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Abstract

State-of-the-art brain-computer interface (BCI) systems are not yet capable of continous

decoding movement trajectories for neuroprosthesis control. One approach for natural

neuroprosthesis control could be a BCI that decodes the intended target and a prosthesis

that plans the trajectory afterwards to get there. This study investigated whether a BCI

decoder is based on the movement direction or the movement target.

Subjects were asked to perform arm movements with their arms being fixed to an ARMEO

Spring rehabilitation device. They received a visual feedback via a computer screen that

displayed a virtual arm model in first person view mirroring their real arm movements.

Subjects tried to reach one out of two targets on the computer screen with the virtual arm

according to specific commands. By inverting the visual feedback (virtual arm moved to

the opposite direction of the real arm movement) in a second condition it was tried to

learn about the decoder behaviour.

ERD/ERS maps showed a typical event-related desynchronization (ERD) after movement

onset in the alpha band (8 Hz - 10 Hz) for both conditions and also a power decrease dur-

ing the inverted condition in the beta range (15 Hz - 25 Hz) due to the more challenging

task.

Time-frequency plots were displaying the course of a motor-related cortical potential

(MRCP). A characteristic voltage negativation before the actual movement onset with

a negative peak around the onset and an increase in voltage following could be observed

over the whole cortex.

Classification accuracies for both conditions peaked during movement execution before

reaching the demanded target.

By training the classifier with the normal condition data and subsequently testing with

the inverted condition data it was investigated that the decoder was not only based on

movement targets but also on movement direction. This finding could be crucial for

developing any kind of new neuroprosthesis control.

However, further investigations with expanded and adjusted design of the experimental

paradigm need to be done in order to get more distinct results.

key words: electrencephalography (EEG), brain-computer interface (BCI), neuropros-

thesis control, target decoding, movement direction decoding
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Kurzfassung

Brain-Computer Interface (BCI) Systeme, die dem aktuellen Stand der Technik ensprechen,

sind noch nicht in der Lage, Bewegungstrajektorien kontinuierlich zu dekotieren. Ein

Ansatz um eine natürliche Steuerung einer Prothese zu erlangen wäre der Einsatz eines

BCIs, das nur das angestrebte Ziel der Bewegung dekodiert und die eigentliche Bewegung

zum Ziel anschließend von der Neuroprothese selbst ausgeführt wird. In dieser Arbeit

wurde untersucht, ob ein BCI Dekoder auf Bewegungsrichtungen basiert oder auf dem

Ziel einer Bewegung.

Probanden wurden in einem ARMEO Spring Rehabilitationsgerät mit ihrem Arm be-

festigt und beauftragt, Armbewegungen durchzuführen. Sie bekamen visuelles Feedback

über einen Computerbildschirm, welcher das Modell eines virtuellen Armes in der Ich-

Perspektive zeigte. Der virtuelle Arm führte exakt die Bewegung aus, die auch der

Proband mit seinem Arm ausführte. Die Probanden versuchten dann, entsprechend den

Anweisungen, mit dem virtuellen Arm eines von zwei Zielen am Computerbildschirm zu

erreichen. Durch das Invertieren des visuellen Feedbacks (der virtuelle Arm führt genau

die gegengleichen Bewegungen aus wie der Proband mit seinem Arm) in einer zweiten

Bedingung wurde versucht, etwas über das Verhalten des Dekoders zu erfahren.

Die ERD/ERS Abbildungen zeigten neben typischen ereignisbezogenen Desynchronisa-

tionen (ERD) im Alpha-Band (8 Hz - 10 Hz) nach dem Bewegungs-Onset für beide Bedin-

gungen, wegen der komplizierteren Aufgabe auch einen Leistungsabfall im Beta Bereich

(15 Hz - 25 Hz) während der invertierten Bedingung. Die Zeit-Frequenz Graphen zeigten

den charakteristischen Verlauf von motor-related cortical potentials (MRCPs) über dem

ganzen Cortex. Vor dem eigentlichen Bewegungs-Onset entsteht ein Spannungsabfall mit

einem negativen Maximum im Bereich des Onsets und einem darauf folgenden Span-

nungsanstieg. Die Klassifizierungsgenauigkeiten für beide Konditionen erreichten ihr Max-

imum während der Bewegungsausführung, noch bevor das Ziel erreicht wurde.

Durch das Trainieren des Klassifikators mit den Daten der normalen Bedingung und an-

schließendem Testen mit den Daten der invertierten Bedingung wurde herausgefunden,

dass der Dekoder sowohl auf der Bewegungsrichtung als auch auf dem Ziel der Bewegung

basiert. Diese Tatsache könnte entscheidend bei der Entwicklung neuer Steuerungen für

Neuroprothesen sein. Allerdings müssen trotz der gewonnenen Erkenntnisse noch weit-

ere Untersuchungen, mit erweitertem und adaptiertem experimentellen Aufbau, gemacht

werden, um eindeutigere Ergebnisse zu erzielen.

Schlüsselwörter: Elektroenzephalographie (EEG), Brain-Computer Interface (BCI),

Neuroprothesen-Steuerung, target decoding, movement direction decoding
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1 Introduction

1.1 The electroencephalogram

In 1924, the German neurologist and psychiatrist Hans Berger managed to record ”brain

waves”. He discovered that the electroencephalogram was a noninvasive method to mea-

sure the electrical brain activity on the scalp. [1]

These measurable electrical brain activity also known as postsynaptic potentials (PSPs)

are generated at cortical pyramidal neurons and can be measured as field potentials with

an EEG. These neurons’ dentritic trunks are alligned parallel to each other and perpen-

dicularly to the cortical surface. There are two types of PSPs, the excitatory postsynaptic

potentials (EPSPs) causing a depolarisation (increase of the likelihood that the neuron

will be firing an action potential) of the postsynaptic neuromembrane and the inhibitory

postsynaptic potentials (IPSPs) causing a hyperpolarisation (decrease of the likelihood

that the neuron will be firing an action potential). For EPSPs, action potentials that

reach the presynaptic ending of the excitatory neuron cause cations at the synaptic cleft

to flow into the cell. The resulting depolarisation inside the cell and outside along the

neuromembrane results in a extracellular cation flow towards the synaptic cleft and in a

intracellular flow away from the cleft. Hence, the depolarisation can spread throughout

the cell. For IPSPs, as already mentioned, an inversly directed cation flow causes a hy-

perpolarisation through the cell [2, 3]. Figure 1 shows a schematic representation of the

process of post synaptic potentials.

The activation of particular neurons results in an electrical activity that is very small, so

in order to be measured, a collective and synchrone activation (or inhibitation) of tens of

thousands of pyramidal cells is prerequisite. EEG oscillations that can be recorded on the

scalp are the outcome of the summation of EPSPs and IPSPs [4]. Another requirement

for an EEG oscillation to emerge is the specific orientation of the electric fields resulting

from the activation of neurons.
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Figure 1: Schematic representation of postsynaptic potentials and iconic current flows
along the neuromembranes indicated by arrows and +/- signs. (modified from
http://7e.biopsychology.com/vs03.html)

Lorente de Nò (1947) was the first to differentiate between closed fields and open fields

concerning neural fields’ orientation. The state of open-field orientation is constituted by

neurons that are alligned so that all their dentritic trees are oriented on one side and their

axons on the other side. Thus, electric fields are oriented into the same direction and sum-

mate. Measurable EEG oscillations are generated only by structures with some degree of

open-field organization. Primarily the outermost layered structure in the human brain’s

neural tissue, the cerebral cortex, is responsible for that. Since many parallel neurons syn-

chronously receive input from post synaptic potentials, these cells form an electric dipole

from an electrical viewpoint. The height of the EEG’s potential deflections is proportional

to the number of cells. Closed-field oriented structures however, where the electric fields

of the neurons are oriented in different directions typically, are cancelling each other out

and so they do not generate large summated dipoles. Activities in subcortical structures

(e.g. amygdala) can not be measured at the scalp [5, 6].

EEG oscillations only represent a little part of the brain’s electrical activity at a particu-

lar time. For recording the signals, electrodes are attached to the subject’s surface of the

head. These electrodes (about 1 cm in diameter) cover an area of about 250,000 neurons

that need to be active at the same time [7]. The number of electrodes used can vary up

to 256 and the electrode locations are based on standards.

2
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1.2 Brain-computer interface

A brain-computer interface (BCI), which is sketched in Figure 2 is a device, which has the

purpose to detect and transform thought-modulated changes in the electrophysiological

brain activity, into commands for driving a machine like a prosthesis, a roboter, a com-

puter, a cursor etc. [8, 9]. Hence, it is possible for users to interact with their enviroment

only by thought after e.g. spinal cord injuries (SCI) [10].

Figure 2: Sketch of a brain-computer interface. Signals are recorded from the subjects’s
brain and translated into commands for driving a device or issue a command
(modified from https://team.inria.fr/potioc/bci-courses/).

BCI control is typically achieved by using brain signals, such as components of the EEG,

sensorimotor rhythm (SMR), slow cortical potentials (SCP) or event-related potentials

(with the P300 component as the most popular representative) for the classification of

motor intention or mental states. As can be seen in Figure 3, it is a closed-loop system.

Data is acquired from the subject via electrodes and amplifiers before it is preprocessed

to remove artifacts. For decision making, features are extracted and classified to feed the

results of the classification to an application. Subsequently, the system provides feedback

(visual, auditory or haptic) to the user through the specific device (e.g. movement of the

neuroprosthesis or special cues on a computer screen) [11].

3
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Figure 3: Elements of a non-invasive BCI. Input for the BCI is the user’s raw EEG data.
The system digitalizes and preprocesses data, extracts and classifies features and
feeds the results afterwards to an application interface. The user is controlling
the application, hence the system becomes a closed-loop by presenting the user
feedback (visual, auditory or haptic) on the accuracy of the focused thought
[11].

The key to develop a successful BCI is the flawless communication between the user’s

brain and the device. There are two main differneces in experimental strategy for BCIs,

either they are based on focused attention to an external stimulus or based on particular

mental tasks [12]. BCIs that are based on focused attention are used for fast selection

like it is necessary for communication purposes [13, 14, 15, 16]. BCIs with special mental

strategies however are used for controlling a device like a neuroprosthesis or a wheelchair

[17] or for restoring grasping movements [18, 19, 20].

1.2.1 BCI applications

For communication between the brain and a computer several technical approaches and

physiological phenomena are used. Nowadays, invasive BCI brain signals include action

potentials from nerve cells, synaptic or extracellular field potentials and electrocorticogram

(ECoG). The noninvasive BCIs include among others: SCP component of the EEG, other

EEG or MEG (magnetoencephalography) oscillations, SMR and event-related potentials

[9]. SMR-based BCIs are used for controlling neuroprosthesis. Pfurtscheller et al. [21] was

able to restore the grasp function of a tetraplegic patient by using a SMR-based BCI and
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motor neuroprosthesis that works with functional electrical stimulation (FES). Müller-

Putz et al. [22] showed the coupling of a SMR-based BCI with an implanted Freehand

system. The combination of a control signal from a SMR-BCI with a shoulder position

sensor for controlling elbow movements and grasping motions was demonstrated by Rohm

et al. [19]. Kreilinger et al. [18] showed the latest development which is a continuous

elbow control only by different duration of one imagined motor task.

Moreover, SMR-based BCIs are also used for different virtual spelling devices as several

publication show. For letter selection two to four control signals, which typically are

motor imaginations (MIs) of specific movements, can be used. Different control signals

and paradigms are used to score a good spelling rate, which is the performance measure of

these BCIs. Scherer et al. [23] achieved an average spelling rate of 1.99 letters/minute in

three healthy subjects in a self-paced BCI where the alphabet was shown in two separate

columns. Foot MI, as well as right hand - and left hand MI were used for scrolling and

selecting letters in either the right or left column, respectively. Blankertz et al. [24]

was able to achieve a spelling rate of 2.3 to 7.6 letters/minute in two subjects using

hexagonal fields and right hand- and foot MI for letter selection. Scherer et al. [25]

recently introduced a row-column- based scanning technique, where cerebral palsy (CP)

suffering end users can select icons from a matrix solely by right hand MI. Seven out of

ten end users scored better than chance.

Nevertheless it is much more common to use spelling devices based on P300 (P300-speller)

rather than SMR due to the need of less electrodes and the more robust way of working

in terms of false selection [13, 15, 16, 26].

BCIs are also used for medical applications like in neuro rehabilitation. Motor recovery

might be facilitated due to restoration of the neurophysiologic activity. One meaningful

example is the stroke rehabilitation. The leading cause of permanent physical disability

is the motor impairment after a stroke. Patients can use visual feedback BCI systems to

improve their condition of disability. The patients sensorimotor network is activated by

triggering limb movements (even though the movement is unreal) and by adapting their

thoughts to the provided feedback [11, 27]. Patients with high-level SCI however have less

ability for activating external controllers and that ability even decreases the higher the

cervical vertebrae lesion is located. The solution might be the usage of the recorded EEG

signals together with a neuroprosthesis and a BCI system. Thus, a complete, thought-

driven restoration of hand and arm functions could be enabled [11, 12, 22].

BCI systems are also used in assistive technology for providing disabled people assistance

in daily environments, like prosthesis control or even web browsing. BCI in assistive

technology is mainly used in so-called hybrid BCI systems as an additional channel, since

BCI devices alone do not provide 100 % reliable decoding of the subject’s real intention

[28].
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BCIs may even be used for different purposes by healthy users, e.g. for gaming appli-

cations. The Berlin Brain Computer Interface provides a paradigm showing encouraging

results for even people without previous BCI experience - untrained subjects are capable

of moving through a pacman labyrinth within only a short time. Some companies (e.g.

cyberlink.com or braingames.com) even sell BCIs for healthy subjects to play simple video

games [29, 30].

1.2.2 BCI categories

There are different characterictics for categorizing BCI systems:

1. Invasive/Non-invasive BCI

Invasive BCIs are using intracranial techniques for signal acquisition, such as ECoG (elec-

trodes are placed on the cortex’ surface) or single/multi-unit derivation where electrodes

are placed inside the grey matter. Non-invasive BCIs, on the contrary, use extracranial

brain activity recordings, such as EEG, MEG or functional magnetic resonance imaging

(fMRI) [31]. Invasive systems comprise all risks associated with any brain surgery, non

invasive systems, however, are basically harmless [11]. For practical reasons, non invasive

BCIs are more common.

2. Brain signals

Visual evoked potentials (VEPs) occur after a visual stimulus in the visual cortex [32].

One important control signal, the steady-state visual evoked potential (SSVEP) arises

after a stimulus of a frequency higher than 6 Hz. BCI systems based on SSVEPs allow a

target selection by means of a users’ eye-gaze. The BCI identifies a target through SSVEP

feature analysis after a user visually fixes attention on a special target [33].

SCPs are slow voltage shifts in the EEG and last up to several seconds. SCPs are low

frequency signals (< 1 Hz) and are associated with changes in the cortical activity level.

Positive SCPs correlate with decreased neuronal activity and vice versa [34].

Healthy users and paralized patients both are capable of self-regulation of these brain

signals in order to control devices by means of a BCI. The selection of targets on a screen

or cursor movement can be achieved by the usage of SCP shifts [35].

Positive peaks in the EEG about 300 ms after applying infrequent target cues within a

series of cues (oddball paradigm), are called P300 evoked potentials [36, 37].

P300-based BCIs do not require any type of training. As already mentioned in the previous
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chapter these BCI systems are used for so called P300-speller that utilize visual P300

evoked potentials for the selection of specific letters.

SMR are specific oscillations in the EEG that arise in the alpha (8 - 12 Hz) and beta (18 -

26 Hz) bands. These signals can be recorded over sensorimotor areas. SMRs’ aplitudes

typically decrease during motor imagery (MI) or actual movement [38]. SMR modulations

can be learned to generate voluntarily by users [39].

3. Extrinsic/Intrinsic stimulation

Extrinsic BCIs make use of the neuron activity caused by external stimuli such as VEPs

or auditory evoked potentials. These systems do not require extenive training, because of

the quick and easy setup to generate the control signals, SSVEPs and P300 [40].

Intrinsic BCI systems are not caused by external stimuli, they are rather based on the self

regulation of brain rhythms and potentials [40]. Specific brain patterns like modulations

in the SMR or the SCPs can be practiced to generate via neurofeedback training and can

then be decoded by the BCI. Therefore it is possible for a user to operate a BCI at free

will [35, 41].

4. Synchronous/Asynchronous BCI

Synchronous/Asynchronous BCI classification follows according to the input data pro-

cessing modality. Synchronous BCIs only analyze brain signals during specific predefined

time windows. Users are only allowed to send commands during these periods. The Graz

BCI represents this type of BCI system [42]. One big advantage of synchronous BCI is

that the mental activity onset is known in advance sinceit is associated with a special cue.

Asynchronous BCIs analyze brain signals continously no matter when the user is sending

commands. These types of BCI offer a more natural human-machine interaction but also

require a more complex computation [31, 43].

1.3 Decoding motor execution

As already mentioned in the previous section, one main application of BCI is the restora-

tion of arm movements (i.e. elbow and wrist movements and grasping action) via con-

trolling a motor neuroprosthesis by thoughts only. In this way, paralized persons (e.g.

patients with tetraplegia or other SCIs) that have an interruption in the spinal cord but

an intact brain can enjoy rehabilitation by bypassing the lack in neural pathway between

muscles and brain so that basic movement functions can be restored or replaced [44].
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Basically, a BCI should be able to recognize the user’s intention of an arm movement and

the exact movement is performed by the neuroprosthesis afterwards. One very important

objective is the naturalness of the neuroprosthesis control by the patient. I.e., on the one

hand the control should be an easy and familiar direct control, so that it is comfortable

for the user. On the other hand, the user would not have to learn any complicated control

strategies, so the patient’s training time could be shortened for convenience reasons.

However, there are two main problems to enable natural prosthesis control: First there is

the need of a highly sophisticated neuroprosthesis, that has as many degrees of freedom

as a human arm does. Moreover, imagined movements have to be decoded by the BCI as

close as possible to guarantee natural feeling of the motion[10].

In the studies of Leigh et al. and Collinger et al. [45, 46], an invasive BCI was used to

successfully control a robotic arm. Moreover some other studies also used ECoG signals

for movement information decoding. In Pistohl et al.’s study [47], 2D hand positions were

decoded during arm movements from low-frequency time-domain signals and broad band

gamma power modulations. Schalk et al. [48] was able to decode movement trajectories

during two-dimensional joystick control and Milekovic et al. [49] classified one-dimensional

joystick movement directions online using low-frequency ECoG signals. Ball et al. [50]

used the movement-related potential (low frequency time domain signal) for decoding

movement direction during a center-out-reaching task to four and eight different targets.

Research shows that SCI suffering persons could also be helped to restore the ability to

move via non-invasive BCIs. Grasp function [21, 22] or elbow function [18, 19] with a

SMR-based BCI were already restored. These BCIs are capable of detecting MI and use

this as a control signal afterwards. Bradberry et al. [51] worked with a center-out-reaching

for decoding hand movement velocities. Kim et al. [52] asked subjects to move their hand

according to a predefined trajectory to decode those trajectories and [53] used a drawing

task to decode hand movement velocities.

1.4 Decoding movement direction and movement targets

The continous decoding of movements would allow the user maximum control over the

prosthesis. This, however, requires to extract a huge amount of data from the brain. This

process could eventually cause many problems, because decoded signals tend to contain

artifacts like noise or they even lack of movement information.

One solution for this problem could be the usage of an intelligent neuroprosthesis control.

This BCI control could only be informed about the intended target and then plans and

calculates the movement trajectory on its own. Hence, the BCI has to decode the intended
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target only, which requires much less information to extract from the patient’s brain than

to continously decode movement trajectories. SMR-based BCIs may detect the process

of MI but not the actual movement itself. I.e., those BCIs can detect the imagination of

an arm movement but not the actual trajectory of the movement [54].

This actually is even more natural than planning a trajectory, since we rather identify the

actual target than planning how to get there. The movement is then performed by lower

level motor systems [10].

There are already some reports in literature available that tell about success regarding

target or movement direction decoding corresponding to a target from EEG. Hammon

et al. [55] reported classification of a target location during a reaching movement. In

the study of Waldert et al. [8] it is written about classifying self-chosen center-out move-

ments with a joystick. The suitability of EEG signals for decoding movement targets was

analyzed in [54] and [56].

Information about a movement is carried by low- and also high-frequency EEG signals

(delta band and gamma band to a lesser extend [57]). This information can be used to

decode movement direction or targets [51, 58, 56] or movement trajectories [55, 59, 60, 44].

1.5 Motivation

Since the accuracy of a decoder for non-invasive movement trajectories for real-time con-

trol is not sufficient yet and neither is the decoding of imagined trajectories, there is the

need of a more promising approach like the combination of a decoder for target or move-

ment direction and a special system to generate the movement trajectory.

1.5.1 Goal

One general problem of all studies about the decoding of movent targets is that move-

ments of the human arm or any other device like a cursor towards a target also always

requires a specific movement direction, i.e. obviously movement targets and movement

directions are correponding to each other. This of course makes it very hard to interpret

the results of any study, since it can not clearly be told whether movement directions or

targets are being decoded. For training a decoder, however, this information would be of

huge importance, since it could decide for example about if targets should be displayed

in training paradigms or not. Moreover, there is a variable and large number of potential

targets in real life applications to choose from. Hence, a decoder that is based on the
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movement target would be dependend on the number of targets in the application. To

be independent on that number, a decoder based on the imagined movement direction is

needed.

1.5.2 Hypothesis

The hypothesis is the following: when training with normal condition data and testing

with inverted condition data the classification accuracies would be above chance level

in case of target decoding. When classifification accuracies are below chance level it is

assumed that the movement direction is decoded. Therefore a study was conducted where

subjects were asked to move their arm to one out of two targets. The subjects received live

feedback via a computer screen. Subsequently, the feedback was inverted and the same

number of trials was repeated to find out whether the decoder is based on the movement

target or the movement direction. The decoder was then trained with data of the normal

condition and tested on the inverted condition data.
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2 Methods

In the following chapter all used methods for performing the required experiments are

described. In addition to the experimental setup including the subjects, the experimental

paradigm and the electrode positions, also the part of signal processing which includes

the artifact rejection and statistic methods will be explained in detail.

2.1 Master’s Internship

The starting point for this study was a master’s internship with the title
”
MSMS arm

model“. It was about building an anatomical correct arm model including bones and

muscles by using the software MSMS (MDDF, University of Southern California, Los An-

geles, California), that can be controlled by a user. The user should be able to control

movements in the shoulder joint, the elbow joint and the wrist and grasping moves.

2.1.1 MSMS software

MSMS (musculoskeletal modulation software) is a software application that can be used

to model and simulate human and prosthetic limbs and the task environment they operate

in. The simulations can, without limitation, be executed in a standalone computer via

Simulink (MathWorks, Massachusetts, USA). The software was developed by the Medical

Device Development Facility which is part of the USC Viterbi Department of Biomedical

Engineering at the University of South California, Los Angeles, CA [61] [62].

The most important MSMS features that were useful for the assigned task are:

• building anatomically correct models

• modeling muscle and ligament paths

• offline and real-time dynamic animation and simulation

A full list of features and applications can be found on the MSMS website.
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2.1.2 Arm model

For building the specific arm model a simplification of a human arm was created. It

consisted only of bones, muscles and so called wrapping objects. Although provided by

MSMS, there was no usage of ligaments. In the following sections the models’ components

and the modeling itself are described.

2.1.2.1 Bones

For starting to build a new model the user first has to add a segment. After select-

ing the segments’ shape (sphere, cylinder, box, hemisphere, capped cylinder or mesh), its

parent segment and some joint properties (see section ”Joints”) can be scaled, translated

and rotated as desired. For convenience, the first segment should be locked to the point of

origin in the coordinate system, i.e. ground. There is always the option to place a segment

anywhere else in the three dimensional space. The MSMS software package provides sin-

gle bone images which can be used in order to replace the standard shapes of a segment.

Therefore someone simply has to change a segments’ 3D shape to
”
mesh“ and browse the

local network for the specific bone image the user wants to use. After importing an image

the user is still able to scale or rotate it. Also, there are several other segments’ properties

that a user can adjust, e.g. every segment can be given a specific name, a mass, a center

of mass and some inertia-parameters. The full bone model is shown in Figure 4.
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Figure 4: MSMS bone model

2.1.2.2 Joints

To create a joint there is the need of two joint-partners. In the special case of an arm

model these two partners are, of course, bones. Every single joint needs to be specified,

i.e. there are a lot of different properties to configure. The basic information is the joints’

name, its proximal and distal segment and the joint center offset in relation to its parent

segment (either the proximal segment or ground). Subsequently, the user needs to set up

the joint type and resulting the movement axis and joint limits (see Figure 5). There are

several different joint types to choose from as to be seen within Table 1. Each joint type

has its specific translational - and rotational degrees of freedom. These specific properties

need to be configured precisely in order to guarantee a realistic model.
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Table 1: Different joint type options and specific properties.

Type Properties No. of trans. de-

grees of freedom

No. of rot. de-

grees of freedom

Bearing one prismatic and three rev-

olute primitives

1 3

Bushing three prismatic and three

revolute primitives

3 3

Cylindrical one prismatic and one revo-

lute primitives with parallel

motion axes

1 1

Gimbal three revolute primitives 0 3

In-Plane two coplanar prismatic joint

primitives

2 0

Pin/Revolte one prismatic and one revo-

lute primitives with orthog-

onal motion axes

1 1

Planar one revolute and two pris-

matic primitives

2 1

Slider/Prismatic one prismatic primitive 1 0

TRANS3 three prismatic primitives 3 0

Universal/Hooke’s two revolute joint primitives 0 2

Weld zero primitives 0 0

14



Figure 5: Menu for adjusting joint parameters

2.1.2.3 Wrapping objects

Wrapping objects are abstract objects that can be added to a model in order to de-

sign a proper muscle path (see section ”Muscles”). A wrapping object can be named by

the user and there is also the option of adjusting its shape (cylinder, sphere or ring),

position and orientation. These objects are typically placed within joint-areas or along

bones to either keep a muscle close to a bone/joint or for making sure that muscles go

around specific bone/joint parts (shown in Figure 6). E.g., it can help that muscles do

not go through bones.
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Figure 6: MSMS model including wrapping objects

2.1.2.4 Muscles

Muscles are shown as red strings in MSMS software, i.e. they are only shown abstractly

(see Figure 7b). Like configuring bones, joints and wrapping objects, also muscle prop-

erties need to be specified. After naming the muscle the user can adjust the muscle

path step by step. Every path object (fixed point, moving point or wrapping object)

can be edited individually as to be seen in Figure 7a. Additionally, there is the option

of configuring a muscles’ morphometry and fiber types. This specific model is controlled

via kinematic drivers (see section ”Controlling”), hence it was not necessary to adjust

these special properties. If the user’s goal was to calculate or build muscle force-, mus-

cle energetics- or muscle proprioception models, all properties concerning morphometry

and fiber types would have to be specified accurately. Detailed information are provided

within the MSMS user’s manual.

16



(a) (b)

Figure 7: Figure (a) shows the menu for muscle path cofiguration, Figure (b) shows the
long head of biceps brachii within the MSMS model

2.1.2.5 Building the model

This section is a guideline about how the model was constructed step-by-step. Joint

Center Offsets, exact points of muscle origins and -insertions and other fine tuning ad-

justments are not mentioned here. All preferences were chosen after consultation with

Rahman Davoodi, head-developer of the MSMS software. For building the arm model

the starting point was a segment that consisted of the two separate bones Scapula and

Clavicle merged together. Next the Humerus needed to be connected to the first segment.

Therefore the Scapula-Clavicle-segment needed to be selected as the parent segment. This

action created a joint, the properties of which could be adjusted at that point. For the

resulting shoulder joint the joint type chosen was
”
Gimbal“. This type of joint allows a

rotation around three axes. Next, the Ulna was taken as distal part of the Humeroulnar

joint, which was adjusted to be a
”
Pin/Revolte“ type of joint which allows a rotation

around only one single axis. To finish the forearm, the Radius was inserted next. The

Ulna, as the parent segment, and the Radius created the Radioulnar joint. The Radioul-

nar joint was also set to be a
”
Pin/Revolte“-joint. Subsequently the hand was modeled.

Therefore all carpal- and metacarpal bones were merged together to reduce the models’

complexity. The two forearm-bones and the carpal-metacarpal-segment form the wrist

joint. The wrist joint was chosen to be a
”
Universal/Hooke’s“ type of joint for giving the

joint two rotational degrees of freedom. To finish the bone part of the model all phalanges
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(proximal, middle, distal and proximal, distal for fingers and thumb respectively) were

attached to the metacarpal bones. All proximal joints were set to be
”
Universal/Hooke’s“-

joints, all the other finger joints
”
Pin/Revolte“-joints.

After finishing the bone model, the next step was to insert wrapping objects to provide an

anatomically correct muscle path. Therefore cylindric-shaped wrapping objects different

in height and diameter were placed within joint areas of the elbow, wrist and fingers.

Subsequently, all essential muscles for movements in the joints mentioned (shoulder joint

excluded) were fixed into the bone model. For this step the muscle origins and -insertions

had to be looked up in an anatomical atlas and then those specific points had to be trans-

ferred onto the model. Moreover, for anatomically correct muscle paths, wrapping objects

needed to be used. The completed MSMS arm model can be seen in Figure 8.

(a) Dorsal view (b) Palmar view

Figure 8: Full MSMS arm model in dorsal (a) and palmar (b) view. The model includes
bones, wrapping objects and all muscles that are needed for movements in the
elbow-, wrist-, finger- and thumb joints.

2.1.3 Simulation via Simulink

One huge advantage about the MSMS software is the option of a one-klick creation of a

Simulink Model to simulate the physics-based movements of the MSMS model. Before

exporting the model to Simulink, the simulation can be configured with the simulation

setup. In this setup several adjustments can be made. For physics-based simulations a

gravity vector can be set. All initial conditions for each degree of freedom in the model
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could be entered here as well, e.g., the initial joint angles could be adapted. Moreover it

was important to setup the solver, i.e., the simulation time, the type of numerical integra-

tion (Fixed-step or Variable-step), also the type of the numerical integration algorithm

and the numerical integration step sizes and tolerances could be selected. These parame-

ters could also be changed later in the Simulink model. For exporting the arm model the

fixed-step size solver ode3 (Bogacki-Shampine) and a fixed-step size of 1/512 (adjusted

according the sampling rate) were chosen as settings.

Also, the user can select the sampling time, the output data filename, and for the live

animation which data streaming model and data type should be used. As sampling

time, data streaming model and data type 1/512 s, the MSMS UDP Block and Feature

Commands were selected respectively.

After adjusting all parameters as desired, the user can simply click the
”
Convert to

Simulink“ command to save a Simulink simulation model (.mdl) in the model’s Mat-

lab folder. The generated model can be opened in Matlab’s Simulink program (shown in

Figure 9). The simulation model will generate motion data when executed, which are sent

to MSMS via UDP (user datagram protocol) for online animation. In order to view the

simulation motion in MSMS while the simulation is running in Simulink, the animation

needs to be setup and run from the animation menu.

In the animation menu
”
From Live Source“ must be selected as source of animation data.

After the animation is setup, the start command is active and the MSMS model will be

receiving data from the Simulink model via UDP.

2.1.4 Controlling the model

In order to control the MSMS model via the Simulink model, new components were added

to the arm model in MSMS. These so called kinematic drivers can be used to create

movements within the joints. It was then able to rotate and/or translate joints according

to their degrees of freedom. For every movement a separate kinematic driver needed to be

installed, i.e., for flexion/extension, abduction/adduction and internal/external rotation

in the shoulder joint three kinematic drivers had to be integrated. The kinematic drivers

could then be actuated in Simulink with simple slider blocks so it was possible to animate

the MSMS model in real time.

The following sliders got installed: three sliders for controlling the shoulder joint (flex-

ion/extension, abduction/adduction, internal/external rotation), two for controlling the

elbow joint (flexion/extension in the Humeroulnar joint, pronation/supination in the Ra-

dioulnar joint), two for controlling the wrist joint (pronation supination, radial-/ulnar
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deviation) and finally two for controlling a palmar grasping motion. For the palmar grasp

all kinematic drivers actuating the finger joints got linked together and could be controlled

by just one single slider. Also, the thumb joints were controlled by one single slider. All

joint slider blocks can be seen in Figure 10.

Furthermore, it is also possible to control movement by the muscles. Therefore the user

has to apply input muscle activations in the Simulink model, e.g., a constant or time-

varying activation. However, this is a very complex topic and it is necessary to ensure

that all muscle parameters are correct and within range. Otherwise it is almost impossible

for Simulink to numerically integrate the equations of motion.

Figure 10: Joint slider blocks that are added in order to control the MSMS model

2.2 Implementation and detailed design decisions

2.2.1 ARMEO Spring device

The ARMEO Spring (Hocoma, Switzerland), which is shown in Figure 11, is a rehabilita-

tion device designed for people with lost or restricted function in their upper extremities.

This disability could be caused by either central or peripheral damage of the nervous sys-

tem (e.g., spinal cord injuries (SCI) or CP), muscular disorders (e.g., upper limb ataxia)
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or bone-related disorders (e.g., humerus fracture). Basically it is an ergonomic and ad-

justable exoskeleton that allows the training of specific exercises in order to increase

muscle strength and range of motion by supporting the subjects’ arm from gravity. This

should help to improve motor function. By providing arm weight support it is possible to

use any remaining motor function of the patients and of course to prevent muscle fatigue

during exercises or, in case of this experiment, during long testing. Moreover and even

more important, through intensive, highly repetitive, task-orientated movements, brain

pasticity can be regained after neurological injury and new neural connections can be

made [63] [64].

With the built-in sensors of the ARMEO Spring it is possible to keep track of the hand-,

elbow- and shoulder position and joint angles during sessions. The data was send directly

from the rehabilitative device via Lab Stream Layer (LSL) to a computer where it was

processed and then presented to the participants to inform them about their actual hand-

/arm position and their actual joint angles in real time.

Figure 11: ARMEO Spring rehabilitative device [64].
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2.2.2 Simulink model

Starting point of the specific Simulink model, that was needed for not only recording

data (EEG, EOG and movement data) but also for simulating and controlling the MSMS

feedback model, was the institute’s Moregrasp Simulink model. This Simulink model basi-

cally consists of three seperate blocks: The first block is the interface with the customized

TOBI signal server (TiA/TiD Client), where all the data is received and saved in the

”
General Data Format“ (

”
.gdf“) [65]. This storage happens in a separate block. The third

block is responsible for generating and displaying the experimental paradigm (described

in a later section) and for saving the occurring events.

In order to receive all the specific data, handle the paradigm and also control the MSMS

model, the Morgrasp Simulink model needed to be adapted at some points. Therefore

two extensions were implemented. First there was the need of a connection between the

MSMS Simulink model and the Moregrasp Simulink model. That was achieved by simply

paste the MSMS Simulink model into the Moregrasp Simulink model into a subsystem

(
”
MSMS Control“) that was constantly receiving data from the TiA/TiD Client before

the data was saved.

The second adjustment was needed to be done for the paradigm-block. Since the paradigm

was depending on the ARMEO Spring data, the ARMEO Spring’s actual hand position

needed to be checked constantly. In the
”
Hand-Target-Check“-block a simple Matlab code

compared the actual hand position with the coordinates of the specific target the subject

was asked to reach. More detailed information about the experimental paradigm can be

found in the designated section. The extensions are shown in Figure 12.
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Figure 12: Simulink model. 1. Handling of the experimental paradigm based on the actual
ARMEO Spring’s hand position. 2. Inclusion of the MSMS model

As already mentioned in a previous section, the use of muscles as controllers for the MSMS

arm model requires expertise. Points of origin and insertion need to be found exactly and

all muscle parameters need to be adjusted precisely. Since there was no real need of

controlling the arm model via muscles, this task was undertaken by kinematic drivers.

Hence, all muscles in the MSMS Simulink model were deleted in order for the simulation

to run stable. So the only inputs that remained were the kinematic driver inputs, which

were supplied by the actual ARMEO Spring movement data constantly gained with the

TiA/TiD client.

2.3 Experimental design

2.3.1 Subjects

In the experiment 10 healthy subjects (nine male, one female) were included. All of them

were right-handed and had normal or corrected-to-normal vision. None of them had par-

ticipated in any BCI experiments before. They were aged between 25 and 32 years with a

mean value of 27.7 and a standard deviation of 2. All of them signed an informed consent.
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2.3.2 Experimental paradigm

For the experiment two conditions were created: (i) During the normal condition subjects

moved their arm to the demanded target and were presented a feedback showing the

virtual arm on the computer screen moving exactly like the subjects’ arm. (ii) During the

inverted condition the computer screen presented an inverted feedback to the subjects.

I.e., in order to reach the actual target, subjects had to move their arm to the opposite

target.

A trial was started by an audio cue that either commanded ”Red” or ”Blue”. The in-

struction for the subject was to immediately look at the specific target, so eye movements

happened in a controlled way before the actual movement onset and will not affect the

classification to a later point in time. Otherwise, eye dipole movements would heavily

influence the recorded EEG. A second audio cue, ”go cue”, which was presented as a beep,

followed three to five seconds after the trial start. One to three seconds after the go cue

participants started to reach towards the specific target. As soon as the subjects con-

trolled the virtual arm to the target asked for, another beep tone (success cue) sounded to

confirm that the task was completed successfully. The comparison of the actual arm po-

sition and the target coordinates was performed within the Matlab block in the Simulink

model mentioned in a previous section. Whenever a specific target was reached, subjects

were instructed to move their arm back to the starting position. A trial ended two seconds

after reaching a target. The last part of a trial was a break with a randomized length

between one and three seconds. The paradigm is skeched in Figure 13.

A run was built up by 15 trials for each target, randomly distributed, resulting in 30 trials

for every single run. Overall, 12 runs were recorded - six for normal condition and six for

inverted condition, always changing the condition after two runs (see Table 2). In total

360 trials (180 trials per condition; 90 trials per class for every condition) were recorded.

Additionally, a resting state run and a run with deliberate eye movements were recorded

twice (in the beginning and in the middle of the experiment). However, the recorded

signals of theses runs were not used in this work.

The paradigm’s sequence (i.e., positioning and presentation of the cues, duration of the

single phases or number and order of trials) was controlled by .xml files, that were started

by the user via Matlab.
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Table 2: Experimental paradigm - run sequence. ”Rest run” describes the resting state
runs and ”EOG run” describes the runs with deliberate eye movements.

Run No. Type

1 Rest run

2 EOG run

3 Normal condition

4 Normal condition

5 Inverted condition

6 Inverted condition

7 Normal condition

8 Normal condition

9 Rest run

10 EOG run

11 Inverted condition

12 Inverted condition

13 Normal condition

14 Normal condition

15 Inverted condition

16 Inverted condition

Figure 13: Paradigm and timing of a single trial. Audio cue started the trial, go cue
followed after 3 s to 5 s. Subject started self paced movement 1 s to 3 s after
go cue. When virtual arm reached specific target, success cue sounded. After
success cue, subject moved its arm back to starting position and a 1 s to 3 s
break followed.

2.3.3 Setup

In the experimental setup subjects were seated on a chair that was placed in an electrical

shielded measurement box, and their right arm was fixed in an ARMEO Spring rehabil-

itation device. Sound was presented via speakers that were present in the measurement
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box as well. Each of the subjects was told to sit as still as possible and to avoid additional

muscle activity (e.g. blinking or clenching the teeth) or movement accept the ones being

told during the experiment.

Figure 14: MSMS arm model in experimental setup, i.e. first person view, transparent
scapula, joints in starting position and including red and blue target.

Subjects were placed in front of a computer screen that showed a red and a blue target.

The targets were positioned in the right upper corner and in the left lower corner, respec-

tively. Moreover, the MSMS arm model (as described in previous sections) was shown on

the computer screen as a visual feedback (as depicted in Figure 15). Participants were able

to control the model with the ARMEO Spring as mentioned before. For the experiment a

self paced center-out reaching task was developed. Therefore subjects had to move their

right hand from a starting position (about 150 degrees elbow flexion, 60 degrees shoulder

flexion and 0 degree abduction in the shoulder joint) to an end position, that corresponded

to touching a specific target with the virtual hand on the computer screen. Subjects were

instructed to perform natural, round (not jaggy) and in speed varying arm movements.

The final position for reaching the red target required a 100 degree flexion and 20 degree

abduction in the shoulder joint and a 150 degree elbow flexion. For reaching the blue

target it was a 60 degree flexion, 20 degree adduction and 30 degree internal rotation in
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the shoulder joint and a 150 degree elbow flexion.

Figure 15: Experimental setup. A subject sitting in front of a screen which presented
feedback. EEG electrodes mounted and connected to 5 USBamps.

2.3.4 EEG measurment and data acquisition

For recording EEG signals from the scalp 68 passive Ag/AgCl electrodes covering frontal,

central, parietal and temporal areas were used. Therefore an electrode cap with equidis-

tant electrode positions was taken with a mean horizontal and vertical distance of 2.5 cm

(see Figure 16). Three electrooculography (EOG) electrodes, positioned above the nasion

and below the outer canthi of both eyes were also used. The reference electrode was placed

on the left mastoid, ground on the right mastoid. All electrode impedances were tried to

keep below 5 kΩ before starting the testing.

For acquiring raw EEG signals these were band-pass filtered from 0.01 Hz to 200 Hz with

an 8th-order Chebyshev filter. Also, a Notch filter at 50 Hz was applied. The sampling

rate for the experiment was chosen to be 512 Hz using five biosignal amplifiers (g.tec

medical engineering GmbH, Austria). For subsequent source imaging (not performed in

this study), electrode positions were measured with ELPOS (Zebris Medical GmbH, Ger-

many).
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Figure 16: Electrode positions. All numbered red positions within the black frame were
used. Green markers indicate a new amplifier. ref and gnd represent refer-
ence and ground, respectively. Electrode positions 5, 6 and 7 mark the EOG
electrodes.

2.3.5 Software

A customized TOBI Signal Server [66], Matlab and Simulink (MathWorks, Massachusetts,

USA) were used to record EEG-, EOG- and movement data (i.e., 3D positions and joint

angles of the right arm). Data processing was done with Matlab and Simulink as well. For

recording the movement data a custom made plugin, that was developed in the BCI lab,

for the ARMEO Spring software was used. For presenting the paradigm Ruby (Yukihiro
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Matsumoto et al., http://rubygame.org/) was chosen.

2.4 Data processing

2.4.1 Artifact rejection

Before the actual artifact rejection was applied, a possible linear trend was removed from

the raw EEG data using the Matlab function loadAndPreprocessSignals() from the BCI

lab. Next, trials which were suspected to contain muscle, technical or movement artifacts

were marked. Therefore a 4th-order zero-phase Butterworth filter was used to bandpass

filter the data from 0.3 Hz to 70 Hz. All trials that exceeded a threshold of three times

the standard deviation of the absolute value, Kurtosis or joint probability were deleted

and excluded from any further processing steps. For the implementation special Matlab

functions (eegthresh(), rejkurt() and jointprob()) provided within the BCILab toolbox

(open-source Matlab application), were used.

2.4.2 Determination of the movement onset

All results refer to the movement onset. Hence, it was of prime importance to find the

specific moments in time of the movement onsets as close as possible. For determination

the recorded x-, y-, and z-datasets of the ARMEO Spring’s hand position was used to

perform a principal component analysis (PCA). For further calculations only the differ-

entiated first principal component was used. A movement onset was detected every time

a certain threshold was crossed after the go cue. The threshold was found empirically.

Trials with bad onsets (e.g. subjects started to move and reach for a target before the

actual go-cue) were removed.

2.4.3 Motor-related cortical potentials (MRCPs)

Before calculating the MRCPs the preprocessed EEG data was bandpass filtered from

0.3 Hz to 35 Hz with a 4th-order zero-phase Butterworth filter. The MRCPs were calcu-

lated for every subject, for both conditions and for each single electrode position with

respect to the time intervall of -2 s to 2 s relative to the movement onset. For displaying,

also the confidence intervals were determined with a bootstrap test (alpha = 0.05).
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2.4.4 ERD/ERS maps

The decrease and increase of relative band power due to an event or cue is called event-

related desynchronization or ERD and event-related synchronization or ERS. Changes in

brain oscillations are not phase-locked but time-locked to an event or cue. These relative

power changes can be visualized in time-frequency plots. [38] [67]

Before the ERD/ERS maps were calculated, a common average reference (CAR) spatial

filter was applied on the preprocessed EEG datasets. Then, ERD/ERS analysis was per-

formed for frequency bands between 5 Hz and 40 Hz with respect to a specific reference

interval (-1.5 s to -0.5 s relative to movement onset). ERD/ERS analysis was performed

in overlapping 2 Hz frequency bands. The statistical significance of the ERD/ERS values

was determined by applying a t-percentile bootstrap algorithm with a significance level of

α = 0.05 [67]. ERD/ERS maps were created using the Matlab functions calcErdsMap()

and plotErdsMap(), which are provided within Biosig toolbox, which is a Matlab open-

source application from our lab.

2.4.5 Classification accuracies

Before applying a shrinkage linear discriminant analysis (sLDA) to discriminate between

the two red and blue targets [68], the already preprocessed EEG data was bandpass filtered

from 0.3 Hz to 3 Hz with a 4th-order zero-phase Butterworth filter. This processing step

was done to extract low frequency signals. For computational convenience the data was

downsampled to 16 Hz. Subsequently the classification accuracy within a time window

-2 s to 2 s relative to the movement onset was computed.

Two different analyses were conducted: In the first analysis, data from all bandpass filtered

EEG channels was used to classify a moving time window of 750 ms. Therefore all EEG

data within the window of the past 750 ms, which corresponded to 16 sample points, were

used for calculation before the window was moved one sample further. This procedure

was repeated until the last sample was reached. For the calculation of the classification

accuracies, which was separately performed for normal and inverted condition, a 10 x 10

fold cross-validation was used.

In order to find out whether the target or the movement direction was decoded, another

analysis was performed. Therefore, the normal data was used as training data and the

inverted data was used for testing.
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3 Results

The following chapter presents the MRCPs and ERD/ERS maps, as well as the classifica-

tion accuracies for normal and inverted condition and results for the investigation about

the decoding of target or movement direction.

3.1 Movement-related cortical potentials

The following Figures 17 and 18 present the MRCPs for the normal and inverted condi-

tion, respectively. The MRCPs were calculated for the electrode positions FC3b, FCzb,

FC4b, C5b, C3, Cz, C4, C6b, CP3b, CPzb and CP4b with confidence intervals as de-

termined with a bootstrap test (α = 0.05). Second zero represents the movement onset,

the red and blue target are represented by the red and blue graph, respectively. Plots

show the average MRCPs over all subjects (seperate MRCPs for every single subject can

be found in the appendix). It can be observed that differences in the normal condition

occur at movement onset and around the target approach. The differences in the inverted

condition are more distinct. Amplitude differences can be noticed starting about 0.5 s

before movement onset lasting up to 2 s after movement onset.

3.2 ERD/ERS maps

Figures 19 and 20 show ERD/ERS maps of subject DV3 for normal and inverted condi-

tion, respectively. The subject was chosen, because it showed the best and most specific

results. All the other results can be found in the appendix. The time-frequency plots

were calculated for 11 channels (FC3b, FCzb, FC4b, C5b, C3, Cz, C4, C6b, CP3b, CPzb

and CP4b) from -2 s to 2 s relative to the movement onset. Hot colors indicate significant

power decrease (ERD) and cold colors indicate significant power increase (ERS). Vertical

dashed lines represent the reference period, vertical solid line represents the movement

onset.

During normal condition a strong ERD in the frequency range from about 8 Hz to 10 Hz

can be noticed over C3, Cz, C4 and parietal channels after movement onset. Also after

movement onset, a strong ERD over C4 in beta range (about 15 Hz to 20 Hz) is noticeable.

During inverted condition the power decrease (ERD) can be detected (after movement

onset again) over similar areas, ERD in beta range however is more distinct over C3 and

parietal areas.

32



F
ig

u
re

17
:

M
R

C
P

s
ev

ol
v
in

g
fo

r
n
or

m
al

co
n
d
it

io
n

fr
om

-2
s

to
2

s
re

la
ti

v
to

m
ov

em
en

t
on

se
t.

T
h
e

av
er

ag
e

M
R

C
P

s
fo

r
b

ot
h
,

re
d

an
d

b
lu

e
ta

rg
et

in
cl

u
d
in

g
co

n
fi
d
en

ce
in

te
rv

al
as

d
et

er
m

in
ed

w
it

h
a

b
o
ot

st
ra

p
te

st
(α

=
0.

05
)

ar
e

sh
ow

n
.

33



F
ig

u
re

18
:

M
R

C
P

s
ev

ol
v
in

g
fo

r
in

ve
rt

ed
co

n
d
it

io
n

fr
om

-2
s

to
2

s
re

la
ti

v
to

m
ov

em
en

t
on

se
t.

T
h
e

av
er

ag
e

M
R

C
P

s
fo

r
b

ot
h
,

re
d

an
d

b
lu

e
ta

rg
et

in
cl

u
d
in

g
co

n
fi
d
en

ce
in

te
rv

al
as

d
et

er
m

in
ed

w
it

h
a

b
o
ot

st
ra

p
te

st
(α

=
0.

05
)

ar
e

sh
ow

n
.

34



F
ig

u
re

19
:

E
R

D
/E

R
S

m
ap

fo
r

su
b

je
ct

D
V

3
at

sp
ec

ifi
c

el
ec

tr
o
d
e

p
os

it
io

n
s

d
u
ri

n
g

n
or

m
al

co
n
d
it

io
n

ex
p

er
im

en
t.

H
ot

co
lo

rs
in

d
ic

at
e

E
R

D
,

co
ld

co
lo

rs
in

d
ic

at
e

E
R

S
.

V
er

ti
ca

l
d
as

h
ed

li
n
es

m
ar

k
th

e
re

fe
re

n
ce

p
er

io
d
,

ve
rt

ic
al

so
li
d

li
n
e

m
ar

k
s

th
e

m
ov

em
en

t
on

se
t.

35



F
ig

u
re

20
:

E
R

D
/E

R
S

m
ap

fo
r

su
b

je
ct

D
V

3
at

sp
ec

ifi
c

el
ec

tr
o
d
e

p
os

it
io

n
s

d
u
ri

n
g

in
ve

rt
ed

co
n
d
it

io
n

ex
p

er
im

en
t.

H
ot

co
lo

rs
in

d
ic

at
e

E
R

D
,

co
ld

co
lo

rs
in

d
ic

at
e

E
R

S
.

V
er

ti
ca

l
d
as

h
ed

li
n
es

m
ar

k
th

e
re

fe
re

n
ce

p
er

io
d
,

ve
rt

ic
al

so
li
d

li
n
e

m
ar

k
s

th
e

m
ov

em
en

t
on

se
t.

36



3.3 Classification

Figures 21 and 22 are showing the classification accuracies for the normal condition and

inverted condition, respectively. Classification accuracies were calculated in the time in-

terval -1 s to 2 s relative to movement onset (movement onset = 0 s) and are scaled from

0 to 1. For calculation of the significance level (61.35 %) α = 0.05 and an adjusted Wald

interval was used. That means that α is devided by the number of samples in the time

interval. Subsequently, Bonferroni correction for the number of shown sample points was

performed [69].

In Table 3 the average movement times and standard deviation for reaching red and blue

targets in normal and inverted condition are shown. Seperate plots for every single subject

can be found in the appendix. For normal condition the maximum average classification

accuracies was 0.78 and for inverted condition it was 0.79. Table 4 shows the maximum

classification accuracies for all the subjects and the average.

Table 3: Average times and standard deviation for reaching specific target in normal and
inverted condition.

Target Normal cond. [s] Inverted cond. [s]

Red 1.20± 0.65 1.36± 0.76

Blue 1.41± 0.74 1.10± 0.65

Figure 21: Cross-validated classification accuracies for the normal condition from -1 s to
2 s relativ to movement onset. Plot shows average for every subject and the
grand average. Dotted horizontal line marks chance level, red horizontal line
marks significance level of 61.35 %
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Figure 22: Cross-validated classification accuracies for the inverted condition from -1 s to
2 s relativ to movement onset. Plot shows average for every subject and the
grand average. Dotted horizontal line marks chance level, red horizontal line
marks significance level of 61.35 %

Table 4: Maximum classification accuracies for all subjects during normal and inverted
condition, maximum average classification accuracy and standard deviation
(scaled from 0 to 1).

Class. Acc. Class. Acc.

Subject Normal cond. Inverted cond.

DU4 0.80 0.80

DU5 0.84 0.88

DU6 0.80 0.94

DU7 0.78 0.80

DU8 0.81 0.87

DU9 0.88 0.89

DV1 0.84 0.84

DV2 0.84 0.87

DV3 0.75 0.73

DV4 0.73 0.91

Average 0.78 0.79

SD 0.045 0.062

38



3.4 Classification (testing with inverted condition)

As mentioned in a previous section the second analysis was about determining whether

the target or the movement direction was decoded. Therefore the classifier was trained

on the normal condition data and was tested on the inverted condition data. Accuracies

below chance level are indicating movement direction decoding, since subjects moved their

hand to the opposite direction of the specific target. Target decoding causes accuracies

above chance level.

Figures 23 and 24 demonstrate that two groups (I and II), different in results, arose.

While group I shows an almost linear increase in classification accuracy after movement

onset with a maximum average classification accuracy of 0.71 when reaching the target

(Figure 23), group II acts differently. Classification accuracies first decrease until move-

ment onset and then start to increase until it reaches a maximum average of 0.70 shortly

after reaching the the target (Figure 24). Classification accuracies again were calculated

in the time interval -1 s to 2 s relative to movement onset (movement onset = 0 s) and

are scaled from 0 to 1. The significance level was again 61.35 %. Seperate plots for every

single subject can be found in the appendix.

Table 5: Maximum classification accuracies for subjects that belong to group I, maximum
average classification accuracy and standard deviation (scaled from 0 to 1).

Subject Class. Acc.

DU4 0.66

DU5 0.80

DU7 0.78

DU8 0.74

DV3 0.68

DV4 0.76

Average 0.71

SD 0.056
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Table 6: Maximum classification accuracies for subjects that belong to group II, maximum
average classification accuracy and standard deviation (scaled from 0 to 1).

Subject Class. Acc.

DU6 0.75

DU9 0.82

DV1 0.68

DV2 0.69

Average 0.70

SD 0.065

Figure 23: Classification accuracies - training with normal condition data, testing with
inverted condition data. Time frame -1 s to 2 s relativ to movement onset.
Plot shows average for subjects from group I and the grand average for the
group. Dotted horizontal line marks chance level, red horizontal line marks
significance level of 61.35 %
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Figure 24: Classification accuracies - training with normal condition data, testing with
inverted condition data. Time frame -1 s to 2 s relativ to movement onset.
Plot shows average for subjects from group II and the grand average for the
group. Dotted horizontal line marks chance level, red horizontal line marks
significance level of 61.35 %
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4 Discussion

This thesis was about finding out whether a decoder is based on the movement direction

or the movement target. Therefore a special study was conducted where subjects were

asked to move their arm towards one out of two targets (blue or red) according to specific

commands (i.e., audio cues) and received visual feedback in realtime. The provided feed-

back was either normal (i.e., virtual arm moved to the same directions as the subject’s

arm) or inverted (i.e., virtual arm moved to the opposite directions as the subject’s arm).

Movements were decoded by using low-frequency time-domain EEG signal data.

Classification accuracies:

It has been shown that movement decoding (for normal and inverted condition) was

possible before the actual movement onset. This phase is also known as the motor planning

phase. Also, the maximum classification accuracy for both conditions during movement

execution before the actual targets were reached. The lag that is to be seen in the Figures

results from the classification time window of 750 ms. The results of this study coincide

with the results of other EEG studies analyzing time-domain features during the decoding

of movement direction or movement target. In the study of Hammon et al. [55], center

out reaching tasks (natural and delayed) are performed to demonstrate that reaching

targets can be decoded from EEG and that sufficient information for classifying reaching

targets can be found within the signals. In the preliminary study of Lew et al. [60], the

feasibility of movement direction decoding, from SCP prior to actual movement execution,

during self-paced arm reaching was shown. Waldert et al. demonstrated the possibility

of distinguishing four brain activity patterns that are related to four specific reaching

movements [8].

However, it has been shown that also power modulations in mostly low-frequency bands

carry information which is related to movement direction or movement targets. Lew et

al. used signals filtered at low frequencies (below 4 Hz) for decoding movement direction

significantly above chance level. SCPs were used showing the best accuracy- and detection

performance [60]. Robinson et al. [44] found movement direction depending modulations

within EEG signals at frequencies below 6 Hz towards the end of a movement. Hand

movement directions can also be decoded from the high-gamma band (65 Hz - 85 Hz).

This frequency band encodes a lot of discriminant information concerning particular hand

movement directions [70].

This study’s motivation was to analyze if information about the movement direction or the

movement target is carried by low-frequency time-domain EEG signals. This was done by

designing the experimental structure in a way that subjects also received inverted feedback

when testing the classifier. In case of decoding the movement target, the inversion of
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movements would not affect the classifier, consequently the classification accuracies would

stay above chance level. When decoding the movement direction, however, inverting the

movements would affect the classifier, thus classification accuracies would drop below

chance level. Two different groups could be observed: in group I the decoder was obviously

mainly based on movement targets - classification accuracies are clearly above chance level

with a linear increase and a maximum shortly before reaching the target (again keeping

in mind the lag due to the classifiction window length of 750 ms). Group II shows a

different trend in the classification accuracy curve - first there is a decrease and then

the classification accuracy starts to increase. So obviously first movement directions were

decoded and then movement targets.

Generally, one needs to be aware when interpreting classification accuracies around times

when reaching a target. Of course, the experimental paradigm was designed in a way to

avoid eye movements at movement onset and during movement execution. However, when

approaching the demanded target with the virtual arm, subjects may not have suppressed

moving their eyes. This is due to the fact, that this visuomotor task requires some level

of hand-eye coordination in order to really hit a target. Thus, the classifier may have

recognized the change of the eye dipole’s electrical field due to eye movements in the end

of the reaching phase. For clarification and quantification of this effect further analyses

need to be done. Moreover, also systematic differences in the reaching times (i.e., average

time for reaching a specific target) of the different targets could be decisive for a successful

classification.

MRCPs:

Different reaching times and different movement amplitudes could have also affected the

MRCPs. Different MRCPs could have evolved not due to different targets but because

of other movement parameters, e.g. movement speed [71]. Anyway, the MRCP’s curve

show a typical negativation before the actual movement onset with a negative peak at

the point of time of the onset with an increase in voltage following. This graph, for the

normal condition, is maximal at the midline centro-parietal area [71].

The inverted condition was obviously more challenging for the subjects than the normal

condition. Hence, the motor planning and execution of the movement was enforced. The

differences between the two classes (red and blue) probably result from higher degree of

difficulty. The differences especially evolve before movement onset and during the motor

execution phase. The curve’s diversity between the two classes before the actual movement

onset correspond to a more complex motor planning and thus, is intrinsic. The differences

in amplitude after movement onset however, could either be intrinsic and therefore may

result from the execution of a more complex motorplan due to the inverted feedback. Or
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these differences may also result from an altered movement profile due to correction move-

ments within the motor execution while approaching the target and therefore be extrinsic.

If the differences in the motor execution phase are extrinsic by nature, the same differ-

ences could also be generated in the normal condition with the same diversified movement

profile.

ERD/ERS maps:

The ERD/ERS maps of subject DV3 for normal and inverted condition show time-

frequency plots for 11 chosen electrode positions. When generating these maps some

important brain feature can be utilized. Which is the ability to switch from a synchro-

nized into a desynchronized state and vice versa, according to the synchrony of neuronal

population. Hence, maps illustrate various frequency bands that show different reactivity

patterns [72]. Only significant changes of event-related power decrease or power increase,

in relation to a specific reference interval, are shown [67].

As already mentioned previously, information related to movement direction or movement

targets are mostly carried in low-frequency bands and the gamma band to a lesser extend.

This can be confirmed by observing the normal condition results, which shows clearly an

ERD in the frequency range of 8 Hz - 10 Hz especially over central and parietal regions

after motor onset. During the inverted condition, similar results can be detected. Es-

pecially noticeable is the ERD after motor onset in the beta range (15 Hz - 25 Hz) over

central and parietal regions. Beta waves are related to special mental states like active

concentration or task engagement [73] which is due to the more challenging task to reach

a target with inverted feedback.

Limitations of this work:

The fundamental hypothesis can be accepted, in case of target decoding classification ac-

curacy is clearly above chance level, and in case of movement direction decoding it is below

chance level. However, it was not possible to clearly determine whether a decoder is based

on movement direction or the movement target, since both results were achieved (Group

I and II). In order to make a distinct conclusion or at least to recognize a trend, the study

needs to be expanded (more subjects should be considered) and somehow adjusted. These

adjustments should include an improved design of the experimental paradigm in a way

to prevent eye movements while approaching the targets to avoid that these influence the

classifier. Moreover target positions and starting position need to be adjusted, to ensure

that all distances (distances to red and blue target in both normal and inverted condition)

are the same and therefore reaching times are equal.

44



Outlook:

This study could be used as the base for further investigation concerning the decoder

behaviour of a BCI. As already mentioned in the introduction, BCI systems could be

used to restore lost ability to move a patient’s arm via a neuroprosthesis by thoughts

only. The continuous decoding of movement trajectories, which would allow maximum

control over the neuroprosthesis, is still a future’s dream. Hence, there is the need of an

interplay of a working decoder that has the ability to decode the intended target only and

the trajectory towards the target is then performed by the neuroprosthesis. By adaption

and expansion of the already existing study, this could be a promising approach.
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5 Conclusion

Taken together, the decoding of arm movements to one out of two targets from low-

frequency time-domain EEG signals was shown. By designing the experimental paradigm

in a way, that subjects were receiving realtime feedback in the first condition and realtime

inverted feedback in a second condition while moving their arm according to specific

commands, evidence was found that the decoding was not only based on movement targets

but also on the movement direction. This findings need to be investigated with more

attention and need to be considered when developing novel control systems for robotic

arms or neuroprosthesis.
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[1] Hans Berger. Über das Elektrenkephalogramm des Menschen. Arch. für Psychiatrie

und Nervenkrankheiten, 87:527–570, 1929.

[2] Ernst Niedermeyer and Fernando Lopes da Silva. Electroencephalography: basic

principles, clinical applications and related fields, volume 1. Lippincott Williams &

Wilkins, 2004.

[3] Hansen Zschoke. Klinische Elektroenzephalographie. Springer Verlag, 2nd edition,

2009.

[4] Diego A. Pizzagalli. Electroencephalography and high-density electrophysiological

source location. In John Cacioppo, Louis G. Tassinary, and Gary G. Berntson, edi-

tors, Handbook of psychophysiology, pages 56–84. Cambridge: Cambridge University

Press., 3rd edition, 2007.

[5] Monica Fabiani, Gabriele Gratton, and Kara D. Federmeier. Event-related brain

potentials: Methods, theory and applications. In John Cacioppo, Louis G. Tassi-

nary, and Gary G. Berntson, editors, Handbook of psychophysiology, pages 85–119.

Cambridge: Cambridge University Press., 3rd edition, 2007.

[6] Bruce D. Bartholow and David M. Amodio. Using event-related brain potentials in

social psychological research: A brief review and tutorial. In Eddie Harmon-Jones

and Jennifer S. Beer, editors, Methods in social neuroscience, pages 198–232. New

York: Guilford Press, 2009.

[7] Sylvain Baillet, John C. Mosher, and Richard M. Leahy. Electromagnetic brain

mapping. IEEE Signal Processing Magazine, pages 14–30, 2001.

[8] Stephan Waldert, Hubert Preissl, Evariste Demandt, Christoph Braun, Niels Bir-

baumer, Ad Aertsen, and Carsten Mehring. Hand movement direction decoded from

MEG and EEG. The Journal of Neuroscience, 28(4):1000–1008, 2008.

[9] Niels Birbaumer. Breaking the silence: Brain-computer interfaces (BCI) for commu-

nication and motor control. Psychophysiology, 43:517–532, 2006.

[10] Gernot R. Müller-Putz, Andreas Schwarz, Joana Pereira, and Patrick Ofner. From

classic motor imagery to complex movement intention decoding: The noninvasive

graz-BCI approach. Progress in Brain Research, 228:39–70, 2016.

[11] Gert Pfurtscheller, Gernot R. Müller-Putz, Reinhold Scherer, and Christa Neuper.

Rehabilitation with brain-computer interface systems. Computer, 41(10):58–65, 2008.

47



[12] Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert Pfurtscheller,

and Theresa M. Vaughan. Brain-computer interfaces for communication and control.

Clinical Neurophysiology, 113(6):767–791, 2002.

[13] Sebastian Halder, Andreas Pinegger, Ivo Käthner, Selina C. Wriessnegger, Josef

Faller, Joao Antunes, Gernot R. Müller-Putz, and Andrea Kübler. Brain-controlled
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three-dimensional hand movements from noninvasive electroencephalographic signals.

The Journal of Neuroscience, 30(9):3432–3437, 2010.

51



[52] Jeong-Hun Kim, Felix Bießmann, and Seong-Whan Lee. Decoding three-dimensional

trajectory of executed and imagined arm movements from electroencephalogram

signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering,

23(5):867–876, 2015.

[53] Jun Lv, Yuanqing Li, and Zhenghui Gu. Decoding hand movement velocity from

electroencephalogram signals during a drawing task. Biomedical Engineering Online,

9(64):1–21, 2010.

[54] Patrick Ofner and Gernot R. Müller-Putz. Movement target decoding from EEG and

the corresponding discriminative sources: a preliminary study. Conf. Proc. IEEE Eng.

Med. Biol. Soc., 2015:1468–71, 2015.

[55] Paul S. Hammon, Scott Makeig, Howard Poizner, Emanuel Todorov, and Virginia R.

de Sa. Predicting reaching targets from human EEG. IEEE Signal Processing

Magazine, 25(1):69–77, 2008.

[56] Patrick Ofner and Gernot R. Müller-Putz. Using a noninvasive decoding method

to classify rhythmic movement imaginations of the arm in two planes. IEEE

Transactions on Biomedical Engineering, 62(3):972–981, 2015.

[57] Martin Seeber, Reinhold Scherer, and Gernot R. Müller-Putz. EEG oscillations are

modulated in different behavior-related networks during rhythmic finger movements.

The Journal of Neuroscience, 36(46):11671–11681, 2016.

[58] Patrick Ofner and Gernot R. Müller-Putz. Decoding of velocities and positions of 3D

arm movement from EEG. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012:6406–6409,

2012.

[59] Yijun Wang and Scott Makeig. Decoding intended movement from human EEG in

the posterior parietal cortex. Neuroimage, 47:103, 2009.

[60] Eileen Y. L. Lew, Ricardo Chavarriaga, Stefano Silvoni, and José del R. Millán.
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ABSTRACT: Arm movements have already been 
decoded non-invasively from electroencephalography 
(EEG) signals. In this study we analyzed whether the 
target or the movement direction of the arm can be 
decoded from the EEG. Ten healthy subjects executed 
right arm movements to one out of two targets and 
simultaneously received feedback on a computer screen. 
We then inverted the feedback movements to analyze if 
the EEG carries information about the target or about 
the movement direction. We found two groups, one 
encoding the target and one encoding first the 
movement direction followed by the target. These 
findings are relevant for the development of future 
motor neuroprostheses and non-invasive robotic arm 
control. 

 
INTRODUCTION 
 
Brain-computer interfaces (BCIs) can be used to control 
neuroprostheses or robotic arms. Together, these 
technologies allow to restore or replace basic movement 
function of spinal cord injured (SCI) persons. For 
example, in [1] a robotic arm was successfully 
controlled using an invasive BCI. Also non-invasive 
BCIs based on electroencephalography (EEG) signals 
can be used to restore movement function in persons 
with SCI. Our group demonstrated the restoration of 
grasp function [3], [4] and elbow function [5], [6] with a 
sensorimotor rhythm (SMR)-based BCI. SMR-based 
BCIs detect movement imagination (MI) and use it as a 
control signal. However, the MI itself is often not 
intuitive (e.g., a foot MI may be used to control the right 
arm). Furthermore, only the process of imagination can 
be detected but not the movement itself. For example, 
imagining squeezing a ball and playing tennis may not 
be distinguishable with a SMR-based BCI. However, to 
control a neuroprosthesis in a more natural way or even 
a robotic arm with its many degrees-of-freedom, more 
information about the movement needs to be extracted 
from the EEG. Interestingly, low-frequency EEG 
signals carry more specific information about the 
movement and can be used to decode even movement 
trajectories [7]–[9] or movement directions/targets [10]–
[13]. However, the accuracy of a non-invasive 
movement trajectory decoder is not yet sufficient for 
real-time control, not to mention the decoding of 
imagined movement trajectories. The decoding of 
movement direction or movement target combined with 
a system which then generates the trajectory may be a 

more promising approach. 
A general issue of studies decoding movement targets is 
that hand or cursor movements towards a certain target 
always requires a certain movement direction, i.e. 
movement targets correspond to movement directions. 
That blurs the results of such studies because it cannot 
be determined whether targets or movement directions 
are being decoded. However, that information is 
important when training a decoder (e.g., if targets 
should be shown in the training paradigm). 
Furthermore, in a real life application there is always a 
variable number of potential targets. A decoder based 
on the imagined or attempted movement direction 
would be independent on the number of targets but not a 
decoder based on movement targets. To investigate 
whether a decoder is based on targets or the movement 
direction, we conducted a study (here with executed 
movements) where subjects moved their arm to one out 
of two targets and received feedback on a computer 
screen. Then, we inverted the feedback and conducted 
the same number of trials to analyse whether our 
decoder is based on the movement direction or the 
movement target. We hypothesize that in case of target 
decoding, the classification accuracies would be above 
chance level. Classification accuracies below chance 
level would indicate the decoding of the movement 
direction. 
 
 
MATERIALS AND METHODS 
 
     Subjects: For the experiment 10 healthy subjects 
(one female), all of them right-handed and with normal 
or corrected-to-normal vision, were recruited. None of 
them had participated in any prior BCI experiments. 
They were aged between 25 and 32 (mean 27.7 and SD 
of 2) years. All of them signed an informed consent. 
 
     EEG Measurement: We used 68 passive electrodes 
covering frontal, central, parietal and temporal areas for 
recording EEG signals from the scalp. An electrode cap 
with equidistant electrode positions was used. Also, 
three electrooculography (EOG) electrodes, positioned 
above the nasion and below the outer canthi of the eyes 
were used. Reference was placed on the left mastoid, 
ground on the right mastoid. All electrode impedances 
were tried to keep below 5kΩ. An 8-th order Chebyshev 
band-pass filter from 0.01Hz to 200Hz and a Notch 
filter at 50Hz was applied. Signals were sampled with 
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512Hz using biosignal amplifiers (g.tec medical 
engineering GmbH, Austria). Moreover, we measured 
electrode positions with ELPOS (Zebris Medical 
GmbH, Germany). EEG, EOG and movement data (3D 
positions and joint angles of the right arm) were 
recorded with a customized TOBI Signal Server [14] 
and Matlab (MathWorks, Massachusetts, USA). For 
recording the movement data a custom made plugin for 
the ARMEO Spring software was used.  
 
     Experimental Paradigm: Subjects were seated in a 
chair and their right arm was fixed in an ARMEO 
Spring rehabilitation device (Hocoma, Switzerland). 
The ARMEO Spring is basically an exoskeleton and 
supports the subjects’ arm from gravity to prevent 
muscle fatigue. With the sensors of the ARMEO Spring 
it is possible to keep track of the hand- and elbow 
position and joint angles.  
For the experiment a self paced center-out reaching task 
was employed. Subjects moved their right arm from a 
starting position (about 150 degrees elbow flexion, 60 
degrees shoulder flexion and 0 degree abduction in the 
shoulder joint (see Figure 1)) to one of two targets (red 
and blue) presented on a computer screen. The red and 
blue target were positioned in the right upper corner and 
in the left lower corner, respectively (see Figure 2). The 
final position for reaching the red target required a 100 
degree flexion and 20 degree abduction in the shoulder 
joint and a 150 degree elbow flexion. For reaching the 
blue target it was a 60 degree flexion, 20 degree 
adduction and 30 degree internal rotation in the 
shoulder joint and a 150 degree elbow flexion. The 
computer screen also showed an arm model as a visual 
feedback (see Figure 2). The arm model was previously 
built with the software MSMS (MDDF, University of 
Southern California, Los Angeles, California). The 
model received its joint angles and coordinates from the 
ARMEO Spring and showed the participants their actual 
hand-/arm position in real time. 
The experiment consisted of two conditions: (i) normal 
condition where the virtual arm on the computer screen 
moved exactly like the subjects’ arm and (ii) inverted 
condition where the virtual arm movements were 
inverted to real arm movements (i.e. subjects had to 
move their arm to the opposite target to reach the actual 
target with the virtual arm).  
 

 
Figure 1: Experimental setup. A subject connected with 

the ARMEO Spring, EEG mounted in the position in 
front of a screen which presents feedback to the subject.   
 
The paradigm is shown in Figure 3. At second 0 an 
audio cue started a trial by either saying „Red“ or 
„Blue“. The subjects got instructed to immediately look 
at the specific target to avoid eye movements during the 
reaching phase which could have affected the 
classification. Three to 5 s after the trial start a beep 
sounded representing the go cue. The participants got 
instructed to start their reaching movements to the 
specific target 1 to 3 s after the go cue. When the virtual 
arm on the computer screen touched the specific target, 
a second beep tone sounded serving as a success cue.  
 

 
Figure 2: Upper: MSMS arm model, for giving real time 
feedback to the subjects. Lower: Arm model in 
experimental setup, i.e. first person view, transparent 
scapula, all joints in starting position and including both 
targets 
 
 

 
Figure 3: Paradigm and timing of a single trial. 
 
 
After successfully touching a target subjects moved 
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their arm back to the starting position. The trial ended 2 
s after the success cue. After a trial, a break between 1 
and 3 s followed. Each run consisted of 30 trials (15 
trials for each target, randomly distributed). 12 runs 
were recorded - 6 for normal condition and 6 for 
inverted condition, always changing the condition after 
2 runs. Thus, in total we recorded 180 trials - 90 trials 
for each condition. Additionally, we recorded 2 resting 
state runs and 2 runs with deliberate eye movements 
(not used in this work). 
 
     Signal Processing: We removed trials which were 
suspected to contain muscle, technical or movement 
artifacts. Therefore the data got filtered from 0.3Hz to 
70Hz (4-th order zero-phase Butterworth filter) and 
trials that exceeded a threshold of 3 times the standard 
deviation of the absolute value, Kurtosis or joint 
probability were excluded from any further processing 
steps. 
For determining the movement onset a principal 
component analysis (PCA) was done on the x/y/z hand 
position data recorded by the ARMEO Spring. We 
differentiated the first principal component and detected 
a movement onset whenever a certain threshold was 
crossed after the go cue. The threshold was found 
empirically. 
For calculating the movement-related cortical potentials 
(MRCPs) a 0.3 Hz - 35 Hz 4-th order zero-phase 
Butterworth band-pass filter was applied and data 
segments averaged. MRCPs were calculated for both 
conditions and electrode positions FCz, C3, Cz and C4. 
In order to discriminate between the two red and blue 
targets, we applied a shrinkage linear discriminant 
analysis (sLDA) [15] to calculate classification 
accuracies. A 0.3Hz - 3Hz 4-th order zero-phase 
Butterworth band-pass filter was applied on the raw 
EEG data to extract low frequency signals. 
Subsequently, we downsampled data to 16Hz for 
computational convenience. We computed the 
classification accuracy within the time window -2s to 2s 
relative to movement onset. In one analysis, we 
classified a moving time window of 750ms using data 
from all band-pass filtered EEG channels, i.e., we used 
all EEG data within a window of the past 750ms (12 
sample points) and then moved the window one sample 
further. Classification accuracies were calculated using 
a 10x10 fold cross-validation. This analysis was 
separately performed for the normal and inverted 
condition. 
In another analysis, we used the data of the normal 
condition as training data and the data of the inverted 
condition for testing in order to find out whether it was 
target or movement direction decoding.  
 
RESULTS 
 
     Classification of directions: Figure 4 and 5 show the 
classification accuracies for the normal condition and 
inverted condition, respectively. Classification 
accuracies are scaled from 0 to 1 and time is relative to 

the movement onset (=0s). The significance level was 
61.35% (⍺ = 0.05, adjusted Wald interval, Bonferroni 
corrected for the number of shown sample points) [16]. 
The maximum average classification accuracies were 
0.78 (normal) and 0.79 (inverted). Table 1 shows the 
average movement times to the targets for each 
condition. 
 
Table 1: average time and standard deviation in seconds 
to reach red and blue target during normal and inverted 
condition 

Target Normal cond. [s] Inverted cond. [s] 

Red 1,20 ± 0,65 1,36 ± 0,76 

Blue 1,41 ± 0,74 1,10 ± 0,65 

 
 

 
Figure 4: Cross-validated classification accuracies in the 
normal condition (all subjects and the grand average). 
 
 

 
Figure 5: Cross-validated classification accuracies in the 
normal condition (all subjects and the grand average). 
 
     Classification (testing with inverted conditions): We 
trained the classifier on the normal condition and tested 
it on the inverted condition. Accuracies below chance 
level indicate movement direction decoding as hand 
movements were executed in the opposite direction to 
the target. Accuracies above chance level indicate target 
decoding. Two groups arose: group I shows an 
increasing classification accuracy after the movement 
onset (Figure 6); group II shows first a decrease of 
classification accuracy followed by an increase (Figure 
7). Time is relative to the movement onset (=0s) and the 
significance level was 61.35%. The maximum average 
classification accuracies were 0.71 (group I) and 0.70 
(group II).  
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Figure 6: Classification accuracies when training on the 
normal condition and testing on the inverted condition 
(group I). 
 
 

 
Figure 7: Classification accuracies when training on the 
normal condition and testing on the inverted condition 
(group II). 
 
Motor related cortical potentials: Figure 8 and 9 show 
the MRCPs for the normal and inverted condition, 
respectively. The figures show the confidence intervals 
as determined with a bootstrap test (⍺ = 0.05) at the 
electrode positions FCz, C3, Cz and C4. In the normal 
condition, differences between the two targets are 
observable at movement onset and around the approach 
to the target. The inverted condition shows more distinct 
differences between the targets. These amplitude 
differences are from ca. 0.5s before movement onset up 
to 2s after movement onset. 
 

 
Figure 8: MRCPs evolving in the normal condition. 
Shown are the MRCPS for both targets (red, blue) 
 
 

 
Figure 9: MRCPs evolving in the inverted condition. 
 
 
DISCUSSION 
 
We demonstrated the decoding of movements to one out 
of two targets from low-frequency time-domain EEG. 
Movements were decoded with normal and with 
inverted feedback. It was possible to decode the 
movement before movement onset, i.e. in the motor 
planning phase. Keeping in mind the lag introduced due 
to the 750ms classification time window, the 
classification accuracies peaked in the movement 
execution phase before the targets were reached. Our 
results are in line with other EEG studies which 
analyzed time-domain features during movement 
direction/target decoding [10], [12], [17]. However, also 
power modulations mostly in low-frequency bands and 
the high-gamma band have been shown to carry 
movement direction/target related information [12], 
[13], [18]. 
The motivation of our study was to analyze if low-
frequency time-domain EEG signals carry information 
about the movement direction or the target. We did this 
by inverting the feedback when testing the classifier. In 
case of target decoding, the classifier would not be 
affected by the required inversion of movements and 
classification accuracies would still be above chance 
level. In case of movement direction decoding, 
however, the classifier would be affected and 
classification accuracies would be below chance level, 
i.e. mirrored around the chance level. Our results can be 
divided into two groups: in one group the decoder was 
mainly based on the movement targets, in the other 
group the decoder first decoded movement directions 
and then movement targets. This finding has to be 
considered when novel control systems for future 
neuroprostheses or robotic arms are developed. 
Generally, classification accuracies around the time 
when the target was reached have to be interpreted with 
caution. The paradigm was designed to avoid eye 
movements at movement onset, but subjects may not 
have suppressed eye movements when approaching a 
target with the virtual hand as this was a visuomotor 
task requiring hand-eye coordination. Thus, eye 
movements may have happened at the end of the 
reaching movement and the classifier may have picked 
up the change of the electrical field of the eye dipole. 
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Further analysis has to quantify this effect. Furthermore, 
systematic differences between the movement times of 
the two targets may be responsible for the successful 
classification. Different MRCPs may have been evolved 
not because of different targets but because of different 
movement times or movements amplitudes (MRCPs are 
influenced by movement parameters, e.g. movement 
speed [19]). 
The MRCPs show a typical negative peak around 
movement onset [19]. The inverted feedback condition 
was more difficult to the subjects than the normal 
condition and therefore challenged more the motor 
planning and the movement execution. This higher 
difficulty probably enhanced the differences between 
the MRCPs in the inverted condition. The differences 
before movement onset correspond to the motor 
planning and are intrinsic. However, the amplitude 
differences after movement onset are either due to the 
execution of a motor plan which accounts for the 
inverted feedback (intrinsic) or due to different 
movement profiles (extrinsic), e.g. more correction 
movements. If the differences are extrinsic in nature, the 
same differences may evolve in the normal condition 
with the same altered movement profile. 
We report here a study with healthy subjects. Further 
studies have to confirm if the same effects can be found 
in persons with SCI. 
 
CONCLUSION 
 
We show the decoding of movements to one out of two 
targets from low-frequency time-domain EEG. 
Furthermore, we found evidence that the decoding is 
based on movement targets but also on the movement 
direction. 
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MRCPs

The following Figures 25 - 44 show the MRCPs evolving for normal and inverted condition

from -2 s to 2 s relativ to movement onset. MRCPs for 11 different electrode positions for

every single subject and for both, red and blue target including confidence interval as

determined with a bootstrap test (α= 0.05) are depicted.

Figure 25

Figure 26
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Figure 43

Figure 44
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ERD/ERS maps

The following Figures 45 - 62 depict the ERD/ERS maps for every single subject (exclud-

ing subject DV3, as those were already shown in the main part of the thesis) for both

conditions, normal and inverted. Hot colors indicate ERD, cold colors indicate ERS. Ver-

tical dashed lines mark the reference period, vertical solid line marks the movement onset.
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Figure 62
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Classification

Figures 63 - 82 display the cross-validated classification accuracies for normal and inverted

condition from -1 s to 2 s relativ to movement onset for every single subject. Dotted hor-

izontal line marks chance level, red horizontal line marks significance level of 61.35 %
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Classification (testing with inverted condition)

Figures 83 - 92 display the classification accuracies for every single subject that resulted

from training with normal condition data and testing with inverted condition data. Time

frame was chosen to be -1 s to 2 s relativ to movement onset. Dotted horizontal line marks

chance level, red horizontal line marks significance level of 61.35 %
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