that the white-box ap-
proach performs better than the black-box. McMinn et. al. have presented a
novel search-based approach for generating string data type as test inputs
such as dates, banking codes, identity cards, social-security numbers etc.
for testing ten java projects [McMinn et al., 2012]. Harmann and Bozkurt
[Bozkurt and Harman, 2011] propose a tool about generating realistic test
data and compare the effectiveness with randomly generated test inputs.
They exploit existing web services for generating realistic input data.

[Blanco et al., 2009] applied the Scatter search to derive test cases for BPEL
compositions. Instead of a control flow graph, they use a state graph to
represent the business process logic and generate test cases considering the
branch coverage criterion. Basically, the search process works on randomly
generated solutions for each transition, the goal is to cover all transitions,
but the search can be stopped when the maximum number of test cases
have been achieved.

Although the problem of testing SOAs has been investigated thoroughly,
the lack of real-world case-studies is the biggest bottleneck in comparing
the effectiveness of different testing approaches [Bozkurt et al., 2013].

43

3 Preliminaries and Related Work

3.3 Debugging De nitions

Debugging is an integral part of any software development lifecycle. The
main focus of any debugging technique is to detect, localize and possibly cor-
rect faults revealed in software testing phase [DeMillo et al., 1996]. There are
many well-known debugging approaches such as slicing-based [Korel, 1990],
spectrum-based [Abreu et al., 2009], delta debugging [Cleve and Zeller, 2005],
and model-based software debugging [Mayer and Stumptner, 2007].

Model-based software debugging derives its roots from model-based diag-
nosis. Model-based Diagnosis is used in diagnosing probable reasons behind
the observed fault. The earliest work in the field of diagnosis can be found
three decades ago, when Davis et. al. proposed a diagnosis approach for
finding faults in digital circuits based on the structure and behavior of the
system [Davis, 1984]. In his words: A model is an ”understanding of how
a system should work”, which is used to detect the misbehavior of the
system [Davis, 1993].

In other words, a model is a representation of the correct behavior of the
physical system. A set of observations depicting any malfunctioning of the
actual system can be used on the model to explain the cause behind the
fault. The possible explanations obtained from the model are known as
“diagnoses”. The description of a faulty system can be expressed in various
ways such as first-order logic or temporal called first principles.

A general theory of diagnosis from first principles was first proposed by
[Reiter, 1987]. He presented a generalized algorithm for diagnosis based
on conflicting sets obtained from the contradiction in system descriptions
and observations, which was later on corrected by [Greiner et al., 1989].
This algorithm uses the term “conflicts” to denote inconsistent parts of
the model given a set of observations, i.e., inputs and expected outputs.
And, uses a theorem prover to find the conflicts. There are three main
components needed for computing diagnosis, i.e., system components,
system descriptions and observations.

There is a common assumption in model-based diagnosis that all infor-
mation regarding system description and faults is available. However, this
might not be true in reality [de Kleer and Williams, 1987]. Most of these

44

3.3 Debugging De nitions

approaches use hitting-set algorithm for computing explanations from con-
flicts. As the hitting-set algorithm has high space complexity, there have
been approaches to compute diagnoses using tree-structured algorithms
[Stumptner and Wotawa, 2001].

In the context of software debugging, program slicing has been widely dis-
cussed in academia in order to locate software bugs [Tip, 1995]. A Slice,
according to [Weiser, 1982] is an executable subset of a program P, which
contains all relevant statements with respect to some slicing criterion. A
slicing criterion is specified by a set of variables at some location in a program.
The purpose is to focus only on statements which actually influence the par-
ticular variable(s) at a specific program location. Hence, all other statements
become irrelevant in the debugging context, thereby reducing the program
size to be analyzed. There are two major types of slicing: static and dynamic.
The [Weiser, 1982] approach is a static one, as it considers all possible inputs
for the variable of interest v. [Korel and Laski, 1988] suggested an approach,
which only considers run-time input given to the program for computing
slices of a particular variable v. The added advantage of this approach is
further reduction in the slice size, along with precise tracking of dynamic
data structures such as arrays [Tip, 1995]. For a detailed survey of different
program slicing techniques, we refer the interested reader to the survey
done by [Tip, 1995].

The original scope of the model-based diagnosis was finding faults in
physical systems. [Wotawa, 2002] showed the relevance of the diagnosis
approach in finding faults in software programs. He argued that hitting-
sets are equivalent to “slices” used in dynamic slicing for the software
debugging. The program statements in a slice would represent components
in a dependency-based model. A failing test case would represent the set of
observations.

In this work, we use model-based debugging approach using dynamic slic-
ing. The debugging approach presented in [Wotawa et al., 2012] is adapted
to service-oriented architecture needs. And the dynamic slicing is considered
because of reduced runtime costs.

45

3 Preliminaries and Related Work
3.4 Diagnosis of SOA Applications

There have been many efforts in providing a comprehensive diagnostic
framework for diagnosis, monitoring and repair activities of SOA pro-
cesses. The most recent work on that was conducted under a european
project called WS-DIAMOND®. The main focus of the project had been
to build a platform for monitoring, diagnosis and self-healing of web ser-
vices [Modafferi et al., 2006]. They introduced a plug-in so as to overcome
shortcomings of the standard BPEL engine, by augmenting its repair fea-
tures. [Console et al., 2007] as a part of the DIAMOND project, describes
the decentralized architecture for model-based diagnosis. All participating
services are assumed to have a local Diagnoser, and to maintain loose-
coupling principle, a global Diagnoser is responsible for communication
between all participating components. As a part of the project, Ardagna et
al. [Ardagna et al., 2007] described a framework for adaptive web service
processes. In [Li et al., 2009], the authors present a decentralized diagnosis
approach for BPEL processes, [Trave-Massuyes et al., 2006] considered the
question of how to define diagnosability of systems and its use for diag-
nosing web services. Ardissono et al. [Ardissono et al., 2008] discussed the
guestion of enhancing web service compositions using diagnosis.

[Friedrich et al., 2010b] proposed an alternative approach to diagnose pro-
cesses with partial known behavior and claim to outperform dependency-
based methods. They use CLP(FD) constraint solver for obtaining minimal
diagnoses from the execution trace of a failed business process. To make up
for the partially known behavior of web services, they introduce a set of pos-
sible behavior themselves in order to make the dependency-based method
work. Our work makes use of a minion constraints solver [Gent et al., 2006],
where we add the missing information using table constraints. In a more
recent work, [Mayer et al., 2012] computed the complexity of their approach
to be second level of the polynomial hierarchy. They argue that dependency-
based models are not capable of capturing true semantics of partial models
because of the highly dynamic nature of distributed systems. They use
discrete-event system models as a foundation for their work, but unlike typ-
ical diagnosis-model” determines the normal or faulty nature of an event

Ihttp://wsdiamond.di.unito.it/

46

3.4 Diagnosis of SOA Applications

from execution. They believe that partial models can be better diagnosed or
repaired using answer set programming [van Harmelen et al., 2007] rather
than constraint satisfaction.

[Yan et al., 2009] also make use of discrete event systems to model the
BPEL processes. However, they employ synchronized automata to represent
process trajectories, and diagnose the faulty process using consistency-based
systems. They categorize exceptions as either ”time-out” (due to network
fault or the remote web service) or ”business logic”, i.e., faults within the
workflow activities. They focus in their work on ’business logic” faults. We
also make use of dynamic slicing [Korel, 1990] combined with diagnosis
[Wotawa, 2002] in our diagnostic model. But, in contrast to their work, we
use graph-based approach for modeling the service process.

In another work, [Friedrich et al., 2010a] et. al. generate repair plans for
failed executed processes. They propose a model-based planning strategy
for not only diagnosing faults, but also generating a repair plan for faulty
processes. The approach includes both design-time information of the pro-
cess structure and run-time monitoring. They argue that it is not possible
to guess all faults at the design-time. For that, they suggested a heuristic-
based reasoner, which determines the effect of ”non repairable” activities
on “’repairability” of process definitions. In addition, they also include the
run-time execution history for the generic repair ” plan generation.

Our work is more related to the work done by [Friedrich, 2010], that diag-
noses the behavior of faulty service-based processes using logic program-
ming. Their solution first finds diagnoses for the occurred fault, then all
diagnoses are given as an input to the repair generator. The repair generator
part is responsible for selecting the most suitable repair suggestion as a
compensation for the failed or partially executed process. They use disjunc-
tive logic programming (DLV)[Leone et al., 2006] for repair generation. We
model the activities with in a business process using constraints.

In contrast to these papers, we describe a solution that combines dynamic
slicing with model-based diagnosis for improving the overall diagnosis per-
formance. Hence, it can be considered similar to the approach Wotawa et al.
proposed for debugging Java programs [Wotawa, 2002]. We are particularly
interested in debugging functional faults in BPEL compositions. The focus

47

3 Preliminaries and Related Work

was to build light-weight debugger for diagnosing faults in BPEL partial
models.

3.5 Conclusions

In this chapter, we presented related work in the context of model-based
testing and debugging of SOA business processes. One of the main issues in
testing SOA compositions is the high cost at the integrator side. Model-based
testing can greatly reduce the cost by automating the test generation process.
Also the coverage achieved by model-based testing tools is much higher than
randomly or manually generated tests. Furthermore, formal verification
techniques such as model-checking, petri nets and symbolic execution, can
be combined with model-based testing for test-case generation and test-
coverage analysis. These approaches can greatly reduce the testing costs,
as they can be performed offline. The oracle problem can be addressed
using contract-based approaches in the testing of SOA processes. Hence,
model-based testing and verification of service composition combined with
contract-based approaches can better cope with the issue of ”Trust” in
testing. However, the contracts should be provided by the developer or
the provider, so as to reduce the testing cost at the integrator end. Further
details about the approach are presented in Chapter 4.

Regarding debugging of service compositions, related work concentrates
on the monitoring, diagnosis and repair of web services. We present a
light-weight debugging approach which can reduce the debugging cost.
The approach takes execution traces of BPEL compositions, and employs a
model-based debugging approach to look for probable causes of functional
faults. More details about our approach are presented in Chapter 6.

48

4 Model-based SOA Testing

4.1 Introduction

A typical SOA-based system consists of a multitude of services, business-
processes, message busses, registries and service monitors owned by mul-
tiple stakeholders [Leitner et al., 2013]. In the context of SOASs reliability,
observability and controllability are the two major issues faced by indus-
try as well as the research community [Hierons and Ural, 2009]. According
to [Bozkurt et al., 2013], limited observability and controllability raise the
issue of ”Trust”, and testing is one way of building the confidence that the
implementation conforms to specifications. However, due to the intricate
nature of SOA-based systems, the testing process is not as straightforward
as with traditional software systems [Canfora and Penta, 2006]. In a tradi-
tional testing process, the system under test is generally owned by one
stakeholder, and the implementation is also available, but in case of SOAs it
is not the case, rather the system under test is composed of many loosely
coupled web services owned by many stakeholders.

To illustrate the problem, let us consider the Bank Loan example depicted
in Figure 4.1, taken from [Bpe, 2012]. The corresponding process starts
upon receiving a loan request from a client as follows: Loan requests below
10.000 credits are sent to the corresponding BPEL service calculateRisk. This
service computes risk related to a particular client based on information
like the clientlD and the loan amount. The requests from low risk clients
are approved immediately. Those from high risk clients or with amounts
starting at 10.000 credits are sent to another service thoroughAssessment. This
service is responsible for thorough assessment before a decision is made.

The problem lies in the fact that implementation details about these two
essential services are unavailable, as a result the effect of calling web ser-

49

4 Model-based SOA Testing

loan
[decision]
7y

amount >= 10000 thorough
&— ~ |
Assessment
loanRequest amount < 10000 risk 1= low
. risk == low
calculateRisk > ; 1 (54
L } —0O

loan
[approved]

Figure 4.1: The Bank Loan BPEL Process

vices calculateRisk and thoroughAssessment is unknown. This is part of the
information we aim to attach to the model via pre- and postcondition con-
tracts. For our example, we assume calculateRisk to suggest a low risk
for clients with excellent bank records, or whenever the amount is below
1000 credits. This can be easily captured in pre- and postconditions (see
Section 4.4) attached to the corresponding process component.

The Chapter is organized as follows: In Section 4.2, we present overall archi-
tecture of our approach. Section 4.3 describes underlying definitions used
in our approach. This is followed by the test case generation in Section 4.4,
Section 4.5 explains the experimental setup and results obtained from first
experiments are discussed in Section 4.6. We compare structured and ran-
dom testing of sequential and concurrent BPEL processes in Sections 4.7,
and 4.8. Section 4.9 presents conclusions.

The content of this Chapter has been published in the following papers.

Fifty shades of grey in SOA testing [Wotawa et al., 2013].

SOA grey box testing- a constraint-based approach [Jehan et al., 2013b].
Functional SOA testing based on constraints [Jehan et al., 2013a].
BPEL Integration Testing [Jehan et al., 2015].

SOA testing via random paths in BPEL models [Jehan et al., 2014].

50

4.2 Architecture

4.2 Architecture

Model-based testing (MBT) is a popular approach for testing complex sys-
tems, as it helps structuring the test design process and building common
understanding among different stakeholders [Binder et al., 2015]. In prac-
tise ”Model-based testing encompasses the processes and techniques for
the automatic derivation of abstract test cases from abstract models, the
generation of concrete tests from abstract tests, and the manual or auto-
mated execution of the resulting concrete test cases [Utting et al., 2012]”.
According to this definition, MBT is a three step process: model generation,
test generation and test execution.

Our model-based testing architecture comprising BPELTester along with
links to external tools is illustrated in Figure 4.2. It is composed of three
modules: Analysis module, Test Suite generator and Test executor. The Analysis
module is responsible for building the model. It takes the SOA definitions
comprising BPEL and WSDL files and converts them into a control flow
graph representation that might be annotated using pre- and post conditions
of service invocations. Each node in a control flow graph represents an
activity in the BPEL process.

The Test Suite Generator module is responsible for test generation. It derives
abstract test cases (paths) that represent particular traversals through the
control flow graph. Each such traversal represents a particular execution
of the SOA process model. In order to compute corresponding test cases,
paths in the control flow graph are translated into constraint representation.
Our constraint representation makes use of static single assignment form as
explained in [Nica, 2010]. Afterwords, this constraint representation of paths
is used as input to the MINION constraint solver [Gent et al., 2006], which
computes all the necessary inputs and expected outputs that characterize
such an execution.

The test execution is done by the Test2Unit module. The module derives
the appropriate input for the BPELUNnit [Lubke, 2006] tool that is used for
actually executing generated tests. This tool plays an important role in the
results analysis as this module is also responsible for generating the test
suite for the MuBPEL tool that is a mutation testing tool for BPEL language.
We rely on this tool to measure the quality of the generated test suite by

ol

4 Model-based SOA Testing

BPELTester

Analysis
BPEL / Module
WSDL \

A 4

Control
Flow
Graph

v E— MINION

: estSute | _ — — 3| Constraint
MuBPEL < - > BPELUnit | & - > Generator < > Solver

A

Test Suite
BPELUnit Test2Unit

A

Test Suite

Figure 4.2: The BPELTesterarchitecture.

checking if it can distinguish between a mutant and the original program.
The quality is measured through the mutation score of the generated test
suite. For further details about the actual implementation and the working
of the mutation tool, we refer the interested reader to the tool website
[BPEL Mutation tool, 2011].

52

4.3 De nitions
4.3 De nitions

As mentioned in the previous section, the first part in our test case genera-
tion method is the extraction of a control flow graph from the BPEL source
code. The control flow graph serve as our reasoning model.

Definition 1 (BPEL Flow Graph). A BPEL Flow Graph G is a tuple (V, E, vs, F,
Ga,Gc), where vertices v 2 V represent BPEL process activities, E is the set of
edges e = (v; 2 V,v; 2 V) which correspond to the connections between BPEL
activities, vg 2 V is the start vertex, F V is the set of graph G’s leaf vertices,
and G as well as G¢ are functions that map vertices to activity assignments and
conditions respectively.

A BPEL Flow Graph captures all the possible executions between the defined
vertices in a given process. In our case, a vertex v stores all the information
relevant to a corresponding BPEL activity. And a use-case consists of a
particular sequence of vertices from the start vertex vs to the end vertex ve.
A path p is formally defined as follows.

Definition 2 (Path). Given a BPEL Flow Graph G, a sequence of vertices p =
ViVa...Vp is a path in G iff (1) forall i 2 f1,...,ng we have v; 2 V, (2) the
sequence starts with the start vertex vg, i.e., vi = Vs, (3) vp is a leaf vertex, i.e.,
vp 2 F,and (4) foralli 2 f1,...,n 19 we have (vj,Vj+1) 2 E .

A user has to select the start and the end vertex in order to extract corre-
sponding paths between the selected vertices. Once we have all the possible
paths between the selected vertices, we need to make sure, if such a path
is feasible or not [King, 1976]. For that purpose, we need to define a path
condition c(p) that comprises p’s vertices’ assignments and conditions.

Definition 3 (Path Condition). Given a path p = v;...v, of some BPEL
Flow Graph G, path p’s path condition c(p) is a sequence of assignments and
conditionals of p’s vertices defined as c(p) = Ga(vi) L Gc(v1)...Ga(vn) [

Ge(vn).

Variables in a path condition are replaced by indexed variables in order to
ensure static single assignment form (SSA) [Brandis and Mossenbdck, 1994].

53

4 Model-based SOA Testing

A static single assignment form ensures that every variable is defined only
once in a program. This means whenever a variable is defined, i.e., occurs
at the right side of an assignment, the corresponding index is incremented.
This makes the translation of the path and its path condition c(p) to a
constraint representation much easier. Depending on the satisfiability of a
path condition, we can define a feasible path formally as follows.

Definition 4 (Feasible Path). A path p in a BPEL Flow Graph G is feasible if its
path condition c(p) is satisfiable.

The above stated definitions were used in the test suite generation of se-
guential BPEL programs. However, we needed to adapt these definitions in
order to take care of concurrency issues between various parallel branches
for concurrent BPEL processes. Such flow constructs allow for possibly
concurrent branches that are activated by individual and optional guards. If
such guards are not specified, we assume them to be True for simplifying
our description.

An extended BPEL flow graph allow us to encompass both the sequence
and flow structures, whereby the partial knowledge about the vertices V
can be specified using gc(v 2 V) and ga(v 2 V).

Definition 5 (An Extended BPEL Flow Graph). An Extended BPEL Flow
Graph G is a tuple (V,B,E,vg,F,gc(v 2 V),ga(v 2 V),gp(v2V),gg(v 2
B),gs(v 2 V nB)), where V is a finite set of vertices representing BPEL process
activities, BV is the finite set of fork activity vertices (where a run might
branch), E 'V V is afinite set of directed edges representing the connections
between BPEL activities (edge e = (vq,Vv2) 2 E connects vy to vy), vg 2 V is
the start vertex, F V is the set of leaf vertices (with no outgoing edges), and
the functions gc(v) and ga(v) map vertices v 2 V to activity conditions and
assignments respectively. If v is in B, gp(v 2 V) returns the complementing join
activity vertice (and vice versa), and ? otherwise. Function gg(v 2 B) returns
a list of tuples (ej, TG,) for all of a fork vertice v’s outgoing edges ¢; and their
transition guards TG, (if there is no guard specified, we assume True so that this
branch is always enabled). For any vertice v in V n B, the function gg(v 2 V n B)
returns the closest predecessor in B if there is such a node, and 2 otherwise.

If there are no concurrent computations, an actual execution follows a path
in the flow graph as of Def. 2 in order to derive corresponding test cases

o4

4.3 De nitions

by searching for a satisfying variable assignment to the conditions and
assignments encountered along a path.

Definition 6 (Finite Path). A finite path p of length n in an Extended BPEL
flow graph G as of Def. 5 is a finite sequence p = p1pP2...Pn such that (1) for any
0<i npi2V,(2) pr=vy (3 forany 0 <i < n, the edge e = (Pi, Pi+1) iS
in E, and (4) pn 2 F. jpj denotes the length of a path p. We use f(p) to refer to
the last vertex in p.

Definition 7 (Finite Path Segment). A finite path segment p in an Extended
BPEL flow graph G is defined like a path, but does not have to start in G’s initial
state vg, and neither is f(p) required to be in F of G.

Unlike sequence activity, the flow construct allows parallel branches to be
active simultaneously. Therefore, we introduce the following definition of a
run.

Definition 8 (Finite Run). A finite run r of length n in an Extended BPEL
Flow Graph G as of Def. 5 is a finite sequence r = rqr»...ry such that (1) for any
0<i nri2V,(2)ry=vg (3) rn 2 F, and (4) for any 0 < i < n, either the
edge e = (rj, ri+1) isin E, or if gg(pj) & 7 then there has to be somei <j n
such that (a) there is no i <k < j with r, = gp(gg(r;)) and (b) edge e = (r;, r;j)
is in E. jrj denotes the length of run r. With f(r) we refer to the last vertex in .

A finite run in a flow activity can be considered analogous to the notion
of a path in definition 2 for a sequence activity. Since the order of parallel
branches is not defined, a finite run only ensures the partial order in a
single branch. Like a path (see definition 2) in a sequence activity, a run r
might also be infeasible. Therefore, we also need to check if a run’s collected
assignments and conditions are possible.

Definition 9 (Feasible Run). A feasible run r is a run as of Def. 8 s.t. the
conditions and assignments encountered along the run are feasible. It is complete,
iff for all satisfied transition guards TG, at all v 2 B visited by r, the corresponding
branch started by edge e; is presentin r.

A corresponding satisfying assignment for a complete run r defines a valid
test case. In a sequence activity, test cases can be generated from any feasible

95

4 Model-based SOA Testing

path 4 in a flow graph. Likewise, in a flow activity, we derive test cases from
feasible paths p in G, but in order to compute p’s constraints, we model all
the branches within a flow activity, where only the ones belonging to a path
p need to be active.

Definition 10 (Run Constraints). For a path p = p1p2...pn in some Extended
BPEL flow graph G as of Def. 5, we create the run-constraints C(p) as follows.
For each | 2 gg(pj) of a pj 2 B, we define a branching variable b;. Let scope be an
initially empty list of these branching variables, where we can append a variable
b, via append(scope, b;), and ask for the last variable with b; = last(scope) (which
will be ? if the list is empty) as well as remove the last variable via drop(scope).
Furthermore, let stop be an initially empty list of vertices in G which we can access
with the same functions as scope. Then let C(p) be the union of the constraints as
derived by traversing p from p1 to f(p) (possibly recursively) as of Def. 11, where
in recursive calls the original path can be referred to as p°, and where variables are
replaced by indexed variables in order to implement a static single assignment form
(see [Brandis and Mossenbock, 1994]).

In order to compute run constraints for a flow activity, we need to take care
of three things: First, the local scope of variables defined in each branch
should be maintained. Second, if the current branch is not a part of the
run, we need to propagate values of all variables defined in that branch,
so that their SSA representation before the fork activity should match the
representation after the join activity. This is due to the fact, that we model
all branches in a flow activity, irrespective of the fact if that branch is active
or not. Third, in case the current branch is active in a particular run, then we
need to update corresponding conditions and assignments in that branch
stored in P.

Definition 11 (Run Scope). For a given path segment p in G, its branching
variables and lists scope and stop, we do the following: Let P be an initially empty
list of tuples (v, by, p°) such that v is a vertex, by, is a branching variable, and p°
is a path segment in G. Then, traversing p from p; to f(p) do as follows.

1. if p; = last(stop), then for each (pj, bm, p?) in P do: First, remove (pj, bm, p°)
from P, and then add constraints for p? as of this Definition for a local scope
having by, as it sole element, computing the local branching variables for p’,
and assuming a local empty stop list. When there is no more (p;, bm, p°) in
P, call drop(scope) and drop(stop).

56

4.4 Test Case Generation using constraints

2. if pj Z B then (a) add constraints gc(pi) [9a(pi) if last(scope) = ?
and proceed with Step 1 for pj+1, or (b) add constraints (b; ¥ gc(pi)) [
(bi ¥ ga(pi)) [(zby ¥ gh(pi)) for by = last(scope) & 2 and g\ (p;)
replacing every assignment of a variable in ga(pj) with an assignment of
the variable’s old value (so that we are always synchronized in respect of the
SSA indices when arriving at the join activity, regardless of which branch
was active).

3. if pj 2 B then do as follows. For | = ((pi, Pi+1). TG|) 2 gs(pi), add
the constraints by ¥ TG, and TG, ¥ b, and append b, to scope, append
gp(pi) to stop, but add the constraint by only if p = p°. Then find for each
m = ((pi,Vv), TGm) 2 gg(p;i) s.t. m & | a path segment p’ leading from v
to gp(p;), and add the tuple (gp(pi), bm, p®) s.t. p¥ equals p? but with the
last vertex (gp(pi)) removed to P, as well as add constraints by, ¥ TGy,
and TGy, ¥ by

Once the run constraints for a path p are collected, we can check the feasi-
bility of all the run constraints using the constraint solver [Gent et al., 2006],
and store all the feasible branches as test cases. MINION is an out of the
box, open source constraint solver, whose syntax requires a little more effort
on modeling the constraints, e.g., it does not support different operators to
be used within one constraint. Because of that, more than one constraint
may be needed to model certain operators like addition and subtraction.

The test suite generation of a flow activity is different from that of a
sequence activity in a way that we need to synchronize the assignments and
conditionals of all the concurrent branches ina runr.

Definition 12 (Test Case and Test Suite). A test case for a BPEL Flow Graph G
Is a variable assignment that makes a complete run r (or a path p) in G feasible. A
test suiteTS is a set of test cases.

4.4 Test Case Generation using constraints

The test case generation for BPEL processes has been investigated thor-
oughly. Most of the work on test case generation of BPEL compositions
use formal verification tools such as petri-net or model checkers to derive

o7

4 Model-based SOA Testing

<sequence standard attributes>
standard elements
activity+

</sequence>

A owpN e

Figure 4.3: A Sequence activity

test cases [Bozkurt et al., 2013]. Exploiting constraints for testing has already
been considered in the literature. Gotlieb and colleagues [Gotlieb et al., 1998]
presented an approach for extracting test cases from programs using a con-
straint representation of source code. Our work is similar, as we also rely
on constraints for automated test data generation. However, the application
domains are different, and the extraction of constraints has to take care of
partial specifications.

A BPEL process can be abstract or executable: An abstract process is par-
tially specified and is not intended to be executed; an executable process,
on the contrary, has to be fully specified. An executable process is com-
posed of basic and structured activities. Among the structured activities,
two very common structures are the sequence activity and flow activity.
In a Sequence activity, all encompassing activities have to be performed
sequentially, whereas a Flow activity is defined to execute more than one
activity in parallel. Because of that, our test-case generation process for
sequential BPEL processes is different from that of concurrent BPEL pro-
cesses. Another important activity is Invoke activity, which is meant for
communication of the the business process with its partner processes or
web services. The communication could be either one-way (asynchronous)
or a two-way (synchronous) process. In Sections 4.4.1, 4.4.2, we outline our
constraint-based solution to derive functional tests from the control flow
graph representation of an executable synchronous BPEL process.

4.4.1 Sequence Structure

A Sequence activity is a structured activity which contains other basic
and structured activities as shown in Figure 4.3. The activities need to be

58

4.4 Test Case Generation using constraints

1: procedure AllPaths(G, MaxLen, vs)

2 initialize test suite S

3 compute the set P AllPathsSUB(G, MaxLen,p,P,vs)
4 for each path p 2 P do

5: Compute the path constraints C(p)

6 check the satisfiability of path constraints C(p)
7 if C(p) is satisfiable then

8 add a satisfying assignment (a test case) to S
9 end if

10: end for

11 return test suite S.

12: end procedure

Figure 4.4: TCG algorithm that considers all paths.

executed in a strictly defined manner. A sequence activity can contain nested
sequence activities, where + symbol denotes one or more activities.

Figure 4.4 comprises our test case generation algorithm used only for
sequential BPEL processes. The algorithm takes the BPEL Flow Graph G
and the maximum path length MaxLen as inputs and computes feasible
test cases. Note that MaxLen has to be equal or larger than the length of
the smallest path in G from the start to an end vertex. The algorithm is
search-based and traverses the flow graph using a depth-first search strategy
for extracting paths. Afterwards, path conditions are computed and checked
for consistency. If the path condition is feasible, the variable assignments
that result from such a check are saved as a test case. Finally, the algorithm
returns a test suite.

In the following, we discuss the different steps of the algorithm and those
activities that have to be carried out in more detail. The approach is sim-
ilar to symbolic execution, already discussed in Section 3.2.1. Similar to
symbolic execution, conditions are computed which belong to a particular
execution path. In our case, we convert each path condition into a constraint
satisfaction problem (CSP). The conversion takes place in two steps: first,
the BPEL flow graph constructs are converted to an intermediate representa-
tion, called static single assignment (SSA). The detailed explanation of SSA
representation of Java programs into MINION can be found in [Nica, 2010].

59

4 Model-based SOA Testing

1. procedure AllPathsSUB(G, MaxLen, p, P, Vcurr)
2: if jpj MaxLen then
3 return

4 end if

5: append v¢yrr to path p
6: if veurr matches veg then
7 add path p to set P
8

9

return
; end if
10: for each OutEdge of vy iIn G do
11 Veurr VoutEdge
12: call AllPathsSUB(G, MaxLen, p, P, Vcurr)

13: end for
14: end procedure

Figure 4.5: AllPathsSUB algorithm for computing all paths for a Flow Graph G up to a
given pre-defined length MaxLen.

Since BPEL is a mixture of a workflow and a programing language. There-
fore, the programming language constructs can be handled much like the
[Nica, 2010] approach with few subtle differences. For example, we do not
do the loop unrolling, rather the loop execution is defined by the path length
provided by the tester. Our conversion algorithm works as follows.

SSA conversion: The static single assignment (SSA) form is an interme-
diate representation of a program such that no two left-side variables
share the same name. This intermediate representation enables an
easier conversion into a CSP. The basic rules used for the conversion
of a BPEL path into its SSA representation are listed below:

— We convert an Assign activity by adding an index to a To variable
each time the variable is defined, i.e., declared as the To variable.
If a variable is redefined, the index is incremented so as to satisfy
the SSA property. The index of a From variable, i.e., referenced
variable is equal to the last definition of the variable.

— We convert Receive and Reply activities into assignments.

— Invoke is easily converted into assignments, where the right hand
side variable is the “input variable” and the left side variable is

60

4.4 Test Case Generation using constraints

the “output variable”.

— We convert the structured activity If in two steps: 1) the condition
is saved in an auxiliary variable. 2) each assign or invoke activity
is converted according to the above rule. 3) The condition variable
is set to true in case of an “if ” or “else if” branch, but to false in
case of an “else” branch.

— The while structure is converted similarly to If, with the exception
that the condition is always set to true. The loop is repeated up
till the maximum length specified by the tester.

— The Flow activity construct is modeled different from that of
other constraints. First, the transition guards are converted into
If structure. Since there can be more than one branch in a flow
construct. The algorithm makes sure that each branch is active
once, e.g., the condition variable is set to true, in order to model
the concurrent behavior into constraints. However, note that,
our implementation assumes that parallel branches do not have
shared variables. Under this assumption, the concurrent behavior
can be modeled much like a sequence activity with the exception
that all branches have to be modeled for each run.

Constraint conversion: The second step involves the conversion of SSA
statements into their corresponding constraints. The representation of
the conditions and assignments resulting from the SSA conversion as
constraints is simple and requires basically nothing else than a direct
mapping from variables to constraint variables and from the conditions
to assignments to their respective representation. In order to illustrate
the constraint conversion we show the constraint representation for
the path from the Bank Loan example using MINION constraints. The
constraint ineq(x, y, k) ensures that x y+ Kk, and eq states that
both variables used as parameters have to have the same value.

The conversion steps outlined above can be best understood with the help
of the loan example introduced in the start. The flow graph of the loan
example is given in Figure 4.12.

For this example there are three possible paths: (1) loanRequest, amount >=
10000, thoroughAssessment, loan[decision], (2)loanRequest, amount < 10000,

61

4 Model-based SOA Testing

calculateRisk, risk == low, loan[approve], and (3) loanRequest, amount <
10000, calculateRisk, risk !'= low, thoroughAssessment, loan[decision].

Let us consider path (2), making the following assumptions regarding the
BPEL components’ behavior: Component loanRequest has an empty pre-
condition and amount > 0 as post-condition. Component calculateRisk’s
behavior is given only partially: up to 1000 credits, the risk is assumed to be
low. This partial specification can be formalized using the post-condition
amount < 1000 ¥ risk == low. For calculateRisk the pre-condition is
assumed to be empty. Taking into consideration the pre- and post-condition
as well as the conditions related to other BPEL components, we obtain the
following conditions for path (2):

;amount. 0 >0

;amount_1 = amount_0

:amount_1 < 10000

:amount_1 < 1000 ¥ risk_0 == low
:risk_0 == low

: loan_0 == approved

OO WN B

We use MINION to check for a variable evaluation that satisfies all con-
straints. For path (2), the assignment amount_0=1, amount_1=1, risk_O=low,
loan_O=approved is such an evaluation. Obviously, amount_0 = 1 with the
expected output loan_0 = approved is a valid test case and exactly ensures
executing its corresponding path.

The flow graph for our running example is quite similar to the graphical
representation of the original process in Figure 4.1. The vertices for this
process are defined by the following activities: receivelnput (vy), AssignLoan
(Vap), IfLoan (vy) and (Vgise 1), AssigninRisk (var), InvokeRiskService (Virs),
AssignOutRisk (vapr), IfLowRisk (viLr) and (Vg 1L.r), AssignApproved (Vaa),
AssigninAssess (Vaia), InvokeAssessRisk (Viar), AssignOutAssess (Vaoa), and
replyOutput (Vo).

We store all data related to a particular activity with the corresponding
vertex, i.e., input variables, output variables, assignments, as well as condi-
tions for structured activities if, else if, and while. Essential are also the pre-

62

4.4 Test Case Generation using constraints

and post conditions related to an activity. The conditions for vertex vy, (the
receivelnput activity) are defined, for example, as follows:

Pre-condition: $input_loan > 0
Post-condition: $loan = $input_loan

While due to the pre-condition only loan requests with positive amounts are
allowed, the post condition ensures that the local variable “loan” is assigned
the actual loan amount. For these pre- and post conditions we use the same
language as is used for BPEL expressions, i.e., XPATH [Xpa, 2011], where
we currently support the usual Boolean operations. In addition, auxiliary
information about Invoke activities is added in the form of pre- and post
conditions. That is, for the calculateRisk service, the expected behavior is
defined via the (partial) postcondition (loan 1000) _ (risk == 0).

In our running example a low-risk low-amount request is treated via the
following path (Path 1): p = vyVaLVILVAIRVIRSVAORVILRVAAVrO-

We will use such paths to derive our test cases. That is, as a first step, a
search-based algorithm traverses the graph in a depth-first search manner
in order to extract the paths from vs to the leaf vertices. For our running
example there are three such possible paths, i.e, the first for low-amount
low-risk requests leading to an immediate response approving the request,
the second and third paths requiring a more thorough assessment.

For the three paths in our exemplary business process, the corresponding
path conditions are given in Figures 4.6, 4.7, and 4.8 respectively.

A corresponding variable assignment satisfying ¢(p) for Path 3, and thus a
test case, is the following one:

input = 10001

loan = 10001
AssessRiskPLRequest = 10001
output = AssessRiskPLResponse

63

4 Model-based SOA Testing

N

64

P O OWOo0o~NO O WwWwN P O o0 ~NOoO O WN -

OOl WN B

Vp s inputy >0

VL : loan; = inputy

v : loan; < 10000

valr - CalculateRiskPLRequest; = clientlDg
Virs : loan; < 1000

VaoR . risk; = CalculateRiskPLResponsey
VILR - I’iSkz =0

Vana . approvalResult; =1

Vro . output; = approvalResult;

Figure 4.6: Path 1: c(p) for low-risk and low amount loan requests.

Vp s inputy >0

vaL . loany = inputy

v : loan; < 10000

Valr . CalculateRiskPLRequest; = clientlDg
Virs . loan; < 1000

VaoRr . risk; = CalculateRiskPLResponseg
VElseiLR (! (riskz = 0)

Vala - AssessRiskPLRequest; = loan;
Viar - loan; 1000

Vaoa : AssessRiskPLResponse; = 1

Vo . output; = AssessRiskPLResponse;

Figure 4.7: Path 2: ¢c(p) for high-risk and low amount loan requests.

Vp s inputy >0

VL : loan; = inputy

VEse 1L :!(loany < 10000)

Vala - AssessRiskPLRequest; = loan;
Vaoa - AssessRiskPLResponse; =1

Vro . output; = AssessRiskPLResponse;

Figure 4.8: Path 3: c(p) for high amount loan requests.

O© 00O ~NO O~ WN -

P O OWOo0o~NO O WDN P

e

OOl WN B

4.4 Test Case Generation using constraints

ineq(0, inputy, 1)

eq(loany, inputp)

ineq(loany, 10000, 1)
eq(CalculateRiskPLRequesty, client] Dg)
ineq(loany, 1000, 1)

eq(risky, CalculateRiskPLResponseg)
eq(risky, 0)

eq(approvalResulty, 1)

eq(outputy, approvalResult;)

Figure 4.9: MINION constraints for Path 1.

ineq(0, inputy, 1)

eq(loany, inputp)

ineq(loany, 10000, 1)
eq(CalculateRiskPLRequesty, client] Dg)
ineg(loany, 1000, 1)

eq(risky, CalculateRiskPLResponseg)
diseq(risks, 0)
eq(AssessRiskPLRequesty, loany)
ineq(1000, loan,, 1)
eq(AssessRiskPLResponsey, 1)
eq(outputy, AssessRiskPLResponse;)

Figure 4.10: MINION constraints for Path 2.

ineq(0, inputy, 1)

eq(loany, inputp)

ineq(10000, loany, 0)
eq(AssessRiskPLRequesty, loan,)
eq(AssessRiskPLResponsey, 1)
eq(outputy, AssessRiskPLResponse;)

Figure 4.11: MINION constraints for Path 3.

65

4 Model-based SOA Testing

& man |
§ main

‘ & receivelnput |

‘ = AssignLoan ‘

|'7IfLoan ‘
| — J
IfLoan Else
!l % CalculateRiskSequence } { & AssessHighRiskSequence }
\ - J \ -)
‘ =3 AssigninRisk ’ ‘ = AssigninAssess ’
‘ # InvokeRiskService [‘ & InvokeAssessRisk ‘
‘ = AssignOutRisk ’ ’ =) AssignOutAssess ’

‘ @ IfLowRisk } =

IfLowRisk Else

‘v = AssignApproved ’ ‘ § AssessRiskSequence }
\) \ -)

‘ = AssigninAssess ’

‘ e InvokeAssessRisk ‘

| = AssignOutAssess J

=

=]

| &/ replyOutput ’

=
©

Figure 4.12: Technical view of the Bank Loan Business Process.

66

4.4 Test Case Generation using constraints
Analysis

Lemma 1 (ComputingAllpaths). The set P in Algorithm 4.4 contains all paths
pstjpj MaxLen.

Proof. In Line 3 of Algorithm 4.4 we call the AllPathsSUB algorithm given
in Figure 4.5. This algorithm only returns sets of size <= MaxLen. Hence,
any path in P can never exceed MaxLen and the lemma must hold.

]

Lemma 2 (CheckSatisfiability). Each path p included in a test suite S is a feasible
path in a flow graph G.

Proof. For lemma 2 we can argue that only paths where the feasibility check
has been done can pass (lines 4-10). Hence, the lemma has to hold. H

Lemma 3 (Valid Solution). A test in a test suite S created via algorithm AllPaths
for some BPEL flow graph G is a satisfiable variable assignment of a feasible path
in G.

Proof. Line 6 and 7 in Algorithm 4.4 make sure that only satisfiable assign-

ments are test cases.

O
Theorem 4 (AllPathsSoundness). The AllPaths algorithm is sound such that
only feasible paths of length less than MaxLen are added to the test suite S.
Proof. The proof follows from lemma 1 to 3 directly. We compute all paths.

They are feasible and lead to test cases as of definition 5. O

Theorem 5 (AllPathsCompleteness). The AllPaths algorithm 4.4 is complete.
That is, no feasible path is excluded from the result.

67

4 Model-based SOA Testing

Proof. Similarly using Lemma 1, it can be seen that step 3 of the algorithm
performs exhaustive depth-first search to find all paths. Since some of paths
might be infeasible, based on Lemma 2, step 5 ensures that all feasible
paths are included in the result. Hence, there is no missing path. Figure 4.5
illustrates the AllPathsSUB algorithm, where we take the last vertex of the
current path p and recursively call the algorithm on a copy of this path by
adding a successor vertex at the end. O

Regarding the termination of AllPaths algorithm shown in Figure 4.4, we can
see that step 3 in the algorithm makes sure that all paths up till MaxLen are
generated, where the MaxLen is larger than the shortest path in a flow graph
G. Due to depth-first search and the fact that search is bounded by MaxLen,
it can be argued that the search terminates in finite time. For loop in step 4
checks the feasibility of all paths included in a set P, which is bounded by
MaxLen parameter, hence is finite and terminates. Step 5 concerns whether
path constraints are satisfiable or not. This involves converting a path p
into corresponding SSA representation pssa, and translating pssa into
constraint representation pco. Both of these steps terminate because of
finite path length. The last part is about calling constraint solver to find
a solution for pco of a path p. If there is no solution possible, loop will
check for the feasibility of the next path. The termination of the for loop
Is dependent on the termination of constraint solver call. In the end, all
feasible paths are added in a test suite S.

The complexity of the algorithm can be computed by summing up the
complexities of steps 3 to 6. Let us assume that there are jVj number of
vertices and JEj number of edges in a flow graph G, then the size of flow
graph becomes jGj = jVj + JE]j. Step 3 computes all paths up till certain
MaxLen which in worst-case can lead to exponential paths when MaxLen is
larger than the longest path in a flow graph G. Step 5 in the algorithm can
be performed in polynomial time since it involves simple conversion from
conditions and assignments (path conditions) to SSA form, and later from
SSA form to Constraints representation. Step 6 involves call to constraint
solver for finding a solution. Therefore the overall complexity would be
O(jvjMaxtemy + O(jC(p)j) + ConstraintSolver(M), where O(jVjMaxLen) rep-
resents an upper bound of the set P, O(jC(p)j) denotes the number of
path conditions for all paths included in the set P, and ConstraintSolver(M)

68

4.4 Test Case Generation using constraints

1 <flow standard attributes>
2 standard elements

3 <links>?

4 <link name="NCName”/>+
5 </links>

6 activity+

7 </flow>

Figure 4.13: Flow activity

denotes the time required to solve the MINION model M comprising of vari-
ables, their domains and corresponding constraints(VAR, DOM, CON).

The test case generation algorithm as illustrated in Figure 4.4 can model
only sequential processes. Therefore in order to cater for Flow structure, we
adapted the modeling process as explained in the next Section 4.4.2.

4.4.2 Flow Structure

According to the BPEL specification document, a Flow activity is meant to
execute more than one activity in parallel as shown in Figure 4.13. In order
to define control dependencies among child activities, Links construct can
be used. Each such Link can be activated when the corresponding transition
condition is active. If no condition is specified, that link is assumed to be
true.

The semantics of a BPEL Flow activity are depicted in Figure 4.14. The
flow activity defines two branches that are triggered if their respective
guards (x < 10 and y < 10) are activated. Both variables x and y are
assigned new values in each branch, which are reused after join activity.
An execution then follows a run in the graph, where, in contrast to a
path as we have been using in our earlier work for sequential programs
[Jehan et al., 2014, Wotawa et al., 2013], more than one branch may be active
simultaneously.

Deriving a flow graph from the BPEL process, and annotating it with our
partial knowledge about called web services (and other available knowledge)

69

4 Model-based SOA Testing

X = input-x
y = input-y
x<10 © y<10
x=1 y=1
™
r=x+y

Figure 4.14: Flow Example

in the form of pre- and postconditions (to be added as conditions and
assignments), our test case generation algorithms still select paths, but to
a corresponding run’s model we add also all the parallel branches that
might be traversed as well (depending on the actual assignment and the
corresponding evaluation of the guards). Deriving a satisfying variable
assignment for a constraint representation of this model, we can derive
a corresponding test case, and in turn, following different strategies for
choosing paths, test suites.

Assuming there is no interaction between the parallel branches, we can
derive the variant given in Figure 4.15, supporting also parallel computa-
tions. The StructRuns algorithm is thus also search-based, and the only
difference is that we derive run-constraints as of Def. 10 instead of collecting
only the assignments and conditions along the path itself (path-constraints)
as in AllPaths algorithm shown in Figure 4.4. If such a run-constraints
model is satisfiable, the relevant corresponding variable assignments are
saved as a test case.

70

4.4 Test Case Generation using constraints

Lemma 6 (ComputingAllruns). The set P in the algorithm contains all runs p
s.t.jpj MaxLen.

Proof. Line 3 in StructRuns as illustrated in Figure 4.15 computes the set P
in an extended BPEL flow graph G which as of def. 5 and 8 contains all runs
p st. jpj MaxLen. Because of the fact that jpj can not exceed MaxLen,
such a run can not exist. It is complete, iff for all satisfied transition guards
TGe, at all v 2 B visited by r, the corresponding branch started by edge e; is
present in r. Also according to def. 11 all parallel branches are modeled and
synchronized.

]

Lemma 7 (CheckRunSatisfiability). Each path p included in a test suite Sis a
feasible run in an extended flow graph G.

Proof. Only paths where the feasibility check as of def. 9 has been done can
included in the test suite S(lines 4-9). Hence, the lemma has to hold.

]

Theorem 8 (StructRunsSoundness). The StructRuns algorithm is sound such
that only feasible runs of length less than MaxLen are added to the test suite S.

Proof. The proof follows from lemma 6 and 7 directly. We compute all runs.
They are feasible and lead to test cases as per definition 12.

O]

Theorem 9 (StructRunsCompleteness). The StructRuns algorithm is complete.
That is, no feasible run is excluded from the result.

Proof. Similarly using Lemma 6, it can be seen that step 3 of the algorithm
performs exhaustive depth-first search to find all runs. Since some of runs
might be infeasible, based on Lemma 7, steps (4-9) ensure that all feasible
runs are included in the result. O

71

4 Model-based SOA Testing

Regarding the termination of StructRuns algorithm in Figure 4.15, we can
see that step 3 in the algorithm generates all paths up till MaxLen, where the
MaxLen is larger than the shortest path in an extended flow graph G. Hence,
it can be argued that the search terminates in finite time. For loop in step 4
checks the feasibility of all runs included in the set P, which is bounded by
MaxLen parameter, hence is finite and terminates. Step 5 concerns whether
run-constraints are satisfiable or not. Both of these steps terminate because
of finite run length. The last part is about calling constraint solver to find a
solution for run-constraints as of def. 10 and all feasible runs are added in
the test suite S.

The complexity of the algorithm can be computed by summing up the com-
plexities of steps 3 to 5. Let us assume that there are jVj number of vertices
and jEj number of edges in a flow graph G, then the size of flow graph be-
comes jGj = jVj + jEj. Step 3 computes all runs up to certain MaxLen which
in worst-case can lead to exponential paths when MaxLen is larger than the
longest path in an extended flow graph G. Step 5 involves call to constraint
solver for finding a solution for the run-constraints. Therefore the over-
all complexity would be O(jVjM&Len) + O(jC(p)j) + ConstraintSolver(M),
where O(jVjMaxLen) represents an upper bound of the set P, O(jC(p)j) de-
notes the sum of path conditions for all runs included in the set P, and
ConstraintSolver(M) denotes the time required to solve the MINION model
M.

With flow activity it is possible to execute activities in parallel. However,
the execution is not completely parallel. The reason for that is the branches
do not execute in concurrent threads. That means one thread starts when-
ever a fork activity is observed until it reaches some blocking activity like
invoke. At this point another thread starts executing the other branch. This
restriction is to ensure thread safety of BPEL process variable. In addition
to that every fork activity is followed by a join activity, which provides
synchronization between parallel branches. The flow activity completes
when all branches in a flow have finished processing. The algorithm in
Figure 4.15 makes sure that all outgoing branches between a forking node
and its corresponding join node in a run along with guards is modeled.
Since we do not know which guard is active in the current run, we model all
guards in any run computed by the StructRuns algorithm in Figure 4.15.

72

4.4 Test Case Generation using constraints

1: procedure StructRuns(G, MaxLen)
2: initialize test suite S
3: compute the set P of all paths p s.t. jpj MaxLen, where for vertices
v 2 B, we create for each (ej, TGe;) in gg(Vv), a path s.t. TG, is enabled.
for each path p 2 P do
check the satisfiability of run-constraints C(p) as of Def. 10
if C(p) is satisfiable then
add a corresponding test case to S
end if
end for
10: return test suite S.
11: end procedure

© o N a kM

Figure 4.15: Our structural TCG algorithm StructRuns

For example in Figure 4.14, the algorithm computes three possible runs
depending on the guard condition. That is, in the first run, we say that the
first guard x < 10 must be true and the second guard y < 10 may or may
not be true. Similarly, in the second run, the first guard x < 10 may be
active, but the second guard y < 10 must be true. Also, there is another run,
in which both guards may or may not be active. Under this assumption, we
get two feasible runs shown in Figures 4.16, and 4.17 respectively.

The vertices for this process are defined by following activities: receivelnput
(V). IfG (viG), AssignX (vVax), IfG2 (vigz), AssignY (vay), replyOutput (vio).

In our flow example the first branch is triggered via the following run
(Runl): p = vpVigVaxVaiG2VAy Vro-

We will use such runs to derive our test cases. That is, as a first step, a
search-based algorithm traverses the graph in a depth-first search manner
in order to extract the runs from the fork node v¢ to the join node v;. For
the possible runs in our flow process, the corresponding run conditions are
given in Figures 4.16, and 4.17 respectively. The constraint representation
of both runs is detailed in Figures 4.18 and 4.19. Note that, in case any
guard is not triggered, we have to propagate the variable values in the
respective branch, in order to synchronize the indices at the join node. A

73

4 Model-based SOA Testing

1 vy Xg = inputy

2 VYo = inputy

3 Vig:Xg <10

4 Vax: X1 =1

5 ViG2 7(y0 < 10)

6 vay:y1 =1

1 Vipoilp =X1+y;
Figure 4.16: Run 1: c(p) for the first guard to be active.

1 v Xg = inputy

2 Vy 1Yo = inputy

3 Vg :?(xg < 10)

4 vax X1 =1

5 Vig2 1Yo <10

6 vay:y1 =1

I Vio:in =Xty

Figure 4.17: Run 2: c(p) for the second guard to be active.

corresponding variable assignment satisfying c¢(p) for Run 1, and thus a
test case, is the following one:

input x = 0
input y = 10
r=11

The basic assumption that must hold in order to use our approach for testing
BPEL flow activity is that there are no shared variables; i.e., if a variable x
Is redefined in a branch A, then the variable x should not be redefined in
any other branch within a current flow activity.

74

e

=

P O OO0 ~NO O, WDN -

P O OO ~NO O~ WNPE

4.4 Test Case Generation using constraints

eq(xy, inputy)

eq(ys, inputy)

rei fy(ineq(xy, 10, 1), cond;)
eq(condy, 1)

reifyimply(eq(xp, 1), cond;)
reify(ineq(yy,10, 1),cond,)
reify(eg(cond,, 0), conds)
reifyimply(eq(yz, 1), conds)
reify(eq(yz, y1), conds)
weightedsumgeq([1, 1], [X2, y2], 1)
weightedsumgeq([1, 1], [X2, V2], r1)

Figure 4.18: MINION constraints for Run 1.

eq(Xy, inputy)

eq(ys, inputy)

rei fy(ineq(xy, 10, 1), cond;)
reify(eg(condy, 0), cond,)
reifyimply(eq(xz, 1), cond;)

rei fy(eq(xy, X1), cond,)
reify(ineq(yy,10, 1), conds)
eq(conds, 1)

rei fyimply(eq(yz, 1), conds)
weightedsumgeq([1, 1], [X2, y2], 1)
weightedsumleq([1, 1], [X2, Y2], r1)

Figure 4.19: MINION constraints for Run 2.

75

4 Model-based SOA Testing

4.5 Experimental Setup

WS-BPEL is a product of many XML specifications: WSDL 1.1. is used
to represent the BPEL process as well as partner processes and services;
XML Schema 1.0 represents the BPEL data model; XPATH is an expression
language; and XSLT is meant to provide data manipulation. The BPEL
artifacts need execution engine for deployment. There are many propri-
etary and open-source BPEL tools available. Among these proprietary tools,
the most notable ones are IBM WebSphere process server [WWebSphere, 2006],
Oracle BPEL process manager [Oracle Process Server, 2010], and ActiveEnd-
points [Active Endpoints, 2010]. Among open-source tools, we have Apache
ODE [ODE, 2006] and Orchestra [OW?2, 2012].

We make use of Eclipse BPEL designer [BPELDesigner, 2006] which provides
support for defining and editing of BPEL processes. Since the designer
comes as an Eclipse plug-in, it can be deployed on an open-source engine
like Apache ODE [ODE, 2006], which itself executes as a web application
under the application server like Tomcat [Tomcat, 2006]. The setup requires
Java 6 or higher for execution. In addition to that we used Glass fish server
[GlassFish, 2006] for executing the partner web services. For running exper-
iments, we used following versions of the aforementioned software.

Eclipse BPEL Designer 1.0.3
Apache ODE 1.3.5

Apache TOMCAT 7

GlassFish 3.1 Application Server
BPELUnit 1.6.0

MuBPEL 1.2.2

Minion Constraint Solver 1.6.1

Once the BPEL process is up and running, we can perform testing using
our test suite. The quality of the generated test suite can be measured by
the unit coverage tool for BPEL process [Lubke et al., 2009], [Lubke, 2006].
The tool can be downloaded as an Eclipse plug-in or as a command-line tool.
The tool supports two testing modes, real-time and simulated testing mode.
The tool requires user to input manual test cases, which can be executed
either on actually running business process or on mock processes. We make

76

4.5 Experimental Setup

use of the command-line version of the tool for assessing the activity and
branch coverage of our generated test suite. The good thing about the tool
is that one can choose the deployer, i.e., Apache ODE, ActiveBPEL, Oracle, or
Fixed in case the user takes the responsibility of the deployment itself.

There can be some problem regarding testing of URLS, which may cause
a test suite to fail, that is, if the port on which the process is deployed is
busy, or if any web service is down for some reason. Make sure that all web
services are up and running, or if you are using mock services, the service
endpoints must be specified according to the tutorial guidelines. For our
test suite to be executed, it is important that the unit testing tool passes the
test suite. Other wise, the coverage results might be different. Alternatively,
the plug-in version of the tool can be installed in order to verify the results
from our tool (which includes the command-line version). As mentioned in
a survey by [Bozkurt et al., 2013], the tool has a problem of oracle. As we
already have expected output from test suite generator module, our approach
can overcome the oracle specification problem.

In addition to the unit testing tool, we also use mutation testing tool for BPEL
processes [BPEL Mutation tool, 2011]. The tool comes as a command-line
version with an embedded instance of ActiveBPEL engine. The download
and installation on a Mac machine can be tricky, if one wishes to use
different execution engine than ActiveBPEL. Since ActiveBPEL is acquired by
ActiveEndpoints [Active Endpoints, 2010], and is sold only as a commercial
tool to organizations migrating to SOA, we had to make MuBPEL work with
Apache ODE. It is to be noted that MuBPEL instance runs on port 8080, the
other BPEL engine must be executed on some other port. Also the execution
takes a long time. It might be a bottleneck, if the test suite size is larger, or
if the number of mutants for the subject process exceeds certain number.
Another problem encountered was that some mutant might block the port,
which could bring the test execution process to halt. Although, we tried
to set the maximum time limit of 20 ms for each mutant, but sometimes
the MuBPEL tool would not continue the execution. The only solution
would then be to stop both MuBPEL and the Tomcat instances running
the ApacheODE web application. The tool also has a repository of some
small-sized BPEL processes from different vendors. We have included few
of those examples in our test experiments. In addition, only synchronous

77

4 Model-based SOA Testing

BPEL processes were found to be stable. This is why our experiments do
not include any asynchronous process.

There were many challenges faced during the experimental setup. First,
there is a lack of benchmark BPEL examples to be used as an underlying
subject data [Bozkurt et al., 2013]. Each execution engine comes with a
couple of small-sized business processes, but fail to provide some large-
scale examples to measure the effectiveness of different approaches. Second,
there were many ambiguities observed in BPEL specifications document
and open source BPEL engines [Lapadula et al., 2008, Hallwyl et al., 2010],
which hampered the integration of the mutation tool with our approach.
Last but not the least, the string datatype, which is quite often used in
the message exchange between web services and BPEL processes further
complicated the test case generation step.

The test suite execution requires inputs and expected outputs from the
BPEL process. The BPELUNnit tool requires user to specify these inputs and
expected outputs for each test case via eclipse plug-in. We however generate
test suite automatically using the command line version of the tool. Basically
the test suite execution module employs the conversion algorithm, which
traverses all feasible paths and converts each receive activity into a send
activity, and each reply activity into a corresponding receive condition as
required by the BPEL Unit Test Suite. Furthermore, we add for any invoke
activity the corresponding partner track information to the XML test suite.

An example test case for run 2 described in the Flow example is shown in
Figure 4.20. The data tag stores test inputs sent to the BPEL process such as
test inputs x and y. The expected value is defined using the receive tag.

4.6 First Results

In this section, we report first empirical results obtained using the Java
implementation of our BPELTester tool. We considered three examples in
our evaluation of sequential processes: LoanApproval, ATM!, and a simple
hand-crafted example comprising a while statement within the process

Lhttp://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.atm.html

78

4.6 First Results

1 <tes:data>

2 <flo:FlowRequest>

3 <flo:Input_x>10</flo:Input_x>
4 <flo:input_y>0</flo:input_y>
5 </flo:FlowRequest>

6 </tes:data>

7 </tes:send>

8 <tes:receive fault="false">

9 <tes:condition>

10 <tes:expression>//flo:FlowResponse</tes:expression>
11 <tes:value>’11°</tes:value>

12 </tes:condition>
13 </tes:receive>

Figure 4.20: Flow Example Test Case

Table 4.1: Examples Details
Prog BPEL Activites Used
Loan Receive, Reply, Assign, If, Else, Invoke, Sequence

Atm | Receive, Reply, Assign, If, Else if, While, Invoke, Sequence

While Receive, Reply, Assign, While, Sequence

Flow Receive, Reply, Assign, Flow

definition. Table 4.1 list the activities used in these examples. The results
from the flow activity are taken from our paper [Jehan et al., 2015].

In Table 4.2 we summarize the obtained test generation results, i.e., the
number of BPEL activities in any process n, the number of paths p, the
maximum path length MaxLen varying from 10 to 50 (in case of examples
with while loops), the minimum and maximum path lengths of the BPEL
process minP and maxP, and the minimum and maximum numbers of
MINION constraints minC and maxC. totalT represents the total time in
milliseconds it took to generate the executable test cases. The time for
checking the paths’ feasibility via constraint solving was always very small
ranging from 11 to 26 milliseconds and is thus omitted in the table.

Cardoso [Cardoso, 2006] explained the complexity of BPEL processes us-

79

4 Model-based SOA Testing

ing the control flow complexity (CFC) metric. The test execution tool
described in [Lubke et al., 2009] supports test coverage metrics like ac-
tivity, branch, link and handler coverage. Since having a large humber
of tests is undesirable for testing web services due to the related costs
[Canfora and Penta, 2009b], we investigated our test suites’ quality with
respect to coverage via the tool described in [Lubke et al., 2009]. For all
considered examples, we attained 100% activity and branch coverage by just
the minimum set of paths. In particular, activity and branch coverage for
the Loan and While examples reach 100% for the smallest path length with
only 3 paths. For the more complex ATM example, we obtain 100% coverage
for a minimum path length of 19 with 13 generated paths (see Table 4.2).
The coverage progression as a function of the path length is given for the
ATM example in Figure 4.21.

The obtained empirical results are promising and indicate the usefulness of
our approach. Even for smaller path lengths, we obtained coverage of 100%,
where it took less than 1 second for computing the test suite. It is worth
noting that executing the tests took twice the time for generating the test
suite.

We used AllPaths algorithm to generate tests from sequential activities. The
results show the number of generated tests is huge. And we need to perform
some analysis to cut down the number of tests and improve the coverage of
the generated test suite. For parallel activities, we make use of StructRuns
algorithm, so as to cater for the simultaneous execution of parallel branches.
In next Section, we analyze our random testing approach for sequential
programs.

4.7 Random Testing of Sequential programs

A big challenge in testing SOA-based system is the testing time required to
ensure the desired functionality of the overall system. Because of the fact
that most service-oriented systems are meant to be accessed through web
interfaces, the runtime performance becomes crucial. Be it social networking
services such as Twitter, Facebook or Linked-In or commerce companies such
as Amazon, users need to be assured that they receive service within given

80

4.7 Random Testing of Sequential programs

COVERAGE
100 —

DY

S 6 S
=]

S
~ PATHLENGTH ©

Figure 4.21: Coverage vs. path length for the ATM example.

Table 4.2: Empirical results obtained

Prog n | MaxLen p | minP | maxP | minC | maxC total T
Loan | 16 10 3 8 10 8 11 160
Atm || 27 10 1 9 9 10 10 57
20 17 9 20 10 22 1,312
30 132 9 30 10 33 9,150
40 | 1,367 9 40 10 46 | 108,983
50 | 12,950 9 50 10 57 | 1,372,059
While | 8 10 3 8 10 13 16 169
20 28 8 20 13 28 2,028
30 78 8 30 13 45 6,194
40 153 8 40 13 62 13,703
50 253 8 50 13 75 23,849
Flow3 || 11 15 2 11 11 11 11 243

81

	Abstract
	Abstract (German)
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Thesis Statement
	Contributions
	Organization

	Service-Oriented Architectures
	Introduction
	A brief history of SOAs
	Early SOA
	Second generation of SOA
	Contemporary SOA

	SOA basics
	First generation Web services technology
	Second generation Web services technology

	SOA challenges

	Preliminaries and Related Work
	Testing Preliminaries
	Testing trends of SOA Applications
	Symbolic Execution Approach
	Model Checking Approach
	Petri Net Approach
	Graph-based Approach
	Contract-based Approach
	Search-based Approach

	Debugging Definitions
	Diagnosis of SOA Applications
	Conclusions

	 Model-based SOA Testing
	Introduction
	Architecture
	Definitions
	Test Case Generation using constraints
	Sequence Structure
	Flow Structure

	Experimental Setup
	First Results
	Random Testing of Sequential programs
	Introduction
	Experimental Results
	Conclusions

	 Random Testing of Concurrent programs
	Introduction
	Empirical Evaluation
	Discussion

	Conclusions

	Test Suite Reduction
	Introduction
	Related research
	Preliminaries
	Redundancy elimination
	LinMIN Algorithm
	BinarySearch Algorithm
	Delta-Debugging Algorithm

	Empirical Evaluation
	Conclusions

	Model-Based SOA Debugging
	Introduction
	Definitions
	The Debugging Approach
	Experiments
	Conclusions

	Conclusions
	Results summary
	Open Questions and Future Work

	Bibliography

