
Georg Nebehay

A Deformable Part Model
for One-Shot Object Tracking

DOCTORAL THESIS

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Horst Bischof
Graz University of Technology

Co-Supervisor

Univ. Lect. Dr. Roman Pflugfelder
Austrian Institute of Technology

Examiner

Ass. Prof. Dr. Matej Kristan
University of Ljubljana

Graz, Austria, Sep. 2016

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared

sources/resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources. The text document uploaded to TUGRAZonline is

identical to the presented doctoral thesis.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline

hochgeladene Textdokument ist mit der vorliegenden Dissertation identisch.

Ort Datum Unterschrift

Abstract

As cameras become ubiquitously available, the need for analyzing video sequences on-
the-fly arises. An important class of applications requires algorithms that are able to
continuously track an a-priori unknown object of interest as it makes its way through
the scene. This problem is difficult, as no training data can be used beforehand to create
an object model. In this thesis, this problem is referred to as one-shot object tracking.
Extensive literature about the topic of one-shot object tracking is available, still the
performance of state-of-the-art one-shot tracking algorithms on realistic sequences leaves
much to be desired. In this thesis the viewpoint is taken that the deformation of objects
of interest acts as a major obstacle for achieving satisfactory results.

While approaches have been proposed in the literature for dealing with this challenge,
they either are too simple to be of use for complex objects or require a considerable amount
of training data to work. However, in one-shot object tracking there is by definition only
one training example available. More training examples can be collected from the video
sequence in an online manner, however this process is error-prone and can lead to the
undesired effect of accumulating errors so that the object model is no longer a good
representation of the object of interest.

In this thesis, a deformable part model for one-shot object tracking is proposed, aiming
at providing a robust model for deformable objects that does not rely on model updates
to work. Instead, it operates on the basic assumption that object parts are connected
by mediating parts, like an arm might connect a hand to the torso of a person. One
advantage of the proposed model is the independence on the actual parts representation.
We suggest to leverage the synergies between two very different methods for establishing
parts correspondences. These methods consist on the one hand of static correspondences,
which are based on training information only. This type of correspondences is robust,
but unable to adapt to new object appearances. A complementary method can be found
in adaptive correspondences, which are computed from a very recent appearance of the
object. Adaptive correspondences lack the robustness of static correspondences, but can
provide necessary accuracy.

To assess the usefulness of the proposed model in practice, we conduct a rigorous
evaluation on a dataset of 77 sequences. This evaluation includes a comparison to state-
of-the art tracking algorithms, the effect of employing different part representations
as well as additional experiments that reveil insights about internal workings of the
proposed model. We find that the proposed deformable part model gives a significant
performance improvement over the state-of-the art.

iii

Kurzfassung

Das Bedürfnis, Videosequenzen automatisiert auszuwerten, nimmt im selben Maße zu
wie die Verfügbarkeit von Kameras. Ein wichtiger Anwendungstyp benötigt Algorithmen,
die ein zuvor unbekanntes Zielobjekt kontinuierlich verfolgen können. Dieses Problem
ist deswegen schwierig, weil keine Trainingsdaten verwendet werden können, um im
Vorhinein ein Objektmodell zu erstellen. In dieser Dissertation wird dieses Problem One-
Shot-Tracking genannt. Obwohl es unzählige Publikationen zu diesem Thema gibt, lassen
die Ergebnisse des Standes der Technik auf realistischen Sequenzen sehr zu wünschen
übrig. In dieser Dissertation wird der Standpunkt eingenommen, dass die Deformation
von Zielobjekten das größte Hindernis darstellt, um zufriedenstellende Ergebnisse zu
erzielen.

Es gibt zwar Ansätze in der Literatur, diese Herausforderung zu meistern, diese sind
jedoch zu simpel für komplexe Objekte oder benötigen eine beträchtliche Menge an
Trainingsdaten. Es gibt aber per Definitionem in One-Shot-Tracking nur ein einziges
Trainingsbeispiel. Zwar können aus der Videosequenz weitere Trainingsdaten extrahiert
werden, dieser Prozess ist allerdings fehleranfällig und kann zu dem unerwünschten
Effekt der Fehlerakkumulierung führen, so dass das Objektmodell keine gute Repräsen-
tation des Zielobjekts mehr darstellt.

In dieser Dissertation wird ein Modell für One-Shot-Tracking vorgeschlagen, das auf
keinerlei Modellaktualisierung beruht. An deren Stelle tritt die Annahme, dass ein-
zelne Objektteile durch vermittelnde Objektteile verbunden sind, so wie ein Arm die
Hand und den Torso einer Person verbindet. Ein Vorteil des vorgeschlagenen Modells
ist die Unabhängigkeit von der Art, wie die Teile repräsentiert werden. Wir schlagen
vor, die Synergien zwischen zwei verschiedenen Methoden zur Herstellung von Teil-
korrespondenzen auszuschöpfen. Diese Methoden bestehen zum Einen aus statischen
Korrespondenzen, die auf Trainingsdaten beruhen. Dieser Korrespondenztyp ist ro-
bust, kann aber keine neue Ansichten des Objekts aufnehmen. Eine komplementäre
Methode dazu sind adaptive Korrespondenzen, die anhand einer aktuellen Ansicht
des Objekts berechnet werden. Adaptiven Korrespondenzen fehlt die Robustheit von
statischen Korrespondenzen, sie können aber eine höhere Genauigkeit liefern.

Um den Nutzen des vorgeschlagenen Modells zu überprüfen, führen wir eine hieb- und
stichfeste Evaluierung auf einem Datensatz mit 77 Sequenzen durch. Diese Evaluierung
beinhaltet einen Vergleich mit dem Stand der Technik, den Vergleich von unterschied-
lichen Teilmodellen sowie zusätzliche Eperimente, die Einsichten in die Interna des
vorgeschlagenen Modells enthüllen. Wir stellen fest, dass das vorgeschlagene Modell
eine signifikante Verbesserung gegenüber dem Stand der Technik bringt.

iv

Acknowledgment

Obtaining a PhD degree is not for the faint of the heart. It requires personal commitment,
endurance and austerity, but even more important is the support of people providing
advice, support and comfort. I would like to take this opportunity and express my deepest
gratitude to Roman Pflugfelder, who paved the way on which I began my journey by
giving me the opportunity to participate in his research ideas and, more importantly,
believing in that I could eventually provide a contribution. The constant support I
received was more than I could have ever asked from a supervisor, opening my eyes
to new directions and helping me understand when I had taken a wrong turn. Having
arrived at my destination and looking back at the time we spent together fulfills me with
a touch of nostalgia, as I clearly see it as a time not only of professional achievements, but
also as a time of personal transformation, in which Roman assumed an important role.

I would also like to thank Horst Bischof for acting as the main supervisor during
this work and for sharing valuable gems from his vast knowledge. Markus Kommenda
provided me with excellent working conditions and kept me free from distractions, which
cannot be taken for granted and cannot be praised highly enough. I would also like to
thank Branislav Micusik who spotted TLD at ICCV and set the course for my future
work. Dan Shao provided extremely valuable emotional support during difficult times
before submissions deadlines, maybe one day there can be even two tigers on a mountain.
More thanks for endless discussions, lunch-time getaways and chess go out to Gustavo
Fernandez, Andreas Zoufal, Csaba Beleznai, Christoph Weiß, Peter Gemeiner, David
Schreiber, Cristina Picus, Michael Rauter, Andreas Opitz, Markus Hofstätter and the rest
of SVT, even though some of them are suckers for proprietary software. This is a good
moment to thank the open source community for sharing their tools.

The members of the EPiCS project have been a great source of inspiration for me,
opening the door to international collaborations and broadening my horizon. Special
thanks to Peter Lewis for introducing me to the power of vi, without which everything
would certainly have been less exciting. Similarly, participating in the organization of
the VOT challenge was great fun for me and I would like to thank Matej Kristan, Luka
Čehovin, Jiří Matas, Aleš Leonardis, and Tomáš Vojíř (I hope I got all the diacritics right)
for this special experience. Hopefully there will be many more successful challenges.

More special thanks go out to Helmut Karg, who subconsciously convinced me to
study computer science. I hope that one day he finishes his BSc. Last but not least I
would like to thank my parents for providing me with a comfortable chaise longue for
my office and the fire protection department of Techgate for not complaining about it.

v

Notation

Symbol Meaning

‖.‖ L2 norm
α rotation
b bounding box
c descriptor
d dimension
δ deformation threshold
f measure
γ ratio threshold
h vote
θ threshold
m correspondence
µ center/mean
p distance
s scale
t current iteration
v displacement vector
x part
φ valid configuration
ω consensus
ψ overlap
C candidate descriptors
D dissimilarity
H transformation matrix
I image

M number of
correspondences

Symbol Meaning

N number of parts
P reference descriptors
R rotation matrix
T sequence length
Z reference part configuration
I indicator function
L part correspondences
LA adaptive correspondences
LS static correspondences
Lω consensus set
GT Ground Truth
LK Lucas-Kanade method
NN Nearest Neighbor
ALG Algorithmic output
CMT Consensus-based

Matching and Tracking
GHT Generalized Hough

Transform
OPE One-Pass Evaluation

ECDF Empirical Cumulative
Distribution Function

SNNDR Second Nearest Neighbor
Distance Ratio

DPMOST Deformable Part Model for
One-Shot Object Tracking

RANSAC Random Sample Consensus

vi

Contents

Abstract iii

Kurzfassung iv

Acknowledgment v

Notation vi

1 Introduction 1

1.1 Definition of One-shot Object Tracking . 1
1.2 Applications . 4
1.3 Challenges . 6
1.4 Contribution . 8

2 Overview about One-Shot Tracking 11

2.1 Prediction . 11
2.2 Feature Extraction . 13
2.3 Localization . 19
2.4 Model Update . 22
2.5 Conclusion . 24

3 Part-based Object Models 25

3.1 Global Object Model in TLD . 25
3.2 Promises and Challenges of Part-Based Object Models 28
3.3 Basic Part Models . 29
3.4 Constellation models . 32
3.5 Star-Shaped Part Models . 34
3.6 HoughTrack . 36
3.7 Conclusion . 38

4 Deformable Part Model for One-Shot Object Tracking 40

4.1 Motivation . 40
4.2 Definition and Properties . 41
4.3 A Clustering Perspective . 48
4.4 Conclusion . 52

vii

Contents

5 Part Correspondences 54

5.1 Descriptors and Distance Measures . 54
5.2 Matching . 56
5.3 Optic Flow Estimation . 59
5.4 Static-Adaptive Correspondences . 60
5.5 Formulation of CMT . 63
5.6 Conclusion . 67

6 Evaluation 68

6.1 Measures . 68
6.2 Evaluation Protocols . 79
6.3 Conclusion . 82

7 Experiments 83

7.1 Analysis of CMT . 83
7.2 Quantitative Results . 86
7.3 Qualitative Results . 91
7.4 Conclusion . 93

8 Conclusion 98

8.1 Summary . 98
8.2 Future Work . 99
8.3 Outlook . 101

List of Figures and Tables 103

Publications 105

Bibliography 106

viii

Chapter 1

Introduction

Visual object tracking research has gone a long way since its seminal use in military
applications (Wax, 1955; Kalman, 1960). Due to the ubiquitous availability of cameras and
computing power, more people than ever are striving to employ object tracking methods
in more peaceful usage scenarios. While the demand for out-of-the-box tracking solutions
remains high, object tracking algorithms have failed to stand up to their promise of
delivering accurate, robust and resource-aware results. Object tracking is still considered
to be one of the major unsolved problems in computer vision. This introductory chapter
discusses the very basics of one-shot object tracking, a sub-area of tracking.

1.1 Definition of One-shot Object Tracking

According to Maggio and Cavallaro (2011), the general goal of a tracking algorithm is
to estimate the state of one or more objects of interest in a video sequence composed
of images I1, . . . , IT. The state is an abstraction of the output of the algorithm, which
may consist of points, ellipses, axis aligned bounding boxes, rotated bounding boxes,
polygons or silhouettes (Yilmaz et al., 2006)1. Different state models represent objects
at different levels of granularity. For instance, the silhouette of an object is a more fine-
grained representation than an ellipse the object was fitted into. From an application’s
point of view, the most accurate state representation is a pixel-wise segmentation of the
object of interest. In practice however, virtually every single published tracker employs
bounding boxes as the representation of state for reasons of simplicity. A bounding
box b is a rectangle defined by its top left corner and its width and height. While this
representation is simple and easy to use, it is clear that most objects encountered in real-
world scenarios are essentially non-rectangular. This leads to the undesired situation
that either certain object parts protrude beyond the bounding box or background objects
extend into the bounding box. In spite of these effects, we still adopt the ubiquitous use
of bounding boxes as general tracking output to remain comparable to the state of the
art. Still, most of the content in this work is also applicable to other state representations.
We will now narrow down the general definition of Maggio and Cavallaro to a more
specific branch of object tracking that we focus on in this work.

1 On an even more abstract level, the state may consist of general properties of the object, e.g. visibility,
size, etc.

1

Chapter 1 Introduction

Figure 1.1: In one-shot object tracking, no prior information about the object of interest is available
except for the initialization region in the first frame of the video sequence. Images are from Klein
et al. (2010) and Santner et al. (2010).

Many authors have studied how to track classes of objects, for instance cars (Koller
et al., 1994) or humans (Gavrila, 1999; Shotton et al., 2011). In these scenarios, it is possible
to incorporate prior knowledge about object of interests into the tracking algorithm. For
instance, one cue that could be used in car tracking is the license plate, which provides a
means of uniquely identifying an object. However, when the object class is unknown
beforehand, class-specific cues are no longer available and more general assumptions
have to be made that ideally apply to all object classes equally well. For example, Lucas
and Kanade (1981) employ the asssumption that the object of interest changes its position
from frame to frame only slightly. Another popular assumption made by Comaniciu
et al. (2000) is that objects are uniquely identifiable by their color composition. Clearly,
it is much harder to find assumptions that work for each and every object compared to
assumptions that need to work for an object class only. At the same time, the tracking of
unknown objects is of particular interest, as a solution to it would have a great impact to
both the scientific community and practitioners.

For a long time authors have not bothered to employ a distinct term to distinguish
between different variants of the object tracking problem and referred to them collectively
as visual object tracking. More recently, authors have adopted the term model-free object
tracking2 to distinguish tracking of unknown objects from the case when a model can be
obtained beforehand (model-based), for instance by making use of training data. This
term however is the source of perennial confusion, as every tracking algorithm requires
some kind of object model. To avoid this unpleasant situation, we introduce in this work
the term one-shot object tracking, borrowed from one-shot object learning (Fei-Fei et al.,
2006). The term one-shot object tracking is meant to convey the idea that exactly one
training example of the object is available in the form of the initial bounding box b1 in
the first frame I1 of the video sequence. Examples for this are shown in Figure 1.1, where
a person, a circuit board and a ball are selected as the object of interest. The variety in
this small selection of objects already hints at the difficulty of finding a common object
model that is suitable for all of these objects.

In multi-target tracking the relationship between objects of interests can be modeled,

2 Wang and Nevatia (2013) refer to this as category-free tracking.

2

Chapter 1 Introduction

for instance as proposed by L. Zhang and Maaten (2013). Multi-target tracking leads to a
potential improvement of tracking results and we do note that the topic of multi-target
tracking is a fruitful one. However, we restrict the discussion to single-target tracking
to keep the scope of this work within reasonable bounds. In single-target tracking
exactly one object of interest must be designated for tracking. This does include the cases
when multiple other, possibly distracting objects are present in the video sequence. It
is interesting to note that in principle every single-target tracker can be converted to a
primitive multi-target tracker by instantiating the tracking algorithm independently for
each object of interest. In this case however, all interaction between object of interests is
ignored.

The third aspect where we apply a restriction to our discussion refers to the question
when the algorithmic output is performed. An offline tracking algorithm is allowed
to first process all images I1, . . . , IT from a video sequence and only then output of
the object location for each individual frame. This allows for instance for the use of
optimization algorithms (Andriyenko et al., 2012) where certain constraints such as
trajectory smoothness and visual similarity are enforced simultaneously. While there are
certainly many fruitful applications for offline tracking algorithms, we are interested in
the more general class of tracking algorithms that output the tracking result immediately
after being presented with an image. In this work, we refer to this class of trackers
as online3 trackers. To appreciate the difference between offline and online tracking
algorithms, imagine a scenario where an unmanned aerial vehicle (UAV) should follow
an object of interest by means of visual information. Clearly, the UAV needs to react
immediately to an updated position of the object of interest, making the application of
an online tracking algorithms necessary. One can generalize from the extreme cases of
offline and online tracking to algorithms that delay the output for a number of frames.
In an offline tracking algorithm the output is delayed by T − t frames, where T is the
number of frames in a video sequence and t is the number of the current frame. In
online tracking algorithms the output is delayed by exactly 1 frame. While this class of
semi-online trackers is worth investigating, we do not pay any attention to them in this
work.

Based on the above discussion, we restrict the broad object tracking definition of
Maggio and Cavallaro to one-shot single-target online tracking with bounding boxes:

Given an image sequence I1, . . . , IT and an initial bounding box b1 in frame I1

containing an object of interest, the aim is to find in each frame It the bounding box

bt that maximizes overlap with the object of interest while minimizing overlap with

all other image areas.

In the remainder of this work, we will use the term one-shot (object) tracking as a
shorthand for this definition. The algorithmic loop that all one-shot tracking algorithms
follow in principle is shown in Algorithm 1.

3 This property has also been referred to as causal tracking (Kristan et al., 2016).

3

Chapter 1 Introduction

Algorithm 1 One-shot Tracking Loop
Input: Images I1, . . . , IT, bounding box b1

1: initialize(I1, b1)

2: for t = 2, . . . , T do

3: bt ← track(It)

4: print(bt)

5: end for

One question that creators of one-shot tracking algorithms like to push aside (Can-
nons, 2008) is how to obtain the initial bounding box b1. Typically it is assumed that
the initialization is performed by some external mechanism, for instance by a manual
selection or by a different algorithmic component, such as an object detector. We note
that it is desirable to investigate more principled ways of initializing one-shot tracking
algorithms and exclude this topic from our discussion as well.

1.2 Applications

An immediate question that arises from the discussion so far is what one-shot tracking
algorithms are actually good for. Clearly, a general solution for the problem of one-shot
tracking from today’s viewpoint is unrealistic. The existence of such a solution would
imply that one-shot object tracking algorithms could work in each and every setting,
using whatever cheap image sensor is available, even in cases when the object of interest
becomes extremely small. Still, there are a number of cases where one-shot object tracking
algorithms work sufficiently well. These cases have in common that the object of interest is
a more or less unique object in the scene and that no extreme viewpoint variations occur,
such as abruptly changing from a frontal view of the object to a top view of the object. In
this section, we present a selection of these cases mixed with interesting inquiries for
applications that the author of this work has received over a timespan of multiple years.
We will present these cases in a subjectively sorted order by decreasing realizability.
Examples illustrating these use-cases are shown in Figure 1.2.

One desire that arises frequently whenever video data is recorded is to keep an object
of interest in the center of the video. This task, usually carried out by human camera
operators, is well suited for being tackled by one-shot tracking algorithms. For instance,
by equipping a camera with one-shot tracking software and appropriate motors, a speaker
wandering around on a stage might be kept centered by adjusting the camera orientation
based on information from a tracking algorithm. Such a scenario is well-suited for one-
shot tracking algorithms, as there is a clearly defined, unique object of interest and the
scene remains roughly constant. Similarly, when people engage in conference calls, they
are mandated to remain in front of the camera so that they can be seen by participants.
Tracking their faces allows for adjusting the camera accordingly. Also note how important
the online property of one-shot tracking algorithms is in this case.

4

Chapter 1 Introduction

Automatic camera adjustment UAV navigation Automated surveillance

Figure 1.2: Example applications of one-shot object tracking. Images are from Graether and
Mueller (2012) and Ferryman and Ellis (2010).

Huge efforts are currently undertaken to make self-driving cars feasible. A self-driving
car is expected to handle dangerous situations on the road at least on the same level of
awareness as a human driver. These situations include for instance unexpected crossings
of pedestrians, other cars that are behaving abnormally or animals on the road. In
all of these cases it is necessary to track the objects that might cause potential harm.
Furthermore, it is especially important to be able to track objects that have not been seen
during an offline training phase, as the number of objects that can appear on a road is
extremely high and any tracking failure might have fatal consequences.

A recurrent task in movie production is the addition of special effects into a recorded
scene. One-shot object tracking can alleviate the tedious procedure of manually anno-
tating objects of interests that need to be enhanced. Typically, these effects are meant
to be applied between two cuts, keeping the difficulties arising from different camera
viewpoints at bay. These techniques might also be implemented in popular video hosting
platforms, allowing for performing these actions in a browser. An advantage in these
scenarios is that the user can interact with the tracking software and is able to correct
errors manually in a semi-automated fashion. It has to be noted however that this task
might require a more fine-grained estimation of the object position than a bounding box,
such as a segmentation.

While researchers have worked for a long time on making robots autonomous, this topic
has gained increasing attention recently due to the advent of affordable unmanned aerial
vehicles (UAVs). These UAVs can be equipped with cameras, allowing for exploiting
the video data in a multitude of ways. One way of doing so is to perform video-based
flight stabilization. In this application, a non-moving target on the ground is defined that
the UAV can use as a reference for maintaining a stable position. In more sophisticated
scenarios, the target can be allowed to move, making it possible for UAVs to follow objects
of interests and to record them or interact with them as necessary. The recording of
moving objects of interest is especially interesting in the context of action videography,
where athletes as well as hobbyists keep looking for new ways of recording themselves
from unorthodox camera angles.

An ever re-occurring use case of object tracking lies in automated surveillance. Studies

5

Chapter 1 Introduction

have shown that supervisors of surveillance systems are unable to work effectively for an
extended timespan such as hours (Smith, 2002). The outlook of improved surveillance
performance and reduced costs has led to a considerable interest in automating this task.
However, the biggest obstacle for making one-shot tracking algorithms work effectively
in this scenario is arguably the abrupt transitions and appearance changes when the
object of interest moves from one camera to another. For example, despite excellent
camera coverage, the terrorists responsible for the Boston Marathon bombing in 2013
were identified exclusively by inspecting the video footage manually. While motivated
differently, researchers in biology have begun to use tracking techniques to analyze the
behaviour of animals such as mammals or birds in their natural habitats. This scenario
suffers however from similar difficulties.

This small selection of use cases gives an insight into the vast possibilities that one-shot
tracking can offer. Clearly, there are many more interesting areas of applications, such as
augmented reality, games and medical imaging, but we stop the discussion at this point
and turn to the question what the common challenges to all of these problems are.

1.3 Challenges

The goal of designing a one-shot object tracking algorithm is to come up with an object
model that captures the essence of the object of interest and allows for localizing it. In
the next chapter, we will give an overview about different object models that have been
proposed in the scientific literature. Before that, we explore in this section common
challenges encountered when devising models for one-shot object tracking. As a start,
we present an introductory quote to this topic (Box, 1979):

All models are wrong, but some are useful.

While this statement emerged from the discussion of statistical models, it can equally
well be applied to the design of object models for one-shot tracking, where the guiding
principle should be to come up with a model that works instead of a model that is
correct. This quote can also be interpreted as a hint to find the right balance in the level
of generality of the object model. We will explore now certain aspects of what can happen
if the generality is out of balance.

Fundamental problems arise in one-shot object tracking if the model that is used does
not represent the actual object adequately. The first reason for this might be an object
model that is too general. An object model that is too general will easily fit to other objects
in the scene. Imagine for instance the task of tracking a red ball. It is straightforward
to design an object model that exclusively responds to red colors. Such a simple object
model will fit the red ball perfectly well, however it will also fit to any other red object in
the scene, for instance the red shirt of a child playing with the ball. In the object tracking
community, the challenge when properties expected of the object of interest are exhibited
by other objects in the scene has been referred to as clutter.

6

Chapter 1 Introduction

Object correctly recognized

Model responds
to clutter

Object not
recognized

Object space Background
ModelObject

Figure 1.3: Relationship between the object of interest, the object model and other objects in the
scene (clutter).

To stop the model from fitting the child’s shirt, but still keep fitting the red ball, one
might have the idea to incorporate the shape of the ball into the object model, which
from now on responds only to objects that are both red and round. By doing so, we have
decreased the model generality and made it more specific. But what if the child decides
to squeeze the ball? What if the child occludes a part of the ball? What if another red
ball enters the scene? In these cases, the model is no longer general enough to capture
the essence of the object of interest.

This situation is illustrated schematically in Figure 1.3, where the light gray rectangle
refers to the appearance of all imaginable objects in videos. The dark gray blob refers to
all possible appearances of the object of interest (e.g. the ball) and the white blob refers
to the appearances of all objects that the model responds to. The overlapping area of the
two blobs hence are the appearances of the object that the model can recognize and left
and right of it are missed object appearances and clutter, respectively. A more general
model therefore means that the white area gets larger, while a more specific model means
that the white area gets smaller. At the same time, objects that occupy a large space in the
diagram exhibit a lot of appearance variations, while objects occupying a small area can
be considered more stable. While this figure oversimplifies things slightly, it illustrates
that one-shot object tracking is a very difficult problem, as no clue is available beforehand
about the complexity of the object of interest. Aside from this general consideration, we
will now turn to specific circumstances that make objects more difficult to track.

The main visual challenge in one-shot object tracking are appearance variations. These
appearance variations come about by a multitude of factors, which we will broadly group

7

Chapter 1 Introduction

into two categories. In the first category we find extrinsic appearance changes. These
changes refer to differences in the relationship between the object of interest and other
objects in the scenes, of which the camera itself is probably the most important one,
as it is always present. As soon as either the object or the camera is moved, the object
appears in the image in a transformed way. Some of these transformations are relatively
easy to handle. Translation, scaling and in-plane rotations4 merely change the geometry
of the projected image. As soon as out-of-plane rotations can occur, unseen visual object
data can become available. At the same time, some object parts might disappear due
to self-occlusion. Even a rigid object might appear in a deformed way due to the variety
of possible transformations. Another challenge in this category are partial occlusions,
which occur whenever parts of the object are not visible due to other objects in the
scene. Other extrinsic appearance changes can be caused by different global or local
illumination. The former can typically be handled by employing suitable features that
compensate for different levels of brightness. The latter, however, can have much more
severe effects and it is currently not clear how to handle these changes in a principled
manner.

The second category contains intrinsic appearance changes. These changes are caused
by the object itself, typically by non-rigid movement. Many object classes can exhibit
this kind of movement, such as humans or animals when moving arms and legs. Also
inanimate objects can show articulated motion, for instance vehicles with movable parts
such as doors or wheels. Similar to the extrinsic deformation of the object, the intrinsic
deformation causes changes in the appearance of the object that are very hard to predict
and present major obstacles for creating robust one-shot tracking algorithms. In summary,
we go so far as to say that the deformation of objects is the major source of errors in one-
shot object tracking. In addition to the challenges presented here, there are numerous
other challenges that make object tracking a difficult task, such as artifacts caused by the
recording process. For a comprehensive enumeration of these challenges we refer the
reader to the surveys mentioned in Chapter 2.

1.4 Contribution

This work aims at making several contributions to the field of one-shot object tracking
that we will present in the subsequent chapters. The principal contribution of this work
addresses the main challenge presented in the previous section, namely the deformation
of objects. There are a number of approaches in one-shot tracking that have attempted
to deal with this challenge by breaking down the object model into multiple parts. We
will discuss these part-based methods in Chapter 3, where we distinguish between basic
part-based models, constellation models and star-shaped models. For each model, we

4 In a 3D-coordinate system with the camera pointing down the z axis, an in-plane rotation refers to
a rotation of the object around the z axis, while the rotation around the x or y axis are referred to as
out-of-plane rotations.

8

Chapter 1 Introduction

will discuss strengths and weaknesses.
Chapter 4 then introduces our contribution, an extension to the star-shaped object

model that allows for dealing with deformations within the model in a more princi-
pled manner than what was previously possible. We refer to this contribution as the
Deformable Part Model for One-Shot Object Tracking (DPMOST). While the DPMOST
rests on simple assumptions, a rich set of properties arises from them. We will discuss
these properties, show how the DPMOST can be made invariant to scaling and rotation
and show its deep connection to agglomerative clustering techniques. As the DPMOST
is independent on the actual method that is used for establishing part correspondences,
we discuss this topic at length in Chapter 5. Here, we take the view that existing corre-
spondence methods either lead to static correspondences or adaptive correspondences.
We argue that these two types are fundamentally different from each other. Static cor-
respondences are based on certain information, such as descriptors found in the initial
object bounding box. This information is likely to be correct and should not be updated
with new information. On the other hand, adaptive correspondences are computed from
frame to frame, thus delivering an up-to-date view of the object of interest at the cost of a
high uncertainty. While static correspondences are able to provide robustness, adaptive
correspondences are able to provide accuracy. We propose a way of maintaining the
advantages of both of these paradigms in the form of static-adaptive correspondences.
Additionally, we show how static correspondences can benefit from the disambiguation
of reference descriptors. This technique is another contribution of this work and refers
to the question how an initial estimate of correspondences can be used to obtain a more
accurate solution. To evaluate our proposed concepts in practice, we formulate the
one-shot tracking approach CMT with the DPMOST being at its core.

To compare a tracking algorithm to the state of the art in a fair manner, a common
evaluation framework is needed. in Chapter 6 we first discuss relevant evaluation meau-
res and methodologies and shed a new light on the overlap measure that is heavily used
in computer vision in general and propose a potential alternative. Recently, authors of
one-shot tracking algorithms began to employ a method for visualizing tracking results
that we call success plots. We show an interesting connection of success plots to em-
pirical cumulative distribution functions (ECDFs), leading to a new interpretation of
the commonly performed operation of computing the area under the curve of a success
plot. We provide a rigorous experimental evaluation to assess the performance of CMT
and thus the plausibility of our contributions. This experimental evaluation contains a
detailed analyis of the internals of the DPMOST, quantitative results on a dataset as large
as 77 sequences, as well as qualitative results. Lastly, Chapter 8 provides a summary of
our work and discusses potential future research directions. We close with an assessment
of the current state of one-shot object tracking and propel ideas how to advance the field
in general.

Before we present the individual contributions in detail, we give a broad overview
about the field of one-shot tracking literature in the upcoming Chapter 2. This chapter is

9

Chapter 1 Introduction

meant to provide an introduction to the unfamiliar reader with common concepts used
by one-shot tracking researchers to deal with the various challenges encountered during
the exciting task of tackling one of the most exciting problems science has to offer - how
to make a computer see like a human.

10

Chapter 2

Overview about One-Shot Tracking

While tracking is a relatively young field of study, the tracking literature is massive.
Researchers have undertaken attempts to provide overviews about object tracking ap-
proaches in three qualitative surveys by Yilmaz et al. (2006), Cannons (2008) and X.
Li et al. (2013), of which Cannons arguably provides the most comprehensive and at
the same time the most underrated one. While all of these surveys aim at providing
a broader overview about the topic of visual object tracking, many, if not most of the
presented concepts are applicable to one-shot object tracking as well. In addition to
these qualitative surveys, large-scale experiments have been undertaken recently by Wu
et al. (2013), Kristan et al. (2013) and Smeulders et al. (2014) to assess the performance of
different one-shot tracking algorithms quantitatively. Last, but not least, there exists a
book dedicated exclusively to object tracking (Maggio and Cavallaro, 2011).

In general, designers of one-shot tracking algorithms focus on four central algorith-
mic aspects, as shown in Figure 2.1, which the following four sections are devoted to.
Section 2.1 discusses the prediction step that provides an estimate of the object position
based on previous information. In Section 2.2 the feature extraction step is covered that
identifies and retrieves the relevant information from the image. Section 2.3 deals with
the localization step, in which the final position of the object is determined. Finally, Sec-
tion 2.4 explores the update step, stating how new information can be incorporated into
the object model to adapt it to new appearances of the object. The concatenation of these
four steps is referred to as the object model.

2.1 Prediction

Even before the actual image content is analyzed, it is possible to tell something about
the position of the object of interest by making certain assumptions about the object
motion. For instance, if the object of interest was observed to move at constant speed into
a single direction, it might be reasonable to assume that in the next frame this motion is
continued, making it possible to predict the object position. We will now briefly describe
prediction techniques that have been used in the tracking context.

The Kalman Filter (Kalman, 1960) provides under some very strong assumptions an
optimal way of estimating the hidden state of a system (for instance the position of an
object) when only noisy measurements are available (such as a localization performed on

11

Chapter 2 Overview about One-Shot Tracking

Input

Prediction Feature extraction Localization Model update

Output

Figure 2.1: The tracking pipeline that is found in virtually every single one-shot tracking algorithm.
The concatenation of these steps is referred to as the object model.

image data). The main steps of the Kalman Filter are shown in Figure 2.2a, of which we
focus here only on the prediction step, where the new state of the system is predicted by
using a motion model of the target. In the Kalman Filter, a general assumption is that all
variables stem from Gaussian distributions. The estimate for the current state is defined
as

xt = Axt−1 + But−1, (2.1)

where xt−1 is the state from the previous iteration and A is the deterministic model that
relates the previous state to the current state. B and u allow for modeling control input,
which is usually ignored in computer vision applications. The nature of A as a matrix
restricts the prediction to a linear model, which is one of the main drawbacks of the
original Kalman Filter. This issue has been addressed by the Extended Kalman Filter
(EKF), allowing instead for differentiable functions to be used5. The Kalman Filter is
useful when the statistical properties of a system are well-known and can be can be
modeled using Gaussian distributions. The latter condition does however not apply
to object tracking, as clutter in the scene typically causes the measurement function to
form several modes instead of one, thus conflicting with the assumption of Gaussian
distributions. This particular drawback has been adressed by Particle Filters. This
type of filtering has a similar general setup as the Kalman Filter (Figure 2.2b), but
removes the requirement to model the distributions analytically. Instead, samples of
possibly highly complex distributions are propagated, thus allowing for multiple modes
in the distributions. This property allowed the Particle Filter to be used in tracking of
objects through cluttered scenes, which was prominently done in the CONDENSATION
algorithm (Isard and Blake, 1998).

In summary, prediction is useful when suitable assumptions about object motion can

5 For details refer to Welch and Bishop (1995).

12

Chapter 2 Overview about One-Shot Tracking

(a) Kalman Filter (b) Particle Filter

Figure 2.2: Filtering approaches used for predicting the object position. (a) In the Kalman Filter
all variables are modeled as Gaussians, leading to unimodal distributions. (b) The Particle Filter
allows for multimodal distributions, allowing for tracking through clutter. Image is from Cannons
(2008).

be made, which is feasible in restricted scenarios such as tracking in radar data (Wax,
1955). In one-shot tracking scenarios similar assumptions can hold if the movement of the
object is not overly abrupt. However, in the case of shaking cameras or any other kind of
abrupt motion change, these assumptions fail. Another problem that occurs when relying
too much on the results of previous frames is the problem of error accumulation (Lepetit
and Fua, 2005), eventually leading to tracking failure. Often, researchers employ simple
motion models where the object is allowed to move within a certain radius to reduce the
search space of an object detector (Grabner and Bischof, 2006; Babenko et al., 2009).

2.2 Feature Extraction

One of the most important aspects of every computer vision algorithm is the question
of what image information should be used, ususally referred to as feature extraction.
Essentially, a feature is a function from image space to a feature space. The basic idea of
using features is to transform the image into a different representation, in which objects
or parts form invariant manifolds and thus can be better separated from each other than
in the image space.

Traditionally, hand-crafted features have been used in the tracking literature, meaning
that the feature extraction process is designed after some guiding principle or best
practice. One exception to this rule are boosting-based techniques that combine many
simple features into a more powerful one in an online manner (Grabner and Bischof,
2006). In the area of object recognition there recently has been a paradigm shift regarding

13

Chapter 2 Overview about One-Shot Tracking

feature extraction sparked6 by the work of Krizhevsky et al. (2012), who demonstrate
that learning feature hierarchies from large labeled datasets is not only possible, but
leads to tremendous performance improvements. The one-shot tracking community has
been relatively unaffected by this novel feature extraction process so far (with the recent
exception of H. Li et al. (2014), who learn a hierarchy of features online), presumably
due to the absence of training data in one-shot scenarios. In this overview, we therefore
focus on hand-crafted features only.

The general aim is to find features that are both discriminative and invariant to various
transformations. A feature is discriminative if it can be expected only on the object
of interest and does not occur on other objects or spuriously in the background. At
the same time, feature invariance is also important, meaning that the outcome of a
feature computation should not change even if the object of interest undergoes certain
transformations, such as scaling, rotation or even affine motion. It has been argued that
these two properties should be traded off, depending on the application (Varma and
Ray, 2007).

One can in principle distinguish between global and local features. A global feature
is designed to represent the information of a whole image region. In contrast, a local
feature is designed to be evaluated at interesting image positions such as corners. While
it is certainly possible to compute global features at interesting image positions or local
features over image subregions, this is not necessarily a good idea, as the balance between
invariance and discriminative power might not be given. We will describe selected global
features that have been used in the tracking literature in Section 2.2.1. While there exists
an abundance of different local features, such as edgels or small image patches (Tuytelaars
and Mikolajczyk, 2008), we restrict the discussion of local features to detectors of interest
points in Section 2.2.2 and to the computation of their descriptors in Section 2.2.3. For a
comprehensive overview about feature extraction in object tracking, the reader is referred
to X. Li et al. (2013). Please note that the available literature to the topics in the upcoming
sections is massive. The goal of these sections therefore is to provide an overview about
the different underlying paradigms as well as to introduce some techniques that will be
referred to in later chapters. A profound discussion of the topic of feature extraction is
out of the scope of this work.

2.2.1 Global Features

The canonical global feature of an image region is the image region itself, often referred
to as a template. It is prominently used in the method of Lucas and Kanade (1981) to
compute the sparse optical flow between two images. However, also higher-level tracking
algorithms still employ templates as a representation (Ross et al., 2008; Kalal et al., 2012).
In spite of their simplicity, templates are a very discriminative feature. However, already

6 In fact, the technique used by Krizhevsky et al. (2012) was already developed in the Eighties, but was
made practical only by recent advances in hardware and large amounts of training data.

14

Chapter 2 Overview about One-Shot Tracking

(a) Color histogram (b) HOG descriptor

Figure 2.3: Visualization of different global features: (a) color histogram, (b) Histogram of Oriented
Gradients (Dalal and Triggs, 2005).

small deviations in the object appearance might make it impossible to establish the
association between the target template and the object of interest.

One of the most widely used features in object tracking is the color histogram, shown
in Figure 2.3a. It has notably been used in the Mean-Shift tracking algorithm by Co-
maniciu et al. (2000), but keeps occurring in more recent tracking approaches as well
(Zhao et al., 2010). A color histogram assigns each pixel a bin depending on its color
value. Typically, the bins are spaced such that the color space is divided into equal
intervals. Spatial information in a color histogram is disregarded, leading to both the
desired effect that different poses of the object of interest are accounted for (the feature
is invariant to different poses) and the rather undesired effect that objects with similar
color compositions produce similar histograms (the feature is not discriminative). Addi-
tionally, colors are heavily influenced by changes in global and local illumination as well
as different camera devices, which is especially harmful when objects should be tracked
over multiple cameras (Rinner et al., 2015). However, when the object of interest consists
of unique colors, the color histogram still performs remarkably well in single-camera
scenarios.

In order to avoid the negative of aspects of using color information, researchers have
focused on feature extraction from gray-scale images. For less expressive objects, the
Histogram of Oriented Gradients (HOG) has proven to be a remarkably good image
descriptor (Dalal and Triggs, 2005). As shown in Figure 2.3b, the descriptor focuses
on gradients on the object of interest. Unlike the classical color histogram mentioned
above, in the HOG descriptor local cells are used when summing up the gradients. HOG
descriptors are known to work very well as the input to linear classifiers, such as support
vector machines (Cortes and V. Vapnik, 1995). Initially proposed for the detection of
humans, the HOG descriptor has become the de-facto standard hand-crafted descriptor
in object recognition and has also found its use in one-shot object tracking for instance
by Yu et al. (2008) and Danelljan et al. (2014).

15

Chapter 2 Overview about One-Shot Tracking

Scale

(first

octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

(a) SIFT

15

11

10

16

14

13

12

p

21

3

4

5

6

7

89

(b) FAST

Figure 2.4: Interest point detection. (a) Scale-Invariant Feature Transform (Lowe, 2004). (b)
Features from Accelerated Segment Test (Rosten et al., 2010).

2.2.2 Interest Point Detectors

The principle idea of employing an interest point detector is to find image locations
that differ from their immediate environment. According to Tuytelaars and Mikolajczyk
(2008), the most important property of an interest point detector is its repeatability,
meaning that given two images of the same scene, a high number of corresponding
interest points should be detected.

A class of interest point detectors that was studied early is based on measuring self-
similarity. Moravec (1980) proposes to use those pixels as interest points where in an
8-neighborhood one of the sum of square differences between a candidate patch and the
neighboring patch is high. The main problem with this approach is that this operator is
not isotropic, meaning that under the presence of an edge that is not exactly horizontal,
vertical or diagonal, a point on this edge will be recognized as an interest point, which
is not desired. To remedy this circumstance, Harris and Stephens (1988) propose a
modification to the Moravec operator by analyzing the partial derivatives of the sum of
square differences in x and y direction. Large eigenvalues of the resulting matrix then
determine a corner. Shi and Tomasi (1994) propose a slight modification of the Harris
corner detector by directly using the minimum of the two eigenvectors as an indicator
for corner strength. In practice, this change leads to a detection of more suitable corners.

The previously mentioned methods provide only the position of the interest point, but
do not consider different scales the corners might appear in. In his seminal work, Lowe
(2004) proposes a method called SIFT (Scale-Invariant Feature Transform) that detects
interest points in a scale-invariant manner. Here, minima and maxima of the difference
of Gaussians operator applied in scale space define interesting image regions, as shown
in Figure 2.4a. Additionally, to make feature extraction on these interest points invariant
to rotation, the orientation of the interest point is computed by extracting the gradient
magnitude and direction in a window around it.

Only recently, researchers have studied how to detect and describe local features more

16

Chapter 2 Overview about One-Shot Tracking

efficiently. Rosten and Drummond (2005)7 propose an interest point detector called FAST
(Features from Accelerated Segment Test), the idea of which is depicted in Figure 2.4b.
Here, a circle of pixels is considered around the corner candidate. If there exists a set
of contiguous pixels in the circle which are all brighter than the candidate pixel plus
a threshold, or all darker minus a threshold, then the candidate is added to the list of
corners. Rosten et al. devised a mechanism that evaluates those pixels first that are most
likely to result in an information gain. This way, many candidates can be rejected very
quickly.

2.2.3 Local Descriptors

Haar-like features (Figure 2.5a) were popularized in their seminal work by Viola and
Jones (2001) for face detection. The output of a Haar feature is defined by the subtraction
of the sum of all pixels from two or more disjoint image regions. In spite of their apparent
primitivity, the combination of many of these features leads to a powerful descriptor.
As in Viola and Jones (2001), suitable positions for Haar features are often learned in a
training phase. An appealing property of Haar features is that they can be evaluated
in constant time when integral images are used. Haar features are known to work very
well on faces, as they capture their brightness distribution effectively. Haar features have
been used in a tracking context by Grabner and Bischof (2006) for online selection of
features as well as in Kalal, Matas, et al. (2010).

In SIFT (Lowe, 2004), a descriptor similar to HOG is computed around interest points,
as shown in Figure 2.5b, capturing local gradient directions around the interest point.
While the SIFT descriptor has initially been rejected by the computer vision community
as not being principled enough, it was demonstrated in practice that it outperformed
basically every other feature descriptor that existed to this date. One reason why SIFT has
not been used extensively in the tracking literature (with the recent exception of Pernici
and Del Bimbo, 2014) is its relative expensive computation. To remedy this circumstance,
(Bay et al., 2006) propose SURF (speeded-up robust features), decreasing the computing
time considerably.

Lepetit et al. (2005) propose an interesting perspective on the simultaneous description
and matching of interest points. In their work, a classifier is trained during a learning
phase that can then distinguish different interest points on the object. Based on a single
example of the object of interest artificial training data is synthesized by warping the
initial patch with affine transformations. The classifier itself consists of multiple Random
Ferns (Özuysal et al., 2007) which are similar in spirit to Random Forests (Breiman, 2001).
In Random Ferns, very high classification speed can be obtained by performing fast
binary tests on random pixel pairs on each layer of the random ferns instead of computing
a full image descriptor. These tests merely measure which of the two pixels has a higher
brightness value. It has to be noted that the pixel comparisons are generated only once,

7 Also see Rosten and Drummond (2006) and Rosten et al. (2010).

17

Chapter 2 Overview about One-Shot Tracking

(a) Haar-like (b) SIFT (c) BRIEF (d) BRISK

Figure 2.5: Different local descriptors. (a) Haar-like features (Viola and Jones, 2001), (b) Scale-
Invariant Feature Transform (Lowe, 2004), (c) Binary Robust Elementary Independent Features
(Calonder et al., 2010), (d) Binary Robust Invariant Scalable Keypoints (Leutenegger et al., 2011).

so that future comparisons yield meaningful results.
Based on the idea of Random Ferns, Calonder et al. (2010)8 propose an extremely fast

keypoint descriptor called BRIEF (Binary Robust Elementary Independent Features),
as shown in Figure 2.5c. The pinciple idea is to compute a feature composed of binary
elements only. Similar to Random Ferns, each element of the vector is determined
by a simple brightness comparison between two randomly determined pixel positions
within a predefined area around the keypoint. These binary descriptors can be compared
efficiently by employing the Hamming distance as a similarity measure. This is equivalent
to a bitwise XOR operation, which can be performed efficiently on modern computing
architectures. Rublee et al. (2011) extend this concept in their work called ORB (Oriented
FAST and Rotated BRIEF) by introducing invariance to rotation by incorporating corner
orientations.

Recently, authors have investigated how to improve upon the random arrangement of
the BRIEF pattern. As shown in Figure 2.5d, in BRISK (Binary Robust Invariant Scalable
Keypoints) Leutenegger et al. (2011) apply Gaussian smoothing with different kernel
sizes to individual patches around test positions, as denoted by the blue dots and the
red circles, respectively. Additionally, the test positions are arranged on concentric
circles, allowing for invariance to rotation. Alahi et al. (2012) employ a similar, but more
biologically inspired idea. In their approach called FREAK (Fast Retina Keypoint) they
propose to employ a higher density of test positions at the center of the keypoint, similar
to how the human eye has evolved. Additionally, the evaluation of the descriptor is
performed only gradually to save processing time, as many non-informative keypoints
can be discarded by looking at very few test positions.

8 Also see Calonder et al. (2012).

18

Chapter 2 Overview about One-Shot Tracking

2.3 Localization

The localization step in one-shot object tracking refers to the question how the extracted
features are used to infer the position of the object of interest. These models can be
broadly divided into two categories. Approaches that employ error surfaces or similarity
functions are often used for a local search (Section 2.3.1). On the other hand, approaches
that employ a classifier to distinguish between the object and background in feature
space are referred to as tracking-by-detection methods (Section 2.3.2).

2.3.1 Local Search

As discussed in Section 2.1, the predicted motion of the target in one-shot tracking is not
a helpful cue, if strong temporal continuity cannot be guaranteed. However, as noted by
Cannons (2008) the information from previous frames is still valuable and can be used to
serve as a starting point for a local search. The principle assumption behind employing a
local search in object tracking approaches is that the differences between adjacent video
frames should be small.

One approach that exploits this assumption directly is the method of Lucas and
Kanade (1981). This method, initially proposed for image registration, is typically used
to compute the sparse optic flow between video frames, which is defined as the motion
between two images at a specific image position x. It is important to note that in contrast
to the motion models discussed in Section 2.1 the motion model employed by Lucas and
Kanade does not depend on the motion observed in previous frames. Without going into
mathematical details, the principal idea of Lucas and Kanade is to perform an iterative
local search based on Newton’s method for estimating the displacement v of the point x,
as shown in a simplified manner in Figure 2.6a for the one-dimensional case.

Another example for a local search in tracking was proposed in the Mean-Shift tracker
of Comaniciu et al. (2000), who model the object of interest as a color histogram. The
basic idea is to perform a local search in the current frame beginning from the last known
object position in the previous frame. By defining a similarity function between the
object template and the image content, a surface similar to Figure 2.6b is created, where
the circle denotes the starting point of the local search. The idea is then to iteratively
reach the maximum of this compatibility surface (the triangle in Figure 2.6b), which
is carried out in this work by the Mean-Shift algorithm. This simple algorithm states
that the new position should be moved towards the center of mass of the compatibility
surface. Typically, only few interations are necessary to reach this goal.

While both of these methods are more complex than what is described here, some
important conclusions can be drawn from them. For a local search to work, a more or
less smooth error function or compatibility function has to be defined, that can be used
to find interesting positions on these functions, such as minima, maxima or zeros. These
error surfaces offer a very fast way of obtaining an accurate localization. Compared to
tracking-by-detection methods, which we will discuss in the next section, object models

19

Chapter 2 Overview about One-Shot Tracking

(a) Optical flow

−40
−20

0
20

40

−40−2002040

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

XY

B
h

a
tt

a
c
h

a
ry

y
a

 C
o

e
ff

ic
ie

n
t

Initial location
Convergence point

(b) Mean-Shift

Figure 2.6: Localization by local search. (a) Optical flow in one dimension as in the method
of Lucas and Kanade (1981). The displacement ~v is iteratively estimated by means of the the
spatial derivative Ix and the temporal derivative It. Image is from Bradski and Kaehler (2008).
(b) Mean-Shift tracking (Comaniciu et al., 2000). Object localization is performed by iteratively
climbing to the maximum of a compatibility surface, in this case the Bhattacharyya coefficient.

for local searches are kept relatively simple, leading to a certain lack of robustness. This
is clear by appreciating that local searches can always get stuck in local extrema before
the global maximum is reached. However, in certain circumstances this property can
even be advantageous, for instance when a similar object appears that by chance achieves
a higher similarity score. In this case, it is advantageous to look for the closest local
maximum instead of the global maximum. Additionally, a local search can be much
faster than a global one.

2.3.2 Tracking-by-Detection

While relying on a purely local search is accurate over few frames, in the long run there is
the chance that a local search is disrupted, which can for instance occur by abrupt camera
motion. In recent years, there has been a trend in tracking research of freeing oneself
from strong assumptions and thus ignoring positional information from previous frames
altogether. This tracking paradigm has become known as tracking-by-detection. Tracking-
by-detection is closely related to classical object detection in still images. The main
difference however is that no offline training data is available for training classifiers. A
common route in tracking research therefore has been to adapt offline learning techniques
to the online domain (Grabner and Bischof, 2006; Babenko et al., 2009; Saffari et al., 2009).
In contrast to local searches, object models in tracking-by-detection methods are often
incrementally refined to capture the entire variability of the object’s appearance.

Numerous tracking-by-detection approaches based on diverse object models have
been proposed. These methods have in common the ability of globally searching the

20

Chapter 2 Overview about One-Shot Tracking

Figure 2.7: Sliding window classification is an essential part of tracking-by-detection approaches,
independent of whether the search is performed for objects as a whole or individual object parts.

input image for the object of interest, even though several methods artificially restrict
the classifier search space (such as Avidan, 2004) to enforce temporal constraints. In
one way or the other, the global search is accomplished by evaluating a classifier in a
sliding-window manner, as shown in Figure 2.7. On a first glance, methods that rely on
keypoints (Maresca and Petrosino, 2013; Pernici and Del Bimbo, 2014) or other bottom-up
techniques (Godec et al., 2011) seem to escape this paradigm. However, to detect the
individual object parts a sliding-window classifier is still necessary (Lehmann et al., 2011).
As an exhaustive search can be very expensive, it is important to employ an object model
that can be evaluated quickly. It can be argued that the sliding-window-based localization
of tracking-by-detection methods is less accurate than performing a local search, since
for reasons of efficiency not every possible subwindow is evaluated, especially when the
search is performed in multiple scales.

The classifiers that underly every sliding window detector can be broadly categorized
into generative and discriminative classifiers (X. Li et al., 2013). Generative classifiers aim
at answering the question what probability distribution might have generated the data.
Unfortunately, the probability distributions in computer vision however are typically
very complex and non-Gaussian, making this a daunting task. Also, it has been argued
that one should never solve a problem that is more general than one actually needs to
solve (V. N. Vapnik, 1995). Instead, discriminative classifiers focus on finding a decision
boundary between the object and background in feature space, thus allowing more
freedom in the design of the classifier. As discriminative classifiers also tend to be faster
than generative ones, they are typically favored in tracking-by-detection methods.

21

Chapter 2 Overview about One-Shot Tracking

2.4 Model Update

A perennial source of failure in object tracking concerns the question of how and when to
update an object model so that it remains a good representation of the object of interest.
This is important as the sum of internal and external appearance variations let the object
inevitably appear in a different way compared to its initial appearance. In this section,
we will discuss different paradigms that have been used in the literature to address
this aspect. The question of how to update an object model without erasing relevant
information is closely related to the stability-plasticity dilemma, which relates to the
trade-off between the stability required to retain information and the plasticity required
for learning something new (Grossberg, 1987) when the capacity of the model is limited.
A complete stable model will retain all information in it but is unable to incorporate any
new information. On the other hand, a completely plastic model will immediately adapt
to new information, but any information stored in the model to this date will be lost.

Matthews et al. (2004) perform a study on this subject based on templates, but much of
this work is applicable to other object representations as well. Matthews et al. suggest that
the simplest possible strategy is not to update the model at all, as shown in the top row
of Figure 2.8a. While this strategy prevents any erroneous updates, it also is impossible
to add any new information to the object model. In case of severe appearance changes
this strategy is prone to failure. Another naïve method is to perform a complete update,
meaning that in every frame the original object model is replaced with a representation
computed in the current frame. This strategy is often used in algorithms performing a
local search, such as in Lucas and Kanade (1981). The main problem with this strategy
is that it encourages drift, as shown in the center row of Figure 2.8a. Drift refers to the
situation when the object model gradually adapts to a different object, which is typically
the background. The reason for this situation is that output of a tracking algorithm is
ususally never aligned perfectly well to the object, where the ubiquitous use of bounding
boxes certainly adds its share to this effect. When a mis-aligned bounding box is used
to extract new features, there is a chance that instead of the original object, parts of
other objects “leak” into the object model. This way, with every update, small errors
accumulate until after some time the tracking algorithm adapts to a background object.
Matthews et al. (2004) suggest a simple, but very powerful idea for drift-correction during
model update. Essentially, the idea put forward by Matthews et al. is to perform an
update using the newly extracted features only if the localization using the initial model
is similar to the localization performed using the latest model, depending on a threshold.
While this strategy can be considered to be primitive as well and is in no way guaranteed
to yield good results, it can serve as the basic insight that not all model updates are
equally plausible. It is safe to say that the constraints that should be employed for
updating object models robustly are currently unknown. It is a very interesting research
question whether such constraints exists at all. Nevertheless, researchers have come up
with heuristics to tackle this problem.

Instead of blindly updating the complete model in every frame, Collins et al. (2005)

22

Chapter 2 Overview about One-Shot Tracking

S
tr

at
eg

y
 1

S
tr

at
eg

y
 2

Frame 10 Frame 250 Frame 350

S
tr

at
eg

y
 3

(a) Drift correction (b) Multiple Instance Learning

Figure 2.8: Different strategies for updating the model . (a) Drift correction according to Matthews
et al. (2004). Top row: No update is performed. Center row: Update is performed in every frame.
Bottom row: Update with drift-correction is performed. (b) In MIL tracking (Babenko et al.,
2009), training examples are presented in bags, allowing the learner to decide which examples
are suitable for updating the classifier.

and Grabner and Bischof (2006) aim at finding the most discriminative features using
an online learning mechanism. This way, background features are excluded from the
object model. It can however be argued that discriminative features might also appear
in the background, for instance due to a mis-alignment of the bounding box. A more
principled way of dealing with this topic has been proposed by Grabner et al. (2008), who
see object tracking as a semi-supervised learning problem. By imposing a prior on the
first image patch, the incoming image data is treated as unlabeled data. Semi-supervised
learning algorithms can then be used to label this unlabeled data. However, if the prior
is too strong, it is hard for the labeling algorithm to make the connection to the correct
unlabeled data. If the prior is too weak, all unlabeled data suddenly becomes very similar
to the initial appearance of the model.

Babenko et al. (2009) address the problem of erroneous model updates by employing
Multiple Instance Learning, as shown in Figure 2.8b. In standard binary classification,
each training sample is either labeled as positive or negative, as shown in columns A and
B. In multiple instance learning, training examples are no longer labeled individually,
but are presented as labeled “bags”, as shown in column C. A positive bag is assumed
to contain at least one positive training example, all other bags are negative. This way,
the learner has more options in finding a decision boundary, which proves beneficial in
object tracking. Another very successful way of leveraging the semi-supervised learning
paradigm has been proposed by Kalal et al. (2012), which will be discussed at length in
Section 3.1. Here, the optic flow is used as a guiding principle for selecting positive and
negative training examples.

In summary, it seems that the best strategy for permanently updating the model is to

23

Chapter 2 Overview about One-Shot Tracking

perform the updates as conservatively as the object of interest allows. However, certain
objects require more aggressive model updates due to their fast-changing appearance.
How the update rules come about is a matter of the concrete object model in use and no
clear answer can be given in general.

2.5 Conclusion

This chapter has given the reader an overview about the main aspects that have to be
dealt with when devising an object model for the problem of one-shot object tracking. It
should have become clear by now that one-shot object tracking is not a trivial task and
requires a well-working interplay between the different subproblems prediction, feature
extraction, localization and update. In the next chapter we will disuss strengths and
weaknesses of a special class of object models, where the object model is broken down
into individual parts. Here, all of the steps presented in this chapter are not considered
for the object as a whole, but rather on the level of individual object parts.

24

Chapter 3

Part-based Object Models

In the previous chapter, we have given a very broad overview about the field of one-shot
object tracking and have discussed important aspects that object tracking researchers
have focussed their attention to. A fundamental question in one-shot object tracking
that we discuss in this chapter is whether to model the object as a holistic9 entity or
to break down the object model into parts. Part-based object models are employed in
order to address some of the challenges discussed in Section 1.3. As an example for a
one-shot algorithm that is based on a global object model, in Section 3.1 we discuss the
recently proposed object tracking method TLD. To appreciate why part-based models
can solve some of the challenges encountered when global object models are used, we
then discuss general properties of part-based object models and contrast them to global
object models in Section 3.2. Next, we present and analyze general robust part-based
model-fitting techniques that have been used for computer vision in Section 3.3. We will
then look closer at two types of part-based models that have been used in the one-shot
tracking literature, namely constellation models in Section 3.4 and star-shaped models in
Section 3.5. Finally, we discuss the part-based one-shot tracking approach HoughTrack
in Section 3.6. Note that the content is this chapter is not meant to provide an exhaustive
overview about the numerous part-based models that exist in computer vision, but rather
to discuss interesting work that is relevant to the problem of one-shot tracking.

3.1 Global Object Model in TLD

In their work called TLD (Tracking-Learning-Detection), Kalal et al. interpret object
tracking as a semi-supervised learning problem. In semi-supervised machine learning, a
learner is presented only with a small number of labeled examples. Additionally, at its
disposal is a ususally much larger number of unlabeled examples. As mentioned before,
the aim of semi-supervised learning is to find a decision boundary between positive and
negative examples that takes into account the unlabeled data, leading to a hopefully better
result than relying on the labeled data alone. In classical machine learning, clustering
methods are often used to find structure in the unlabeled data (Chapelle et al., 2006).
Kalal et al. instead employ a relatively simple short-term tracker as a way of collecting

9 We use the terms “holistic” and “global” interchangeably in the context of object models.

25

Chapter 3 Part-based Object Models

T
ra

ck
er

co
n
fi
d
en

ce

0

1

validated trajectory drift

Time

Figure 3.1: In Tracking-Learning-Detection (Kalal, Matas, et al., 2010), a short-term tracker (shown
in black) is used to collect positive training data (shown in yellow) and negative training data
(shown in red) for an object detector.

positive training examples, as shown in Figure 3.1. These positive training examples are
used to train an object detector that is based on a global object model with the aim of
being able to re-initialize the tracking process when the optic flow component loses the
target. Importantly, false positive responses from the object detector are fed back to the
training process.

Kalal et al. employ a cascaded classifier for object detection, as shown in Figure 3.2. Each
of these stages contains an increasingly complex classifier. The first stage is a variance
filter that rejects homogeneous image regions, the threshold of which is determined
by the variance of the first image patch. The second stage consists of a Random Fern
classifier (Özuysal et al., 2010), an ensemble classifier whose most important property is
its extremely high classification speed. Random Ferns come with the cost of working with
binary feature vectors only. Kalal et al. employ a feature descriptor that is reminiscent of
BRIEF (Calonder et al., 2012). The final stage of the classifier cascade is a nearest neighbor
classifier based on the normalized cross-correlation of resized image patches (15× 15

pixels) as a distance measure. The classifier cascade is evaluated in a sliding-window
manner over the whole image in every frame. If after a non-maximal supression step
exactly one detection remains, the short-term tracker is re-initialized to this detection.

While the object detection component is relatively complex, the short-term tracker in
TLD is considerably simpler. It is based on the estimation of optic flow using the method
of Lucas and Kanade (1981). In frame It−1, points on the object of interest are sampled
on a regular grid. The position of each of these points in frame It is then estimated by

26

Chapter 3 Part-based Object Models

Figure 3.2: The object detection cascade in TLD (Kalal et al., 2012) consists of increasingly complex
classifiers.

computing the optic flow and interpreting it as a displacement vector. An estimate for
the bounding box is obtained by computing the median of the translational changes
and changes in scale and transforming the bounding box of It−1 accordingly. By using a
mechanism called forward-backward tracking (Kalal et al., 2010), the robustness of this
method is further increased, as erroneous optic flow estimates can be identified. This
works by computing the optic flow in not only in forward direction (from It−1 to It), but
also in backward direction (from frame It to It−1). This way, a plausibility score for the
correctness of a tracked point can be obtained. Kalal et al. then select the highest scoring
points for continued processing and discard the other points.

In a learning step, Kalal et al. update the Random Fern classifer and the nearest
neighbor classifier both with positive and negative training data. In case the object
detector did not give a positive result, it is updated with positive training data stemming
from the current result of the short-term tracking process, if available. In case the object
detector identified several image regions as positive, the ones that do not agree with
the short-term tracker are used as negative training examples to prevent future false
positives. It has to be noted that the learning step depends on a number of carefully
engineered rules about when exactly an update is performed.

The use of a global object model enables Kalal et al. to come up with an update rule
that is remarkably robust in practice. Slight appearance changes are incorporated into
the object model at ease due to their global similarity to the object model. Interestingly,
while the object detector is based on a global object model, the short-term tracker is based
on a simple part-based model, suggesting that a part-based representation is also feasible
for the object detector. While TLD is able to achieve excellent tracking results, there are a
number of downsides that can be attributed to the use of a global object model:

• TLD highly depends on an initialization of the object where little to no background
is contained in the initial bounding box. If this consideration is not followed,
all similarity measures yield low values in case the object moves to a different
background, leading to the inability of detecting the object of interest.

• TLD is unable to to handle the case when a large part of the object interest becomes
occluded abruptly, as all classification stages analyze the object holistically.

27

Chapter 3 Part-based Object Models

Object space Background

Part models

Figure 3.3: In contrast to holistic object models, part-based models provide a way of decomposing
an object model into more specific submodels.

• When the object becomes occluded gradually, the occluding parts are incorporated
into the object model instead of being recognized as outliers, which is not desired.

The problems presented here are not found exclusively in TLD, but represent fundamental
problems that occur when global object models are used. In the next section, we will
explore how part-based representations can remedy these issues, while opening up some
new questions.

3.2 Promises and Challenges of Part-Based Object Models

To appreciate the principal motivation behind employing part-based object models, it is
useful to recall Figure 1.3 and to contrast it with Figure 3.3, where a part-based object
model and its relationship to the object space is presented. Here, the single entity of a
holistic model has been replaced by multiple sub-models. It is important to understand
that these individual part models can and should be much more specific according to our
definition of generality from Section 1.3, essentially leading to a smaller occupied area in
the object space10. It is also clear that these more specific individual part models still
suffer from similar challenges as a holistic object model. However, by breaking down the
object model into individual, possibly independent parts, the redundancy in the overall
model is increased. This means that if a number of parts fail to be recognized correctly or
provide inaccurate localization information it is still feasible to correctly track the overall
object.

So far we have discussed considerations about the appearance of part-based models.
Another fundamental question is how the individual parts in a part-based model relate to

10 This does not necessarily imply that the parts themselves have to be small in the sense that they occupy
less image space.

28

Chapter 3 Part-based Object Models

each other with respect to their spatial structure. It is not easy to answer in general what
level of independence to allow individual parts. If all parts completely depend on each
other this leads to a very rigid part layout that does not have any advantage over a holistic
object model. On the other extreme, each part could be tracked completely independent
of other parts. In this case the spatial structure between parts is not exploited at all,
leading to the inability of recovering individual parts as soon as something goes wrong.
A general guideline might be to give the parts as much flexibility as necessary, but not
more. As we will see in the following sections, a common theme in part-based models is
to distinguish inlier parts from outlier parts. This is the reason why part-based models
can be much more robust against local challenges, such as partial occlusions, than holistic
object models. In a similar fashion, local appearance variations can be handled effectively,
either by treating changed parts as outliers or by updating the appropriate part model.

The question might arise why part-based models are not used ubiquitously in one-
shot object tracking despite possessing these obvious advantages. The answer to this
question lies in the difficulty of training part-based object models. This difficulty is not
only present in object tracking, but also in object recognition, where for a long time
holistic object models have outperformed part-based models (Felzenszwalb et al., 2010).
Intuitively, the number of parameters (e.g. part location, appearance) in an object model
increases with each additional model part. To properly estimate these parameters, a
large amount of training data is needed to sample the parameter space exhaustively,
which is not available in one-shot tracking. Still, some authors have undertaken the
effort to explore part-based object models for one-shot object tracking, which we will
discuss in the next sections together with prominent part-based models proposed in
image recognition. The common denominator of these models is that they are composed
of a number of individual parts which are represented in a common coordinate system.
In the remainder of this chapter, we discuss object models that fit the following definition
of a part-based model:

A part-based object model describes the spatial structure and interaction of individual

model parts x1, . . . , xn, where each part x refers to a 2D coordinate.

Note that individual model parts might well carry much more information than just
their location. For instance, each model part might be associated with information about
scale or orientation. These aspects are however more dependent on the concrete part
models that are in use and are not central to the discussion in this chapter.

3.3 Basic Part Models

In this section we discuss examples of basic part models that have been widely used in
many different areas of computer vision. These methods address the problem of finding
the parameters of a model given a noisy set of part correspondences. Noisy in this case
refers both to small variations in the part locations itself, but also to gross outliers in the

29

Chapter 3 Part-based Object Models

a

x

θ

ρ

(a) GHT

Input: Data X

Output: Model parameters W

1: W = ∅.
2: η = ∞.
3: for i = 1 . . . k do

4: X′ = random subset of X

5: W ′ = F(X′)

6: X+ = {xj ∈ X : L(W ′, xj) < θ}

7: if |X+| > d then

8: W ′ = F(X+)

9: η′ = L(W ′, X+)

10: if η′ < η then

11: W = W ′

12: η = η′

13: end if

14: end if

15: end for

(b) RANSAC

Figure 3.4: Methods for estimating model parameters. (a) The Generalized Hough Transform
(Ballard, 1981). The curvature at the boundary of objects, the angle θ and the distance to the
center ρ are stored in an R-table to enable voting into a parameter space. (b) In RANSAC (Fischler
and Bolles, 1981), random subsets of the data are repeatedly used to find model parameters.

part correspondences. The basic models that are described in this section have received
an extraordinary amount of attention by computer vision researchers, making them ideal
candidates for pondering advantages and disadvantages of part-based models.

A classical approach in this category is the Hough Transform as proposed by Hough
(1962). The principle idea of the Hough Transform is to perform a mapping of the image
space into a parameter space, where evidence for model parameters is accumulated.
In its simplest form, as described by Duda and Hart (1972), this principle is applied to
line detection. Here, the input image is assumed to contain binary values indicating the
presence or absence of edge pixels. These values typically are obtained by applying an
edge detector on the input image. For each edge pixel, voting is then performed in the
parameter space for all lines that could possibly go through this pixel. It is important
to note that the parameter space is not continuous, but rather discrete. It is therefore
necessary to manually set the size of the bins in which the votes are accumulated. While
each pixel contributes many votes to parameter values that do not correspond to actual
lines in the image, the accumulation of votes allows for retrieving the correct parameter
values by searching for maxima in the accumulated votes. On a first glance, the Hough
Transform does not fit the definition of a part-based model presented in the previous
section as the spatial structure of individual model parts is not modeled directly. However,

30

Chapter 3 Part-based Object Models

there is in fact an analytical description of how the parts should be laid out, which is a
much more reliable source of information than what can be learned from an example.
However, the necessity to provide an analytical description restricts the Hough Transform
to relatively simple shapes, such as lines or circles.

In an important paper by Ballard (1981), the Hough Transform is extended to the
Generalized Hough Transform (GHT). In contrast to the Hough Transform the GHT
allows for detecting objects of arbitrary shape where similar to one-shot tracking a
template of the object is used. The principle idea is depicted in Figure 3.4a. In the
GHT, a so-called R-table is created that relates the information from the edge pixels (the
orientation) and a reference point on the object (typically the center). In the detection
phase, whenever an edge pixel is encountered, the R-table is used to look up the voting
direction. The evidence accumulation and the localization of the object works then
similarly as in the Hough Transform. From today’s point of view the GHT appears
relatively primitive, as edge information is certainly not the most reliable feature for
natural images. Still, the GHT exhibits all important properties of a part-based model.

One classical approach that has been widely used in computer vision in general
when it comes to robustly estimating the parameters of a model is Random Sample
Consensus (RANSAC). This technique, first described by Fischler and Bolles (1981), aims
at estimating the model parameters W given noisy data X, where “model” in this case
refers to an arbitrary statistical model. A detailed algorithmic outline of RANSAC is
shown in Figure 3.4b. The main idea of RANSAC is to compute a minimal solution W ′

for the model using a random subset of the data X′. To this end, a fitting function F is
used that might for example solve a system of equations to obtain the model parameters.
As the data is assumed to contain outliers, this solution might or might not be a good
overall estimate for the model parameters, depending on whether it was computed on
inliers only. A criterion whether a solution is good or bad is based on the consensus of
all samples including those that so far have not been used the model fitting. To this end,
all samples in X are tested against a model-specific loss function L, yielding for each
sample an error. The number of samples that agree is then an indicator for the general
applicability of the model. This overall process is repeated k times and the best solution
so far as measured by the number of inliers that support it is returned as a result.

RANSAC has been used extensively in the computer vision literature to compute
transformations between noisy point correspondences both in 2D image space as well as
in 3D space. These point correspondences are obtained using local features as presented
in Section 2.2.3. Typically, the model parameters W are used to contain the transformation
parameters in matrix form, where depending on the desired transformation certain
parameters can be restricted to for instance allow for similarity transformations11 only.
The data X contains the point pairs and their respective image locations and a classical
choice for the loss L is the squared reprojection error. Transformation estimation using

11 A similarity transformation is restricted to translation, scaling and rotation and does not consider
general affine motion, which includes shearing.

31

Chapter 3 Part-based Object Models

RANSAC is known to work very effectively. It is however based on the very strong
assumption that objects have to be rigid. As soon as this assumption is violated, a direct
application of this concept is no longer possible.

While it is worthwile to consider basic models such as the GHT or RANSAC as a source
for inspiration for one-shot tracking algorithms, these models fail quickly as soon as the
object of interest exhibits some form of deformation. In the case of the GHT, deformations
lead to severe problems, as the edge information at the boundary of objects is no longer
reliable as soon as the object for instance rotates slightly out of plane. On the other
hand, the strong rigidity assumptions in RANSAC render this approach inapplicable for
non-rigid objects. Numerous extensions have been proposed to these basic methods, of
which we will discuss some in the following sections.

3.4 Constellation models

Constellation models treat individual parts jointly. Usually, this is done in an optimization
framework, where deformation of individual parts is traded off with an appearance-
based similarity measure. The idea of constellation models goes back to Fischler and
Elschlager (1973), who presented it as a framework for pictorial structures. A typical
layout of a constellation model is shown in Figure 3.5a where the springs between the
model parts denote a certain flexibility. The principle idea behind constellation models
is that each part places constraints on the location of other other parts. For instance, the
torso of a person is usually in-between the head and the legs and any deviation from
the expected position will incur a cost to this specific hypothesis, as the springs in the
constellation have to be expanded or contracted.

A probabilistic constellation model is proposed by Fergus et al. (2003), who model
appearance, scale, shape and occlusion of the object parts as Gaussian distributions. Parts
on each image are identified using an interest point detector. The key idea is to learn the
parameters of the distributions using Expectation-Maximization, thus establishing the
probabilistic position of the parts and their appearance. For classification, a likelihood-
ratio test is performed against the hypothesis that the object class is not present in the
image. As the shape is modeled using a full covariance matrix, the number of parameters
in the model increases quickly as more parts are added, effectively limiting the number
of parts to about six.

As an example of a constellation model used in object tracking, we consider the work
of Schindler and Dellaert (2007), who investigate the problem of bee tracking in a hive.
Schindler and Dellaert employ a part-based approach, where each bee is modeled by
three parts in a particle filtering framework. Each model part has a distinct appearance
model and there is one global shape model representing the configuration of parts. Even
in this relatively simple setup, it is necessary to learn plausible part constellations in a
training phase. One might argue that this is only neccessary because in the problem
investigated by Schindler and Dellaert, many almost identical objects and parts are

32

Chapter 3 Part-based Object Models

x1

x2

x3

x4

x5 x6

(a) Constellation model

x1

x2

x3

x4

x5

x6

(b) Star-shaped model

Figure 3.5: Different part layouts. (a) In Constellation models, pairwise spatial constraints between
individual parts x1, . . . , xn are modeled, here denoted as springs. (b) In a star-shaped model, all
parts are positioned with respect to an anchor point, shown in white.

present so that the parts constellation plays a crucial role in distinguishing individual
objects. However, also in one-shot scenarios multiple parts with similar appearance
might occur as well. Authors have investigated to learn the constellation of parts in an
online manner, as in Kwon and Lee (2009) and Čehovin et al. (2011). As the dimension
of the learning problem increases with each model part, many training examples are
necessary to exhaustively sample the space of possible configurations. Furthermore, as
already mentioned multiple times, there are no hard class labels available, making the
training process fragile in the first place.

Instead of learning the part constellation, L. Zhang and Maaten (2013) make use of an
extension to the pictorial structures framework by Felzenszwalb and Huttenlocher (2005)
for the tracking of multiple objects, but also perform experiments on multiple parts of a
single object. Instead of a plausibility scores for the whole part constellation, for each
pair of parts a constraint of the form

ci,j = ‖(xt
i − xt

j)− (x1
i − x1

j)‖
2 (3.1)

is added to a global optimization problem. The approach of L. Zhang and Maaten (2013)
is especially effective if many similar objects are present. In this case, the spatial location
between objects might be even more discriminative than the features that are extracted
from individual parts. In case of severe deformations or dislocations the springs however
can be more of a hindrance than a benefit, especially when parts are discriminative.

In summary, constellation models aim at placing certain constraints on how individual
parts can be arranged. The information of what constellations are plausible has to be
either learned in a training phase or set explicitly by some very general assumptions.
Both of these methods are unsuited for one-shot object tracking, as no reliable training
data is available and overly strong constraints placed on parts configurations might make

33

Chapter 3 Part-based Object Models

results even worse. Additionally, the number of constraints increase exponentially in the
number of parts, if all pairwise constraints are considered, making inference difficult
and expensive. Thus, the number of parts in constellation models is typically limited to
few. As a consequence, star-shaped models have proven an interesting an alternative to
constellations models, which we will discuss in the next section.

3.5 Star-Shaped Part Models

At a closer look, the GHT can be considered a special case of a more general family of
models that has become known as star-shaped object models. Star-shaped models follow
the setup shown in Figure 3.5b, where the position of each part is modeled with respect
to one anchor point on the object of interest. The canonical choice for this point is the
center of the object. The main advantage of star-shaped models over constellation models
is that the inference is simple, as constraints exist only between the parts and anchor
points, but not between individual parts. For example, Fergus et al. (2005) are able to
use twice as many parts in their star-shaped model compared to their fully-connected
constellation model. Star-shaped models have appeared in different forms, of which we
will discuss some examples here.

In what can be considered a very basic form of a part-based model for object tracking,
Adam et al. (2006) employ a star-shaped object model with a fixed configuration of parts.
Adam et al. propose this model to address the loss of spatial information in color-based
tracking, such as Comaniciu et al. (2000). To this end, parts are laid out in a rectangular
grid, as shown on the left of Figure 3.6. This part-based model is employed in a sliding-
window approach. Instead of computing color histograms over the whole subwindow,
they are computed separately for each model part. Each part then contributes a certain
score to the current subwindow as measured by a similarity function that compares the
part in the current frame to the initial part histogram. It is interesting to note that in
this work neither the part locations nor the templates are updated. Nejhum et al. (2008)
expand on the idea of Adam et al. and suggest to employ histograms of adapted size
and location to better capture the object’s appearance, as shown in Figure 3.6 on the
right. Essentially, the part locations and dimensions are determined in every frame by
solving an optimization problem to cover as much of the object as possible using a fixed
number of boxes. As additional information, a segmentation of the object is performed
to separate it from background. Both Adam et al. and Nejhum et al. address the problem
of finding part correspondences by evaluating the individual parts jointly in a top-down

manner. In Adam et al. (2006) it is assumed implicitly that the part configuration does
not change at all, disallowing any kind of deformations. In Nejhum et al. (2008) there is
some form of adaption to deformation by adjusting the part positions in every frame.
However, this concept is cumbersome as deformations are assumed to take place at a
slow pace, which is not always the case in practice.

In contrast to top-down approaches, bottom-up techniques aim at providing each part

34

Chapter 3 Part-based Object Models

(a) FragTrack (b) Nejhum et al. (2008)

Figure 3.6: Star-shaped models used in top-down approaches, where in the localization step the
part layout is fixed. (a) Adam et al. (2006) employ a non-changing layout. (b) Nejhum et al. (2008)
adapt the part locations in the update step.

more flexibility. In the following, we discuss two approaches that are not directly related
to object tracking, but made an impact in the object recognition community strong enough
to make them worth discussing here. Leibe et al. (2008) propose a probabilistic extension
to the GHT, in which evidence for object classes is accumulated. To this end, first a
codebook of appearances is created using a clustering scheme based on information from
interesting image regions in a training set. Using this codebook the Implicit Shape Model
(ISM) is learned, that relates the locations of invididual parts in a probabilistic manner.
For example, as shown in Figure 3.7a, the two tires of a car refer to the same entry in the
codebook, but consist of two different entries in the ISM. In the inference step, evidence
about object classes is accumulated by the votes of each part for the object center. In
Figure 3.7a, plausible votes will form clusters at true object location, while implausible
votes are cast spuriously and are discarded after a thresholding step. Gall et al. (2011)
build on this approach by directly learning votes for image parts using what they call
Hough Forests. Hough Forests are similar in spirit to Random Forests (Breiman, 2001),
but instead of a class label they output multiple voting vectors targeting the expected
center of the object.

Felzenszwalb et al. (2010) expand on the idea of using a global HOG description of
objects by incorporating fine-grained information about parts into the object model.
The global HOG descriptor acts as a root filter, whereas the parts are connected in a
star-shaped model, as shown in Figure 3.7b. Part descriptions are computed on twice
the resolution as the root filter. The score at a particular image location then consists
of the score of the root filter, individual part scores minus a deformation cost for parts
that deviate from their expected location. The learning framework consists of a latent
Support Vector Machine to determine appropriate filter weights, the locations of the part
and the deformation costs. The DPM has achieved for a long time excellent results on
the PASCAL VOC challenge (Everingham et al., 2010) until the advent of end-to-end
learning techniques such as Krizhevsky et al. (2012).

In summary, top-down star-shaped models are too rigid for one-shot tracking methods,

35

Chapter 3 Part-based Object Models

(a) ISM (b) DPM

Figure 3.7: (a) Implicit Shape Model (Leibe et al., 2008). (b) Deformable Part Model (Felzenszwalb
et al., 2010).

as the part location is fixed during inference. Bottom-up star-shaped models have the clear
advantages over constellation models that they are easier to train and also can handle part
inference better, as outliers are implicitly accounted for. Clearly, the presented bottom-up
approaches are not directly applicable to one-shot object tracking, as they rely on a large
amount of labeled training data to be available. Next, we will discuss in detail a recent
one-shot tracking approach based on a bottom-up star-shaped models in the framework
of Hough Forests, where learning of part-based models takes place in an online manner.

3.6 HoughTrack

In their work called HoughTrack, Godec et al. (2011) propose a part-based representation
where in each frame votes are cast for the object center by part correspondences. The
outline of HoughTrack is shown in Figure 3.8. On the input image (top left) voting is
performed in a sliding-window manner (top center) in order to localize the object of
interest. The voting mechanism in HoughTrack is based on Hough Forests (Gall et al.,
2011), where voting vectors for the object of interest are stored in the leaf nodes of the
grown decision trees. This mechanism works well even in case of partial occlusions, as
missing object parts do not interfere with the principle of looking for the cell with the
highest number of votes. A more severe problem occurs however when the object of
interest deforms. In this case, votes of individual parts no longer target the object center
and the position estimation gets more and more diffuse up to a point where the object can
no longer be identified. To deal with this case, Godec et al. propose an update mechanism
that accounts for the deformation of the object of interest. To this end, after the voting
step they back-project the votes in order to identify the parts supporting the hypothesis
for the object center (top right image in Figure 3.8). These parts are then used to guide a
GrabCut-based segmentation (Rother et al., 2004) in order to determine foreground and
background parts (bottom right). The foreground parts as well as background parts are

36

Chapter 3 Part-based Object Models

Figure 3.8: Outline of HoughTrack (Godec et al., 2011). Clockwise from top left: input image,
localization by voting, support, segmentation, update, output.

then used to update the Hough Forest with new training examples (bottom center), where
a small margin is added between positive and negative examples to avoid ambiguities.
The segmentation is additionally used as algorithmic output (bottom left image), giving
highly accurate results.

A vote for an image patch is obtained by computing the features of the patch and
passing down the feature vector through the decision trees until a leaf node is reached.
Godec et al. employ Lab-color space, first and second derivatives in x and y direction and
a 9-bin histogram of gradients as features. A detailed illustration of the voting process is
shown in Figure 3.9. As in the GHT, the votes (left) are discretized (center) into voting
bins and accumulated. From the accumulated bins, the strongest votes are selected in
order to reduce the number of irrelevant votes and cast onto the voting map (right). The
cell containing the highest number of votes is then assumed to mark the object center. It is
important to note that the bin sizes in Hough-Forest-based approaches are typically very
small, as many votes are cast. This is possible due to the much richer feature extraction
process compared to the GHT, where only edge information is used and bin sizes are
typically broader. Due to the dense computation of votes, HoughTrack is relatively slow,
a drawback which has been adressed by Duffner and Garcia (2013), who skip the feature
computation step and instead use the raw image data as input for the Hough Forest.

The combination of Hough voting and segmentation in HoughTrack can be considered

37

Chapter 3 Part-based Object Models

Figure 3.9: Bottom-up voting of Hough Forests in HoughTrack (Godec et al., 2011). Weak votes
(left) are combined into strong votes before being cast. Votes are collected in an accumulator
space.

a clear novelty in one-shot object tracking. It is a successful application of an on-line
learning approach for a bottom-up star-shaped model. Essentially, the entire handling
of deformation in HoughTrack takes place in the update process. This update process
is however arguably a very fragile part of one-shot tracking algorithms. In the case of
HoughTrack, the segmentation algorithm is not guaranteed to always yield the best pos-
sible segmentation of the object of interest. In fact, in case of clutter or partial occlusions
a frequent failure of HoughTrack consists in incorporating unwanted objects into the
object model, eventually leading to drift. This observation motivates the idea to move the
handling of deformations from the update step to the localization step in the one-shot
tracking pipeline, which is one of the main motivations of this thesis.

3.7 Conclusion

Part-based object models allow for dealing with object tracking challenges in a principled
manner. This comes however with a more difficult learning scenario, as the parameters
in the overall model increases. The discussion in this chapter motivates the need for
a more principled approach to handling deformations in one-shot object tracking that
should ideally have the following properties:

• As in one-shot tracking no reliable training data is available, the deformation of
the object should be handled in the localization step instead of relying on possibly
erroneous updates.

• A star-shaped model should clearly be preferred over a constellation model, due to
their lower number of parameters and their ease in inference.

• The approach should not make any assumptions about the number and the nature
of the object parts and should be applicable to a wide variety of part models.

38

Chapter 3 Part-based Object Models

• Inference should be done in a sparse way instead of having to deal with a possibly
large accumulator space.

In the next chapter we will introduce the main contribution of this work, the Deformable
Part Model for One-Shot Object Tracking, that aims to satisfy the above properties.

39

Chapter 4

Deformable Part Model for One-Shot

Object Tracking

In this chapter, we introduce the Deformable Part Model for One-Shot Object Tracking
(DPMOST). In a nutshell, the essence of the DPMOST can be expressed the following
way:

The DPMOST is a star-shaped part model extended by a threshold δ steering the

allowed deformation of the object of interest.

We first give some motivating examples in Section 4.1 that will help developing an
intuition as to why the DPMOST can work. In Section 4.2 we formally describe the
DPMOST model and discuss its properties. In Section 4.3 we provide another perspective
on the DPMOST from the viewpoint of agglomerative clustering.

4.1 Motivation

To motivate the idea behind our proposed deformable part model, consider the star-
shaped model composed of four parts in the left of Figure 4.1. Here, the star-shaped
connections to the center here are represented as votes, indicated by an arrow. The parts
are in a non-deformed state, leading to the convergence of all votes in the anchor point.
On the right, the situation is depicted when a deformation is applied to the individual
parts. Obviously, the votes no longer target the anchor point, but rather are spread
around it. Note that the actual nature of the deformation itself does not matter and could
be anything from articulated motion to perspective transformations. Depending on the
amount of deformation, classical voting approaches such as the GHT can handle this
deformation as long as it is smaller than the bin sizes in which the votes are accumulated.
If the deformation gets larger, votes end up in different bins, making it very difficult to
localize the object, as no sigificant maxima in the accumulator space might occur.

Instead of attempting to increase or shrink the bin sizes, a different idea is depicted
in Figure 4.2, where each vote is associated with a flexibility as indicated by the gray
balls of radius δ around the end of each vote. It is helpful to keep in mind that the
level of flexibility itself does not arise from the part constellations itself, but rather is
an independent fixed quantity. It is now crucial to understand that this flexibility does

40

Chapter 4 Deformable Part Model for One-Shot Object Tracking

x1 x2

x3x4

(a) Object not deformed

x1 x2

x3x4

(b) Object deformed

Figure 4.1: (a) A star-shaped model composed of four parts. (b) The same model with a deforma-
tion applied to its individual parts.

have an effect on other votes that are cast at the same time. The four parts depicted in
Figure 4.2 on the left can be interpreted as agreeing on the object location within the
limits of a given flexibility δ. On the right-hand side, exactly the same parts and votes
are shown as on the left, but with a smaller flexibility. In this case, one would rather say
that the parts disagree on the object location.

Let us consider two more examples. In Figure 4.3 on the left, again a deformation of
the individual parts is depicted. This time however, the deformation is more extreme in
a sense that some subsets of parts do no longer agree on the object location. For example,
the parts x4 and x3 are widely separated with respect to the level of flexibility and do not
agree on the object location. However, it is important to realize that in this case there
are other mediating parts in-between that “connect” the parts x4 and x3. This property is
central to our approach.

Recall from the discussion in the previous chapters that the association of individual
parts is a difficult and error-prone task. It might well happen that the position of indi-
vidual parts is estimated incorrectly. This situtation is depicted in Figure 4.3 on the right,
where the part x3 no longer connects to the rest of the parts. It could however well be that
the position of the part was actually estimated correctly, but due to a deformation the
part no longer connects. The radius of this flexibility therefore steers a trade-off between
identifying deformed parts and rejecting wrong part correspondences.

4.2 Definition and Properties

In this section we will formally introduce the DPMOST and discuss its properties. We
begin with our proposed extension to the classical star-shaped model in Section 4.2.1
and continue with the discussion of the concept of transitive consensus that arises from
this extension in Section 4.2.2. In Section 4.2.3 we show that the DPMOST can be made

41

Chapter 4 Deformable Part Model for One-Shot Object Tracking

δ

x1 x2

x3x4

(a) Parts in agreement

δ

x1 x2

x3x4

(b) Parts in disagreement

Figure 4.2: By introducing a certain amount flexibility for each vote, parts can be thought of
agreeing (a) or disagreeing (b) on the object location, depending on the radius of the allowed
flexibility.

x1 x2

x3x4

(a) Mediating parts

x1 x2

x3x4

(b) Outlier part

Figure 4.3: (a) Even during extreme deformations, remote parts (x4 and x3) might be connected
by mediating parts (x1 and x2). (b) The part x3 does not agree with the rest of the parts about the
object location and is considered an outlier.

42

Chapter 4 Deformable Part Model for One-Shot Object Tracking

invariant to changes in scale and in-plane rotation. Finally, we show in Section 2.3 how
the DPMOST can be used for localizing the object of interest.

4.2.1 Deformation in a Star-Shaped Model

The DPMOST is based on a star-shaped model which in turn is composed of parts
{x1

1, . . . , x1
N}. Let us denote this reference configuration of parts as Z. Without loss of

generality, the reference parts Z can be represented in a common mean-normalized
coordinate system as shown in Figure 4.4 on the right, where the center of the object
serves as the anchor point. This configuration represents a known configuration of parts
that is assumed to be correct. In the context of one-shot object tracking, we define correct
to mean based on certain information. Where Z comes from is not directly relevant
to the discussion in this chapter, but the canonical way of establishing it is to look for
interesting parts in the initial bounding box b1 in the first frame of the video sequence,
as depicted in Figure 4.4 on the left.

In the DPMOST, the connections from the individual parts to the anchor point can
be interpreted as votes, as it is common in traditional star-shaped models. In addition,
in the DPMOST a radius δ is associated with each vote that models the flexibility of
the part. We refer to this radius hereafter as the deformation threshold. This deformation
threshold is the essential ingredient to our proposed model and distinguishes it from
other star-shaped models used in the tracking literature. In the DPMOST the deformation
threshold is assumed to be the same for each object part. This is clearly in contrast to
the intuition that some object parts are more deformable than others. For instance, arms
and leg of a person exhibit large deformations, while its torso often remains more stable.
However, maintining separate deformation thresholds for individual parts opens up
the problem of determining the individual threshold values. As we aimed at avoiding
learning as much as possible in this work, we did not investigate this topic further. It
might however be a fruitful ground for future research.

The DPMOST can be used to make statements about part correspondences in the
current frame. To this end, we will define formally what constitutes a part correspondence.
A part correspondence mi is a tuple (x1

i , xt
i), with xt

i denoting the absolute image position
of the part x1

i ∈ Z in the current frame t. Hereafter, we will denote the set of all part
correspondences in one single frame by

L = {m1, . . . , mM} . (4.1)

Note that the number of correspondences M does not necessarily have to be equal to the
number of reference parts N. It is often the case that some correspondences can not be
established, leading to M being less than N. At the same time it can happen that there are
two correspondences for the same part, for instance due to background clutter. Though
rare, M can therefore in principle be greater than N. As the DPMOST is independent of
the actual technique for establishing part correspondences, we defer the discussion of
what correspondence techniques should be used to the subsequent chapter.

43

Chapter 4 Deformable Part Model for One-Shot Object Tracking

(a) Initial part candidates (b) Part coordinate system

Figure 4.4: (a): The configuration of individual parts is typically learned in a one-shot manner
during initialization by an initial set of part candidates. (b) Reference parts are represented in a
common mean-normalized coordinate system.

A part correspondence can cast a vote h, which is interpretable as a hypothesis for the
center of the object. In this work, we will explore different ways of casting these votes. For
keeping the discussion simple, we begin with a purely translational voting mechanism

h(mi) = xt
i − x1

i (4.2)

that does not account for more complex transformations of the object. In Section 4.2.3
we will generalize this simple mechanism to account for the scale and the rotation of
the object of interest. Note that we employ the identity of the part for selecting the
correct voting vector instead of constructing R-tables as in the GHT or Hough Forests in
HoughTrack. For now, we leave open how exactly this identity is established but return
to this question in detail in Chapter 5.

4.2.2 Transitive Consensus

We now introduce the concept of transitive consensus that arises from the combination
of votes and the deformation threshold δ. The deformation δ allows for stating whether
two correspondences mj and mk in L are in consensus about the location of the object. We
capture this event in the predicate ω and define it to be

ω(mj, mk) =

{

true if ‖h(mj)− h(mk)‖ < 2δ

false Otherwise
. (4.3)

This means that two correspondences are in consensus if the Euclidean distance between
their votes is less than 2δ. The general assumption behind this consideration is that if
many correspondences are in consensus about the object location, this is a very strong

44

Chapter 4 Deformable Part Model for One-Shot Object Tracking

indication that the correspondences are correct. This suggests that the predicate ω is in
fact a transitive relationship

ω(mi, mj) ∧ω(mj, mk) =⇒ ω(mi, mk). (4.4)

When this transitive property is applied, mediating parts are able to “bridge” the gap
between remote parts. It is important to consider the role of the deformation threshold
δ in this situation. This “bridging” is enabled by the deformation threshold in the first
place. By increasing the value of δ, remote correspondences can be incorporated into the
consensus of other correspondences. At the same time however it is not guaranteed that
the remote correspondence is not in fact incorrect. An incorrect correspondence means
that the identities of the parts x1

i and xt
i are not the same. We refer to these incorrect

correspondences collectively as outliers. Note that the vote of an outlier typically does not
target the center of the object, but rather random image locations. When δ is increased,
therefore not only correct remote correspondences are incorporated, but also outliers.
For this reason, δ should not be set to an arbitrarily high value.

As in every transitive relation, the elements of L are partitioned into disjoint subsets
L1, . . . ,LK by the predicate ω. Depending on the image content that is being analyzed,
the number of elements in these subsets can vary significantly:

• When the object appears in a deformed way within the limits of δ and few distractors
are present, there will be one subset Lω with a large number of elements and
potentially some subsets containing few outliers each.

• When the object deforms in a way that the deformation threshold between mediat-
ing parts is exceeded, L will be fragmented into subsets of medium size.

• When another object appears that shares the appearance of the object of interest,
there will be two large subsets.

• In case of partial occlusions, the size of Lω will gradually shrink until only outlier
subsets are left.

Based on these considerations, it is reasonable to define another predicate φ that expresses
whether the correspondences in the largest subset Lω (which we will refer to as the
consensus set) are reliable. While more complex predicates are imaginable, we define
this predicate φ to be

φ(Lω) =

{

true if |Lω| ≥ θφ

false Otherwise
, (4.5)

where the threshold θφ is a parameter setting.

4.2.3 Invariance to Scaling and Rotation

As mentioned in Section 4.2.1, Equation 4.2 assumes implicitly that the object as a whole
undergoes a translation only with respect to the reference part constellation Z. While

45

Chapter 4 Deformable Part Model for One-Shot Object Tracking

(a) Original Object (b) Transformed Object

Figure 4.5: To account for changes in scale and in-plane rotation, the votes (green) can be trans-
formed accordingly by exploiting pairwise geometric properties (red).

slight changes in scale or in-plane rotation of the object can be handled by this simple
variant of the DPMOST, it is desirable to account explicitly for these transformations,
as they occur frequently and severely distort the spatial structure of the parts. Z can
be thought of as representing the object of interest at scale s1 = 1 and in-plane rotation
α1 = 0. The goal therefore is to make the DPMOST invariant to the current scale s and
in-plane rotation α. By doing so, Equation 4.2 becomes

h(mi) = xt
i − s · Rx1

i , (4.6)

where R is the 2D rotation matrix

R =

(

cos α − sin α

sin α cos α

)

. (4.7)

This change essentially rotates and scales the votes accordingly before they are being
cast. In order to estimate the parameters s and α, one possibility to do so would be to cast
multiple votes for each part correspondence and all possible transformation parameters,
as it is done for instance in the GHT. This approach is however computationally extremely
expensive. A different route can be taken by estimating the transformation parameters
directly fom the part correspondences itself using robust statistical methods to account for
possible outliers. For estimating s and α, pairwise geometric properties correspondences
can be exploited as shown in Figure 4.5. An estimate for the scale s as proposed by Kalal
et al. (2010) is

s = median

({

‖xt
i − xt

j‖

‖x1
i − x1

j ‖
, i 6= j

})

, (4.8)

46

Chapter 4 Deformable Part Model for One-Shot Object Tracking

x1
1

x1
2

30◦

(a) Reference parts

xt
1

xt
2

115◦

(b) Rotated part correspondences

Figure 4.6: The pairwise angular change between parts can be used to estimate the object rotation.

computing the pairwise difference in scale. The median is a robust statistic that selects
from a set of numbers the middle number after sorting them. This way, extreme values
on either end of the input distribution are ignored. As for the rotation, an estimate for α

is obtained in a similar way by

median
({

atan2(x1
i − x1

j)− atan2(xt
i − xt

j), i 6= j
})

, (4.9)

where atan2 computes the angle in the appropriate quadrant by means of the arctangent.
An example for this is shown in Figure 4.6, where on the left the location of two parts in
the reference configuration is depicted. The angle between a thought line between these
parts and the x axis in this case is 30◦. On the right, two parts are shown that correspond
to the parts on the left. However, their geometry is different, leading to an angle of 115◦.
The change in rotation for this pair of parts therefore is 115◦ − 30◦ = 85◦.

An interesting question to ask is under what circumstances these heuristics can work.
While the average is influenced heavily by outliers (in a statistical sense), the median is
guaranteed to yield correct results as long as the number of inliers is greater than 50%.
The same applies to the heuristics in Equation 4.8 and 4.9. It is also important to note
that the correspondences themselves must be obtained in a manner that is invariant to
scaling and rotation for the proposed heuristics to work.

4.2.4 Object Localization

A natural way of localizing the object of interest using the DPMOST is to compute the
object center µ using the votes from inlier correspondences

µ =
1

|Lω| ∑
(x1

i ,xt
i)∈L

ω

(

xt
i − sRx1

i

)

. (4.10)

47

Chapter 4 Deformable Part Model for One-Shot Object Tracking

The mean is a reasonable choice here as the consensus set Lω is supposed to be free
of outliers. Under the assumption that the object did not change its scale or in-plane
rotation, a bounding box estimate bt for the current frame can be obtained by placing the
initial bounding b1 over µ. When changes in scale or rotation occur, the combination of
the object center µ, the estimated scale s and the in-plane rotation α can be interpreted as
the parameters of a similarity transform

H =

s cos α − sin α tx

sin α s cos α ty

0 0 1

 , (4.11)

where tx and ty are the x and y coordinates of µ. This similarity transform can then be
used to yield a rotated bounding box by first translating the initial bounding box so that
its center is in the origin and then multiplying it to the right of H using homogenized
coordinates12.

Even though we stated in Chapter 1 to restrict the discussion to bounding boxes only,
the DPMOST offers interesting ways of providing more fine-grained output. To go
beyond bounding boxes, a couple of routes are imaginable. One option is to compute the
convex hull of the correspondences in Lω, which can interpreted as putting a “rubber
band” around them. This way, some areas that would be recognized as foreground
in a bounding box representation might instead remain background. However, if the
object shape itself is highly non-convex, this approach will not improve the bounding
box representation significantly. In this case, the output can instead be represented as
small patches around part correspondences. However, depending on the technique that
is used for establishing part correspondences, some areas might not be covered this way,
such as homogeneous object regions.

4.3 A Clustering Perspective

To understand from a more theoretical point of view why the DPMOST and the concept
of transitive consensus can work, it is useful to view the process of finding connected
correspondences as one of clustering. We will first give a brief introduction to clustering
in Section 4.3.1. Next, we will discuss the approach of Cho et al. (2009) in Section 4.3.2,
who employ clustering in the context of object recognition of deformable objects. In
Section 4.3.3 we show how the DPMOST can be formulated in the framework of agglom-
erative clustering, and discuss the computational complexity of the DPMOST.

4.3.1 Overview about Clustering

Xu and Wunsch (2005) provide an exhaustive survey of clustering algorithms, on which
we base our discussion in this section. In general, the aim of clustering is to partition

12 The homogenized version of the vector
(

x y
)⊺

is
(

x y 1
)⊺

.

48

Chapter 4 Deformable Part Model for One-Shot Object Tracking

4 3 2 1 0 1 2

3

2

1

0

1

(a) Data points

9 5 6 3 0 8 2 7 1 4
cluster index

0.0

0.5

1.0

1.5

2.0

2.5

lin
ka

ge

0.719

0.336 0.3980.434 0.488

1.06
1.32

1.66

2.79

(b) Dendrogram

Figure 4.7: Eample of hierarchical clustering. (a) Scatter plot of 10 data points stemming from
a multivariate Gaussian distribution. (b) Dendrogram of the data. The linkage between two
clusters indicates their distance. Here, single-linkage is used, meaning that the distance between
two clusters is computed by the two closest datapoints of each cluster.

data into disjoint subsets. How this partitioning comes about and which parameters
should be used depends on the exact goal of the application, the nature of the data and
the subjective experience of the practicioner. Clustering is an unsupervised technique,
meaning that no class labels for individual datapoints are necessary. Instead, clustering
approaches aim at finding intrinsic structure in the data. This property already hints at
the applicability in one-shot tracking scenarios, where no training data is available.

At the core of each clustering algorithm is the idea that two data points x1 and x2 can
be compared using a (dis-)similarity measure. If x1 and x2 are similar, then they should
end up in the same cluster and if they are dissimilar, they should be assigned different
clusters. A very broad categorization of clustering algorithms can be performed by
distinguishing between partitional clustering and hierarchical clustering. In partitional
clustering, the main aim is to find an optimal partitioning of the data into K clusters,
which can be seen as a combinatorial problem for which heuristics have to be used
to maintain computability. On the other hand, hierarchical clustering algorithms aim
at organizing the data in a tree structure, where the root node represents the whole
data and the leaf nodes are the individual data points. We focus on this latter type of
clustering in this section, an example of which is given in Figure 4.7, where a number
of two-dimensional datapoints are represented in a dendrogram. Here, each datapoint
starts out in an individual cluster numbered from 1 to 10. By going up the y axis (the
linkage), clusters that are close-by are being merged. This way, the hierarchy between
individual clusters is established.

This hierarchy can now be used to form flat clusters at will by employing a so-called
cut-off threshold. In Figure 4.7, the cut-off threshold can be interpreted as drawing a
horizontal line at a given amount of linkage. This line “cuts” the connection between
clusters. A cut-off threshold of 0 implies that all datapoints end up in their own cluster.
Vice-versa, a cut-off threshold of ∞ means that there will be exactly one cluster. This

49

Chapter 4 Deformable Part Model for One-Shot Object Tracking

type of clustering is also referred to as agglomerative clustering.
For the dissimilarity measure often distance metrics are being used. Popular choices

are the Euclidean distance or the Manhattan distance. However, any function D(x1, x2)

can be used that satisfies the properties symmetry and positivity. The linkage between
two clusters can then be computed in different ways:

• In single-linkage, the distance is determined by the two closest datapoints of two
clusters.

• In complete-linkage, the distance between the two datapoint that exhibit the farthest
distance is used.

• In average-linkage, the average pairwise distance between all points from each cluster
is used.

More complex linkage variants are possible, as discussed in detail in Xu and Wunsch
(2005). In summary, a hierarchical clustering algorithm is defined by its dissimilarity
measure and its way of computing the linkage between clusters.

4.3.2 Recognition of Deformable Objects

Cho et al. (2009) propose an interesting approach for the recognition of deformable
objects based on agglomerative clustering. In their approach, depicted in Figure 4.8,
correspondences between objects are clustered based on two criteria:

• The dissimilarity between training descriptors and candidate descriptors.

• The geometric dissimilarity between two correspondences.

While the first criterion is a standard matching technique for SIFT descriptors, the geo-
metric dissimilarity measure is more interesting. Using the notation from the previous
section, it is defined as

Dgeo(mj, mk) = ‖x
′
j − Hkxj‖+ ‖xj − H−1

k x′j‖+ (4.12)

‖x′k − Hjxk‖+ ‖xk − H−1
j x′k‖, (4.13)

where x′i refers to the corresponding keypoint of xi and Hi is a transformation matrix
determined by the parameters of the keypoint detectors, which depending on the tech-
nique that is used can be estimated up to an affine transformation. The key idea here
is that if there are two correspondences on an object, their keypoint parameters should
undergo a similar transformation. Should the object itself undergo some deformation,
the clustering approach is hoped to provide enough flexibility to recognize deformed
correspondences as inliers while still identifying wrong correspondences as outliers.
It has to be noted that the approach of Cho et al. relies heavily on the quality of the
estimated parameters of the keypoint detectors. If they do not produce reliable results,
one might be better off relying on appearance information exclusively.

50

Chapter 4 Deformable Part Model for One-Shot Object Tracking

Figure 4.8: Cho et al. (2009) employ agglomerative clustering for the recognition of deformable
objects. In their approach, the geometric deformation of objects is factored into the dissimilarity
measure.

4.3.3 DPMOST and Agglomerative Clustering

As we will see in this section, the DPMOST can be formulated in an agglomerative
clustering framework similar to the work of Cho et al. To appreciate this, consider
Figure 4.9, where two part correspondences are depicted. On the left, their configuration
in the star-shaped model is shown. The correspondences, which are shown on the
right, underwent a clockwise rotation of 90◦ with respect to this configuration and were
translated by slightly different amounts to the top and to the right. In this figure, the
votes for each part correspondence are also depicted, which are defined by the estimated
transformation matrix H that summarizes the transformations from Equation 4.6. Recall
now that Equation 4.3 states that the Euclidean distance between two votes is required to
be smaller than twice the deformation threshold. By ignoring the deformation threshold
for a moment, we can interpret the distance between votes as a dissimilarity measure. In
its written-out form, this is

D(mj, mk) =
∥

∥

∥(xt
j − Hx1

j)− (xt
k − Hx1

k)
∥

∥

∥ . (4.14)

In contrast to Cho et al. we compute the transformation matrix using the heuristics
presented earlier, thus removing the dependence on parameter estimation by means of
the part detectors. This is advantageous, as most of the local feature detectors presented

51

Chapter 4 Deformable Part Model for One-Shot Object Tracking

x1
1

x1
2

(a) Reference parts

Hx1
1

Hx1
2 xt

1

xt
2

D(m1, m2)

(b) Dissimilarity between correspondences

Figure 4.9: The DPMOST can be represented in a clustering framework by modeling the dissimi-
larity measure D between part correspondences as their distance between votes.

in Section 2.2.3 provide only a very rough information about the scale of the local feature.
It is now crucial to understand that the deformation threshold δ presented earlier acts
as the cut-off threshold in the framework of agglomerative clustering. This means that
Equation 4.3 can be effectively computed by methods for hierarchical clustering.

By recognizing this, existing considerations about runtime complexity can be em-
ployed for the DPMOST. As noted by Xu and Wunsch (2005), most hierarchical clustering
algorithms have an algorithmic complexity of at least O(M2), where M is the number of
data points to be clustered, which for the DPMOST are the number of part correspon-
dences. This becomes apparent when considering that all pairwise distances between
all part correspondences have to be computed to construct the hierarchy. The same
argument applies to Equation 4.8 and Equation 4.9. It has to be noted however that in
practical applications, the number of part correspondences M typically ranges in the
order of 50-250, thus not posing severe computational problems. While it has not been
investigated in this work, clustering algorithms targeted for large-scale databases might
be used instead, such as BIRCH (T. Zhang et al., 1996). This clustering algorithm is able
to partition large amounts of data in linear time.

4.4 Conclusion

In this chapter, the Deformable Part Model for One-Shot Object Tracking (DPMOST) has
been introduced. It relies on the basic assumption that remote parts are connected by
mediating parts and introduces a deformation threshold δ that specifies how large the
deformation may become before parts are recognized as outliers. The most important
property of the DPMOST is that it can handle deformations of the object without relying

52

Chapter 4 Deformable Part Model for One-Shot Object Tracking

on possibly erroneous training data. The only training information that is used to
learn the initial parts layout Z stems from the only certain information in the problem
formulation, namely of the initial bounding box. The DPMOST does not depend on a
particular part representation and can handle an arbitrary number of parts. It can be
made invariant to scaling and in-plane rotations by using robust heuristics based on the
geometric layout of the part correspondences. As inference is performed in a sparse way,
high processing speed can be obtained, even though the computation of the consensus is
in O(M2), where M is the number of part correspondences. The most distinguishing
property from traditional star-shaped models, such as Fergus et al. (2005), is the transitive
property of the part votes, effectively allowing for connecting remote parts by mediating
parts. Also, there are much less parameters in the model, making it possible to estimate
them in a one-shot manner. In the next chapter, we deal with the question what part
representation should be used and how to establish part correspondences.

53

Chapter 5

Part Correspondences

In the previous chapter we have seen how the DPMOST can be used to deal with part
correspondences on deformed objects in a principled way. The DPMOST is independent
from the actual technique of establishing these correspondences. Nevertheless, it is
clear that a particular choice of this technique has a strong impact on overall tracking
performance. In this chapter, we will therefore discuss the topic of how to establish
part correspondences at length. Note that an exhaustive comparison about each and
every possible part model is out of the scope of this work. The discussion in this chapter
is therefore limited to parts that can be matched using a descriptor of fixed size. In
Section 5.1 we will discuss how candidate parts can be compared to reference parts by
defining distance measures between their descriptors. Next, in Section 5.2 we discuss ex-
isting methods for how these distances can be used to associate the parts with each other
by means of different matching strategies. Additionally, we introduce a novel strategy
for disambiguating part correspondences based on the DPMOST. In Section 5.3 we then
discuss the method of Lucas and Kanade as an example for optic flow estimation, which
we view as another very different way of establishing correspondences. We introduce
the idea of static-adaptive correspondences in Section 5.4 that aims at combining the
advantages of robust, but inaccurate correspondences and accurate, but fragile corre-
spondences. Finally, we will formulate in Section 5.5 the object tracking algorithm CMT
that is based on the concepts DPMOST, static-adaptive correspondences and descrip-
tor disambiguation. In this chapter, we re-use the notation for part correspondences
from Equation 4.1. We stress the fact that this definition is applicable to all methods
for establishing part correspondences that estimate the location xt of a part x1 in the
current frame. Naturally, these methods will use much more information internally, such
as information about the scale and the rotation of the part. For the DPMOST, the only
output that is required is however the estimated location of the part.

5.1 Descriptors and Distance Measures

We will focus in this section on comparing the visual appearance of parts. A classical way
of doing so is to compute the descriptors of reference and candidate parts. An overview
about suitable features that can be used for this purpose was given in Section 2.2.3.
Essentially, all these methods compute a d-dimensional descriptor c, thus mapping

54

Chapter 5 Part Correspondences

image content into a feature space

c : I → Rd. (5.1)

These descriptors have a couple of properties that are beneficial for employing them in a
comparison. First, the dimension of the feature space is fixed, allowing for straightfor-
ward definitions of comparison functions on the feature space. In contrast, images of
different size (i.e. different dimensions) must first be resized to a common size before a
comparison can be performed. Second, tremendous efforts have been undertaken for
devising descriptors that extract the relevant image information. There is no universal
definition of relevance for descriptors, but obviously a descriptor that achieves good
performance extracted more relevant information than a descriptor that performs poorly.
It is however also clear that performance is dependent on the image content and some
descriptors might perform better in certain situations than others. Third, descriptor
extraction can be performed very fast, as already alluded to in Section 2.2.3.

With these considerations in mind, let us now ponder how two descriptors ca and cb

can be compared. The most natural way of comparing two points in a space is to compute
the Euclidean distance

L2(c
a, cb) = ‖ca − cb‖ =

√

√

√

√

d

∑
i=1

∣

∣ca
i − cb

i

∣

∣

2
, (5.2)

also referred to as the L2 norm of ca − cb. The L2 norm was used in the original SIFT
paper (Lowe, 2004) for computing distances between descriptors. However, depending
on the assumptions that were made during the development of the descriptor, different
distance measures might be more suitable than the L2 norm.

It has to be noted that computing the L2 norm is a relatively expensive operation, as
the descriptors must be represented as floating point numbers according to Equation 5.1.
When Equation 5.2 is computed on many elements, this might cause a considerable com-
putational overhead even on modern computing hardware. Instead, clever researchers
have developed so-called binary descriptors that are especially fast to compare in certain
distance measures. These descriptors live in binary spaces

c : I → (0, 1)d. (5.3)

This space can be intuitively thought of as a hypercube, where the elements of the space
reside at the corners of the hypercube. In this space, the L2 measure does not have a
meaningful interpretation anymore. Instead, an immediately plausible distance measure
is the number of edges that one has to wander from one corner on the cube to reach
another corner of the cube. In the case of binary descriptors, this distance measure is the
L1 measure or equivalently, the Hamming distance

L1(c
a, cb) =

d

∑
i=1

∣

∣

∣
ca

i − cb
i

∣

∣

∣
=

d

∑
i=1

XOR(ca
i , cb

i). (5.4)

55

Chapter 5 Part Correspondences

Reference descriptors P Candidate descriptors C

Figure 5.1: In the simple matching scenario depicted here, perfect matching results can be obtained
by applying the nearest-neighbor rule.

It is now crucial to mention that modern CPU architectures provide dedicated support
for computing the outcome of Equation 5.4. For instance, the SSE4.2 instruction set
contains the popcnt instruction (Intel Corporation, 2007) that can be used for this purpose.
Another advantage of employing binary descriptors lies in the fact that the L1 distance
between two binary descriptors is bounded by the dimension d. Without going into more
details, the conclusion of this section is that the distance measure between descriptors
should be selected with care. For the remainder of this chapter, we will abstract from the
concrete distance measure that is used and refer to it as p.

5.2 Matching

The distance p between descriptors can now be used as the basis for establishing the
association between descriptors from a reference set P and descriptors from a candidate
set C. A very simple matching scenario is shown in Figure 5.1, where three reference
descriptors are shown on the left and three candidate descriptors are shown on the right.
The lines between those two sets represent distance comparisons, as discussed in the
previous section. Let us for now assume that for each candidate descriptor a correct
association is possible, meaning that for each candidate descriptor there is exactly one
reference descriptor sharing the same identityLet us further assume that for the descrip-
tors that belong together their distance is small and the distance to other descriptors from
the opposite set is large13. In this case, an application of what is called the nearest neighbor

(NN) rule leads to perfect matching results, as indicated by the green lines in Figure 5.1.
In this rule, each candidate descriptor is associated with the reference descriptor to which
the distance is shortest. This matching rule can be formalized by

NN(c) = arg min
ci∈P

p(c, ci). (5.5)

It should be clear by the number of assumptions required to achieve this perfect
matching result that in practice the situation is much more complex. First of all, it is

13 If this cannot be assumed, then the Hungarian algorithm (Kuhn and Yaw, 1955) can still provide a
theoretically optimal solution.

56

Chapter 5 Part Correspondences

Positive Reference

Negative Reference

Candidates on Object

Candidates in Clutter

Figure 5.2: A more realistic matching scenario, where the reference descriptors have been divided
into positives and negatives. Correct matches are shown in green, while incorrect matches are
shown in red. The dashed lines denote matches to negative reference descriptors, which are
discarded.

a rather unlikely situation that the number of reference descriptors and of candidate
descriptors is the same. While in object recognition the number of reference descriptors
in the database is much larger, in one-shot tracking one is often faced with the opposite
situation that there is a small number of reference descriptors and a relatively large
number of candidate descriptors in the current frame. From this consideration it is
already clear that not all candidate descriptors can be matched to the reference set and a
blind application of the NN rule will yield many wrong correspondences. It is therefore
important to devise different matching rules that can overcome these situations. A simple
measure to do so is to extend the NN-rule by a threshold θp.

NNθp(c) =

{

NN(c) if p(c, NN(c)) < θp

∅ otherwise
(5.6)

This way, descriptors pairs that exceed a certain distance are not considered, leading to
the situation that some candidate descriptors might not be matched at all.

When using the rule from Equation 5.6 wrong matches can still occur when by accident
a “wrong” reference descriptor exhibits a shorter distance to a candidate descriptor
than the actually correct reference descriptor or when a candidate descriptor from the
background shares similar appearance with a foreground descriptor. To exclude these
cases, the second nearest neighbor distance ratio (SNNDR) rule can be used that allows
for a match only if the ratio between the nearest neighbour and the second nearest
neighbor (NN2) is smaller than a threshold γ.

SNNDR(c) =

{

NN(c) if p(c,NN(c))
p(c,NN2(c))

< γ

∅ otherwise
. (5.7)

57

Chapter 5 Part Correspondences

Reference Descriptors Candidate Descriptors

Reference Descriptors Candidate Descriptors

Figure 5.3: Top: The reference descriptors are ambiguous, leading to the inability of matching
two of the three candidate descriptors. Bottom: By adding additional information, reference
descriptors can be excluded, as indicated by the dashed lines. This leads to a disambiguation of
the correspondences, improving matching results.

As an alternative to the SNNDR rule, backmatching can be performed. In this tech-
nique, matching is performed twice. In the second matching round, the roles of candidate
and reference descriptors is swapped and only those correspondences are kept that yield
the same association in both rounds.

It also makes sense to include negative descriptors into the reference set P and to
discard all candidate descriptors that match to them. In the case of one-shot tracking,
unambiguously negative descriptors can be found for instance outside of the initial
bounding box. A more realistic matching situation is shown in Figure 5.2, depicting the
positive reference set, the negative reference set as well as candidate descriptors on the
object and clutter and the possible matching outcomes.

We now show how the DPMOST can be used to improve the matching result once the
consensus set Lω is computed. To this end, consider the schematic matching illustration
in Figure 5.3. In the top image, one correspondence could be established correctly. For
the two other candidate descriptors however, two suitable reference descriptors exist
according to their distance, as indicated by the black line. By following the SNNDR
rule, none of these candidate descriptors can be matched, as another similar reference
descriptor exists. The reference descriptors are ambiguous. However, if by some addi-
tional information one would be able to exclude one of the reference descriptors for
each candidate, then the correspondences would be non-ambiguous. Recall that all
discussion in this section has concerned only the appearance of the parts in the form of
their descriptors. The DPMOST is able to provide additional information to the matching
of descriptors in the form of the reference part configuration Z. The spatial information

58

Chapter 5 Part Correspondences

Lω

Figure 5.4: Left: Parts with similar descriptors are difficult to match based solely on their appear-
ance. Right: We disambiguate these keypoints by excluding reference descriptors whose part
correspondences can not be in consensus with Lω.

in Z allows for disambiguating reference descriptors. As an example, consider the left
image in Figure 5.4. Here, two ambiguous reference descriptors are shown in the form
of the two eyes of a face. As these two parts of an object are virtually indistinguishable
by their visual appearance, matching by means of the SNNDR rule will fail. On the
right, two candidate descriptors are shown together with the consensus set Lω, which
has come about by other correspondences not shown in the image. Let us now assume
that the parts of the candidate descriptors are located correctly and that the distance of
the candidate descriptors to the reference descriptors of the eyes is reasonably low. By
“simulating” a vote for each reference point (as indicated by the arrows), it becomes clear
that one vote of each candidate descriptor is in consensus with Lω, while the other one
is not. Note that this way a potential deformation of the object of interest is respected.
We suggest to follow exactly this procedure for all candidate keypoints that could not be
matched during the SNNDR matching stage.

5.3 Optic Flow Estimation

A very different view on establishing part correspondences can be obtained when con-
sidering methods for estimating sparse optic flow. Here, the aim is not to find a proper
assignment between reference and candidate descriptors, but rather to directly compute
the displacement of individual parts from one frame to the next frame. As we will discuss
in the next section, this approach is fundamentally different from descriptor matching.
While there are different techniques for estimating optic flow, we will focus in an exem-
plary fashion here on the method proposed by Lucas and Kanade (1981) that we have
already mentioned in Section 2.3.1.

The method of Lucas and Kanade, LK for short, rests on three assumptions. The
first assumption referred to as brightness constancy states that a pixel at location x might

59

Chapter 5 Part Correspondences

change its location in the second image It but retains its brightness value, formally

It−1(x) = It(x + v). (5.8)

Here, v is the displacement vector of x. Clearly, this assumption alone is not particularly
useful as there might be many pixels in It exhibiting the same brightness value as in
It−1(x). To alleviate this, a second assumption is made use of, typically referred to as
temporal persistence. This assumption states that the displacement vector must be small.
In the LK formulation, small means that It(x) can be approximated by

It(x) ≈ It−1(x) + I′t−1(x)v, (5.9)

where I′t−1(x) is the gradient of It−1(x). Intuitively, this assumption establishes the
connection between between the gradient, the image content and the displacement
vector and is known as the optic flow equation. According to this equation, an estimate for
v can be obtained by reformulating

v ≈
It(x)− It−1(x)

I′t−1(x)
. (5.10)

As images have two dimensions, Equation 5.10 is underdetermined for any pixel x and
the solution space is a line instead of a point. To alleviate this, a third assumption called
spatial coherence is introduced. It states that all pixels within a window W around a pixel
should move coherently. The underdetermined single equation is thus turned into an
overdetermined stack of equations which can be solved in a least-squared manner

arg min
v

∑
x∈W

(

It(x)− It−1(x)− I′t−1(x)v
)2

. (5.11)

In Tomasi and Kanade (1991) a closed-form solution for this system is given. To further
improve tracking results, some authors, e.g. Kalal et al. (2010), compute the optic flow
not only in a “forward” direction, but also in a “backward” direction. If the backward
estimate is close to I(x) then the forward estimate is considered correct. A thorough
dicussion about different methods for computing the optic flow is out of the scope of
this work, for a survey see Barron et al. (1994).

5.4 Static-Adaptive Correspondences

In Sections 5.1 and 5.2 we have seen how correspondences between parts can be estab-
lished by keeping a set of parts as a reference set and identifying potential part candidates
in the current frame. An interesting question concerning the reference set is how to
update this set so that it remains representative for the object of interest. Clearly, this
consideration is subject to the same difficulties already presented in Section 2.4 and
one can conclude that at best very conservative updates should be used to update the

60

Chapter 5 Part Correspondences

Figure 5.5: In PROST, multiple tracking algorithms from opposite ends of the adaptivity spectrum
are used to achieve both robustness and accuracy.

reference set. It should also be noted that even though not immediately obvious the
matching of descriptors fits exactly the tracking-by-detection paradigm discussed in
Section 2.3.2, where the nearest-neighbor rule assumes the role of the discriminative
classifier. Let us also keep in mind that apart from the descriptor disambiguation, the
position of parts in previous frames does not play a role during descriptor matching. Due
to the fact that a global search is performed for finding the best matches, a large number
of frames between establishing the reference set and computing current descriptors
does in principle not pose a problem, if the descriptor values remain similar. Descriptor
matching can therefore be considered robust.

On the other hand, methods that employ a local search such as optic flow estimation
techniques can be more accurate than a global search due to the restricted search space
on which it is performed, as discussed in Section 5.3. This accuracy however comes at
the cost of a loss in robustness. For instance, when the search space in the Lucas-Kanade
method would be expanded to the whole image region and a global search would be
performed, results would be rather poor as the error function that the Lucas-Kanade
method aims to minimize would have many global optima. It is interesting to note that
the disambiguation stage presented in the previous section is actually a local search with
the aim of achieving more accurate results. Another crucial aspect when performing
a local search is that the object model has to be updated more “quickly” than when
searching globally, otherwise one might get stuck in the wrong local minimum.

The relationship between these two different kinds of establishing correspondences
has to date been exploited by two one-shot tracking algorithms. In TLD (Kalal et al.,
2012), which we have discussed at length in Section 3.1, a local search is performed to
obtain training samples for the classifier performing a global search. In PROST (parallel
robust online simple tracking), Santner et al. (2010) propose to employ multiple tracking
techniques from opposite ends of the adaptivity spectrum, as shown in Figure 5.5. While
there is no formal definition of what constitutes this spectrum, it is plausible that a
template that is never changed is not adaptive, while an optic flow component whose
internal template is updated in every frame is very adaptive. Santner et al. (2010) propose

61

Chapter 5 Part Correspondences

Figure 5.6: In PROST, more stable (i.e. less adaptive) tracking components overrule more plastic
(i.e. more adaptive) tracking components.

to overrule the more adaptive components by the more robust ones, as shown in Figure 5.6.
This is plausible as the adaptive components tend to have high short-term accuracy, but
lack robustness.

With these considerations in mind, it makes perfect sense to transfer the concepts
of Kalal et al. and Santner et al. that were developed for global object models to part-
based object models. To this end, we suggest to treat the descriptors in the reference
set as the non-adaptive and robust method of establishing correspondences. Similar to
PROST, but different from TLD, we suggest to never update this reference set, as it was
created with on the basis of very reliable information in the form of the initial bounding
box. We refer to correspondences established by means of this reference set as static

correspondences LS. On the other hand, we suggest to employ one completely adaptive

component in the form of estimating the sparse optic flow, for example by using the
method of Lucas and Kanade (1981). While optic-flow-based methods lack the required
robustness for achieving good results in the long run, they can achieve much higher short-
term accuracy than static correspondences. We refer to this type of correspondences
as adaptive correspondences LA. As the optic flow is computed from frame It−1 to It, one
question is what image locations should be used as the starting point for the optic flow
computation, apart from the trivial case of the first frame, where the starting points
are identical to the reference set. Here, the DPMOST comes into play, as it provides
a set of correspondences that is free of outliers, namely the consensus set Lω. In the
previous section we have introduced the idea of disambiguating reference descriptors to
improve matching results with the outlook of achieving more correct correspondences.
This idea becomes even more important when adaptive correspondences are used, as
optic-flow-based correspondence methods require the location of the part in frame It−1

as input. Another question that has to be answered is how to “fuse” the static and the
adaptive correspondences, symbolically LS ∪ LA, as each method provides one (or none
in case of failure) hypothesis for the respective part location in frame It. For an answer
to this question we follow the argumentation of Santner et al. and suggest to discard
an adaptive correspondence when its static counterpart is available. This way, adaptive

62

Chapter 5 Part Correspondences

Algorithm 2 CMT
Input: I1, . . . , IT, b1

Output: b2, . . . , bT

1: L1 ← detect_parts(I1, b1)

2: Z ← normalize(L1)

3: P← compute_descriptors(I1,L1)

4: L− ← detect_parts(I1) \ L
1

5: P← P ∪ compute_descriptors(I1,L−)

6: for t← 2, . . . , T do

7: C ← compute_descriptors(It, detect_parts(It))

8: LS ← match(C, P)

9: LA ← optic_flow(It−1, It,Lt−1)

10: L∗ ← LS ∪ LA

11: s← estimate_scale(L∗, P)

12: α← estimate_rotation(L∗, P)

13: Lω ← transitive_consensus(L∗, Z, s, α)

14: Lt ← disambiguate(C, P, Z)

15: if φ(Lω) then

16: µ← 1
n ∑

n
i=1 L

ω
i

17: H ← similarity_transform(µ, s, α)

18: bt ← Hb1

19: else

20: bt ← ∅.
21: end if

22: end for

correspondences “survive” only as long as no suitable static correspondence exist.

5.5 Formulation of CMT

In this section we formulate the tracking algorithm CMT (Consensus-based Matching
and Tracking). The main purpose of CMT is to evaluate the concepts introduced in
the previous chapters in practice. We therefore do not employ any kind of image pre-
processing that might skew the final results in any way in order to focus on the concepts
that should be evaluated. During the formulation of CMT, we will frequently refer to
Algorithm 2, where CMT is given in the form of pseudocode. A slightly simplified block
diagram of this algorithm is shown in Figure 5.7. Additionally, Figure 5.8 depicts a visual
outline of the individual processing steps in CMT on sample data.

To begin with, the first step in developing a tracking algorithm is to deal with the
initialization phase. For setting up the DPMOST, this amounts to obtaining the reference
configuration of parts Z. Many different ways of obtaining Z are imaginable, but arguably

63

Chapter 5 Part Correspondences

Consensus

Obtain initial
bounding box

Detect
parts

Normalize
part coords.

Compute
descriptors

Match candidates

Compute optic flow

Disambiguation Output

Next image

Figure 5.7: Block diagram of CMT.

the simplest one is to rely on existing part detectors. As many implementations for this
task are available, we abstract from the concrete method used for this purpose and refer
to it as an operation detect_parts, taking as input an image I and optionally a bounding box
b, which can be used to specify a region of interest. For obtaining Z, we run detect_parts

with the first image of the sequence I1 and the inital bounding b1 as arguments and
consider the result of this operation as the first set of correspondences L1. By mean-
normalizing L1 using the operation normalize, Z is obtained. L1 will also serve as the
first basis for computing adaptive correspondences later. To complete initialization,
we have yet to obtain the reference set of descriptors P that will be used to establish
static correspondences throughout processing. To this end, we define another operation
compute_descriptors that receives an image I and part locations as input. Again, this
operation can be implemented by a multitude of different algorithms. We obtain P by
running compute_descriptors on the input image and L1. In addition to the object parts, we
also remember the background descriptors to improve matching results, as discussed in
Section 5.2. To do so, we first retrieve all interesting parts outside of the bounding box b1,
compute their descriptors and add them to the reference descriptors P. The initialization
phase is shown in Algorithm 2 in Lines 1-5.

For the rest of the sequence, we repeat the following procedure for each remaining
image frame It. To establish static correspondences LS, we first obtain candidate descrip-
tors C using the operations already described above. We then perform the association
between candidate descriptors C and refererence descriptors P using the operation match

that implements the SNNDR rule as discussed in Section 5.2. All statements for obtaining
the static correspondences LS can be found in Lines 7-8 of Algorithm 2. For computing
the adaptive correspondences LA, we rely on the abstract operation optic_flow that com-
putes the sparse optic flow between two images It−1 and It for a set of point locations in
the first image. Again, there are different methods that can implement this operation. We

64

Chapter 5 Part Correspondences

t0 t t− 1

Figure 5.8: Outline of the CMT algorithm. Top row: From the initial bounding box in frame t0

reference descriptors are extracted. In each frame t, these reference descriptors are matched to
candidate descriptors to obtain static correspondences. Additionally, adaptive correspondences
are obtained from frame t− 1 by computing the optic flow. Bottom row: The DPMOST is used
to obtain a partitioning of the correspondences into inliers and outliers (left). Next, ambiguous
reference descriptors are disambiguated to strengthen the quality of the correspondences (center).
Finally, a rotated bounding box is computed as the algorithmic output (right) and the tracking
loop continues.

compute the optic flow on the part correspondences Lt−1 from the previous frame. The
computation of adaptive correspondences takes place in Line 9. In Line 10 we then com-
bine the static and adaptive correspondences according to Section 5.4, giving preference
to static ones, and denote this set asL∗. To make use of the invariance of DPMOST to scale
and rotation, we compute their estimates s and α in Line 11 and 12 using the operations
estimate_scale and estimate_rotation according to the heuristics presented in Section 4.2.3.
We then apply the concept of transitive consensus presented in Section 4.2.2 in Line 13
using the operation transitive_consensus to obtain the consensus set Lω. To improve the
subsequent estimation of adaptive correspondences for future frames, we disambiguate
reference descriptors in Line 14 in a second matching round for all candidate descriptors

65

Chapter 5 Part Correspondences

Operation Library Implementation

detect_parts() OpenCV FeatureDetector::detect()
compute_descriptors() OpenCV FeatureDescriptor::compute()
NN() OpenCV BFMatcher::knn()
optic_flow() OpenCV calcOpticalFlowPyrLK()
transitive_consensus() fastcluster MSP_linkage_core()

Table 5.9: Most of the operations in CMT can be implemented using the OpenCV library. For the
transitive_consensus operation, the fastcluster library is used.

that could not be matched during the first matching operation.
Finally, to compute the algorithmic output of CMT, we employ the predicate φ in

Line 15 to check whether the result is plausible according to the number of parts in Lt.
If φ is true, then we compute the center µ of the object by averaging the individual parts
locations in Lω in Line 16 and compute the similarity transform H in Line 17 as discussed
in Section 2.3. H is then used to obtain the output bounding box bt in Line 18 by treating
the coordinates of b1 as homogenized column vectors. In case φ is false, we output an
empty bounding box in Line 20.

For implementing the CMT algorithm, we make use of the OpenCV14 library whenever
possible. The OpenCV library provides interfaces both to low-level numerical computa-
tion operations, such as matrix multiplication as well as higher-level algorithms such
different methods for computing descriptors. To this end, we implemented the operations
detect_parts, compute_descriptors, NN and optic_flow using their corresponding function
calls in OpenCV, as shown in Table 5.9. Additionally, we make use of a forward-backward
check for the optic flow method, where we require that the backward result is within a
radius δ of the original part. As discussed in Section 4.3.3, the transitive_consensus opera-
tion can be seen as the clustering of votes. For this purpose, we employ the fastcluster
library (Müllner, 2013) that implements modern algorithms for computing agglomera-
tive hierarchical clustering. We implemented our approach15 in C✰✰. Considering the
free parameters that have to be set, CMT inherits the deformation threshold δ from
the DPMOST and the distance threshold θp as well as the ratio threshold γ from the
matching of descriptors for establishing static correspondences. Other parameters might
be introduced depending on which implementations are used for the operations listed
above, such as compute_descriptors. It has to be noted that the defomation threshold is
measured in absolute pixel values, but can be easily set in a relative fashion for instance
as a fraction of the diagonal of the input bounding box.

14 Available at http://www.opencv.org.
15 Available at http://www.gnebehay.com/cmt.

66

http://www.opencv.org
http://www.gnebehay.com/cmt

Chapter 5 Part Correspondences

5.6 Conclusion

In this chapter, we have discussed what part representations are suitable for the DPMOST.
On the one hand, we identify static part correspondences based on the matching of
desriptors as one alternative. On the other hand, adaptive correspondences based on the
estimation of the optic flow provide a second alternative. As these two alternatives stem
from opposite ends of the adaptivity spectrum, we suggest to combine these two methods
into static-adaptive correspondences. The DPMOST provides a suitable framework
for handling these correspondences, as outliers are removed in each frame, making
the computation of adaptive correspondences more reliable. Importantly, the static
correspondences are never updated. Furthermore, by incorporating information from
the reference part constellation Z, ambiguous descriptors can be disambiguated to
improve correspondence results. This chapter concludes the algorithmic contributions
of this work. We now turn to the question of how to properly compare the performance
between different one-shot tracking methods in a fair and consistent manner.

67

Chapter 6

Evaluation

A perennial question in the object tracking literature is how to evaluate tracking ap-
proaches in a fair manner. In constrained tracking scenarios it is in principle possible to
assess the performance of an object tracking algorithm in an automatic fashion where
no manual work is required. This can be accomplished if the tracking scenario is con-
strained and the success or failure of the tracking process can be detected. In the case
of one-shot tracking an automatic performance evaluation is however as daunting as
creating a perfect tracking algorithm. Instead, by far the most common method to assess
the performance of one-shot tracking algorithms is to compare the algorithmic output to
ground truth data. We will discuss different ways of comparing algorithmic output to
ground truth in Section 6.1, where the focus is on measures, and in Section 6.2, where
the focus is on the overall evaluation protocol.

6.1 Measures

To compare different tracking algorithms, a dataset and appropriate measures are needed.
As measures provide an indication of similarity between algorithmic output and ground
truth, in Section 6.1.1 we will discuss how the ground truth data in datasets comes about.
In Section 6.1.2 we will then investigate different ways of how to compare the ground
truth data to algorithmic output on a per-frame basis. In Section 6.1.3 we will then
explain how per-frame measures can be accumulated to provide concise information
about tracking success. In Section 6.1.4 we will revisit a popular way of computing the
overlap between groundtruth and algorithmic data. The traditional way of visualizing
this resulting information typically has been to plot per-frame measures of individual
sequences and to provide a tabular overview of accumulated measures. However, as
tracking data sets become larger, authors have developed novel ways of providing an
intuitive graphical representation of this information, referred to as success plots. These
success plots will be discussed in Section 6.1.5.

6.1.1 Annotation Process

The ground truth data of a dataset should provide the ideal tracking output and is
typically created by manually annotating individual video frames. It is not difficult to

68

Chapter 6 Evaluation

imagine that this task is a tedious one. Again, while the perfect ground truth data
consists of a pixel-wise segmentation of the object of interest, for reasons of practicability
bounding boxes are used almost exclusively for creating ground truth data for one-
shot object tracking sequences. The bounding box representation has two significant
advantages over a pixel-wise segmentation.

• The number of parameters that define a bounding box is dramatically lower than
a pixel-wise segmentation. A bounding box has four parameters (five in the case
of rotated bounding boxes), while the number of parameters of a segmentation is
equal to the number of pixels in an image.

• In the case of constant object motion, an estimate for the bounding boxes between
two key frames Ii and Ij can be obtained by linear interpolation of the parameters of
the two bounding boxes bi and bj, thus reducing the required effort for annotation.

However, the use of bounding boxes has the drawback that a canonical annotation
for most objects does not exist. Consider for instance the example in Figure 6.1. As the
object in this example is not rectangular, there is no bounding box that will exactly fit
the shape of the object. There are in principle three different approaches of handling
this situation.

• The bounding box is chosen that completely contains the object of interest, as
shown in Figure 6.1a.

• The bounding box is chosen that contains as much of the object as possible but no
background, as shown in Figure 6.1b.

• A compromise between the two above is chosen, trading of the number of lost
object pixels with the number of unwanted background pixels. Two examples for
this are shown in Figures 6.1c. and 6.1d

In practice, the third way is usually chosen.
List et al. (2005) conduct an interesting study to assess the similarity of annotations

performed by different annotators. List et al. conclude that most annotations are similar
up to 80%. The above discussion demonstrates that bounding boxes offer an effective way
of creating annotations but they should not be used for assessing the accuracy of tracking
algorithms, but rather the robustness. To minimize bias in the evaluation protocol, it
is important to consider the inherent ambiguity of ground truth data in the form of
bounding boxes.

6.1.2 Per-Frame Measures

To compare the algorithmic output bALG to the ground data bGT measures have to be
defined that express the similarity between the two. As algorithmic output is performed

69

Chapter 6 Evaluation

(a) Full (b) Minimal (c) Trade-off (d) Trade-off

Figure 6.1: Four different ways of annotating one and the same object. (a) The object is completely
contained in the bounding box together with a high number of background pixels; (b) The
bounding box covers only the object and no background at all. (c) The vertical axis of the object
is seen as the principal axis for a trade-off. (d) The horizontal axis of the object is seen as the
principal axis for a trade-off.

in every frame, these measures are referred to here as per-frame measures. Different
measures capture different characteristics of the tracking algorithm.

A per-frame measure that has emerged very early in the tracking literature is the center
error

center_error = ‖µ(bGT)− µ(bGT)‖. (6.1)

that captures the Euclidean distance between the centroid of the algorithmic output
and the centroid of the ground truth. This measure makes sense if the actual distance
between the estimated and the real location of the object is of great importance or if
only the centroids are available as ground truth data. Traditionally, this measure has
been applied for the tracking of points, for instance in radar data, where the amount of
deviation matters significantly. The center error measure has also seen application in the
evaluation of one-shot tracking methods (Babenko et al., 2009). However, this measure
has considerable drawbacks:

• The dimensional information of the ground truth data is not used at all.

• The center error measure alone is difficult to interpret without additional informa-
tion about the size of the object and the image, which might differ from sequence
to sequence. For example, a center error measure that yields the value 50 might be
a very good result if both the object and the image size are large. For small objects
and images, this value might be a bad result.

• The center error measure is bounded only by the size of the image.

To overcome these shortcomings, instead measures have been developed that make
use of the full dimensional information of bALG and bGT (Hemery et al., 2007). The one

70

Chapter 6 Evaluation

bALG

bGT

Figure 6.2: The Jaccard index as a measure for overlap between ground truth bGT and algorithmic
output bALG. The gray area corresponds to bGT ∩ bALG. The white area plus the gray area
corresponds to bGT ∪ bALG.

single measure that is almost ubiquitously used for comparing two bounding boxes is
the overlap measure

ψ =
bGT ∩ bALG

bGT ∪ bALG
, (6.2)

that dates back to Jaccard (1912) and is also referred to in the remainder of this work as the
Jaccard index. This measure has been prominently used in the PASCAL VOC Challenge
(Everingham et al., 2010) for object detection and has seen widespread adoption in the
computer vision as well as in the tracking literature. As shown in Figure 6.2, it measures
the ratio between the correctly recognized part of the ground truth and the union between
the ground truth and the algorithmic output. Compared to other overlap measures it
has the following advantages:

• It is bounded between 0 and 1.

• It penalizes translation and scale changes in every direction roughly equally.

The Jaccard index is arguably popular both due to its obvious interpretability and its ease
of implementation. While the Jaccard index has desirable theoretical properties, it cannot
overcome the problem of ground truth ambiguity, as mentioned before. Many authors
therefore compensate this ambiguity by introducing a threshold θ and thus convert the
continuous overlap measure into a binary value. In the remainder of this section, we
will discuss what new measures can be derived by imposing thresholds onto the overlap
measure16.

To this end we make use of the terms true positive (TP), false negative (FN), false
positive (FP) and true negative (TN). These terms are borrowed from the terminology
of binary classification, where the task is to distinguish an element as belonging either to
the positive or negative class. In Table 6.3 the relationship between the class label and
the predicted label is shown. In one-shot object tracking, the task is however slightly

16 While this discussion deals solely with the overlap measure, it is immediately applicable to any other
per-frame measure where high values indicate a desired result. It is also applicable to per-frame
measures where low values indicate good results, such as the center error measure, by replacing all
occurrences of > with ≤ and vice-versa.

71

Chapter 6 Evaluation

Predicted Label
True False

Class Label
True TP FN

False FP TN

Table 6.3: Definition of true positives (TP), false negatives (FN), false positive (FP) and true
negatives (FN) in binary classification.

GT

ALG

(a) True positive

GT

(b) False negative

ALG

(c) False positive

GT ALG

(d) FN and FP

Figure 6.4: Conversion of per-frame measures into true positives, false positives and false negatives.
The trivial case of true negatives is not shown here. Image adapted from Nebehay (2012).

different, as the aim is to predict the location of the positive class (the object). We will now
see what adaptions have to be performed to these measures to adopt them for one-shot
object tracking.

First, we derive the new measure TP (true positive). A true positive denotes the
situation when the object of interest was correctly localized, as shown in Figure 6.4a.
This is the case when the overlap measure is above the threshold θ. This situation can be
expressed formally by

TP =

{

1 if ψ > θ

0 otherwise.
(6.3)

Note here that the overlap measure ψ may not be defined if there is either no algorithmic
output (bALG = ∅) or the object is not visible in the frame (bGT = ∅).

If there is no algorithmic output and the object is visible (as in Figure 6.4b), or the
measure is on the opposite side of the threshold (as in Figure 6.4d) then this is counted
as a false negative

FN =

{

1 if (bGT 6= ∅ ∧ bALG = ∅) ∨ ψ ≤ θ

0 otherwise.
(6.4)

The measures TP and FN are sufficient to analyze the ability of a tracking algorithm to
correctly localize the object of interest. Still, it might be interesting from an application’s
point of view to analyze the behaviour of the tracking algorithm when the object is not
visible. This is important when false alarms of an application are a problem. Imagine for
instance an application where a costly action is performed as long as the object is visible.

72

Chapter 6 Evaluation

bGT 6= ∅ bALG 6= ∅ ψ > θψ TP FN FP TN

True True True 1 0 0 0
True True False 0 1 1 0
True False - 0 1 0 0
False True - 0 0 1 0
False False - 0 0 0 1

Table 6.5: Definition of true positives (TP), false negatives (FN), false positive (FP) and true
negatives (FN) for one-shot object tracking.

If the algorithm localizes the object perfectly well, but still returns random results when
the object disappears, the overall cost of the system increases. To this end, it makes sense
to introduce two new measures FP (false positives) and TN (true negatives). A FP

FP =

{

1 if (bGT = ∅ ∧ bALG 6= ∅) ∨ ψ ≤ θ

0 otherwise.
(6.5)

occurs if there is no ground truth data for the current frame (bGT = ∅), but the algorithm
still outputs a result, as shown in Figure 6.4c. It can also occur when the overlap between
ground truth and algorithmic output is too small (Figure 6.4d). For completeness, we
also provide the definition of true negatives TN, which occur when there is neither
algorithmic output nor ground truth data for a frame, formally

TN =

{

1 if bGT = ∅ ∧ bALG = ∅

0 otherwise.
(6.6)

While this measure can be interesting, it is commonly not used for evaluating one-shot
tracking approaches. A complete summary of these binary measures is provided in
Table 6.5.

6.1.3 Accumulated Measures

In the previous section we have discussed methods of assessing the quality of the algo-
rithmic output for a single frame. While it is certainly possible to visualize per-frame
measures for comparing different tracking algorithms, it is often desirable to compute
an accumulated measure on per-frame measures f1, . . . , fT. In this section we will discuss
accumulated measures that have been used in the literature.

The tracking length is one of the oldest accumulated measures, counting the number
of frames up to the first failure. In our notation, a failure occurs when a false negative is
detected. The tracking length measure can then formally be described as

tracking_length = min i, s.t. FNi = 1. (6.7)

73

Chapter 6 Evaluation

Whatever output comes after the first failure is ignored. One underlying idea behind this
measure is that a manual re-initialization has to be performed after a tracking failure.
The tracking length therefore measures the amount of time it takes until this failure
occurs. However, in more complex scenarios one tracker might fail by chance in an early
frame, distorting the results. In order to remedy this, the failure rate

f ailure_rate =
n

∑
i=1

FN(fi) (6.8)

has been used for one-shot tracking (Kristan et al., 2013), where a manual re-initialization
is simulated after each tracking failure. It is very important to stress that both of these
measures do not allow the tracker to correct its own errors in any way. In fact, employing
these measures is useful for short-term trackers only in contrast to long-term trackers.
While there is no immediately obvious conceptual difference between short-term trackers
and long-term trackers, experience shows that in practice certain trackers are able to
recover after a tracking failure, while others are not. This additional robustness comes
however at the price of a possibly reduced short-term performance, as the tracker has to
take care not to adapt too quickly to the object of interest. In summary, there is a certain
trade-off between performance in short-term and long-term tracking. Both the tracking
length and the failure rate are unsuitable for evaluating long-term tracking approaches
because they ignore the intrinsic ability of long-term trackers to compensate errors and
to re-detect the object of interest.

A natural way of formulating a long-term measure is to perform an average over all
per-frame measures of a sequence

avg =
1

T

T

∑
i=1

fi, (6.9)

where care has to be taken that only those frames are considered where both the ground
truth and the measure is defined. Again, this accumulated measure however creates the
illusion of providing a very accurate result, while it is still based on imprecise annotations.
To this end, authors (e.g. Kalal et al., 2012) have borrowed the notion of recall

recall =
∑ TPi

∑ TPi + ∑ FNi
(6.10)

from the information retrieval literature. Recall measures tracking success in frames
where the object is visible. It is interesting to note that if the object is visible in all frames
of a sequence, the recall measure and the average of the TP measure are identical

recall∗ =
∑ TPi

∑ TPi + ∑ FNi
=

1

T

T

∑
i=1

TPi. (6.11)

A complementary measure to recall is precision

precision =
∑ TPi

∑ TPi + ∑ FPi
, (6.12)

74

Chapter 6 Evaluation

measuring tracking success in frames where an algorithmic output exists. Recall and
precision, originally stemming from information retrieval, can be interpreted using the
notion of relevance. Precision measures how many elements from a retrieved set are
relevant, while recall measures how many elements from the relevant population were
retrieved. Clearly, there is a certain trade-off between these two measures that is steered
by an internal threshold of the object tracking algorithm. Essentially, uncertain results
can be suppressed using this threshold, resulting in less false positives, but usually also
in a reduction in true positives. In contrast to binary classification, in one-shot tracking it
is however not possible to increase the recall arbitrarily by lowering this threshold. This
is due to the fact that the algorithmic output is a bounding box instead of a binary class
label.

Researchers have looked at ways of combining recall and precision into a single mea-
sure. One way of doing so is to compute the harmonic mean of recall and precision

F = 2 ·
recall · precision

recall + precision
. (6.13)

To appreciate why the harmonic mean is used for the F measure instead of the arithmetic
mean, two intuitions are helpful. First, the idea of the F measure is that it should be high
only when both recall and precision are high. For example if recall = 0 and precision = 1,
then the arithmetic mean is 0.5, while the harmonic mean remains 0. The second intuition
is that the arithmetic mean only makes sense if the numbers it is computed on have
the same scale. For recall and precision, this is not the case, as their denominators
are different. In fact, the harmonic mean is the reciprocal of the arithmetic mean of
the reciprocals of the numbers it is computed on, eliminating these denominators. In
summary, recall, precision and the F-measure are long-term tracking measures and
should be used whenever the tracker is allowed to correct its own failures.

6.1.4 Overlap Measure Revisited

With the notation of accumulated measures defined from the previous section, let us
again consider the overlap measure. A different way of interpreting the Jaccard index is
to employ the binary measures from the previous section

ψ =
TP

TP + FP + FN
(6.14)

as shown in Figure 6.6a. This time, the binary measures do not refer to per-frame
measurements, but rather to individual pixels and are interpreted according to Table 6.3,
where the class label of a pixel is true if it is contained within the bGT and the predicted
label of a pixel is true if it is contained within bALG. It is interesting to note that in the
original paper, Jaccard (1912) employs the Jaccard index as a similarity measure between
sample sets to describe the similarity of the flora in alpine regions. In this scenario, there
is no notion of true or false. Transferred to the one-shot object tracking scenario, the

75

Chapter 6 Evaluation

FN

FP

TP
bGT

bALG

(a) Overlap measure revisited

TP FN FP ψ F

100 0 0 1.00 1.00
75 25 25 0.60 0.75
67 33 33 0.50 0.66
50 50 0 0.50 0.66
50 50 50 0.33 0.50
25 75 75 0.14 0.25
0 100 100 0.00 0.00

(b) ψ and F on sample values

Figure 6.6: (a) The overlap measure re-interpreted as a combination of true positive (TP), false
negative (FN) and false positive pixels (FP). (b) Comparison of Jaccard index ψ and F measure
for different values of TP, FP and FN, based on a hypothetical ground truth bounding box
containing 100 pixels.

Jaccard index measures in the same way the similarity of the pixel distribution with
respect to their classes (TP, FN and FP). There is however the striking difference that
the two samples sets have very different origins. The ground truth is assumed to be true,
while the algorithmic output is a form of prediction.

Let us now recall the formula for the F measure from Equation 6.13 and expand it
using the notion of TP, FP and FN.

F = 2 ·
recall · precision

recall + precision
= 2 ·

TP
TP+FN ·

TP
TP+FP

TP
TP+FN + TP

TP+FP

= (6.15)

= 2 ·

TP·TP
(TP+FN)(TP+FP)

TP·(TP+FP)+TP·(TP+FN)
(TP+FN)(TP+FP)

= (6.16)

= 2 ·
TP · TP

(TP + FN)(TP + FP)
·

(TP + FN)(TP + FP)

TP · (TP + FP) + TP · (TP + FN)
= (6.17)

= 2 ·
TP · TP

TP · (TP + FP) + TP · (TP + FN)
= (6.18)

=
2 · TP

2 · TP + FN + FP
(6.19)

The outcome of this calculation bears a striking similarity to Equation 6.14, the difference
being that in the F measure the TP have more weight both in the numerator and in the
denominator. It is easy to prove that the F measure always yields larger values than the

76

Chapter 6 Evaluation

overlap measure ψ by substituting a = TP and b = FP + FN.

2a

2a + b
≥

a

a + b
(6.20)

2a(a + b)

(2a + b)(a + b)
≥

a(2a + b)

(2a + b)(a + b)
(6.21)

2a(a + b) ≥ a(2a + b) (6.22)

2a2 + 2ab ≥ 2a2 + ab (6.23)

2ab ≥ ab (6.24)

2 ≥ 1 (6.25)

Figure 6.6b visualizes in tabular form the difference between the F measure and ψ for a
ground truth bounding box of 100 pixels. While it does not make sense to prove that one
measure is more “correct” than the other, it can be argued that the F measure actually
yields more intuitive results. Especially in the case when all TP, FN and FP are 50, it
is difficult to argue why the result of the similarity measure should be below 0.5, as
it is in the case of ψ. While for the comparison of different tracking algorithms it is
arguably irrelevant whether the F measure or ψ is used, one should not forget that the
overlap threshold θψ has to be set manually. This threshold should have a plausible
interpretation. Even though admittedly this discussion is somewhat subject to a personal
understanding of aesthetics, we argue here that the F measure actually provides a more
plausible interpretation than ψ. Nevertheless, to remain comparable to the experimental
results of other authors, we employ the overlap measure ψ for conducting experiments.

6.1.5 Visualization of Measures

The classical way of visualizing and comparing tracking results is to plot per-frame
measurements for individual sequences, as it is commonly done with the center error.
When the number of sequences grows larger, a common route is to instead display
accumulated measures over sequences in a tabular form. As tracking datasets tend to
become larger, this approach is also no longer practicable. Recently, success plots have
been used to overcome this problem17. An example for such a success plot is shown in
Figure 6.7, where on the x axis a threshold θ is shown. On the y axis, the percentage
(the success rate) is shown for which the measure in question f is within the threshold θ.
Formalizing this18, a success plot is a function19

S(θ) =
1

n

n

∑
i=1

I fi>θ , (6.26)

where I is the indicator function. A success plot can in principle be applied to any kind

17 To avoid confusion, it is noted here that Babenko et al. (2011), Henriques et al. (2012), and Wu et al.
(2013) refer to success plots of the center error measure as precision plots.

18 Again, for measures where small values indicate a good result, the signs have to be reversed.
19 In other scientific areas, this function is called survival function.

77

Chapter 6 Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold θ

Su
cc

es
s

ra
te

Success plot

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Random variable x

C
u

m
u

la
ti

ve
P

ro
ba

bi
lit

y

ECDF

Figure 6.7: Equivalence of success plots and empirical cumulative distribution functions (ECDFs).
Both plots were created from the same underlying data (N=1000), drawn from a triangular
distribution with limits (0,1) and mode 0.5.

of measure, be it per-frame measures or accumulated measures. Still, care has to be taken
not to hamper the interpretability of a success plot. For example, Wu et al. (2013) employ
a success plot of the overlap measure ψ to visualize tracking performance on a dataset.
Instead of providing one success plot per sequence, they concatenate the algorithmic
output and the ground truth data of all sequences into a single giant sequence. This way
however, it has to be considered that a long sequence has more impact onto the final
result than a short sequence, which may not be desired. Furthermore, as the overlap
measure is subject to ground truth ambiguity, the significance of the success plots with
respect to overlap used by Wu et al. is questionable for a threshold > 0.8.

To understand how a success plot should be interpreted, a very helpful insight that
we provide here is that success plots are related to empirical cumulative distribution
functions (ECDF) by the identity

S(θ) = 1− ECDF(θ), (6.27)

where the ECDF of the random variables x1, . . . , xn is

ECDF(t) =
1

n

n

∑
i=1

Ixi≤t. (6.28)

The equivalence is visualized in Figure 6.7, where the same data was used to create a
success plot (left image) and an empirical cumulative distribution function (right image).
By recognizing that a success plot is closely related to the ECDF, it also becomes clear
that the area under the curve (AUC) of a success plot is nothing else than the mean of the
individual measures.

AUC(S) =
1

n

n

∑
i

fi =
∫ ∞

0
S(θ) dθ. (6.29)

78

Chapter 6 Evaluation

6.2 Evaluation Protocols

An evaluation methodology for one-shot object tracking consists of two essential things.
The first ingredient are appropriate measures that assess the desired properties of track-
ing algorithms. While we have discussed properties of different measures at length
already in the previous sections, we will discuss the choice of measures in existing evalu-
ation methodologies for one-shot object tracking in Section 6.2.1. The second ingredient
is a dataset that should be as diverse as possible to assess the behaviour of the compared
trackers in different situations. Furthermore, it has to be equipped with ground truth
annotations for all sequences. We will discuss this topic in Section 6.2.2. Finally, in
Section 6.3 we describe the evaluation protocol that we employ for this work that aims at
providing a fair and easily interpretable way of comparing long-term tracking algorithms.

6.2.1 OTB and VOT

When publishing research about tracking, authors have typically used best practices for
evaluating and comparing their own approach to the state of the art. The Object Tracking
Benchmark (Wu et al., 2013), OTB for short, was the first tracking methodology to achieve
widespread acceptance in the tracking community. The authors of OTB proposed an
evaluation methodology comprised of multiple experiments. For their main experiment
called one-pass evaluation (OPE), each tracker is run using the first entry of the ground
truth data as initialization. The resulting algorithmic output of all sequences is then
concatenated and analyzed with respect to overlap ψ and the center error measure.
Success plots are used to visualize the results, as shown in Figure 6.8a. The area under
the curve is used to compute a final ranking and is visible in the top right corner of
the plot. This value amounts to the respective average per-frame measure, as it was
shown in Section 6.1.5. In two other experiments, called temporal robustness evaluation
(TRE) and spatial robustness evaluation (SRE), Wu et al. test the robustness of trackers to
perturbations in the initial bounding box.

There are three points of criticism that can be directed at OTB. One point is that by
concatenating all sequences into a single sequence, longer sequence have more weight
than shorter sequences. While one could argue that this is a desired effect, in our opinion
one sequence should be interpreted as a single problem that a tracker has to solve. From
this view, each sequence should contribute the same weight to the overall result. The
second point is that a success plot of the overlap measure is not particularly revealing
due to the inherent ground truth ambiguity, as discussed in Section 6.1.1. In fact, the
most interesting part of the success plots in OTB is a slice of the success plot where the
overlap threshold is 0.5, which is a reasonable requirement for the overlap. The third
point of criticism is that the average overlap as a means of ranking trackers is prone to
ground truth ambiguity.

Another methodology for object tracking has been developed by Čehovin et al. (2016),
who analyze different measures with respect to their correlation and conclude that the two

79

Chapter 6 Evaluation

(a) OTB (b) VOT

Figure 6.8: Evaluation methodologies. (a) The OTB tracking evaluation of Wu et al. (2013) employs
a success plot of the overlap measure. (b) The VOT evaluation of Kristan et al. (2016) employs a
combined measure of accuracy and robustness.

measures ψ and f ailure_rate correlate least. Based on this consideration, the visual object
tracking (VOT) challenge (Kristan et al., 2016) was initiated, that aims at providing an
annual challenge to measure progress in tracking research and at the time of writing has
been held three times (Kristan et al., 2013; Kristan et al., 2014; Kristan et al., 2015). 20. As
in the VOT evaluation methodology trackers are automatically re-initialized after failure,
these two measures can be interpreted as measuring the trade-off between accuracy (A)
and robustness (R) and are visualized in an AR plot, as shown in Figure 6.8b, where
each evaluated tracker occupies one coordinate in AR-space. Additionally, a ranking
methodology is employed, aiming at capturing only statistically significant differences
between trackers. Again, one problem with this methodology is that the average overlap
is subject to ground truth ambiguity. To remedy this effect, starting with Kristan et al.
(2014) rotated bounding boxes are used as ground truth data, that allows for a more
accurate annotation. It has to be noted that the measures of the VOT challenge meant to
evaluate short-term tracking algorithms only.

6.2.2 Dataset

Until recently, authors of tracking algorithms evaluated their approaches on a mere
handful of sequences. An evaluation that is performed on few sequence however tells
little about the capability of a tracking algorithm for achieving good results on sequences
the algorithm was never tested on. While not directly applicable, this problem is closely
related to the problem of overfitting in machine learning. For instance, a classical problem

20 More details at http://www.votchallenge.net.

80

http://www.votchallenge.net

Chapter 6 Evaluation

Figure 6.9: Example sequences from the Vojir dataset. From left to right, top to bottom: ball, board,
box, car, car 2, carchase, cup on table, dog1, gym, juice, jumping, lemming, liquor, mountain-bike, person,
person crossing, person partially occluded, singer, sylvester, track running.

in machine learning is classification, where the task is to correctly predict the class of
an instance after being presented with a training set containing a number of labeled
examples. It should come as no surprise that obtaining a low error rate on the training set
itself is a trivial task, as this can be achieved by memorizing the whole training set. Such
an approach will however yield a very high error rate on a dedicated test set, because the
data will not be exactly the same as in the training set. Instead, the classifier should use
the training set to find a decision boundary that generalizes well to unseen examples. As
in one-shot object tracking there is no dedicated training data at all, one might be tempted
to think that this problem does not exist. Extreme overfitting in one-shot tracking would
mean that the tracking algorithm memorizes a direct mapping from image content to
ground truth bounding boxes. While such a tracker would hardly make it through peer
review, it should be made clear that virtually every tracking algorithm contains a number
of parameters that can be tweaked one way or the other to improve the results in certain
situations. When browsing the tracking literature it is next to impossible to find a paper
that does not claim to outperform the state of the art. This is clearly possible as a tracker
whose parameters were overfitted to a small custom set of sequences will perform poorly
on another custom set of sequences.

With the publication of OTB and VOT, this situation has slightly improved, as they
both provide a standardized set of sequences. This way, tracking algorithms at least

81

Chapter 6 Evaluation

now overfit to the same dataset instead of overfitting to a custom selection of sequences,
making the overall results more comparable. Furthermore, these standardized datasets
tend to be much larger than what was previously used. OTB employs 50 sequences, while
in the third edition of the VOT challenge 60 sequences were used. With a diverse dataset
that large, it is much more difficult to artificially improve overall results by tweaking
certain parameters. Even if the dataset itself is used to find optimal parameter settings, it
is still plausible that the tracker will perform well on an unseen sequence.

Another interesting dataset was proposed by Vojir and Matas (2014), consisting of
a compilation of 77 sequences, subsets of which were used by different authors for
publishing one-shot tracking results. The sequences are extremely diverse with respect
to the objects of interests, as shown exemplarily in Figure 6.9, but also differ considerably
in sequence length.

6.3 Conclusion

Summarizing the previous discussion, a proper evaluation methodology for long-term
tracking should account for sequence length, should not overly penalize single-frame
errors and should allow for automatic re-initialization. The evaluation should be per-
formed on a large dataset that should not have been compiled by the author of the
tracking algorithm. With these considerations in mind, we propose the following evalu-
ation protocol for a quantitative comparison of long-term trackers to other trackers that
is similar to the one used in Kalal et al. (2012).

As discussed in Section 6.1.4, while it is not entirely clear that the overlap measure ψ

provides completely intuitive results, we still choose it to remain comparable to other
evaluation methodologies. To evade the problem of ground truth ambiguity, we convert
each per-frame measure into the binary measures TP, FN and FP, as discussed in Sec-
tion 6.1.2. Kalal et al. employ a threshold of θψ = 0.25, does not seem restrictive enough
with Figure 6.6b in mind. Instead, we suggest to employ the more natural threshold
of θψ = 0.5. To account for sequences of different lengths, we suggest to compute the
recall as an accumulated measure for each sequence and to provide a success plot of
all obtained recall values, providing a much better overview this way than what was
possible with a tabular presentation. We will refer to this evaluation methodology in the
next chapter as sequence-based OPE.

82

Chapter 7

Experiments

To avoid empty theorizing about the benefits of the concepts introduced in the previous
chapters, it is necessary to evaluate them in practice. In Section 7.1 we evaluate CMT with
respect to parameter settings, different part correspondence methods, the heuristics used
in the DPMOST. We then provide quantitative results of CMT in comparison to baselines
and state-of-the-art tracking algorithms as well as a speed comparison in Section 7.2. To
exclude any bias from the evaluation that might be introduced from a personal selection
of sequences, for our comparison we employ the Vojir dataset21, that we referred to in the
previous chapter. We use the sequence-based OPE evaluation methodology proposed in
Section 6.3. Finally, in Section 7.3 we show qualitative results.

7.1 Analysis of CMT

As the central parameter in the DPMOST is the deformation threshold δ, it makes sense
to evaluate this parameter exhaustively. To this end, we provide a plot of the effect of δ on
the average recall on the Vojir dataset in Figure 7.1 on the left. Here, δ is varied from 0 to
100 pixels, where 0 requires complete rigidity in the model. The plot shows that a proper
setting of δ is very important. When it is set too low, many correct correspondences
are rejected. When it is set too high, many outliers are considered as inliers. In both of
these cases, the localization of the object is hampered. There appears to be a “sweet spot”
between δ = 15 and δ = 40. It is clear that the optimal parameter setting for δ depends
on multiple factors. The main factor is arguably the deformation of the object, but also
the size of the object and the image size play a role here. An interesting future research
direction lies in adapting the parameter in an automatic fashion during runtime.

To measure the impact of the method used for establishing correspondences, we
compare the effect of employing static correspondences, static-adaptive correspondences
and disambiguated static-adaptive correspondences. The result is shown in Figure 7.1
on the right. As expected, the static correspondences perform much worse than the
other two correspondence types. As soon as adaptive correspondences are added, the
performance increases dramatically. While the addition of disambiguated static-adaptive
correspondences does not lead to an increase this drastic, it nevertheless contributes a

21 Available at http://www.gnebehay.com/cmt.

83

http://www.gnebehay.com/cmt

Chapter 7 Experiments

20 40 60 80 100
0

0.2

0.4

0.6

Deformation threshold δ

A
ve

ra
ge

R
ec

al
l

Effect of deformation threshold

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall (ψ > 0.5)

Su
cc

es
s

ra
te

Effect of correspondence types

static static-adaptive static-adaptive + disambiguation

Figure 7.1: Left: Effect of the deformation threshold δ on the average recall achieved by CMT on the
Vojir dataset. Right: Effect of different correspondence types. The largest increase in performance
can be noticed when switching from static correspondences to static-adaptive correspondences.

certain share to achieving state-of-the-art results.
Clearly, the choice of how the the parts correspondences are obtained has a strong

impact on the overall tracking result. In this experiment, we evaluate different combi-
nations of part detectors and descriptors. For the part detectors, we selected GFTT (Shi
and Tomasi, 1994), FAST (Rosten and Drummond, 2006), ORB (Rublee et al., 2011) and
BRISK (Leutenegger et al., 2011). For the descriptors, we selected BRISK (Leutenegger
et al., 2011), FREAK (Alahi et al., 2012), BRIEF (Calonder et al., 2010) and ORB (Rublee
et al., 2011). As CMT is completely agnostic of the concrete part detectors and descriptors,
we performed an exhaustive comparison of all possible combinations of the above. It
has to be noted that all of the considered methods contain internal parameters that can
be adjusted. For instance, all part detectors employ a threshold for rejecting candidate
point locations. We left all of these parameters at their default values, as an evaluation of
those parameters is out of scope for this work. The results of this experiment are shown
in Figure 7.2, where each combination of part detector and descriptor was assigned a
color according to the legend on the right. The plot is a success plot of the average per-
sequence overlap values. It is interesting that no clear winner can be identified from this
experiment, suggesting that their performance is dependent on the particular sequence.
The reason that the combination of ORB and FREAK performs worst lies in the FREAK
descriptor rejecting many parts detected by ORB due to some internal checks, leading to
a degradation in performance.

To evaluate the correctness of the heuristic for estimating the scale of the object of
interest that was presented in Section 4.2.3, we perform an experiment on the sequence
singer, where the object of interest undergoes a dramatic change in size. In the top plot of

84

Chapter 7 Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Average per-sequence overlap

Su
cc

es
s

ra
te

Effect of part detectors and descriptors

GFTT/BRISK ORB/FREAK
GFTT/FREAK ORB/ORB
GFTT/BRIEF ORB/BRISK
GFTT/ORB ORB/BRIEF

FAST/FREAK BRISK/BRISK
FAST/BRIEF BRISK/FREAK
FAST/ORB BRISK/ORB

FAST/BRISK BRISK/BRIEF

Figure 7.2: Comparison of part detectors and descriptors on the Vojir dataset.

Figure 7.4 two curves are shown depicting the scale of the object of interest in the singer

sequence. The first curve, shown in green, refers to the scale sGT of the object according
to ground truth data. As an indicator for this

sGT =

√

w2
t + h2

t
√

w2
1 + h2

1

(7.1)

was used, where w and h denote the width and height of the initial and current bounding
boxes. We contrast this curve with the result s of the scale estimation in the DPMOST
according to Equation 4.8, shown in blue. It is clearly visible that the two curves are
almost identical, a feat that only few object tracking algorithms achieve. To visualize in
more detail what is going on in Equation 4.8, we analyze the distribution of the pairwise
scale changes

S =

{

‖xt
i − xt

j‖

‖x1
i − x1

j ‖
, i 6= j

}

(7.2)

that appears there. In Figure 7.4 we show S in the form of a histogram for six frames
of the singer sequence. Again, the ground truth scale sGT is shown in green and the
estimated scale s is shown in blue. Intuitively, the more compact the histogram, the more
the pairwise scale comparisons “agree” on the scale of the object. It can be seen that in
later frames the histograms get less and less compact. This is due to the fact that the

85

Chapter 7 Experiments

0 50 100 150 200 250 300 350

0.4

0.6

0.8

1

frame

sc
al

e
Evolution of scale estimate

sGT

s

Figure 7.3: Evolution of the scale estimate s on the sequence singer compared to the scale defined
by the ground truth.

object appears in a deformed way, leading to the drifting of object parts. Additionally,
some unrecognized outliers taint the scale histogram. Nevertheless, the median is robust
enough to cope with these deviations and is able to yield the correct result for all six
frames. It would be interesting to perform a similar experiment for the estimation of the
rotation, but for this more precise ground truth data would be necessary.

We implemented RANSAC and a variant of the Generalized Hough Transform in order
to investigate the performance difference between our method and well-established
methods for robustly estimating outliers and transformation parameters. For RANSAC,
we compute an exact solution for a similarity transform between the correspondences.
We tested a range of different parameter settings and employed those that yielded best
results for our comparison. For the GHT we employ coarse bins of a tenth of the width
and height of the image for the x and y dimension, respectively as well as 10 bins for
the scaling dimension and 20 bins for the rotation dimension. It has to be noted that
we added the comparison to the GHT for reasons of completeness, as it is not practical
when used with parameter space of more than three dimensions. The results in Figure
7.5 were computed on the Vojir dataset, showing the success rate with respect to recall.
The results show that the restrictive baselines perform poorly compared to our approach,
the main reason being their inherent incapability of handling deformations.

7.2 Quantitative Results

In this section we apply the long-term tracking methodology described in the previous
chapter to evaluate our proposed approach and compare it to a several other trackers.
Clearly, there is an abundance of tracking algorithms available and one faces the challenge
of selecting algorithms for comparision. To make sure that we compare to the state of the
art, we selected the top 3 ranking trackers SCM, STR and TLD from the OTB evaluation.
Additionally, we included FT, a basic part-based tracker as well as the CT tracker that

86

Chapter 7 Experiments

#0002

0 1 2

0

200

400

scale

#e
nt

ri
es

#0014

0 1 2

0

200

400

scale

#e
nt

ri
es

#0108

0 1 2

0

200

400

scale

#e
nt

ri
es

#0180

0 1 2

0

200

400

scale

#e
nt

ri
es

#0294

0 1 2

0

200

400

scale

#e
nt

ri
es

#0342

0 1 2

0

200

400

scale

#e
nt

ri
es

S s sGT

Figure 7.4: Distribution of the pairwise changes in scale S for 6 individual frames. The x axis
denotes the scale. The y axis denotes the absolute number of entries in the respective histogram
bin. s and sGT denote our estimate and ground truth values for scale, respectively. While the
histograms become less compact as the object becomes smaller, the heuristic for estimating s still
delivers satisfying results.

87

Chapter 7 Experiments

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall (ψ > 0.5)

Su
cc

es
s

ra
te

Comparison to baselines

CMT
RANSAC

GHT

Figure 7.5: Comparison of CMT to RANSAC and the GHT.

Abbrev. Method

STR Structured Output Tracking (Hare et al., 2011)
TLD Tracking-Learning-Detection (Kalal et al., 2012)
SCM Sparsity-based Collaborative Model (Zhong et al., 2012)
FT Fragments-based Tracking (Adam et al., 2006)
CT Compressive Tracking (K. Zhang et al., 2012)

Table 7.6: State-of-the-art tracking algorithms used in the comparison to CMT.

operates at a high processing speed. We deliberately did not include HoughTrack into
the comparison, as this tracker was never meant to be employed on long sequences,
rendering a potential comparison unfair. An overview of the selected trackers is given
in Table 7.6. The source code of all competing trackers was obtained from the websites
of the respective authors and all parameters were left at their default values. Care was
taken for the implementation of CMT22 to remain compatible with as many platforms as
possible, making a comparison of CMT to newly published trackers easy.

For CMT, we employ the parameters δ = 20 and employ BRISK (Leutenegger et al.,
2011) keypoints and descriptors for establishing part correspondences. The parameter
θφ can be set for suppressing uncertain tracking results, but for the evaluation protocol
that we use this is of no importance.

For our first, arguably most important experiment we perform our proposed sequence-
based OPE evaluation on the Vojir dataset. The resulting success plot of the recall for the
individual sequences is shown in Figure 7.7 on the left. To avoid misunderstandings,
the x axis denotes the threshold on the recall achieved on individual sequences, while

22 Available at http://gnebehay.com/cmt

88

http://gnebehay.com/cmt

Chapter 7 Experiments

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall (ψ > 0.5)

Su
cc

es
s

ra
te

Success plots of OPE (sequence-based)

CMT
STR
TLD
SCM
FT
CT

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap ψ

Su
cc

es
s

ra
te

Success plots of OPE (frame-based)

CMT
STR
TLD
SCM
FT
CT

Figure 7.7: The main experiment for evaluating the overall performance of our proposed tracker
CMT to the state of the art. Left: Comparison using our proposed methodology. Shown here
is a success plot of recall for an overlap threshold θψ = 0.5. Right: Results according to Wu
et al. (2013) in the form of a success plot of the overlap measure. Our method dominates both
evaluations.

the threshold on the overlap measure ψ remains fixed, as shown on the x axis label. (in
contrast to OTB). As one moves to right of the plot, less sequences “survive” the increased
requirement on the recall, leading to a reduction in the success rate. Therefore, all curves
start in the top left corner with a success rate of 1 and end in the bottom right corner with
a success rate of 0. What is now interesting is how the curves bridge the way between
those extrema. All trackers achieve roughly equal results in a recall range of 0 to 0.1.
After this, results start to diverge and the results of FragTrack and CT deteriorate. The
other trackers continue to achieve similar results up to a recall threshold of 0.3, which
is when our proposed tracking algorithm CMT begins to dominate the success plot. It
is noteworthy that the distance between CMT and the second-ranked tracker STR is
especially high for recall values of 0.9, where 35% of the sequences survived. While it
has to be considered that on a different set of sequences the results might be slightly
different, it is safe to say that CMT achieves excellent tracking results compared to the
state of the art. This is especially interesting, as there is no permanent model update in
CMT in contrast to all other competing approaches.

It is now interesting to compare the outcome of these experiments to the OTB evaluation
methodology proposed by Wu et al. (2013). To this end, we provide the success plot of
the overlap measure ψ after concatenating the result of all sequences. This success plot is
given in Figure 7.7 on the right. It is now difficult to compare the results between these
two methodologies directly, as one is based on frames and the other one on sequences.
However, the OTB evaluation displays a similar picture as our proposed methodology,
as our method dominates this evaluation as well. Also, the inaccuracy of STRUCK is

89

Chapter 7 Experiments

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall (ψ > 0.75)

Su
cc

es
s

ra
te

Success plots of OPE (sequence-based)

Ours
STR
TLD
SCM
FT
CT

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Recall (ψ > 0.25)

Su
cc

es
s

ra
te

Success plots of OPE (sequence-based)

Figure 7.8: Success plots depicting the effect of different thresholds on the overlap ψ. On the left,
θψ = 0.25 was used, improving the results of some trackers considerably, especially STRUCK. On
the right, θψ = 0.75 was used, leading to a degradation of all results. The legend is the same as in
the left plot.

visible, as the decline of its curve is much steeper than the one of CMT or TLD. Again,
it has to be noted that there are long sequences in the dataset that bias the result of a
frame-based evaluation.

In our second experiment, we investigate the role of the overlap threshold θψ. To
this end, we repeat the previous experiment with two different values θψ = 0.75. and
θψ = 0.25 This is interesting because it steers the required accuracy of the tracker (modulo
ground truth ambiguity). The respective success plots for the sequence-based OPE are
shown in Figure 7.8. As for the left plot in Figure 7.8, a threshold of θψ = 0.75 is extremely
high (especially with Figure 6.6b in mind), leading to a deterioration of the results of all
trackers. Clearly, for a lower value of θψ, results will improve for all trackers. It might
however turn out that one tracker improves so much more than another tracker that it is
able to outperform it. This is interesting, as some applications might not require a high
level of accuracy, while others do. The success plot showing an overlap threshold of θψ

demonstrates that STRUCK is now on par with CMT, meaning that the results of CMT
are more accurate than STRUCK. This is easy to explain, as in contrast to STRUCK, CMT
estimates the scale and the rotation of the object of interest, leading to a considerable
improvement of accuracy. In fact, it is an interesting idea to visualize the effect of an
increased threshold θψ on the average recall over all sequences. We did however not
consider such a plot for our experiments.

The final experiment concerns the question of processing time. To show how CMT
compares to other state-of-the-art tracking algorithms in this respect, we measured the
wall clock time in seconds while performing the experiments from Section 7.2. This way,
we obtained a time for each sequence/tracker combination. By dividing the number of

90

Chapter 7 Experiments

0 5 10 15 20 25 30 35 40 45 50

CMT

STR

TLD

SCM

FT

CT

10.47

11.96

18.16

2.24

9.61

45.33

Processed frames/sec

Speed comparison

Figure 7.9: Speed comparison. CT is the fastest method by a large margin, while SCM is the
slowest. Our method achieves a frame rate of 10.47, placing it fourth in the ranking.

frames in the respective sequence by this time, one obtains the average number of frames
that were processed each second. By again computing the average over all sequences,
an overall measure for the speed of a tracking algorithm can be obtained, which is the
content of the plot in Figure 7.9. This plot clearly shows that CT is the fastest of the
considered tracking algorithms (45.33 fps), which is not especially surprising, as it was
selected for this purpose. It also shows that SCM is by far the slowest algorithm in
the comparison (2.24 fps). CMT (10.47 fps) is ranked fourth out of six trackers. As no
effort was put into increasing the speed of CMT during this work, making it faster is an
interesting future research direction.

7.3 Qualitative Results

To provide a better impression of the role of the DPMOST in CMT, qualitative results are
given in the Figures 7.10-7.13, showing results from 8 sequences23. where each sequence
was selected for a special difficulty. The first image of each sequence is the initial frame,
while the other frames were hand-picked to show interesting events. The individual
frames are arranged from left to right and then top to bottom. The white points in the
image denote parts from Lω, while the red points denote correspondences that have
been identified as outliers. The blue rectangle denotes the output bounding box of CMT.

In the sequence singer (Figure 7.10, top), the main challenge is the scale change of
the object. The target starts out by occupying almost the complete vertical image space,
but is reduced to a fraction of this size in the last image. While CMT is able to deal
with this change successfully, it is interesting to note that still many outliers are no

23 More results in the form of videos are available at http://www.gnebehay.com/cmt.

91

http://www.gnebehay.com/cmt

Chapter 7 Experiments

longer recognized correctly in the last frame. This problem is due to the non-adaptive
deformation threshold δ.

The sequence liquor (Figure 7.10, bottom) shows how an object similar to the object
of interest is handled by CMT. While in frames 2 and 4 it is clear that no outlier corre-
spondences were established on the similar object (the bottle to the left of the object in
frame 2), a considerable amount of adaptive correspondences are “stolen” by the second
object in frame 3 after moving it in front of the original target. After the original object
becomes visible again, these outlier correspondences continue to be recognized as inliers,
until a division of this single cluster occurs, leading to a large number of outliers that are
suddenly recognized.

An interesting effect can be observed in the mountain-bike sequence (Figure 7.11, top).
Here, the object “loses” adaptive correspondences on its boundary from time to time,
as depicted in the second frame. As these correspondences are correctly re-established
by static ones, tracking of the object still succeeds, demonstrating the interplay between
static and adaptive correspondences.

The sequence juice (Figure 7.11, bottom) shows the output of CMT for a completely
rigid object. This sequence demonstrates that objects that do not appear deformed
are easier to track than deformed objects as establishing correspondences poses less
problems. In the displayed frames, not a single outlier occurs.

In contrast, the sequence gym (Figure 7.12, top) shows an object that is difficult to
track due to its extreme intrinsic deformation. In the displayed frames, it becomes clear
that the quality of correspondences in such a case can be very low, as there are many
soon-to-be outliers in the vicinity of the object of interest. This sequence demonstrates
the importance of modeling explicity the deformation of the object of interest, as it is
done in the DPMOST, allowing the object of interest to be still tracked successfully.

The sequence ball (Figure 7.12, bottom) contains an object exhibiting a repeating
texture. This repeating texture poses certain difficulties for static correspondences, as the
matching of many similar descriptors is very difficult. Here, the benefit of disambiguated
correspondences comes into play, allowing to excluded descriptors in the matching
process based on their location on the object. This way, a repetitively textured object can
be tracked successfully as well.

The sequence person occ (Figure 7.13, top) demonstrates the robustness of part-based
object models with respect to partial occlusions. Here, a person disappears partially
behind a column and re-appears shortly after. For the non-visible parts no correspon-
dences can be obtained, but since enough object parts remain visible, the bounding box
can still be inferred correctly.

The sequence board (Figure 7.13, bottom) brings an interesting phenomenon to attention,
namely the selection of background parts in the initial frame. As the object of interest
is slightly skewed in the first frame, some parts on the background are considered as
belonging to the object model. As in CMT, the part models are never updated, these
“cuckoo’s eggs” remain there forever and cause outliers in every frame. However, as the

92

Chapter 7 Experiments

numbers of background parts is rather small in this sequence, this poses no problem for
successfully tracking this object.

7.4 Conclusion

The experimental evaluation in this chapter has revealed some interesting insights. First
and foremost, from the comparison of CMT to the state of the art can be concluded
that an algorithm based on the DPMOST is able to achieve excellent tracking results.
Furthermore the success of CMT questions the prevalent paradigm of permanently
incorporating new appearances of the object of interest into the object model, as the
combination of static and adaptive correspondences prove extremely effective to render
this model update unnecessary. In summary, one can go as far as to say that CMT is
the first part-based tracker that is able to provide robust results in long-term tracking
scenarios, while inheriting all the advantages of a part-based tracking method, such
as the ability of handling deformations and robustness to partial occlusions. While
CMT will not go down in history as the fastest tracker ever invented, it provides a
reasonable trade-off between tracking performance and speed to make it suitable for
realistic applications. This section concludes the experimental part of this work. The
remaining chapter provides a summarization and puts the contributions into a broader
perspective.

93

Chapter 7 Experiments

Figure 7.10: Qualitative results on singer and liquor.

94

Chapter 7 Experiments

Figure 7.11: Qualitative results on mountain-bike and juice.

95

Chapter 7 Experiments

Figure 7.12: Qualitative results on gym and ball.

96

Chapter 7 Experiments

Figure 7.13: Qualitative results on person occ and board.

97

Chapter 8

Conclusion

In the last chapter, we have shown how the concepts introduced previously stand up
to an experimental evaluation. In this final chapter, we give a summary of the insights
gained during this work in Section 8.1. From the current state of this work several routes
for future research directions are viable, that we present in the order of decreasing
“low-hanging fruitness” in Section 8.2. Finally, we assess the current state of the art in
one-shot object tracking to give an outlook about how the field might and should evolve
in Section 8.3.

8.1 Summary

In this work we have discussed the topic of one-shot object tracking at length and have
seen that part-based approaches to tackling this problem have many advantages over
holistic ones. Their main advantage is that they endow object models with redundancy,
allowing for failures of tracking individual parts to be handled gracefully. At the same
time, part-based models are much more difficult to train than global models. We have
argued in this work that the deformation of objects plays a crucial rule in making the
problem of one-shot tracking difficult, as deformation can come about not only intrinsi-
cally, but also by external factors such as a different view on the object of interest. Our
main contribution to the field of one-shot tracking is the novel object model DPMOST
that allows for modeling the deformation in star-shaped object models in a natural
and principled manner. Additionally, we have shown how the question of maintaining
an object model that is both robust and accurate can be answered by static-adaptive
correspondences, avoiding a permanent model update at all and instead performing
only short-term updates. Our experimental evaluation has shown that these concepts
are fruitful and allow for achieving excellent results when implemented in a tracking
algorithm.

The topic of one-shot object tracking is attractive from two different perspectives.
First, it is a rich source for potential applications as the only input required are an
image sequence and a bounding box in its first frame. Second, it is interesting from a
scientific point of view as a solution to the problem of one-shot tracking would have
great implications on the whole field of computer vision. Part-based methods are one
piece in this jigsaw. Representing the object of interest as multiple parts is in general

98

Chapter 8 Conclusion

advantageous, as the loss of individual object parts does not lead to an immediate tracking
failure. However, a certain share of additional complexity is introduced by part-based
models.

In our proposed deformable part model for one-shot object tracking (DPMOST), The
key ingredient to allowing for deformations to be handled is the assumption of connecting
parts by interpreting their voting behaviour differently compared to standard star-shaped
object models. Instead of accumulating the votes in bins or cells, by computing transitive
consensus between votes a natural partitioning of inlier and outlier parts emerges. This
concept effectively captures the deformation of the object of interest. In case of changes in
scaling and in-plane rotation, heuristics based on pairwise part properties can be applied
to address these changes.

Static-adaptive correspondences combine the advantages of performing a robust but
inaccurate global search and an accurate, but more fragile local search. We have shown
experimentally that great improvements in tracking performance can be obtained by
employing this combination. From a biological viewpoint, static correspondences are
equivalent to long-term memory, which is no longer subject to change. On the other
hand, adaptive correspondences are related to short-term memory, which can as easily
be updated as erased without ever affecting the long-term memory.

The tracking algorithm CMT that emerged from this work has some appealing prop-
erties, making it suitable for practical applications. First, it is reasonably simple. This
property should not be underestimated as a simple algorithm can be better understood
by practitioners as well as more easily adapted to personal needs. Second, it is general.
This generality allows for instance to exchange the part detector or the descriptor using
a minimal amount of effort, allowing for new advances in these fields to be leveraged.
Third, it is available in a license that allows virtually unrestricted use even in commercial
scenarios.

8.2 Future Work

One aspect of this work that was out of scope is the comparison of different methods
for computing the sparse optic flow for establishing adaptive correspondences. The
Lucas-Kanade method was chosen as the workhorse for our experiments because of
its solid and reliable implementation as well as its cheap computation. However, other
methods might work better or might even be faster. To this end, a thorough investigation
should be undertaken to settle this question.

Another aspect is the overall computational performance of CMT. While its runtime
performance certainly is sufficient for non-critical applications, no effort was undertaken
during this work to explicitly speed up computational bottlenecks. Additionally, the
aspect of parallelization was not touched all, even though this topic is a fruitful one.
For instance, the descriptor matching, the clustering step and the scale and rotation
estimation are obvious candidates for parallel processing.

99

Chapter 8 Conclusion

The DPMOST is almost immediately applicable to the tracking of multiple objects in
a scene. The transitive consensus and its clustering implementation prove beneficial
here, because they allow for the emergence of multiple hypotheses unlike other methods
such as RANSAC. One strong advantage of the part-based formulation from this work
over sliding-window-based object tracking algorithms such as TLD lies in the fact that
our parts formulation is as general as possible. This means for instance that many
computations performed while obtaining static correspondences for one object can be
re-used for a second object of interest, such as the computation of descriptors. Compare
this to the sliding-window approach of TLD, where the global search is performed using
the dimensions of the input bounding box and a second object that is added duplicates
this effort. Furthermore, the tracking of multiple objects in CMT is not only feasible, but
might also lead to interesting ways of improving the single-target results.

Currently, the DPMOST is invariant to changes in scale and in-plane rotation. An obvi-
ous question is whether this invariance can be extended to full affine or even perspective
transformations. While an answer to this question seems straightforward, it must be
noted that these transformations are actually defined on rigid objects. In the case of
deformable objects approximations to these transformations can be computed at best. A
better question might be how to improve on the bounding box representation for output
in general to arrive in an optimal case at a pixel-wise segmentation of the object.

An unpleasing aspect of the DPMOST is the deformation threshold δ that currently
has to be set manually or determined by evaluating different values. It is desirable that
this threshold be set in a more automated fashion. Ideally, one would be able to identify
the maximum deformation of an object of interest and set the threshold accordingly. This
task seems however as difficult as updating an object model without introducing errors.
Taking this idea a step further, it seems attractive to introduce different deformation
thresholds δ1, . . . , δN for each individual part. This makes sense as typically not all object
parts exhibit the same potential amount of deformation. It is however unclear how these
thresholds should be adjusted accordingly.

One drawback of CMT is obviously the requirement of some sort of texture on the
object of interest. On homogeneous objects, neither static nor adaptive correspondences
will function well, leaving the DPMOST with nothing to work with. These objects depict
one limitation of part-based models in general, namely their inability to address objects
where no interesting parts exists. While one could argue that these objects are not
particularly interesting, for certain applications they might be still be relevant. In order
to solve this, different part detectors and descriptors seem necessary that allow for the
detection of parts even in homogeneous object regions. Color information might be a
stronger cue in these cases than the descriptors that were dealt with in this work, making
use exclusively of gray-scale image information. On anouther route, object contours or
edgels can be explored as a replacement for the sparse points that were used in this work.

While we have shown in this work that the omission of an update step is not in
contradiction with achieving state-of-the-art results, an interesting research direction

100

Chapter 8 Conclusion

lies in investigating whether such an update step can still be beneficial to overall tracking
performance in spite of the temporary model update already performed in adaptive
correspondences. Essentially, introducing an update step means updating the reference
configuration of parts Z as well as the corresponding descriptors P. How this update
should be performed best is not entirely clear. One strategy might be to incorporate
all newly found parts in bt into the object model. This way however, many parts that
have been in the model already are inserted there a second time. It may be a good idea
to therefore incorporate only parts that are sufficiently dissimilar from existing object
parts. On the other hand, it is worthwile to consider removing certain parts from the
object model, especially when there is evidence that the part in question has been seen
in the background. Also, currently all background parts in the first frame are currently
used to improve the results while establishing static-adaptive correspondences. It might
be worthwile instead to add background parts to the reference set only if there is an
indication that they are consistenly confused with object parts.

8.3 Outlook

In the previous section, we have discussed how to possibly build on the contributions
from this work. In this very final section, we assess the current state of one-shot object
tracking in general and point out at more fundamental questions that have to be answered
before the problem of one-shot object tracking can be considered to be solved. While we
have shown in the experimental section that our proposed tracker CMT outperforms the
state of the art, let us now put these results into perspective. If we assume that a sequence
can be considered “solved” when an algorithm is able to track the object correctly in
more than 90% of the frames, then Figure 7.7 tells us that CMT achieves this result on
approximately 35% of the sequences of the considered dataset with quite a big margin to
its closest follower. From this, one can argue that CMT has a chance of 35% of working
reasonably well on any given random sequence. Even though it is clear that in practice
also much better results can be obtained when the sequence “suits” the assumptions
behind CMT, this number is quite depressing. As standardized tracking benchmarks
have appeared only recently, it is currently not possible to gauge the progress in tracking
research over a longer timespan. While there certainly is a continuous improvement in
the performance of tracking algorithms, at the same time fundamental questions are still
unanswered.

As we have seen troughout this work, the question of how to update an object model
is closely linked to the stability-plasticity dilemma. Static-adaptive correspondences
provide an interesting and novel way to addressing this dilemma. This technique ac-
knowledges the fact that an update to an object model is always error-prone and can lead
to unwanted effects. However, ruling out these errors by not updating the model bears
the danger of getting “out-of-sync” with the object of interest. To a human, the task of
recognizing an updated appearance of an object appears trivial. However, it has to be

101

Chapter 8 Conclusion

considered that human beings went through four billion years of evolution and have
been bombarded for years of their life with visual stimuli of all kind of sorts. Expecting
a similar feat from an algorithm that is presented with a rectangular area in an image as
the only hint about how one object is different from the rest of the universe is slightly
unrealistic. The success of representational learning techniques (Krizhevsky et al., 2012)
in the field of image recognition is based on two essential factors, namely the creation of
the very large dataset ImageNet (Russakovsky et al., 2015) and the advances in parallel
computing in the form of GPUs. We therefore argue that the essential ingredient in
achieving a similar performance boost in one-shot object tracking as in image recognition
is data. This data can basically appear in two different forms. A collection of unlabeled

video sequences could be used to learn general concepts about how the world should be
perceived. This data already exists and is accessible in the form of millions of videos that
have been uploaded to online video platforms such as YouTube. While arguably these
unlabeled sequences are similar to the input that the visual cortex in humans requires to
advance, for machine learning techniques this data is much harder to process than labeled

data. A large dataset of videos containing labeled objects does not exist to date and is
tedious and expensive to create. However, we strongly believe that it is worth the effort.
Such a labeled dataset would allow for learning how objects change their appearance
in videos in a much more principled manner than any hand-crafted part detector and
descriptor could ever allow for.

102

List of Figures and Tables

1.1 One-shot object tracking . 2
1.2 Example applications of one-shot object tracking 5
1.3 Object model and object space . 7

2.1 One-shot tracking pipeline . 12
2.2 Filtering approaches . 13
2.3 Global Features . 15
2.4 Interest point detection . 16
2.5 Local descriptors . 18
2.6 Local search for object tracking . 20
2.7 Sliding window classification . 21
2.8 Different strategies for model update . 23

3.1 Outline of Tracking-Learning-Detection (TLD) 26
3.2 Object detection cascade in TLD . 27
3.3 Part-based object models and feature space 28
3.4 Generalized Hough Transform and RANSAC 30
3.5 Constellation models and star-shaped models 33
3.6 Top-down star-shaped models: FragTrack, Nejhum et al. 35
3.7 Bottom-up star-shaped models: ISM, DPM 36
3.8 Outline of HoughTrack . 37
3.9 Voting in HoughTrack . 38

4.1 Deformation in star-shaped models . 41
4.2 Agreement between parts . 42
4.3 Mediating parts . 42
4.4 Initialization of the DPMOST . 44
4.5 Transformation of votes . 46
4.6 Estimation of rotation . 47
4.7 Example of hierarchical clustering . 49
4.8 Agglomerative clustering for the recognition of deformable objects . . . 51
4.9 DPMOST in a clustering framework . 52

5.1 Nearest-neighbor rule . 56
5.2 A realistic matching scenario . 57

103

List of Figures and Tables

5.3 Ambiguity of descriptors . 58
5.4 Disambiguation of descriptors . 59
5.5 Adaptivity spectrum in PROST . 61
5.6 Overruling of plastic components by stable components in PROST 62
5.7 Block diagram of CMT . 64
5.8 Outline of CMT . 65
5.9 Implementation of operations in CMT . 66

6.1 Ambiguity in Annotation . 70
6.2 The Jaccard index as an overlap measure 71
6.3 Measures in binary classification . 72
6.4 Conversion of per-frame measures . 72
6.5 Per-frame measures for one-shot object tracking 73
6.6 Re-interpretation of the overlap measure and comparison to F measure . 76
6.7 Equivalence of success plots and ECDFs 78
6.8 OTB and VOT . 80
6.9 Example sequences from the Vojir dataset 81

7.1 Effect of the deformation threshold and correspondence types 84
7.2 Comparison of part detectors and descriptors 85
7.3 Scale estimate versus ground truth . 86
7.4 Distribution of the pairwise changes in scale 87
7.5 Comparison of CMT to baselines . 88
7.6 State-of-the-art tracking algorithms used in the comparison to CMT. . . 88
7.7 Comparison of CMT to state of the art . 89
7.8 Effect of different overlap thresholds . 90
7.9 Speed comparison . 91
7.10 Qualitative results on singer and liquor 94
7.11 Qualitative results on mountain-bike and juice 95
7.12 Qualitative results on gym and ball . 96
7.13 Qualitative results on person occ and board 97

104

Publications

G. Nebehay, W. Chibamu, P. R. Lewis, A. Chandra, R. Pflugfelder, X. Yao. “Can Diversity
amongst Learners Improve Online Object Tracking?” In: Multiple Classifier Systems. 2013,
pp. 212–223.

G. Nebehay, R. Pflugfelder. “TLM: Tracking-Learning-Matching of Keypoints.” In: Inter-

national Conference on Distributed Smart Cameras. 2013, pp. 21–26.

B. Dieber, J. Simonjan, L. Esterle, G. Nebehay, R. Pflugfelder, G. Fernandez, B. Rin-
ner. “Ella: Middleware for Multi-camera Surveillance in Heterogeneous Visual Sensor
Networks.” In: International Conference on Distributed Smart Cameras. 2013, pp. 167–172.

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, F. Porikli, L. Cehovin, G. Nebehay, F.
Gustavo, T. Vojir. “The Visual Object Tracking VOT2013 challenge results.” In: Workshop

on the VOT2013 Visual Object Tracking Challenge. 2013, pp. 98–111.

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, F. Porikli, L. Cehovin, G. Nebehay, F.
Gustavo, T. Vojir. “The VOT2013 challenge: overview and additional results.” In: Computer

Vision Winter Workshop. 2014, pp. 61–68.

G. Nebehay, R. Pflugfelder. “Consensus-based Matching and Tracking of Keypoints
for Object Tracking.” In: Winter Conference on Applications of Computer Vision. Best Paper
Award. 2014, pp. 862–869.

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin, G. Nebehay, T. Vojir, G.
Fernandez. “The Visual Object Tracking VOT2014 challenge results.” In: Workshop on the

VOT2014 Visual Object Tracking Challenge. 2014, pp. 191–217.

G. Nebehay, R. Pflugfelder. “Clustering of Static-Adaptive Correspondences for De-
formable Object Tracking.” In: Conference on Computer Vision and Pattern Recognition. 2015,
pp. 2784–2791.

B. Rinner, L. Esterle, J. Simonjan, G. Nebehay, R. Pflugfelder, G. Fernandez, P. R. Lewis.
“Self-Aware and Self-Expressive Camera Networks.” In: Computer 48.7 (2015), pp. 21–28.

M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G.
Häger, G. Nebehay, R. Pflugfelder. “The Visual Object Tracking VOT2015 challenge
results.” In: Workshop on the VOT2015 Visual Object Tracking Challenge. 2015.

M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez, G. Nebehay, F.
Porikli, L. Cehovin. “A Novel Performance Evaluation Methodology for Single-Target
Trackers.” In: Transactions on Pattern Analysis and Machine Intelligence (2016). To appear.

105

Bibliography

A. Adam, E. Rivlin, and I. Shimshoni. “Robust Fragments-based Tracking using the
Integral Histogram.” In: Conference on Computer Vision and Pattern Recognition. 2006,
pp. 798–805.

A. Alahi, R. Ortiz, and P. Vandergheynst. “FREAK: Fast Retina Keypoint.” In: Conference

on Computer Vision and Pattern Recognition. 2012, pp. 510–517.

A. Andriyenko, K. Schindler, and S. Roth. “Discrete-continuous optimization for multi-
target tracking.” In: Conference on Computer Vision and Pattern Recognition. 2012, pp. 1926–
1933.

S. Avidan. “Support vector tracking.” In: Transactions on Pattern Analysis and Machine

Intelligence 26.8 (2004), pp. 1064–1072.

B. Babenko, M.-H. Yang, and S. Belongie. “Robust Object Tracking with Online Multiple
Instance Learning.” In: Transactions on Pattern Analysis and Machine Intelligence 33.8 (2011),
pp. 1619–1632.

B. Babenko, M.-H. Yang, and S. Belongie. “Visual tracking with online Multiple Instance
Learning.” In: Conference on Computer Vision and Pattern Recognition. 2009, pp. 983–990.

D. H. Ballard. “Generalizing the Hough transform to detect arbitrary shapes.” In: In-

ternational Journal of Pattern Recognition and Artificial Intelligence 13.2 (1981), pp. 111–
122.

J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. “Performance Of Optical
Flow Techniques.” In: International Journal of Computer Vision 12.1 (1994), pp. 43–77.

H. Bay, T. Tuytelaars, and L. Van Gool. “SURF: Speeded Up Robust Features.” In: European

Conference on Computer Vision. 2006, pp. 404–417.

G. E. P. Box. “Robustness in the strategy of scientific model building.” In: Robustness in

Statistics. 1979, pp. 201–236.

G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library.
2008.

L. Breiman. “Random Forests.” In: Machine Learning 45.1 (2001), pp. 5–32.

M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua. “BRIEF: Comput-
ing a Local Binary Descriptor Very Fast.” In: Transactions on Pattern Analysis and Machine

Intelligence 34.7 (2012), pp. 1281–1298.

106

Bibliography

M. Calonder, V. Lepetit, C. Strecha, and P. Fua. “BRIEF: Binary Robust Independent
Elementary Features.” In: European Conference on Computer Vision. 2010, pp. 778–792.

K. Cannons. A review of visual tracking. Tech. rep. CSE-2008-07. Department of Computer
Science Engineering, York University, Toronto, Canada, 2008.

L. Čehovin, M. Kristan, and A. Leonardis. “An adaptive coupled-layer visual model for
robust visual tracking.” In: International Conference on Computer Vision. 2011, pp. 1363–
1370.

L. Čehovin, A. Leonardis, and M. Kristan. “Visual Object Tracking Performance Measures
Revisited.” In: Transactions on Image Processing 25.3 (2016), pp. 1261–1274.

O. Chapelle, B. Schölkopf, and A. Zien, eds. Semi-Supervised Learning. 2006.

M. Cho, J. Lee, and J. Lee. “Feature correspondence and deformable object matching via
agglomerative correspondence clustering.” In: International Conference on Computer Vision.
2009, pp. 1280–1287.

R. T. Collins, Y. Liu, and M. Leordeanu. “Online Selection of Discriminative Tracking
Features.” In: Transactions on Pattern Analysis and Machine Intelligence 27.10 (2005), pp. 1631–
1643.

D. Comaniciu, V. Ramesh, and P. Meer. “Real-time tracking of non-rigid objects using
mean shift.” In: Conference on Computer Vision and Pattern Recognition. 2000, pp. 142–149.

C. Cortes and V. Vapnik. “Support-vector networks.” In: Machine Learning 20.3 (1995),
pp. 273–297.

N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection.” In:
Conference on Computer Vision and Pattern Recognition. 2005, pp. 886–893.

M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. “Accurate Scale Estimation for
Robust Visual Tracking.” In: British Machine Vision Conference. 2014.

R. O. Duda and P. E. Hart. “Use of the Hough Transformation to Detect Lines and Curves
in Pictures.” In: Communications of the ACM 15.1 (1972), pp. 11–15.

S. Duffner and C. Garcia. “PixelTrack: a fast adaptive algorithm for tracking non-rigid
objects.” In: International Conference on Computer Vision. 2013, pp. 2480–2487.

M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. “The Pascal Visual
Object Classes (VOC) Challenge.” In: International Journal of Computer Vision 88.2 (2010),
pp. 303–338.

L. Fei-Fei, R. Fergus, and P. Perona. “One-shot learning of object categories.” In: Transac-

tions on Pattern Analysis and Machine Intelligence 28.4 (2006), pp. 594–611.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. “Object Detection
with Discriminatively Trained Part-Based Models.” In: Transactions on Pattern Analysis

and Machine Intelligence 32.9 (2010), pp. 1627–1645.

107

Bibliography

P. F. Felzenszwalb and D. P. Huttenlocher. “Pictorial Structures for Object Recognition.”
In: International Journal of Computer Vision 61.1 (2005), pp. 55–79.

R. Fergus, P. Perona, and A. Zisserman. “A sparse object category model for efficient learn-
ing and exhaustive recognition.” In: Conference on Computer Vision and Pattern Recognition.
2005, 380–387 vol. 1.

R. Fergus, P. Perona, and A. Zisserman. “Object class recognition by unsupervised scale-
invariant learning.” In: Conference on Computer Vision and Pattern Recognition. 2003, pp. 264–
271.

J. Ferryman and A. Ellis. “PETS2010: Dataset and Challenge.” In: International Conference

on Advanced Video and Signal-based Surveillance. 2010, pp. 143–150.

M. A. Fischler and R. C. Bolles. “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography.” In: Communi-

cations of the ACM 24.6 (1981), pp. 381–395.

M. A. Fischler and R. A. Elschlager. “The Representation and Matching of Pictorial
Structures.” In: Transactions on Computers C-22.1 (1973), pp. 67–92.

J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. “Hough Forests for Object
Detection, Tracking, and Action Recognition.” In: Transactions on Pattern Analysis and

Machine Intelligence 33.11 (2011), pp. 2188–2202.

D. M. Gavrila. “The Visual Analysis of Human Movement: A Survey.” In: Computer Vision

and Image Understanding 73.1 (1999), pp. 82–98.

M. Godec, P. M. Roth, and H. Bischof. “Hough-based tracking of non-rigid objects.” In:
International Conference on Computer Vision. 2011, pp. 81–88.

H. Grabner and H. Bischof. “On-line Boosting and Vision.” In: Conference on Computer

Vision and Pattern Recognition. 2006, pp. 260–267.

H. Grabner, C. Leistner, and H. Bischof. “Semi-supervised On-Line Boosting for Robust
Tracking.” In: European Conference on Computer Vision. 2008, pp. 234–247.

E. Graether and F. Mueller. “Joggobot: A Flying Robot As Jogging Companion.” In:
Human Factors in Computing Systems. 2012, pp. 1063–1066.

S. Grossberg. “Competitive learning: From interactive activation to adaptive resonance.”
In: Cognitive Science 11.1 (1987), pp. 23–63.

S. Hare, A. Saffari, and P. H. S. Torr. “Struck: Structured output tracking with kernels.”
In: International Conference on Computer Vision. 2011, pp. 263–270.

C. Harris and M. Stephens. “A Combined Corner and Edge Detector.” In: Alvey Vision

Conference. 1988, pp. 147–151.

B. Hemery, H. Laurent, and C. Rosenberger. “Comparative study of metrics for evaluation
of object localisation by bounding boxes.” In: International Conference on Image and Graphics.
2007, pp. 459–464.

108

Bibliography

J. Henriques, R. Caseiro, P. Martins, and J. Batista. “Exploiting the Circulant Structure of
Tracking-by-Detection with Kernels.” In: European Conference on Computer Vision. 2012,
pp. 702–715.

P. V. C. Hough. Method and means for recognizing complex patterns. US Patent 3,069,654.
1962.

Intel Corporation. Intel SSE4 Programming Reference. 2007.

M. Isard and A. Blake. “CONDENSATION - Conditional Density Propagation for Visual
Tracking.” In: International Journal of Computer Vision 29.1 (1998), pp. 5–28.

P. Jaccard. “The Distribution of the Flora in the Alpine Zone.” In: New Phytologist 11.2
(1912), pp. 37–50.

Z. Kalal, K. Mikolajczyk, and J. Matas. “Forward-Backward Error: Automatic Detection
of Tracking Failures.” In: International Conference on Pattern Recognition. 2010, pp. 23–26.

Z. Kalal, J. Matas, and K. Mikolajczyk. “P-N learning: Bootstrapping binary classifiers
by structural constraints.” In: Conference on Computer Vision and Pattern Recognition. 2010,
pp. 49–56.

Z. Kalal, K. Mikolajczyk, and J. Matas. “Tracking-Learning-Detection.” In: Transactions on

Pattern Analysis and Machine Intelligence 34.7 (2012), pp. 1409–1422.

R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems.” In: Journal

of Basic Engineering 82.1 (1960), pp. 35–45.

D. A. Klein, D. Schulz, S. Frintrop, and A. B. Cremers. “Adaptive real-time video-tracking
for arbitrary objects.” In: International Conference on Intelligent Robots and Systems. 2010,
pp. 772–777.

D. Koller, J. Weber, and J. Malik. “Robust multiple car tracking with occlusion reasoning.”
In: European Conference on Computer Vision. 1994, pp. 189–196.

M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G.
Häger, G. Nebehay, and R. Pflugfelder. “The Visual Object Tracking VOT2015 challenge
results.” In: Workshop on the VOT2015 Visual Object Tracking Challenge. 2015.

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin, G. Nebehay, T. Vojir, and
G. Fernandez. “The Visual Object Tracking VOT2014 challenge results.” In: Workshop on

the VOT2014 Visual Object Tracking Challenge. 2014, pp. 191–217.

M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez, G. Nebehay, F.
Porikli, and L. Cehovin. “A Novel Performance Evaluation Methodology for Single-Target
Trackers.” In: Transactions on Pattern Analysis and Machine Intelligence (2016). To appear.

M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, F. Porikli, L. Cehovin, G. Nebehay,
F. Gustavo, and T. Vojir. “The Visual Object Tracking VOT2013 challenge results.” In:
Workshop on the VOT2013 Visual Object Tracking Challenge. 2013, pp. 98–111.

109

Bibliography

A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks.” In: Conference on Neural Information Processing Systems.
2012, pp. 1097–1105.

H. W. Kuhn and B. Yaw. “The Hungarian method for the assignment problem.” In: Naval

Research Logistics Quarterly 2.1 (1955), pp. 83–97.

J. Kwon and K. M. Lee. “Tracking of a non-rigid object via patch-based dynamic appear-
ance modeling and adaptive Basin Hopping Monte Carlo sampling.” In: Conference on

Computer Vision and Pattern Recognition. 2009, pp. 1208–1215.

A. Lehmann, B. Leibe, and L. Gool. “Fast PRISM: Branch and Bound Hough Transform
for Object Class Detection.” In: International Journal of Computer Vision 94.2 (2011), pp. 175–
197.

B. Leibe, A. Leonardis, and B. Schiele. “Robust Object Detection with Interleaved Cate-
gorization and Segmentation.” In: International Journal of Computer Vision 77.1-3 (2008),
pp. 259–289.

V. Lepetit, P. Lagger, and P. Fua. “Randomized Trees for Real-Time Keypoint Recognition.”
In: Conference on Computer Vision and Pattern Recognition. 2005, pp. 775–781.

V. Lepetit and P. Fua. “Monocular model-based 3D tracking of rigid objects.” In: Founda-

tions and Trends in Computer Graphics and Vision 1.1 (2005), pp. 1–89.

S. Leutenegger, M. Chli, and R. Y. Siegwart. “BRISK: Binary Robust invariant scalable
keypoints.” In: International Conference on Computer Vision. 2011, pp. 2548–2555.

H. Li, Y. Li, and F. Porikli. “DeepTrack: Learning Discriminative Feature Representa-
tions by Convolutional Neural Networks for Visual Tracking.” In: British Machine Vision

Conference. 2014.

X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. Van Den Hengel. “A Survey of Ap-
pearance Models in Visual Object Tracking.” In: Transactions on Intelligent Systems and

Technology 4.4 (2013), pp. 1–48.

T. List, J. Bins, J. Vazquez, and R. B. Fisher. “Performance evaluating the evaluator.” In:
International Workshop on Performance Evaluation of Tracking and Surveillance. 2005, pp. 129–
136.

D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints.” In: International

Journal of Computer Vision 60.2 (2004), pp. 91–110.

B. D. Lucas and T. Kanade. “An Iterative Image Registration Technique with an Appli-
cation to Stereo Vision.” In: International Joint Conference on Artificial Intelligence. 1981,
pp. 674–679.

E. Maggio and A. Cavallaro. Video Tracking: Theory and Practice. 2011.

M. E. Maresca and A. Petrosino. “MATRIOSKA: A Multi-level Approach to Fast Tracking
by Learning.” In: International Conference on Image Analysis and Processing. 2013, pp. 419–
428.

110

Bibliography

L. Matthews, T. Ishikawa, and S. Baker. “The template update problem.” In: Transactions

on Pattern Analysis and Machine Intelligence 26.6 (2004), pp. 810–815.

H. P. Moravec. Obstacle avoidance and navigation in the real world by a seeing robot rover.
Tech. rep. CMU-RI-TR-3. Carnegie-Mellon University, 1980.

D. Müllner. “fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and
Python.” In: Journal of Statistical Software 53.1 (2013), pp. 1–18.

G. Nebehay. “Robust Object Tracking Based on Tracking-Learning-Detection.” Master’s
Thesis. Faculty of Informatics, TU Vienna, 2012.

S. S. M. Nejhum, J. Ho, and M.-H. Yang. “Visual tracking with histograms and articulating
blocks.” In: Conference on Computer Vision and Pattern Recognition. 2008, pp. 1–8.

M. Özuysal, M. Calonder, V. Lepetit, and P. Fua. “Fast Keypoint Recognition Using
Random Ferns.” In: Transactions on Pattern Analysis and Machine Intelligence 32.3 (2010),
pp. 448–461.

M. Özuysal, P. Fua, and V. Lepetit. “Fast Keypoint Recognition in Ten Lines of Code.” In:
Conference on Computer Vision and Pattern Recognition. 2007, pp. 1–8.

F. Pernici and A. Del Bimbo. “Object Tracking by Oversampling Local Features.” In:
Transactions on Pattern Analysis and Machine Intelligence 36.12 (2014), pp. 2538–2551.

B. Rinner, L. Esterle, J. Simonjan, G. Nebehay, R. Pflugfelder, G. Fernandez, and P. R.
Lewis. “Self-Aware and Self-Expressive Camera Networks.” In: Computer 48.7 (2015),
pp. 21–28.

D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. “Incremental Learning for Robust Visual
Tracking.” In: International Journal of Computer Vision 77.1 (2008), pp. 125–141.

E. Rosten, R. Porter, and T. Drummond. “Faster and Better: A Machine Learning Approach
to Corner Detection.” In: Transactions on Pattern Analysis and Machine Intelligence 32.1
(2010), pp. 105–119.

E. Rosten and T. Drummond. “Fusing Points and Lines for High Performance Tracking.”
In: International Conference on Computer Vision. 2005, pp. 1508–1515.

E. Rosten and T. Drummond. “Machine Learning for High-Speed Corner Detection.” In:
European Conference on Computer Vision. 2006, pp. 430–443.

C. Rother, V. Kolmogorov, and A. Blake. “"GrabCut": Interactive Foreground Extraction
Using Iterated Graph Cuts.” In: Transactions on Graphics 23.3 (2004), pp. 309–314.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: An efficient alternative to SIFT
or SURF.” In: International Conference on Computer Vision. 2011, pp. 2564–2571.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “ImageNet Large Scale Visual Recognition
Challenge.” In: International Journal of Computer Vision 115.3 (2015), pp. 211–252.

111

Bibliography

A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. “On-line Random Forests.”
In: Workshop on On-line Computer Vision. 2009, pp. 1393–1400.

J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. “PROST: Parallel robust online
simple tracking.” In: Conference on Computer Vision and Pattern Recognition. 2010, pp. 723–
730.

G. Schindler and F. Dellaert. “A Rao-Blackwellized Parts-Constellation Tracker.” In:
Dynamical Vision. 2007, pp. 178–189.

J. Shi and C. Tomasi. “Good Features to Track.” In: Conference on Computer Vision and

Pattern Recognition. 1994, pp. 593–600.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and
A. Blake. “Real-time human pose recognition in parts from single depth images.” In:
Conference on Computer Vision and Pattern Recognition. 2011, pp. 1297–1304.

A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. “Vi-
sual Tracking: An Experimental Survey.” In: Transactions on Pattern Analysis and Machine

Intelligence 36.7 (2014), pp. 1442–1468.

G. J. D. Smith. “Behind the screens: Examining constructions of deviance and informal
practices among CCTV control room operators in the UK.” In: Surveillance & Society 2.2/3
(2002), pp. 376–395.

C. Tomasi and T. Kanade. Detection and Tracking of Point Features. Tech. rep. CMU-CS-91-
132. Carnegie Mellon University, 1991.

T. Tuytelaars and K. Mikolajczyk. “Local invariant feature detectors: a survey.” In: Foun-

dations and Trends in Computer Graphics and Vision 3 (2008), pp. 177–280.

V. N. Vapnik. The Nature of Statistical Learning Theory. 1995.

M. Varma and D. Ray. “Learning The Discriminative Power-Invariance Trade-Off.” In:
International Conference on Computer Vision. 2007, pp. 1–8.

P. Viola and M. Jones. “Rapid object detection using a boosted cascade of simple features.”
In: Conference on Computer Vision and Pattern Recognition. 2001, pp. 511–518.

T. Vojir and J. Matas. “The Enhanced Flock of Trackers.” In: Registration and Recognition

in Images and Videos. 2014, pp. 113–136.

W. Wang and R. Nevatia. “Robust Object Tracking Using Constellation Model with
Superpixel.” In: Asian Conference on Computer Vision. 2013, pp. 191–204.

N. Wax. “Signal-to-Noise Improvement and the Statistics of Track Populations.” In: Journal

of Applied Physics 26.5 (1955), pp. 586–595.

G. Welch and G. Bishop. An Introduction to the Kalman Filter. Tech. rep. 95-041. Department
of Computer Science, University of North Carolina at Chapel Hill, 1995.

Y. Wu, J. Lim, and M.-H. Yang. “Online Object Tracking: A Benchmark.” In: Conference on

Computer Vision and Pattern Recognition. 2013, pp. 2411–2418.

112

Bibliography

R. Xu and D. Wunsch. “Survey of clustering algorithms.” In: Transactions on Neural

Networks 16.3 (2005), pp. 645–678.

A. Yilmaz, O. Javed, and M. Shah. “Object Tracking: A Survey.” In: Computing Surveys

38.4 (2006), pp. 1–45.

Q. Yu, T. B. Dinh, and G. Medioni. “Online Tracking and Reacquisition Using Co-trained
Generative and Discriminative Trackers.” In: European Conference on Computer Vision. 2008,
pp. 678–691.

K. Zhang, L. Zhang, and M.-H. Yang. “Real-Time Compressive Tracking.” In: European

Conference on Computer Vision. 2012, pp. 864–877.

L. Zhang and L. van der Maaten. “Structure Preserving Object Tracking.” In: Conference

on Computer Vision and Pattern Recognition. 2013, pp. 1838–1845.

T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: An Efficient Data Clustering Method
for Very Large Databases.” In: International Conference on Management of Data. 1996, pp. 103–
114.

Q. Zhao, Z. Yang, and H. Tao. “Differential Earth Mover’s Distance with Its Applications
to Visual Tracking.” In: Transactions on Pattern Analysis and Machine Intelligence 32.2 (2010),
pp. 274–287.

W. Zhong, H. Lu, and M.-H. Yang. “Robust object tracking via sparsity-based collaborative
model.” In: Conference on Computer Vision and Pattern Recognition. 2012, pp. 1838–1845.

113

	Abstract
	Kurzfassung
	Acknowledgment
	Notation
	Introduction
	Definition of One-shot Object Tracking
	Applications
	Challenges
	Contribution

	Overview about One-Shot Tracking
	Prediction
	Feature Extraction
	Localization
	Model Update
	Conclusion

	Part-based Object Models
	Global Object Model in TLD
	Promises and Challenges of Part-Based Object Models
	Basic Part Models
	Constellation models
	Star-Shaped Part Models
	HoughTrack
	Conclusion

	Deformable Part Model for One-Shot Object Tracking
	Motivation
	Definition and Properties
	A Clustering Perspective
	Conclusion

	Part Correspondences
	Descriptors and Distance Measures
	Matching
	Optic Flow Estimation
	Static-Adaptive Correspondences
	Formulation of CMT
	Conclusion

	Evaluation
	Measures
	Evaluation Protocols
	Conclusion

	Experiments
	Analysis of CMT
	Quantitative Results
	Qualitative Results
	Conclusion

	Conclusion
	Summary
	Future Work
	Outlook

	List of Figures and Tables
	Publications
	Bibliography

