

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden

Masterarbeit identisch.

Datum Unterschrift

Abstract

With the invention of computers, the desire for robust and accurate so-
lutions arose, too. There are different approaches or techniques to achieve
this goal - like carefully developing and testing the solution upon a speci-
fication written in any natural language, or using a formal language which
is well defined and doesn’t lead to misunderstandings. And with the intro-
duction of formal languages, also the possibility of computerized testing or
even synthesis of such systems evolved. But subsequently there are different
problems, one is that it is not very easy to write a formal specification at all
that is complete and unambiguous. Additionally a great problem is that the
algorithms currently known need a lot of time and memory for execution,
even for rather simple specifications. One research area is the synthesis of
reactive hardware circuits written in the formal language Linear Temporal
Logic (LTL). This can be done by transfering this LTL specification into an
automaton based game where the system (which has to be built) is playing
against an environment. The next step is to find a strategy for the system
to win this game (following the rules and goals defined in the specification)
regardless what the opponent (the environment) is doing. The last step will
be calculating a hardware circuit which follows this strategy. This master
thesis addresses the second part, finding a strategy in such a game. We tried
to transform the game to a more complex game for which better algorithms
are known. But it turned out, that the faster algorithm didn’t compensate
for the greater complexity. At the end, the total runtime didn’t decline but
rose.

Keywords: Formal Specifications, Reactive Systems, Games on finite
Graphs, Temporal Logic

Kurzfassung

Mit der Erfindung von Computern ist auch ein Wunsch nach Robustheit
und Fehlerfreiheit mitentstanden. Es gibt verschiedene Ansätze bzw Tech-
nologien um dieses Ziel zu erreichen - wie sorgfältiges Arbeiten (entwickeln
und testen) aufgrund einer in natürlicher Sprache verfassten Spezifikation,
oder dem Benutzen einer formalen Sprache, welche keine Möglichkeit zu
Missverständnissen zulässt. Und mit der Einführung von formalen Sprachen
ist auch die Möglichkeit zum automatischen Testen und sogar der Synthese
von solchen Systemen möglich geworden. Aber damit gehen einige Prob-
leme einher: Eines wäre, dass es nicht einfach ist, ein System aufgrund einer
formalen Sprache zu spezifizieren, welches komplett und eindeutig ist. Ein
Weiteres ist, dass die aktuell bekannten Algorithmen sehr ressourcenhungrig
sind (betreffend Speicherverbrauch und Rechenleistung), auch für einfachere
Systeme. Ein Forschungsgebiet ist die Synthese von reaktiven Hardware-
Schaltungen aufgrund einer Spezifikation, welche in der formalen Sprache
‚Lineare Temporale Logik ‘(LTL) spezifiziert ist. Dies kann bewerkstelligt
werden, indem man die LTL-Spezifikation in ein Spiel transferiert, welches
auf einem endlichen Automaten basiert und in dem ein Spieler, welcher das
zu bauende System repräsentiert, gegen seine Umwelt agiert. Der nächste
Schritt ist, eine Strategie für dieses System zu finden, um das Spiel zu gewin-
nen (nach den Regeln und Zielen, welche in der Spezifikation definiert sind),
egal was sein Gegner (die Umgebung) tut. Im letzten Schritt wird eine
Hardware-Logik-Schaltung aus dieser Strategie berechnet. Diese Master-
Arbeit befasst sich mit dem zweiten Teil, dem Finden einer Strategie in
solch einem Spiel. Wir versuchten das Spiel in ein komplexeres Spiel zu
transformieren, für welches aber bessere Algorithmen bekannt sind. Aber
es stellte sich heraus, dass die schnelleren Algorithmen die höhere Komplex-
ität nicht kompensieren konnten und zum Schluss die Gesamtlaufzeit nicht
besser, sondern schlechter wurde.

Schlagworte: Formale Spezifikationen, Reaktive Systeme, Spiele auf
endlichen Graphen, Zeitliche Logik

Acknowledgements

I would like to thank numerous people who supported me in writing this
thesis.

I am very grateful to my advisor Roderick Bloem, who patiently ex-
plained to me a lot of things regarding the mathematical background and
other topics about this work. He always had the right answers.

Secondly, I want to thank the formal synthesis team which consisted of
Karin Greimel, Georg Hofferek and Robert Könighofer, who where always
open for a lot of questions that arose during the work.

Then I also want to thank my friends Isabella Lasch and Patrick Schöberl
for proofreading this work.

Graz, in July 2017 Hans Jürgen Gamauf

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Synthesis . 2

1.2.1 Problems . 3
1.3 Problem addressed through this master thesis 4
1.4 Solution . 5
1.5 Structure . 5

2 Preliminaries 7
2.1 Temporal Logic . 7

2.1.1 Linear Temporal Logic 7
2.1.2 Generalized Reactivity of rank 1 8

2.2 Automata . 8
2.2.1 Notation . 9
2.2.2 ω-Automaton . 9
2.2.3 Acceptance Conditions 9
2.2.4 Generalizations . 10

2.3 Games . 11
2.3.1 Arena . 11
2.3.2 Play . 11
2.3.3 Game . 12
2.3.4 Strategy . 12
2.3.5 Winning region . 13
2.3.6 Winning Condition . 13
2.3.7 Game structure . 15
2.3.8 Determinacy . 16

2.4 From a strategy to a circuit 17
2.5 Symbolic Algorithm . 18

3 Theoretical Approach 19
3.1 Current Solution - RATSY 19

3.1.1 Marduk . 19
3.1.2 Interfaces . 21

vi

vii

3.2 Idea - Counting Construction 21
3.3 Solving the new game . 25

3.3.1 Streett Games . 26
3.3.2 Parity Games . 26
3.3.3 Discussion . 27

3.4 Recursive Algorithm for Solving Parity Games 28
3.4.1 Preliminaries . 28
3.4.2 Algorithm for calculating the winning region 34
3.4.3 Algorithm for calculating the winning strategy 36

4 Implementation 43
4.1 Counting Construction . 43

4.1.1 Extension of the state space 43
4.1.2 Inserting the edges . 43

4.2 Old RATSY synthesis algorithm 45
4.3 Recursive algorithm . 46

4.3.1 Attractor . 46
4.3.2 Calculation of the winning region and strategy 51

4.4 Optimizations . 51
4.4.1 Simplification/Reduction of a game graph 52
4.4.2 Accelerating BDD operations 53
4.4.3 Reordering . 53

5 Comparison 55
5.1 Case Study: Generalized Buffer 55

5.1.1 Problem . 55
5.1.2 Possible solution . 57
5.1.3 First synthesis run . 58

5.2 Case Study: AMBA AHB . 60
5.3 Experimental Results . 61

5.3.1 Simplification of the BDDs 61
5.3.2 Reordering . 62
5.3.3 Comparison of the different algorithms 63

6 Conclusion 65
6.1 Summary . 65
6.2 Future Work . 65

Bibliography . 66

Chapter 1

Introduction

1.1 Background and Motivation
With or without being aware of, we are surrounded and penetrated by a great
variety of electronic systems, controllers, sensors and so on. Don’t think of
things we are using actively every day like our laptop or mobile phone, just
look at your car, engine control, brake system control, navigation system
and hundreds more. Or the traffic light controller, the washing machine,
air conditioning or cardiac stimulator, even your electrical toothbrush is
controlled by some silicon. The list can be expanded arbitrarily and it will
grow even faster in the future: think of refrigerator with internet access,
home automation, autonomous cars, robotics,

Daily life is meanwhile unimaginable without the use of embedded sys-
tems. But with the growth of applications and complexity of these systems
also the failures are growing because it is very difficult or even impossible
to design and manufacture faultless systems.

A bluescreen on your desktop or a phone which is rebooting right in the
middle of a call is annoying, but when your ABS brake system stops working
or rail traffic systems get out of control, things might get dangerous. Not
to think of airplanes or nuclear power plants. A nice example is the first
launch of the new developed Ariane 5 rocket in the year 1996. Only 40
seconds after launch, the unmanned rocket (valued about 500 million US
dollars) exploded. Afterwards they found the root cause of the failure in
the inertial reference system: the problem was the conversion of a 64 bit
float number into a 16 bit integer, which caused an overflow and therefore
a failure in the navigation system 1.

But how can we reach better systems? Possibilities are:

• design the systems carefully, however, this is intractable due to the
growing complexity and therefore is only wishful thinking,

1http://www.ima.umn.edu/~arnold/disasters/ariane.html

1

CHAPTER 1. INTRODUCTION 2

• right after the design, we can test the system extensively, but from
our experience we know that there are always parts which will not
be tested (the Ariane 5 rocket was tested very extensively, but they
didn’t find the problem before the accident),

• or we can try to specify our design intent in a formal language and
verify it formaly, which is, when the specification is complete and
consistent, a perfect verification without any doubts.

The latter is getting more and more attention in the research area as well
as in practical applications. However, it is very difficult and time-consuming
to write down a formal specification of systems, in addition they are not
errorless at the outset. So when we are dealing with formal specifications to
verify given systems, the question arises if it will also be possible and useful
to synthesize systems based on this formal specification. And indeed, there
are different approaches and solutions for this synthesis.

What are the advantages or benefits of system synthesis, especially hard-
ware synthesis?

There might be

• the possibility to debug a given specification, to look if it is satisfiable
and realizable (satisfiability means that there is no contradiction and
therefore a system satisfying such a specification exists, wheras realiz-
ability is the question whether such a system can be designed, also in
respect to some unpredictable environment, as described later), and
when we test a synthesized circuit it should behave as expected,

• or just to develop systems without explicitly designing them, but due
to the high effort of synthesis this is still not practicable. Altough it
can help, just to synthesize smaller parts to test them within the whole
systems and replace them step by step with human designed parts.

• We can also use a formal specification as the perfect definition of a
design intent for a hardware designer, without any doubts or uncer-
tainties.

1.2 Synthesis
When we think of embedded systems which are working in the background,
we usually mean systems which are providing their services for a long time
period (how often do you turn off your phone, factories working round the
clock, traffic lights have no weekend, ...). We call these things reactive
systems because they are reacting at an environment (this can be the user,
some sensors which provide information to control something or another
client which uses some services provided by these reactive systems) and
should provide their services continuously.

CHAPTER 1. INTRODUCTION 3

We can further classify these reactive systems open systems, as described
before, which are reactive systems interacting with some environment, and
closed systems, which do not have an environment or don’t have to consider
any environment, they just have to fullfill their specification. You can further
imagine, that this environment isn’t a good friend, it doesn’t want to help
us to fullfill our specification, it’s more an antagonist which is unpredictable.

When you look at reactive systems in a formal way, you can think of a 2-
player-game, where the system (the controller which should be synthesized)
is playing against the above mentioned environment. This game consists of
a lot of states, which are the representation of the several operation states
(e.g. "green light is on and red light is off", "green light is off and red light is
on", ...). These states are connected together through transitions (or edges),
which define allowed crossings from one state to the possible successor states
(e.g. to go from "green light 1 is on" to an other state "red light is on", we
have to pass a state where the yellow light is on for a short time period, so
there is no direct transition between the first two states). Playing on this
game means that we place a token on some initial state and move it from one
state to a next one and so on. A specification usually consists of different
rules, some for the definition of the transition, and some to describe some
aim, e.g. if a walker wants to cross a street, he should press the button to
signal that, and the traffic lights controller (our system which we want to
synthesize) should switch on the walker green light eventually in the near
future (for which of course it has to switch on the red car light and switch
off the green car light). But it should not only do this once in a while,
but always whenever the walker button is pressed. We can translate such
a rule into our graph by mark some states, e.g. a state where a walker
button is pressed we mark with a red color, and the state where the green
walker light is on, we mark green. Now we define a winning condition for the
system: Whenever a red marked state is visited, try to reach a green marked
state. After that, we will solve this game and look for the right combination
of transitions through this graph to fulfill the above specification, which
results in a receipt, through which the system knows what to do (which
lights should be on or off) in which situation (which is defined by the state
currently visited by the token). Rewrite this receipt in table form and we
get a so called strategy, where, for each state, the successor state is defined
and when the controller follows this strategy, it acts as desired.

1.2.1 Problems

As you can imagine, when we want to design bigger and more complex
circuits, with a lot of input signals (lines which are going from the environ-
ment to the controller) output signals (lines that are going the other way),
and more complex specifications. The whole process gets more and more
unfeasible, because of different reasons:

CHAPTER 1. INTRODUCTION 4

• it is difficult to write complete and consistent specifications (as men-
tioned before),

• and if there is one, the synthesis process consumes a lot of time and
has a great memory consumption,

• but the result is far away from being perfect, in the sense of needed
gates as well as in time steps needed to react on some environment
wishes.

Therefore there is still no notable practical use, of course. However, a
lot of reasearch has already been done to address these problems. While
formal verification enters more and more practical design processes, formal
hardware synthesis still does not.

1.3 Problem addressed through this master thesis
In this master thesis we are concerned about the second problem and tried
to improve and accelerate the synthesis process. The whole process consists
of several steps, like building up the game graph, solving the game by com-
putation of a viable strategy for the system, and transform this strategy
into a mesh of gates to form a circuit.

While early work used the very complicated second order logic with
one successor (S1S) [12, 9, 36] to specify the circuit, the Linear Temporal
Logic [34] got more and more attention. Pnueli and Rosner [35] solved the
so called synthesis problem, where the specification is written in LTL. A
solution can be to transform the LTL specification into a nondeterministic
Buechi automata (which results into an exponential increase of states in
the size of the number of subformulas of the specification), this automata
has to be determinized with the Safra construction [38], which also leads
to an exponential increase of states, and is difficult to implement. While
there are other methods to avoid this construction for the determinization
of automata [29, 28, 22, 24, 31], the lower double exponential bound remains.

One possibility to make synthesis more practicable though, is to restrict
the whole expressiveness of LTL formulas to a smaller subset. An important
step in the evolution of synthesis was made with the work of Piterman et
al. [33] which used this possibility. They invented an algorithm to solve
so called general reactivity of rank 1 (GR(1)) games, which consists of a
set of conditions which has to fulfill the environment, and if it fulfills them
infinitely often, the system has to fulfill some set of guarantees, also infinitely
often. Despite of the restriction in expressivity, there are several case studies
[5, 6] of real world examples that show that this approach is quite useful.
Though this work lead to a great speed up of the synthesis process, it is still
to slow for industrial usage. Therefore we tried to use another algorithm for

CHAPTER 1. INTRODUCTION 5

solving this 2 player game instead the one in [33], in the hope to accelerate
again synthesis.

1.4 Solution
Among other possibilities, the approach presented in [7] seemed very pur-
poseful. The idea is to transform the game graph through applying a count-
ing construction, similar to the reduction of generalized Büchi conditions
to Büchi conditions (as will be explained in the following chapters). This
counting construction introduces two counter, one for the assumptions and
one for the guarantees. When you go along any path on this new game
graph, the current counter value in each state tells you how much assump-
tions resp. guarantees you have seen so far. And if you consider only those
states, where these counter values are equal to the total number of assump-
tions resp. guarantees, the winning condition conists of only these two sets,
and can be rewritten to: If the environment visits at least one state out
of the assumption set infinitely often, the system has also to visit at least
one state out of its guarantee set infinitely often. Since this condition is
exactly the same as a Streett winning condition with one pair, or as a parity
winning condition with 3 colors (the assumption set, the guarantee set, all
other states), we can use an algorithm for solving such games, and these are
well studied in the literature [10, 23, 32, 26, 39, 27, 44, 20].

We tried out the recursive implementation of [39], because the research
work of Friedmann [18] showed that despite of the bad upper bound of the
computation time (O(2n), where n is the number of states of the game graph)
it can perform often faster than the algorithm of Jurdziński [26] which is
currently the one with the lowest upper bound (O(dm(nd)dd/2e), where n is
the number of states, m is the number of transitions and d is the maximum
priority of the game graph).

The algorithm of [33] has a upper runtime bound of O(n2mjk), where j
is the number of assumptions and k is the number of guarantees.

All in all, it turned out that the new approach implemented by us didn’t
result in an increase, but in a decrease of the game solving runtime, which
will be presented in the chapter 5.

1.5 Structure
The rest of this diploma thesis is structured as follows:

In chapter 2 we present some theoretical background about automata
and games, together with an explanation of symbolic programming and the
bridge between the theoretical concepts and real hardware circuits.

In chapter 3 we want to introduce the new approach from a theoretical
point of view, including the introduction of the counting construction and

CHAPTER 1. INTRODUCTION 6

the algorithm to solve the actual game.
In chapter 4 we want to bring these theoretical approaches down to our

practical environment, giving a detailed description of how to implement
them in a symbolic manner, also we discuss some optimization possibilities.

In chapter 5 we want to introduce two case studies, which have been
used in previous work to show real world examples of synthesized circuits,
to compare the different game solving algorithms in a practical manner.

And last but not least we want to conclude this work and give an outlook
in the last chapter 6.

Chapter 2

Preliminaries

2.1 Temporal Logic

2.1.1 Linear Temporal Logic

Linear Temporal Logic (LTL), nowadays very popular, was invented by
Pnueli [34] in 1977 and was meant to specify reactive systems.

LTL formulas are constructed from a set of boolean variables together
with boolean connectives and the use of the two temporal connectives X
(can be read as "next") and U (can be read as "until").

It is defined in the following way [42, 43, 33]:

• Every atomic proposition is a LTL-formula.

• If ϕ and ψ are LTL formulas, so are ¬ϕ,ϕ ∨ ψ,ϕ→ ψ.

• If ϕ and ψ are LTL formulas, so are Xϕ,ϕUψ.

LTL is interpreted over traces over a set of atomic propositions. For a
trace τ and a point i ∈ N, the notation τ, i |= ϕ indicates that the formula
ϕ holds at the point i of the trace τ .

The semantics is defined as follows:

• τ, i |= p if p holds at τ(i),

• τ, i |= ¬ϕ if τ, i 6|= ϕ

• τ, i |= ϕ ∨ ψ if τ, i |= ϕ or τ, i |= ψ

• τ, i |= Xϕ if τ, i+ 1 |= ϕ and

• τ, i |= ϕUψ if for some j ≥ i, we have τ, j |= ψ and for all k, i ≤ k < j,
we have τ, k |= ϕ.

7

CHAPTER 2. PRELIMINARIES 8

There are two more temporal connectives, F ("finally") and G ("glob-
ally"), which will be introduced for better readability of LTL specifications,
and are deduced from the above definition through the two rules:

Fϕ = true U ϕ

and
Gϕ = ¬F¬ϕ

2.1.2 Generalized Reactivity of rank 1

Generalized Reactivity of rank 1 (short GR(1)) defines a subset of LTL.
GR(1) formulas where introduced in [33] to describe a game between

a system and an environment. We will explain this game in the next sec-
tions, and here only the restriction of GR(1) formulas in comparison to full
LTL. GR(1) formulas again consist of a set of boolean variables V , which
are separated into a subset X of input variables, which are controlled by
the environment, and the other part of V is the set of output variables Y,
controlled by the system.

There are three types of formulas, and each type is again dedicated to
the environment and the system:

• Initial condition: Formulas consisting only of boolean connectives.
The initial condition formula for the system (Θs) reasons only over
output variables, while the initial condition formula for the environ-
ment (Θe) only reasons about the input variables.

• Transition relation: These formulas consist only of boolean connectives
together with the temporal connective X.

– Transition relation for the environment (ρe): all variables bound
by X have to be input variables, all unbound variables can be
either input or output variables

– Transition relation for the system (ρs): all variables bound by X
can be input or output variables, unbound variables as above

• Fairness condition ϕg: These formulas are of the form GFϕ where ϕ
is a boolean formula over some or all variables.

2.2 Automata
We want to give the following definitions and theorems in dependence on
[20, 42].

CHAPTER 2. PRELIMINARIES 9

2.2.1 Notation

We will use the symbol ω to denote the set of non-negative integers (ω =
{0, 1, 2, 3, . . . }).

With Σ we mean a finite alphabet, symbols from a given alphabet are
denoted by a, b, c,

Σ∗ is the set of finite words over Σ, while Σω is the set of infinite words
over Σ. With the letters u, v, w, . . . we indicate finite words, the letters
α, β, γ, . . . are for infinite words. We write α = α0, α1, α2, . . . with αi ∈ Σ.
A set of ω-words over a alphabet is called an ω-language. For words α and
w, the number of occurences of the letter a in α and w is indicated by |α|a
and |w|a.

Given an ω-word α ∈ Σω, let

Occ(α) = {a ∈ Σ | ∃i. α(i) = a}

be the set of letters occuring in α, and

Inf(α) = {a ∈ Σ | ∀i∃j > i. α(j) = a}

the set of letters occuring infinitely often in α.

2.2.2 ω-Automaton

Formally, a finite ω-automaton A is a tuple (Q,Σ, δ or ∆, q0, Acc), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• ∆ : Q×Σ→ 2Q (if the automaton is nondeterministic) or δ : Q×Σ→
Q (if the automaton is deterministic) is the transition relation,

• q0 ∈ Q is the initial state, and

• Acc is the acceptance condition.

A run ρ of the ω-automaton A on an ω-word α = a0, a1, · · · ∈ Σω is
an infinite state sequence ρ = ρ0, ρ1, . . . with ρ0 = q0 and (ρi, ai, ρi+1) ∈
∆ for i ≥ 0 if A is nondeterministic, or (ρi, ai, ρi+1) = δ for i ≥ 0 if it is
deterministic.

2.2.3 Acceptance Conditions

There exist different acceptance conditions, we want to mention the follow-
ing.

CHAPTER 2. PRELIMINARIES 10

Büchi Acceptance

An ω-automaton A, where the acceptance condition is given by a set F ⊆ Q,
is called a Büchi automaton, when the acceptance condition is defined by

Acc(ρ)↔ Inf(ρ) ∩ F 6= 0,

where Inf(ρ) denotes the states occuring infinitely often in a run ρ. That
means, the autmaton accepts a word α ∈ Σω iff some state ∈ F occurs
infinitely often in the run ρ(α).

L(A) := {α ∈ Σω | A accepts α} is the ω-language recognized by A.
An ω-language L ⊆ Σω is Büchi recognizable, if a corresponding Büchi
automaton A with L = L(A) exists.

Streett acceptance

An ω-automaton A, where the acceptance condition is given by a set S =
{(E1, F1), . . . , (Ek, Fk)} with Ei, Fi ⊆ Q and the acceptance condition is
defined by

Acc(ρ)↔
k∧
i=1

(Inf(ρ) ∩ Fi 6= 0→ Inf(ρ) ∩ Ei 6= 0)

is called a Streett automaton.
This automaton accepts a word α iff there exists a run ρ on α where the

following holds: if in any pair (E,F) a state of F occurs infinitely often,
there must also a state of E occur infinitely often.

Parity Acceptance

We introduce a so called priority function c : Q→ {1, . . . , k} (where k ∈ ω),
which assigns to each state of A a priority. An ω-automaton A, where the
acceptance condition is given by such a priority function c, is called a parity
automaton, when the acceptance condition is defined by

Acc(ρ)↔ max{c(q) | q ∈ Inf(ρ)} is even.

This automaton accepts a word α iff there exists a run ρ on α, where the
highest priority of all states which are occuring infinitely often, is even.

2.2.4 Generalizations

Büchi and parity acceptance conditions can be generalized. A generalized
Büchi condition consists of a collection F ⊆ 2Q of Büchi conditions. A run
ρ is accepting for a generalized Büchi automaton if and only if it accepts
each F ∈ F . A generalized parity condition is a conjunctive or disjunctive

CHAPTER 2. PRELIMINARIES 11

collection Π of some individual priority functions c. A run ρ is accepting if
it is accepting according to each member of Π (in the case of a conjunctive
generalized parity condition) or to some member of Π (in the other case)
[40].

Each generalized Büchi automaton can be transfered into a Büchi au-
tomaton. [42] If we have a gerneralized Büchi automaton with the final
state sets F1, . . . Fk ⊆ Q, we can construct an equivalent Büchi automaton
by attaching to each state a counter. This counter shows the next state set
that should be visited. A state (q, i) means we are waiting for a state ∈ Fi.
After visiting a state of Fi we increment the counter and are now waiting to
visit a state in Fi+1. If we have visited a state in Fk, we will increment the
counter for a last time and will then reset it to 1. Then we can declare all
states, where the counter is equal to k + 1 to our final state set of the new
Büchi automaton. [42]

2.3 Games
Here we want to introduce games which are played by two players, what is
meant by winning regions or winning strategies and how a game can be won
by a certain player (winning conditions).

First of all, games consist of an arena and a winning condition.

2.3.1 Arena

An arena (often also called a game graph) is defined by the triple

A = (V0, V1, E)

where

• V0 is a set of 0-vertices,

• V1 is a set of 1-vertices (disjoint from V0), V = (V0 ∪ V1) and

• the edge relation E ⊆ V ×V , which is complete in the following sense:
∀v ∈ V ∃v′.(v, v′) ∈ E (every vertex has a successor)

2.3.2 Play

The game which we are interested in is played on such an arena in the
following way.

At the beginning a token is placed on some initial vertex v ∈ V . if v ∈ V0,
then player 0 has the choice and moves the token alongside an arbitrary edge
to a successor-vertex of the current, otherwise, if v ∈ V1, Player 1 has the
choice and does the same.

We can define a play as the sequence π = r0r1r2 . . . where (ri, ri+1) ∈ E.

CHAPTER 2. PRELIMINARIES 12

2.3.3 Game

If A is an arena as above, and W ⊆ V ω, then the pair (A,W) is a game,
where W is the winning set of the game.

A play π on a game is won by Player 0, if π is an infinite play and π ∈W .
If the play π is not won by Player 0, it is won by Player 1.

When we are talking about games for reactive systems, we usually denote
player 0 by the system and player 1 by the environment.

Deterministic ω automata can be used to describe infinite games. Both
players move a token along the transitions of the automaton, and player 0
wins the game if the resulting infinite sequence of states is accepted by the
automaton. In turn based games the set of states is partitioned into a set
belonging to player 0 and a set belonging to player 1, as defined before. Each
player moves the token, when it is on one of its states by choosing a letter
from Σ, which leads to a successor state through the transition relation δ.
In input based games the alphabet Σ is the product Σ0 × Σ1 of the two
alphabets belonging to each player. When the token resides on a state q,
both player choose a letter from their alphabet and the token is then moved
to a state according to δ(q, (σ0, σ1)), where σi ∈ Σi. There are different
possibilities of the order:

• both players choose their letters at the same time,

• player 0 starts to choose his letter, than player 1 chooses his letter or

• vice versa, player 1 starts and player 0 is next.

There can also be a restriction of the information which each player gets
from his opponents choices, he can get all, partial or no information. If
we consider games where the two players choose alternatingly their letters
and each player knows all about the other players choice, we can easily
reduce input based games to turn based games [40]. Note that the transition
relation of automata is complete in the sense that for each state and each
possible letter of Σ a next state is defined, whereas this doesn’t have to be
valid for turn based games as is defined in section 2.3.3.

2.3.4 Strategy

A strategy for a player is a recipe that specifies how to move the token along
the play. Formally, a strategy for Player σ ∈ {0, 1} starting at vertex v0 is
a function t : V ∗Vσ → V1−σ that assigns to each play prefix v0 . . . vk, with
vk ∈ Vσ, a vertex r ∈ V with (vk, r) ∈ E. A play π = r0r1r2 . . . started in
v0 is played according to t if for every vi ∈ Vσ, vi+1 = t(v0 . . . vi) holds.

CHAPTER 2. PRELIMINARIES 13

A strategy t is a winning strategy from v0 for Player σ, if every play
played according to t is in W , regardless what the other Player is doing,
Player 1− σ must not have a possibility to win starting from v0

1.
Usually strategies depend on their history and can be implemented as

follows: let M be a set called memory (storing the moves of the play so
far, so if the play is infinite it is also the memory), then you can view the
strategy as a pair of functions:

• a function which updates the memory tM : V ×M →M , which takes
the history of the play so far and updates its memory with the new
state, and

• the next move function tN : V ×M → V , which delivers the next state
to which the token should be moved.

If this memory M is finite (depending only on the winning condition and
not on the game arena A), we talk about a finite memory strategy [44].
Such strategies are computable by a finite automaton (such as a Mealy
machine)[41].

If we can ommit the memory M , we name this strategy a memoryless
strategy (or positional). A memoryless strategy only depends on the current
state, formally, tN : V → V .

It seems that in general the existence of a winning strategy depends on
the initial state, where we place the token at the beginning. But it turns
out, that it is more convenient, instead of calculating the winning strategy
for a fixed initial position, calculate the whole winning region and the whole
winning strategy for a player σ [44].

2.3.5 Winning region

The winning region for the Player σ is the set of all states from where the
player has a winning strategy. Formally, the winning region

Rσ = {v ∈ V | Player σ has got a winning strategy starting from v}

2.3.6 Winning Condition

Similar to ω-automata where we have different acceptance conditions, we
have different winning conditions in the game theory.

We are not interested in enumerating all the different winning sets for
each game, so we are looking for functions which describe them. We want
to mention the following:

1in distinction to cooperating Players, where their strategy is predictable

CHAPTER 2. PRELIMINARIES 14

Büchi Game

Consider a game arena A = (V0, V1, E), and F ⊆ V . If the winning condition
ϕ of the Player 0 for the play ρ is

ϕ : ρ ∈W ↔ Inf(ρ) ∩ F 6= 0,

then this game is a Büchi Game. Player 0 wins the game if he can visit at
least one state of F infinitely often. If player 0 doesn’t win the game, then
player 1 wins it.

Parity Game

Additionally to the game arena A, parity games consist of a parity function
c : V → {0, 1, . . . , d} for some integer d and the winning condition

ϕ : ρ ∈W ↔ max(Inf(c(ρ))) is even.

for Player 0, who wins the game, if the highest parity of the set of states
which appear infinitely often in a play, is even.

Streett Game

If we enhance the game arenaA with the set S = {(E1, F1), (E2, F2), . . . , (Ek, Fk)}
with Ei, Fi ⊆ V and the winning condition

ϕ : ρ ∈W ↔
k∧
i=i

(Inf(ρ) ∩ Ei 6= 0 ∨ Inf(ρ) ∩ Fi = 0)

for Player 0, we get a Streett Game, where Player 0 wins the game, if it
holds for all pairs (Ei, Fi), that if a state of Fi appears infinitely often, then
there must also appear a state of Ei infinitely often.

Rabin Game

Rabin games are the dual of Streett games, everything is the same apart the
winning condition, which is the negation of the one of Streett games:

ϕ : ρ ∈W ↔
k∨
i=i

(Inf(ρ) ∩ Ei = 0 ∧ Inf(ρ) ∩ Fi 6= 0)

for Player 0, who wins the game, if there is at least one pair (Ei, Fi), where
at least one state of Fi is visited infinitely often, but no state of Ei is in the
set of the infinitely often visited states.

CHAPTER 2. PRELIMINARIES 15

2.3.7 Game structure

A game structure [33] is a specialized redefinition of a two player game:
A game structure G : (V,X ,Y,Θ, ρe, ρs, ϕ) consists of the following com-

ponents:

• A finite set of boolean state variables V = {u1, . . . , un}. A state
is an interpretation of V , i.e. assigns to each variable ui a value of
{0, 1}. In the above definition of a game we are talking about vertices
which usually are states, but we want to talk about vertices when their
labelling can be somehow, and about states if we mean a labelling
which is a valuation of boolean state variables. By Σ we denote the
set of all states. A state s satisfies a boolean formula ϕ denoted by
s |= ϕ, if s [ϕ] = true.

• X ⊆ V is a set of input variables which are controlled by the environ-
ment. DX denotes the possible valuations of variables in X .

• Y = V \X is the set of output variables which are controlled by the
system, again, DY denotes the possible valuations of variables in Y.

• Θ is the initial condition, which is a boolean formula over V . A state
is is called initial if it satisfies Θ.

• ρe(X ,Y,X ′) is the transition relation of the environment. It is a
boolean formula over V relating a state s to a possible next input
value ξ′ ∈ DX . So for a given state s ρe defines the possible input
value which the environment is allowed to choose for the next step.

• ρs(X ,Y,X ′,Y ′) is the transition relation of the environment. It is also
a boolean formula over V relating a state s and a next input value
ξ′ ∈ DX to a possible next output value η′ ∈ DY . So it enumerates
the possible next output variables from which the system can choose
from for a given state s.

• ϕ is the winning condition given by a LTL formula.

For two states s and s′, s′ is a successor of s in the game structure G if
(s, s′) |= ρe ∧ ρs.

These games are played in the usual way, a token is placed on some
initial state, then the environment begins by choosing a valuation of the
input variables, then the system chooses based on this next input value a
next output value and hence a new state is entered, and so on. Player 0
wins the game if the infinite sequence of visited states satisfy the winning
condition ϕ.

CHAPTER 2. PRELIMINARIES 16

GR(1) Games

Games with GR(1) properties are defined using the GR(1) temporal logic
(as defined above) together with the above definition of game structures.
We will slightly extend the above definition of game structures: Again it is
a two player game, the system (player 0) against an environment (player 1).
For each player the specification consists of a conjunction of the three parts:

• the initial condition Θ,

• the transition relation ρ and

• the fairness condition ϕg.

Each of this parts is itself a conjunction of the initial conditions of a
specific player, resp. a conjunction of the different transition relations and
also a conjunction of the fairness conditions (each fairness condition defines a
set of states which have to be visited infinitely often like a Büchi automaton).

So we get a specification for the environment:

ϕe =
∧
i

Θi
e ∧

∧
i

ρie ∧
m∧
i=1

ϕg,ie

Similar is the specification for the system:

ϕs =
∧
i

Θi
s ∧

∧
i

ρis ∧
n∧
i=1

ϕg,is

The winning condition is then defined on an infinite play as ϕ : ϕe → ϕs,
which means, if the game starts at some initial state then the system wins
if: The system goes along its transition relation ρs and the token passes
infinitely often at least one token out of each fairness state set ϕg,is during
an infinitely play. It wins also if the environment either violates its transition
relation ρe or it visits all states of some fairness state set ϕg,ie only finitely
often. Otherwise the environment wins.

2.3.8 Determinacy

If each vertex of a game belongs to either the winning region of player 0
or to the winning region of player 1, the game is determined. Formally,
R0 ∪R1 = V,R0 ∩R1 = 0

Büchi games and parity games are determined and both players have a
memoryless winning strategy[20]. Streett games and Rabin games are also
determined, but only the player 0 of Rabin games and the player 1 of Streett
games have a memoryless strategy, whereas in general only a finite memory
strategy exists for player 0 of Streett games respectively for the player 1 of
Rabin games [17, 21]. We show in section 3.2 that we can reduce a GR(1)

CHAPTER 2. PRELIMINARIES 17

Figure 2.1: Diagram of a generated circuit [6]

game into a parity game, therefore GR(1) games are also determined. If you
neglect the additional memory through the Counting Construction both
players have a memoryless strategy.

2.4 From a strategy to a circuit
As we have already mentioned, synthesizing circuits is done by defining
a 2 player game and solve this (calculate the winning strategy) for one
designated player (the system). Since the states are represented by boolean
variables, we can map to each boolean variable a hardware signal with which
our synthesized circuit is commucicating with its environment. We have |X |
(the number of variables in X) input signals, and we have |Y| (the number
of variables in Y) output signals. In figure 2.1 we have depicted a diagram
of such a synthesized circuit. It consists of a flipflop for each signal to store
the current state, which is a valuation of all variables (or signals). After the
calculation of the winning strategy, there will be calculated a specific output
function for each output based on the strategy. These output functions are
a mapping of the current state and additionally the next input signals to a
new output signal valuation (f : (X ,Y,X ′) → Y ′). These output functions
can simply be encoded in combinatorial logic (just consisting of NOT, AND
and OR gates). The initial value of the game structure denote the initial
value of the flipflops. The mode of operation is then: Based on the initial
state of the flipflops and the first values of the input signals, the first output
signal valuation will be calculated. In the next step the flipsflops store
this new input and output signals and a new output signal valuation will
be calculated upon a new input signal valuation, and so on. A detailed
description of how these output functions are calculated can be found in [6].

CHAPTER 2. PRELIMINARIES 18

2.5 Symbolic Algorithm
In the field of verification and synthesis of reactive systems it turned out,
that using algorithm, that are not dealing explicitely with vertices or edges
rather using some other representations like Binary Decision Diagrams (BDDs)
[8] are more useful. The main difference between symbolic and enumerative
programming is the way how to handle sets: While in enumerative program-
ming the single elements of sets are stored explicitely (e.g. in arrays or lists),
you are dealing in the latter with whole sets at once, not elementwise.

BDDs are a special representation of boolean formulas of some boolean
variables (internal they are organzized in a boolean tree graph). On this
boolean formulas there are defined the boolean connectives (∨,∧,¬) in the
usual way and also the quantification operators ∃ and ∀ together with some
other operators. Through BDDs boolean formulas can be stored that is often
substantially more compact than conjuctive or disjunctive normal forms, and
the algorithms manipulating them are very efficient. Because the symbolic
representation captures some of the regularity in the state space determined
by circuits, it is possible to handle systems with an extremely large number
of states, much bigger than by handling them in an enumerative way [13,
11, 30].

Since we are not dealing with explicit set elements rather manipulating
the whole set, also runtimes of algorithms using BDDs can be significantly
lower than by elementwise manipulation.

Also it can be very easy to implement some algorithms (especially such
which are dealing with sets) through the usage of BDDs, but on the other
hand not all algorithms can be implemented easily symbolically, so a decision
for the one or the other can be a great discussion.

A very common function often used in symbolic programming is a fix-
point calculation, which is nothing else then a loop, which is started with
some initial set and then some elements to/from this set are added or striked
out until nothing more can be added or striked out. But it only works, if the
function which is calculating the new state set of each iteration, is monotonic
[13].

Chapter 3

Theoretical Approach

3.1 Current Solution - RATSY
RATSY (Requirements Analysis Tool with Synthesis)1 [3] is an extension of
the tool RAT (Requirements Analysis Tool)2 [1], which provides a graph-
ical interface for the development, analysis and management of hardware
specifications. Additionally to the tool RAT, RATSY also provides an au-
tomaton editor, which assists the developer with a nice interface to define
the specification of the hardware circuit, and the tool Marduk to generate a
circuit from the given specification.

3.1.1 Marduk

Marduk is based on the tool Anzu [25], and is mainly a port to Python,
using the software libraries NuSMV3 (implementing the conversion of LTL
formulas into Buechi automata) and CUDD4 (handling the operations on
BDDs).

Marduk takes as input a xml-file with the GR(1) specification and pro-
duces an output circuit in Blif or Verilog format (if the specification is re-
alizable). The synthesis algorithm is based on the work of Piterman et al.
[33].

In the following we will describe the different steps which have to be
passed in order to get a hardware circuit from a formal specification.

Specification

Due to the fact that we handle only GR(1) games (see section 2.3.7), the
specification (stored in an input file) is closely related to game structures

1http://rat.fbk.eu/ratsy
2http://rat.fbk.eu
3http://nusmv.fbk.eu/
4http://vlsi.colorado.edu/ fabio/CUDD/

19

CHAPTER 3. THEORETICAL APPROACH 20

and consists of the following parts:

• a list of the input signals or variables X (signals which are controlled
through the environment),

• a list of the output variables Y (signals which are controlled through
the system),

• the initial conditions for each player, Θe(X) and Θs(Y),

• the transition relation of the environment ρe(X ,Y,X ′),

• the transition relation of the system ρs(X ,Y,X ′,Y ′),

• the environment fairness conditions ϕge of the form G(F (ϕ(X ,Y))) (we
will denote them also as environment assumptions) and

• the system fairness conditions ϕgs of the same form as the environment
fairness conditions (will be denoted also as system guarantees).

Game

This file is being processed through NuSMV, which itself returns a game
which is stored in BDDs corresponding to the above parts of the specification
file.

Through the input and output signals we get the state space (2X∪Y),
which is a permutation of all possible values of all signals.

But this state space is not defined explicitly, but rather implicitly through
the both transition relations ρe and ρs (the two endpoints of each transition
are states).

The initial values from the specification file are transformed through
NuSMV into two sets of states denoting the possible starting point of the
winning strategy. If all signals have a corresponding initial value, only one
state would be in the conjunction of these two sets (Θe resp. Θs), but not
all signals have to be specified in the initial condition.

Additionally, the Fairness conditions are being translated to sets of state
sets, i.e. every fairness condition represents a set of states from which at
least one state has to be visited infinitely often and the resulting set is just a
set of these state sets. We want to refer to these sets as J1

1...m or assumption
state sets for the environment assumptions, resp. J2

1...n or guarantee state
sets for the system guarantees.

Winning Region and Strategy

The calculation of the winning region (R) and the winning strategy (t) is
explained in detail in [33]. In short, the winning region is calculated with a
symbolic fixpoint-calculation with three nested loops. It returns the winning

CHAPTER 3. THEORETICAL APPROACH 21

regions of the two players (system and environment), regardless of the initial
values. Right after this calculation the conjunction of the winning region of
the system and the initial state set is calculated. If this conjunction is not
empty, the specification is realizable and it denotes the initial values of the
Flip-Flops used in the generated circuit (see [6]).

The calculation of the winning strategy for the system uses some inter-
mediate values which are determined through the winning region calculation,
resulting in a non-deterministic strategy. That means that there might be
more than one possible output signal assignment for each state and each
possible input signal.

Output function and code generation

The next and last stage of circuit synthesis uses the winning region and
winning strategy only of the system. Its task is to determinize the strategy
(for each state and each allowed next input should be only one next output)
and pass it to the calculation of the output functions, as is explained in
section 2.4. The result is a circuit and can be written into a file in Blif or
Verilog format.

3.1.2 Interfaces

The idea is to replace the calculation of the winning region and the win-
ning strategy through another algorithm. Therefore we get the game graph
represented through the transition relations for the environment and the
system (ρe and ρs), the initial state sets (Θe and Θs) and the fairness sets
(J1 and J2), and we should deliver the winning strategy for the system (can
be nondeterministic) so that the output function generation can calculate
the resulting circuit. In Figure 3.1 you can see the function chain of Marduk.

3.2 Idea - Counting Construction
In [2] there was published the idea of reducing the GR(1) game into an one
pair Streett game or a paritiy game through applying a counting construc-
tion. This is similar of reducing a generalized Büchi automaton to a Büchi
automaton (see 2.2.4).

The idea behind this construction is to somehow count the visited as-
sumption sets resp. guarantee sets. We have n guarantee state sets (J2

1...n),
from which at least one state out of these n state sets has to be visited
infinitely often. The count itself will be stored for each state, therefore we
will expand the state space by adding boolean state variables to the existing
state space. Then we increment an guarantee counter only by one to the
value i (the count will be initialized with zero) along a transition only if
the next state (s′) of this transition is an element of the i-th guarantee set

CHAPTER 3. THEORETICAL APPROACH 22

Specification

Calculation of the winning region and strategy

Output function and code generation

File

//will be replaced

ρe, ρs,Θe,Θs, J
1 and J2

R0, t0

Figure 3.1: Function chain of Marduk

(s′ ∈ J2
i). When we start a play with the counter value 0 and visit some

states along the transitions, we know that if we reach a state where the
count is equal to n we have visited at least one state of each guarantee state
set. After this last state (where the counter is equal to n) we have to reset
it because we have to deal with infinite plays and so we can guarantee that
the token will visit all guarantees again and again because he has to pass
the individual guarantee states to increment the counter to finally reach a
state where the value is n infinitely often.

We can introduce a count similar for the assumptions, so we know if the
environment fulfills its specification and can therefore reduce the winning
condition to deal only with states where the two counts are equal to the
number of guarantees res. assumptions.

Formally, we have a game G = (V,E, ϕ) with ϕ =
∧m
i=1 ϕ

g,i
e →

∧n
i=1 ϕ

g,i
s .

This is not the exact definition of a GR(1) game but has nearly the same
winning condition (we only consider the state sets which have to be vis-
ited infinitely often and omit initial conditions or the violation of transition
relations). The formulas ϕg are denoting these state sets which have to
be visited infinitely often, as defined in section 2.3.7. For this game we
want to construct an equivalent one pair Street game G′ = (V ′, E′, ϕ′) with
ϕ′ = ϕ′ge → ϕ′gs with the following rules:

• The state space V ′ = V × {0, 1, . . . ,m} × {0, 1, . . . , n}

• The edge set E′ is the union of the following three sets:

CHAPTER 3. THEORETICAL APPROACH 23

a) ((v, i, j), (v′, i′, j′)) if (v, v′) ∈ E, i′ = i+ 1 if v′ ∈ J1
i+1 otherwise i′ = i,

and j′ = j + 1 if v′ ∈ J2
j+1 otherwise j′ = j.

b) ((v, i, n), (v′, 0, 0)) for 0 ≤ i ≤ m and (v, v′) ∈ E
c) ((v,m, j), (v′, 0, j′)) if j 6= n, (v, v′) ∈ E and

j′ = j + 1 if v′ ∈ J2
j+1 otherwise j′ = j

• The Streett pair is J ′1 = {(v,m, j) ∈ V ′ | j ∈ {0, . . . , n}}, J ′2 =
{(v, i, n) ∈ V ′ | i ∈ {0, . . . ,m}}, where J ′1 is the assumption state
set, denoted through ϕ′ge , and J ′2 is the guarantee state set, denoted
through ϕ′gs

This counting construction works as follows: At the beginning, both
counters are zero, each counter is incremented if the following state is a
member of the set J1

i+1 resp. J2
j+1. Since there is no order of the two

sets J1 or J2, you can build up the counting construction in an arbitrary
order as long as every member of J1 and J2 is considered (there is even
the possibility to try different orders and to look if some leads to simpler
transition relations). This is because we have to think in an infinite manner,
it doesn’t matter if we need 3 or 7 runs through a path to get the guarantee
counter to n, because we will visit this path infinitely many times. So,
when you visit a state with the assumption counter set to m (the number
of the assumptions), then on this way you have seen all assumptions, which
means the environment has fulfilled all requirements. Analogously, when
you visit a state where the guarantee counter is set to n (the number of
the guarantees), then you have visited all guarantees, so the system has
fulfilled all requirements. In order to provide the possibility to loop over
this construction, we need some resetting, which is defined as reset both
counters if we have seen all guarantees (j = n), but reset only the assumption
counter if we just have seen all assumptions (i = m). We could also view
the two counter seperately and reset in the case j = n only the guarantee
counter, and reset the assumption counter only when i = m. We have this
two possibilities because if we have seen all guarantees, it doesn’t matter if
the environment is able to fulfill its specification or not, since the system
is winning because the right side of the winning condition implication is
fulfilled. Of course, we must not reset the guarantee counter if its count is
lower than n although we would reset the assumption counter because it has
reached m, because then we would possibly find no winning strategy for the
system.

We want to note that applying the counting construction on a game
whith just one guarantee and one assumption is useless, because such a game
has already the form of an one-pair Streett game (the counting construction
would add only additional complexity).

Lemma 3.2.1 ([2]). There exists a winning strategy for G iff there exists a
winning strategy for G′.

CHAPTER 3. THEORETICAL APPROACH 24

The above definition of the counting construction slightly differs from
the definition in [2] in the way the reset is performed. In the construction
of [2] the reset is done by inserting a new edge from a state where the
reset should be done leading to the same state. But this leads to stuttering
because the game can remain at the same state to perform the reset, but
don’t update other signals. Consider a specification rule G(i → Xo), and
when by accident at this transition we will have this new reset transition,
we would violate this specification rule because we need two steps instead of
one tick. But this adaption doesn’t hurt the operation mode of the counting
construction, so the above lemma is also valid in this case.

To construct a parity gameG′′ = (V,E, ϕ) where ϕ : max(Inf(c(ρ))) is even.
additional to a parity function c, which is equivalent to the above GR(1)
game G, we can use the above definition of the counting construction (the
first two rules), and have to define the parity function c instead of the Streett
pair:

c :

2 if (v, i, n) for (0 ≤ i ≤ m)
1 if (v,m, j) for (0 ≤ j ≤ n− 1)
0 if (v, i, j) for (0 ≤ j ≤ n− 1) and (0 ≤ i ≤ m− 1)

This means, we give each state the parity 2, which has the guarantee

counter set to the number of guarantees (if we reach a state of this set,
we have seen all guarantees so far), we also want to denote these states
as green states. All states, which have the assumption counter set to the
number of assumptions, but the guarantee counter is lower than the number
of guarantees, get the parity 1 and are denoted by red states. All other states
have the parity 0 (grey states). The game graph remains the same. The
winning strategy for this parity game is the same as for the above Streett
game, because the winning conditions are equivalent. Consider the case
when the system wins because it is fulfilling its specification. Then in the
Streett game the system visits infinitely often at least one state of J ′2. In the
parity game the same is achieved when the highest priority seen infinitely
often is even, which would be 2 (=even) in our case. Since the green states
are equal to J ′2, this case is the same for the two games. The system can
also win, if the highest priority seen infinitely often is 0 (=even), which is
the case if only grey states are visited infinitely often. The grey states are
equal to the set V ′\(J ′1 ∪ J ′2). Therefore this case is equal to the Streett
game, because there is also a second chance for the system to win the game
if neither J ′1 nor J ′2 are seen infinitely often. In the last case, when only red
states are visited, the environment wins the parity games. This is again the
same case with the Streett game, because there the environment fulfills the
left side of the Streett winning condition implication, but the system cannot
fulfill the right side (if, then we would see again green states). Therefore we

CHAPTER 3. THEORETICAL APPROACH 25

A B C

J1
1 J1

2 Assumption set

J2
2 J2

1 Guarantee set

Figure 3.2: Example of a GR(1) game graph

A,0,0 B,1,1 C,2,1

A,0,2 B,0,0 C,0,0

Figure 3.3: Example of an applied counting construction

can redefine the above Streett game as a parity game with this 3 parities
and would get the same winning region for each player, but the winning
strategies may differ due to different game solving algorithms.

Example: We want to show a small example of how this counting con-
struction works. Consider a game graph with the three states A, B and C,
and the transition relation as depicted in figure 3.2. Further we have two
assumption state sets, J1

1 = {B} and J1
2 = {C}. Additionally two guarantee

state sets, J2
1 = {B} and J2

2 = {A}.
After applying the counting construction we get a graph as depicted

in figure 3.3. The state names consist of the name as before, the current
assumption counter and the current guarantee counter. We have to note
that the game graph after an applied counting construction would have
more states then those we have depicted in the above figure, e.g. (A,1,0)
to (B,1,1) or (C,1,0) to (A,1,0) because the counting construction calculates
each permutation of the two counter values. But since we initialize both
counter to zero, the 6 states from the above figure are the only which are
reachable.

3.3 Solving the new game
Since we have transformed our game into a Street game with one pair or
into a 3-color parity game, we now want to discuss some algorithms which

CHAPTER 3. THEORETICAL APPROACH 26

are solving them.

3.3.1 Streett Games

There are severeral possibilities to solve Streett games:
One of them is to transform the Streett game into a parity game and

solve this resulting game, which is shown by Buhrke et al. [10]. The trans-
formation is done by the use of the so called Index Appearance Record, a
concept which was first introduced by Gurevich and Harrington [21]. This
transformation can be done in time O(n22r log r) and with memory size r!r2,
where n is the number of states and r is the number of Streett pairs in the
acceptance condition.

Another possibility is to directly solve Streett games like Horn [23], where
he uses an algorithm which is based on an algorithm of Zielonka [44], which
will be discussed in the next chapter. The algorithm of Horn solves Streett
games in time O(r!n2r), again with n is the number of states and r is the
number of Streett pairs.

A slightly improved algorithm is from Piterman and Pnueli [32], where
they achieve runtimes ofO(mnrrr!). But the great advantage of this solution
is the possibility to easily implement this algorithm symbolically, which
results in a runtime of O(nr+1r!), where m is the number of transitions, r
and n denote the same as above. The algorithm is based on a recursive
fixpoint calculation.

3.3.2 Parity Games

The fastest algorithm currently known to solve parity games is the Small
Progress Measure algorithm developed by Jurdziński [26]. It achieves an
upper runtime bound of O(dm(nd)dd/2e), where n is the number of states,
m is the number of transitions and d is the maximum priority of the game
graph. This algorithm has a major drawback: it is not easy to implement
it symbolically, but there exists an approach from Bustan et al. [16], where
he suggests Algebraic Desicion Diagrams (ADDs) to represent the ranking
symbolically.

An algorithm, which can be implemented very easily in a symbolic man-
ner, is from Sohail and Somenzi [39], which itself is an extension of an
algorithm of Jurdziński et al. [27] to also calculate the winning strategy,
whereas the latter only calculates the winning region. Both algorithm have
a worst case runtime behaviour of O(2n), where n is again the number of
the vertices of the game graph.

Another algorithm, which is symbolically implementable, is derived of
the constructive proof from Zielonka [44], where he showed that parity games
are determined and both players have a memoryless winning strategy. The
derivation is from Grädel et al. [20], and has a worst case runtime of O(mnd)

CHAPTER 3. THEORETICAL APPROACH 27

with the above denotations. This algorithm as well as the one before are
defined recursively.

3.3.3 Discussion

Friedmann and Lange [18] compared different algorithms as well as some op-
timizations in a practical manner. They found out, that despite of the better
upper runtime bound of the Progress Measure algorithm from Jurdziński,
the recursive algorithms sometimes have better practical runtimes (e.g. 3
times faster), on other examples they can also be slower. So there is no
clear winner in the practical challenge, which gives us hope that the recur-
sive algorithms can perform quite well for our purposes. It is important to
mention that Friedmann and Lange only used enumerative implementations
for these comparisons. But since we are using symbolic implementations
results can look quite better.

Due to this results and the slightly difficult algorithm of Piterman and
Pnueli [32] for solving a Streett game, we decided to implement the last
two recursive parity game algorithms and compare them with the original
algorithm already implemented in the RATSY tool. Because there was no
effort for implementation, we also used the GR(1) synthesis algorithm of
Piterman et al. [33] for our algorithms comparison.

CHAPTER 3. THEORETICAL APPROACH 28

3.4 Recursive Algorithm for Solving Parity Games

3.4.1 Preliminaries

In the following we will further explain the algorithm of Jurdziński et al.
[27] with the extension of Sohail and Somenzi [39]. For deeper explanation
of the constructive proof of Zielonka [44], we refer to [20].

At first we want to state some key elements which are important for the
algorithm, deeper explanation and proofs can be found in [20, 44, 39, 27].

Subarenas

Recall a game arena A = (V0, V1, E) with the two vertex sets V0 and V1 and
the edge relation E as introduced in section 2.3.1, but in this case of parity
games enhanced with the parity function c : V → {0, 1, . . . , d}. We also call
this type of an arena a coloured arena.

Also we want to state again one important restriction: the graph has to
be bipartite, which means, each successor of a node belonging to Player 0
belongs to Player 1 and vice versa.

To get a game, we simply have to add a winning condition, which remains
the same for all parity games in this section and is as defined before:

ϕ : ρ ∈W ↔ max(Inf(c(ρ))) is even,

meaning Player 0 wins if the highest parity appearing infinitely often is even,
otherwise Player 1 wins.

Hence we can use the two terms game and arena in this section virtually
interchangeably.

For any subset U ⊆ V of V, the subgraph induced by U as

A[U] = (V0 ∩ U, V1 ∩ U,E ∩ (U × U), c|U)

where c|U is the restriction of c to U (not all parities of A have to be also in
U, also it may happen that the highest priority is lower than d).

There is also one important restriction: in a subarena every vertex has
to have a successor, as in a normal game arena, so not all subgraphs are an
arena. Also we want to mention that the bipartite property follows directly
because we do not introduce new edges. So a subarena together with the
above defined winning condition ϕ forms an ordinary parity game. To be
more general, we will often talk about a Player σ (σ ∈ {0, 1}), and his
opponent 1− σ.

We also want to define some abbreviations or functions: Given a parity
game G = (V0, V1, E, c) as defined before, we denote

• the union of the vertex sets V0 ∪ V1 by V (G),

CHAPTER 3. THEORETICAL APPROACH 29

v0 v1 v2

1 1 0

v7 0 1 v3

1 2 2

v6 v5 v4

Figure 3.4: Example of a parity game

• d(G) = max{c(v)|v ∈ V (G)} be the highest priority of all vertices of
the game G and

• Ad(G) = c−1(d) be the set of all vertices labelled by d.

Example: Look at the example game graph in Fig. 3.4, with vertices
v0, ..., v7 and the three colors 0, 1, 2 (depicted inside the nodes), circles
belong to Player 0 and boxes to Player 1.

The subgraph consisting of the three vertices {v4, v5, v6} together with
the edges between these nodes form a subarena, whereas this subgraph en-
hanced witch the vertex v7 does not, because v7 would be a dead end (has
no outgoing edge) in which it is not one in the whole arena.

Traps

A trap for a Player σ (called σ-trap) is subset U ⊆ V so that if the token
is on a node v ⊆ U , the Player σ cannot escape from this set U , because
all successors of nodes belonging to him are part of U , and at least one
successor of each node belonging to his opponent 1 − σ are also inside U .
So while Player σ cannot escape, Player 1− σ can always force the play to
stay in U .

Formally, this is defined as

• ∀v ∈ U ∩ Vσ, ∀v′ (v, v′) ∈ E : v′ ∈ U and

• ∀v ∈ U ∩ V1−σ,∃v′ (v, v′) ∈ E : v′ ∈ U .

Example: Consider again the game graph in Fig. 3.4: the subset {v4, v5, v6}
is a 1-trap because Player 1 is not able to leave this part of the game. An-

CHAPTER 3. THEORETICAL APPROACH 30

other, the subset {v0, v1, v2, v3, v7} is a 0-trap. And both traps are also
subgames as defined before.

Lemma 3.4.1 ([20]). For every σ-trap U of G, G[U] is a subgame.

Example: The subset {v4, v5, v6, v7} from the above figure is not a 1-
trap because from v7 there is an edge to a vertex outside the trap set but
it is required through the definition that all edges from a players vertex
are leading into the trap set. Another explanation is that Player 0 cannot
force the token to stay in the subset {v4, v5, v6, v7} because once the token
is on vertex v7 the only successor is vertex v0. And this subset forms no
subgame (as shown above). Conversely, we have a trap {v4, v5, v6} and this
is a subgame by definition.

Attractor

The attractor is the key element for calculating the winning regions of a
parity game.

It is a least fixed point operation and can be executed for both players,
therefore we are talking about a 0-attractor (for Player 0) resp. 1-attractor
(for Player 1).

The procedure is quite simple: We initialize the σ-attractor with any
set of starting vertices X and add them to the current attractor set. In the
next step we find those vertices of the current game that are not part of the
current attractor set

• and have an edge leading to one of the vertices that are already in the
attractor set if these new vertices belong to the Player σ,

• or if all edges leading to the current attractor set if these potential
new vertices belong to Player 1− σ.

Repeat this latter step until no new vertices can be found.
The result is the greatest subset of the game vertices, from which the

corresponding player can force the token to reach a vertex of the starting
set X in finitely many steps.

Formally, the attractor set for a Player σ can be defined inductively:
Start with the target set

X0 = X,

And add new vertices:

Xi+1 =Xi ∪ {v ∈ Vσ | ∃v′ : (v, v′) ∈ E ∧ v′ ∈ Xi}∪
{v ∈ V1−σ | ∀v′ : (v, v′) ∈ E ∧ v′ ∈ Xi}

We denote the attractor set for a Player σ starting with the set X by
Attrσ(X).

CHAPTER 3. THEORETICAL APPROACH 31

Example: Look at the game graph in Fig. 3.4: The 0-attractor for the
subset X = {v4, v5} is just enhanced by the vertex v6 because this vertex is
controlled by Player 0 and has an edge to v5 ∈ X, but the other adjacent
vertices (v7, v3) are controlled by the other player and have edges not only
to X. So the resulting attractor is {v4, v5, v6}

Attractor Strategies

During the execution of the attractor we also want to remember the way
how the starting set can be reached from within the attractor set, this is
called the attractor strategy.

The calculation goes in parallel with the attractor calculation: initially
start with an empty set and whenever a new vertex is added to the current
attractor set (that belongs to the corresponding player), add all transitions
leading to the current attractor set from this new vertex.

Formally, the attractor strategy for a Player σ can be defined inductively:
Start with an empty set

attr0 = ∅,

And add new vertices:

attri+1 = attri ∪ {(v, v′) | v ∈ Vσ ∧ v ∈ Xi+1 ∧ v′ ∈ Xi ∧ (v, v′) ∈ E}.

The set Xi is the attractor set of the i-th iteration as defined before.
We denote the attractor strategy for a Player σ starting with the set X

by attrσ(X).
We have to mention one important thing: According to the definition of

a strategy (see section 2.3.4), a strategy is a function that assigns to each
vertex at most one outgoing edge. The above attractor strategy is therefore
not a function, because it can assign more than one outgoing edge to a
vertex. So we have to do a kind of postprocessing: After the calculation of
the attractor strategy, we just have to go through all vertices and do the
following for every vertex: delete an outgoing edge as long as the number of
these edges is greater than one, or delete none if there is only one or none.

Lemma 3.4.2 ([27]). Let X ⊆ V be a subset of the vertex set V , then the
set V \attrσ(X) is a σ-trap in the game with vertex set V , for any Player σ.

If you take any subset of vertices of a game G, calculate the attractor
for any Player σ of this subset, divide G into two parts

• the calculated attractor set for this Player σ and

• everything else

then the Player σ cannot force the token into the calculated attractor set
if the token is outside of this set. This also means, that if you calculate an

CHAPTER 3. THEORETICAL APPROACH 32

attractor of some subset of a game and subtract this attractor set from the
whole game, the rest is also a subgame, or ∅ if every vertex is part of the
attractor.

Example: Considering the game graph in Fig. 3.4, we will start with the
subset X = {v4, v5}, the 0-attractor is {v4, v5, v6}, and the game without
these vertices is {v0, v1, v2, v3, v7}, which is a 0-trap as shown in an example
before.

The next lemma follows straigthly:

Lemma 3.4.3 ([44]). Let X ⊆ V be a σ-trap in the game G, then attr1−σ(X)
is also a σ-trap.

This means that an opponents trap can be extended through an attractor
calculation.

Example: Again in the game graph in Fig. 3.4, take the subset X =
{v5, v6}, this is also a 1-trap. Calculating the 0-attractor results in {v5, v6, v4},
and this set is also a 1-trap.

The following lemmas are important for the algorithm in the next section:

Lemma 3.4.4 ([27]). Let G = (A, c) be a parity game, let σ denote a player
(0 or 1) and Rσ(G) is the winning region of G for the Player σ. If X ⊆
Rσ(G), then Rσ(G) = Rσ(G\Attrσ(A,X)) ∪ Attrσ(A,X) and R1−σ(G) =
R1−σ(G\Attrσ(A,X)).

This means that we can compose the winning region for a specific player
through the union of the following two sets:

• the attractor of any subset of the winning region and

• the winning region of the same player of the smaller subgame (the
original game without the vertices of the above attractor vertices)

The winning region of the other player is equal to his winning region of the
smaller subgame.

Example: Look at the game graph in Fig. 3.5, obviously Player 0 can
win from the vertices v0 or v1, because Player 1 can move the token only
to v1 and if Player 0 moves it back forever, the token visits infinitely often
the two parities 1 and 2, so Player 0 wins. So we name X = {v0, v1} ⊆
Rσ. Calculating the 0-attractor of this set X results in the extension by
vertex v2, so Attrσ(A,X) = {v0, v1, v2}. If we separate this attractor set
of the game we get the subgame built by the vertices {v3, v4, v5, v6}. In
this subgame it is easy to see that Player 1 can win from v3 (choosing v6,
highest parity is 1), and Player 0 can win from v5 (choosing always v4 as
the successor, highest parity is 0), so R1−σ(G\Attrσ(A,X)) = {v3, v6} and
Rσ(G\Attrσ(A,X)) = {v4, v5}.
And through the above lemma we know that Rσ(G) = {v4, v5}∪ {v0, v1, v2}
and R1−σ(G) = {v3, v6}

CHAPTER 3. THEORETICAL APPROACH 33

v0 v1

1 2

v2 0 1 v3

0 0

1

v4 v5

v6

Figure 3.5: Example of a parity game

Lemma 3.4.5 ([27]). Let G = (A, c) be a parity game, d = d(G) be the
highest priority of the game G, D = Dd(G) be the set of all vertices with
the highest priority d and σ = d mod 2. Then, R1−σ(G\Attrσ(G,D)) ⊆
R1−σ(G). Also, if R1−σ(G\Attrσ(G,D)) = ∅, then Rσ(G) = V (G).

We take the highest parity of a game, assign it to a player (if it is even,
Player 0, if it is odd, we will use Player 1). We will then calculate the
attractor for that player of the set of vertices with the highest parity. Then
we know that the winning set of the opponent of the subgame resulting from
subtracting this calculated attractor set from the original game is a subset
of the opponents winning region of the whole game. Also if the opponent
cannot win within this subgame, the primary player would win from the
entire game G.

Example: Consider again Fig. 3.5, the highest parity ocurring is 2, so
we assign Player 0 to it. The vertex set denoted with this parity is {v1},
the 0-attractor is {v1, v0, v2}, the subgame without these vertices is built
through the vertices {v3, v4, v5, v6}. Because Player 1 wins this subgame
from the vertices {v3, v6}, we know that the Player 1 also wins the whole
game from this vertices, so {v3, v6} ⊆ R1(G).

Take a look at the parity game in 3.6, it is nearly the same as before,
but without the vertex v6. The 0-attractor of v1 is the same as calculated
before ({v0, v1, v2}), but now Player 1 has no chance to win in the subgame
{v3, v4, v5}, R1(G\Attr0(G,D)) = ∅, so Player 0 wins from each vertex in
the game G, R0(G) = V (G)

CHAPTER 3. THEORETICAL APPROACH 34

v0 v1

1 2

v2 0 1 v3

0 0

v4 v5

Figure 3.6: Example of a parity game

3.4.2 Algorithm for calculating the winning region

The actual algorithm to calculate the winning region of a parity game is
shown in the Algorithm 1. It takes a parity game G as input and delivers
the winning regions R0 and R1 for the two players.

Algorithm 1 winreg(G) [27]
1: if V (G) = ∅ then
2: return (∅, ∅)
3: end if
4: d = d(G)
5: A = Ad(G)
6: σ = d mod 2
7: (R0, R1) = winreg(G \ Attrσ(G,A))
8: if R1−σ = ∅ then
9: Rσ = V (G)

10: else
11: (R0, R1) = winreg(G \ Attr1−σ(G,R1−σ))
12: R1−σ = V (G) \ Rσ
13: end if
14: return (R0, R1)

Now we want to give a short explanation: The very first if-statement is
obvious, if we don’t have any vertices in our game, both winning regions (for
each player) are empty, this is our termination condition for the recursion.
In lines 4–6 we determine the highest priority in the game, the vertex set
corresponding with this priority and the associated player. In line 7 we

CHAPTER 3. THEORETICAL APPROACH 35

are performing the first recursion step due to Lemma 3.4.5 by calculating
the winning regions of the original game less the attractor of the Player
σ corresponding with the highest priority (starting at the highest priority
vertices). We are denoting this subgame as G′. If the other Player 1 − σ
has an empty winning region (R1−σ = ∅) in this subgame, the Player σ wins
from all vertices of G (lines 8 and 9) and we are done.

We also know from lemma 3.4.5, that the winning region of Player 1−σ
of this subgame is a subset of his winning region of the whole game G. We
are now at the beginning of line 11 and know that R1−σ of the game G′ is a
subset of the winning region R1−σ of G. So we calculate the 1− σ-attractor
of this subset R1−σ(G′), because we know from lemma 3.4.4 that the winning
region of the whole game is equal to the winning region of this subset for
Player σ (Rσ(G) = Rσ(G\Attr1−σ(G,X)) where X is the winning region
of the smaller game G′ of Player 1 − σ). After the next recursion step we
get the winning region Rσ for Player σ. And because parity games are fully
determined (each vertex is assigned to one of the both winning regions of
the two players, see chapter 2.3.8) we can calculate the winning region of
Player 1− σ easily by taking all vertices that are not in Rσ (Line 12).

Since every recursion step operates on a strictly smaller game (because
the attractor is not empty when there are still vertices in the current sub-
game, because we initialize the attractor with the highest priority vertices
from which there is at least one), the whole recursion is terminating.

Example: Consider the example parity game in Fig. 3.4. We will show
how the algorithm works and how the winning regions for both players are
calculated:

1. recursion step: winreg(G = {v0, ..., v7}) this is the main en-
trance:
Denoting some variables: d = 2, A = {v4, v5}, i = 0, j = 1
Calculating the attractor in line 7: Attr0(G, {v4, v5}) = {v4, v5_v6}
(the _ in the set denotes new added vertices in the attractor calculation)
call winreg with G\Attr0 = {v0, v1, v2, v3, v7}: winreg({v0, v1, v2, v3, v7}) (as
explained in recursion step 2)
this call returns R0 = ∅, R1 = {v0, v1, v2, v3, v7}
so R1 6= ∅ (if-statement in line 8)
Attr1(G, {v0, v1, v2, v3, v7}) = {v0, v1, v2, v3, v7_} (nothing added to the at-
tractor)
call winreg({v4, v5, v6}) (recursion step 3)
returns R0 = {v4, v5, v6}, R1 = ∅
Result : R1 = V (G)\R0 = {v0,v1,v2,v3,v7} ; R0 = {v4,v5,v6}

2. winreg(G = {v0, v1, v2, v3, v7})
d = 1, A = {v0, v1, v3}, i = 1, j = 0
Attr1(G, {v0, v1, v3}) = {v0, v1, v3,_v2, v7}

CHAPTER 3. THEORETICAL APPROACH 36

call winreg(∅)
returns R0 = ∅, R1 = ∅
so R0 = ∅
R1 = V (G) = {v0,v1,v2,v3,v7} ; R0 = ∅

3. winreg(G = {v4, v5, v6})
d = 2, A = {v4, v5}, i = 0, j = 1
Attr0(G, {v4, v5}) = {v4, v5,_v6}
call winreg(∅)
returns R0 = ∅, R1 = ∅
so R1 = ∅
R0 = V (G) = {v4,v5,v6} ; R1 = ∅

So the result of the whole game can be seen in the first recursion step:
Player 0 wins from {v4, v5, v6}, while Player 1 wins from the other vertices
{v0, v1, v2, v3, v7}.

3.4.3 Algorithm for calculating the winning strategy

Sohail and Somenzi [39] have enhanced algorithm 1 with the additional
calculation of the winning strategy of a given parity game. It takes again
a parity game G as input and delivers both winning regions (R0 and R1)
together with the winning strategy for both players (t0 and t1).

Algorithm 2 winstrat(G) [39]
1: if V (G) = ∅ then
2: return (∅, ∅, ∅, ∅)
3: end if
4: d = d(G)
5: A = Ad(G)
6: σ = d mod 2
7: (R0, R1, t0, t1) = winstrat(G \ Attrσ(G,A))
8: if R1−σ = ∅ then
9: Rσ = V (G)

10: tσ = attrσ(G,A) ∪ tσ ∪ {(u, v) | u ∈ A ∩ Vσ, v ∈ Rσ}
11: else
12: (R0, R1, w0, w1) = winstrat(G \ Attr1−σ(G,R1−σ))
13: R1−σ = V (G) \ Rσ
14: tσ = wσ
15: t1−σ = t1−σ ∪ attr1−σ(G,R1−σ) ∪ w1−σ
16: end if
17: return (R0, R1, t0, t1)

The only difference between the two algorithms is the enhancement by
strategy calculation, which is done in the lines 10, 14 and 15. So the core
operating mode remains the same as explained before.

CHAPTER 3. THEORETICAL APPROACH 37

Attrs (G,A) AG \ Attrs (G,A)

{(u,v) | u ϵ A ⋂ Vs , v ϵ Rs }G

s

1-s

1-s

Figure 3.7: Scheme of a game G

Consider line 10: In this state we have a game G that consists of three
parts, as depicted in figure 3.7:

• the set A including the vertices with the highest priority,

• the attractor for Player σ of A in the game G (Attrσ(G,A)) and

• everything else (G \ Attrσ(G,A)).

Because Player 1 − σ has no possibility to win from anywhere in G,
his winning strategy is empty (as returned by the recursive call in Line 7).
The Player σ has all possibilities to win and therefore we can connect the
winning strategies of the different parts through the union of the following
three strategies:

• The attractor strategy attrσ(G,A), which defines a strategy from a
state anywhere in Attrσ(G,A) into the set A in finitely many steps.

• The winning strategy tσ which defines a strategy inside the subset
G \ Attrσ(G,A) of G as calculated in the beforehand recursion.

• The last thing that is missing is the connection between A and the
whole game. Because we need a strategy out of the vertices of A that
are reached through the attractor strategy to close the circle to define
a strategy that never ends. It doesn’t matter to which subset of G
our transition(s) out of A are leading, because from anywhere in G a
strategy is defined, as long as every vertex in A has an outgoing edge.

CHAPTER 3. THEORETICAL APPROACH 38

Note that we don’t need (more exactly: we don’t have a possibility) to con-
nect (G \ Attrσ(G,A)) with Attrσ(G,A), because if there would be a vertex
controlled by Player σ in this subset that is leading into Attrσ(G,A), this
vertex would be part of the attractor (consider the definition of the attractor
strategy). So only Player 1 − σ can move the token into Attrσ(G,A), and
he has no other possibilities because Player σ wins from all vertices in the
current subgame.

Now we want to explain the second strategy calculation as it is defined
in the lines 14 and 15 in the case that both players have winning vertices:
Since the winning region for Player σ in G is the same as the recursive call in
line 12 returns (as explained in 3.4.2), we can also take the winning strategy
for Player σ from this recursive call as in line 14 defined.

The calculation of the strategy for Player 1−σ is a bit more complicated:
After the second recursion at line 12 we can separate the vertices of G

into the following four disjoint sets (as depicted in Fig. 3.8):

• the winning region of Player 1 − σ as determined through the first
recursion from which we know that it is a subset of the winning region
for Player 1− σ of the whole game G, denoted by R′′1−σ,

• the attractor of this winning region (Attr1−σ(G,R′′1−σ)) but without
the set R′′1−σ,

• the winning region of Player σ of the subgame G \ Attr1−σ(G,R′′1−σ)
(now denoted by R′σ) and

• the winning region of the other player of the subgameG \ Attr1−σ(G,R′′1−σ)
(now denoted by R′1−σ)

Now the calculation of the winning strategy for Player 1 − σ is obvious, it
consists of

• his winning strategy w1−σ of the subgame G \ Attr1−σ(G,R′′1−σ),

• the attractor strategy attr1−σ(G,R′′1−σ) and

• the winning strategy t1−σ calculated in the first recursion that connects
the vertices in R′′1−σ

The situation is similar as before, the token can stay in R′1−σ forever,
or Player σ moves it into Attr1−σ(G,R′′1−σ) (since the subgame G \ R′σ is a
σ-trap, he cannot move it into R′σ).

If the token finally reaches through the attractor strategy a vertex of
R′′1−σ, he can stay there forever because this is a valid subgame and Player
1− σ is also winning there and does not have to move out.

Example:

CHAPTER 3. THEORETICAL APPROACH 39

R′′1−σ Attr1−σ(G,R′′1−σ)

R′σ

R′1−σ

Figure 3.8: Different Subsets in of a game

Consider again the example parity game in Fig. 3.4. We will show now
the enhancement by the calculation of the winning strategy:

1. winstrat(G = {v0, ..., v7})
d = 2, A = {v4, v5}, i = 0, j = 1
Attr0(G, {v4, v5}) = {v4, v5_v6}
attr0(G, {v4, v5}) = {v6 → v5}
call winstrat({v0, v1, v2, v3, v7}) (as explained in recursion step 2)
returns R0 = ∅, R1 = {v0, v1, v2, v3, v7}, t0 = ∅, t1 = {v7 → v0, v1 → v2, v3 →
v0}
so R1 6= ∅
Attr1(G, {v0, v1, v2, v3, v7}) = {v0, v1, v2, v3, v7_}
attr1(G, {v0, v1, v2, v3, v7}) = ∅
call winstrat({v4, v5, v6}) (step 3)
returns R0 = {v4, v5, v6}, R1 = ∅, w0 = {v6 → v5, v4 → v5}, w1 = ∅
R1 = V (G)\R0 = {v0,v1,v2,v3,v7} ; R0 = {v4,v5,v6}
t1 =< t1 from line 7 > ∪ < attr1 from line 12 > ∪ < w1 from line 12 >:
t1 = {v7 → v0,v1 → v2,v3 → v0} ∪ ∅ ∪ ∅ ; t0 = {v6 → v5,v4 → v5}

2. winstrat(G = {v0, v1, v2, v3, v7})
d = 1, A = {v0, v1, v3}, i = 1, j = 0
Attr1(G, {v0, v1, v3}) = {v0, v1, v3,_v2, v7}
attr1(G, {v0, v1, v3}) = {v7 → v0}
call winstrat(∅)
returns R0 = ∅, R1 = ∅, t0 = ∅, t1 = ∅
so R0 = ∅
R1 = V (G) = {v0,v1,v2,v3,v7} ; R0 = ∅ ;
t1 =< attr1 from line 7> ∪ < t1 from line 7> ∪ <strategy out of A (line

CHAPTER 3. THEORETICAL APPROACH 40

10)>:
t1 = {v7 → v0} ∪ ∅ ∪ {v1 → v2,v3 → v0} ; t0 = ∅

3. winstrat(G = {v4, v5, v6})
d = 2, A = {v4, v5}, i = 0, j = 1
Attr0(G, {v4, v5}) = {v4, v5,_v6}
attr0(G, {v4, v5}) = {v6 → v5}
call winstrat(∅)
returns R0 = ∅, R1 = ∅, t0 = ∅, t1 = ∅
so R1 = ∅
R0 = V (G) = {v4,v5,v6} ; R1 = ∅ ; t0 = {v6 → v5} ∪ ∅ ∪ {v4 → v5} ;
t1 = ∅

The result of the whole game again can be seen in the first recursion
step: Player 0 wins from {v4, v5, v6}, while Player 1 wins from the other
vertices {v0, v1, v2, v3, v7}. The strategy for Player 0 is {v6 → v5, v4 → v5},
while for Player 1 is {v7 → v0, v1 → v2, v3 → v0}.

Consider the example game in figure 3.9. We have 6 vertices and 3
priorities (the priority is denoted inside of each vertex). The vertices denoted
by a circle are controlled by Player 0, the others by Player 1. It is very easy
to see that Player 1 has no chance to win this game, hence the winning
region for Player 0 consists of all 6 states. But Player 0 has two winning
strategies to win the game:

• the first goes through the vertices v4, v5, v3, v2, where we will see in-
finitely often the highest priority 2 which is even,

• and the second strategy that alternates between the vertices v0 and
v1, where the highest priority is 0 which is also even.

According to our definition of the attractor calculation, that an outgoing
edge from a new vertice is going to a vertex that is one step closer, we will
calculate the latter strategy.

We want now to show the complete algorithm execution:
1. winstrat(G = {v0, ..., v5})

d = 2, A = {v4, v5}, i = 0, j = 1
Attr0(G, {v4, v5}) = {v4, v5}
attr0(G, {v4, v5}) = ∅
call winstrat({v0, v1, v2, v3}) (is explained in recursion step 2)
returns R0 = {v0, v1, v2, v3}, R1 = ∅, t0 = {v1 → v0, v3 → v0}, t1 = ∅
so R1 = ∅
R0 = V (G) = {v0, ...,v5} ; R1 = ∅ ; t0 = ∅ ∪ {v1 → v0,v3 → v0} ∪ {v4 → v5}
; t1 = ∅

CHAPTER 3. THEORETICAL APPROACH 41

2. winstrat(G = {v0, v1, v2, v3})
d = 1, A = {v2, v3}, i = 1, j = 0
Attr1(G, {v2, v3}) = {v2, v3}
attr1(G, {v2, v3}) = ∅
call winstrat({v0, v1}) (step 3)
returns R0 = {v0, v1}, R1 = ∅, t0 = {v1 → v0}, t1 = ∅
so R0 6= ∅
Attr0(G, {v0, v1}) = {v0, v1,_v3, v2}
attr0(G, {v0, v1}) = {v3 → v0} (here we can only add this edge)
call winstrat(∅)
returns R0 = ∅, R1 = ∅, w0 = ∅, w1 = ∅
R1 = ∅ ; R0 = V (G) = {v0,v1,v2,v3} ; t1 = ∅ ; t0 = {v1 → v0} ∪ {v3 → v0} ∪ ∅
;

3. winstrat(G = {v0, v1})
d = 0, A = {v0, v1}, i = 0, j = 1
Attr0(G, {v0, v1}) = {v0, v1}
attr0(G, {v0, v1}) = ∅
call winstrat(∅)
returns R0 = ∅, R1 = ∅, t0 = ∅, t1 = ∅
so R1 = ∅
R0 = V (G) = {v0,v1} ; R1 = ∅ ; t0 = ∅ ∪ ∅ ∪ {v1 → v0} ; t1 = ∅

As you can see, the algorithm delivers the following strategy: t0 = {v1 →
v0, v3 → v0, v4 → v5}.

When you reconsider the definition of the priorities (we have denoted
all vertices, where all guarantees are fulfilled, with the priority 2, and all
vertices where we have neither seen all guarantees nor all assumptions with
priority 0), it becomes clear, that the system has the possibility to win the
game by only circulating over vertices with priority 0. This means that the
system is avoiding to fulfill all guarantees which usually is not the intention
of the hardware designer, the goal is that the circuit generated through the
winning strategy visits infinitely often all guarantees in order to do useful
work. This is still an open problem and can only be addressed by writing
complete specifications that don’t allow such traps. Further reading can be
done in [2].

CHAPTER 3. THEORETICAL APPROACH 42

v4 v2 v0

2 1 0

2 1 0

v5 v3 v1

Figure 3.9: Example game

Chapter 4

Implementation

4.1 Counting Construction
Since the game graph of the GR(1) game is defined as the conjunction of
the two transition relations (ρe∧ρs, see section 2.3.7) it is sufficient to apply
the counting construction only on one transition relation in order to be valid
on the whole game graph. Since the additional state variables, which are
needed to store the two counter, are only needed by the system to find the
right path to fulfill its specification, we will apply the counting construction
only on the system transition relation. In the following we will talk about
transitions, but we mean system transitions.

4.1.1 Extension of the state space

This is done in a simple way, we only have to add enough state variables
to the transition relation to store all m different values of the assumption
counter, exactly dlog2me variables. Similar we have to add dlog2 ne state
variables for the guarantee counter.

4.1.2 Inserting the edges

After we have extended our state space, we have to insert the edges to
implement the counting construction. This could be done very easily to loop
over all edges of the GR(1) game and to insert for each original edge new
edges in the new game for each possible count permutation. But because
we operate with states and transition relations in a symbolic manner, we
cannot iterate over single states or edges. Therefore we have to find a way
to work with sets of states or transitions. Elements of such sets should share
similar properties in an arbitrary way. An obvious possibility might be the
property: All members of a transition set are leading to states which belong
to the same assumption resp. guarantee state set.

43

CHAPTER 4. IMPLEMENTATION 44

So we take an individual assumption state set (J1
i) and an individual

guarantee state set (J2
k). Then we divide the set of all transitions into the

following four parts: The set of transitions, which is leading into

• both, the assumption and guarantee state set (both counters have to
be incremented),

• only to the assumption set (only the assumption counter has to be
incremented),

• only to the guarantee set (only the guarantee counter has to be incre-
mented),

• or to neither the assumption set nor the guarantee set (both counters
keep their values).

Note, that these 4 parts (subsets) are distinct and the union results in the
original transition set.

If we have a transition set, where all members are leading to the assump-
tion state set J1

i and to the guarantee state set J2
k , then we have only to

add to all these transitions the following counting transition:
assumption counter: i− 1→ i
guarantee counter: k − 1→ k
Similar to the other three cases es drafted above.

Such a composition can be done very easily symbolic: We have intro-
duced new state variables for both counters, we will denote them Ce for
the variables which hold the assumption counter, and Cs for the guarantee
counter. Since we work with transitions, we will define a counter transi-
tion for the assumption counter by ρca(i → j), where i is the source count
of the transition and j is the target count. This counter transition ρca is
defined over the current and next states of variables of Ce. We will do the
similar for the guarantee counter transition ρcg which is defined over Cs and
C′s. Since we have a system transition relation ρg(X ,Y,X ′,Y ′) and the two
counter transitions ρca(Ce, C′e) and ρcg(Cs, C′s), we can simply compose them
by conjunction because they have distinct state variables.

In order to generate the given assumption resp. guarantee sets for the
partitioning from above, we have to create all possible permutations of them.
This is done by two nested for loops, one is iterating over the different
assumption state sets, the inner one over the guarantee state sets.

We want to show the implementation in algorithm 3. With ρs(X ′Y ′ ∈ J)
we want to denote the subset of transitions which are leading into a state in
J .

In line 5 we take all transitions which are leading into the sets J2
k and J1

i

and add to them the counting transition of increment both counters. This

CHAPTER 4. IMPLEMENTATION 45

Algorithm 3 Implementation of the counting construction
1: result = 0
2: for i = 0→ m− 1 do {loop over the assumption sets}
3: for k = 0→ n− 1 do {loop over the guarantee sets}
4: result = result ∨
5: (ρs(X ′Y ′ ∈ (J2

k ∩ J1
i)) ∧ ρca(i→ i+ 1) ∧ ρcg(k → k + 1))∨

6: (ρs(X ′Y ′ ∈ (¬J2
k ∩ J1

i)) ∧ ρca(i→ i+ 1) ∧ ρcg(k → k))∨
7: (ρs(X ′Y ′ ∈ (J2

k ∩ ¬J1
i)) ∧ ρca(i→ i) ∧ ρcg(k → k + 1))∨

8: (ρs(X ′Y ′ ∈ (¬J2
k ∩ ¬J1

i)) ∧ ρca(i→ i) ∧ ρcg(k → k))∨
9: (ρs ∧ ρca(− → 0) ∧ ρcg(n→ 0))∨

10: (ρs(X ′Y ′ ∈ J2
k) ∧ ρca(m→ 0) ∧ ρcg(k → k + 1))∨

11: (ρs(X ′Y ′ /∈ J2
k) ∧ ρca(m→ 0) ∧ ρcg(k → k))

12: end for
13: end for
14: return result

is similar with the next 3 lines. In line 9 to 11 we are implementing the
reset is it was defined earlier. A note to line 9, we could add this transitions
outside of the for loops because it doesn’t depend on i or k, but it is easier
to keep it inside and it is negligible in terms of program runtime. The minus
in ρca(− → 0) means that the source state is not specified (is set to don’t
care), therefore all possible values would be considered.

4.2 Old RATSY synthesis algorithm
As we have already mentioned, we want to also use the original synthesis
algorithm for GR(1) games from Piterman et al. [33], which is already im-
plemented in the RATSY tool. We can do this without any further code
changes because the new game resulted by applying the counting construc-
tion is nothing else than a well defined GR(1) game. But now with only one
assumption set (all states where the assumption counter = the number of
assumptions) and one guarantee set. There are two reasons for that:

• We want to verify our implementation of the counting construction,
because when the new synthesis fails, and we have used a well known
and implemented algorithm, the only cause for failure can be in the
counting construction.

• The main difference of solving a game where the counting construction
is applied to one without, is the increase of the state space (which
means more variables in our BDDs and therefore greater BDDs with
more nodes) and therefore an increase in the manipulation time of
some particular BDDs, which is also very interesting.

CHAPTER 4. IMPLEMENTATION 46

4.3 Recursive algorithm

4.3.1 Attractor

Idea

This is the most important part of the new algorithm. As it is defined in
subsection 3.4, we start from some subset of the vertices of the game G and
add vertices to the current attractor set as long as new vertices are leading
into this current attractor set (at least one edge is leading into this attractor
set in the case that the corresponding player is controlling the considered
vertex or all edges from the considered vertex are leading into the current
attractor set in the case the other player is controlling this vertex).

One can imagine a simple program doing this as defined in algorithm
4. This algorithm takes the game G and the start set A and returns the
attractor set for player σ together with the attractor strategy t.

Algorithm 4 attrσ(G, I)
1: B = I
2: t = 0
3: while B is changing do
4: Bt = 0
5: for all {v ∈ Vσ | ∃v′ : (v, v′) ∈ E ∧ v′ ∈ B} do
6: Bt = Bt ∪ {v}
7: t = t ∪ {(w,w′) | (w,w′) ∈ E,w = v, w′ ∈ B}
8: end for
9: B = B ∪Bt

10: for all {v ∈ V1−σ | ∀v′ : (v, v′) ∈ E ∧ v′ ∈ B} do
11: B = B ∪ {v}
12: end for
13: end while
14: return (B, t)

Note that we build up a temporary vertex set Bt(t ... temporary) in line
6 which is added to B after the first for loop, because in the calculation of
the attractor strategy (line 7) we want to force that only edges into B are
added (to ensure that with each while loop step only edges to vertices with
a smaller rank are added). The states, from which one player can reach
a given set in one step regardless what the other player does, we will also
denote by the controlled predecessors (calculated in the lines 5 and 10).

In order to use this algorithm in our synthesis tool RATSY, we have to
address the following problems resp. incompatibilities:

• Since we are using symbolic implementation, we should not iterate
over individual vertices or edges.

CHAPTER 4. IMPLEMENTATION 47

ρe:
XY → X ′
0- → 0
00 → 1
11 → 0
1- → 1

ρs:
XYX ′ → Y ′
00- → 0
01- → -
10- → -
11- → 1

ρe ∧ ρs:
XY → X ′Y ′
00 → -0
10 → 1-
11 → -1
01 → 0-

Table 4.1: Two transitions functions and the conjunction of them

• We have no explicit distinction between system and environment states.

Considering the first problem, we have to deal with vertex or transition
sets instead of iterating over individuals.

Introduction of system states

Now we want to discuss the latter: The current framework for circuit syn-
theses used in RATSY is based on [33]. As defined in chapter 2, the game
structure doesn’t consist of two distinct sets of vertices or states, just only
of one type, which is defined as the current valuation of all state variables.
Whereas the transitions are well defined: ρe ∧ ρs.

Consider the small example in figure 4.1 of the game structure of a simple
arbiter with two variables, one input variable (request, r) and one output
variable (grant, g). Each state is labelled with the combination of these two
variables, the first digit means the current valuation of request, the latter
one of the grant. When we play a game, we place the token initially at
the initial state (e.g. state 00). The first decision has to be made by the
environment, which has two possibilities: either it can set its request signal
to 1 or to 0, because the state 00 has to successors (00 and 10), and the
request signal has two valuations in them. After that, the system has the
choice: But all successor states of 00 have 0 as the grant signal valuation,
therefore the system can only set grant to 0, and so on. The transition
functions are depicted in table 4.1 (a minus ’-’ as a valuation means the
corresponding bit can either be 0 or 1).

With this consideration, we can introduce system states in distinction to
environment states: We can leave the states as before (a current valuation
of all variables), just rename them environment states, because the envi-
ronment has the choice whenever the token will be placed on such a state.
After each environment state we will insert a system state for each possible
valuation of the input variables, which is also allowed by the environment
transition relation ρe and draw an edge from the environment state to all
these new inserted system states. Also we will have to draw the outgoing
edges for the system states according to the system transition relation ρs:

CHAPTER 4. IMPLEMENTATION 48

00 01

10 11

Figure 4.1: Example game structure of a simple arbiter

00 0 00

00 1

10 10 1 11 11 1

11 0

0101 0

Figure 4.2: Example game structure of a simple arbiter enhanced by system
states

For each possible valuation of the output variables of each system state we
draw an edge to the corresponding existing environment state (through ρs
we get the next variable valuations and those denote the next environment
state). The enhanced game structure in this way of figure 4.1 is depicted
in figure 4.2. A general description is given in figure 4.3. We start from
an environment state (X ,Y) which is followed by a system state defined by
the current valuation plus the next input valuation (X ,Y,X ′) then again
an environment state, defined by the subsequent valuation of the input and
output signals (X ′,Y ′).

XY XYX ′ X ′Y ′
ρe(X ,Y,X ′) ρs(X ,Y,X ′,Y ′)

Figure 4.3: General discription of the introduction of the system states

CHAPTER 4. IMPLEMENTATION 49

Now we can calculate the attractor of a given game. Therefore we don’t
have to rebuild the whole game graph to insert the system states. It is
enough to consider them in the following way: If we want to calculate for a
given set of environment states all system states where the system can force
the play into those environment states (system controlled predecessors), we
can do this by simply calculating ∃o′ : ρs∧S′e, where Se are a set of environ-
ment states and a primed environment state set means to swap the present
and the next part of all variables. Similar with o′, where we want to filter
out those states where at least on edge is leading to our desired target state
set. This formula can be read as follows: We want to reach all states where
at least one edge (∃o′) is leading to our target state set (Se) traversing along
the allowed system transitions (ρs).

When we want to go one step further, i.e. we want to calculate those
environment states, which are leading to our desired system state set, but
regardless what the environment does, we can calculate this set by ∀i′ :
¬ρe ∨ Ss. This formula can be read as follows: The environment reaches
the destination state set (Ss) or it does something wrong (i.e. it violates its
transition relation ρe), and this for all possible inputs (∀i′).

If we are looking for the controlled predecessors, where the environment
can force the play into a given state set, we simply have to exchange the
relations, sets and quantifiers as shown in the following table:

Player Destination states
System environment states coaxs(Se) = ∃o′ : ρs ∧ S′e
System system states coaxs(Ss) = ∀i′ : ¬ρe ∨ Ss
Environment environment states coaxe(Se) = ∀o′ : ¬ρs ∨ S′e
Environment system states coaxe(Ss) = ∃i′ : ρe ∧ Ss

Subgame

The last thing which is open for the complete attractor computation is to
determine the controlled predecessors of a state set in a given subgame.
We can define the subgame by the set of states which are occuring and the
corresponding transition functions. If we get the state sets as a parameter,
we can calculate the transition functions ρs and ρe by conjunction with the
state sets like

ρs : ρs ∧ Ss ∧ S′e
ρe : ρe ∧ Se ∧ Ss

By using these subgame transition functions together with the above
definition of the controlled predecessors (coax functions) we can work also
in subgames.

CHAPTER 4. IMPLEMENTATION 50

Complete attractor computation

No we can calculate the attractor set together with the attractor strategy
within a given subgame, similar to algorithm 4, but now inside the RATSY
framework. This adapted algorithm is shown in algorithm 5, which takes
the state sets of the considered subgame (Ss and Se), the transition relations
of the whole game (ρs and ρe) and the initial set from which the attractor
computation should start, also separated into environment and system states
(Is and Ie) as the input. It then delivers the attractor state set (separated
into system and environment states) and the attractor strategy only for
the system, because we are only interested in the winning strategy of the
system for the circuit synthesis and can omit the environment strategy due
to performance reasons.

Algorithm 5 attrσ(Ss, Se, ρs, ρe, Is, Ie)
1: Be = Ie
2: Bs = Is
3: ρs = ρs ∧ Ss ∧ S′e
4: ρe = ρe ∧ Se ∧ Ss
5: while Be ∨Bs is changing do
6: if σ == 0 then
7: Bt

s = ∃o′ : ρs ∧ S′e
8: else
9: Bt

s = ∀o′ : ¬ρs ∨ S′e
10: end if
11: Bt

s = Bt
s ∧ ¬Bs ∧ Ss

12: if σ == 0 then
13: t = Bt

s ∧B′e ∧ ρs
14: end if
15: Bs = Bs ∨Bt

s

16: if σ == 0 then
17: Bt

e = ∀i′ : ¬ρe ∨ Ss
18: else
19: Bt

e = ∃i′ : ρe ∧ Ss
20: end if
21: Bt

e = Bt
e ∧ ¬Be ∧ Se

22: Be = Be ∨Bt
e

23: end while
24: return (Bs, Be, t)

Short Description: We start with the calculation of the subgame tran-
sition relations, because they are the same for the whole attractor com-
putation. Inside the loop we start with the computation of the controlled
predecessor states leading into environment states, but we could do it also

CHAPTER 4. IMPLEMENTATION 51

in the other way round and start with environment states leading into sys-
tem states. In line 11 and 21 we have to shrink the recently calculated
predecessor states to be not in the current attractor set (B) but to be in the
subgame (S). In line 13 we calculate the strategy, only for player 0 (which is
the system), by determining the transitions going from the new states (Bt)
into the current attractor states (B) alongside the system transition relation
ρs. We end the loop when there are no new states which can be added to
the current attractor set. It is also important to note that this calculation
only works when only system states are predecessors of environment states
and vice versa (the game graph has to be bipartite), which is the case as
defined above.

4.3.2 Calculation of the winning region and strategy

Now as we have defined the attractor computation, the implementation of
the algorithm 2 is quite straightforward, because the algorithm deals mainly
with state sets, and these are interpreted internally in our RATSY frame-
work one to one through BDD variables, similar with transition relations.
Therefore we only have to exchange the union and intersection operators
of the algorithm by logical OR resp. AND operators on BDDs and we are
done. Since we now have a split up of the states into environment and sys-
tem states, we have to do all state set manipulations twice. The same is
valid for comparisons: if we want to check if a given state set is empty, we
just have to check if there are no environment states and if there are no
system states. To find out the highest priority of a given subset, we only
have to test the following:

• If states are existing in this subset with the guarantee counter equal
to the number of guarantees (green states), the highest priority is 2
and the state set associated to this priority is the state set consisting
of the green states.

• If this is not the case, we look if the subgame consists of red states,
then the highest priority is 1 and the associated state set is the set
consisting of red states.

• If this is not the case, then there can be only grey states in the sub-
game, therefore the highest priority is 0 and the associated state set
is the whole subgame.

4.4 Optimizations
After the calculation of the winning strategy for a given game, we want to
show some optimization possibilities, in order to accelerate the calculation

CHAPTER 4. IMPLEMENTATION 52

time, reduce the amount of memory needed for this calculation or to reduce
the complexity (=needed gates) of the resulting circuit.

In this section we only want to enumerate the different possibilities, we
will try some out on real synthesis examples in the next chapter.

We can divide these efforts roughly into two approaches:

• Reduction of the game graph to get smaller BDD sizes resulting in
faster operations on BDDs,

• try to accelerate BDD operations itself and

• reorder the BDDs.

optimize this calculation in respect to calculation time and needed mem-
ory, and also to yield a smaller result blif-file.

4.4.1 Simplification/Reduction of a game graph

Consider the input game graph which is defined by the specification of our
resulting synthesized circuit. After applying the counting construction, we
will get in the most cases a lot of new states, which can never be reached
(as shown in section 4.1). Apart of that, there might also be states which
are unreachable due to the specification itself (e.g. forbidden states).

So it might be useful if we try to shrink the game graph onto only those
states, which are actual reachable from the initial state set. We can do
this simply by calculating all reachable states (again a fixpoint calculation,
beginning with the initial states, and add all successors as long as there are
any to the result set), and combine this set with a logical AND operation
with the transition relation of the system, because only there the counting
construction is defined.

This results in a smaller game graph, but not necessarily into a smaller
BDD (in the sense of BDD nodes), because we could introduce additional
complexity.

But there is a special BDD operation defined and implemented in the
CUDD package, named restrict [15, 14].

The restrict operator takes two arguments (f and g), the function to
be simplified (f) and the function to which the first function should be
restricted to (g). The result is equivalent to f where g is true and should be
simpler than f . If it is not simpler, f will be returned. The result of restrict
should satisfy the following 1:

• if (f ∧ g = 0) then restrict(f, g) = 0

• if (f ∨ ¬g = 1) then restrict(f, g) = 1
1From http://www-verimag.imag.fr/~raymond/tools/bddc-manual/bddc-manual-

pages_10.html

CHAPTER 4. IMPLEMENTATION 53

• otherwise, it returns a function satisfying (f ∧ g) → restrict(f, g) →
(f ∨ ¬g)

Let f be the transition relation which we want to restrict and g be set
of all reachable states in our game, the the function restrict(f, g) would
return a transition relation which is the same inside all reachable states, but
it is undefined outside. Since we will never reach unreachable states, we
can apply the restrict operation on our transition relation and nothing bad
would happen. Furthermore we can also apply the same restrict operation
on all reachable states to our winning strategy right after the calculation of
it before we will pass it to the output function generation.

Another approach is to try the two possible implementations of the re-
set of the two counters in the calculation of the counting construction, as
mentioned in section 3.2. The first possibility is to reset the assumption
counter also when the guarantee counter will be resetted. The second one
is to perform the resets independently of each other. However, after some
example synthesis runs we found out that there is no difference (less than
one percent).

4.4.2 Accelerating BDD operations

After performing a profiling on the synthesis of some examples, we saw
that most of the running time is consumed by the attractor computation,
and there especially by the calculation of the controlled predecessors of the
environment state sets. This is clear, because in these two operations (lines
7 and 9 of algorithm 5) the system transition relation is used which is quite
huge through the applied counting construction. Beside the implementation
of the two quantifier operators ∃ and ∀ in CUDD, there is a third one, a
combined operator for ∃ and AND, which calculates ∃ : a ∧ b for two given
BDD variables a and b in one step. It is also optimized for the combination
of these two operations and therefore faster than a sequential calculation of
a ∧ b and applying ∃ onto this result.

Since we can express a ∀ operator with a ∃ operator, because
∀x ≡ ¬∃¬x,

we can rewrite the line 9 of algorithm 5 and write
Bt
s = ¬∃o′ : ρs ∧ ¬S′e

instead of
Bt
s = ∀o′ : ¬ρs ∨ S′e

4.4.3 Reordering

Since the main disadvantage for using BDDs is their heavy dependence on
the right variable ordering, CUDD provides two methods to do some reorder-
ing of the BDD variables to cut down the nodes of the individual BDDs:

CHAPTER 4. IMPLEMENTATION 54

• do some dynamic reordering which means that we give CUDD the
freedom to decide the optimal moments for reordering, which is not
influenceable by us, or

• give CUDD the explicit order to perform a reordering. This is useful
when we have some moments in the execution of our whole program
where we have done some calculations with BDDs and only need the
result BDD without some parts of it. It seems useful to perform this
type of reordering right after the construction of the counting con-
struction and after the calculation of the winning strategy.

We can also combine these two methods and use both of them, which
we have also tried in the next chapter.

Chapter 5

Comparison

In this chapter we want to try out the newly implemented algorithm (see
section 3.4) for solving the parity games on some examples. Instead of give
this comparison on some theoretical examples, we will present some real
world designs (resp. specifications), which are not too small, so they give a
good indication for some conclusion about the performance.

5.1 Case Study: Generalized Buffer
The generalized buffer (genbuf) was used earlier, also to build up GR(1)
games and synthesize its specification, see [6]. There is also a detailed def-
inition of the operation mode of the genbuf. Genbuf is a family of buffers
parameterized by a number s. It transmits data from s senders to two re-
ceivers. Data can be sent by the senders in an arbitrary order and will be
received by the receivers in round-robin order. The buffer implements a
handshake protocol with each receiver and each sender. Each sender uses a
signal to signalize the buffer that has a sending request, which the buffer will
answer by an acknowledge, similar on the receiver side. We will not further
explain the genbuf, because a complete specification already exists an we
are only interested on the synthesis performance with different algorithms.

In figure 5.1 we have depicted some parts of this specification for a genbuf
with one sender and two receiver.

5.1.1 Problem

But there is one great problem with this specification. The game graph built
upon this specification has dead ends, which means that there are states in
the graph which have no successor. And this violates the prerequisites of
the algorithm of Jurdziński [26] (see section 2.3 and 3.4).

Because the specification is built up mostly direct of LTL-formulas which
are not derived from complete Büchi automata, there may arise the following

55

CHAPTER 5. COMPARISON 56

[INPUT_VARIABLES]
StoB_REQ0;
RtoB_ACK0;
RtoB_ACK1;
:

[OUTPUT_VARIABLES]
BtoS_ACK0;
BtoR_REQ0;
BtoR_REQ1;
:

[ENV_INITIAL]
StoB_REQ0=0;
:

[ENV_TRANSITIONS]
G((StoB_REQ0=1 * BtoS_ACK0=0) -> X(StoB_REQ0=1));
G(BtoS_ACK0=1 -> X(StoB_REQ0=0));
G(BtoR_REQ0=0 -> X(RtoB_ACK0=0));
G((BtoR_REQ0=1 * RtoB_ACK0=1) -> X(RtoB_ACK0=1));
:
:

[ENV_FAIRNESS]
G(F(BtoR_REQ0=1 <-> RtoB_ACK0=1));
G(F(BtoR_REQ1=1 <-> RtoB_ACK1=1));

[SYS_INITIAL]
BtoS_ACK0=0;
BtoR_REQ0=0;
:

[SYS_TRANSITIONS]
G((BtoR_REQ0=1 * RtoB_ACK0=0) -> X(BtoR_REQ0=1));
G((BtoR_REQ0=0) + (BtoR_REQ1=0));
G(RtoB_ACK0=1 -> X(BtoR_REQ0=0));
G((BtoR_REQ1=1 * RtoB_ACK1=0) -> X(BtoR_REQ1=1));
G(RtoB_ACK1=1 -> X(BtoR_REQ1=0));
G((BtoR_REQ0=1 * BtoR_REQ1=1) -> FALSE);
:
:

[SYS_FAIRNESS]
G(F(StoB_REQ0=1 <-> BtoS_ACK0=1));
G(F(stateG12=0));

Figure 5.1: Part of the specification of genbuf

CHAPTER 5. COMPARISON 57

error=1

¬(l = 1 ∧ r = 0)

l = 1 ∧ r = 0

Figure 5.2: Example automata for the formula G(l → r) (the grey shaded
state is the accepted state)

problem: Consider the following two LTL formulas:

• G(a→ Xb)

• G(a→ X¬b)

Those two denote two transition relation formulas, and since the right
parts (Xb and X¬b) are contrary together, there will be no chance to fulfill
both formulas if we reach a state where a holds. Therefore there will be no
transition outside of states where a holds, therefore these states are dead
ends.

And it is very likely that this is the case with the specification of the
genbuf. Of course, not so obviously but in some nested form.

5.1.2 Possible solution

A possible solution might be to translate each LTL formula to an equivalent
Büchi automaton, complete it and rewrite it as a LTL-formula 1. Completing
means that we have to draw for each state and for each variable valuation
an outgoing edge if it is not existing. And these new outgoing edges will
lead to some new generated error state because they where not defined and
therefore forbidden. Consider the example formula G(l → r), which is well
defined for each valuation of the two variables l and r, except l = 1 and
r = 0, which is forbidden by the specification. Therefore we will introduce
a new state error = 1 which will be a successor of the above forbidden
transition, as depicted in figure 5.2.

Since we have two players we will introduce two error states, one for the
system and one for the environment. But in the follwing we will rename this
state to correct with the opposite valuation, correct=1 means everything ok,
correct=0 depicts this erroneous state.

Instead of converting all LTL formulas to Büchi automata, we will just
add to each transition relation formula the additional possibility to go to

1Translating a Büchi automaton to LTL with introduction of new state variables is
possible in general

CHAPTER 5. COMPARISON 58

this errorstate as well (for a formula G(ϕ) we write G((ϕ) ∨ correct = 0)).
So a player has two possibilities, he can fulfill the specification formula as
desired, or go to an error state. Because he can do this from each state, we
have no dead ends anymore, at least on transition to an error state exists.
But we have to add some rules to deal with an error state, because it should
be an objective to not enter it. So we will add the new transition condition
G(correct = 0 → X(correct = 0)) to define that once an errorstate is
entered, it can never be left. Also we need to add the fairness condition
GF (correct = 1) to state that fulfilling the specification is only possible
without entering the errorstate. It is also very important to define the
initial condition for the error signal with correct = 1. An extract of the
genbuf specification with this enhancements is depicted in figure 5.3. This
specification has no dead ends anymore.

5.1.3 First synthesis run

Now we are ready to try out the new synthesis algorithm on this example.
But the first result was a bit strange: It was very fast and the resulting cir-
cuit was very small. After deeper analysis we encountered, that the system
was going with its correct signal in the first tick to 0 and therefore indicated
that it is in an error state. But so it would loose the game because it was
not fulfilling its specification. Unless the environment is also violating its
specification. Since the environment will not violate its transition relation,
the system must force the environment somehow to violate its fairness con-
ditions. When we look at those environment fairness conditions at figure
5.1, there are two:

• G(F(BtoR_REQ0=1 <-> RtoB_ACK0=1)) and

• G(F(BtoR_REQ1=1 <-> RtoB_ACK1=1)).

The REQ signal is an output signal, the ACK signal is controlled by the envi-
ronment. This rules mean that sometimes (infinitely often) the environment
has to set its input signal equal to some output signal. After some simula-
tion runs on the synthesized circuit it turned out that the system was forcing
the environment to violate this both conditions. Since the environment has
to make the first choice and define the valuation of the input variables, the
system comes next. So it is very easy for the system to set the REQ signal
to the negated value of the ACK signal. Whatever the environment does, it
cannot win this game.

But why is this problem only now arising? When we look at the system
transitions at figure 5.1, there are some formulas over this variables, like

• G(((BtoR_REQ0=1 * RtoB_ACK0=0) -> X(BtoR_REQ0=1)))

• G(((BtoR_REQ0=0) + (BtoR_REQ1=0)))

CHAPTER 5. COMPARISON 59

[INPUT_VARIABLES]
StoB_REQ0;
:
ecorrect;

[OUTPUT_VARIABLES]
BtoS_ACK0;
:
scorrect;

[ENV_INITIAL]
StoB_REQ0=0;
ecorrect=1;
:

[ENV_TRANSITIONS]
G(((StoB_REQ0=1 * BtoS_ACK0=0) -> X(StoB_REQ0=1)) + X(ecorrect=0));
G((BtoS_ACK0=1 -> X(StoB_REQ0=0)) + X(ecorrect=0));
:
G((ecorrect=0) -> X(ecorrect=0));

[ENV_FAIRNESS]
G(F(BtoR_REQ0=1 <-> RtoB_ACK0=1));
:
G(F(ecorrect=1));

[SYS_INITIAL]
BtoS_ACK0=0;
:
scorrect=1;

[SYS_TRANSITIONS]
G(((BtoS_ACK0=1 * StoB_REQ0=1) -> X(BtoS_ACK0=1)) + X(scorrect=0));
:
G((scorrect=0) -> X(scorrect=0));

[SYS_FAIRNESS]
G(F(StoB_REQ0=1 <-> BtoS_ACK0=1));
:
G(F(scorrect=1));

Figure 5.3: Part of the specification of genbuf, enhanced by the introduction
of an error state

CHAPTER 5. COMPARISON 60

• G((RtoB_ACK0=1 -> X(BtoR_REQ0=0)))

So there are transition formulas which force the system, for example, to
leave the REQ0 signal high if the ACK0 signal is low. Therefore the system
cannot do with the REQ0 signal what it wants to, it has to fulfill these rules.
And then the environment can fulfill the above fairness conditions.

Due to the implementation of the synthesis algorithm, the winning strat-
egy is always a subset of the transitions of the game graph. Therefore it is
impossible for the system to violate its transition relation, it will always go
ahead with it.

But now we have enhanced the above system transition relations in the
following way:

• G((((BtoR_REQ0=1 * RtoB_ACK0=0) -> X(BtoR_REQ0=1))) + X(scorrect=0))

• G((((BtoR_REQ0=0) + (BtoR_REQ1=0))) + X(scorrect=0))

• G(((RtoB_ACK0=1 -> X(BtoR_REQ0=0))) + X(scorrect=0))

This means, that we have converted the transition relations to fairness con-
ditions, i.e. the system has now every freedom for the output variables. If
it does something wrong, it will enter an error state. It is not enough to
formulate the fairness condition for the system to stay in a nonerror state
forever. If it can force the environment to violate its part, it will win the
game, and we have seen, that it does so.

A possible workaround for this dilemma might be to transform all tran-
sition formulas, where these REQ signals are used, back to the original form
without the error state transitions. But we have done this because we had
dead ends in our game graph. In this case we had luck, and by bringing
this formulas into the old form, but leaving the other formulas dealing with
an error state, led again to a game graph without dead ends. Otherwise we
would had to transform all formulas to Büchi automata as we have described
above.

5.2 Case Study: AMBA AHB
ARM’s Advanced Microcontroller Bus Architecture (AMBA) defines the Ad-
vanced High-Performance Bus (AHB), an on-chip communication standard
connecting such devices as processor cores, cache memory, and DMA con-
trollers. Up to 16 masters and up to 16 slaves can be connected to the
bus. Access to the bus is controlled by an arbiter, which is subject of this
specification [5].

There exists also a well defined formal specification for GR(1) games for
this arbiter, as explained in detail in [5].

We will denote in the following this arbiter shortly by amba, followed by
a number denoting the number of clients which the arbiter has to deal with.

CHAPTER 5. COMPARISON 61

Again, when we used the amba-specification for circuit synthesis, we
encountered exactly the same problems as we had with the genbuf. We
had dead states, tried to workaround by the introduction of error states,
but the system found a way to force the environment to a violation of its
specification, also by going into an erroneous state. But in the end we got
a specification without dead ends in the same way as with the genbuf.

5.3 Experimental Results

5.3.1 Simplification of the BDDs

At first we want to try out how the simplification ideas, which we discussed
in chapter 4.4.1, are performing.

Therefore we synthesized both examples, an amba02 and a genbuf02.
For each synthesis run we tried out the two possible BDD reductions on the
system transition, after the counting construction was applied. Together
with the case that we don’t do any optimization. We denote this three cases
by

• none

• and

• restrict

Also we tried out to optimize the strategy before the output functions
will be created, we have therefore the same three possibilities as enumerated
above. We tried out the combinations of these optimization methods with
the specification of amba02 and with the algorithm 2. In the following table,
the first column (cc) denotes the BDD optimizations method for the counting
construction, the second for the strategy. The third column is the runtime
of the whole synthesis process (incl. output function generation) and the
last one is the filesize of the result blif-file. It is sorted by the runtime.

cc strategy runtime [s] filesize [KB]
and none 129 765
and and 131 740
restrict and 188 1700
none and 189 1700
and restrict 208 2100
none none 231 2100
restrict none 231 2100
restrict restrict 280 2700
none restrict 280 2700

We have done the same with the specification of the genbuf02:

CHAPTER 5. COMPARISON 62

cc strategy runtime [s] filesize [KB]
none none 39 1100
restrict none 42 1100
none restrict 45 1100
restrict restrict 48 1100
none and 62 872
restrict and 65 872
and and 84 604
and none 114 1400
and restrict 363 3400

As we can see, there is no optimal combination of the two optimization
methods. It seems that applying to the counting construction the restrict
operator and optimize the strategy with the and-operator is a good compro-
mise.

5.3.2 Reordering

Now we want to compare the different reordering methods as described in
section 4.4.3. There are the following possibilities for reordering:

• none,

• dynamic,

• static and

• both, dynamic and static

We have tried them out with the same algorithm, again with amba02
and genbuf02:

Reorder method specification runtime [s] filesize [KB]
none amba02 188 1700
dynamic 28 399
static 35 485
dynamic and static 45 498
none genbuf02 65 872
dynamic 4 109
static 16 214
dynamic and static 6 96

It turns out that reordering has a great impact on both the runtime
and the result file size. The complexity of the resulting circuit will be de-
creased through simpler BDDs because they are being converted more or
less directly into combinatorial logic. Dynamic reordering performs best
with both specifications, so we use it for the further comparisons.

CHAPTER 5. COMPARISON 63

5.3.3 Comparison of the different algorithms

Now we want to compare the following four algorithms:

• The already implemented synthesis algorithm without using the count-
ing construction ([33]), in the following denoted by ’pit’,

• the same algorithm but used with the counting construction, denoted
by ’pitcc’,

• the algorithm 2, denoted by ’jurd’ and

• the algorithm of Zielonkas proof of parity games from [20], denoted by
’ziel’.

In the following table we list different measurements of the synthesis of
this four algorithms with the specification of amba02:

algorithm runtime [s] filesize [KB] strat [s] mem [MB] pre
pit 2.65 32 1.23 170 644
pitcc 21 83 5.26 322 329
jurd 28 399 3.56 363 269
ziel 36 447 8.41 375 504

The columns denote:

• algorithm: the used algorithm

• runtime: the total runtime of the synthesis process

• filesize: the file size of the resulting blif file

• strat: the runtime of the calculation of the winning strategy, without
code generation

• mem: the maximum resident size of main memory needed for the
synthesis

• pre: the number of controlled predecessor calculations

In the following table we show the same, but for the specification of
genbuf03:

algorithm runtime [s] filesize [KB] strat [s] mem [MB] pre
pit 1 12 0.36 130 411
pitcc 8 54 3.64 272 117
jurd 15 414 1.1 353 134
ziel 40 504 2.2 377 183

CHAPTER 5. COMPARISON 64

Discussion

As we can see, the algorithm pit performs in both examples a magnitude
better than the others working with the counting construction, in the run-
time as well as the file size of the generated circuit. He has to calculate
more controlled predecessors, but since he works on BDDs with less vari-
ables, he works faster. Interesting is also, that the algorithm pit used with
the counting construction works in the complete process of synthesis faster
then jurd, but in terms of only strategy calculation he needs more time. It
seems that this can be caused by a simpler strategy of pitcc, which is also
apparent when we look onto the file sizes. Also we can see that the more
complex and bigger the BDDs, the more main memory is used for synthesis.

We have also tried to profile a synthesis run, which means to look how
often each function is called and how long does it take to return. We tried
it with the synthesis of amba02 with the algorithm jurd and all optimiza-
tions as noted above, and only the attractor computation (accumulated over
all function calls) took 4.15 seconds, the whole strategy computation 4.29
seconds. This as a bit more than in the table above due to the profiling over-
head. But we can see that nearly the whole time of the strategy calculation
is needed for the attractor computation.

Chapter 6

Conclusion

6.1 Summary
In this work, we addressed a great problem of synthesis of hardware circuits,
which is slow synthesis performance. We tried to reduce a GR(1) game with
different assumption and guarantee sets to one with just one guarantee set
and one assumption set, which then can be seen as a parity game with 3
priorities or as a Streett game with one pair. These games are very popular
in the science community, and great algorithms exist solving them. But
this game reduction, based on a counting construction, can only be made
at the price of a great state space increase. And it turned out, that the
eventually better algorithms for parity or Streett games could not beat the
old algorithm because of the increased complexity through the BDDs. We
showed in this work that with this simple method it is not possible to achieve
a performance increase.

6.2 Future Work
There is still great potential in this approach, and with the usage of better
algorithms or enhancements of the existing ones maybe there can be a real
performance increase.

One possibility might be to use the method which Jurdziński describes
in [27]. There he proofs that the decomposition of the whole game graph
into smaller SCCs (strongly connected components) could increase the per-
formance with an upper bound of nO(

√
n), where n is the number of vertices

in the game graph. Finding SCCs symbolically is also well researched, e.g.
in [19, 37, 4]

Or to use Streett game solvers as we have mentioned in section 3.3.1, e.g.
Piterman and Pnueli [32]. Or to try out the Progress Measure Algorithm
from Jurdziński [26], but symbolically, based on the work of Bustan et al.
[16].

65

Bibliography

[1] R. Bloem, R. Cavada, I. Pill, M. Roveri, and A. Tchaltsev, Rat: A tool
for the formal analysis of requirements, Computer Aided Verification,
2007, pp. 263–267.

[2] R. Bloem, K. Chatterjee, K. Greimel, T. Henzinger, and B. Jobstmann,
Robustness in the presence of liveness, Proc. Computer Aided Verifica-
tion, 2010, To Appear.

[3] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Koenighofer,
M. Roveri, V. Schuppan, and R. Seeber, RATSY — a new require-
ments analysis tool with synthesis, Proc. Computer Aided Verification,
2010, LNCS 6174, pp. 425–429.

[4] R. Bloem, H. N. Gabow, and F. Somenzi, An algorithm for strongly
connected component analysis in n logn symbolic steps, Formal Meth-
ods in Computer Aided Design (W. A. Hunt, Jr. and S. D. Johnson,
eds.), Springer-Verlag, November 2000, LNCS 1954, pp. 37–54.

[5] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer, Automatic hardware synthesis from specifications: A
case study, In Proceedings of the Design, Automation and Test in Eu-
rope, 2007, pp. 1188–1193.

[6] , Specify, compile, run: Hardware form PSL, 6th Interna-
tional Workshop on Compiler Optimization Meets Compiler Veri-
fication, 2007, Electronic Notes in Theoretical Computer Science
http://www.entcs.org/.

[7] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A.
Henzinger, and Barbara Jobstmann, Robustness in the presence of live-
ness, Lecture Notes in Computer Science 6174 (2010), 410–424.

[8] R. Bryant, Graph-based algorithms for Boolean function manipulation,
IEEE Transactions on Computers, vol. C-35, 1986, pp. 677–691.

[9] J. R. Büchi and L. H. Landweber, Solving sequential conditions by
finite-state strategies, Trans. Amer. Math. Soc. 138 (1969), 295–311.

66

BIBLIOGRAPHY 67

[10] N. Buhrke, H. Lescow, and J. Vöge, Strategy construction in infinite
games with Streett and Rabin chain winning conditions, Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 96)
(Passau, Germany), Springer, March 1996, LNCS 1055, pp. 207–225.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang, Symbolic model checking: 1020 states and beyond, Information
and Computation 98 (1992), 142–170.

[12] A. Church, Logic, arithmetic and automata, Proceedings International
Mathematical Congress, 1962.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking, MIT
Press, Cambridge, MA, 1999.

[14] O. Coudert, C. Berthet, and J. C. Madre, Verification of sequential
machines based on symbolic execution, Automatic Verification Methods
for Finite State Systems (J. Sifakis, ed.), Springer-Verlag, 1989, LNCS
407, pp. 365–373.

[15] O. Coudert and J. C. Madre, A unified framework for the formal veri-
fication of sequential circuits, November 1990, pp. 126–129.

[16] Orna Kupferman Doron Bustan and Moshe Y. Vardi, A measured col-
lapse of the modal µ-calculus alternation hierarchy, Lecture Notes in
Computer Science, vol. 2996, 2004, pp. 522–533.

[17] E. A. Emerson and C. S. Jutla, The complexity of tree automata and
logics of programs (extended abstract), Proc. Foundations of Computer
Science, 1988, pp. 328–337.

[18] Oliver Friedmann and Martin Lange, Solving parity games in practice,
Lecture Notes in Computer Science, vol. 5799, 2009, pp. 182–196.

[19] R. Gentilini, C. Piazza, and A. Policriti, Computing strongly connected
componenets in a linear number of symbolic steps, Symposium on Dis-
crete Algorithms (Baltimore, MD), January 2003.

[20] E. Grädel, W. Thomas, and T. Wilke (eds.), Automata, logics, and
infinite games: A guide to current research, Lecture Notes in Computer
Science, vol. 2500, Springer, 2002.

[21] Y. Gurevich and L. Harrington, Trees, automata, and games, Proc. 14th
ACM Symp. Theory of Comp. (San Francisco, CA), 1982, pp. 60–65.

[22] T. A. Henzinger and N. Piterman, Solving games without determiniza-
tion, Proc. 15th Conference on Computer Science Logic, 2006, pp. 395–
410.

BIBLIOGRAPHY 68

[23] F. Horn, Streett games on finite graphs, Workshop on Games in Design
and Verification (Edimburgh, UK), July 2005.

[24] B. Jobstmann and R. Bloem, Optimizations for LTL synthesis, 6th Con-
ference on Formal Methods in Computer Aided Design (FMCAD’06),
2006, pp. 117–124.

[25] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem, Anzu: A tool
for property synthesis, Computer Aided Verification, 2007, pp. 258–262.

[26] M. Jurdziński, Small progress measures for solving parity games,
STACS 2000, 17th Annual Symposium on Theoretical Aspects of Com-
puter Science (Lille, France), Springer, February 2000, LNCS 1770,
pp. 290–301.

[27] M. Jurdziński, M. Paterson, and U. Zwick, A deterministic subexpo-
nential algorithm for solving parity games, Proceedings of ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006 (Miami, FL), January
2006, pp. 117–123.

[28] O. Kupferman, N. Piterman, and M. Y. Vardi, Safraless composi-
tional synthesis, Eighteenth Conference on Computer Aided Verifica-
tion, 2006, LNCS 4144, pp. 31–44.

[29] O. Kupferman and M. Y. Vardi, Safraless decision procedures, Founda-
tions of Computer Science (Pittsburgh, PA), October 2005, pp. 531–
542.

[30] K. L. McMillan, Symbolic model checking, Kluwer Academic Publishers,
Boston, MA, 1994.

[31] N. Piterman, From nondeterministic Büchi and Streett automata to
deterministic parity automata, 21st Symposium on Logic in Computer
Science (LICS’06), 2006, pp. 255–264.

[32] N. Piterman and A. Pnueli, Faster solutions of Rabin and Streett games,
Logic in Computer Science, 2006, pp. 275–284.

[33] N. Piterman, A. Pnueli, and Y. Sa´ar, Synthesis of reactive(1) designs,
7th International Conference on Verification, Model Checking and Ab-
stract Interpretation, Springer, 2006, LNCS 3855, pp. 364–380.

[34] A. Pnueli, The temporal logic of programs, IEEE Symposium on Foun-
dations of Computer Science (Providence, RI), 1977, pp. 46–57.

[35] A. Pnueli and R. Rosner, On the synthesis of a reactive module, Proc.
Symposium on Principles of Programming Languages (POPL ’89),
1989, pp. 179–190.

BIBLIOGRAPHY 69

[36] M. O. Rabin, Automata on infinite objects and Church’s problem, Re-
gional Conference Series in Mathematics, American Mathematical So-
ciety, Providence, RI, 1972.

[37] K. Ravi, R. Bloem, and F. Somenzi, A comparative study of symbolic
algorithms for the computation of fair cycles, Formal Methods in Com-
puter Aided Design (W. A. Hunt, Jr. and S. D. Johnson, eds.), Springer-
Verlag, November 2000, LNCS 1954, pp. 143–160.

[38] S. Safra, On the complexity of ω-automata, Symposium on Foundations
of Computer Science, October 1988, pp. 319–327.

[39] S. Sohail and F. Somenzi, Safety first: A two-stage algorithm for LTL
games, 9th International Conference on Formal Methods in Computer
Aided Design (FMCAD’09), 2009, pp. 77–84.

[40] S. Sohail, F. Somenzi, and K. Ravi, A hybrid algorithm for LTL games,
Verification, Model Checking and Abstract Interpretation (San Fran-
cisco, CA), January 2008, LNCS 4905, pp. 309–323.

[41] W. Thomas, On the synthesis of strategies in infinite games, Proc.
12th Annual Symposium on Theoretical Aspects of Computer Science,
Springer-Verlag, 1995, LNCS 900, pp. 1–13.

[42] Wolfgang Thomas, Automata and reactive systems, 2003, Lecture Note.

[43] Moshe Y. Vardi, From church and prior to psl, Lecture Notes in Com-
puter Science, vol. 5000.

[44] W. Zielonka, Infinite games on finitely coloured graphs with applications
to automata on infinite trees, Theoretical Computer Science 200 (1998),
no. 1-2, 135–183.

	Vorlage_Masterarbeit_Final_ausgefüllt
	da

	Vor- und Zuname, Angabe des bereits abgelegten akad:
	 Grades wie z:
	B:
	 BSc: Hans Jürgen Gamauf, BSc

	Titel und Untertitel der Arbeit: A Faster GR(1) Synthesis Algorithm
	zur Erlangung des akademischen Grades: zur Erlangung des akademischen Grades
	Masterarbeit: MASTERARBEIT
	Masterstudien: [Masterstudium Telematik]
	eingereicht an der: eingereicht an der
	Technischen Universität Graz: Technischen Universität Graz
	akad:
	 Grad, Vor- und Zuname der Betreuerin/des Betreuers: Univ.-Prof. Roderick Bloem, Ph.D.

	Betreuer/in: [Betreuer]
	Institutsname: Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie
	optionales Feld (Zweitbetreuer/in, Fakultätsnr:
	, etc):

	Graz, Monat und Jahr: Graz, Juli 2017
	Di: [Diplom-Ingenieur]

