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Abstract

The modern automotive market is heading towards fully automated self-driving cars. Fol-
lowing this evolution, the number of new assistance features for ensuring safe and reliable
operations is rising. The sensing and controlling of these systems is the work of the
highly distributed and connected electronic control units (ECU) and it is no surprise that
up to 100 of these microcontrollers are integrated in the car of today. Moreover, these
systems must be developed in compliance with various automotive standards to ensure
dependability such as the ISO26262 (functional safety for road vehicles). Thus the design
and verification of electric/electronic systems is becoming increasingly complex. Cur-
rent tools and design flows hit the limits of complexity and are therefore not capable to
efficiently address software and hardware design and optimization in a joint way. Further-
more, the technological, organizational and design gap in today’s flows are not covered
by current methods and tools. The increasing effort in system design verification through
dynamically changing design makes the development very cost intensive and SoC inte-
gration unaffordable for many applications. This situation is even getting worse as the
number of extra-functional properties, such as safety and security, and their importance,
is increasing. To overcome these issues in the design and verification of safety-critical
systems, we developed novel verification methodologies, embedded in a complete design
process named SaVeSoC (Safety Aware Virtual Prototype Generation and Evaluation of
a System on Chip). The SaVeSoC process defines a design methodology especially for
safety-critical systems and is based on a standardized modeling language for real-time and
embedded systems (UML/MARTE). A model-based approach eases the communication
between different stakeholders, provides different views and serves as a central storage
of information. By applying simulation-based verification including virtual prototyping,
quantified reliability analysis and hardware evaluation on a seamless design process, we
were able to speed-up the verification and to reduce the tools involved; resulting in com-
pleteness, correctness and consistency of the entire system. The whole design process,
including the novel verification methodologies, has been implemented in the design and
verification framework SHARC (Simulation and Verification of Hierarchical Embedded
Microelectronic Systems) and applied to an industrial use-case of a battery management
system (BMS). The complete approach has been evaluated by responsible design experts
for safety-critical development and verification.
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Zusammenfassung

Der moderne Automobilmarkt bewegt sich hin in Richtung selbstfahrende vollautomati-
sierte Fahrzeuge. Aufgrund dieser Entwicklung steigt die Anzahl neuer Fahrerassistenzsy-
steme um ein sicheres und zuverlässiges Verhalten, zu garantieren. Da die Kundenanfor-
derungen an Assistenzsystemen enorm steigen, ist es auch keine Überraschung, dass bis zu
100 elektronischer Steuergeräte (ECUs) in heutigen Autos integriert sind. Darüber hinaus
müssen diese Systeme auch hinsichtlich der Anforderungen verschiedenster Automobil-
standards wie dem Sicherheitsstandard für funktionelle Sicherheit bei Straßenfahrzeugen
(ISO26262) erfüllt und entwickelt werden, um die Zuverlässigkeit zu gewährleisten. Auf-
grund dieser Tatsachen wird das Entwickeln und Verifizieren von elektrischen/elektroni-
schen Systemen immer komplexer. Aktuelle Werkzeuge und Entwicklungsprozesse stoßen
an die Grenzen der Komplexität und sind daher nicht in der Lage, Software- und Hardware-
Design und dessen Optimierung in einer gemeinsamen Weise effizient zu adressieren. Dar-
über hinaus sind die technologischen, organisatorischen und Entwicklungslücken in heuti-
gen Prozessen durch aktuelle Methoden und Werkzeuge nicht abgedeckt. Eine Abnahme
der Komplexität ist nicht in Sicht, da die Anzahl der außer-funktionalen Eigenschaften,
wie Safety und Security, und deren Bedeutung, zunimmt. Um die Barrieren im Design
von sicherheitskritischen Systemen und dessen Verifikation zu überwinden, entwickelten
wir neuartige Verifikationsmethoden, die zudem in einem kompletten Designprozess na-
mens SaVeSoC (Safety Aware Virtual Prototype Generation und Evaluation eines Systems
on Chip) eingebettet sind. Der SaVeSoC-Prozess definiert eine Designmethodik speziell
für sicherheitskritische Systeme und basiert auf standardisierten Modellierungssprachen
für Echtzeit- und eingebettete Systeme (UML/MARTE). Durch das Anwenden simulati-
onsbasierter Verifikation einschließlich virtuellem Prototyping, quantifizierter Zuverlässig-
keitsanalyse und Hardware-Evaluierung in einem durchgehenden Designprozess, erreichten
wir eine Beschleunigung der Verifikation und die Reduzierung der beteiligten Werkzeuge.
Das Anwenden dieses Ansatzes führt zu Vollständigkeit, Korrektheit und Konsistenz des
gesamten Systems. Der gesamte Designprozess, einschließlich der neuartigen Verifikati-
onsmethoden, wurde im Design- und Verifikations-Framework SHARC (Simulation and
Verification of Hierarchical Embedded Microelectronic Systems) implementiert und auf
einen industriellen Anwendungsfall eines Batteriemanagementsystems (BMS) angewendet.
Der komplette Ansatz wurde von verantwortlichen Designexperten für sicherheitskritische
Entwicklung und Verifikation bewertet.
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Executive Summary

Over the past decades, we have been experiencing an increasing amount of electric/elec-
tronic (E/E) systems in the automotive domain. Today, we even speak about the electri-
fication in the automotive field; thus we are heading towards fully electric cars which even
speed up the growth in E/E systems. A modern car has up to 100 embedded Electronic
Control Unit (ECU) [18] right now, and the number is even rising when we think about
the emerging need for new assistance features in cars which help us to facilitate the vision
towards the last stage of autonomous driving levels, stage 5. This stage refers to a fully
autonomous system where the performance of a vehicle equals the experience of an adult
human driver. This will be a major challenge for future vehicle development. The complex
assistance features cannot properly work if these systems do not have a strong interaction
(in-vehicle communication) and also inter-dependencies between them. Nowadays, we go
even beyond the internal border of a car body for communication with a complex environ-
ment. For advanced driver features, modern cars have to communicate with each other
(V2V - vehicle to vehicle), with the infrastructure (V2I - vehicle to infrastructure), but also
with the cloud (vehicle2cloud) and other complex IoT devices (V2X). In the near future,
this will enable a growth of new applications in the field of SmartCities and SmartMobility.
This, in turn, raises also the amount of software in today’s cars, which can lead up to a
total of 150 million lines of code, which is vastly more than a Boeing 787 jet airliner [30].
Testing and verification of the software, hardware and complete systems in early stages
is a bigger challenge in today’s development. It raises the complexity level in the design,
development and verification of complex systems and imposes an enormous effort for en-
gineers in developing their applications. To fully test an autonomous car, it is predicted
that a theoretical test track would need a length up to 88 times to the sun and back [66].
This utopistic distance could only be reached employing advanced simulation methodolo-
gies. Moreover, these systems must fulfill conformance to different automotive standards
to guarantee dependability. In terms of safety, these systems must fulfill standards such
as ISO26262 (functional safety for road vehicles), [42]. Since this standard is now treated
as state of the art in court (2011), OEMs and their suppliers are required to develop
and test their systems towards the recommended measures and methods. ISO 26262 is
the functional safety standard for safety-critical systems in road vehicles. This standard
addresses possible hazards caused by malfunctioning behavior of safety-related systems.
It also provides an automotive safety lifecycle that covers safety aspects throughout the
whole design and development process of modern products and systems. Depending on
the Automotive Safety Integrity Level (ASIL) the system must be developed and tested
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according to different recommended measures and methods (e.g. FMEA, FTA, simulation,
virtual prototyping) and must achieve a high level of reliability (e.g. low failure rates in
hardware evaluation). Current design tools and flows, especially regarding safety-critical
systems, hit the limits of complexity and therefore are not capable to efficiently address
software and hardware design in a joint way. Moreover, the technological, organizational
and design gap between the different abstraction levels that exists in today’s develop-
ment processes are not covered by current methods and tools. Besides the complexity
and heterogeneity, also different kinds of requirements and constraints associated with the
design of embedded systems must be taken into account. Extra-functional properties such
as timing performance, power consumption or reliability are only partially addressed by
disjoint special flows. The number of tools involved to cover all these properties is ris-
ing, thus leading to a complex toolchain where important information is distributed over
several disjoint tools and organizations. Information transfer between these tools leads to
inconsistency, incorrectness and incompleteness of the entire design. The increasing effort
in system design verification through dynamically changing design makes the development
very cost intensive and SoC integration unaffordable for many applications. This situation
is even getting worse as the number of extra-functional properties, such as safety and se-
curity, and their importance, is increasing. Furthermore, the expectations towards system
reliability are also significantly increasing or even become stringent in applications such
as automotive or transportation. A further demand for more features (X-by-wire) and
improved functionality (ADAS, autonomous driving) increases the complexity of future
systems dramatically. Without advanced methods and tools, the effort in tackling these
issues leads to an increase in development costs and time, thus missing the time-to-market
window.
To overcome these issues in the design and verification of safety-critical systems, we

developed novel verification techniques, embedded in a complete design process named
SaVeSoC (Safety Aware Virtual Prototype Generation and Evaluation of a System on
Chip). The SaVeSoC process defines a design methodology especially for safety-critical
systems. This methodology is based on a standardized modeling language for real-time and
embedded systems and is derived from the Unified Modeling Language (UML) standard.
The name of this modeling language is MARTE and relies on the Model Driven Architec-
ture (MDA) design layers. Since these layers lacked a proper definition, our contribution
was to introduce an additional layer where safety aspects in the design can be seamlessly
defined. By using structural and behavioral diagrams in combination with MARTE, im-
portant properties, such as timing behavior of safe states, but also resource management
for several applications running on one ECU can be described analyzed. Furthermore,
we show how different reliability analysis such as FMEA or FTA can be applied to the
model-based approach throughout the design process. For the specification of the detailed
hardware, we used a standard, which is very well known in the industry, named IP-XACT.
By connecting the structural system level components to executable models, we are

able to describe the behavior of the system in a more sophisticated way. This has been
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done by defining a mapping between MARTE and SystemC. Since these two approaches
share the same philosophy to start from a first system design down to a detailed hardware
and software description, it was convenient to combine these two languages. The advan-
tage of this approach is that no information must be transferred to other tools and the
UML files retain as a single source of information. Furthermore, the configuration and
parametrization of the simulation can be done using the defined MARTE properties.
To increase and go beyond the level of functional coverage, we developed a methodology

to automatically derive test benches from (safety-) requirements and the functional spec-
ification. These test benches can be reused throughout the whole development process.
The (safety-) requirements have been defined in an extension for the UML2 profile named
SysML. This approach has the advantage of automatically testing the design under various
environmental conditions and in different design configurations.
Since this approach leads to a significantly high amount of simulation tasks, we de-

veloped a new method and defined a layered architecture pattern for the distribution of
independent simulation tasks to a cloud-based environment. This leads up to near linear
speed-up in the coverage process. Results from the system verification can directly be
used for the hardware (safety-) requirements and hardware platform design.
The detailed hardware specification, derived from our simulation experiments, can now

be evaluated regarding single-point, latent and random hardware faults. This evaluation
is mandatory in ISO26262 to verify the reliability of safety-critical hardware. By reusing
safety properties and combining this approach with a standardized hardware description,
we achieved to evaluate the hardware in earlier phases of development. Moreover, we could
decrease the time for evaluating safety-critical hardware based on model-driven design.
Using the same modeling language for the hardware description, we achieved to gener-

ate a first (safety aware) virtual prototype by reusing hardware components from an open
library. This approach enables to test critical software much earlier in the design process
by generating different hardware platforms on the fly. Thus software can be tested under
different hardware configurations. Furthermore, our approach allows for a seamless inte-
gration into the functional specification of the system design by automatically generating
proper interfaces, in order to verify its functionality.
The whole design process, including the novel methodologies, has been implemented

in the design and verification framework Simulation and Verification of Hierarchical Em-
bedded Microelectronic Systems (SHARC). This framework is based on Eclipse and the
UML editor Papyrus. By using our Eclipse plugins, every Papyrus editor is capable of
verifying safety-critical embedded systems in line with the requirements of the functional
safety standard ISO26262.
The complete approach has been evaluated by responsible design experts for safety-

critical development and verification. The evaluation has been done regarding time (design
effort), quality of the design, and verification coverage. Furthermore, we present the results
of the OpenES design flow evaluation, to show the overall benefits of the newly developed
approaches.
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1 Introduction

In the world of today, the amount of embedded electric/electronic (E/E) systems in various
domains is increasing to a very great extent. When we think about the complexity of
the past few years, it is apparent that new applications have emerged in which systems
are not only interacting with each other but also have impact on the physical world,
the so-called cyber-physical systems. Depending on their application, they must fulfill
different requirements ranging from timing constraints, performance behavior, low power
consumption, thermal or even working capability under different environmental conditions.
The point here is, we live in a world where cyber-physical systems are ubiquitous. They
have an impact on our daily lives and the malfunction of these systems can lead to severe
damage or injury to people. We must thus ensure the dependability of these systems.
This is even more obvious when we turn to the automotive domain. It can be observed

that there is a shift towards fully E/E systems resulting from the trend towards electric
vehicles. In fact, a car is now more or less a smartphone on wheels. The sensing and
controlling is the work of the highly distributed electronic control units (ECU), and it
is no surprise, that through all these new features in cars, more than 100 of these mi-
crocontrollers [18] are currently integrated in a modern car. This situation also has an
impact on the amount of software in cars today, which can total 150 million lines of code
[30]. The communication between these ECUs even extends beyond the border of a car
body. For complex assistance features, cars have to communicate with each other (V2V
) and also the infrastructure must be involved in the computation (V2I). Although, the
goal and motivation in the development of a car stayed the same. The aim is to develop
better, more reliable and safe products which reduce the number of deadly accidents. But
the industry is facing new problems through the emergence of many new (assistance-)
features that are also influencing each other. In turn, this raises the complexity level in
the design, development and verification of complex systems and imposes an enormous
effort for engineers in developing their applications. In terms of safety, these systems must
fulfill standards such as ISO26262 (functional safety for road vehicles), [42]. Since this
standard is now treated as state of the art in court, OEMs and their suppliers are required
to develop and test their systems towards the recommended measures and methods. It is
no longer sufficient to test single hardware or software components, the functionality of
the whole system must be verified.
With the aim to increase the level of abstraction and automation, the Model Driven

Engineering (MDE) approach has found its way into the development of systems and soft-
ware. MDE has the benefit of being more flexible towards platform and staff changes,
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of reducing development and maintenance costs, increasing quality and moreover faster
development cycles. However, this approach still faces some major challenges when think-
ing about tooling support. Compared to the landscape of programming languages MDE
tools are weak. Due to the fact that developers are more into coding than modeling the
acceptance of MDE approaches is still low. Furthermore, using MDE in bigger projects
can lead to badly formed models, when using a too general purpose language or having
too many domain-specific languages for modeling. Some modeling languages only cover a
part of the development cycle, which means that companies have to invest effort and costs
to support the rest of the life-cycle [12].
When we discuss the design of a system, a single modeling language immediately springs

to mind, the Unified Modeling Language (UML), [35]. Having its roots in the software
domain, UML paved the way and established a model-based thinking in various engineering
domains, far across the borders of conventional software design. Since UML comes with
several extensions such as MARTE [63], SysML [62] or EAST-ADL [26], engineers from
different domains can use the full potential of an object-oriented approach. MARTE was
introduced to overcome the enormous complexity issues in the design of real-time and
embedded systems. It provides capabilities to model hardware, software as well as system
design and provides the representation of timing, resource and performance behavior.
Furthermore, UML/MARTE is already used for several reliability analysis techniques.
Moreover, many semiconductor companies and suppliers are relying on this modeling
language and it is used by several European projects such as the Open ESL Technologies
for Next Generation Embedded Systems (OpenES) [16]. OpenES is a European initiative
to fill the gaps in today’s design flows and to develop common solutions to stay competitive
on the world market.
Since today’s state of the art car of today exists not only in one single version but

rather in several hundreds of variants all with different features, each of which must be
exhaustively tested to fulfill the standards. Millions of test kilometers must be driven to
ensure the reliability of a car and it is neither economic nor safe to test them in a real
environment [56]. Simulation plays an ever increasing and important role in the verification
of the modern car. The virtual environment can easily be modified and the car can be
represented in its different variations resulting in an economic advantage. Simulations can
be done in early development phases, where the detailed implementation of a function is
still undecided and based on platform-specific models where the hardware and software
are explicitly defined (virtual prototype). Applied verification methods and tests can be
monitored, reproduced and rerun every time. Another advantage of simulation is that
it cannot only be run day and night but also massively in parallel. A specification and
simulation language, which shares the same philosophy as the UML/MARTE approach,
is SystemC [3]. Like UML, it shares the Model Driven Architecture (MDA) approach,
starting from a higher-level system design (computational independent), down to hardware
and software design.
In this work we present a novel design and development flow for a safety aware virtual
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prototype. This design flow conforms to the ISO26262 standard and meets all its require-
ments to produce a reliable product in the end. The whole system, from a first functional
specification down to hardware design, is specified by standardized modeling languages.
Before the virtual prototype is generated from the hardware specification, several reliabil-
ity analysis methods are applied and executed on this specification. This allows an early
evaluation of the hardware design regarding safety before testing the prototype in simu-
lation. Furthermore, we show the integration of the generated virtual prototype into the
system design, to verify its functionality and interfaces. The whole methodology is avail-
able through the developed design and verification framework named SHARC (Simulation
and Verification of Hierarchical Embedded Microelectronic Systems), [19].

1.1 Thesis Background
This thesis was carried out in cooperation with the industrial partner CISC Semiconductor
GmbH. CISC is an international company within the field of automotive and RFID based
in Klagenfurt, Graz (Austria) and Mountain View, California (US). In the automotive
domain, their expertise lies in supporting the development process by enhanced verification
methodologies and tools. This includes system integration of automotive systems through
the support of simulation, virtual prototyping or HW/SW co-simulation. Being involved in
joint R&D activities with all major European car manufactures and its suppliers in the area
of microelectronic systems, CISC is driving new activities to handle the increased system
complexity by their simulation-based system design methodology and wide spread system
know-how. This expertise is also honored by various international standardization bodies,
to which CISC is continuously contributing. Thanks to their organizational independence
CISC can easily adapt to customer needs and offer project-specific tailoring and scaling of
development processes and to adapt to project-dependent requirements. Furthermore, this
thesis has profited from the influence of two major European projects, OpenES [16] and
eRamp [31]. The TU Graz and CISC Semiconductor closely cooperated with well-known
companies in the field of semiconductors. This includes partners from universities, research
organizations (RTO) and industry such as ST, NXP, Infineon, CEA-List or Verimag.

1.2 Problem Statement
This thesis aims at improving the model-based development and verification of embedded
automotive safety-critical systems from a first initial system design down to hardware and
software implementation. To gain a good understanding of the problems and complica-
tions that can occur during the development process, a fundamental factor is to get a
comprehensive overview of the related work in this domain.
To cope with the high complexity in the integration of advanced embedded systems, the

use of advanced methods and design tools is more relevant than ever. Besides the com-
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plexity and heterogeneity, different kinds of constraints and requirements associated with
the design of embedded systems must be taken into account. These systems combine ever
increasing complex software with complex hardware components (Intellectual Property
(IP), Integrated Circuit (IC), System-on-a-Chip (SoC), System in Package (SiP), Printed
Circuit Board (PCB)) and their design is confronted with the following issues:

• Current tools and flows hit the limits of complexity and therefore are not capable to
efficiently address software and hardware design and optimization in a joint way.

• Increasing design effort makes SoC integration not affordable for many applications.

• The technological, organizational and design gap between different abstraction levels
in today’s development processes is not covered by current methods and tools.

• Extra-functional properties like timing performance, power consumption or reliabil-
ity are only partially addressed by disjoint special flows. Inconsistency, inefficient
design iterations, incorrectness, incompleteness and finally sub-optimal results are
the consequences.

• Increased effort in system design verification through dynamically changing design.

• The number of tools involved in today’s design flow is rising, thus leading to a
complex tool-chain where important information is distributed over several disjoint
tools and organizations.

• Exchange of information between simulation-based verification and reliability anal-
ysis throughout the whole development process, which are both highly required by
the ISO26262 standard.

• Manual steps in the design and verification process without tool support.

This situation is even getting worse as the number of extra-functional properties such
as safety or security and their importance is increasing. Furthermore, the expectations
on system reliability are also significantly increasing or even become stringent in auto-
motive or transportation applications. A further demand for more features (X-by-wire)
and improved functionality (ADAS, autonomous driving) increases the complexity of fu-
ture systems dramatically. Without advanced methods and tools, the effort in tackling
these issues leads to an increase in development costs and time, and thus to missing the
time-to-market window.
In the aim to verify complex and heterogeneous systems, a simulation-based approach

is an effective way to gain more insights on the behavior of the whole system This is also
stated and highly recommended by the functional safety standard ISO26262 for higher
safety levels. Since these systems can have several different configurations depending on
their purpose and are affected by a fast changing environment, they must exhaustively
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be tested towards their specific requirements. For fast and safe ramp of these devices,
full coverage of parameter variation in simulation is, therefore, a primary success factor.
Moreover, these systems are composed of highly heterogeneous subsystems on different
abstraction levels, e.g. digital, analog, mechanical or software, which has an impact on
the complexity and demands to combine different simulators in one framework. Due to
this, simulation of complex systems can lead to a greater challenge in terms of managing
complexity, hardware resources, simulation time (days or even months) and the amount
of data produced. Moreover, a seamless integration of a virtual prototype into the upper
layer of the system level specification and thus closing the design and verification gap is
still an open issue in today’s development.
Another issue is the fragmentation of the information to be captured at several levels

of abstraction. Today, top-level specification is usually described in natural languages,
which can lead to ambiguities or diverging interpretations between several teams involved
in the design process such as system, software, hardware or verification teams. This
effect is reinforced through additional effort in the development of safety-critical systems.
Since model-based approaches are not yet common in the automotive industry, new
design methods and tools must be introduced and are essential to avoid redundancy of
information and ensure consistency all over the design process.

Therefore, this thesis aims at solving the main research questions by targeting the
following goals:

• A seamless design process which helps to close technological, organizational and
design gaps across abstraction levels in today’s development of embedded automotive
systems regarding functional safety.

• Development and integration of novel, model-based reliability analysis techniques
and simulation-based verification in the proposed design process.

Besides the stated primary goals of this thesis, the following secondary goals are targeted:

• Reduction of the number of tools involved in the design process, thus to provice
high traceability across design, requirements, tests and results which lead to high
consistency, correctness, and completeness of models.

• Reducing manual steps, by introducing novel automation techniques throughout the
development process.
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1.3 Contributions

The overall scientific contributions of this thesis are presented in Fig.1.1. It shows an in-
dustrial V-model with safety extensions as it is specified in the functional safety standard
ISO26262, better known as safety lifecycle. The contributions are listed in a numerical
format, regarding their chronological appearance in the development cycle. Throughout
this thesis we will demonstrate our proposed solutions by an industrial use case of a Bat-
tery Management System (BMS) provided by CISC Semiconductor GmbH. The use case
illustrates a simplified version of the real application; it does neither represent an exhaus-
tive nor a commercially-sensitive project and shall only provide evidence of the proposed
solutions. First (I), we propose a novel design method for safety-critical systems, based
on standardized modeling languages. With the help of an additional layer in the MDA, a
gap in the design could be closed, and a seamless flow could be achieved. This design flow
includes structural but moreover behavioral models, which describe safety aspects within
the focus on ISO26262. Furthermore, this thesis emphasizes different reliability analysis
techniques, which can be applied on these models throughout the development process. In
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Figure 1.1: Overview of the contributions of this thesis that include techniques and tools that
are applied during development to enhance the safety and reliability of the complete
system.

(II), we describe how these structural models can be connected to executable models for
behavioral simulation on system level and how to provide a seamless integration into the
design flow. This includes the definition of interfaces for analog and digital simulation but
also specification and configuration of the whole system. Contribution to (III) addresses
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the definition of safety requirements and constraints in a machine-readable and semi-
formal structure. From this definition, testbenches for the verification of system safety
requirements are automatically generated. This includes the verification of the system
under different environment conditions and in different configurations to raise the level of
functional coverage. To speed-up the coverage process, these independent simulation runs
are distributed to a cloud-based environment. Results from the system verification can be
directly used for the hardware platform design. The configuration and evaluation of the
hardware platform regarding hardware faults is described in (IV). How this configuration
leads to the automatic generation of a first virtual prototype will be explained in (V).
Moreover, we show the seamless (back-)integration of the generated virtual prototype into
the system design (functional specification) by using the novel methodologies implemented
as a complete verification framework. This approach guarantees consistency, correctness
and completeness within the overall system design and specified functionality.

1.4 Organization of the Thesis
The rest of this thesis is organized as follows. Chapter 3 discusses existing work in the area
of design of safety-critical systems, design flows and virtual prototyping. Then, a novel
design flow approach based on standardized modeling languages which includes design,
evaluation, verification and integration of safety-critical systems is presented in Chapter
4. Chapter 5 describes how the methodologies have been implemented in the design
and verification framework SHARC. Chapter 6 gives insights about the evaluation of the
developed OpenES design flow and the specific SaVeSoC design flow. Finally, Chapter 7
concludes this thesis by summarizing the obtained results beyond the state of the art, and
by providing hints on future research directions.
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2 Background

This chapter provides definitions of key terms and a brief introduction to the background
related to this thesis.

2.1 Functional Safety
ISO26262 is the functional safety standard for safety-critical systems in road vehicles.
This standard addresses possible hazards caused by malfunctioning behavior of safety-
related systems. It also provides an automotive safety life cycle that covers safety aspects
throughout the whole design and development process of modern products and systems. In
the first phase, the concept phase (Part 3), the to-be-developed item is defined. The item
definition describes the boundaries and interfaces as well as assumptions about systems
or arrays of systems, to which functional safety is applied. After performing a hazard
and risk analysis on the item to identify and categorize the hazards, the safety goals are
derived, and the corresponding Automotive Safety Integrity Levels (ASIL) are determined
(2.1). The ASIL specify the item’s necessary safety requirements to avoid unreasonable
risk due to malfunction. The ASIL is determined by three impact factors: severity (S0-
S3), probability (E0-E4) and controllability (C0-C3). This results in four ASIL levels
(A to D), where ASIL A is the lowest and ASIL D the highest level. The class quality
management (QM) denotes no safety requirements to comply with ISO 26262. Following
the determination, the product is developed using recommended methods and measures
according to its ASIL.
After determination, the product is developed with recommended methods and measures

according to its ASIL. The derived functional safety concept contains safety measures,
including the safety mechanisms to be implemented in the item’s architectural elements
and these are specified in the functional safety requirements. After defining the functional
safety requirements, the technical requirements, including those for the hardware and
software, are derived. This, in turn, results in a safety case, to show that the system is
acceptably safe. The safety case is used to collect and present evidence and to support
safety claims and arguments.

2.1.1 System Life Cycle

To more fully understand the safety life cycle and its concept we have to start with the
definition of the global product/system life cycle. In integrated engineering, the produc-

9



Design Process for Safety-Critical Embedded Systems in the Automotive Domain

Table 2.1: Risk graph according to ISO26262.

Severity Class Probability Class Controllability Class
C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B B
E4 B C D

t/system life cycle comprises all phases that the product/system goes through from the
idea to its end-of-life and revival. This includes the different phases in a closed loop from
design, manufacturing, distribution, customization, the end-of-life and revival.
The safety life cycle is embedded in the product/system life cycle and is explicitly

focusing on the safety aspects and issues regarding functional safety. Its emphasis is
on the activities during the concept phase (Part 3), product development (Part 4-system,
Part 5-hardware and Part 6-software), production, operation, service and decommissioning
(Part 7). Part 1 and 2, as well as 8 to 10 are not part of the safety life cycle but supporting
it for completeness.
The industrial V-model is a graphical representation of the system life cycle. It is an

extension to the tradional waterfall model, where the process follows a sequential flow,
while the V-model is a simultaneous process. It helps to ensure that the results to be
provided are complete and have the desired quality. Instead of the waterfall model, results
can be tested during development of the system. By applying standardized processes,
effort concerning development, production, operation, and maintenance can be estimated
and controlled over the entire project. Furthermore, it helps to gain a common under-
standing and improves the communication between all stakeholders. The V-model gives
an overview of the main activities to be performed and results that have to be produced
during development, from the decomposition of requirements (left side) to integration of
parts and their validation (right side). However, validation can be applied on the left side
as well. This brings us to the difference between validation (are we building the right
thing?) and verification (are we building the thing right?). According to the PMBOK
guide (Project Management Body of Knowledge) [1], these two terms are defined as:
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• "Validation. The assurance that a product, service, or system meets the needs of
the customer and other identified stakeholders. It often involves acceptance and
suitability with external customers. Contrast with verification."

• "Verification. The evaluation of whether or not a product, service, or system complies
with a regulation, requirement, specification, or imposed condition. It is often an
internal process. Contrast with validation."

2.1.2 Safety Life Cycle

The safety life cycle can also be represented as a V-model of the system life cycle with
some minor adaption to the functional safety standard. The engineering processes have
been organized in such a way that each process on the left side has a corresponding testing
task on the right side. The overall V-model includes two smaller V-models, which handle
the hardware and software development processes. The V-model follows a requirement-
driven approach which means that design and tests are derived from requirements. Each
system requirement must be traceable to one or more design elements, tests, and vice
versa. In the ISO26262 they are separated in phases, where each activity in the standard
has dependencies between either the requirements, the design or the test phase (Fig.2.1).
These phases are arranged vertical, and each activity can be derived from the upper-level
indifferent phases, e.g., the hardware safety requirements are derived from the technical
safety requirements and also depend on the inputs from system design. We will discuss a
more illustrative example in 4.2.

2.1.3 Stakeholder Analysis

The functional safety manager is responsible for coordinating and integrating all activities
during the life cycle. Furthermore, he coordinates the different stakeholders, which take
part in the whole life cycle. The definition of the stakeholder is "holding a stake," which
means that everyone who has an interest in and can influence the process in a positive
or negative way should be considered. A stakeholder analysis can give important inputs
on who are the essential stakeholders regarding size (influence), distance (communication)
and quality (relationship). Essential stakeholders in the context of the product life cycle
are, e.g., clients, end users, customers, suppliers, design engineers (system, hardware, soft-
ware), quality engineers, distributors, marketing, security engineers and safety engineers.
In traditional product cycles, engineers are often decoupled from production or other de-
partments, which can directly affect the development and design of a product/system. In
modern, integrated design, all actors that are holding a stake in the product cycle should
actively take part in the development process. This bi-directional relationship between
designers and other stakeholders helps to achieve integrated design and to bring important
properties such as safety or security into the product.
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Figure 2.1: Relationship between the software, requirements and test phases in ISO26262.

This discussion brings us to another important topic in today’s design teams, the dif-
ferentiation between I- and T-shaped people. The I-shaped professionals are people who
have a deep insight in one field of expertise (thinking narrow and tide). They are highly
versed in a specific area and learn from drilling more deeply into a particular field. T-
shaped people have broader skills and knowledge and learn by different perspectives from
different specialties. The vertical bar of the T describes the expertise of professionals in a
certain field. The horizontal bar depicts the ability to think and collaborate across various
disciplines and systems. T-shaped people not only have in-depth knowledge, but they
also share empathy and enthusiasm for other people’s expertise. According to [85], they
have the competencies and soft skills to cross boarders in terms of teamwork, communica-
tion, perspective, networks, critical thinking, global understanding or project management
across one or many disciplines and systems. Although T-shaped people are important in
today’s development and design, this should not raise the impression that others are less
important; both types are essential in modern organizations. It is the competence to
communicate and collaborate across different areas of expertise and to share information
competently with non-experts. From the academic perspective, Information and Com-
puter Engineering (ICE) [34], former Telematics at the Technical University of Graz (TU
Graz), can be seen as a place where T-shaped people are formed. Besides the education
in computer science including different and diverse disciplines such as mathematics, elec-
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trical engineering, informatics or telecommunication, also extra-functional properties such
as information security or safety are well embedded in the curriculum. Furthermore, the
integration of soft skills in project management, team building, customer perspective or
law, are the basis of a T-shaped professional. Several other shapes are mentioned nowa-
days in literature, such as hyphen-shaped, pi-shaped, H-shaped or V-shaped but are out
of the scope of this thesis.

BOUNDARY CROSSING COMPETENCIES

Teamwork, communication, perspective, network, critical thinking, global 
understanding, project management, etc.

MANY DISCIPLINES
Understanding & communications

DEEP IN AT 
LEAST ONE 
DISPLICINE

Analytic 
thinking &
problem 
solving

MANY SYSTEMS
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thinking & 
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ME

Figure 2.2: The T-shaped professional.

If we project this view on functional safety, it is important that safety managers and en-
gineers understand problems regarding hardware or software development and vice versa,
engineers understand problems from the functional safety perspective. This forms, in
the end, a Y-shaped professional, who combines two separate areas of expertise (which
should naturally overlap) into one. In a modern, integrated design these people are key
to integrate system/product properties such as functional safety.
A way to support this process and step towards achieving the goal of an integrated design

is the model-based concept. It helps to communicate between several disciplines and to
gather a common understanding of problems in the design. All in all, this is an important
step towards a safe and reliable product, which also leads to faster time-to-market and
reduction of development costs and product recalls.

2.2 Model-driven Engineering
In the aim to increase the level of abstraction and automation the MDE approach has
found its way into the development of systems and software. One of the most popular
MDE approaches is MDA, developed by the Object Management Group (OMG) standard-
ization body. The MDA approach was driven by the diversity of systems, programming
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languages and frameworks in order to address interoperability and compatibility issues.
As it is stated in the standard in the MDA Guide Version 1.0.1 from the OMG [57]: "In the
ideal sense, computing should be viewed by the users as “my” world, with no artificial bar-
riers of the operating system, hardware architecture, network compatibility, or application
incompatibility. Given the continued, and growing, diversity of systems, this will never
be achieved by forcing all software development to be based on a single operating system,
programming language, instruction set architecture, application server framework or any
other choice. There are simply too many platforms in existence, and too many conflicting
implementation requirements, to ever agree on a single choice in any of these fields."

Conclusion: "We must agree to coexist by translation, by agreeing on models and how to
translate between them."

Organization of specialized people in projects of a certain size requires a lot of effort.
Therefore, it is becoming increasingly important that stakeholders from different domains,
e.g., hardware, software, system design but also safety and security engineers can efficiently
work together. Particularly in the verification of safety-critical systems, safety managers
and specialists need an entire view of the system that includes all domains involved in the
system design. Such a design, expressed in an architectural description, supports the un-
derstanding of the system’s essence and key properties regarding its behavior, composition
and evolution. This, in turn, can bring to light concerns regarding feasibility, maintainabil-
ity, and utility of the system. To overcome the issues with different stakeholders involved
in the design process, [45] defined that an architecture description can have one or more
architecture views. A view helps to address the various concerns held by the system’s
stakeholders. According to [43]: "A view is governed by its viewpoint: the viewpoint es-
tablishes the conventions for constructing, interpreting and analyzing the view to address
concerns framed by that viewpoint. Viewpoint conventions can include languages, nota-
tions, model kinds, design rules, and/or modeling methods, analysis techniques and other
operations on views. "

One well-known viewpoint model is the "4+1" by [46]. This model allows to separately
address the concerns of the various stakeholders of the architecture, as well as functional
and extra-functional requirements. To capture large and challenging architectures, they
propose a model consisting of logical view, process view, physical view and development
flow. The logical view includes the used objects in the design. The process view captures
the concurrency and synchronization aspects. The physical view describes the software
to hardware mapping, whereas the development view depicts the static organization of
the software in its development environment. These four views are organized around a
fifth view, which represents the use cases or scenarios. The "4+1" view model described
a rather generic approach, where other notations, tools or design methods can be used.
For our purpose, we will focus on the unified modeling language standard (UML), which
provides us with different diagrams to describe our system from different point of views.
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Figure 2.3: The 4+1 view model according to [46].

2.2.1 Design Languages

UML

UML is one modeling standard by the OMG [75]. It is a graphical representation for
specification and documentation of software and other systems. With UML it is feasible
to model application structure, behavior, architecture and also business processes and
data structures. It delivers a complete view of the system, its individual components
and the interactions between them. UML also declares how the system is expected to be
used (special focus on system level use cases) providing different types of structural and
behavioral diagrams. Another advantage is a common formalism to ease the exchange of
information between stakeholders involved in the design and avoiding multiple captures
of the same information. Although UML has advantages in capturing system level use
cases and specifying system and software design, it lacks a proper definition for hardware
design and non-functional properties such as timing, performance or thermal behavior.
Extensions have been developed to overcome these issues.

SysML

SysML is an extension to UML2 and is a graphical modeling language for describing com-
plex systems in system engineering. It supports the specification, analysis, verification and
validation of a broad range of systems. It provides extensions to diagrams for describing
behavioral and structural properties in UML2. Also, it has two additional diagrams (re-
quirement, parametric) for requirements engineering and performance analysis. SysML is
smaller and easier to learn than UML. One of the advantages of SysML is the mechanism
to capture performance and quantitative information. It provides a good allocation of
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requirements to components, but it is inaccurate and provides no extra-functional prop-
erties.

EAST-ADL

One modeling language that has established itself in the automotive domain is EAST-
ADL. It allows capturing detailed automotive electric and electronic systems on five layers
of abstraction, each with a clear separation of concerns: Vehicle, Analysis, Design, Im-
plementation and Operational Level. Besides structural aspects, this modeling language
allows the expression of behavior, requirements, verification and validation. The highest
level is the Vehicle Level that describes electronic features to allow integration of prod-
uct variability. The Analysis Level includes the Functional Analysis Architecture (FAA),
which allows an abstract functional representation of the architecture (what the system
shall do), in relation to the features from the Vehicle Level. The Design Level allows the
decomposition of models in the FAA to Functional Design Architecture (FDA) models
and Hardware Design Architecture (HDA) models. Within these models the functional
representation of the architecture can be allocated onto the hardware platforms. The
applications are represented by DesignFunctionTypes with annotated behavior and con-
figurations. The hardware components are modeled by Sensors, Nodes (ECUs), Actuators
and HardwarePortConnector (Buses) and more. They are interconnected by IOHardware-
Pins or CommunicationHardwarePin and wired by HardwareConnectors. The last two
layers (Implementation, Operational) are the realization of the implementation in Auto-
motive Open Systems Architecture (AUTOSAR). Therefore, the models on these levels
are compliant with the AUTOSAR specification. The behavior of components on all these
levels is not explicitly addressed in EAST-ADL. It can be either expressed by behavioral
diagrams (state machines, activity diagram) or externally in tools like Matlab.
EAST-ADL as automotive modeling language also addresses parts of the functional

safety standard ISO2626, which was one of the outcomes of international projects like
ATESST[10] and MEANAD[53]. This enables the language for safety analysis like Fault
Tree (FTA) or Failure Mode and Effect Analysis (FMEA), but also for defining safety
requirements and achieving high traceability of models and behavioral diagrams. Further-
more, this language provides means to describe validation and verification activities by
VVCases. Since EAST-ADL is included in an Eclipse UML2 Editor called Papyrus [28],
complex systems can be designed without licensing costs.

MARTE

MARTE is defined as a profile in UML2 and provides additional mechanisms for model-
ing real-time systems, which are missing in UML. Thanks to the UML extension mech-
anism, the software resource model (SRM) and hardware resource model (HRM) pro-
files extend UML2 with concepts for software and hardware. The purpose of the SRM
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package is to design software of real-time and embedded applications. It consists of the
SW_ResourceCore, which provides the basic software resource concept. The HRM is an
extension to UML and serves as a description of existing and for the conception of new
hardware platforms. These descriptions can be made of different levels of granularity.
The HRM is grouping most hardware concepts under a hierarchical taxonomy. It is com-
posed of a logical view (HwLogical) that classifies hardware resources depending on their
functional behavior and a physical view (HwPhysical) that focuses on the physical nature.
The HWLogical model provides a classification for different hardware entities such as com-
puting, storage or communication. This includes stereotypes like HwASIC, HwProcessor,
HwBus, HwDevice or HwMemory. All the stereotypes defined in the HRM package are
organized under a tree of inheritances (Fig. 2.4 from more generic stereotypes. This has
the advantage that if no stereotype suits to model a used hardware component, a more
generic stereotype may fit instead. As an example, a HwSensor inherits the properties
from HwI/O and is furthermore a specialization of Hw_Device. In contrast, the HW-
Physical package contains stereotypes as physical components. They describe their shape,
size, and position within the platform, power consumption or other physical properties.

Figure 2.4: MARTE levels of granularity.

Domain specific language

A Domain Specific Language (DSL), or application specific language is a formal language,
which is used to describe a problem in a specific domain (e.g., avionics, financial services)
and eases the interaction between human and computer. This language needs a specific
design and implementation for a certain domain where it is supposed to be used. In the
development of a DSL, the target is to achieve a high degree of specificity of a problem.
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This concept shall ensure that everything in the target domain can be described, and
everything surrounding this domain is negligible. Thus, a domain specific language can
lead to an excess of highly specialized language concepts that is difficult to learn and
cumbersome to use [77].

Evaluation of Design Languages

To determine which design language is the most efficient to describe a complete safety-
critical system in an automotive environment, we evaluated the before mentioned design
languages regarding six important aspects (Figure 2.5):

• Standardization (interoperability with other tools)

• Level of abstraction (defined in the language)

• Application (software architecture)

• Hardware platform (architecture)

• Extra-functional properties (supports e.g., timing behavior)

• Requirements (supports definition of requirements)

Standardized

Levels of 
abstraction

Application

Hardware Platform

Extra functional
properties

Requirements

DSL UML SysML EAST-ADL MARTE

Figure 2.5: Comparison of common modeling languages.

As we can see in Figure 2.5, a DSL is too specific to be used in several tools and
would imply an over-sized effort in the specification of the language, since all mentioned
aspects have to be defined. Moreover, the costs for learning a new design language are too
high. In contrast, a standardized language such as UML is widely known by the software

18



2 Background

community and can be applied in several domains. SysML, as system design language,
also has extensions for the definition of requirements, but does not provide specific levels
of abstraction for the development of hardware and software. On the other hand, EAST-
ADL with its roots in the automotive domain already provides these levels to be used in an
automotive development life cycle. Nevertheless, EAST-ADL only reaches its full potential
in combination with the software development in AUTOSAR. Since MARTE provides
several abstraction levels to be used in a system life cycle, models for application and
hardware development, extra-functional properties for timing, resources, and performance,
using this language is the appropriate choice for our design. Complementary with SysML
for requirements definition we are able to provide an adequate basis for the design of safety-
critical systems throughout the various development phases and to be used in several tools
in this domain.

2.2.2 Virtual Prototyping

The ISO26262 recommends different verification methodologies used for the hardware plat-
form. These include design walk through, FTA/ FMEA, hardware architectural metrics
evaluation, but more importantly, hardware prototyping and simulation for higher ASIL
levels. These simulations, including virtual prototyping, can then be used for further
hardware verification methods such as fault injection test, which is currently the key for
testing the reliability of the hardware. Several research institutes are now working on
executing fault injection, also on higher abstraction level such as Transaction Level Mod-
eling (TLM). This has the advantage that this method can be applied on faster simulation
models without losing information from the more detailed models (Register Transfer Level
(RTL)).
Virtual prototyping has the benefit that embedded software can be tested much earlier

before a first real hardware prototype is available. Also, the hardware/software interface
can be tested towards consistency. The drawback is that a complex Virtual Prototype (VP)
is not developed overnight. It takes a lot of effort, experienced designers and engineers
to build a so-called digital twin of the actual hardware. Our proposal is thus to reuse
models for virtual hardware prototyping from open libraries such as Open Virtual Platform
(OVP), [64]. OVP comes with a growing model library, which offers processor cores,
memory, and various peripherals.

Functional Coverage

Functional coverage is defined as a metric, which is used to determine the completeness and
verification progress of a design. It emphasizes design verification where the focus, besides
functional verification, is also on non-functional aspects such as safety, timing or power.
Functional coverage tells us about the quality of a testbench and what portion of the design
has been activated and tested during the simulation run (controllability). On the one hand,
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observability shows the ability to observe effects of the simulation (white-box vs. black-
box testing). Thus, this metric allows us to answer the crucial question in the verification
process "Are we done yet?". Through coverage metrics, we are able to adjust our tests
and stimuli to optimize the verification. Moreover, it helps us to reduce debug time and
to increase the correlation between specification, design, and verification. Were all design
features and requirements identified in the tests? Have there been any lines of code or
structures in the design that have never been exercised? We can classify coverage [88] by

CODE COVERAGE
AREA OF 

RESEARCH

ASSERTIONS

FUNCTIONAL 
COVERAGE

 ASSERTIONS

Implicit

Explicit

Implementation Specification

Figure 2.6: Implicit/explicit coverage, adapted from [88].

its method of creation (implicit vs. explicit) and their origin of the source (specification vs.
implementation), see Fig. 2.6. Line coverage and expression coverage are two examples
of an implicit coverage metric and can be automatically derived from the code, whereas
functional coverage (explicit coverage metric) has to be defined and implemented by the
engineer, derived from the various requirements and the specification document. None
of these metrics is sufficient to make a statement about the completeness of the system.
As an example, we might achieve 100% code coverage during our simulation runs, but do
not know if we verified 100% of our functionality. This is because code coverage does not
measure the interaction and behavior between the systems, nor the temporal sequences of
functional events. On the other hand, we might achieve 100% functional coverage but only
90% code coverage because an important feature is missing in the test plan or specification,
which never reaches the specific part of the code. A complete functional coverage can only
be achieved if there are tests for all the features, which are indicated in the specification
and the engineer has thought of. Functional coverage distinguishes between two simulation
methodologies, direct testing and constrained random verification, whereas the latter is
able to achieve a higher distribution over the huge space of the available input stimuli.
This mechanism increases the coverage and the ability to find corner cases in the design by
creating random tests, which have not been found by direct testing. The coverage space
classified by an implicit specification (also known as intelligent verification) is a current
academic research area, where the coverage metrics are automatically extracted by a tool
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and are derived from the design specification. These higher-level functional behaviors
cannot be automatically derived from the implementation alone and need the information
from the specification as well.

2.2.3 Design Frameworks
UML as a generic standard has the benefit that it is supported by various commercial
and open-source tools. This strenghtens the interoperability between languages and the
growing tool landscape. We emphazise the implementation with the UML editor of Eclipse
named Papyrus [28]. This tool already provides the designer with UML extensions such as
MARTE, SysML or EAST-ADL. Another advantage of Eclipse is the plugin mechanism,
which eases the development of extensions for the UML editor. Sirius [29] is an other
open-source tool from Eclipse, which can also be used for the design of complex systems,
but its emphasis is more on domain specific languages rather than standardized modeling
languages such as UML.

2.3 Related European Projects
2.3.1 OpenES
To improve European electronics system design productivity (faster time-to-market), de-
sign quality (fewer design errors and fewer re-designs) to stay competitive, the OpenES
(Catrene, Eureka) consortium joins forces to provide missing links in system-level design
and to develop common open solutions based on four pillars:

• Fill gaps in design flows with new interoperable tools and/or improve existing tool-
s/flows ensuring the semantic continuity of the design flow.

• Specifically focus on integral support of both functional and extra-functional require-
ments from specification to verification, jointly with the use cases defined at system
level.

• Raise reuse capabilities from IP to HW/SW subsystem in order to eliminate inte-
gration effort by supporting reuse of pre-integrated and pre-verified subsystems.

• Enhance interoperability of models and tools by upgrading and extending existing
young open standards (SystemC TLM, SystemC-AMS, IP-XACT).

To demonstrate the efficiency of this approach a new tool in cooperation with CISC Semi-
conductors is developed in this project. The aim of the tool SHARC is to design, simulate
and verify safety-critical systems in the automotive area. Safety turns out to be the key
issue for future vehicle development, as the complexity in the automotive area is steadily
growing. Especially when systems interact with and have an effect on the physical world,
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so-called cyber-physical systems, it is not longer sufficient to test a single behavior. The
whole system must be validated as early as possible in the development cycle and at any
level of granularity. This is also recommended by the ISO262626 standard for automotive
E/E systems.

2.3.2 eRamp
eRamp, an ENIAC project, is focusing on the rapid introduction and research activities
of new production technologies and further exploration of chip packaging technologies for
power semiconductors. The goal is to have fast access to reliable prototypes of electronic
devices as well as competitive advanced manufacturing of such devices made in Europe.
The project partners are investigating and developing new methods for speeding up the
start of the production runs for More than Moore (MtM) technologies. New simulation
methods and verification technologies are thus essential to enable high performance and
high-speed designs to support the ramp up of MtM products. In the course of eRamp,
CISC and TU Graz are developing a new simulation environment (SHARC) to speed-
up the development and verification of microelectronic embedded systems. With the
help of novel methodologies, based on standardized technologies (UML, UVM, SystemC),
thousands of different Monte Carlo simulation tasks are distributed and parallelized in
a cloud-based infrastructure. This enables a virtually linear speed-up in testing reliable
systems.
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This chapter presents the current state-of-the-art and related work in dealing with the
design of safety-critical systems. We outline other simulation-based approaches in the
goal to verify systems regarding functional safety and how hardware evaluation is done in
other projects.

3.1 Design of Safety-Critical Systems
The effort in today’s development of cyber-physical systems is huge, as are the costs.
This not only includes the engineering effort, but also the tools involved in the whole
process. In the automotive domain of today, there is no single approach that unites the
design and verification tools in one single environment, which can also be used throughout
the whole development process. In the current development processes several different
tools are used such as Matlab Simulink [55] for the functional specification, Doors [71]
for requirements specification, document-centric approaches such as Excel for failure
mode and effect analysis (FMEA), hardware architectural metrics, hardware/software
interface or even the whole design, furthermore Maggilem for traceability and Mentor/-
Candence for hardware simulation, just to name a few. For each of these steps, data from
the design must be exhaustively exported to other tools and vice versa. System-wide
and even cross-domain constraints, such as safety features must be exchanged between
tools manually, which results in redundancy and inconsistency. Today’s approaches lack a
proper design low, a modeling language to communicate between different engineering and
management teams and furthermore traceability of requirements, design, tests and results.

The MDE vision emphasizes to increase the abstraction level and automation through
modeling, which entails advantages such as reduced development costs, increased quality,
and reduction of maintenance costs [7]. Machine-executable models are essential in today’s
design flows, since companies are seeking for increased automation. Increased automation
also means faster development and fewer costs. Multi-view modeling is one approach to
deal with complex embedded systems in the development process. Often there are many
different experts and tools involved, also from different domains, which help experts in the
analysis and decision making during the design. A view that is tailored to their particular
tasks helps to gain more insights on the system. In [78] a model integration framework is
presented which addresses the issues associated with multi-view modeling. The authors
are using the potential of the SysML standard as a general language to present a common
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model and to create dependencies between various domain-specific tools and languages.
To achieve consistency between the views, model transformations are defined that map
the interdependent constructs to and from a common SysML model. This paper points
out interesting issues in today’s development of embedded systems. The overall goal of
the authors was to provide consistency across multiple views of a system to meet the
objectives of a variety of stakeholders. They also describe the problems when dealing
with the integration of simulation models and specifying configuration parameters of
the system. To tackle the research question regarding consistency, they propose that a
general framework must also take into account the workflow process, to allow consistency
to be evaluated. The authors are stating that SysML as general modeling language is
too high-level to be used for domain-specific application (simulation of control systems).
In contrast to this thesis, they use model-transformation and don’t take a modeling
languages with several abstraction levels into account.

The authors of [51] aimed at achieving consistency of information between several tools
involved in the development process through a single source of information principle.
Wanting to achieve dependability (safety, security) in the development process between
different teams and stakeholders, they decided against a document-centric approach
and used the capabilities of UML and SysML for their design. This, in turn, improved
consistency, correctness, and completeness of the entire system under development, which
is in line with the objectives of this thesis. In contrast to our approach, the toolchain
in this paper focused more on the system and software development and did not take
hardware development into account. The authors also propose to update their profile to
work efficiently on hardware development as such.

How to use SysML as representation of requirements in the automotive industry and the
functional safety standard is discussed in [38],[4],[61]. The authors show how to model the
requirements on different abstraction levels in a semi-formal way. Also, the traceability
across the different levels in the requirements phase of the safety lifecycle is handled.
They point out issues of bidirectional traceability in today’s distributed developments and
how this information can be used for later assessment of the safety case. The approach
of [4] extends SysML to define requirements of safety-critical systems. In [61] also the
allocation to structural and behavioral models is taken into account. This approach
very well shows how to use SysML for requirements on different abstraction levels. In
contrast to this thesis, the used method does not cover the whole design phase of the
ISO26262 and confines traceability solely to UML/SysML diagrams. We will build upon
this approach to cover all traceability aspects as recommended in the standard. As none
of these approaches consider MARTE as detailed modeling language for hardware and
software, we will show how to use SysML to maintain the traceability in MARTE models
on multiple levels.
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Two major European projects that also relate to a model-based design in the automotive
domain are the SAFE [74] (Safe Automotive soFtware architEcture) and MEANAD [53]
(Model-based Analysis & Engineering of Novel Architectures for Dependable Electric
Vehicles) projects. The objective of the SAFE project was to define development pro-
cesses complying with functional safety and to develop new methods for defining safety
goals. Furthermore, the aim of this project was to improve dependability from vehicle to
component and the early evaluation of the safety architecture. During this project, this
has been achieved by defining a meta-model for a model-based safety analysis, which is
based on existing technologies (ReqIF, EAST-ADL, and AUTOSAR). They also defined
a toolset to capture requirements, modeling and safety analysis based on formal models
and to support automated safety analysis to reduce the manual effort. In contrast to the
OpenES project, SAFE solely focus on the development and safety analysis of automo-
tive usecases. The OpenES project covers a broader spectrum, which also takes other
domains into account. EAST-ADL models are not flexible enough to be applied to other
E/E systems and domains such mobile or health-care. Nevertheless, will build upon the
outcomes of this project, because several important objectives have been covered in the
development of safety-critical systems in the automotive domain.

With the focus on Fully Electric Vehicle (FEV) and to bring the engineering of FEV to
a next level, the MAENAD project extended the EAST-ADL2 standard with advanced
capabilities to facilitate development of dependable, efficient and affordable products. The
three goals of this project were to support the ISO26262 safety standard and to support
automatic allocation of safety requirements to components of an evolving architecture and
an effective model-based prediction of quality attributes of FEVs (dependability, perfor-
mance). A further goal was the automated exploration of huge design spaces to achieve
an optimal trade-off between dependability, performance and costs. By using a common
modeling language in the project, they managed to understand engineering information
across different departments and companies, to exchange engineering models between
different organizations and to progress jointly on tools and methodologies for modeling,
analysis and synthesis. Also, the MAENAD project proposes to use an overall design
methodology for FEV development. The MAENAD project covers important aspects in
the development of fully electric vehicles, which is also in line with the objectives of this
thesis. Therefore, we will use the results in this project to cover certain issues in today’s
development process.

By combining several UML profiles, as presented in [32], [58] and [15], the authors
could increase the potential for easy validation and verification of embedded systems,
and facilitated reuse and evolution. Since a single profile may not be adequate to cover
all aspects of a multidisciplinary domain, popular UML-profiles, in particular EAST-
ADL, MARTE, IP-XACT and SySML have been combined. By following this approaches
[15], a unique model can be established which take into account requirements, functional
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modeling, and the modeling of verification and validation activities. Furthermore, the
functional safety standards ISO26262 was also partially addressed in this paper. This is
completely in line with the proposed process and methodology in this thesis. However, this
approach lacks in simulation capabilities and a proper framework for modeling. While the
approach from [15] asks for a framework to combine these profiles, [32] proposes a complete
modeling framework, while avoiding specification conflicts. The authors of [58], try to
close the gap between UML modeling and simulation (e.g. SystemC) for verification and
synthesis, by using code-generation from SysML models. They also point out, that using
standardized profiles leads to a higher interoperability between other enterprise tools. In
contrast to our thesis they do not take modeling of safety-critical systems into account
nor the use of MARTE.

3.2 Hardware Evaluation in the ISO26262 Context
The authors of [24] evaluated the hardware fault metrics of a electronic power-assisted
steering (EPAS) system by using systematic quantitative Fault Tree Analysis (FTA).
Using their methodology, they derived top-level events, which serve as starting point for
the analysis. The objective was to build a structure that contains all relevant random
hardware failures that could contribute to the top-level event. From the item definition
they derived a first fault tree that represents the system structure, where they consider
that the failure of a block can occur due to one or two categories: i) fault within the block
or ii) fault in the input of the block. These events are described as intermediate level
events. At the bottom level of the fault tree, root causes of failures are described. After
describing the whole fault tree, they have been able to calculate single-point/residual
faults and dual-point faults of their IC. Systematic but also random hardware faults of the
safety mechanisms have been considered in the evaluation. Data for FIT rates, possible
faults, safety mechanisms or values for diagnostic coverage have been based on references
such as ISO26262 or IEC61508. In contrast to our approach, the authors of this paper do
not take modeling languages into account, thus it is challenging to reuse or even transform
information to other views. Moreover, the do not provide tools for their methods.

How to develop hardware according to functional safety and the ISO26262 is described
in [44] and [17]. In [17] the quantitative hardware architecture of an automotive safety
microprocessor is evaluated. The data for the diagnostic coverage of the hardware com-
ponents comes from a commercial EDA environment, and no evidence is given about the
correctness. Both approaches neither take modeling approaches into account nor does
they recommend safety mechanisms to improve their use cases. Furthermore, they do not
use tools to support their methodology.
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The authors of [73] present a methodology to evaluate design choices early in the de-
velopment process. This is done in an iterative way until a specific safe, and cost-effective
E/E architecture is derived. This approach was applied in a model-based development
process. The models used in this paper are specified as a self-defined metamodel for repre-
senting the part of the design artifact. However, this approach neither takes standardized
modeling languages into account nor does it use information from standardized hardware
IPs. The authors of this paper also recommend using languages like SysML or MARTE.

The authors of [5] present a rapid method for qualitative and quantitative assessment
of hardware architectural design in a model-based approach. They are evaluating the
design in a top-down manner using fault tree analysis. The architecture is evaluated with
the HiP-HOP methodology in an external tool through a defined exchange format. The
evaluation of the hardware is more related to the hardware part evaluation and not to
the architectural level of advanced SoCs, as this plays a crucial role in the second version
of ISO26262 coming in 2017. They also propose a meta-model for modeling hardware
designs regarding functional safety in EAST-ADL2 [22], which we will rely on.

In paper [83], the authors apply the ISO26262 standard to several example scenarios in-
volving Li-Ion batteries for plug-in vehicles. They point out occurring problems in today’s
integration and evaluation of Li-Ion batteries regarding safety. This includes malfunctions
of control systems that may have an impact on charging and discharging. Also, the ther-
mal aspect must be taken into account. The paper shows how a Hazard and Risk Analysis
(HARA) and Goal Structuring Notation (GSN) can be applied to a Li-Ion battery pack.
Furthermore, they define safety requirements during the design process, from safety goals
down to the technical safety requirements. The authors also propose to add more details
on hardware and software implementation to their models. In contrast to our approach,
they do not use UML for their design nor do they use detailed hardware and software
models. Nevertheless, the authors point out important aspects in the definition of safety
requirements for Li-Ion batteries which are also important for this thesis.

3.3 Simulation and Virtual Prototyping

Popular approaches such as [6] and [25] have shown that UML as modeling language can
be efficiently used with analysis and verification methods such as FMEA (failure mode
and effect analysis), fault tree analysis (FTA) [65], [48], design walkthrough [36], code
generation [27], [67], [89] and many more. The drawback of UML, in terms of simulation to
verify the system behavior is that code-generation can only be done at a very late stage or
even at the end of the design process, when all details are very well known. Later changes
in design are costly and result in inconsistent models and reverse engineering, which is
an error-prone and cumbersome task. The majority of components in new projects are
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reused and simply extended by the addition of new features to reduce costs and time-to
market. The reuse of whole safety concepts, well-trusted designs and mechanisms is thus
becoming more important to reduce the effort required for developing complex systems.
This situation prompts the urgent demand for new techniques to simulate the behavior
in early development phases by reusing verified system components.

Many approaches try to combine the design with analysis techniques. In particular, the
authors of [47] propose a methodological approach for modeling and analyzing integrated
safety-relevant automotive ECUs in early stages. The model analysis is performed by
additional tools which operate on the derived information from the modeled system. To
perform scheduling analysis [40] they also use external simulation tools. The authors also
point out the benefits of standardized models by allowing the development of standard
modeling and analysis tools. Nevertheless, this approach has the drawback of using an
analysis toolchain for the evaluation of the system, thus using model transformation [72].
Since this approach relies on the generic UML profile, they also propose additional profiles
such as SysML and MARTE.

In [54] the authors present three different analysis techniques for architectural models
described in EAST-ADL, to guarantee the quality in the context of ISO26262. One of
the proposed techniques is the simulation of EAST-ADL functions in Simulink. The
behavior of each function was linked to FMU or Simulink models to facilitate the sim-
ulation. The authors also described mapping rules for the EAST-ADL to Simulink
transformation (one-to-one mapping). The results of the simulation have been traced
back to the requirements. This approach was applied to an industrial use case of a
brake-by-wire system on the design level. In contrast to our approach, however, they use
proprietary simulation engines with high license costs and external tools which are not
integrated into the design and development flow and do not reach lower abstraction layers.

Several papers have been published about the Gaspard2 design environment [68], [11],
[70]. The aim of this environment was to overcome the complexity issues within the Multi-
Processor System on Chip (MPSoC) development. It uses the capabilities of the MARTE
and the MDE approach, to move from a high-level system representation to an executable
platform. Within this developed design flow for MPSoC, they used a compilation chain
to transform the high abstraction level models to Cycle Accurate Bit Accurate (CABA)
and Timed Programmer View (PVT) SystemC simulation. With the used MARTE
representation they separated the application from the hardware architecture by the
corresponding allocation. They introduced a deployment profile in MARTE to transform
the high abstraction level models into simulation code, also by linking existing code to
each elementary component. They forced the use of IP libraries to keep the MPSoC
model independent from the compilation target. By using the MARTE standard, they
also agree that this approach increases maintainability and simplifies modification. They
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applied their design flow on a use case of an H.263 video encoder within the Gaspard2
framework. Thanks to the high-level modeling, they highlighted the ease of exploring
various configurations, also by using different points of view.

In [59], [60], the authors build on the work of Gaspard2 and present a semi-automated de-
sign flow where HW/SW Codesign and the MDE methodologies are merged and exploited
to enable a fast design process. The aim of the authors was to help and design complex
real-time embedded systems by allocation and binding within design space exploration,
schedulability analysis, HW/SW partitioning and estimation techniques. To achieve these
goals they agreed on using UML profiles such was SysML and MARTE. By using the
Computational Independent Model (CIM), Platform Independent Model (PIM), Platform
Specific Model (PSM) approach and mode-to-model transformation, they described their
system at different levels of abstraction, until sufficient details have been added. At the
end of the design process, including structural and behavioral models, they generated the
corresponding SystemC executable models for simulation and verification. Nevertheless,
none of these approaches are taking safety standards in their design processes into account.

COSIDE from COSEDA [21],[13], [52] is a proprietary Electronic System Level (ESL)
design tool for design exploration, verification and virtual prototyping of embedded
systems. For the modeling of hardware and software, but also analog and mixed-signal
systems on the system level, they use the capabilities of SystemC and SystemC AMS.
The framework is based on the Eclipse environment and uses a DSL for the graphical
representation of their design models. For the verification of system level use cases in
the automotive domain, they propose to use Coverage Driven Verification (CDV) within
UVM and extensions for SystemC AMS. For the creation of AMS test scenarios, consisting
of stimuli generation and response checking, they extended the SystemC AMS standard
by new language constructs and generic verification components. Furthermore, they
automated the test creation procedure by using the IP-XACT standard, and they claim
to support an ISO26262 conform design process. COSIDE seems to be a powerful tool
relying on the same simulation engine as SHARC. Nevertheless, they use a DSL approach
for their design models. Moreover, the don’t provide other reliability analysis techniques
besides simulation and virtual prototyping.

To overcome the issues with consistency within design and simulation models in the
context of ISO26262, the authors of [81] proposed a model transformation framework be-
tween SysML and Matlab/Simulink. They support a consistent and traceable refinement
from the early concept phase to software implementation in a bi-directional manner. The
authors also claim that a model-based design helps to enable different views for different
stakeholders, different levels of abstraction, and central storage of information. Never-
theless, the author’s focus was more on the software architecture generation from system
design rather than on the requirements for hardware design.
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4 Verification, Generation and Integration of
a Safety-Aware Virtual Prototype

In this chapter, we describe our novel design process named Safety Aware Virtual Prototyp
Generation and Evaluation of a System on Chip (SaVeSoC). We will first explain our
seamless model-based design flow based on standardized modeling languages. Then we
will show how this model-based approach can be used for different verification methods
and reliability analysis. Furthermore, our use case, on which the SaVeSoC process has
been applied, is presented.

4.1 Use Case
Throughout this thesis, we will demonstrate our methodologies on a relevant problem in
today’s automotive domain, a battery management system for Li-Ion-powered electrical
vehicles. This industrial use case was provided by CISC Semiconductor GmbH. It will
help to illustrate more fully the innovative capabilities and benefits of our approach. As
more and more vehicles are now powered by Li-Ion batteries the challenge for engineers
to ensure reliability and fault tolerance is also greatly increasing. It is crucial for ensuring
safe operating conditions of a battery that monitoring systems, such as the BMS, measure
the voltage, temperature, and current of the battery very precisely. This information must
be forwarded to a vehicle-wide controller network to ensure a reliable and fully utilized
system. Problems with overheating or even explosions have been frequent in the past.
The main cause of these problems was an excessively high energy intake from regenerative
braking or harsh environmental conditions. Management systems and mechanisms are
thus essential to ensure that persons are not put at risk and that no damage is caused.
The overall system of the eVehicle is depicted in Figure 4.1. For reasons of simplification,

we only consider the major components of the electric vehicle, for the analysis of the
battery and the BMS. This includes the battery pack in Li-Ion technology, the BMS,
which measures voltage and temperature of the battery, an inverter ECU, a controller and
the electric motor model. Two main factors influence the behavior of the eVehicle. The
driver provides the desired speed (rounds per minute) and the load on the motor shaft.
These stimuli can be set according to standardized maneuvers such as the New European
Drive Cycle (NEDC), or the newer standards known as the worldwide harmonized light-
duty vehicles test procedure (WLTP), which will be introduced in 2017. The controller
is a model for a PI state-space controller and maintains a constant speed based on the
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Figure 4.1: Overall system level description of the electric vehicle use case.

information about the state variables, motor armature current, and motor speed. The
inverter model implements an inverter function for a PM-DC motor driving stage. It
compares the actual battery voltage and the requested controller voltage to maintain the
PM-DC motor terminal voltage. The battery model simulates the behavior of a Li-ion
battery pack composed of a defined set of single cell Li-Ion batteries. The appropriate
number of single cells is connected in parallel and series to obtain the necessary capacity,
maximum current, and terminal voltage. The battery pack’s terminal voltage is calculated
based on the defined parameters and the battery current. A BMS is connected to the
battery to measure voltage, current and temperature of the cells/modules. The BMS
computes the state of charge (SOC), State-Of-Health (SOH) and is responsible for cell
balancing, cell protection and demand management of the battery. These computed values
are processed via a CAN controller as digital values and forwarded to the power train
controller. Also, the external load environmental conditions, such as temperature, can be
changed during the simulation.
The battery model is a central focus of this thesis. It is a detailed model of a Li-Ion

battery pack and a BMS, which computes internally for each timestep the new state of
charge based on the previous one. Changes in temperature are also calculated. The
temperature can further on be used to calculate the module voltage, taking the current
state of charge into account. The batteries’ reliability is of utmost importance in a vehicle
and avoids harmful effects for occupants in case of a failure. To guarantee safety, BMS are
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used to control and monitor the behavior of the battery throughout the entire life cycle of
a battery. In this paper, the function of a BMS shall be implemented on a microcontroller,
which meets the high safety requirements in its implementation.

4.2 Safety-Critical Embedded System Design

4.2.1 Functional Specification

To overcome the shortcoming of defining hardware platforms in UML and SysML, an
extension to UML2 was defined, which provides capabilities to model hardware and soft-
ware, as well as timing, resource and performance behavior of real-time and embedded
systems. This modeling language is called MARTE [63], [77] which follows the philoso-
phy of cyber-physical systems to deal with the whole system rather than with a set of
specialized parts. Furthermore, it has been established in the embedded system domain.
MARTE is defined as a profile in UML2 and provides additional mechanisms for modeling
real-time systems, which are missing in UML. Thanks to the UML extension mechanism,
the software resource model (SRM) and hardware resource model (HRM) profiles extend
UML2 with concepts for software and hardware. In addition to the concepts of software
and hardware resource models, it is possible to allocate software applications to hard-
ware resources with the help of the MARTE allocation mechanism. This is particularly
important for schedulability analysis and real-time applications but also multi-core ap-
plications. For the modeling of systems on a higher level of abstraction (system level),
MARTE provides capabilities with the general resource models (GRM). These models can
be used for components, where no early assumptions about implementation in hardware
or software can be made. The stereotypes offer concepts to model general platforms for
executing real-time embedded applications. This includes the modeling of both, hardware
and software. With this package, it is possible to model complete systems on a very high
abstraction level. This helps us to model systems very early in the design process, when
design choices are still undecided. These models can then be refined in a later step of the
design process. The GRM package includes different resource types, representing a phys-
ically or logically persistent entity, e.g., ComputingResource or StorageResource. These
resources offer services to perform the expected tasks.
A stereotype which helps to simplify the modeling in a component-based approach is

GCM (General Component Models). It brings the advantage of describing ports with
information about incoming (in), outgoing (out) or bidirectional (inout) communication
of the different subsystems. These FlowPorts have been introduced in MARTE to enable
a flow-oriented communication paradigm between components.
Especially in the automotive domain, where timing and performance is crucial, model-

ing languages such as MARTE help to describe these properties of real-time systems. To
cover also important properties from the functional safety aspect, we have shown in Pa-
per A how to design safety-critical systems throughout the design phase of the functional
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safety standard ISO26262 based on UML/MARTE. Our contribution in this work was a
mapping approach between the model driven architecture (MDA) and the design phases of
the functional safety standard, as depicted in Fig. 4.2. To close the gap between system
level design and hardware/software architecture in today’s design flows, we defined an
additional layer between the computation independent model (CIM) and platform specific
model (PSM). This layer, named refined PIM, defines additional structural and behavioral
diagrams for a seamless design flow, especially in safety-critical system design. We de-
fined the refined PSM to extend the standard by an additional level, since they have not
been adequately specified and lacked a formal definition. The resulting four levels of our
approach are named computation independent model (CIM), platform independent model
(PIM), refined PIM and platform specific model (PSM). They represent all major design
phases of the functional safety standard such as item definition (Fig. 4.3), preliminary
architectural assumptions, system design, down to hardware and software design.

Refined MDARefined MDAISO 26262 Design Phase

3-5 Item Definition

3-8 Preliminary 
Architectural Assumptions

4-7 System Design

5-7 HW 
Design

5-8 HW
Architectural

Metrics

6-7 SW 
Architecture 

Design

6-8 System 
Unit Design

CIM

PIM

Refined PIM

PSM

Figure 4.2: Mapping approach between the ISO26262 design phases and the MDA, adapted from
Paper A.

The CIM level aims at providing a system level view, mainly focusing on its functional
structure. Figure 4.3 shows the CIM level in the context of the functional safety standard
(item definition), including the information flow between functional blocks and bound-
aries/interfaces to the environment. With the help of the detailed information of the
graphical representation as composite structure diagram, safety goals are derived, which
are the basis for the functional Safety Requirement (SR).
The PIM level includes the CIM capabilities with additional behavioral models such

as UML state machines or activity diagrams. If the behavior is not directly expressed in
behavioral models, the models can reference to existing implementation code (see Chapter
4.3.1). These models can then be used for an early and high-level simulation of the
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system behavior before making decisions about the hardware platform. We represented
the CIM level as preliminary Architectural Assumption (preAA), which is the result of
the functional safety concept including functional SR. This level is still independent of
the actual implementation; therefore no technical details on the platforms and where the
functions are implemented are specified. At this stage, important behavioral diagrams
such as the safe state or detailed description about the system reaction and fault reaction
time are added and allocated to the structural diagrams of the preAA. These safe states
are also defining the timing properties and constraints of the design. This information is
later on used for the comparison with the simulation results.

Figure 4.3: Definition of the item on CIM level, with functional models in the UML standard,
adapted from Paper A.

The refined PIM has been explicitly identified to fit within the sub-system definition
concept. It consists in a functional decomposition of the PIM with a granularity detailed
enough to allocate each of its blocks to a single hardware or software resource. This results
in the conclusion that a PIM functional block cannot be allocated to several execution
resources. Communication interfaces have to be defined and functional blocks have to
be split into sub-functionalities before switching to the next abstraction level. On this
level, we also apply different safety patterns to increase the reliability and availability of
the system. This approach is also in line with the decomposition mechanism as defined
in ISO26262, by using redundant and diverse hardware, e.g., for redundant and diverse
measurements.
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The PSM level defines the detailed steps towards hardware and software design. On
the hardware side, the models can contain low-level details, such as registers and memory
map information. On the software side, the execution platform description can specify
OS-specific information such as tasks, scheduling algorithms or middleware services. A
more detailed description of the design of the hardware platform is given in Chapter 4.2.2.
Through applying this approach to an industrial use case, we demonstrated how a safety-

critical system can be designed and specified, but also how existing verification methods
such as fault tree analysis (FTA), failure mode and effect analysis (FMEA), hardware
software interface (HIS) can be applied to this structural and behavioral models. Further-
more, SysML was used in addition to MARTE to define safety requirements and to handle
the issues with traceability. With the link to MARTE components and behavioral dia-
grams we achieved a horizontal and vertical traceability, as it is required by the ISO26262
standard.

4.2.2 Hardware Design

As mentioned in our previous chapter, UML/MARTE provides several levels of detail for
the specification of the hardware platform. The hardware resource model (HRM) package
provides several models to describe subsystems such as HwProcessor, HwBus, HwDeviceor
HwMemory in a logical and physical way. Although UML/MARTE provides a rich set
of different stereotypes to describe the hardware platform, it does not provide the level
of detail for the hardware configuration as expected by the OVP methodology. Several
mandatory properties such as the BusInterface or Memory mapped or the VLNV principle
are not supported in the MARTE standard by now.
To overcome these issues, we decided to rely on the specification of the IP-XACT stan-

dard, which helps us to define our platform in a sufficiently high degree of details for the
generation of the virtual prototype. Both IP-XACT and OVP rely on the VLNV principle
for structuring the models. Therefore, we built on approaches such as [9] to extend the
MARTE standard by properties in IP-XACT for hardware description. Figure 4.4 depicts
the composed structural architecture model of the platform consisting of a processor, bus,
memory, CAN and two ADC. For simplification we only show the major components of
the design of the battery management system. The designer can easily compose his sys-
tem by using the standard models from the MARTE library such as HwProcessor for the
Central Processing Unit (CPU), HwI_O or HwComponent for peripherals, HwRam for
memory or HwBus for the internal bus or CAN bus. Depending on the nature of the
component, the designer can extend the component with specific hardware properties in
the IP-XACT standard such as MemoryMaps and BusInterface. The properties from the
IP-XACT standard are then shown in the description of the MARTE model. Further
extensions for IP-XACT such as VLNV can be added to the hardware components as
well.
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Figure 4.4: Hardware platform of SaVeSoC including IP-XACT extensions for MARTE.

By applying this approach, the designer can configure the whole hardware platform,
for instance “instructions per seconds” of the processor, which affects the simulation time
directly. The designer uses the standard MARTE models from the library and adds ad-
ditional IP-XACT properties to his models. After the evaluation of the design regarding
safety, the description of the platform is converted to a TCL description in the OVP stan-
dard. The OVP iGen converter takes the information from the TCL script and generates
a full SystemC platform using the modular components of the OVP library. The result-
ing virtual prototype can then be used for further hardware simulations, such as fault
injections on TLM level.

For demonstration purpose, a small application is running on the platform, which com-
putes state of charge, state of health and checks on the plausibility of the incoming mea-
surements. This application is written in c-language and also defined through the alloca-
tion mechanism in MARTE. The provided processor is also capable of executing embedded
operating systems such as embedded Linux.
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4.3 Evaluation/Verification of the Design

4.3.1 Simulation-based Verification

What makes the functional standard ISO26262 "functional", is the aspect that we analyze
the function which shall be implemented on the whole system (in this case the item). This
starts with a situation analysis and hazard and risk analysis with the help of the item
definition. This requires the development of a system definition, including components,
hardware (-parts) and software (-units). Based on the resulting ASIL level of the hazard
and risk analysis, the safety goals lead to the functional safety concept, which includes the
definition of the functional safety requirements with respect to preliminary architectural
assumption (preAA).
Since the step, from the first definition of the system and their boundaries (item

definition), to the functional safety concept is a cornerstone towards the development of
hardware and software, we support this by our methodology described in Paper F. In this
work, the first system design (preAA) is supported through a simulation-based approach.
Thanks to early executable models of the functional specification, further technical re-
quirements can be derived. The functional specification of the system is depicted in Figure
4.5. With this methodology, we can evaluate our first design in early design phases and
furthermore throughout the entire development process. Since reusability of well-tested

Figure 4.5: Functional specification of the preliminary architectural design.

designs, mechanisms or even complete safety concepts is an issue that is currently be-
coming even more important; we support this artifact through reusable models from our
developed System Component Library (SCL). This library includes all major elements for
a high-level simulation of digital, but also analog systems, in the automotive domain. It
also includes components on different levels of abstraction and different versions, depend-
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ing on its application and viewpoint. For this approach, we use the capabilities of SystemC
for digital systems on register transfer level (RTL) and transaction level modeling (TLM).
For analog and mixed signal models we use the extension of SystemC AMS. Since these
simulation models rely on the same modeling language, as our whole design flow, they
can be easily integrated into our preliminary system design. How the UML/MARTE
models are linked to the simulation core in SystemC is described in paper Paper E in detail.

The presented approach can also be underpinned by the statements from the ISO26262
standard in Part4: Product development at the system level [41]:
“The technical SR shall be specified in accordance with the functional safety concept,

the preliminary architectural assumptions of the item and the following system properties:
the external interfaces, such as communication and user interface; the constraints, e.g.
environmental conditions or functional constraints; and the system configuration require-
ments. The ability to reconfigure a system for alternative applications is a strategy to
reuse existing systems.”

“The system design shall be verified for compliance and completeness with regard to
the technical safety concept using the verification methods e.g. Simulation for ASIL level
higher than B.”

As already described in the previous chapter, we made an extension to the requirements
of the SysML standard to define also SR. The resulting requirements definition, depicted
in Fig. 4.8, helps to define all different requirements from different sources and stakehold-
ers and to keep trace with models, verification tests and results. This becomes even more
obvious if we look at the definition of the safety standard Part 8 (Supporting Processes
[42]), where it is recommended to use semi-formal notations for requirements specification
for ASIL higher than B. Therefore, each functional SR in this approach has several
defined constraints for functional and non-functional properties. These constraints are
defined in the MARTE Value Specification Language (VSL) and specify the boundaries
for fail-safe operations of the system but also environmental conditions and operation
modes. These constraints precisely capture the original requirement and open up, through
computer readable formalism, the possibility of subsequent computer-aided analysis of
the characteristics of the design. The MARTE nfpConstraint is defined by arithmetic,
logical or time expressions formed by combining operators such as (’<’,’≤’,’=’,’6=’,’≥’,’>’)
but also ‘AND’, ’OR’ and ‘XOR’. The syntax used for these constraints follows the pattern:

Figure 4.6: The constraint pattern.
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Multiple constraints can be connected via simple Boolean statements such as:

Figure 4.7: Example constraint derived from a functional safety requirement.

In order to support the specification of the technical SR and furthermore enable the
verification in compliance with the technical safety concept, we defined a novel method-
ology to derive further requirements and inputs from the functional SR in coherence with
the early system design (preAA). Using the syntax for safety requirements we are able
to generate UVM verification components and whole testbenches from the definition of
the functional SR and their constraints. For each constraint of the functional SR, a new
UVM validator is added to the ports or one end of the signal. A validator consists of a
configurable comparator with the pin/port/signal attached to one input and a reference
signal or constant value attached to the second input. The outputs of the comparator
can be either 1 (true) or 0 (zero) and are connected via arithmetic or algebraic function
blocks to create the Boolean operations. In addition, we use non-safety requirements in
the SysML specification to provide stimuli blocks for relevant operating modes and driving
maneuvers. Depending on the non-safety requirements and constraints and if the pin/-
port/signal is an unused input of a block, the testbench generator creates a stimuli block
and attaches it. This block generates either values that are within the specifications in or-
der to validate proper operation or it generates invalid stimuli to verify safety mechanisms
within the model. More details on this generation are given in Paper F.
To vary the parameters and stimuli of our system and to cover up corner cases we

use the benefits of CDV, with its aim to detach from direct user dependent testing [2].
This methodology provides the definition of so called verification goals, which can be
verified by smart test scenarios. The intelligence is mainly achieved by creating simulation
configurations (stimuli), with respect to some predefined constraints. This concept is
widely known as Constraint Random Verification (CRV). CRV mainly consists of two core
concepts, which is on one hand, the usage of Markov-chain Monte Carlo to guarantee
coverage through probability and on the other hand the processing of constraints with
SAT solvers.
As described above, it is important to vary parameters so that many different input

combinations can be covered. The defined internal values of the DUT vary according
to a predefined probability distribution. In this case, we use Gaussian distribution with
the definition of a value of 3 Sigma. This approach covers requirement-based tests as
recommend on all ASIL levels.
As there is a trend to more structured, modular, configurable and reusable verifica-

tion methods, UVM was defined to tackle these challenges. UVM is an Accellera System
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<<Constraint>>
{?}street_maneuver_lasvegas
{{VSL}load>(0,Nm) and load<(40,Nm) 
and driver>(0,rpm) and 
driver<(1000,rpm) and 
env_cond>(20,C) and 
env_cond<(50,rpm)}

<<Constraint>>
{?}street_maneuver_lasvegas
{{VSL}load>(0,Nm) and load<(40,Nm) 
and driver>(0,rpm) and 
driver<(1000,rpm) and 
env_cond>(20,C) and 
env_cond<(50,rpm)}

id=1
type=SG
text=“The battery shall 
operate under safe 
conditions“
ASIL=C
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR1

id=1
type=SG
text=“The battery shall 
operate under safe 
conditions“
ASIL=C
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR1

id=2
type=SG
text=“The battery shall be 
reliable“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR2

id=2
type=SG
text=“The battery shall be 
reliable“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR2

id=12
type=FSR
text=“A BMS shall monitor & 
control the battery and must 
operate in  working range“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequ irement>>
SR3

id=12
type=FSR
text=“A BMS shall monitor & 
control the battery and must 
operate in  working range“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequ irement>>
SR3

id=23
type=FSR
text=“Watchdog shall cut Power 
connection to battery in case of 
too high temperature“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequ irement>>
SR4

id=23
type=FSR
text=“Watchdog shall cut Power 
connection to battery in case of 
too high temperature“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequ irement>>
SR4

<<nfpConstraint>>
{?} working_range_temp
{{VSL}temp>=(-20,C) and temp <=(60,C)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} working_range_temp
{{VSL}temp>=(-20,C) and temp <=(60,C)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} max_operating_temp1
{{VSL}temp<(150,C)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} max_operating_temp1
{{VSL}temp<(150,C)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} working_range_voltage
{{VSL}module_voltage>(15,V) 
and module_voltage < (25.5,V)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} working_range_voltage
{{VSL}module_voltage>(15,V) 
and module_voltage < (25.5,V)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} working_range_current
{{VSL}i_bat<(300,A) and temp<(45,C) 
and temp>(0,C)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} working_range_current
{{VSL}i_bat<(300,A) and temp<(45,C) 
and temp>(0,C)}
kind=required
mode=mode1

id=10
text=“eVehicle shall drive specified 
maneuver“

<<Requirement>>
R1

id=10
text=“eVehicle shall drive specified 
maneuver“

<<Requirement>>
R1

<<Constraint>>
{?} street_maneuver_eu
{{VSL}load>(0,Nm) and load<(100,Nm) 
and driver>(0,rpm) and 
driver<(1000,rpm) and env_cond>(-
10,C) and env_cond<(35,rpm)}

<<Constraint>>
{?} street_maneuver_eu
{{VSL}load>(0,Nm) and load<(100,Nm) 
and driver>(0,rpm) and 
driver<(1000,rpm) and env_cond>(-
10,C) and env_cond<(35,rpm)}

id=32
type=FSR
text=“If measured value exeeds 
the working rage go to a safe 
state in a given time“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR5

id=32
type=FSR
text=“If measured value exeeds 
the working rage go to a safe 
state in a given time“
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR5

Figure 4.8: Specification of requirements and safety requirements on different abstraction level.

Initiative approved standard methodology for verification and provides a UVM Class Li-
brary with all the building blocks needed to quickly develop well-constructed and reusable
verification components and environments in SystemVerilog. Furthermore, it provides a
well-defined layered architecture to clearly distinguish between the various abstraction
levels. UVM is usually developed for SystemVerilog, which allows simulation and veri-
fication of digital hardware on RTL level. Since the trend in embedded system design,
as well as in verification of safety-critical systems, is going to a higher abstraction level,
various approaches tried to connect UVM with SystemC [13],[50],[79]. SystemC allows
the modeling and simulation of hardware and software components in a single language
and allows the description on TLM but also RTL, which leads to a faster or more detailed
simulation depending on the use case. Trough applying methods such as [14] a higher-level
verification on system level could be achieved, which defines high-level testbenches that
can be reused throughout the whole development process.

Distribution of Simulation Tasks to a Cloud-based Environment

Today, millions of test kilometers have to be driven to ensure a reliable behavior of the
electronic/electrical systems in a car [56]. This procedure has to be done for all the dif-
ferent versions of a car model, each with different features, also affected by environmental
conditions. Since many parameters and stimuli data have to be tuned and varied to
achieve a high degree of functional coverage, verification implies a huge amount of simula-
tion runs. Without using novel simulation methodologies this can lead to high costs and
verification cycles. One standard, which is used in industry to test embedded microelec-
tronic systems, is Universal Verification Methodology (UVM). UVM provides capabilities
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Figure 4.9: Automatic generated UVM testbench from safety requirements, adapted from Paper
F.

to generate thousands of random test runs with CRV to cover all possible parameters of a
system and simulates it in a sequential manner. In a sequential process, each task has to
wait until the prior task ends. This has the drawback that verification of a system can take
hours, days or even weeks to end. In addition, small companies cannot afford big server
farms and internal clusters to test their system in an appropriate amount of time. With
our approach we want to speed-up the simulation time within the UVM standard through
parallel execution of simulation runs achieved through a novel cloud-based verification
pattern.
Cloud computing has led to a paradigm shift in the way software is consumed and

delivered. Moreover, it is changing the way systems are developed with tools and complete
environments moving to the cloud. By using Software as a Service (SaaS), complete
development processes are taking place in the cloud [75], thus bringing benefits such as a
faster development and a saving of resources (money, time, effort).
To solve the problems for our large number of simulation tasks we defined an adaptation

of the UVM- SystemC layered architecture by introducing messaging patterns from the
Enterprise Integration Patterns [37]. As mentioned before, the overall result of a simulated
sequence does not affect other configurations in any way, which leads to the possibility
of parallel processing of sequences. Due to the fact that the simulation of a sequence is
the most time-consuming part of the verification, a (theoretical) linear speedup can be
expected. This prediction can also be underpinned by the fact that returning results from
single CPUs can be neglected compared to the simulation time. Hence, a cloud-based
approach was developed, which is illustrated in its main features in figure 4.10.
The traditional UVM-SystemC architecture consists of five layers, which communicate

through standardized interfaces. This allows for a clear distinction between test case def-
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Figure 4.10: Layered Architecture of the novel UVM for the Cloud solution.

inition from test scenarios and moreover the actual verification environment (verification
IP) including driver, monitor, and configuration. The highest layer defines the current
test, which consists of the selection of the testbench stimuli and test sequences. UVM
test is the top-level component and has three main functions: initiation of the verifi-
cation environment, configuration of the environment and applying stimuli by invoking
sequences. The functional layer contains the sequencer, which is responsible for the right
arbitration and ordering of sequences and their transactions. Another part of this layer
is the scoreboard, which collects the observed results from the monitors and checks the
behavior of the Design Under Test (DUT). It compares the expected output (golden ref-
erence model) with the actual output from the DUT. Furthermore, for self-checking, the
collection of functional coverage and pass/fail reports is necessary. The Command layer
includes the driver, monitors, and checkers, which are implemented on physical-level. The
driver receives the individual sequence-transaction from the Sequencer and forwards it to
the DUT. The Monitor samples the data coming from the DUT and is responsible for
coverage collection, checking, logging or recording. On the signal level, the lowest layer of
this architecture, the testbench is connected, and the signals are sent to the DUT.
To overcome the issues with the traditional UVM approach, we applied the Messaging

Pattern from the Enterprise Integration Patterns [37] on the layered architecture from the
UVM-SystemC approach. A simple working queue pattern is depicted in Fig. 4.11.
The messaging pattern allows for a many-to-many connection where only one address

has to be known to all machines. This machine accepts and distributes messages, takes
care of message persistence and can optionally monitor all consumers using a heartbeat
signal. Retransmission is also built into the message broker (B). The worker connects
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Figure 4.11: Simple worker queue from the enterprise integration patterns, adapted from [37].

to the broker (running on the master) and uses a heartbeat signal to indicate it has not
crashed or is otherwise unavailable. Worker queues are used to distribute time-consuming
tasks among multiple workers in the cloud. This is especially the case if tasks, such as
simulation runs, can take hours or days to complete. This way we avoid carrying out a
resource-intensive task immediately and can schedule the task to be done later and do not
need to wait for the task to complete. Depending on the number of workers, the task will
be shared between them. Each of the components of this pattern (publisher, consumer and
broker) can be swapped out to a separate machine, when thinking towards a cloud-based
cluster.
Through bringing the UVM for SystemC approach to a cloud-based environment by

applying enterprise integration patterns, we solved six important issues in the verification
of embedded systems:

• Reduction of simulation-time: With our cloud-based UVM approach we can
reduce the time for simulation of thousands of simulation tasks. The fact that each
simulation task is independent of one another, and does not affect other configura-
tions in any way, leads to the possibility for parallel processing of sequences. From
our approach, we can expect a (theoretical) linear speedup. Companies also benefit
from a faster time-to-market.

• License costs: Our framework utilizes the full capacity of the server infrastructure
in a very efficient way to scale down the number of licenses. Furthermore, we use
open standards such as SystemC to reduce license costs.

• Flexible infrastructure: There is no need for companies to invest in big server
farms. Through footprint analysis, we are able to predict the time for simulation
and therefore can buy simulation time on demand from server and cloud providers.
Simulation can be done over night when simulation time is cheaper.
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• Architecture: Our pattern provides different levels of detail for the architecture of
our approach. Therefore it is defined in detail and guarantees who is distributing
the simulations tasks, what is done when simulations fail and where the results are
collected and analyzed.

• Efficiency: A broker implemented in RabbitMQ automatically distributes the tasks
to the worker instances to guarantee a high degree of capacity utilization.

4.3.2 Evaluation of the Hardware Architecture

In the previous section we have shown how to gain important information for the specifi-
cation of the technical safety concept through a simulation-based approach in early phases
of the development process. An automatic high-level testbench generation in the UVM
standard helped to check functional safety requirements and constraints. These high-level
testbenches can be used throughout the whole development process, from system design
to hardware and software design, to check on consistency with the functional specifica-
tion. With the help of this approach, a refinement of the preAA to the final system design
including the technical safety concept can be achieved.
From the gathered information, we are now able to start the safety-aware hardware

design of our platform. This is an important step in the development process and takes a
lot of effort, since many different methods and measures have to be applied to the platform
to guarantee a reliable product in the end.
Part 5 of the ISO26262 standard [42] handles the product development at the hardware

level, which includes the evaluation of the hardware architectural metrics. It evaluates
the hardware architecture of the item against the requirements for fault handling. This
part includes guidance on avoiding systematic and random hardware failures by means of
appropriate safety mechanisms. Each safety-related hardware element is analyzed regard-
ing safe, single point (SPFM), residual and multiple point faults (LFM). It also describes
the effectiveness of the hardware architecture in coping with random hardware failures
(PMHF). Each hardware part is to be protected by means of safety mechanisms. The
diagnostic coverage gives evidence of the effectiveness of these mechanisms. Whether the
item (system or array of systems according to ISO26262) passes or fails a given ASIL
is also a result of the hardware architectural metrics evaluation. To achieve a certain
ASIL, the values from Table 2.1 must be met. It is also important to point out that only
safety-related hardware elements that have the potential to contribute significantly to the
violation of the safety goal are addressed in this metric. This must be considered in the
evaluation of the whole item.
The drawback of this mandatory step is that it is done at a very late phase of the whole

development process, where later changes are time-consuming and cause high costs. Fur-
thermore, these safety-related properties, such as the failure rate of hardware components,
are published and taken from various standards such as Siemens Handbook SN 29500 [80],
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Table 4.1: Architectural Metrics - evaluates whether the hardware achieves a certain ASIL, ac-
cording to ISO26262.

ASIL B ASIL C ASIL D
SPFM ≥ 90% ≥ 97% ≥ 99%
LFM ≥ 60% ≥ 80% ≥ 90%
PMHF < 10-7h-1 < 10-7h-1 < 10-8h-1

MIL HDBK 338 [87] or IEC 62380 Reliability Handbook [39]. Usually, these data are very
general, dependent on the temperature and not applicable to every domain. In some cases,
the source is unspecified and principally obtained from field or statistical data. This, in
turn, can lead to false consequences, if the failure rate predictions differ significantly from
field data.
We propose that safety-related information for hardware-IPs should come from the

vendors themselves, as they know the product best. Therefore, our approach allocates
safety properties to vendor IPs in a standardized way, so there are no false assumptions
about safety-critical hardware.

Item Definition

Preliminary Architectural Assumption

Hardware Design

FMEA

FTA

HW Architectural Metrics

HW Random Failures

Design Phase Verification Phase

Standard Top-Down ISO 26262

HA & RA

Item Definition

Preliminary Architectural Assumption

Hardware Information+ 
Safety Properties

FMEA

FTA

HW Architectural Metrics

HW Random Failures

D
SE

Design PhaseVerification Phase

Meet-in-the-Middle Approach ISO 26262

HA & RA

System Design

Software 
Design

Hardware Design

System Design

Software 
Design

Δ
 t

Figure 4.12: Meet-in-the-middle approach: Design and verification speedup through failure modes
provided by hardware description adapted from Paper B.

Late decisions about hardware characteristics and fault behavior can cause wrong deci-
sions at the system level. Therefore, it is necessary to have information about hardware
early to ensure system integrity. Figure 4.12 depicts the new methodology in comparison
to the top-down design approach as executed in ISO26262. The left side shows the dif-
ferent abstraction levels of the design phase and their derivations, from item definition to
detailed hardware and software design. It also shows recommended verification method-
ologies, which are to be used on each abstraction level. The arrow shows the chronology
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of these methodologies in the verification process. The right side depicts our approach by
providing safety properties in the IP-XACT standard to speed up the verification and de-
sign process of safety-critical systems. This so-called meet-in-the-middle approach makes
it possible to evaluate the hardware design round δt earlier, as it is handled in the tra-
ditional approach. Time for evaluation is reduced through seamless integration of tools
in the design process, a hardware IP library and provided design space exploration. Fur-
thermore, the system design layer benefits from our approach, which allows an earlier
verification through methods such as FTA and FMEA. The safety properties provided are
defined in a standardized format, which can be used by many verification engineers and
provides important inputs to additional stakeholders.
With the described methodology, we are able to provide inputs for various evaluation

techniques. In this part of the chapter we will focus on the evaluation of the hardware
architectural metrics. To evaluate the hardware according to Clause 6, Clause 7, Clause 8
and Clause 9 in ISO26262, the following equations must be carried out to achieve a given
ASIL level. This task must be completed separately for each safety goal and requires
seamlessly integrated tools to support this evaluation-process:

Single Point Fault Metric (SPFM): The SPFM reflects the robustness of the item
when coping with single point and residual faults. This can either be handled by design
or proper safety mechanisms. The higher the value of SPFM, the more robust our applied
safety mechanism will be. The following equation is used to determine the SPFM:

SPFM = 1−
∑

SafetyRelatedHW (λSP F + λRF,est)∑
SafetyRelatedHW λ

(4.1)

λRF,est = λ× (1− KDC,RF

100 ) (4.2)

where KDC,RF is the diagnostic coverage with respect to residual faults and λRF is the
estimated failure rate with respect to residual faults.

Latent Fault Metric (LFM): The LFM reflects the robustness of the item when
coping with latent faults. This can either be handled by coverage of faults through proper
safety mechanisms or by the driver, recognizing that the fault exists before the violation
of the safety goal. The higher the value of LFM, the more robust our applied safety
mechanism will be. The following equation is used to determine the LFM:

LFM = 1−
∑

SafetyRelatedHW (λMP F,L,est)∑
SafetyRelatedHW (λ− λSP F − λRF ) (4.3)

λMP F,L,est = λ× (1− KDC,MP F,L

100 ) (4.4)
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where KDC,MPF is the diagnostic coverage with respect to multiple point latent faults and
λMPF is the estimated failure rate with respect to multiple point latent faults.

Probabilistic Metric for Random Hardware Failures (PMHF): The PMHF
evaluates the residual risk of violating a safety goal due to single point faults, residual
faults, and plausible dual point faults. It defines the quantitative target values for the
maximum probability of the violation. The following equation estimates the failure rate
for the failure modes of each hardware part that would cause a single point, residual or
dual point fault (ISO 61508):

PMHF =
∑

λSP F +
∑

λRF +
∑

λMP F,latent (4.5)

4.3.3 Reuse of Safety Artifacts in Hardware IPs

Trawling through datasheets to determine failure rates for hardware components is a cum-
bersome task. The information about hardware safety properties mostly comes from the
vendors themselves. Currently, there is no standardized way to provide information about
safety in IPs to tool vendors (EDA) or system integrators. To do this and subsequently
achieve interoperability and reuseability with other tools, we propose an extension to a
well-known format in industry: IP-XACT. IP-XACT is a standard (IEEE 1685) driven
by Accellera and its format is used for documenting IPs using meta data. The data are
used for configuring, integrating and verifying IPs in advanced SoC design and interfac-
ing tools. The specifications are derived from the requirements of the industry to enable
an efficient design of electronic systems. The 1.4 release of the IP-XACT format also in-
cludes implementation models on RTL and TLM level. This format also supports the data
exchange through a common structured data management. Today IP-XACT is used by
many different major tool vendors in the embedded system domain, and several European
research projects are working on extensions and standardization, such as [16], [74] or [20].
An IP-XACT model can consist of different files in relation to the IP, such as design

files, behavioral models, simulation files and results. It also consists of detailed information
about the hardware such as parameters, ports, memory or configuration. The aim of the
standard is to support a component-based design of hardware and to enable the reuse and
assembly of hardware components like cores (processors, co-processors, DSPs), peripherals
(memories, DMA controllers, timers, UARTs) and buses (simple buses, multi-layer buses,
cross bars, network on chip).
Additionally, the IP-XACT format also provides vendor extensions to support user-

defined features. Vendor-specific IP meta data can be stored in a vendorExtension
element. These extensions can be applied to several elements in the hierarchical manner
of the IP-XACT format (components, bus interfaces, registers, etc.). We use the capabil-
ities of IP-XACT to add safety properties to the different elements of the IP. The vendor
extensions are composed in a hierarchical manner. The root container can contain one
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or several vendor extensions. For our purpose, we add the following properties to the
elements:

Failure rate (FR) - is usually known by the vendor of the component. It is a re-
sult of field return and statistical data, where expert judgment can also be considered.
Failure modes (FM) - describes the different modes where a failure can occur. The
failure modes depend on the application in which the element is used.
Safety mechanism (SM) - implemented mechanism to detect and control faults. It
prevents faults from violating the safety goal. If a fault is detected, a safe state is initiated.
Diagnostic coverage (DC) - is the effectiveness of the internal safety mechanism im-
plemented to cover single point, residual or latent faults.

Safety properties can be defined on the top level or on a very detailed level (sub-
system level) of the different components. The level on which the failure modes and safety
mechanisms are described depends on two factors:

• If a failure mode is comprehensive across several components and cannot be assigned
to a dedicated unit, it must be described on a higher level.

• Safety-related data is very sensitive information and needs years of research and field
tests. Therefore, it must be protected because of proprietary reasons. Depending
on the use case and how much information one wants to relinquish, very detailed
information or only top-level information is used to describe the safety of an IP.

Just like the majority of the approaches in this domain [74], we describe our safety proper-
ties not on hardware detailed level, but rather on an architectural level. The benefit here
is that we achieve a much higher level of abstraction, which is closer to the system design.
It also leads to a faster evaluation of the hardware design and brings important inputs for
potential faults in system and software design. More information about this approach is
given in Paper B.

4.4 Generation and Integration of SaVeSoC

4.4.1 Safety Aware Virtual Prototype

In the previous section, we described how to design our system in the UML standardized
modeling language using extensions such as MARTE and SysML. We also showed how
to derive technical requirements from a first functional specification in simulation, which
brings important inputs for our final system design. After the design of our hardware plat-
form, we are able to evaluate our architecture including design space exploration regarding
the requirements for functional safety. With the help of our extensions for safety-properties
such as failure modes and FIT rates in the IP-XACT standard, we are able to execute
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mandatory methods such as hardware architectural evaluation, FTA or FMEA on the
hardware level. All these methods help us to strengthen the reliability of our system and
furthermore bring evidence for the technical correctness of the hardware design, which is
also strictly required by the safety case in the end.
Besides the before mentioned verification methodologies, the functional safety standard

also recommends to use design walk through and design inspection for the platform, but
more importantly hardware prototyping and simulation for higher ASIL levels. This vir-
tual prototype can then be used for further hardware verification such as fault injection
tests, which is key nowadays for testing the dependability of the system. Several research
institutes are now working on executing fault injection, also on a higher abstraction level
such as TLM. This has the advantage that this method can be applied on faster simulation
models without losing information from the more detailed models (RTL).
Virtual prototyping has the benefit that embedded software can be tested much earlier

before a first real hardware prototype is available. Also the hardware/software interface
can be tested towards consistency. Changes on a virtual hardware design are much faster
than changes on the real platform, which takes weeks or months of redesign and produc-
tion, which in turn has an impact on time-to-market. With intensive simulation, corner
cases but also long-term reliability errors can be encountered, which also prevents costly
product recalls. Environmental impacts on the virtual prototype can be simulated and
reproduced, where real testbeds are not capable of this kind of verification. Instead of
building several physical prototypes, different hardware design alternatives can be easily
explored through virtual prototyping. At the end of the development phase, the final
prototype can be tested towards consistency, correctness, and completeness with the func-
tional specification. The drawback is that, a complex VP is not developed overnight. It
takes a lot of effort, experienced designers and engineers to build a so-called digital twin of
the actual hardware. The VP should have a modular architecture and be flexible in creat-
ing the platform. Depending on the test application, it should also provide different levels
of abstraction to distinguish between several levels of detail, since simulation on a detailed
level can consume immense computing power and time. Furthermore, it should ease the
way to verify the hardware platform and the embedded software and not require months
of building the virtual prototype for testing. Our proposal is thus to reuse models for
virtual hardware prototyping from open libraries such as Open Virtual Platform (OVP),
[64]. OVP comes with a growing model library, which offers processor cores, memory, and
various peripherals. The idea is a modular design with the combination of components in
a so-called virtual platform. The generated platform can be simulated with the OVPsim
API. OVP was founded by Imperas, its commercial brother, and can be used freely for
non-commercial/academic use.
One of the outlined goals in this work is to develop and test embedded software within

the development phase, on a realistic hardware prototype of the target system, before the
actual platform is available. Embedded software is often written in a desktop environment,
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using a general-purpose operating system of the host system. This approach often differs
significantly from the target platform and parts of the written software need to be adjusted.
One way to deal with this problem is the usage of an Instruction Set Simulator (ISS) and
hardware visualization. Due to a variety of vendor components within SoC design, the
simulation can be very difficult. Hardware emulators are very popular for this issue, but
require the detailed RTL description of the developed system, which is a contradiction to
the outlined goals. OVP makes it possible to create virtual platform models, with SystemC
TLM 2.0 support. OVP models can be executed much faster than their counterparts
developed in RTL since their level of abstraction is higher but still appropriate for modeling
purposes.
The instruction set simulator OVPsim is released for 32 bit Windows and Linux and is a

just-in-time code morphing simulator engine, which means that the target instructions are
translated to x86 host instructions. This causes a significant speed-up since the simulation
can be highly optimized after that.
OVPs model Generator iGen was written to build simulation models through a Tool

Command Language (TCL) script, which contains used platform components and their
connection. TCL files and IP-XACT hardware descriptions, rely on the Vendor Library
Name Version (VLNV) principle, a standardization of the Spirit consortium. VLNV es-
tablishes a unique identification for models by providing the parameters Vendor, Library,
Name, and Version. The directory structure of the Imperas model library was designed in
a similar manner so that the iGen converter retrieves the necessary information for the in-
stantiated models of the platform and generates a SystemC description. The OVP library
comes with different peripheral models from different vendors. These models implement
communication interfaces, such as UARTs, I2C, Ethernet or Controller Area Network
(CAN), which is of special interest in the automotive area. Those interfaces work purely
digital such that message exchange can be established to other control units. The task
of the BMS is to monitor battery temperature and voltage, which are analog values in
SystemC AMS and to compute the state of charge and state of health. Therefore, the
usage of an Analog Digital Converter (ADC) is necessary, to build an accurate system
description.

4.4.2 Configuration and Seamless Integration of Virtual Prototypes

Since OVP consists more or less of a set of SystemC files including a TCL script, one goal
of this thesis is to include the whole generation of the virtual prototype into our design
flow for safety-critical systems. A further goal is the design and configuration of the VP
using a graphical modeling standard, in this case UML/MARTE. This approach brings
the advantage to evaluate and analyze the configuration of the hardware design before the
actual prototype is generated from UML models. OVP itself does not support verification
regarding safety, nor is OVP now embedded in a seamless design flow.
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Since our whole methodology (from functional specification to hardware and software
design) relies on the same modeling language and furthermore the same hardware de-
scription language respectively system-modeling language, we are easily able to reapply
our generated safety-aware virtual prototype for the functional specification of the system
design. After generation, the hardware description of the SaVeSoC platform with the
whole interface specification is added to the UML model library and can be reapplied to
the system design including the generated simulation files in SystemC. This saves time in
terms of integration effort, when testing the virtual prototype on the functionality of the
whole system, as recommended in ISO26262. System-level testbenches can also be reused
for the verification of the entire system including the integrated VP. The whole process
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Figure 4.13: Process of SaVeSoC integration into functional specification.

is depicted in Figure 4.13. By adding a smaller V-model to the traditional approach, we
are closing the technological and organizational gap between system design and hardware
development, which exists in today’s tool flows. Since our design and simulation languages
in use share a seamless development flow, no information transfer is needed between those
design levels. Changing requirements in the specification can also be easily and efficiently
tested for the virtual prototype.
Figure 4.14 depicts the resulting system-level description including the battery and

newly defined BMS hardware. The battery component is no longer a black box where
the functionality is described in SystemC. It is now a white box, where the detailed
hardware of the battery component is specified. It consists of the SaVeSoC element, which
is the hardware platform of the BMS including an application for plausibility checks. It
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measures the voltage and temperature of the battery pack over two ADC and computes
the state of charge and state of health. The interfaces of the battery model remained
the same since no changes have been made to the interface description. Since we are
relying on the same simulation engine, the virtual prototype can now be easily tested
at a higher level, which also speeds up the overall simulation time. A challenge when
integrating the VP to the functional specification was the communication interface between
the functional simulation environment of SystemC AMS and the OVP platform because
these platforms are mainly used to process data measured from embedded sensors. We thus
implemented communication channels, which guarantee data exchange between different
SystemC dialects. The authors of [49] rely on the idea that the simulation engine is

Figure 4.14: SaVeSoC integration into functional specification.

executed in a single process, with the SystemC and OVP simulator running in different
software threads. The authors mainly focused on the capability to co-simulate SystemC
RTL models, with either Quick Emulator (QEMU) [69] or OVP. To avoid overheads from
the use of sockets they established the communication channel via a shared memory and
synchronization mechanism. Furthermore they developed a SystemC bridge to enable the
connections to the external hardware simulator. Since the original component library is
not meant to be cycle accurate, the main focus was set to establish the communication
between the existing SystemC AMS components and the TLM2.0 models provided in the
OVP. Paper [23] describes the main properties of both sides and how synchronization
is performed internally. SystemC AMS provides so-called converter ports to establish a
connection between Timed Data Format (TDF) modules and an ordinary SystemC signal.
In the event of access to such a port, the AMS kernel triggers an interrupt, which causes
a context switch to the SystemC/OVP simulator. The crucial part of the implementation
was, therefore, the conversion from SystemC AMS Linear Signal Flow (LSF) to TLM and
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how to handle the data stream of an arbitrary LSF module to the ADC peripheral of the
OVP platform.

Figure 4.15: Communication channel to interact between SystemC AMS and OVP TLM2.0.

Figure 4.15 shows the used components for converting the initial LSF signal to a TLM
signal. The sca_lsf::sca_tdf_sink is a component of the SystemC AMS library, used to
sample arbitrary input data and convert it to tdf. The self-defined adc_module processes
the tdf signal so that it is written to the Adin port of the adc0 within its processing()
procedure. The adc0 is part of the OVP library and was adapted slightly to meet our
needs. The port of the ADC is implemented with a call back function, which triggers the
conversion of the ADC. Afterwards it can be read with the implemented driver, executed
on the CPU. Since the OVP module requires the usage of a certain tlm_signal_port as
TLM target socket for the communication, we adapted and advanced the approach of [23]
to meet our needs. Secondly, we omitted the suggested internal First In First Out (FIFO)
regarding data loss. This can be reasoned by reference to the constant sampling rate of the
AMS simulation. A fixed size FIFO would nevertheless lead to data loss if the processor
does not execute sufficient instructions per second.
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This chapter gives a brief overview on the technologies and software projects that resulted
in the SHARC framework. In the frame of the SHARC project, the SaVeSoC process with
all its novel methodologies was implemented.

5.1 SHARC Framework

5.1.1 System Component Library

To avoid the design and simulation of larger systems from scratch and furthermore achieve
reusability, our developed methodology provides as core component a System Component
Library (SCL) (Fig. 5.1 a)). This library includes all major components for the simulation
of systems from different domains e.g. automotive, mobile computing or multimedia. It
also includes components in different versions and more importantly on different abstrac-
tion levels. These models serve on one hand as the starting-point for future development
and on the other hand as a golden reference for integration aspects. The components are
modeled as UML-Class in a composite structure diagram as depicted in Fig.5.2 b). The
UML-class owns the attributes and properties of the component. Our example shows a
UML-Class named Li_IonBatteryPack, tagged with HRM PowerSupply. To describe the
inputs and outputs of the battery, the ports are tagged with MARTE FlowPorts. The
stereotype PowerSupply allows us to define different configurations for the simulation e.g.
multiplicity (number of cells), power supply, capacity or frequency of the battery. Besides
this also non-functional properties for power like energy consumption or dissipation are
used for the parametrization of the battery. The mapping between MARTE and SystemC
is described by the work done in publication Paper E.
To raise the reusability and provide good support for developers, the SCL is built as

an Eclipse plugin. New models can be generated and added to the library. Updates for
components can be easily checked by updating the library from the server. This helps to
support design teams by adding new components and keeps the library consistent.
The executable models used in our approach are models on different abstraction levels

and in different versions. The generic models have the potential to be used in various
domains and support reusability. The detailed models are refinements of the generic
models and have the purpose to be used in special domains. Dependent on the domain
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Figure 5.1: a) SCL pallet.

Figure 5.2: b) Example component
from the SCL (battery
model).

and abstraction level, the models are built in SystemC TLM and SystemC AMS. All
the information for the configuration of the system is extracted from the UML-files by
the framework at runtime. To speed up the simulation time, we created already compiled
binary files from implementation code. This has the advantage of being able to parametrize
or even reconfigure systems and components without the need for recompiling the code
every time the system is simulated. This approach was evaluated regarding performance
and accuracy towards a state of the art simulation approach such as Matlab Simulink in
publication Paper E.

5.1.2 SysCore

Another core element of the SHARC framework is named SysCore (short for SystemC
core). It was developed as part of the OpenES and eRamp project at the Technical
University of Graz concerning modularity and simplicity, with support from Markus Schuss
and Martin Schachner. Since the SysCore was intended to be also used in distributed
environments, the goal was to rely on view external libraries. Moreover, the goal was
to reduce the footprint in memory (RAM and disc space). It is made up of four major
components:

• The Main File
• The Config Store
• The Parser
• The Factory
The Main File parses the arguments of the UML design and writes the information to
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the central config store element (configstore). It calls the parser and starts the simulation.
The configstore is a singleton which stores all the information and is accessible by all
plugins and components.
The Factory is responsible for the discovery of all local and global plugins which are

registered by their name. Each plugin contains four basic functions that are called by the
parser when required (createObject, createPort, createTimestep, createComposition).
The most complex component of the SysCore is the Parser. Its purpose is to translate

an UML model defined in one or more files to a single SystemC AMS model. This is done
at run-time and does not require compilation of the resulting model. When the parser
is first created, it requires the model name for the top model as well as the name of the
UML file that contains the model. The involved steps of this approach are depicted in
Fig. 5.3. While most of the process is straight forward, there is one potential ”loop” if
a class has attributes other than ports (usually properties). This node is treated as the
new root node, and the submodel is created before moving on to the connection creation.
Each submodel may contain any number of submodels of its own. Therefore this step may
repeat any number of times. It is important however to know that it is possible in UML
to model a class that contains a property of the type of that very same class. This way
the parser would not terminate. This is why such constructs must be avoided. We will
now elaborate a little further the steps involved in the process.

Design Phase
- System Design

 - Select from Library (SCL)
- Encapsulation

- Parametrization/Configuration

Build Phase
 - Initialize Parser

 - Load SystemC plugins

  - Parse UML

Connect Phase
- Create Signals and Transactions 

- Connect Ports

Run Phase
- Start Simulation

- Evaluate Results

Figure 5.3: Parser methodology for executable SystemC models from MARTE design.

The first part of our methodology is described as the Design Phase. The designer
creates an UML top class such as the eVehicle example in Fig. 4.5. This class describes
the overall structural architecture of the system. It is composed of the different instances
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provided by the SCL. They can be easily included and excluded from the top-class by
using the drag and drop mechanism. These sub-systems are connected to each other by
ports according to their specification. Through the MARTE flow-port capability, these
ports are checked in advance by the framework concerning the correct direction of the data
flow e.g. two output-ports are connected together. To trace the data flow, Scope-models
are added to the system and connected to the ports. These Scopes write the monitored
data to the trace files to compare the results from different tests and test benches in a
latter step.
Our framework also provides a mechanism to encapsulate existing components and to

raise the abstraction level of the whole system. Smaller systems that model the interior
design of the class can be merged to a more simplified model. This helps the designer
to have a better view of the system, without having too many details in the models on
system-level. This mechanism allows us to abstract the complexity of components.
The whole eVehicle system also referred to in our case DUT, is provided with several

connectors. These signals required for testing and debugging are brought out to the ports
of the top-class itself. This has the advantage of connecting test benches to the DUT for
testing various scenarios of the electric car and also for monitoring the performance. The
outcome of the design step is a netlist that also serves as configuration and parametrization
for the simulation. It is the starting point for the Build Phase.
The heart of the Build Phase is the self-defined parser methodology. The purpose of

the parser is to translate a UML model defined in one or more files to a single SystemC
system. This is done at run-time and does not require compilation of the resulting model.
When the parser is initialized, it needs the name of the top-class of the model in the
diagram as well as the name of the UML file that contains the model. Starting from the
root node of the UML model, each child of a node is parsed and returned. As single
systems can be composed of more detailed sub-systems, we had to define a loop to find
all properties and ports of each root note. Each node found in the UML file is treated
as the new root node, and each sub-system is created before moving on to the Connect
Phase. Each system may contain any number of subsystems. This is why this step is done
in several iterations till all properties of the root node are found. In order to keep the
framework extensible, a DLL-based plugin system is used. The information is stored in
the configctore element.
In the Connector Phase phase the connector objects are created to link the different

instances in the Build Phase. Depending on their nature, the connector objects can be
signals or transactions. It is important to notice, however, that UML allows multiple 1:1
connections per port, SystemC merely allows a port to be bound once, but a signal may
connect any number of ports (basically 1:n as only one driver is allowed per signal). As a
means of handling these issues, both ends of each connector are tagged by an ID. Instead
of creating new signals for connecting to a used port, the old signal is reused.
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After all nodes, ports, and properties of the UML file are found by the parser, the
SystemC instances created and connected, the simulation is started (Run Phase). The
results of the Scopes are saved as trace file. This file contains all the relevant information
required for the verification of the model or to evaluate the behavior of the model for
different parameters and/or implementations for the system. Besides this, logic can also
be added to the system to react to certain events such as stopping the simulation in case of
a signal violating the given constraints or the system running out of energy (for a battery
powered system). An implemented dialog is also used to configure the settings for the
simulation such as duration or timestep (resolution).
Using the Toem Impulse plugin [84] for Eclipse the results are presented in a graphical

form. The results can be displayed in the desired manner, dependent on the nature of the
simulation e.g. analog interpolation for real values and numeric representation of digital
signals in a hierarchy that allows for easy interpretations. The results may be verified
against the known or expected behavior of the (physical) system modeled. If the system
behaves as expected, it can be used for further analysis or verification (e.g. as a golden
reference model or synthesizable).

5.2 SHARC IDE

The software for the user side of the simulation framework depicted in 5.4 is based on the
open source Eclipse environment. It is built around existing plugins such as Papyrus [33]
(UML editor) and Impulse [84] (for visualizing the trace files of the simulation) and plugins
for online and offline simulation. Papyrus was extended by a number of plugins to only
show relevant information by using a custom theme as well as to allow the user to easily
instantiate predefined library components. This abstraction of information is especially
important to allow designers to only use a predefined set of diagrams and components,
since UML comes with a variety of different ways to describe the structure and behavior of
the system. The setting of constraints helps users to have a common and consistent way to
describe crucial parts of the design. As the Eclipse platform runtime is easily extendable
via plugins, new components can be added later on and managed via the build-in software
updater.
The plugins specifically created for SysCore can be split into two principal sections:
• Visual Plugins: These plugins contain mainly papyrus extensions like the theme,

information abstraction as well as the palette plugin which allows the user to instan-
tiate new components for the library.

• Simulation Plugins: These plugins are used to either simulate a created design offline
or as either a single simulation or batch online. Additionally, the creation of test
benches for an existing design including verification of outputs.

Fig 5.5 shows an overview of the software stack used in the SHARC framework. It
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Figure 5.4: Screenshot of the SHARC IDE including Papyrus UML editor and Impulse plugins.

lists the different plugins and technologies used and where they are implemented. This
includes the plugins for the graphical user IDE and the distributed simulation environment
including master and worker. Figure 5.6 shows a more detailed view of the C part of the
software. It shows the data flow from the UML files to the final results. The highlighted
entries are files available for download using the web-interface.

5.3 Distributed Simulation Environment

Using the described technologies in the previous sections, an initial concept and final design
was created. The master handles the retransmission if a message could not be transmitted
e.g., in case of a breakdown of a worker, as well as the overall scheduling, which would
not have been feasible using only a webservice. Figure 5.7 illustrates the overall flow of
information from the creation of the workpackages by the user to the upload of the results
by the worker. The workers shown in this diagram may be in a public or private cloud,
physical machines running the software bare metal or a mix of all three.
As Amazon is currently the largest provider of cloud services worldwide, it was chosen

as the target platform, but due to the running cost of hosting instances on EC2 it was
decided that a local alternative was required during the development phase as well as an
option for customers requiring that the data stays in-house. OpenStack can be accessed
via an API compatible to Amazons and was therefore chosen as development platform for
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Figure 5.5: Software stack of the SHARC environment, adapted from [76].

the framework. For the purpose of development an All-In-One solution was chosen for the
OpenStack deployment, and due to the constraints in the network setup, the setup was
configured by hand. The bulk of the communication is based on AMQP (with RabbitMQ
as its implementation) due to the build-in redundancy and robustness. The message
throughput is a magnitude higher than the expected workload of the final system. The web
interface is currently hosted by a Nginx due to its small size and high performance although
Apache could also be used with uWSGI (as currently done by OpenStack Horizon).
Using the worker queue pattern described in section 4.3.1 the worker has been imple-

mented in Python using Pika for AMQP communication. The worker connects to the
broker running on the master and uses a heartbeat signal to indicate it has not crashed or
is otherwise unavailable. The simulation is executed as a child process so the worker can
keep sending heartbeat signals during that time. As the simulation core is unable to use
multiple threads for simulation the ideal setup for a worker is a virtual machine that has
only one CPU. Should such a setup be unavailable or physical machines be used instead it
is, however, possible to spawn multiple worker threads on a single machine as well. Work-
ers do not require a public IP address or connection to the internet; they only need to be
able to connect the master and the webserver (which can run on a single machine). The
framework does not impose any limitations on the number of workers. Usually there are
as many workers as possible at any given time. They can, however, be easily spawned on
demand and destroyed if no longer needed (if necessary even during a running simulation
as it will be rescheduled by the master in that case). Workers do not need a persistent
state as all information for simulation is gathered from the webserver (UML workpackage)
and the master (SysCore configuration).
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Figure 5.6: Interactions between the SHARC software components, adapted from [76].

The master is responsible for accepting and distributing simulations tasks to the work-
ers. As with the workers, the master does not store information (other than the persistent
queue) and therefore needs only a minimal configuration. Most Linux distributions in-
clude a package for RabbitMQ as well as Erlang (the programming language used for
RabbitMQ).
The Webserver is currently the only server that actually stores data. It is written

entirely using Python and Flask. Once again Ubuntu 14.04 with python 2.7.6 was used
and Flask 0.10.1 was installed using pip (Pythons own package manager). In order to
increase performance, Nginx (1.4.6) and uWSGI (1.9.17) are used to balance the load
among several Flask instances running in parallel. Standard load balancing setups can be
used to increase the number of webservers but the current setup uses only one such server.
The webserver also hosts a SQL database (using MariaDB version 5.5.46, a MySQL fork)
which would need to be replicated among all webservers as well or deployed on a separate
set of database servers to improve the performance even further. Every simulation task can
have a single workpackage (an archive containing all UML files required for the simulation
(including any IP libraries needed) assigned to it which is the stored on the webserver using
a file upload. This feature does not scale as well, but could be replaced by an OpenStack
Swift object storage server/cluster. The current storage backend, however, only writes the
uploaded file to the filesystem of the webserver. The webserver hosts two types of sites:
The JSON API for interaction with other software (e.g., optional Eclipse plugins) as well
as a human readable HTML website. The HTML portion uses Twitter Bootstrap for a
reactive layout and has been tested on several desktop PCs, notebooks and mobile devices
(such as smartphones). For every task the workers create simulation results and store the
trace files, the configuration used and the output logs of the simulation core to the server
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Figure 5.7: Concept of the distributed simulation environment, adapted from [76].

using the file upload feature as well.
While the results of the simulation are not relevant for this work, the achieved speedup

is highly relevant. Due to the limited amount of overlapping resources (mainly network
and hard-disk) the simulations are not affecting each other even when using three workers
on the quad core machine used for testing. One core was reserved for the overhead of the
virtual machine of the master and webserver as well as the overhead from the OpenStack
installation on the machine. This resulted in a virtually linear speedup when using more
than one worker as long as the number of simulations is reasonably high. For single
simulations, there is, of course, no speedup as the workers cannot share a single run.
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In this chapter, first we will show how the global design flow, developed as part of OpenES,
has been evaluated regarding quantified metrics by all partners in the project. Secondly,
we present the results of the standalone SaVeSoC process evaluation and its benefits when
dealing with the design and verification of safety-critical embedded systems.

6.1 Evaluation of the advanced OpenES Design Flow

To goal in the OpenES project was to define a global design flow by all partners in the
project. By leveraging the common definition and understanding of defined abstraction
levels, sub flows of the case studies could be included into a common reference flow.
The aim was to combine the models and methods developed during the project into an
advanced system design methodology and its design flow. At the end this newly defined
design flow shall be evaluated regarding quantitative measures to show the benefits of
this approach. This has been done by executing the design flow on several industrial case
studies:

• Software-defined-radio-based application for security domain
• Advanced software-defined-radio system on a chip in the car entertainment domain
• Advanced set-top-box for consumer electronics
• Verification of a battery management system in the automotive domain
• Multimedia use case

For these five cases studies (Fig. 6.2), the OpenES design flow was applied in the
development process. To evaluate, validate and measure the efficiency of the advanced
design flow, metrics have been defined to quantify the results. Each partner in the con-
sortium defined their own metrics depending on their focus in the project. Nevertheless,
there have been several overlaps between the partners to select some of them as primary
metrics. These metrics have been compared to the effort spend without the advanced
technologies and tools from the OpenES project. Since the complexity of the case studies
(e.g., complexity 140%) have a higher level compared to the traditional approach (com-
plexity 100%), these aspects must be taken into account in the evaluation. Furthermore,
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the partners distinguished between two abstraction levels, system level and architectural
level. The evaluation of the OpenES design flow has been done in "Task 4.3 - Proof of
whole Concepts" and is documented in deliverable D4.3 as part of the OpenES project.
The evaluation results can be obtained in detail from Table 6.1.

Figure 6.1: Collaboration matrix: collaboration between case study holder, tools and methodology
provider in OpenES.

6.1.1 Definition of metrics

In order to measure the efficiency of the design flow three aspects have to be evaluated:
• Quality of the design
• Design effort
• Verification effort

Quality, design and verification effort are one of the main criteria for a successful design
project and reliable and safe products. Requirements management is one aspect which
improves quality by ensuring that the complete customer requirements are captured in a
machine-readable way and verified against the actual implementation. Especially in the
automotive domain quality is a main concern since standards such as ISO26262 require
traceability between requirements, design, tests and results. Furthermore, a qualified
design flow is one of the major requirements in a safety lifecycle. Of course, requirement
management will consume extra effort at the start of the project. However, quality of the
design can be increased by capturing all relevant customer requirements and duplication
of tests can be avoided. Moreover, automation of test and verification can be achieved.
Partner 1 benefited from the OpenES flow by combining mixed-signal modeling with

virtual prototyping, which allows a more extensive simulation of use-cases. They experi-
enced a better controlled process to deliver higher-quality production tests with reduced
risks. Moreover, compliance with lifetime safety standards (ISO26262) could be achieved
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Figure 6.2: Global design flow as defined in the OpenES project, adapted from OpenES deliverable
D4.1.

by advanced functional testing. This could not be handled without the fast executable
models and defined interfaces. Thus, the proposed modeling approaches improve both
quality and verification effort. By introducing mixed signal modeling, it required more
effort at the start of the project. However during the verification of the design, the models
reduced simulation time and enabled simulation of more use cases.
Furthermore, by using the IP-XACT standard for the hardware description a flexible

configuration of the virtual prototype could be achieved, thus providing consistency with
the specification and actual implementation. Furthermore, it allows a consistent memory
map of the design and consistency by generating UVM-based verification views, which
reduces verification effort. This enabled a faster and more complete verification, which
helped to reduce the verification effort by 16%, measured over several projects. Moreover
automatically generated documentation can be generated from the specification.
Partner 2 gained from the OpenES design flow by using novel modeling techniques for

the integration of HW/SW IP subsystems into an advanced SoC infrastructure. Process-
ing requirements of the subsystems have been captured in the models to assess whether
they will meet the real-time requirements when integrating the subsystem in a SoC infras-
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tructure. Therefore, a virtual prototype was developed to test towards these requirements.
Thus, no extensive profiling of use cases for the SoC integrator was required, which made
a more focused verification of critical use cases possible. System quality was improved
through reduced change of system failures in the field, so the need for over-design. This
approach led to a reduced design and verification effort by 55% (subsystem dimensioning
and configuration).
Another advantage of the OpenES design flow is the capability to provide knowledge

sharing across different domains and stakeholders, by bringing modeling and simulation
to a higher abstraction level. Information in spreadsheets, block-diagrams or ad-hoc sim-
ulations by architects, which need to be shared between the teams are no longer effi-
cient enough given the high complexity and performance of the targeted design. With a
standard-based, earlier and high-level flow, information can be shared between platform
architects, software designers, verification and validation engineers. Including the support
to refinement or generation of design and testcases.

Table 6.1: Metrics definition and final savings from the OpenES design flow.

Partner 3 gained an overall of 27% in effort on system and architecture level by the newly
developed methodologies in OpenES. They experienced an additional effort of 268% ap-
plied on the more complex case study used in the project, which could not be handled
without the developed technologies. A significant design improvement is also to be ex-
pected by the definition of a common semantic and automated tools, which give access to
the impact of performance/power consumption. The saved effort is expected to grow in
the future, since the effort using the new methodologies will decrease, due to experience.
The savings of partners 4 have been revealed as 11% at the system level and up to 28% at

the architecture level, demonstrated on the more complex case study. They could improve
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their global consistency of developments by using model-driven engineering techniques.
Moreover, they observed savings up to one month compared to manual fixes of consistency
bugs in IP APIs. Furthermore, they gained savings by code generation (from 20000 to
100000 lines of code) and automatic document generation per IP. Through extensions of
the modeling standards at architecture level, post-silicon reuse of virtual prototypes could
be achieved. Extra effort was spent in developing the modeling infrastructure, but higher
savings in terms of effort using the more complex case study could be observed.
Table 6.1 shows the final savings on architecture and system level from the involved

partners in the case study evaluation. From each independent partner evaluation four
major metrics could be derived, which represent the comprehensive benefits of the OpenES
design flow. All in all, the case study used for the evaluation was 128% more complex than
the reference case used in current state-of-the-art projects. Because of the new technologies
and tools embedded in a seamless design flow, the high increase of complexity in future
projects could be handled. Overall the project consortium achieved savings reaching from
25% on system level and 28% on architectural level. The savings are expected to grow
in the future since the effort in using the new design flow will decrease as the new design
flow establishes.

6.2 Evaluation of the SaVeSoC Design Flow

With the tool SHARC we achieve a tight and seamless integration of analytical methods
and simulation-based verification in the design flow of ISO26262. To evaluate design at
all stages, a simulation-based verification of UML/MARTE design models on preliminary
Architectural assumption (preAA) level was proposed with reusable components from
the SCL. The properties of the models are all taken from the standard definition for
UML/MARTE system, hardware and software models. In order to bring the components
of the SCL to life, they are linked to executable models in SystemC TLM or SystemC
AMS.
Based on the functional SR from the functional safety concept, defined as SysML models,

and the information from the preAA, further requirements were obtained for the technical
safety concept. Through taking also non-functional properties (timing, power, thermal)
into account, the functional SR were refined and the technical SR have been defined.
Furthermore inputs for final system design were obtained, before costly implementation
of faulty design.
Testbenches in the UVM, to test the design on preAA level through simulation are auto-

matically generated from the information and constraints of the functional SR defined in
SysML. Furthermore, constraint random verification helps to cover all possible parameters
and variants of the system, but also to vary environmental conditions, to find corner cases.
These testbenches can be used throughout the whole development cycle towards the final
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Table 6.2: Table with reference projects and case study measures, adapted from OpenES deliver-
able D4.3.[16].

system integration and validation. By generating a first virtual prototype from the exist-
ing hardware description in UML/MARTE, the process of testing different configurations
of hardware prototypes and their verification against the functional specification could be
advanced.
A mature goal of CISC in the context of OpenES was to move from a DSL, like it

was used in CISC’s deprecated tool System Architecture Designer (SyAD), towards a
common design language (UML/MARTE) which is also used by many companies and
partners in this field. Therefore, we observed and measured the effort spend from moving
to another design language but also increasing the abstraction level (system level) in the
team. Another focus was to enhance the traceability from requirements to design, but
also from tests back to requirements, since this is now mandatory and required to conform
to standards such as the ISO26262 for functional safety. This includes the definition of
requirements and constraints in a machine-readable semi-formal way. Due to using IP-
XACT in CISC’s IP-library (SCL) we are now able to reuse models throughout the whole
lifecycle of ISO26262 on different levels of abstraction, but also across different design
and simulation tools. Furthermore, we leveraged the reusability aspect by extending IP-
XACT with safety properties, which brings an enhancement and speed-up in the design
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but furthermore in verification/evaluation of safety-goals. CISC’s developed testbench
generator to automatically create UVM like verification components to evaluate functional
and non-functional properties brings high savings in the evaluation of the first system
design. Moreover, generation and integration of virtual prototypes from the hardware
specification in the IP-XACT standard in different configuration, allows efficient testing
towards the system safety requirements. Furthermore, using simulation on TLM level,
instead RTL level on system level, brings an important speed-up in simulation of thousands
of tasks.
The whole approach, implemented in SHARC, has been evaluated by four embedded

design experts, including probands from CISC Semiconductor GmbH and Technical Uni-
versity of Graz. The criteria for the evaluation were the quality of the design (regarding
functional safety) and the design and verification effort. These criteria have been derived
from the requirements of the industry (time-to-market), design experts (usability, simplic-
ity) and standards (ISO26262). Subsequently, the results have been compared regarding
quality and effort in CISC’s previous design tool SyAD. The results can be obtained from
6.2. Column Without OpenES indicates the effort spent (100%) without the newly devel-
oped methodologies and tools. The new case study in the project was 29% more complex
(129%) than the case study applied to SyAD. In contrast to SyAD’s emphasis on being
a tool for co-simulation of heterogeneous embedded systems, SHARC’s focus is on safety-
criticality of embedded systems, which requires different verification techniques on several
levels of detail. Also, the high traceability aspect between requirements, design, and tests
was not given in SyAD, which is one of the core elements in ISO26262. Thus, we have to
admit that the comparison between those tools was not straightforward but gave a good
indication and pointed out the benefits of the new tool, the process and its methodolo-
gies regarding design and verification of embedded safety-critical systems. By establishing
new methods for requirements management, higher quality of safety aware design could
be achieved, thus avoiding duplication of tests. Moreover, the number of test runs could
also be increased by fast simulation models, thus enhancing functional coverage. Reduc-
tion of verification effort by automatically generating test benches derived from safety
requirements and their reusability. Furthermore, the sharing of knowledge across different
domains and stakeholders by bringing modeling and simulation to a higher abstraction
level. The newly developed methodologies in OpenES including the OpenES design flow
bring an average saving of 26%, applied to the new and more complex case study. This
value will grow in the future since the effort using the new methodologies will decrease.
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7 Conclusions

This chapter concludes this doctoral thesis by briefly summarizing the contributions and
potential future work and research.

7.1 Summary and Conclusion

In this thesis we presented a seamless design and verification process for safety-critical
systems. A standardized modeling language based on UML was used to represent the de-
sign flow, from functional specification down to hardware and software. This model-based
approach eases the communication between different stakeholders involved in the devel-
opment process and serves as a single-source of information. Through tight integration
of recommended safety analysis methods such as FTA, FMEA, hardware architectural
metrics and simulation-based verification, we achieved consistency, correctness and com-
pleteness throughout the development process. The hardware architecture was evaluated
by extensions to a well-known hardware description in the industry, IP-XACT. Exist-
ing and reusable hardware description was used for system design and integration. Our
tool-aided method helped to speed up the evaluation process, and to reduce costs through
reusability. The evaluated hardware description was then used to automatically generate a
safety aware hardware virtual prototype, which was used to test correctness regarding the
functional specification. This closes the technological and organizational gap in today’s
toolchain of safety-critical system development. Furthermore, this early virtual prototype
can be used for fault-injection tests, as recommended by the functional safety standard. In
addition our approach was developed as a plugin for the Eclipse, with the result that every
Papyrus UML editor can be used for safety aware development of cyber-physical systems,
simply by adding our plugin. This tool is named SHARC (Simulation and verification of
HierARChical embedded microelectronic systems) it is to be published for download and
is also used for educational purposes.

7.2 Future Work

This doctoral thesis contributes to state-of-the-art safety-critical system development in
the automotive domain, it does not claim to be exhaustive or the holistic solution. There-
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fore, there is space for future work and further improvements and the following paragraphs
propose ideas and directions for future work with respect to the major contributions.

7.2.1 Fault Injection on TLM Level

One of the most popular reliability analysis is fault injection. For ASILs higher or equal
C, it is one of the highly recommended testing methods in the functional safety standards
ISO26262. Fault injection testing can be applied at different abstraction levels such as
physical, software-based, fault emulation or model-based just to name a few. Since they
operate on different abstraction levels, fault injection techniques can be applied at different
development stages. When we talk about fault injections testing in SystemC, usually this
is done on Register Transfer Level (RTL). This is a broad area of research, and there
are several different fault injection techniques published on this topic in international and
scientific papers. Since our first virtual prototype is generated at a higher level than RTL,
we propose to use fault injection on Transaction Level Modeling (TLM). This approach
would shorten the time for simulation runs, thus increasing the coverage for the same
simulation time. Several research institutions are currently working on a solution for
fault injections tests on TLM level [82], without losing coverage compared to RTL. As a
result, these techniques could also be integrated into our design and verification process
for safety-critical systems.

7.2.2 Security

For the acceptance and use of Cyber-Physical System (CPS) and Internet of Things (IoT)
in the automotive domain, issues of security play an increasing role. The danger of cyber
attacks in automotive is present as we can see from the example in [90], where hackers took
over control of a JEEP Cherokee to point out vulnerabilities and weaknesses in today’s road
vehicles. A proverb says "there is no guaranteed safety without security" [8]. This has also
been recognized by several research institutes [86] but also international standardization
bodies [42], where they try to integrate security aspects in safety standards. This is a
highly advanced and difficult task since security threats can be occur in different ways.
Security analysis must take into account software, hardware, communication channels and
interfaces, remote access or even physical damage. It is very challenging to apply security
analysis in early stages of development where hardware platform and interfaces are not
specified in detail or do not even exist. This would be a potential research topic to be
integrated into our proposed design and verification flow.
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8 Publications

In the course of this doctoral thesis scientific essays have been published in several highly
rated domain-specific conferences, book chapters and workshops. Most notably (in chrono-
logical order):
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Figure 8.1: Overview of the contributions of this thesis that include techniques and tools that
are applied during development to enhance the safety and reliability of the complete
system.
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Abstract—The complexity of electric/electronic systems in to-
day’s vehicles is steadily growing. New challenges arise through
highly distributed systems which interact with and have an
impact on the physical world, so-called cyber-physical systems.
There is a need for modeling languages like UML/MARTE to
support engineers and managers throughout the whole design
process to reduce costs and time to market. Especially when it
comes to safety-critical systems, safety aspects must be handled
on various abstraction levels from high level system description to
detailed modeling of hardware and software. Not only functional
but also non-functional requirements need to be taken into
account here. In this paper, we present a seamless model-driven
architecture approach to model safety-critical systems throughout
the whole design phase of the functional safety standard ISO
26262. Furthermore, SysML is used to extend MARTE with
semi-formal requirements to handle the issue with traceability. In
order to demonstrate its efficiency, this methodology is applied
to an industrial use case of a battery management system. The
results show that MARTE is very suitable for modeling systems
at any level of granularity in the automotive area, in compliance
with functional safety.

I. INTRODUCTION

Today’s cars consist of highly complex E/E systems with
sensors and actuators networking with each other, in fact a
car is now more or less a smartphone on wheels. It can be
observed that there is a shift towards fully E/E cars, since
traditional combustion engines are slowly disappearing. The
sensing and controlling of these systems is the work of the
highly distributed electrical control units (ECU) and it’s no
surprise that up to 100 of these micro-controller are currently
integrated in an electric vehicle [1], [2].

Recent trends in the in-vehicle E/E architecture and
new applications brought a rapid shift towards multicore,
heterogeneous, networked, and reconfigurable systems.
The design and development of such systems is extremely
complex and imposes an enormous challenge for designers
(hard- and software) from different domains in designing
their applications. The next generation of such systems
should be able to run in parallel on different parts (ECUs
and/or processors, DSPs within a multicore architecture
of a single ECU) of the system. Applications are going
towards multimedia, infotainment, advanced driver assistance
systems (ADAS), navigation and many more. This has an

Fig. 1. ISO 26262 design phase to MDA mapping

impact on design, development and management and in turn
increases production costs and time to market. This has been
acknowledged also on European industry level [3], [4].

With the growing complexity in the automotive area
one aspect is turning out to be the key issue for future vehicle
development: safety. This is especially the case whenever
systems interact with and have an effect on the physical world,
so-called cyber-physical systems, it is not longer sufficient to
test a single behavior. The whole system must be validated
as early as possible in the development cycle and at any level
of granularity. This is also recommended by the ISO 26262
[5] standard for automotive E/E systems. The ISO 26262
is an adaption of the functional safety standard IEC 61508
and compliance is currently required for OEMs and suppliers
of E/E systems. The ISO 26262 supports managers and
engineers throughout the whole product lifecycle on different
abstraction levels. As a variety of system assumptions and
design solutions needs to be taken into consideration, a
model-based approach is an important basis for engineers
and multiple stakeholders. It helps designers to have a
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quick and augmented view of the system and provides
an effective way for communication, especially if systems
are very complex and involve a number of teams in the design.

A way to model such systems is MARTE. This is an extended
profile to UML2 and provides capabilities for modeling hard-
and software, as well as timing and performance behavior.
It is used at present by many semiconductor vendors and
suppliers [6]. Today, MARTE is not very common in the
automotive domain but with the newly electrification of
vehicles and thus more and more components are related to
E/E systems, MARTE could well help to save development
costs and time in the future. Furthermore, it is the driven
system-design language in the European Catrene-project
OpenES [7]. OpenES is a European initiative to fill the gaps
in today’s system-design and to develop common solutions to
stay competitive. A special focus is given to integral support
for functional, but also non-functional requirements such as
timing, thermal issues and power.

Another aspect of UML is that it is now supported by
several commercial and open-source tools like Eclipse’s
Papyrus [8], that helps designers to model systems in UML
and extensions like MARTE or SysML.

In this paper we present a way to model safety-critical
systems on different levels of abstractions. We show that
there are existing modeling languages that provides us
with capabilities to represent the whole design flow of the
functional safety standard ISO 26262 without compromises
and helps us with additional features for safety analysis. We
therefore use a refinement of the Model Driven Architecture
(MDA), elaborated in the OpenES-project. We show that
we can map the whole process from item definition and
system design to hardware and software separation, to the
model-based approach depicted in Fig.1. In our approach,
each level in the ISO 26262 has an equivalent level in the
MDA. This helps designers and engineers to keep a consistent
view on all levels of the design phase. Furthermore we
use the capabilities of SysML to model each requirement
on different abstraction levels in the requirements phase
to have a seamless allocation to our models and diagrams
in the design phase. We also show that MARTE is very
suitable for designing complex systems in the automotive area.

The paper is organized as follows: Section 2 presents
the state of the art and related work. A short overview of
functional safety and the safety lifecycle is given in Section
3. Section 4 describes the model driven architecture approach
and the modeling languages in use. Section 5 presents our
methodology applied to a case study for a battery management
system. This is followed-up by the conclusion in Section 6.

II. RELATED WORK

How to use MARTE in a co-design process is discussed
in several papers [9], [10], [11]. They show how MARTE
complies with the model-driven architecture and the defined
abstraction levels. In these papers the issue of how to model
hardware and software on different abstraction levels in the
design process is also discussed. The paper authors also
address the issues of modeling extra-functional properties
and the mapping from software applications to platforms.
However, they do not consider traceability to SysML
requirements, nor do they take modeling of safety constraints
into account.

The authors of [12] present a concept how to apply the
ISO 26262 in the development of a safety critical system.
They address the system level as contained in part 3
(concept phase) and part 4 (product development at the
system level) of the functional safety standard, but do not
take detailed hardware or software modeling into account.
Furthermore they do not use standards like UML for system-
modeling, nor are they able to maintain a seamless flow
throughout the design phase. This approach also does not
show how to add behavioral diagrams to the flow, nor are
safe states or other behavioral functions defined. Traceability
to structural and behavioral diagrams is only partially covered.

How to use SysML as representation of requirements
in the automotive industry and the functional safety standard
is discussed in [13], [14], [15]. The authors show how
to model the requirements on different abstraction levels
in a semi-formal way. Also the traceability between the
different levels in the requirements phase of the safety
lifecycle are handled. One approach [14] extends SysML
to define requirements of safety-critical systems. In [15]
also the allocation to structural and behavioral models is
taken into account. This approach shows how to use SysML
for requirements on different abstraction levels very well.
Unfortunately this method does not cover the whole design
phase of the ISO 26262 and confines traceability solely to
UML/SysML diagrams. We will build upon this approach in
our paper to cover all traceability aspects as recommended in
the standard. As none of these approaches consider MARTE
as detailed modeling language for hardware and software, we
will show how to use SysML to maintain the traceability to
MARTE models on multiple levels.

One language that is established in the automotive area
is EAST-ADL [16]. EAST-ADL is a language for the
development of vehicle embedded electronic systems and in
combination with AUTOSAR, the initiative to standardize
software development. The language was developed in the
context of the ITEA cooperative project EAST-EEA and
further projects like ATESST [17] and MEANAD [18]. Since
EAST-ADL is included in Eclipse Papyrus also SysML
requirements models can be used to define requirements [19].
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The language is structured in five abstraction layers, each
with a corresponding system behavior: vehicle level, analysis
level, design level, implementation level and operational
level. EAST-ADL is built on top of AUTOSAR and covers
only the abstraction levels from vehicle to design level [20].
The implementation and operational levels are modeled in
AUTOSAR which makes the top down traceability and also
the traceability to the requirements, as specified is required by
the ISO 26262 standard, very cumbersome and error prone.
One purpose of the ATESST and MEANAD project was to
provide capabilities to map the functional safety standard
to EAST-ADL abstraction levels. These levels are not in
compliance with the model driven architecture, nor does
this approach address all the design-levels of ISO 26262.
Furthermore this language lacks of referencing timing and
performance properties or other extra-functional properties,
which are addressed in detail in MARTE.

As more and more systems in the automotive domain
are now related to real-time and embedded systems, bringing
the safety standard to MARTE is a next step in the
development of safety-critical systems.

III. FUNCTIONAL SAFETY

ISO 26262 is an adaption of the function safety standard
IEC 61508 for automotive E/E systems. Since ISO 26262 is
treated as state of the art in court, OEMs and their suppliers
are required to comply with this standard today. It addresses
hazards caused by safety related E/E systems due to malfunc-
tion and covers functional safety aspects through the whole
lifecycle. It governs the identification, design, implementation
and testing in form of an industry-standard V-model, called
automotive safety lifecycle. The standards also provides an
Automotive Safety Integrity Level (ASIL) analysis to specify
the items necessary safety requirements for the development
to hardware and software components. A safety goal is derived
for each hazardous event with an ASIL-classification. The
safety goals are the source for the whole chain of the safety
lifecycle. This in turn results in a safety case, to show that the
system is acceptably safe. The safety case is used to collect
and present evidence, to support safety claims and arguments.
In this work we address the left side of the V-model, from
concept phase to product development. Since the right side
addresses verification, testing and production it is not handled
by our approach and is beyond the scope of this work. We use
an MDA approach to demonstrate how we can model safety
aspects in the design phase of the automotive safety standard.

IV. MODEL-DRIVEN ARCHITECTURE

A. Modeling languages

UML is a modeling standard of the OMG (Object
Management Group) [21]. It is a graphical representation
for specification and documentation of software and other
systems. It delivers a complete view of the system, their
individual components and the interaction between them.
UML has different types of structural (e.g. Class, Component,

Composite Structure) and behavioral (e.g. Activity, UseCase,
State Machine) diagrams. Although this language is well
suited for developing software, it provides no capabilities to
design hardware and non-functional properties.

Another approach is SysML [22] as domain-specific
modeling language. It uses a subset of UML2 and provides
additional extensions to describe complex systems in system
engineering. SysML supports UML2 by two additional
diagrams (requirements, parametric) for requirements-
engineering and performance-analysis. It provides a good
mechanism for allocating requirements to components or
behavioral diagrams, but is inaccurate in modeling hardware
and resources.

MARTE was defined as an adaption from the OMG to
address the shortcomings of modeling platforms in UML.
MARTE [23], [24] is a domain-specific modeling language
intended for model-based design and analysis of real-time
and embedded software of cyber-physical systems. MARTE
is defined as a profile in UML2 and provides additional
mechanisms for modeling real-time systems, which are
missing in UML. MARTE has the advantage of precise
hardware and software resources in the form of HRM
and SRM stereotypes. In addition it is possible to allocate
software applications to hardware resources with the help
of the MARTE allocation mechanism. MARTE follows the
philosophy of cyber-physical systems to deal with whole
systems rather than a set of specialized parts. This is also
recommended by the ISO 26262 for the design of safety-
critical systems.

The MDA approach has gained more importance as a
result of a trend to pursue more formal modeling languages
and greater exploitation. We can see from the definition of
the different sub-profiles that MDA is also anchored in the
MARTE language. The importance of this development has
also been acknowledged on European level, where MARTE
and the MDA approach have a significant part in the Catrene
project OpenES. For our approach we only use standardized
MARTE elements.

B. Refined model-driven architecture

Since the levels of the standard MDA by the OMG were
not adequately specified and lacked formal definition in
the OpenES-project, partners elaborated a refinement of the
MDA-approach (Fig. 1). This figure illustrates our mapping
between the different levels in the design phase of ISO 26262
and the levels in the MDA. In our methodology, each level of
the functional safety standard has an equivalent level in the
MDA approach. The detailed definition of each level is given
below:
Computation Independent Model (CIM) - aims at
providing a system level view, mainly focusing on its
functional structure. It does not specify any information on
how the functionality will be implemented. In particular there

81



Paper A - FDL 2015

is no hardware software identification. Moreover, this kind of
model is not precise enough to execute models. Despite the
lack of an explicit or implicit model of computation, CIM
can include system level use cases showing synchronous
and asynchronous communications between the different
functional blocks. CIM is too abstract to specify any non-
functional properties.
Platform Independent Model (PIM) - includes CIM
capabilities with additional behavioral models like UML state
machines or activity diagrams. Moreover, non-functional
properties like timing, power, thermal issues or safety can
be expressed at this level of refinement. PIM are not fully
executable models, only a part of the whole system can
be detailed more precisely. If the behavior is not directly
expressed in diagrams, the models can be referenced to
existing implementation code. These models can be used for
an early and high-level simulation of the system-behavior.
A PIM shows that part of the specification, which does not
change from one platform to another.
Refined PIM - has been explicitly identified to fit with
the OpenES sub-system definition concept. It consists in
a functional decomposition of the PIM with a granularity
detailed enough to allocate each of its blocks to a single
hardware or software execution resource. In other words,
a PIM functional block cannot be allocated on several
execution resources. The functional blocks should be split
beforehand into different sub-functionalities. Furthermore,
their communication interfaces should be identified before
mapping them onto different execution resources.
Platform Specific Model (PSM) - encompasses several
aspects. It should first contain elements that will describe
the execution platform, including hardware and software
execution resources. On the hardware side, the model can
contain low level details, such as registers and memory
map information. On the software side, the execution
platform description can specify OS-specific information,
such as tasks, scheduling algorithms or middleware services.
Complementary to those platform description aspects, the
PSM can contain a new refinement of the PIM model where
platform independent functional components are transformed
into platform specific components, with explicit references
to the execution resources services. The PSM part can be
partially generated by the Allocation Model described below.
Allocation Model - is an intermediate step between the
refined PIM and the full PSM. It expresses how refined
platform-independent functional components can be allocated
onto hardware or software execution resources. It implies that
part of the PSM already exists, to identify and reference those
execution resources. It can be the input of extra-functional
properties analysis tools to verify if a given mapping will
allow meeting expected extra functional property constraints.
It can also be the source of code generation or model
transformation to obtain detailed platform-specific application
model. Since the allocation model is more like a link to
a higher detailed model, it is not a separate level in our
approach.

Fig. 2. Item definition : high-level functional view

V. EXAMPLE CASE STUDY:
BATTERY MANAGEMENT SYSTEM

To show how we can use MARTE and the MDA approach
through the whole design phase of the functional safety
standard we demonstrate this by an industrial example of
a battery management system with recuperation features
provided by CISC Semiconductor. As more and more
vehicles are now powered by Li-Ion-batteries, the challenge
for engineers to ensure reliability and fault-tolerance of
batteries is also greatly increasing. Problems with overheating
or even explosions have been frequent in the past. The
mainly cause of these problems was excessively high energy
intake from regenerative braking or harsh environmental
conditions. Management systems and mechanisms are thus
essential to assure that persons are not put at risk and that
no damage is caused. Safety mechanisms such as redundant
and diverse measurements of the temperature and voltage of
battery-cells decrease the occurrence of single-point, residual
and multiple-point faults. Also the multiple and diverse
calculation of sensor-data is an important measurement at a
high integrity level. Since it is beyond the scope of this paper
to examine all safety aspects of the item, we focus here on
monitoring the state of the battery. The parts of the Battery
Management System are explained in detail below:
Battery Monitoring Unit (BMU) - is the main controller of

the battery. It measures different values coming from sensors
of the battery-cells. The BMU computes the State-Of-Charge
(SOC), State-Of-Health (SOH) and is responsible for cell
balancing, cell protection and demand management of the
battery. It also controls a hardware switch, which connects
the battery to the electric motor.
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Battery Control Unit (BCU) - controls the voltage and
current profile of the charger output during the charging
process. Besides controlling the charge of the external charger
it monitors the regenerative braking charges and dumps it
when the battery is fully loaded. If a fault occurs the battery
can be isolated or the BCU sends a signal to the PTC to
restrict the speed limit.
Power Train Controller (PTC) - is the main contactor
between the battery and the electric motor. It controls vehicle
and wheel speed and instructs the BMU, which monitors the
state of the battery, to start the motor.
Battery - consists of 12 cells, connected in series. Each cell
has a temperature sensor and connections to measure the
voltage.
Display - shows the current SOC and SOH and warns the
driver if a critical threshold is reached.

The first and most essential step in the development
process in the context of the functional safety standard is
to define the item. The definition of an item is a system or
array of systems to implement a function at vehicle level
to that the safety standard is applied. A system is a set of
elements containing at least a sensor, controller and actuator,
whereby an element can be a hardware or a software part.
Figure 2 shows the item definition modeled as functional
blocks by means of a UML composite structure diagram
and informational flows. This provides a good view of the
whole item at CIM-level with boundaries and interfaces to
the environment. On this level we show how the functional
blocks communicate with each other, but do not specify
how the functionality will be implemented. A safety goal is
derived with the help of the item definition and the hazard
analysis and risk assessment, for each hazard. Each safety
goal has its own ASIL-level that classifies the severity,
exposure and controllability of the operating scenario. For
this example an ASIL C safety goal was stated: ”excessive
battery temperature must be avoided”. The safety goals
provide the basis for the functional safety requirements (FSR)
specified in the functional safety concept (FSC), (ISO 26262,
Part 3-8). A derived FSR for this example would be ”A
BMS shall monitor and control the battery. The battery must
operate in working range”.
The ISO 26262 standard recommends different methods and

design techniques to achieve safety on certain ASIL-levels.
In this example we choose the heterogeneous duplex pattern
to increase the reliability and availability of the system.
The heterogeneous duplex pattern uses extra and diverse
hardware components and has the advantage of being able to
handle not only random but also systematic faults. Different
hardware components will lead to the hardware reacting in
different ways and also increasing the coverage of common
cause failures. As our item has an ASIL C classification,
the standard recommends using two independent and diverse
signals to control the battery-cells, to achieve redundancy
and diversity. We combine this with the decomposition-
mechanism of the ISO 26262, which allows us to decompose

Fig. 3. Architectural assumption: a pre-version of the system design, no
information about the used platform is given

our ASIL C sensor into two ASIL B(C) sensors in order to
have the same classification but also to increase reliability
by using independent redundant and diverse measurements.
In the next step we make a refinement of our previously
defined FSR to ”A safe state will be switched to, if the two
measurements deliver different values of the battery-cells
(plausibility-check)”. The safe state is the desired behavior
of the system in the event of a fault. It ensures the safe
operation of a system. This corresponds in our case to a safe
state such as ”Reduce the power (degradation function) or
even shutdown the connection from the battery to the motor”.

The result of the functional safety concept is the preliminary
architectural assumption illustrated in Fig.3, a pre-version of
the system design, which is the actual solution to the functional
requirements. In this diagram the relationship between the
different components is more explicitly expressed and gives
a more detailed view of the system. Moreover MARTE flow-
ports (in,out,in out) of component instances are also present,
as well as connectors between them. On this abstraction level
(PIM) we are independent of the actual implementation and
therefore do not specify any technical details nor platform
on which the function may be implemented. With the use
of the MARTE general resource model (GRM) we are able
to make our first assumptions regarding the system design.
With the stereotype ”communicationMedia”, properties such
as capacity or transmission-mode for the CAN bus can be
defined. The ”computingResource” stereotypes is used in
order to also model processing resources at a very high level
of abstraction with no concern about the details of CPU
speed or memory capacity.

At this stage additional behavioral models like activity
diagrams or state machines are also added to describe the
behavior of the system. These behavioral diagrams are
allocated to the blocks of the architectural assumption. In
Fig.4 the safe state is modeled by means of nodes and
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Fig. 4. Safe state: activity diagram with extra-functional timing properties

edges. First assumptions regarding timing constraints can
also be considered in the activity diagram with the help of
”timedProcessing” stereotypes. This is not shown in the
figure but it is specified by a duration of ”value=30;unit=ms”
in the value specification modeling format (VSL). A more
precise timing behavior of each node in the diagram can be
made in a subsequent refined step, where more detail is given
from the hardware software interface (HSI). An example
would be the detailed description about system reaction or
fault reaction time. It is the advantage of MARTE to capture
timing information by means of qualitative and quantitative
annotations in the description of the behavior. These expected
behavior specifications can provide important inputs to
perform model validation in later phases of the process.
Another aspect of behavioral diagrams and timing constraints
is to use them later for the generation of testbenches for
simulation-based verification purposes. Furthermore they can
be used for comparison with simulation results.

Now that the pre-version of our system design has been
completed, the MARTE-models are coupled with preexisting
implementation-models written in SystemC-TLM. This allows
us to use a high-level simulation to have a closer look at
the dependencies between the different components. For this
purpose we use SHARC [25], an Eclipse-based tool under
development for modeling and simulation of cyber-physical
systems at different levels of abstraction. SHARC is an
enhancement of SyAD/SIMBA [26] and uses co-simulation
of various distributed components written in SystemC, Matlab
or VHDL. It also allows us to switch to lower implementation
levels of single components in the system, such as RTL-level
simulation. This is particularly important for the verification
of hardware safety mechanisms with methods like fault-
injection and also recommended in the hardware design
verification methods by the ISO 26262. The outcome of
the preliminary architectural assumption, HSI, FMEDA/FTA
and the hardware architectural metrics results in achieving
the technical safety requirements (TSR). A FMEA/FTA on
UML-models can be performed by approaches described in
[27] or [28]. In this case-study example the TSR1 is defined
as, ”Plausibility-checks every 30 ms of two analog sensors
(temperature and voltage). If the difference of 10 �C is above
the tolerance threshold for more than a certain time, go to

Fig. 5. System design: applications are allocated to the used hardware
platforms

safe state”. This in turn results in a first version of our system
design. At this stage we make our first assumptions about
what we are going to realize in hardware and software. As
defined in the OpenES refined PIM, the systems must be split
to subsystems if no allocation from each block to hard- or
software is possible (atomic). We now refine the architecture
by adding two ASIL B(C) hardware sensors, as a result of
our foregoing step where the ASIL C sensor was split into
two ASIL B(C) sensors with the decomposition-mechanism.
We achieve a vertical traceability throughout the ISO26262
levels by aggregating the components in the UML class
diagram. For the modeling of our hardware-platform we use
the MARTE hardware resource model (HRM). In Fig.5 the
battery is split into a multiplicity of battery-cells, each linked
to a voltage and temperature sensor tagged with MARTE
”hwSensor”. Included are also two processing units, a micro-
controller and an ASIC tagged with ”hwComputingResource”
and ”hwASIC”, which are specializations of ”hwResource”
stereotype. These two processing units are used to calculate
the data coming from the sensors, independent and redundant.
Furthermore, they increase the fault tolerance of the system.
To show that we have now a clear separation between
software and hardware, we allocate the sensorhandler- and
the management-task to our computing resources, micro-
controller, respectively battery management unit. At this point
where applications are allocated to platforms, a schedulability
analysis in MARTE like described in [29] can be performed.
This enables an early analysis of design alternatives before
committing to a particular design for implementation. This is
especially important in the design of safety-critical systems
where resource-handling must be carried out very carefully.
It must be ensured that common tasks like multimedia
applications are not influencing or locking resources from
safety-critical tasks that must perform in a given time. A
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Fig. 6. Hardware-description: detailed structure of the battery management
unit

task may be switched to another processing unit that needs
his own protected memory. This approach allows to analyze
worst-case scenarios of different tasks allocated to processor
cores.

Now that the functional blocks of the system are split
into hardware and software components the definition of
the requirements for hardware and software can be made.
The final level (PSM) of the design approach, the hardware
and software architectural design, is derived from these
requirements.

The MARTE profile provides a set of concepts for hardware
modeling that can be used to define very detailed models
of computing hardware. In this example the hardware is
designed by means of composite structure diagrams to
graphically show the inputs/outputs and interfaces, depicted
in Fig.6. The BMU designed on system level is now split
into four detailed components: CPU, ROM, RAM and CAN.
With the help of MARTE HRM, the blocks are tagged
with specialized stereotypes to specify the properties. Also
additional safety relevant properties required for the hardware
design such as failure rate, safety-related or not, hardware
safety mechanism and associated diagnostic coverage can be
annotated to the hardware description. In this approach we
also use a self-defined MARTE profile, for describing the
hardware in the IP-XACT [30] standard. The software tasks
are described as usual in the software design by traditional
class diagrams. The MARTE software resource model (SRM)
and also the high level application model (HLAM) are
sufficient for defining constraints to our system including
message size or memory size. As the next step operations
are added to the management task for the BMU such as
ThresholdCheck(), Display() or PlausibilityCheck(). Also
timing-attributes tagged with MARTE timing notations are
added to the task. As more and more details are attached, this
models are latter used for automatic code generation for hard-
and software in SystemC [31]. The Gaspard2 framework uses
MARTE models to generate RTL code for synthesis or TLM
code for simulation on a higher level of abstraction. This

Fig. 7. Requirements allocation to components and diagrams: vertical
and horizontal traceability

closes the gap from early safety-critical requirement analysis
and system specification to simulation and synthesis.

A decisive issue which is often mentioned in the ISO
26262 standard is assuring traceability. Traceability starts
with the safety goal and runs through the entire requirement
and design phase, from derived requirements like FSR and
TSR to behavioral and structural models. Traceability must
be assured at each level of the lifecycle to support not only
engineers and managers from different domains but also
the argumentation in the safety case. In our approach the
requirements tree is modeled in SysML and the relationship
between each requirement and level is linked with SysML
”derived” stereotypes. If the description of the requirement
is not detailed enough, another requirement can be linked
with ”refine” stereotype. In Fig.7 we show that we not
only achieve vertical, but also horizontal traceability through
the whole lifecycle by allocating each requirement to the
associated component or diagram. Another approach is to
represent SysML requirements in a specified spreadsheet-like
table-view in Papyrus. This provides a good overview of all
requirements and their ”satisfiedBy” relationship. This table
is fully dynamic and immediately updated if relationships
between requirements and models are added or modified. It
also scales up for larger systems.

VI. CONCLUSION

In this paper we demonstrated a methodology to model
safety-critical systems at any level of granularity in the design
phase of the functional safety standard ISO 26262, with the
model-driven architecture approach (MDA). The specification
and refinement of the MDA-levels were elaborated in the
European Catrene-project, OpenES. A UML-profile MARTE
for real-time and embedded systems was used to model safety
aspects on all abstraction levels of the design-phase of the ISO
26262. We show that MARTE is very suitable for modeling
E/E systems in the automotive area without using any extended
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self-defined UML-profiles. Through the use of standardized
modeling languages we achieve a high reusability with other
tools in this domain. Furthermore, SysML was used for hori-
zontal and vertical traceability of requirements to components
and behavioral models. With the link to MARTE diagrams
we achieve a very high traceability level as demanded by ISO
26262. We showed the efficiency of this approach by applying
the methodology to a battery management system. Future work
will deal with the simulation of design models for verification
of safety-critical systems. With the tool SHARC, MARTE-
models will be linked to implementation models in SystemC or
Matlab on various abstraction levels. In a next step, behavioral
models will be used to automatically generate testbenches for
simulation based verification.
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C. J. Sjöstedt, R. T. Kolagari, M. Törngren, and M. Weber, “Managing
complexity of automotive electronics using the EAST-ADL,” Proceed-
ings of the IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS, no. Iceccs, pp. 353–358, 2007.

[21] “Object Management Group (OMG),” 2015. [Online]. Available:
http://www.omg.org/

[22] “SysML.org: SysML Open Source Specification Project,” 2014.
[Online]. Available: http://sysml.org/

[23] “The UML Profile for MARTE: Modeling and Analysis of Real-Time
and Embedded Systems — www.omgwiki.org/marte,” 2013. [Online].
Available: http://www.omgmarte.org/
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Abstract—The development of electric/electronic systems of
today’s vehicles is becoming more and more complex. New
challenges are arising through highly distributed systems, so-
called cyber-physical systems, which interact with and have
an impact on the physical world. Methods and tools are thus
essential to support the development process, especially when
systems are safety-critical and demand reliability. In this paper,
we present a novel method to decrease the design effort and
speed up the verification of hardware. Our approach helps to
avoid building safety-critical systems from scratch using industry
standards like IP-XACT and UML/MARTE. Furthermore, our
tool-aided method supports designers in making design-decisions
for hardware very early in the development process. To demon-
strate its efficiency, our methodology is applied to an industrial
use-case of a battery management system. The results show that
using our approach, it is possible to decrease development time
and effort in the development of safety-critical systems.

I. INTRODUCTION

Today’s cars consist of highly complex E/E systems with
sensors and actuators networking with each other, in fact a
car is now more or less a smartphone on wheels. It can be
observed that there is a shift towards fully E/E cars, since
traditional combustion engines are slowly disappearing. The
sensing and controlling of these systems is the work of the
highly distributed electrical control units (ECU) and it is no
surprise that up to 100 of these micro-controller are currently
integrated in an electric vehicle [1].

With the growing complexity in the automotive area one
aspect turns out to be the key issue for future vehicle devel-
opment: safety. This is especially the case whenever systems,
so-called cyber-physical systems, interact with and have an
effect on the physical world. It is no longer sufficient to
test a single behavior. The whole system must be validated
as early as possible in the development cycle and at any
level of granularity. This is also recommended by the ISO
26262 standard [2] for automotive E/E systems, an adaption
of the functional safety standard IEC 61508. Since the ISO
26262 is today treated as state-of-the-art in court, OEMs
and suppliers are required to comply with this standard.
The ISO 26262 helps managers and engineers throughout
the whole product lifecycle in identifying safety aspects on
different abstraction levels. The standard also provides an
Automotive Safety Integrity Level (ASIL) analysis to specify

the item’s necessary safety requirements to avoid unreasonable
risk due to malfunction. The ASILs are divided into 3 classes:
Severity (S0-S3), Probability (E0-E4) and Controllability (C0-
C3). After determination, the product is developed according
to recommended methods and measures to its ASIL.

In this work we address Part 5 of the ISO 26262 standard:
product development at the hardware level. This part includes
guidance to avoid systematic and random hardware failures
by means of appropriate safety mechanisms. Each safety-
related hardware element is analyzed regarding safe, single-
point (SPFM), residual and multiple-point faults (LFM). It
also describes the effectiveness of the hardware architecture to
cope with random hardware failures (PMHF). The diagnostic
coverage gives evidence of the effectiveness of its safety-
mechanism. Whether the item passes or fails a given ASIL is
also a result of the architectural metrics evaluation. To achieve
a certain ASIL, the values from Table I must be met. It is
also important to point out that only safety-related hardware
elements that have the potential to contribute significantly to
the violation of the safety goal are addressed in this metric.
This must be considered in the evaluation of the whole item.

TABLE I
ARCHITECTURAL METRICS - EVALUATES WHETHER THE HARDWARE

ACHIEVES A CERTAIN ASIL

ASIL B ASIL C ASIL D
SPFM >90% >97% >99%
LFM >60% >80% >90%
PMHF >100FITs <100 FITs <10Fits

Safety-related properties like failure rate of components are
published in various standards such as Siemens SN 29500
or IEC 62380 [3]. Usually this data is very general and
not applicable to every domain. In some cases the source is
unspecified and principally obtained from field or statistical
data. This in turn can lead to false consequences, if the failure
rate predictions differ significantly from field data. We propose
that safety-related information for hardware-IPs should come
from the vendor himself, as he knows the product best.
Therefore our approach allocates safety-properties to vendor-
IP in a standardized way, so there are no false assumptions
about safety-critical hardware.
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Since a variety of system assumptions and design solutions
need to be taken into consideration, a model-based approach
is an important basis for engineers and multiple stakeholders.
It helps designers to gain a quick and augmented view of
the system and provides an effective way for communication,
especially if systems are very complex and involve a number
of teams in the design.

One way to model real-time and embedded systems is
MARTE. It is an extension of UML2 and provides capabilities
to model hard- and software, as well as timing and perfor-
mance behavior. It is nowadays used by many semiconductor
vendors and suppliers [4] and is the driven system-design
language in the European Catrene-project named OpenES
[5]. The OpenES is a European initiative to fill the gaps
in today’s system-design and to develop common solutions
to stay competitive. A special focus is given on integral
support for functional, but also extra-functional requirements
like timing, thermal and power. Another emphasis is given on
the enhancement of interoperability of models and tools by
upgrading and extending open standards like IP-XACT [6].

Usually the evaluation of SPFM, LFM and PHMF of
hardware architectural design in compliance with functional
safety is done in a top-down manner. We propose a meet-in-
the-middle approach to speed up the hardware evaluation of
bigger systems with the help of industry standards like IP-
XACT. We extend the XML-based files with safety-properties
for hardware-components. After generating MARTE hardware
models from IP-XACT files, the components are integrated
into the whole system-design. The user determines which ele-
ments are safety-related depending on the item and safety goal.
A developed Eclipse-Plugin helps to evaluate the hardware
design of the whole system with safety-properties provided
by our approach. Furthermore FMEA or Fault Tree Analysis
(FTA) can be performed through failure modes provided
by our extended hardware description. An additional design
space exploration (DSE) on the system helps to take design-
decisions more easily. If a certain ASIL-level of the system
is not reached, the tool proposes safety mechanisms with
higher diagnostic coverage or elements with lower failure
rate. With this approach we demonstrate how the efficiency
of verifying safety-critical systems with existing technologies
and standards can be increased.

II. RELATED WORK

Since the design of cyber-physical systems is getting more
complex, it needs novel methods to avoid building safety-
critical systems from scratch. This chapter describes the pre-
vious work done in this area.

How to develop hardware according to functional safety
and the ISO 26262 is described in [7] and [8]. In [8] the
quantitative hardware architecture of an automotive safety mi-
croprocessor is evaluated. The data for the diagnostic coverage
of the hardware components comes from a commercial EDA
environment and no evidence is given about the correctness.

Both approaches neither take modeling approaches into ac-
count nor do they recommend safety mechanisms to improve
their use-cases. Also, they do not use tools to support their
methodology.

The authors of [9] present a methodology to evaluate design
choices early in the development process. This is done in
an iterative way until a specific safe and cost-effective E/E
architecture is derived. This approach was applied in a model-
based development process. The models used in this paper
are specified as a self-defined metamodel for representing the
part of the design artifact. However, this approach neither takes
standardized modeling languages into account nor does is use
information from standardized hardware IPs. The authors of
this paper also recommend using languages like SysML or
MARTE.

How to use MARTE in the development process of E/E sys-
tems is discussed in several papers [10], [11], [12]. They show
how MARTE complies with the model-driven architecture and
the CIM/PIM/PSM levels. Although the MARTE language is
very capable of modeling E/E systems on different abstraction
levels, it lacks in a definition for non-functional properties in
safety.

The vendorExtensions [13] of the IP-XACT standard al-
lows vendor-specific definitions of non-functional properties.
Properties for timing and power are already partially defined
in the standard. The investigation of safety properties in IP-
XACT showed that there are no indicators for safety in the
standards right now.

Fig. 1. Meet-in-the-middle approach: Design and Verification-speedup
through Failure-Modes provided by hardware description

III. FUNCTIONAL SAFETY IN HARDWARE

Figure 1 depicts our approach to speed up the verification
process for hardware by providing safety-properties in
IP-XACT. The left side of this figure shows the traditional
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development-process of safety-critical hardware (top-down)
enhanced through our bottom-up approach. This leads to
a speed up in design and verification through providing
information about hardware and safety-properties in an
early phase of development (meet-in-the-middle). The right
side of this figure shows the different analysis-techniques
which benefits from our approach. To evaluate the hardware
according to Clause 7, Clause 8 and Clause 9 in ISO26262
[2] following equations must be carried out to achieve a
given ASIL-Level. This task must be done for each safety
goal separately and asks for tools to support this evaluation:

Single Point Fault Metric (SPFM): The SPFM reflects the
robustness of the item to cope with single-point and residual
faults. This can either be handled by design or proper safety
mechanisms. The higher the value of SPFM the more robust
our applied safety mechanism will be. The following equation
is used to determine the SPFM:

SPFM = 1−
∑

SafetyRelatedHW (λSPF + λRF,est)∑
SafetyRelatedHW λ

(1)

λRF,est = λ× (1− KDC,RF

100
) (2)

where Kdc,rf is the diagnostic coverage with respect to
residual faults and lambda,rf is the estimated failure rate with
respect to residual faults.

Latent Fault Metric (LFM): The LFM reflects the
robustness of the item to cope with latent faults. This can
either be handled by coverage of faults through proper safety
mechanisms or by the driver, recognizing that the fault
exists before the violation of the safety goal. The higher the
value of LFM, the more robust our applied safety mechanism
will be. The following equation is used to determine the LFM:

LFM = 1−
∑

SafetyRelatedHW (λMPF,L,est)∑
SafetyRelatedHW (λ− λSPF − λRF )

(3)

λMPF,L,est = λ× (1− KDC,MPF,L

100
) (4)

where Kdc,mpf,l is the diagnostic coverage with respect to
multiple point latent faults and lambda is the estimated failure
rate with respect to multiple point latent faults.

Probabilistic Metric for Random Hardware Failures
(PMHF): The PMHF evaluates the residual risk of violating
a safety goal due to single-point faults, residual faults, and
plausible dual-point faults. It defines the quantitative target
values for the maximum probability of the violation. The
following equation estimates the failure rate for the failure
modes of each hardware part that would cause a single-point,
residual or dual-point fault (ISO 61508).

PMHF =
∑

λSPF +
∑

λRF +
∑

λMPF,latent (5)

IV. SAFETY PROPERTIES OF HARDWARE-IPS

Crawling through datasheets to determine failure rates for
hardware components is a cumbersome task. The information
of hardware safety properties mostly comes from the vendors
themselves. Currently there is no standardized way to provide
information about safety in IPs to tool vendors (EDA) or
system-integrators. To do this and furthermore achieve inter-
operability and reuseability with other tools we propose an
extension to a well known format in industry: IP-XACT. IP-
XACT is a standard (IEEE 1685) driven by Accellera and
its format is used for documenting IPs using meta-data. The
data is used for configuring, integrating and verifying IPs in
advanced SoC design- and interfacing-tools. The specifications
are derived from the requirements of the industry to enable
an efficient design of electronic systems. The 1.4 release of
the IP-XACT format also includes implementation-models on
RTL and TLM level. Furthermore this format supports the
data exchange through a common structured data management.
Nowadays IP-XACT is used by many different major tool-
vendors and there are no other standards compared to it,
neither in USA nor Japan.

An IP-XACT model can consist of different files in relation
to the IP, like design files, behavioral models, simulation files
and results. It also consists of detailed information about the
hardware like parameters, ports, memory or configuration.
The aim of the standard is to support a component-based
design of the hardware and enable the re-use and assembly of
HW-components like cores (processors, co-processors, DSPs),
peripherals (memories, DMA controllers, timers, UARTs) and
buses (simple buses, multi-layer buses, cross bars, network on
chip).

Additionally the IP-XACT format also provides vendor
extensions to support user-defined features. Vendor specific
IP meta-data can be stored in a vendorExtension element.
These extensions can be applied to several elements of the
IP-XACT format (components, bus-interfaces, registers, etc.).
We use the capabilities of IP-XACT to add safety properties
to the different elements of the IP. The vendor extensions are
composed in a hierarchical manner. The root container can
contain one or several vendor extensions. For our purpose we
add following properties to the elements:
Failure-Rate (FR) - is usually known by the vendor of the
component. It is a result of field return and statistical data,
where expert judgment can also be considered.
Failure Modes (FM) - describes the different modes where a
failure can occur. The failure modes depend on the application
in which the element is used.
Safety-Mechanism (SM) - Implemented mechanism to detect
and control faults. It prevents faults from violating the safety
goal. If a fault is detected, a safe state is initiated.
Diagnostic Coverage (DC) - is the effectiveness of the
internal safety mechanism implemented to cover single-point,
residual or latent faults.
Since not all safety properties for the evaluation of the
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single-points and latent faults are related to the hardware IP,
but rather to a given safety-goal, no further properties are
described in IP-XACT. This is done in a next step, where the
hardware elements are modeled in UML/MARTE.

V. SAFETY PROPERTIES IN MODELING

To address the shortcomings of modeling platforms in UML,
MARTE was defined as an adaption from the OMG. MARTE
[14], [15] is a domain-specific modeling language intended for
model-based design and analysis of real-time and embedded
software of cyper-physical systems. MARTE is defined as a
profile in UML2 and provides additional mechanisms for mod-
eling real-time systems which are missing in UML. MARTE
has the advantage to precisely defining Hardware and Software
Resources in form of HRM and SRM stereotypes. Furthermore
it is possible to allocate software applications to hardware
resources with the help of the MARTE allocation mechanism.
MARTE follows the philosophy of cyber-physical systems to
deal with whole systems rather than a set of specialized parts.
This is also recommended by the ISO 26262 for the design of
safety-critical systems.

Unfortunately the profile does not provide the degree of
precision to describe properties for safety. Therefore, we
propose an extension-profile for MARTE hardware resource
model (HRM) -components for safety-properties to evaluate
the architectural metrics. The user is able to choose the safety-
related components and their failure modes, depending on their
corresponding safety goal and ASIL. One of the key benefits of
the profile mechanism is that it ensures tool interoperability if
the profile is compatible with the extended base UML concept.
This reduces both training and tooling costs [15].

For this purpose we created a self-defined profile named
SafetyProfile which is a specialization of the existing UM-
L/MARTE concept. Since our stereotype SafetyProperties is
a subclass of a stereotype that extends the UML element
concept, it can only by annotated to elements of the same
kind. The extended MARTE-Hardware profile SafetyProp-
erties consist of 4 attributes: Safety-Related, Failure-Rate,
Failure-Modes and Safety-Mechanisms. The attribute Safety-
Related describes whether the component significantly con-
tributes to the violation of the safety-goal. This depends on the
outcome of the hazard and risk analysis and therefore cannot
be allocated to the hardware description of the component.
The FR is annotated as numeric attribute from type integer.
The FM includes two further attributes, the name of the failure
and the safety-mechanism. The attribute SM is linked to the
definition of the safety-mechanisms including the name and
corresponding diagnostic coverage. This profile is attached to
the hardware components (HRM) of the item to facilitate our
calculations for the architectural metrics of our use-case.

VI. EXAMPLE CASE STUDY:
BATTERY MANAGEMENT SYSTEM

To show the novelty and benefits, we apply our methodology
to an industrial use case, a Battery Management System
(BMS) with regenerative braking features provided by CISC
Semiconductors [4]. As more and more vehicles are now
powered by Li-Ion-batteries, the challenge for engineers to
ensure reliability and fault-tolerance is also greatly increasing.
Problems with overheating or even explosions have been
frequent in the past. The main cause of these problems was
an excessively high energy intake from regenerative braking
or harsh environmental conditions. Management systems and
mechanisms are thus essential to assure that persons are not
put at risk and that no damage is caused. This calls for safety
mechanisms to reduce the number of single-point, residual
and risks from latent faults in the hardware architecture. The
architecture of the item is depicted in Fig. 2 and explained in
detail below:

LiIon-Battery - consists of 12 cells, connected in series. Each
cell has a temperature sensor and connections to measure
the voltage. The battery is tagged with HwPowerSupply
stereotype.
Battery Monitoring Unit (BMU) - is the main controller
of the battery. It measures different values coming from
sensors of the battery-cells. The BMU computes the State-
Of-Charge (SOC), State-Of-Health (SOH) and is responsible
for cell balancing, cell protection and demand management
of the battery. It also controls a hardware switch, which
connects the battery to the electric motor. The BMU includes
6 Temperatur-sensors, 12 VoltageSensors, 2 Actuators, 2
ProcessingUnits, RAM, ROM and a BusInterface. The data
coming from the BMU is collected and forwarded to the
Power Train Controller (PTC) that controls vehicle and wheel
speed.
Sensors - monitor the battery on temperature and voltage. To
maintain redundancy and diversity the voltage is additionally
monitored beside the temperature. This provides a more
robust design and increases the reliability. The data coming
from the sensors are forwarded to the processing units. The
sensors are tagged with MARTE HwSensor stereotype.
ProcessingUnit/ASIC - collect the data from the sensors
for threshold- and plausibility-checks. In addition to the
processing unit, an ASIC is included to compute the data
independent and divers. This in turn reduces the risk of
random and systematic faults. Different hardware components
lead to different ways in which the hardware reacts and
increases the coverage for common cause failures. Sterotypes
used are HwProcessor and HwAsic.
Memory - of the micro-controller consists of RAM and ROM.
Both components are protected by error detection correction
codes (EDC). This safety mechanism helps to detect single-bit
and some all-bit failures in words. By checking redundant
bits, corruption in words can be determined. Tagged with
HwRam and HwRom.
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Bus-Interface - a controller area network (CAN) is used to
connect the different ECUs with each other in a bus-system.
A read back of sent message safety mechanism is used for
a more reliable communication. The Bus-interface uses the
HwBus stereotype.
Actuators - cut the connection to the motor, if the temperature
of the battery exceeds the maximum threshold. The output is
monitored by the processing unit. Tagged with HwActuator.

Since it is beyond the scope of this work to examine all
safety aspects of the item, we focus here on the battery and
the BMU. In order to maintain a coherent picture of the paper
we exclude the CAN and PTC from our analysis.

A. Eclipse-based HW-Architecture Evaluation

Collecting information and metrics for safety purposes is
a cumbersome and error-prone task. Engineers and Tool-
providers must look into standards like the Siemens SN 29500
or IEC 62380 to obtain the values for hardware-properties
like FIT-rate or diagnostic coverage for safety mechanisms.
This is sometimes only an estimation of the values and leads
to errors in the calculation. We propose that vendors provide
their information of IPs and non-functional properties like
safety in a standardized format. A format that has already
been established in the semiconductor industry like IP-XACT.
This saves time and costs in the analysis and the development
of new systems. We show this by means of an exemplary

Fig. 2. Hardware architecture: modeled in MARTE

Memory element where we apply two safety-mechanism,
error code detection (EDC) and MARCH test. This safety-
mechanisms protect our memory against stuck at faults (SAF)
and coupling faults (CF). These safety properties are now
described with the help of IP-XACT vendorExtensions:

<spirit:component>
<spirit:vendor>-</spirit:vendor>
<spirit:library>library<spirit:library>
<spirit:name>component</spirit:name>
<spirit:version>1.0<spirit:version>
<spirit:vendorExtensions>
<cisc:memory>
<safety:memorySafetyProperties>
<safety:memorySafetyPropertie>
<safety:fr>100</safety:fr>
<safety:fms>
<safety:fm1>
<safety:name>SAF</safety:name>
<safety:sm>SM1</safety:sm>

</safety:fm1>
<safety:fm2>
<safety:name>CF</safety:name>
<safety:sm>SM1</safety:sm>

</safety:fm2>
...
</safety:fms>
<safety:sm>
<safety:sm1>
<safety:name>MARCH</safety:name>
<safety:dc>96</safety:dc>

</safety:sm1>
<safety:sm2>
<safety:name>EDC</safety:name>
<safety:dc>99</safety:dc>

</safety:sm1>
</safety:sm>
...

</safety:memorySafetyPropertie>
</safety:memorySafetyProperties>

</cisc:memory>
</spirit:vendorExtensions>

<spirit:component

We developed an Eclipse-plugin to extract information
from IP-XACT files into our modeling-environment [16]. This
helps us to speed up the design-process, with already fully
configured IPs in the IP-XACT standard. The designer is not
required to build his system from scratch. He chooses existing
hardware-components in different versions and from different
vendors. Because the system design is modeled in MARTE,
there is no need to say that also pure MARTE HRM-models
can be used for the design with additional features from the
SafetyProfile.

To manage the IPs we use the SHARC IP-library. This
database helps us to reuse components for our design, fur-
thermore it provides design space exploration (DSE) to the
designers. The SHARC-DSE checks the HW-design if the
safety requirements are fulfilled or if further improvements
are necessary. The DSE proposes different components with a
higher FIT-Rate or safety-mechanisms with better diagnostic
coverage for a more reliable design.

In addition to the annotated SafetyProfile, a wizard helps us
to evaluate our hardware design by the equations mentioned
in Chapter III. This wizard is developed as Eclipse-Plugin as
depicted in Fig. 3. This plugin provides an overall view of
all components of the item to the user. The elements in the
wizard are automatically filled by the provided information of
the SafetyProfile. The designer is able to complete the missing
information for the analysis and chooses the safety-related
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components. The user also defines whether the failure mode
has the potential to directly violate the safety goal in absence
of a safety mechanism. Regarding this information the wizard
evaluates if the hardware design fulfills all requirements for a
given safety goal and ASIL. With the help of the SHARC IP-
Library the designer is able to choose from different hardware
versions and vendors, if the design does not reach a given
ASIL. Since the architectural metrics depend on the safety

Fig. 3. Eclipse-Plugin: Single Point Fault Metric evaluation of safety goal

goal, each wizard is called by the safety-goal modeled as
SysML-requirement. The results of the hardware architectural
metrics are annotated to the requirements to archive traceabil-
ity as recommended by the ISO 26262 standard. How to model
safety-requirements in SysML in compliance with ISO26262
was handled in our previous work [17].

VII. CONCLUSION

In this paper we presented a novel methodology to evaluate
the hardware architecture of safety-critical systems. Through
applying the methodology on an industrial use-case of a
Battery Management System (BMU), we showed how we
increase the productivity and speed up the verification pro-
cess. To promote the development of safety-critical systems,
components are required with already implemented safety-
mechanisms. However, these components must be verified
on system-level. With the use of IP-XACT, already existing
hardware is partially integrated into the system-design. Addi-
tional properties for safety help to speed up the evaluation.
Furthermore, our tool-aided method helps the designer to
take design decisions for hardware-parts very early in the
design process. Experiments showed that our methodology
helps to verify these systems much faster. Development costs
are drastically reduced through reusability. Furthermore, the
designer’s effort decrease, if components with better charac-
teristics are proposed by our methodology. The whole process
is included in an Eclipse-based tool named SHARC [18]. In
a next step, the efficiency of the safety mechanisms will be
verified by fault-injection tests in simulation. MARTE-models
will be linked to implementation models in different languages

(SystemC(-AMS), Matlab, VHDL) with the tool SHARC for
co-simulation.
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[15] B. Selić and S. Gérard, Modeling and analysis of real-time and embed-
ded systems with UML and MARTE, 2014.
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Abstract

The increasing amount of assistance features in today’s vehicles to ensure safe and reliable operation, imply increasingly complex
systems. New challenges are arising due to highly heterogeneous and distributed systems which interact with and have an impact on
the physical world, so called cyber-physical systems. Since millions of test kilometers must be driven to ensure a reliable system,
simulation-based verification is becoming more important to reduce costs and time-to-market. This situation prompts the urgent
demand for new techniques to simulate the behavior in early development phases by reusing verified system components. Best
combined within a model-based approach that both unites different stakeholders and helps non-specialists to understand problems
in the design. In this paper, we present a novel method for simulation-based verification of automotive UML/EAST-ADL design
models. To demonstrate its benefits, our methodology is applied in an industrial use case of a battery management system.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

Today’s cars consist of highly complex electric/electronic (E/E) systems with sensors and actuators networking
with each other. In fact a car is now more or less a smartphone on wheels. It can be observed that there is a shift
towards fully E/E cars, since electric cars are getting more popular. The sensing and controlling of these systems
is the work of the highly distributed electrical control units (ECU) and it is no surprise that more than 200 of these
micro-controllers are currently integrated in a modern electric vehicle1. Since the electrification in the automotive
domain continuous, new challenges in the development process are arising. This is especially the case where mul-
tiple stakeholders including specialists for hardware, software and system design have to work together with safety
engineers to ensure a reliable and safe system. A model-based approach helps non safety-specialist to also understand
problems in the design and development of safety-critical systems. One modeling languages which has established
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itself in the automotive domain is EAST-ADL2. It allows the detailed design of automotive E/E systems on differ-
ent levels of abstraction. The last two layers conform with the AUTOSAR standard. Furthermore, they are in line
with the development process of safety-critical systems according to ISO262623 and allow the evaluation and formal
verification of design models. Since millions of test kilometer must be driven to ensure a reliable system, simula-
tion is becoming more and more important4, because it is no longer possible to cover the costs of physical tests. A
drawback in today’s development process is that simulation tools are often detached from the design tools and require
cumbersome imports and exports of files between the environments. It is important that simulation tools are tightly
and seamlessly integrated into the design and development process5, meeting the requirements of ISO26262. Further-
more, approaches are needed that allow a high traceability to requirements and make it possible to derive requirements
from simulation-results. This must be done as early as possible and on different abstraction levels.

In this work, we present a model-based simulation framework for the verification of E/E systems in the automotive
domain. We link quickly executable simulation models, implemented in SystemC (-TLM) and SystemC-AMS, with
EAST-ADL design models. The level of granularity of the models can be easily switched depending on the complexity.
Using these reusable components, we achieve an early behavior simulation of the whole system. The result is a tool-
aided methodology built as an Eclipse plugin in Papyrus6, which makes it easy to verify the behavior of automotive
safety-critical systems.

2. Related Work

An approach for generating simulation models from EAST-ADL architecture models was presented in7. In this
work, several architecture levels of EAST-ADL have been mapped to abstraction levels of SystemC-TLM. The ar-
chitecture of an automotive use case was presented on analysis and design level. For the expression of the behavior,
the authors used SystemC code and state machines. This approach works very well for the digital domain, but lacks
proper definition needed for analog and mixed-signal components. Through the use of code generators, it is possible
to achieve synthesis of very detailed EAST-ADL models. It would also benefit of analyze and verification mechanisms
for their simulations.

The authors of8 presented three different analysis techniques for architectural models described in EAST-ADL,
to guarantee the quality in the context of ISO26262. One of the proposed techniques is the simulation of EAST-
ADL functions in Simulink. The behavior of each function was linked to FMU or Simulink models to facilitate the
simulation. The authors also described mapping rules for the EAST-ADL to Simulink transformation (one-to-one
mapping). The results of the simulation have been traced back to the requirements. This approach was applied to
an industrial use case of a brake-by-wire system on Design Level. However, in contrast to our approach, they use
proprietary simulation engines with high license costs and external tools which are not integrated into the design and
development flow.

The authors of9 demonstrated how to use MARTE for hardware design and simulation. They introduced a step-by-
step methodology for hardware modeling with Hardware Resource Models (HRM) stereotypes. The platform models
are refined until the final platform class is reached. In a later step, these models are used to generate code with the
help of a Java plugin. A tool called Simics was used to facilitate the simulation. Instead of using the whole MARTE
spectrum for simulation, this approach only uses HRM models for code generation of very detailed platforms instead
of system level design.

3. Model-based System Design

Model-based design plays an ever increasing role in today’s development to deal with complex systems. Organi-
zation of specialized people in projects of a certain size requires a lot of effort. Therefore, it is becoming increasingly
important that stakeholders from different domains, e.g. hardware, software, safety or even security can efficiently
work together. Particularly in the evaluation of safety-critical systems, safety specialists need a entire view of the sys-
tem, that includes all domains of the system. Best combined in a tool where even entire processes like the ISO26262
can be addressed.

One modeling-language which has established itself in the automotive domain is EAST-ADL. It allows the captur-
ing of detailed automotive electric and electronic systems on five layers of abstraction, each with a clear separation
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of concerns: Vehicle , Analysis, Design , Implementation and Operational Level. Besides structural aspects, this
modeling language allows the expression of behavior, requirements, verification and validation. The highest level is
the Vehicle Level, that describes electronic features to allow integration of product variability. The Analysis Level
includes the Functional Analysis Architecture (FAA), which allows an abstract functional representation of the ar-
chitecture (what the system shall do), in relation with the features from the Vehicle Level. The Design Level allows
the decomposition of models in the FAA to Functional Design Architecture (FDA) models and Hardware Design
Architecture (HDA) models. Within these models the functional representation of the architecture can be allocated
onto the hardware platforms. The applications are represented by DesignFunctionTypes with annotated behavior and
configurations. The hardware components are modeled by Sensors, Nodes (ECUs), Actuators and HardwarePortCon-
nector (Buses) and more. They are interconnected by IOHardwarePins or CommunicationHardwarePin and wired by
HardwareConnectors. The last two layers (Implementation, Operational) are the realization of the implementation in
AUTOSAR. Therefore, the models on these levels are compliant with the AUTOSAR specifications. The behavior of
components on all these levels are not explicitly addressed in EAST-ADL. It can be either expressed by behavioral
diagrams (state machines, activity diagram) or externally in tools like Matlab.

EAST-ADL as automotive modeling language also addresses parts of the functional safety standard ISO2626,
which was one of the outcomes of international projects like ATESST10 and MEANAD11. This enables the lan-
guage for safety-analysis like Fault Tree (FTA) or Failure Mode and Effect Analysis (FMEA), but also for defining
safety-requirements and to achieving high traceability to models and behavioral diagrams. Furthermore this language
provides means to describe validation and verification activities by VVCases. Since EAST-ADL is included in an
Eclipse UML2 Editor called Papyrus6, it makes it easy to design complex systems without licensing costs.

In the next section, we present the simulation core and how to execute EAST-ADL models with behavioral lan-
guages such as SystemC and SystemC-AMS.

4. Executable Models

SystemC is defined by Accelera, a standards organization in the area of electronic design automation (EDA). It
is an open standard modeling language and has been also approved by the IEEE standards association. SystemC is
defined by several levels of abstraction. On the transaction level modeling level (TLM), a very high level simulation,
the focus lies on communication and functionality. This serves as a golden reference for lower level hardware models
(RTL). The RTL level included very detailed models where the components are connected through signals with pins.
SystemC enables the design teams to have a fundamental understanding of the system at an early stage of the design
process. Due to its high flexibility, it enables the representation of a complete system.

SystemC tries to bridge the gap between hardware description language (HDL) and object-oriented language
(OOP). While SystemC is commonly used in the context of a system on chip or to model several components in a
system, it is usually limited to the digital domain. In order to address complex systems with digital and analog parts,
an extension was introduced called SystemC-AMS. This extension enables the simulation of continuous time, discrete
time and discrete event behavior of analog/mixed-signals simultaneously. Nevertheless, SystemC lacks a visual repre-
sentation for interacting with different stakeholders and their requirements. Because of its C++ background, SystemC
is object-oriented and has a lot of similarities with UML and EAST-ADL, that supports the part,port and connector
principle. This has also been acknowledged in publications such as7 and makes the linking with EAST-ADL models
intuitive. Because of this and its wide acceptance in the industry as well as availability, SystemC was chosen as the
primary simulation language in our approach. Our methodology bridges the gap between model-driven design in
EAST-ADL and executable models in SystemC.

The executable models used in our approach are models on different abstraction levels and in different versions.
The generic models have the potential to be used in various domains and support reusability. The detailed models are
refinements of the generic models and are to be used in special domains. Dependent on the domain and abstraction
level, the models are built in SystemC(-TLM) and SystemC(-AMS).
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5. System Libary

To avoid the design and simulation of larger systems from scratch and to achieve reusability, our methodology
provides a SystemComponentLibrary (SCL). This library includes all major components for the simulation of systems
in the automotive domain. Furthermore, it includes components in different versions and on different abstraction
levels. A component in our library consists of two models, a structural model that describes the hardware structure and
a functional model that describes the behavior. Both models have the same name but are tagged with a different type.
The structural model is described by the EAST-ADL stereotype HardwareComponentType and owns the digital and
analog ports of the hardware, tagged by IOHardwarePin. This mechanism also makes it possible to detach the digital
components from the analog components. The behavior of the component is tagged by DesignFunctionType. This
model owns the FunctionBehavior, which contains the kind and path to the behavioral description (SystemC model).
In addition, the DesignFunctionType is tagged with ConfigurableContainer, which defines parameter and values of
the component. These parameters may vary depending on the use case and verification methodology. To illustrate the
togetherness, the functional model is allocated on the structural model with FunctionAllocation. Figure 1(a) depicts
this approach. Since the creation of models for the SCL is a cumbersome task, a Text-to-Model converter helps to
generate EAST-ADL models from SystemC code or even IP-XACT files. This converter generates the structural and
behavioral models, with ports, parameters and allocation to the files. The mapping from SystemC/-AMS to EAST-
ADL models is described in Table 1(b).

(a) (b)

Fig. 1. (a) SystemComponentLibrary (SCL) text-to-model converter (b) mapping of EAST-ADL to SystemC models

To increase the reusability and provide good support for developers, the SystemComponentLibrary is built as an
Eclipse plugin. New models can be generated and added to the library. Updates for components can be easily checked
by updating the library from the server. This helps to support design teams by adding new components, and keeps the
library consistent.

6. Methodology

Our methodology for the execution of EAST-ADL models is composed of four phases as depicted in Fig.2: Design-
Phase, Build-Phase, Connect-Phase and Run-Phase.

6.1. Design Phase

The first part in our methodology is the system design. The designer creates an EAST-ADL design level class
where the top-level is modeled. This class describes the overall architecture of the system. It is composed of the
functional and hardware architecture model instances from the SystemComponentLibrary. These sub-systems are
connected together by ports according to their specification. Due to the EAST-ADL port capability, these ports are
checked in advanced by the framework in the correct direction of the dataflow or type (digital, analog). To trace the
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dataflow, Scope models are added to the functional design and connected to functional ports. These Scopes collect the
monitored data and stores them in trace files to compare the results from different tests and testbenches in a latter step.
Our framework also provides a mechanism to encapsulate existing components and to raise the abstraction level of the
whole system. Smaller systems that model the interior design of the class can be merged to a more simplified model.
This helps the designer to have a better view of the system, without having too many details in the models on system
level. This mechanism allows us to abstract the complexity of components. The whole eVehicle system, also referred
to in our case as Design Under Test (DUT), is provided with several connectors. These signals required for testing
and debugging are brought out to the ports of the top class itself. This has the advantage of connecting testbenches
to the DUT for testing various scenarios of the electric car and also for monitoring performance. The outcome of the
design step is a netlist that also serves as configuration and parametrization for the simulation. It is the starting point
for the build phase.

Fig. 2. Methodology for executable SystemC models from EAST-ADL design

6.2. Build Phase

The heart of our Build-Phase is the self-defined parser-methodology. The purpose of the parser is to translate a
UML model defined in one or more files to a single SystemC system. This is done at run-time and does not require
compilation of the resulting model. When the parser is initialized it requires the name of the top-class of the model
in the diagram as well as the name of the UML file that contains the model. Starting from the root node of the UML
model, each child of a node is parsed and returned. As single systems can be composed of more detailed sub-systems,
we had to define a loop to find all properties and ports of each root note. Each node found in the UML file is treated as
the new root node and each sub-system is created before moving on to the Connect-Phase. Each system may contain
any number of sub-systems, therefore this step is done in several iterations till all properties of the root node are
found. In order to keep the framework extensible a DLL-based plugin system is used. All the information is stored in
a ConfigStore map.

6.3. Connect Phase

In this phase, the connector objects are created to link the different instances in the build phase. Depending on
their nature, the connector objects can be signals or transactions. It is important to notice, however, that UML allows
multiple 1:1 connections per port, SystemC merely allows a port to be bound once but a signal may connect any
number of ports (basically 1:n as only one driver is allowed per signal). As a means of handling these issues, both
ends of each connector are tagged using an ID. Instead of creating new signals for connecting to a used port, the old
signal is reused.
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6.4. Run Phase

After all nodes, ports and properties of the UML file have been found by the parser, and the SystemC instances
have been created and connected, the simulation is started. The results of the monitored signals via Scopes are saved
as trace files. These files contain all the relevant information required for the verification of the model or to evaluate
the behavior of the model for different parameters and/or implementations for the system. Besides this, a logic can
also be added to the system to react to certain events such as stopping the simulation in case of a signal, violating the
given constraints, or the system running out of energy (for a battery powered system). An implemented dialogue is
also used to configure the settings for the simulation such as duration or timestep (resolution).

Using the Toem Impulse plugin12 for Eclipse, the results are presented in a graphical form. The results can be
displayed in the desired manner, dependent on the nature of the simulation, e.g. analog interpolation for real values
and numeric representation for digital signals in a hierarchy that allows for easy interpretations. The results may be
verified against the known or expected behavior of the (physical) system modeled. If the system behaves as expected,
it can be used for further analysis or verification (e.g as a golden reference model or synthesis-able).

7. Example Case Study: Electric Vehicle Simulation

We have applied our methodology to an industrial use case, an electric vehicle (eVehicle) system provided by
CISC Semiconductor, to more fully illustrate its innovative capabilities and benefits. As more and more vehicles are
now powered by Li-ion batteries, the challenge for engineers to ensure reliability and fault tolerance is also greatly
increasing. It is crucial that the battery management systems (BMS) measure voltage, temperature and current of
the battery very precisely to ensure safe operating conditions. This information must be forwarded to a system wide
controller network to ensure a reliable and fully utilized system. Problems with overheating or even explosions have
been frequent in the past. The main cause of these problems was an excessively high energy intake from regenerative
braking or harsh environmental conditions. Management systems and mechanisms are thus essential to assure that
persons are not put at risk and that no damage is caused. The overall system model of the eVehicle is depicted in
Fig.3. It is composed of the battery, controller, inverter, dc-motor, power train controller (PTC) and the battery
management unit (BMU). The driver provides the desired speed for the eVehicle. This can be set according to stan-
dardized maneuvers such as the New European Drive Cycle (NEDC). The controller is a model for a PI state-space
controller and maintains a constant speed based on the information about the state variables, motor armature current
and motor-speed. The inverter model implements an inverter function for a PM-DC motor driving stage. It compares
the actual battery voltage and the requested controller voltage to maintain the PM-DC motor terminal voltage. The
battery model simulates the behavior of a Li-ion battery pack composed of a defined set of single cell Li-ion batter-
ies. The appropriate number of single cells is connected in parallel and series to obtain the necessary capacity and
terminal voltage. The battery pack’s terminal voltage is calculated based on the defined parameter and the battery
current. A BMU is connected to the battery to measure voltage, current and temperature of the cells/modules. The
BMU computes the SOC, State-Of-Health (SOH) and is responsible for cell balancing, cell protection and demand
management of the battery. These computed values are then processed via a CAN controller as digital values to the
power train controller. In addition, the external load environmental conditions like temperature can be changed during
the simulation.

The Design Level of the Design Under Test (DUT) contains the Functional, Analog and Digital Design Architec-
ture. On the functional level, the components are tagged with DesignFunctionType which describes the behavior of the
hardware. To provide stimuli and monitoring function, ports are brought outside of the DUT to connect various verifi-
cation components like driver, monitor or scoreboard. Every DesignFunctionType on this functional level is allocated
on its hardware counterpart on the hardware/digital architecture level as described in Section 5. The hardware com-
ponents are tagged with stereotypes from the EAST profile such as Node, Sensor, Actuator and ElectricComponent.
Depending on the nature of the port, the IOHardwarePinKind attribute is set to analog or digital. Each component is
configured and parametrized through ConfigurableContainer.
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Fig. 3. EAST-ADL Design Level of the eVehicle simulation

8. Results

The results of our simulation-based verification within EAST-ADL are depicted in Fig.4. It shows the analog
and digital signals which are monitored by Universal Verification Methodology (UVM) components. The DUT was
stimulated by a driver with different driving scenarios. The exact simulation was also built as a Simulink model to
compare our results with a golden reference model. The output of the Simulink run is referenced as golden ref signal.
Signal deviation shows the difference between signal work of both simulations engines. Only when it comes to a step
in signal load there is a peak in the deviation of about 0.5 percent. This occurs because the SystemC simulation kernel
requires an additional delay at this step, where Simulink, with its centralized timing solver, does not. This produces
a short shift between both signals but ends up, after a timestep, with the same results. The average error between the
SystemC and Simulink signal is 0.0081 percent. Both simulations have the same accuracy with a fixed timestep of
1 × 10−3s.

9. Conclusions

In this paper, we presented a model-based simulation framework for verification of electric/electronic systems.
We used the capabilities of EAST-ADL for a model-based design, to simulate analog and digital components in the
automotive domain. With the help of our tool-aided methodology, we achieve simulation of systems seamlessly
integrated into the design flow of ISO26262. Especially regarding functional safety, a model-based approach helps
safety engineers to have an augmented view, to understand problems in the design and development of safety-critical
systems. Through EAST-ADL models, the behavioral models in SystemC can be configured or even reconfigured for
different testcases. A model library was introduced that helps to speed up the design and development process and
raises reusability. With the help of UVM-like components, the whole system can be verified by methods like constraint
random verification. Due to the Eclipse plugin mechanism, every Papyrus editor is now capable of executing their
EAST-ADL models by installing our plugin. This tool called SHARC (Simulation and verification of HierARChical
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Fig. 4. Output-trace of the eVehicle simulation, the signals are compared to a golden reference

(embedded) systems) will be published for download and also used for educational purpose. To show the benefit of
our framework, the tool-aided methodology was applied to an automotive use case of a battery management system.
Another focus will be the resource handling of behavioral models for multi- and many-core applications. Because of
its small memory footprint and fast execution time, this simulation environment will be used additionally for parameter
variation in cloud-based environments.
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Simulation-based verification is one of the most essential verification-methods in today’s development of embedded systems.
To ensure a reliable system, not only functional but also non-functional properties like timing, power, thermal or safety must
be taken into account. These properties must also be verified concerning standards like the ISO26262 for functional safety in
the automotive domain. Since millions of test kilometre have to be driven to ensure a reliable system, simulation is becoming
more and more important, since the costs for physical tests cannot be handled anymore. One verification methods which has
been established in the field of embedded systems is the Universal Verification Methodology (UVM). However, this method has
the drawback of consuming too much time when executing thousands of simulations with varying parameters in a sequential
manner. Therefore, it needs new methodologies to speed-up this verification process through parallelization. In this paper, we
present a novel approach which extends the layered pattern of UVM with message patterns used in today’s cloud computing.
This helps design and verification engineers in the embedded system domain to gain their simulation results much faster. The
result of this work is a complete verification environment, which uses the full potential of our newly defined verification pattern.

CCS Concepts: •Computing methodologies→Modeling and simulation; •Computer systems organization→ Embed-
ded systems; Reliability;

Additional Key Words and Phrases: Message Patterns, Verification, UVM Functional Safety, Embedded Systems, UML

1. INTRODUCTION

Verification is one of the most essential concepts in the overall development process. Since many
(in)famous examples have shown that redesigns or, even worse, call-backs cause high costs, system
designers have investigated many efforts to avoid faulty designs. This of course belongs also to the
automotive domain where failure or malfunction of the system can lead to severe damage to people
and environment or can even lead to death. This has been also recognized by several safety standard
such as the ISO26262 for electric/electronic systems in cars, where these issues are covered by a proper
design, requirements and verification flow, so-called safety lifecycle.

All in all it is essential to start system verification in early phases and reuse them throughout
the whole design phase to keep track with the system requirements. Furthermore, to reuse these
testbenches at the end of the safety lifecycle, for verification of system integration and validation tests.
Best combined within an approach to automatically derive testbenches from the definition of safety
goals and requirements as presented in [Weissnegger et al. 2016b]. This approach helps designers to
keep a high traceability from requirements to design, tests and their final results.
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One common way to verify systems in the embedded domain is the simulation-based approach, with
the aid to use concepts from the Universal Verification Methodology (UVM). UVMs [uvm 2016] core
functionality makes it possible to generate test environments that allow a prediction which parts of
the design can be verified from given test scenarios. This approach is available with the usage of the
so-called constrained random verification stimulus (CRV) principle. UVM becomes even more powerful
in combination SystemC, to verify the system from an early functional specification down to hardware
development on register transfer level (RTL).

One drawback of CRV verification within UVM is the huge amount of simulation runs. Many pa-
rameters and stimuli data have to be tuned and varied to make a statement about the reliability of the
system. This follows in thousands of simulation runs and is very time consuming. Therefore it needs
novel approaches to use UVM for parallel execution of simulation runs.

In this work, we use the standard UVM layered architecture pattern in combination with the enter-
prise integration pattern to facilitate our thousands of simulation-runs in the cloud such as Amazon
AWS [ama 2016] or Microsoft Azure [azu 2016]. The result is a complete framework which uses the
layered architecture pattern of UVM with the benefits of message patterns.

2. UVM

As there is a trend to more structured, modular, configurable and reusable verification methods, UVM
was defined to tackle these challenges. UVM is an Accellera System Initiative approved standard
methodology for verification and provides a UVM Class Library with all the building blocks, which are
needed to quickly develop well-constructed and reusable verification components and environments in
SystemVerilog. Furthermore it provides a well defined layered architecture as depicted in Fig. 1, to
clearly distinguish between the various abstraction levels. UVM is usually developed for SystemVer-

Fig. 1. Traditional UVM layered architecture for SystemC [Barnasconi and Curie 2014]

ilog which allows simulation and verification of digital hardware on RTL level. Since the trend in the
embedded system design as well in the verification of safety-critical systems is going to a higher ab-
straction level, various approaches tried to connect UVM with SystemC [acc 2016]. SystemC allows the
modeling and simulation of hardware- and software-components in a single language and allows the
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description on transaction level modeling (TLM) but also RTL, which leads to a faster or more detailed
simulation depending on the use case. Therefore, we will build on the approach of [Barnasconi and
Curie 2014] which defines a methodology to use UVM for SystemC.

The UVM-SystemC architecture consists of 5 Layers, which communicate through standard inter-
faces with each other. This approach allows to clearly distinguish between test case definition from
test-scenarios and also the actual verification environment (testbench) on which the sequences are ex-
ecuted. The highest layer (Test layer) defines the current tests, which consists of the selection of the
testbench and defines the test sequences. UVM Test is the top-level component and has three main
functions. It instantiates the verification environment, configures the environment (via factory pat-
tern) and applies stimulus by invoking sequences. The scenario layer contains the sequences, which
contain the behavior for generating stimulus. On this layer the actual test sequence(s) are generated.
The next layer (Functional) contains the Sequencer, which is responsible for the right arbitration and
ordering of sequences and their transactions. It controls the transaction flow from multiple stimulus
sequences. Another part of this layer is the Scoreboard, which main functionality is to check the be-
havior of the design under test (DuT). It compares the expected output (golden reference model) with
the actual output. Furthermore it is necessary for self-checking mechanism, the collection of functional
coverage and pass/fail reports. The Command layer includes the driver, monitors and checkers, which
are implemented on physical-level. The driver receives the individual sequence-transaction from the
Sequencer and applies (drives) it to the DuT (from TLM to RTL level). The Monitor samples the data
coming from the DuT and is responsible for coverage collection, checking, logging or recording. On the
Signal level, the lowest layer of this architecture, the testbench is connected and the signals are send
to the DuT.

3. UVM FOR THE CLOUD PATTERN

3.1 Context

Today, millions of test kilometer have to be driven to ensure a reliable behavior of the electronic/electrical
systems in an car [Maurer et al. 2015]. These procedure has to be done for all the different version of
a car-model, each with different features. One standard which is used in industry to test embedded
microelectronic systems is UVM. UVM provides capabilities to generate thousand of random test runs
with CRV to cover all possible parameters of a system and simulates it in a sequential manner.

3.2 Problem

CRV verification within UVM needs a lot of time and resources. Many parameters and stimuli-data
have to be tuned and varied to make a statement about the reliability of the system. In a sequential
process, each task has to wait until the prior task ends. This has the drawback that verification of a
system can take hours, days or even weeks to end. Furthermore, it brings a huge amount of license
costs with it, with which companies nowadays have to struggle. In addition, small companies cannot
afford big server farms and internal clusters to test their system in an appropriate amount of time.
With our approach, we want to speed-up the simulation time within the UVM standard.

3.3 Forces

—Computation Power: We could use faster processors and server architectures to reduce the run-
time of sequential simulation runs, but acquisition and maintenance are associated with high costs.

—Internal server farm: Companies can invest in internal server farms for parallel processing, but
this brings also high investments with it. Furthermore, it can not be guaranteed that all servers are
fully utilized the whole time.
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—Efficiency: A manually distribution of tasks is not efficient enough to guarantee a degree of capacity
utilization nor maintainable.

—Loss of tasks: Problems within the execution or termination of tasks can lead to loss of results and
important data. This cannot be done manually and must be automatically ensured by the framework.

—Architecture: To ensure a smooth workflow for the verification of thousands of simulations, the
architecture and interfaces of the approach must be clearly defined.

—Time-to-market: Simulation tasks which takes weeks or even month to finish also have impact on
time-to-market. This must be reduced to guarantee deadlines for products.

—License costs: Long simulation runs bring a huge amount of license costs with it, with which com-
panies nowadays have to struggle.

3.4 Solution

To solve the problems for our large number of simulation tasks we made an adaption of the UVM-
SystemC layered architecture by introducing messaging pattern from the Enterprise Integration Pat-
terns [Hohpe and Woolf 2003]. As mentioned before, the overall result of a simulated sequence does
not effect other configurations in any way, which leads to the possibility for the parallel processing
of sequences. Due to the fact that the simulation of a sequence is the most time consuming part of
the verification, a theoretical linear speedup can be expected. This prediction can also be underpinned
with the fact that returning results from single CPUs can be neglected compared to the simulation
time. From this point of view a cloud based approach was developed, which can be obtained in its main
features from figure 3.

3.4.1 Messaging Pattern. The messaging pattern allows for a many to many connection where only
one address has to be known to all machines. This machine accepts and distributes messages, takes
care of message persistence and can optionally monitor all consumers using a heartbeat signal. Re-
transmission is also build into the message broker (B). The worker connects to the broker (running
on the master) and uses a heartbeat signal to indicate it has not crashed or is otherwise unavailable.
Worker queues are used to distribute time-consuming tasks among multiple workers in the cloud. This

Fig. 2. AMQP worker queue from the enterprise integration patterns

is especially the case if tasks such as simulation-runs can take hours or days to complete. Thereby we
avoid doing a resource-intensive task immediately and can schedule the task to be done later and do

106



8 PublicationsSimulation-based Verification Pattern for the Cloud • 1:5

not need to wait for the task to complete. Depending on the number of workers, the task will be shared
between them.

A simple working queue pattern is depicted in Fig. 2. The Producer P is a program that creates
and sends messages over an exchange (X) to a queue (Queue). The queue stores the messages in a
kind of infinite buffer and is not bound to any limits. It is also possible that multiple producers send
messages to one queue. A broker accepts and forwards the messages to the consumer (C). A consumer
is a program that waits for the messages to receive. Each of the component of this pattern (publisher,
consumer and broker) can be swapped out to a separate machine, when thinking towards a cloud-based
cluster.

A problem of this architecture can be the loss of tasks. This can be solved by acknowledgments.
Acknowledgments have the benefit, that if a worker dies the task will be delivered to another worker.
An acknowledge is send by the consumer, if a message is received and processed. If the broker does
not receive the acknowledgement the task will be put back into the queue and redelivered to another
consumer. This mechanism ensures that no task disappears. This implementation also allows bigger
tasks to complete because it resigns of timeout-limits. To make our architecture even more reliable
the queue is declared as durable. This means that no tasks are lost, even when the server stops or
get killed. Using the quality of service (QoS) method only one message is consumed at a time and
none are prefeched from the broker. This ensures that every worker only consumes one task and only
after its completion consumes the next. Otherwise, ever n-th worker would get every n-th message
(independent of the amount of time it requires to finish a given task).

Fig. 3. Layered Architecture of the novel UVM for the Cloud solution

3.4.2 Adaption of the UVM layered architecture. In the first step of the verification process, usually
the design or verification engineer is building the testbenches depending on the safety requirements
he wants to test. In our approach he is supported through our automatic testbench generator. It helps
the designer to build very fast verification environments by reusing UVM verification component. The
automatic testbench generator takes the safety requirements and constraints defined in the SysML
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standard and builds a complete verification environment, as depicted in figure 4. Since there is a need
to simulate different scenarios depending on the use-case, the user has to define a preferred amount of
sequences. The utilization of these scenarios is done within an override file, which contains a specific
amount of override elements. The result is a verification environment model which consists of the out-
lined components on command layer, such as drivers and monitors, and their according connections to
the chosen DuT. All this steps are done in our developed Eclipse framework called SHARC (Simulation
and verification of HierARChical microelectronic embedded systems) [Weissnegger et al. 2016a]. How-
ever, from that point of view, the created test instance is only capable to simulate one certain scenario,
which has been predefined through the default values in the verification environment description.
Therefore, a XML schema was defined, which consists of a config and a further override. The aim of
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Fig. 4. Automatic generation of UVM verification components around the DuT with UML models

the config description is the name provision of the root model, which should be simulated. Furthermore
this includes also the duration of the simulation as well as its timestep. The second element is primar-
ily used to redefine certain values in terms of verification issues. This might for instance be the case, if
we want to see the influence of a certain parameter and perform various reruns with changing values.
The configuration files are stored in a queue that is processed from a master instance. Depending on
the amount of worker the simulation tasks are distributed to the worker instances. The configuration
file is passed to the simulation core and utilizes duration, timestep, inner values such as constants and
the signal descriptions for instantiated drivers.

Since a simulation is processed on a worker instance, the created bundle has to be deployed from a
centralized master. Therefore it is necessary to create an archive containing all referenced files such as
the description of the DuT, testbench with stimuli and used component-library. This created package
is then sent to a webserver where the worker instances can access them, if necessary. This avoids
needless traffic, as well as it leads to a transparent storage of task descriptions. Furthermore, this
approach allows to rerun simulations once they have been executed.

Using a large amount of machines not only results in a new linear amount of speedup but also in
a linear amount of more data. While it is still possible to evaluate the results of a single simulation
locally this gets impractical fast once there are hundreds or thousands of results to analyse. While
a location (such as a network share) which is accessible by all machines would be enough to merely
store the simulation data it is usually a better idea to store them on a server which also has the
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ability to evaluate and visualize this data. The webserver is the only server in this architecture that
actually stores data. It includes the sequencer (master) which distributed the tasks to the worker and
a scoreboard which compares the simulation results from a database. Using the webservice API of
the framework a new task is created and using the file upload feature a new workpackage including
config and package file is uploaded for this task. The master distributes the tasks to the workers. The
simulation-results, configuration used and output logs for each task and simulation are send back to
the server and stored. The data is then presented by the webserver in a human readable fashion.

Waiting Task Received

New Tasks available, receiving

Simulation Preview Uploadresults

Fetch resourcesExtract files Simulation completed Task completedNo tasks available

Fig. 5. Worker state machine

The workers are responsible for the execution of the simulation runs and send the results back to
the master. The workers connect to the broker running on the master and uses a heartbeat signal to
indicate they are available. Figure 5 shows a state diagram which corresponds to the workers behavior.
The simulation is executed as a child process so the workers can keep sending heartbeat signals during
that time. As the simulation core (SystemC) is unable to use multiple threads for simulation, the ideal
setup for a worker is a virtual machine that has only one CPU. Should such a setup be unavailable
or physical machines be used instead, it is however possible to spawn multiple worker threads on a
single machine as well. The framework does not impose any limitations on the number of workers,
usually there are as many workers as possible at any given time, they can however be easily spawned
on demand and destroyed if no longer needed (if necessary even during a running simulation as it will
be rescheduled by the master in that case). Workers do not need a persistent state as all information
for simulation is gathered from the webserver and the master.

3.5 Consequences

3.5.1 Benefits

—Reduction of simulation-time: With our cloud-based UVM approach we can reduce the time for
simulation of thousand of simulation tasks. Due to the fact that each simulations task is independent
from each other and does not effect other configurations in any way, leads to the possibility for the
parallel processing of sequences. From our approach, we can expect a theoretical linear speedup.
Furthermore, companies benefit from a faster time-to-market.

—License costs: Our framework utilizes the full capacity of the server infrastructure in a very effi-
cient way to scale down the number of licenses. Furthermore we use open standards such as SystemC
to reduce license costs.

—Flexible infrastructure: There is no need for companies to invest in big server farms. Through
footprint analysis we are able to predict the time for simulation and therefore can buy simulation
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time on demand from server and cloud providers. Simulation can be done over night, when simula-
tion time is cheaper.

—Architecture: Our pattern provides different levels of detail for the architecture of our approach.
Therefore it is defined in detail and guaranteed who is distributing the simulations tasks, what is
done when simulations fail and where the results are collected and analysed.

—Efficiency: A broker implemented in RabbitMQ automatically distributes the tasks to the worker
instances to guarantee an efficient degree of capacity utilization.

—Loss of tasks: Through using message acknowledgements we guarantee that tasks are never lost.
An acknowledgement is sent back to the consumer to tell that a particular message has been re-
ceived, processed and that it can be deleted.

3.5.2 Liabilities

—Adapt the UVM standard: The verification components have to be customized and also have to
take over other tasks. The layers architecture pattern from the standard UVM approach has to be
adapted. New layers have to be defined or merged.

—Contract with server providers: Their must be an existing contract to cloud providers such as
Amazon Web Services (AWS) or Microsoft Azure.

—Security: Security need to be considered in more detail when sensible data leaves the companies
infrastructure. This part will be not considered in our work.

4. CONCLUSION

In this paper we presented a novel layered architecture pattern approach to facilitate the parallel
execution of thousands of simulations runs, which usually takes weeks or month. The result was an
extension of the traditional UVM pattern with message patterns of the Enterprise Integration Pat-
terns. Through applying this new defined pattern to a whole verification environment, we achieved
a linear speed-up in the simulation. This framework can now be used to verify the behaviour of em-
bedded, but most notably safety-critical systems in various domains such as automotive, aviation,
health-care and many others in a reasonable time. With the help of UVM like components, the whole
system can be verified by methods such as constraint random verification which also covers corner-
cases. With this new pattern we achieve a speed-up in the execution of intensive simulation tasks and
therefore reduce verification costs which leads to a faster time-to-market. The implementation of our
approach was done with the help of rabbitMQ [rab 2016] and the AMQP protocol [amq 2016]. AMQP
raises the level of security, reliability and performance, since it allows to specify which messages will
be received and where from. The execution environment can be switched between cloud solutions such
as Microsoft Azure and Amazon AWS, but also internal cluster. The whole environment, including our
graphical design and verification tool SHARC, will be published for download and also be used for ed-
ucational purpose. A next step will be the integration of parallelize-able SystemC code which is under
investigation in several research groups.
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Abstract—The complexity of systems that interact with and
have an impact on the physical world, so-called cyber-physical
systems, is steadily growing. This is preeminently the case in the
automotive domain where we are experiencing an electrification
of the modern car, also caused by the trend to electric vehicles.
Early verification of these highly heterogeneous sub-systems on
system level is an important task in today’s development-effort
and is also demanded by several safety standards (e.g. ISO26262).
Code-generation from design-models and furthermore simulation
to verify the system-behavior is done either at a very late
stage, or even at the end of the design process. This situation
prompts the urgent demand for new techniques to simulate
the behavior in early development-phases by reusing verified
system-components. In this paper, we present a novel method
supported through a model-based simulation framework based
on a standardized modeling language (UML/MARTE). Here
we show that UML supports both, analytical methods such as
FMEA, FTA and simulation for safety-critical systems in one
methodology and tool. Our approach allows early simulation of
UML/MARTE design models within the design flow of ISO26262.
To demonstrate its benefits, our methodology is applied to an
industrial use-case of a battery management system. Results
show significant improvements compared to other state-of-the-
art approaches.

I. INTRODUCTION

In our fast-paced modern world the proportion of embedded
systems in various domains is increasing enormously. This
is also a fact in the automotive industry. It can be observed
that there is a shift towards fully electric/electronic (e/e)
systems also caused by the trend towards electric vehicles. The
industry is facing with new problems through the emergence
of many new features in cars that are also influencing each
other [1]. This raises the complexity levels in the design
and development of large systems and imposes an enormous
effort for engineers from different domains in developing their
applications. Old approaches are becoming less effective and
this is precipitating the needs for a paradigm change in design
and verification of larger systems. It is no longer sufficient to
test the behavior of single sub-systems, the focus must be on
the system as a whole and not on parts taken separately - ”the
whole is more than the sum of its parts”. This familiar phrase
is also a recommendation in the functional safety standard
ISO26262 for automotive e/e systems in road vehicles [2].
It is an approach that must be introduced very early in the

design and development process to avoid later changes that
causes costs and time-delays.

A model-based approach is an important basis for engineers
and multiple stakeholders in their quest to overcome these
complexity-issues. It helps designers to gain a quick and
augmented view of the system and provides an effective means
of communication, especially if systems are very complex and
involve a number of teams in the design. It also helps in coping
with the huge amount of requirements that must now be faced.

A model-language which is already established in the em-
bedded system domain is MARTE [3]. It is an extension of
UML2 and provides capabilities to model hard- and software,
as well as timing, resource and performance-behavior. It is
used by many semiconductor vendors and suppliers today and
is the driven system-design language in the European Catrene-
project named OpenES [4]. The OpenES is a European initia-
tive to fill the gaps in today’s system-design and to develop
common solutions to stay competitive.

Another advantage of UML/MARTE is that it is currently
supported by several commercial and open-source tools like
Eclipse’s Papyrus [5], that helps designers to model systems
in UML and extensions like SysML or MARTE. As a result of
its outstanding composition involving several levels of detail
in compliance with the Model Driven Architecture (MDA)
MARTE helps to specify the system on every abstraction, up
to very detailed platform specific models. With UML/MARTE
it is possible to model the whole design flow within the func-
tional safety standard ISO26262 as shown in [6]. Also various
recommended verification methods like Fault Tree Analysis
(FTA), Failure Mode and Effect Analysis (FMEA) or hardware
evaluation can be applied on these models [7],[8]. Another way
is to use these models to create systems from specifications
with code-generators for synthesis from VHDL models or
simulation-models in SystemC. The drawback of this approach
is that simulation of systems is done very late in the design
process when changes are very costly. Also later changes in
code are resulting in inconsistent models. Furthermore reverse-
engineering is error-prone and cumbersome. Another issue is
reusability of already verified system components that cannot
be left ignored. The majority of components in new projects
are reused and simply extended by the addition of new features
to save costs and time-to-market. This calls for new ways of
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Fig. 1. Simulation-based verification, tight and seamless integrated in the design flow of ISO26262

testing advanced features in today’s development process.
We present a novel methodology to support MARTE with

fast executable models in this work. We link the implemen-
tation of several hardware and software systems written in
SystemC (-TLM) and SystemC-AMS, with MARTE design-
models on different abstraction levels for this purpose. Since
our modeling methodology has a clear graphical representation
of composition and supports the part, ports and connector
concepts, it is well suited for system-design and system-
configuration. The level of granularity of the models can be
easily switched depending on the complexity. Simple models
serve as starting point for the highly detailed models, that are
later on used as golden reference or even synthesis. Through
these capabilities we achieve an early behavior simulation of
the whole system. Subsystems can be composed to nested
components to reduce the complexity. Whole system can be
easily integrated in a testbench (UVM) and parametrized or
even completely reconfigured for experiments under various
conditions. Our approach closes the gap between early design
and simulation of safety-critical systems, tight and seamless
integrated in the design flow of ISO26262, depicted in Fig. 1.
From the results of the simulation we obtain more information
about the expected behavior (timing, power, thermal) of the
system and can derive further requirements for safety. We
demonstrate the efficiency of our framework, with an electric
vehicle use case on system level.

II. RELATED WORK

How MARTE is used in the development process of E/E
systems is presented in several papers [9],[10],[11]. They show
how MARTE complies with the model-driven architecture and
the computation independent model (CIM), platform indepen-
dent model (PIM) and platform specific model (PSM) levels.
In these papers it is also discussed how to model hardware and
software on different abstraction levels in the design process.
They also address the issues of modeling non-functional
properties and the mapping from software applications to

platforms. The drawback of these approaches are that code-
generation of MARTE models is done very late in the design
process and also reverse engineering is an error-prone and
cumbersome task.

The authors of [12] demonstrated how to use MARTE
for hardware design and simulation. They introduced a step-
by-step methodology for hardware modeling with Hardware
Resource Models (HRM) stereotypes. The platform models
are refined until the final platform class is reached. In a later
step, these models are used to generate code with the help
of a Java plugin. A tool called Simics was used to facilitate
the simulation. Instead of using the whole MARTE spectrum
for simulation this approach only uses HRM models for code
generation of very detailed platforms.

How to generate SystemC (-TLM) and C++ code from
UML/SysML models for HW/SW co-design was presented
in [13]. To facilitate the mapping between UML/SysML to
hardware and software three profiles for UML have been
introduced, e.g. for synthesizable SystemC, synthesis exten-
sions and furthermore C integration. This paper also showed
a design flow from UML to code generation for hardware and
software. The authors demonstrated their approach by using
two case-studies. The first use case focus on co-modeling and
co-simulation to indicate the performance of their concept.
The second one shows the design flow in real applications
and the refinement to FPGAs. This approach would benefit
from a more detailed UML-profile for hardware and software
such as MARTE.

III. MODEL-BASED SYSTEM DESIGN

MARTE [3], [14] is a domain-specific modeling language
and was defined as an adaption from the OMG to address the
shortcomings of modeling platforms in UML. It is intended for
model-based design and analysis of real-time and embedded
software of cyber-physical systems. MARTE is defined as a
profile in UML2 and provides additional mechanisms for mod-
eling real-time systems, which are missing in UML. Thanks to
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Fig. 2. a) depicts an example component of the SystemLibrary with non-functional properties b) shows the system-design consisting of heterogeneous
sub-systems connected through ports

the UML extension mechanism, the software resource model
(SRM) and hardware resource model (HRM) profiles extend
UML2 with concepts for software and hardware. The purpose
of the SRM packages is to design software of real-time and
embedded applications. It consists of the SW ResourceCore
which provides the basic software resource concept. The HRM
is an extension to UML and serves as a description for
existing and the conception of new hardware platforms. These
description can be made of different levels of granularity. The
HRM is grouping most hardware concepts under a hierarchical
taxonomy. It is composed of a logical view (HwLogical)
that classifies hardware resource depending on their func-
tional behavior and a physical view (HwPhysical) that focus
on the physical nature. The HWLogical model provides a
classification for different hardware entities such as comput-
ing, storage or communication. This includes stereotypes like
HwASIC, HwProcessor, HwBus, HwDevice or HwMemory. All
the stereotypes defined in the HRM package are organized
under a tree of inheritances from more generic sterotypes. This
has the advantage, that if no stereotype suits to a used hardware
component, a more generic stereotype may fit instead. As
an example, a HwSensor inherits the properties from HwI/O,
and is furthermore a specialization of Hw Device. In contrast,
the HWPhysical package contains stereotypes as physical
components. They describe their shape, size, position within
platform, power consumption or other physical properties.

In addition it is possible to allocate software applications
to hardware resources with the help of the MARTE allocation
mechanism. For the modeling of systems on a higher level
of abstraction, MARTE provides capabilities with the general
resource models (GRM). These models can be used for com-
ponents, where no early assumptions about implementation
in hardware or software can be made. The stereotypes offer
concepts to model general platforms for executing real-time
embedded applications. This includes the modeling of both,
hardware and software. With this package it is possible to
model complete systems on a very high abstraction-level. This
helps us to model systems very early in the design process,
when design choices are still undecided. The GRM package
includes different resource types, representing a physically or

logically persistent entity e.g. ComputingResource or Stor-
ageResource. These Resources offer services to perform the
expected tasks.

Another stereotype which helps to simplify the modeling
in a component-based approach is GCM (General Component
Models). It brings the advantage of describing ports with in-
formation about incoming (in), outgoing (out) or bidirectional
(inout) communication of the different subsystems. These
FlowPorts have been introduced in MARTE to enable a flow-
oriented communication paradigm between components.

IV. SYSTEM-LIBARY

To avoid the design and simulation of larger systems from
scratch and furthermore achieve reusability, our methodology
provides a SystemComponentLibrary. This library includes all
major components for a high-level simulation of systems from
different domains e.g. automotive, mobile computing or multi-
media. It also includes components in different versions and on
different abstraction levels. These models serve on one hand
as the starting-point for future development and furthermore
as a golden reference for integration aspects. The components
are modeled as UML-Class in a composite structure diagram
as depicted in Fig.2 a). The UML-class owns the attributes and
properties of the component. Our example shows a UML-Class
named Li IonBatteryPack, tagged with HRM PowerSupply. To
describe the inputs and outputs of the battery, the ports are
tagged with MARTE FlowPorts. The stereotype PowerSupply
allows us to define different configurations for the simulation
e.g. multiplicity (number of cells), powersupply, capacity or
frequency of the battery. Besides this also non-functional
properties for power like energy consumption or dissipation
are used for the parametrization of the battery. The mapping
between MARTE and SystemC is decribed by an example of
a battery in TableI.

To raise the reusability and provide a good support for de-
velopers, the SystemComponentLibrary is built as an Eclipse-
plugin. New models can be generated and added to the library.
Updates for components can be easily checked by updating the
library from the server. This helps to support design-teams by
adding new components and keeps the library consistent.
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In order to bring the components of the SystemCompo-
nentLibrary to life, they are linked to executable models in
SystemC(-TLM) or SystemC-AMS. These steps towards high-
level simulation of cyber-physical systems are described in the
next chapter.

TABLE I
MARTE TO SYSTEMC MAPPING

MARTE SystemC
Name Stereotype/ Type Name Class/ DataType

Attribute Attribute
LiIonBattery HwPowerSupply li ion battery sc module

suppliedPower NFP Power vBatt double
capacity NFP Energy capacityCell double
r Conditions Env Conditions ambientTemp double
staticDissipation NFP Power dissiCell double
frequency NFP Frequency sampleTime double
resMult NFP Integer numberCells int

Connector DefaultLink sca signal
CAN Bus HwBus can bus sc module

adressWidth NFP DataSize addr width sc bv
wordWidth NFP DataSize data width sc bv
bandWidth NFP DataTxRate txrate int

I batt FlowPort ibat lsf in sca in
module voltage FlowPort vbat lsf out sca out
SOC n FlowPort soc n lsf out sca out
CellTemp n FlowPort cellT n lsf out sca out

V. EXECUTABLE SYSTEMC-MODELS

SystemC is a system-level modeling language for the devel-
opment of software and hardware models on different levels
of granularity, from high level simulation to register transfer
level (RTL). It is defined by Accelera, a standards organization
in the area of electronic design automation (EDA). SystemC
is an open standard and has been also approved by the
IEEE standards association. On the transaction level modeling
level(TLM), a very high level simulation, the focus lies on
communication and functionality. This serves as a golden
reference for lower level hardware models. This very detailed
level (RTL) is pin accurate and the focus lies on signals.
SystemC enables the design-teams to have a fundamental
understanding of the system at an early stage of the design
process. Through its high flexibility it enables to represent a
complete system.

SystemC tries to bridge the gap between hardware descrip-
tion language (HDL) and object-oriented language (OOP).
While SystemC is commonly used in the context of a system
on chip or to model several components in a system, it is
usually limited to the digital domain. In order to address
complex systems with digital and analog parts, an extension
was introduced under the name SystemC-AMS. This enables
the simulation of continuous-time, discrete-time and discrete-
event behavior of analog/mixed-signals simultaneously. Never-
theless, SystemC lacks a visual representation for interacting
with different stakeholders and their requirements. Because
of its C++ background, SystemC is object-oriented and has
a lot of similarities with UML and MARTE. This has also
been acknowledged by several publications [15],[16],[17] and
makes the linking with MARTE models intuitive. Because of
this and its wide acceptance in the industry and availability,
SystemC was chosen as the primary simulation language in our
approach. Our methodology bridges the gap between model-
driven design in MARTE and executable models in SystemC.

Design Phase
- System Design

 - Select from Library (SCL)
- Encapsulation

- Parametrization/Configuration

Build Phase
 - Initialize Parser

 - Load SystemC plugins

  - Parse UML

Connect Phase
- Create Signals and Transactions 

- Connect Ports

Run Phase
- Start Simulation

- Evaluate Results

Fig. 3. Methodology for executable SystemC-models from MARTE design

The executable models used in our approach are models
on different abstraction levels and in different versions. The
generic models have the potential to be used in various
domains and support reusability. The detailed models are
refinements of the generic models and have the purpose to
be used in special domains. Dependent on the domain and
abstraction level, the models are built in SystemC(-TLM) and
SystemC(-AMS). All the information for the configuration of
the system is extracted from the UML-files by the framework
at runtime. To speed up the simulation time, we created already
compiled binary files from implementation code. This has the
advantage of being able to parametrize or even reconfigure
systems and components without the need for recompiling the
code every time the system is simulated.

VI. METHODOLOGY

Our methodology is composed of four phases as depicted
in Fig.3: Design-Phase, Build-Phase, Connect-Phase and Run-
Phase.

A. Design-Phase

The first part in our methodology is the system-design. The
designer creates an UML top-class in our example eVehicle,
depicted in Fig. 2. This class describes the overall structural
architecture of the system. It is composed of the different
instances provided by the SystemComponentLibrary. They
can be easily included- and excluded from the top-class by
using the drag and drop mechanism. These sub-systems are
connected together by ports according to their specification.
Through the MARTE flow-port capability, these ports are
checked in advanced by the framework on the correct direction
of the dataflow e.g. two output-ports are connected together.
To trace the dataflow, Scope-models are added to the system
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and connected to the ports. These Scopes write the monitored
data to the trace-files to compare the results from different
tests and testbenches in a latter step.

Our framework also provides a mechanism to encapsulate
existing components and to raise the abstraction level of the
whole system. Smaller systems that model the interior design
of the class can be merged to a more simplified model.
This helps the designer to have a better view of the system,
without having too many details in the models on system-
level. This mechanism allows us to abstract the complexity of
components.

The whole eVehicle system, also referred to in our case
Design Under Test (DUT), is provided with several connectors.
These signals required for testing and debugging are brought
out to the ports of the top-class itself. This has the advantage
of connecting testbenches to the DUT for testing various
scenarios of the electric car and also for monitoring the
performance. The outcome of the design step is a netlist
that also serves as configuration and parametrization for the
simulation. It is the starting point for the build-phase.

B. Build-Phase

The heart of our Build-Phase is the self-defined parser-
methodology. The purpose of the parser is to translate a UML
model defined in one or more files to a single SystemC system.
This is done at run-time and does not require compilation of
the resulting model. When the parser is initialized it needs
the name of the top-class of the model in the diagram as
well as the name of the UML-file that contains the model.
Starting from the root node of the UML model, each child
of a node is parsed and returned. As single systems can be
composed of more detailed sub-systems, we had to define
a loop to find all properties and ports of each root note.
Each node found in the UML-file is treated as the new root
node and each sub-system is created before moving on to the
Connect-Phase. Each system may contain any number of sub-
systems, therefore this step is done in several iterations till all
properties of the root node are found. In order to keep the
framework extensible a DLL-based plugin system is used. All
the information is stored in a ConfigStore map.

C. Connect-Phase

In this phase the connector-objects are created to link the
different instances in the Build-Phase. Depending on their
nature, the connector-objects can be signals or transactions.
It is important to notice, however, that UML allows multiple
1:1 connections per port, SystemC merely allows a port to be
bound once but a signal may connect any number of ports
(basically 1:n as only one driver is allowed per signal). As a
means of handling these issues both ends of each connector are
tagged by an ID. Instead of creating new signals for connecting
to a used port, the old signal is reused.

D. Run-Phase

After all nodes, ports and properties of the UML-file are
found by the parser, the SystemC instances created and

connected, the simulation is started. A result of the Scopes
is saved as a trace-file. This file contains all the relevant
information required for the verification of the model or to
evaluate the behavior of the model for different parameters
and/or implementations for the system. Besides this, a logic
can also be added to the system to react to certain events such
as stopping the simulation in case of a signal violating the
given constraints or the system running out of energy (for a
battery powered system). An implemented dialog is also used
to configure the settings for the simulation such as duration
or timestep (resolution).

Using the Toem Impulse plugin [18] for Eclipse the results
are presented in a graphical form. The results can be displayed
in the desired manner, dependent on the nature of the simu-
lation e.g. analog interpolation for real values and numeric
representation for digital signals in a hierarchy that allows for
easy interpretations. The results may be verified against the
known or expected behavior of the (physical) system modeled.
If the system behaves as expected, it can be used for further
analysis or verification (e.g. as a golden reference model or
synthesis-able).

VII. EXAMPLE CASE STUDY:
ELECTRIC VEHICLE SIMULATION

We have applied our methodology to an industrial use
case, an electric vehicle (eVehicle) system provided by CISC
Semiconductor GmbH, to more fully illustrate its innovative
capabilities and benefits. As more and more vehicles are now
powered by Li-Ion-batteries, the challenge for engineers to
ensure reliability and fault-tolerance is also greatly increasing.
Problems with overheating or even explosions have been
frequent in the past. The main cause of these problems was
an excessively high energy intake from regenerative braking
or harsh environmental conditions. Management systems and
mechanisms are thus essential to ensure that persons are not
put at risk and that no damage is caused. This calls for safety
mechanisms to reduce the number of faults.

The overall system model of the eVehicle is depicted in
Fig.2 b). It is composed of the driver, battery, controller,
inverter, dc-motor and external load. The driver provides the
desired speed for the eVehicle. The speed be set according to
standardized maneuvers (NEDC). The controller is a model
for a PI state-space controller and maintains a constant speed
based on the information about the state variables motor
armature current and motor-speed. It is realized as ASIC and is
configured by the MARTE HwASIC stereotype. The inverter-
model implements an inverter function for a PM-DC motor
driving stage. It is comparing the actual battery voltage and
the requested controller voltage to maintain the PM DC motor
terminal voltage. It is annotated with ComputingResource
stereotype. The battery-model simulates the behavior of a
LiIon-battery pack composed of a defined set of single-cell
LiIon batteries. The appropriate number of single cells is
connected in parallel and series to obtain the necessary ca-
pacity and terminal voltage. The battery-pack terminal voltage
is calculated based on the defined parameter and the battery
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current. It also considers the temperature of the module and
its State-Of-Charge (SOC). The Battery Model also includes
a Battery Management System (BMS), which measures the
values coming from the included sensors of the battery-cell.
The BMS computes the SOC, State-Of-Health (SOH) and
is responsible for cell balancing, cell protection and demand
management of the battery. In addition the external load and
temperature of the environment can be changed during the
simulation.

VIII. RESULTS

In order to also illustrate the effectiveness of our extended
Papyrus-framework (Simulation and verification of HierAR-
Chical embedded microelectronic systems called SHARC) we
compared our results with a state-of-the-art tool in this domain:
Matlab Simulink. The exact eVehicle, built as a Simulink-
simulation, was used as golden reference to compare the
execution-time and memory-footprint for benchmarking. Fig.5
presents the monitored signals from the simulation, verified
by UVM-like components. The output of the Simulink run
is referenced as golden ref signal. The last signal (deviation)
shows the difference between signal work of both simulations.
Only when it comes to a step in signal load there is a peak in
the deviation with about 0,5 percent. This occurs because the
SystemC simulation kernel requires an additional delay at this
step where Simulink with his centralized timing solver, does
not. This produces a short shift between both signals but ends
up, after a timestep, in the same results. The average error is
0,0081 percent. Both simulations have the same accuracy with
a fixed timestep of 1× 10−3s.
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Fig. 4. Benchmark results from Matlab and SHARC simulation

Instead of only measuring the accuracy of our framework,
we furthermore compared the time needed for simulation
against Simulink. To guarantee a fair comparison in relation
to the size of the environment, both SHARC and Simulink
have been executed ”headless” (without graphical user inter-
face (GUI)). As there is no discrepancy whether SHARC is
executed with or without GUI regarding simulation time, we
executed Simulink without display, desktop, splash nor jvm.

Figure 4 shows the results of the benchmarks, executed on
Windows (Windows 7) and Linux (Ubuntu 16.04). The electric
vehicle use case includes 10 runs with different parameter
sets, where the goal is to find the optimum set which also
satisfies the safety constraints and requirements. This is not
limited to 10 runs but rather results in thousands of simulation
tasks, which have to be executed to derive further requirements
and outcomes. For demonstration reasons we have limited our
simulations to 10 runs. More information on this approach can
be found in publication [19].

The average simulation time of 10 runs in Matlab needs
104,904 seconds to execute our electric vehicle use case on
Linux. Compared to our methodology and lightweight tooling
it only takes 64,66 seconds of simulation time. This is an
average saving of 38 percent in simulation time, which also
results in reduction of license and infrastructure costs. In the
first of the 10 runs there is a major difference in the execution-
time of both tools. This drift is a result of the high memory-
usage (>500MByte) of Simulink, by contrast, our tool uses
less than 10MByte of memory for the same simulation. After
the first run the execution time improves.

Another issue is that Matlab requires the connection to a
license server, which also causes fluctuation in simulation
time. As we are working with the GNU license we do not
have to take license costs nor bandwidth problems with license
servers into account. All simulations have been executed
on an Intel Core i5-3550 @ 3.3GHz, 8GB RAM, HDD:
ST500DM002 machine.

Our framework has also the benefit to run several simula-
tions in parallel on distributed simulation cores (cloud-based
simulation) without running several instances of the tool-GUIs.
Our lightweight tooling will have a major impact for future
cloud-based solutions (small simulation core, no license costs).

IX. CONCLUSION

In this paper we presented a model-based simulation frame-
work for fast and effective simulation of safety-critical sys-
tems. We used UML/MARTE for a graphical representation of
components, because of its great capabilities for modeling both
software and hardware. MARTE helped us to model systems
from different domains and on different abstraction levels. To
bring MARTE to life, SystemC implementation-models have
been linked to the modeling environment with the help of
our methodology. This includes both, digital and also analog-
mixed signal simulation with SystemC. A model-library was
introduced that helps to speed up the design and development
process and raises reusability. Because of using UML/MARTE
models, our approach can be easily and seamlessly integrated
the design flow of safety-critical systems (ISO26262), so
that the UML models can be used for FMEA/FTA but also
simulation. Further requirements for safety are derived from
the results of the whole system simulation in early phases
(timing, power, thermal). Complex systems can be tested by
parameter variation and testbenches without recompiling the
whole system for fast verification. The detailed specification
of models in MARTE for hardware and software helped
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Fig. 5. Output-trace of the eVehicle simulation, the signals are compared to
a golden reference

us to configure and parametrize our system. Because our
approach was developed as a plugin in Eclipse, every Papyrus
UML editor is now capable of simulation by installing our
plugin. This tool will be published for download and also
be used for educational purpose. To show the efficiency this
framework was tested regarding accuracy and simulation time
by a complex example from the automotive industry. In a
next step, the verification of the system will be improved
by UVM testbenches (constraint random verification) written
in SystemC. The reusability aspect will also be improved by
relying on standards such as IP-XACT. Because our simula-
tion framework shows best results concerning small memory-
footprint and fast execution-time it will be used additionally
for parameter variation in cloud-based environments.
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C. Steger, “A Novel Simulation-based Verification Pattern for Parallel
Executions in the Cloud,” in 21st European Conference on Pattern
Languages of Programs Proceedings, 2016.

119





8 Publications

Seamless integrated Simulation in Design and
Verification Flow for Safety-Critical Systems

Ralph Weissnegger, Markus Schuß, Christian Kreiner,
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Abstract. In the automotive domain, safety plays an ever increasing
role in the development of future vehicles. Since the automotive market
is heading towards fully automated driving cars, the amount of new as-
sistance features for ensuring safe and reliable operations is rising. Today,
requirements, design and verification must follow the stringent specifica-
tions from standards such as ISO26262 for functional safety. Thus, sim-
ulation in early design design phases is key to develop safe and reliable
systems and to reduce costs and time-to-market. UML as a model-based
approach, helps to overcome the complexity issues of safety-critical sys-
tems and improves the communication between different stakeholders
(e.g. hardware, software, safety, security). In this paper, we present a
novel methodology to automatically generate testbenches for simulation
based verification starting from a first safety analysis and derived safety
requirements. Through early simulation of UML/MARTE models with
constraint random stimuli and parameters we are able to derive further
requirements for safety-critical system development. Furthermore, our
approach is compliant with the requirements, design and verification flow
of ISO26262. We will show the benefits by applying our methodology to
an industrial use case of a battery management system.

Keywords: ISO26262, safety, automotive, process, UML, MARTE, ver-
ification, simulation, model-based

1 Introduction

In the world of today, the increasing number of new assistance features for ensur-
ing safe and reliable operation in modern vehicles, also have the implication of
increasingly complex systems. The development and verification effort of these
highly complex systems in an ever increasing and more elaborate task, since
the amount of electric/electronic (e/e) components is steadily growing. In safety
terms, these systems must fulfill standards such as ISO26262 [4] (functional
safety standard for road vehicles). Therefore, OEMs and their suppliers are re-
quired to develop and test their systems according to certain levels, alias ASIL
levels.
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In the effort to cope with the high complexity in the design of safety-critical
systems, a model-based approach helps to unite stakeholders from different do-
mains. Furthermore it supports non-safety specialists in understanding the prob-
lems of the design of safety-critical systems. In addition to this, provides great
help in coping with the vast range of requirements that must currently be met.
MARTE was introduced as an extension of UML2 to overcome the high complex-
ity in the design of real-time and embedded systems. MARTE provides capabil-
ities to model hardware and software, as also timing, resource and performance
behavior. It is used by many semiconductor vendors and suppliers and is the driv-
ing system-design language in the European Catrene project entitled OpenES
[3].

Simulation plays an ever increasing and important role in the verification of
the modern car because of its advantages in easily varying the virtual environ-
ment and also representing the car in different variations, and this not least from
an economic perspective. These tests can be monitored and reproduced every
time. Another advantage of simulation is not only can it be run day and night,
but also massively in parallel.

In this work, we present a novel methodology to simulate and verify MARTE
designs supported through our Eclipse framework called SHARC [1] (Simulation
and verification of HierARChical embedded microelectronic systems). With the
help of our library, we link fast executable digital, analog mixed signal and
mechanical simulation-models with MARTE design models. These simulation-
models are implemented in open-source languages such as SystemC (-TLM) and
SystemC-AMS. Through these reusable components we achieve an early behav-
ior simulation of the whole system. The advantage of our approach is that design
models are tightly and seamlessly integrated into the design flow of ISO26262.
From this early system level simulation we are able to obtain further require-
ments for the design of hardware and software for real-time applications (timing,
power, thermal). With our proposed solution there is no need to switch between
several design or verification tools. Both state-of-the-art analytical methods and
simulation-based verification can be handled by using MARTE, SysML and our
approach. Tests derived from safety requirements can be reused throughout the
entire development cycle until final system integration and validation. We use
constraint random verification, as defined in the UVM standard, to cover all
possible parameters and various variants of a vehicle. Any shortcomings in the
design can thus be detected much earlier in the development process to reduce
costs and time-to-market.

2 Related Work

Popular approaches [5],[10],[8] have shown that analysis and verification of UML
models with methods methods such as failure mode and effect analysis (FMEA),
fault tree analysis (FTA), design space exploration (DSE), design walk through,
hardware architectural metrics evaluation or even code-generation are very ef-
ficient for testing safety-critical systems. The drawback of UML, in terms of
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code-generation and simulation to verify the system-behavior is that this is done
at a very late stage or even at the end of the design process when all details are
well known. Later changes in design are costly, they result in inconsistent mod-
els and furthermore reverse engineering is an error prone and cumbersome task.
The majority of components in new projects are reused and simply extended by
the addition of new features to reduce costs and time-to market. The reuse of
complete safety concepts, well-trusted designs and mechanisms is thus growing
more important as a means to reduce the effort in developing complex systems.
This situation prompts the urgent demand for new techniques to simulate the
behavior in early development phases by reusing verified system components.

In [9] the authors presented three different analysis techniques for architec-
tural models described in EAST-ADL, to guarantee the quality in the context of
ISO26262. One of the proposed techniques is the simulation of EAST-ADL func-
tions in Simulink. The behavior of each function was linked to FMU or Simulink
models to facilitate the simulation. The authors also described mapping rules for
the EAST-ADL to Simulink transformation (one-to-one mapping). The results
of the simulation have been traced back to the requirements. This approach was
applied to an industrial use case of a brake-by-wire system on design level. In
contrast to our approach, however, they use proprietary simulation engines with
high license costs and external tools which are not integrated into the design
and development flow.

The authors of [11] demonstrated how to use MARTE for hardware design
and simulation. They introduced a step-by- step methodology for hardware mod-
eling with Hardware Resource Models (HRM) stereotypes. The platform models
are refined until the final platform class is reached. In a later step, these mod-
els are used to generate code with the help of a Java plugin. A tool under the
name Simics was used to facilitate the simulation. Instead of using the whole
MARTE spectrum for simulation, this approach only uses HRM models for code
generation of very detailed platforms instead of system level design.

In [6] the authors presented a simulation-based methodology for require-
ments verification of SoC designs. This automatically generated a white-box
and black-box verification platform from requirements specified in textual spec-
ification format. During a simulation-based verification these very fication plat-
forms are simulated together with the SoC design to verify whether or not they
fulfill the given requirements. Lexical, syntax and semantic analysis were used
to parse textural requirements into a semi-formal format. This approach would
benefit from a standardized format such as SysML to de- fine the requirements
in tight interaction with the system design. Furthermore, this approach cannot
be adapted to an industrial use case.

3 Methodology

Since the design and development of safety-critical systems is a cumbersome and
costly task, it needs novel methods to test evaluate the design both in the early
phases and also during and throughout the entire development process. The
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reusability of well-tested designs, mechanisms or even complete safety concepts
is an issue that is currently becoming ever more prominent. Against this back-
ground we thus propose simulation-based verification of UML/MARTE design
models on the preliminary architectural assumption (preAA) level, depicted in
1. For this simulation we are using our reusable components from our System
Component Library (SCL). This library includes all major components for a
high level simulation of systems from different domains e.g. automotive, mobile
computing, health care or multimedia. It also includes components in different
versions and on different abstraction levels. These models serve on the one hand
as the starting-point for future developments and furthermore as the verified
and golden reference for integration aspects. The properties of the models are
all taken from the standard definition for UML/MARTE system, hardware and
software models. In order to bring the components of the SCL to life, they are
linked to executable models in SystemC(-TLM) or SystemC-AMS. More infor-
mation on this methodology is given in [12] and [13] . Based on the functional

  SHARC
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System Design

HW/SW Design 

HW/SW Tests

System 
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Fig. 1. Seamless integration of simulation-based verification in the ISO26262 design
flow

SRs from the functional safety concept, defined as SysML models, and the in-
formation from the preAA we are able to obtain further requirements for the
technical safety concept, described in chapter 3.1. By also taking non-functional
properties (timing, power, thermal) into account, we are able to refine the func-
tional SR and to define the technical SR. Furthermore we are able to obtain
inputs for our final system design before the step of costly implementation of
faulty design is taken.

Testbenches in the Universal Verification Methodology (UVM), to test the
design on preAA level through simulation are automatically generated from the
information and constraints of the functional SR defined in SysML. Furthermore
constraint random verification helps to cover all possible parameters and variants
of the system, but also to vary environmental conditions, to find corner cases.
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These testbenches can be used throughout the whole development cycle through
to the final system integration and validation.

3.1 UVM Testbench generation from SysML requirements

We use a simple semi-formal language to define our requirements as approaches
such as [6] have shown that informal languages can be too ambiguous for our ap-
plication. The ISO26262 also promotes the view that informal languages should
only be used for applications with low ASIL levels such as A and B and highly
recommends the use of semi-formal requirements specifications for higher safety
goals such as C and D. We thus we decided to use the benefits of the UML
profile SysML for the definition of the requirements. As SysML for requirements
lacks in proper definition for safety, we defined an extension as depicted in Fig.
2. Besides standard attributes id and text, following attributes such as type (
functional SR, technical SR, hardware SR, software SR), status (proposed, as-
sumed, accepted, reviewed), ASIL level, and pass/fail have been added to the
definition. Attributes such as id, text, status and ASIL level are also recom-
mended by the ISO26262 standard. Each safety goal in our approach is there-
fore clearly defined by our extension for safety requirements. As mentioned in

<<Stereotype>>
Requirement

+ASIL: asil_levels
+status: status_type
+pass_fail: Boolean
+Type: rel_type

<<Stereotype>>
SafetyRequirement

proposed
assumed
accepted
reviewed

<<Enumeration>>
status_type

SG
FSR
TSR
HWR
SWR

<<Enumeration>>
rel_type

A
B
C
D
QM

<<Enumeration>>
asil_levels

 

Fig. 2. An extension to the SysML profile to cope with safety requirements and to
achieve traceability

the previous chapter, the top level safety requirements (Safety Goals) are de-
rived from the hazard and risk analysis. These safety goals lead to the definition
of the functional safety concept. Here the functional SR are derived from the
safety goals in conjunction with the preAA. At least one functional SR shall be
specified for each safety goal, but also one functional SR can also be valid for
several safety goals. Each functional SR is described by the defined attributes
in our extension for safety requirements. Furthermore each functional SR in our
approach has several defined constraints for functional and non-functional prop-
erties. These constraints are defined in the MARTE value specification language
(VSL) and specify the boundaries for a fail-safe operation of the system. These
constraint precisely captures the original requirement and opening up, through
computer readable formalism, the possibility of subsequent computer-aided anal-
ysis of the characteristics of this design. The MARTE nfpConstraint are defined
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by arithmetic; logical or time expressions formed by combining operators such
as (’<’,’≤’,’=’,’6=’,’≥’,’>’) but also ’and’, ’or’ and ’xor’. The syntax used for our
constraints follows the following patterns:

Multiple constraints can be connected via simple Boolean statements such
as:

The technical SR can be derived after the systematic specification of the
functional SR and design of the preAA with the help of our SCL. The ISO26262
specifies the technical safety requirements as following [4]:

”The technical SR shall be specified in accordance with the functional safety
concept, the preliminary architectural assumptions of the item and the following
system properties: the external interfaces, such as communication and user in-
terface; the constraints, e.g. environmental conditions or functional constraints;
and the system configuration requirements. The ability to reconfigure a system
for alternative applications is a strategy to reuse existing systems.”
”Safety Mechanisms: The technical safety requirements shall specify the response
of the system or elements to stimuli that affect the achievement of safety goals.
This includes failures and relevant combinations of stimuli in combination with
each relevant operating mode and defined system state.”
”The system design shall be verified for compliance and completeness with regard
to the technical safety concept using the verification methods e.g. Simulation for
ASIL level higher than B.”

In order to support the specification of the technical SR and furthermore en-
able the verification in compliance with the technical safety concept, we defined
a novel methodology to derive further requirements and inputs from the func-
tional SR in coherence with the early system design (preAA). Using the syntax
for safety requirements we are able to generate UVM verification components
and whole testbenches from the definition of the functional SR and their con-
straints. For each constraint of the functional SR, a new UVM validator is added
on the ports or one end of the signal. A validator consists of a configurable com-
parator with the pin/port/signal attached to one input and a reference signal
or constant value attached to the second input. The outputs of the comparator
can be either 1 (true) or 0 (zero) and are connected via arithmetic or algebraic
function blocks to create the boolean operations. In addition we use non safety
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requirements in the SysML specification to provide stimuli blocks for relevant
operating modes and driving maneuvers. Depending on the non safety require-
ments and constraints and if the pin/port/signal is an unused input of a block
the testbench generator creates a stimuli block and attaches it. This block gen-
erates either values that are within the specifications in order to validate proper
operation or to generate invalid stimuli to verify safety mechanisms within the
model. To vary the parameters and stimuli of our system and to cover up corner
cases we use the benefits of Coverage-Driven Verification (CDV), with its aim to
detach from direct - user depended - testing [2]. This methodology provides the
definition of so called verification goals, which can be verified by smart test sce-
narios. The intelligence is mainly achieved by creating simulation configurations
(stimuli), with respect to some predefined constraints. This concept is widely
known as Constraint Random Verification (CRV) [7]. CRV mainly consists of
two core concepts, which is on one hand the usage of Markov-chain Monte Carlo
to guarantee coverage through probability and on the other hand the process-
ing of constraints with SAT solvers. As described above, it is important to vary
parameters such that many different input combinations can be covered. The
defined internal values of the DUT vary according to a predefined probability
distribution. In this case we use Gaussian distribution with the definition of a
value of 3 sigma.

4 Usecase: Battery Management
System

We have applied our methodology to an industrial use case, an electric vehicle
(eVehicle) system provided by CISC Semiconductor , to more fully illustrate its
innovative capabilities and benefits. As more and more vehicles are now pow-
ered by Li-ion batteries, the challenge for engineers to ensure reliability and
fault tolerance is also greatly increasing. It is crucial for ensuring safe operat-
ing conditions that the battery management systems (BMS) measure voltage,
temperature and current of the battery very precisely. This information must be
forwarded to a vehicle wide controller network to ensure a reliable and fully uti-
lized system. Problems with overheating or even explosions have been frequent
in the past. The main cause of these problems was an excessively high energy in-
take from regenerative braking or harsh environmental conditions. Management
systems and mechanisms are thus essential to assure that persons are not put
at risk and that no damage is caused. The overall system model of the eVehicle
is depicted in Fig. 3. This model gives an early view of the system on preAA
design level with little to no assumption about the actual hardware. It is com-
posed of the battery, controller, inverter, dc-motor and the battery management
unit (BMU). The BMU is included in the battery model. The driver provides the
desired speed for the eVehicle. This can be set according to standardized maneu-
vers such as the New European Drive Cycle (NEDC). The controller is a model
for a PI state-space controller and maintains a constant speed based on the in-
formation about the state variables, motor armature current and motor-speed.
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<<HwPowerSupply>>
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Fig. 3. Design under test (DUT): ports on the outside of the eVehicle class enables the
connection to verification components

The inverter model implements an inverter function for a PM-DC motor driving
stage. It compares the actual battery voltage and the requested controller voltage
to maintain the PM-DC motor terminal voltage. The battery model simulates
the behavior of a Li-ion battery pack composed of a defined set of single cell Li-
ion batteries. The appropriate number of single cells is connected in parallel and
series to obtain the necessary capacity, maximum current and terminal voltage.
The battery pack’s terminal voltage is calculated based on the defined parameter
and the battery current. A BMU is connected to the battery to measure voltage,
current and temperature of the cells/modules. The BMU computes the SOC,
State-Of-Health (SOH) and is responsible for cell balancing, cell protection and
demand management of the battery. These computed values can then processed
via a CAN controller as digital values to the power train controller. In addition,
the external load environmental conditions such as temperature can be changed
during the simulation.

In a next step the functional SR are derived from the definition of the safety
goals. An example for this would be to reuse the battery pack from a prior design
which has known operating conditions and test if it is powerful enough to power
the motor chosen for the new design (using a preliminary specifications provided
by the manufacturer).

– The maximum operation temperature allowed for the battery cells is 100◦C,
therefore this temperature shall never be reached.

– Due to the choice of battery the maximum current drawn from the cells shall
not exceed 10A.

– The cell/module voltage shall remain between 2.5V (empty) and 4.25V (max-
imum charging voltage)

– The state of charge for the individual cells shall not be lower than 10% nor
higher than 110% of design capacity.

While textual or informal definition is easy to read, according to ISO26262 a
semi-formal notation for requirements specifications is best qualified for ASIL
levels higher than B, shown in our requirements diagram in Fig.4.

These requirements and constraints can be used to test only the battery to
be included as DUT. As i bat is modeled as an input (e.g., a current sense ADC
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<<Constraint>>
{?}street_maneuver_lasvegas
{{VSL}load>(0,Nm) and load<(40,Nm) 
and driver>(0,rpm) and 
driver<(1000,rpm) and 
env_cond>(20,C) and 
env_cond<(50,rpm)}

id=1
type=SG
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operate under safe 
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<<SafetyRequirement>>
SR3

id=23
type=FSR
text= Watchdog shall cut Power 
connection to battery in case of 
too high temperature 
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR4

<<nfpConstraint>>
{?} working_range_temp
{{VSL}temp>=(-20,C) and temp <=(60,C)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} max_operating_temp1
{{VSL}temp<(150,C)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} working_range_voltage
{{VSL}module_voltage>(15,V) 
and module_voltage < (25.5,V)}
kind=required
mode=mode1

<<nfpConstraint>>
{?} working_range_current
{{VSL}i_bat<(300,A) and temp<(45,C) 
and temp>(0,C)}
kind=required
mode=mode1

id=10
text= eVehicle shall drive specified 
maneuver 

<<Requirement>>
R1

<<Constraint>>
{?} street_maneuver_eu
{{VSL}load>(0,Nm) and load<(100,Nm) 
and driver>(0,rpm) and 
driver<(1000,rpm) and env_cond>(-
10,C) and env_cond<(35,rpm)}

id=32
type=FSR
text= If measured value exeeds  
the working rage go to a safe 
state in a given time 
ASIL=B
status=assumed
pass_fail=false

<<SafetyRequirement>>
SR5

Fig. 4. Definition of safety and non-safety requirements to derive automatically test-
benches for verification

in the BMU) and temp as output, it would merely sweep the current from 0-10A
(0 as no lower boundary was defined) and evaluate if the temperature, voltage
and SoC remain within their respective bounds.

We use non-safety requirements to define driving maneuvers with an as-
sumed load and different environmental conditions. By this means we can auto-
matically create a testbench for the entire design as shown in Fig.5, including
stimuli, validators and scoreboards. The validator verifies that an input signal
does not exceed a given threshold or remains bounded between two limits. This
can basically be represented as a comparator with a user configurable operation
(’<’,’≤’,’=’,’6=’,’≥’,’>’) and one or two constants. Nevertheless, these descried
thresholds are not stringed constants. The constraints can also describe temporal
parameters as a certain peak current may be drawn from the battery but not for
a prolonged period of time. The validator components are provided by our SCL
and exists in many common configurations. Each validator has a boolean out-
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Fig. 5. Automatically generated testbench for the eVehicle model using UVM compo-
nents derived from specification

129



Paper F - SASSUR 2016

10 Lecture Notes in Computer Science: Seamless Verification

put that indicates if the constraints have been violated by the monitored signal.
The scoreboard can be configured to terminate the simulation upon violation or
continue and flag the simulation accordingly. Using our tool these problematic
simulations can be filtered and re-run using more output or a smaller timestep
to gain more insight into the problem. Testbenches from each design step can
be reused for the further steps in order to improve test coverage. This means
that while the preAA will not contain exact timing information for every specific
subsystem, its testbenches can still be reused in later design phases to verify that
the overall system is still behaving as initially intended. This design approach
incorporates elements from the test-driven, continuous integration design flows
commonly used in agile software development in the sense that for each step
the constraints from parent and current level serve as unit-tests. The scoreboard
is used to check every commit/change for errors. This is also useful in case of
refactoring e.g., if for reasons of supply problems a part/component has to be
replaced rather late in the design.

As mentioned previously stimuli are required in order to correctly evaluate
the overall design (integration testing) and not only individual components (unit
testing). While it would be possible to automatically generate the stimuli for the
overall systems from the constraints (e.g., linear search of the entire value space
for an input in correlation with each other input trying to find corner cases
that best test the design) most of them would not represent any realistic envi-
ronment. For this reason we decided to use non-safety requirements and derive
stimuli from these. Using the eVehicle as an example this could be a standard-
ized driving maneuver using a number of predefined locations for environment
parameters (e.g., ambient temperature and humidity). It is also important to
test if the designed safety mechanisms and safe states operate as designed. For
this reason we could either define stimuli that provoke the triggering of a mech-
anism (e.g., driving at full speed for a prolonged period of time under high
ambient temperature to test if the system can prevent overheating) or due fault
injection. To the terms of software development this would represent a form of
mutant testing where a deliberate fault is simulated in order to verify that a
safe state can be reached. This is especially useful if existing designs are reused
or a fault tree is given by the vendor to define the stimuli. The traces of our
simulation-based verification within UML/MARTE are depicted in Fig. 6. This
shows the analog signals such as module voltage, driver, module current, load,
celltemperature and work, which are monitored by our UVM components. The
DUT was stimulated by a driver with the street maneuver eu driving scenar-
ios. Only one run, with a specific configuration, is shown in this figure. As the
number of the simulation tasks for different parameter configurations can be
relatively high and are independent of each other, we use a cloud-based solution
for UVM [14] in order to parallelize our simulations to a very significant extent
and gain a virtually linear acceleration. This provides a flexible way to allocate
several worker instances to speed-up the time needed to simulate thousands of
tasks.
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Fig. 6. This figure presents traces from one run of our seamless simulation-based ver-
ification methodology, e.g. temperature, voltage, current and SOC of the battery

5 Conclusions

In this paper we presented a simulation-based verification methodology tightly
and seamlessly integrated in the safety-lifecycle (v-model) of the functional safety
standard ISO26262. Our tool-aided methodology can be used from early sys-
tem design, throughout the entire safety-lifecycle through to system integration
and validation. Since millions of testkilometers now need to be managed, our
simulation-based and constraint random approach helps to cover up a high per-
centage of possibilities. From an early safety analysis in conjunction with the
early system design, testbenches have been automatically generated to test the
preliminary architectural design. From this early analysis further technical but
also hardware and software requirements have been derived. Furthermore, our
approach provided important inputs for the more detailed system design. These
testbenches have been generated from the requirements and constraints defined
in the semi-formal SysML/ MARTE format with our extension for safety re-
quirements and can be used throughout the entire safety-lifecycle. We used
standardized UVM components and the benefits of constraint random verifi-
cation to provide different stimuli and configurations to find corner cases in our
system. To randomly stimulate our UML/ MARTE design models, these models
have been linked to fast-executable analog, digital but also mechanical imple-
mentation models in SystemC (-AMS). This framework was tested by a complex
example from the automotive industry in order to demonstrate its efficiency. The
use cases showed how to define constraints in the MARTE constraint language
and to generate verification components to automatically test the current pre-
liminary design. In addition our approach was developed as a plugin in Eclipse,
with the result that every Papyrus UML editor is now capable of simulation
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simply by installing our plugin. This tool will be published for download and is
also to be used for educational purposes. Further work will include the defini-
tion of safe-states and timing behavior and the generating of testbenches from
it. Furthermore, sequence diagrams will be used for the generation of the test
stimuli.
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ABSTRACT

The electrification of today’s vehicles and the high amount of new assistance features imply more and more
complex systems. The sensing and controlling of these systems is the work of the highly distributed and
connected electronic control units. To keep pace with the fast growing automotive market, reusability of
components and features is today the key to reduce costs and time-to-market. Especially when systems are
safety-critical and demand reliability, new methods and tools are thus essential to support the reusability
aspect in the development process. A model-based approach, in conjunction, moreover helps to communi-
cate between different stakeholders, provides different views and serves as a central storage of information.
Through applying reliability analysis and simulation-based verification methods on our hardware model and
furthermore automatic generation of a first virtual prototype, we are able to reduce the tools involved, thus
resulting in correctness, completeness and consistency of the entire system.

Keywords: UML, functional safety, ISO26262, cyber-physical system, virtual prototyping.

1 INTRODUCTION

In the world of today, the amount of embedded electrical/electronic (E/E) systems in various domains is
highly increasing to a very great extent. When we think about the complexity of the past few years, it is ap-
parent that new applications have emerged in which systems are not only interacting with each other but also
have impact on the physical world, the so-called cyber-physical systems. Depending on their application,
they must fulfill different requirements ranging from timing constraints, performance behavior, low power
consumption, thermal or even working capability under different environmental conditions. The point here
is, we live in a world where cyber-physical systems are ubiquitous, they have impact on our daily lives and
the malfunction of these systems can lead to severe damage or injury to people. We must thus assure the
dependability of these systems.

This is even more obvious when we turn to the automotive domain. It can be observed that there is a shift
towards fully E/E systems resulting from the trend to electric vehicles.The sensing and controlling is the
work of the highly distributed electronic control units (ECU) and it is no surprise, that through all these
new features in cars, more than 100 of these microcontrollers (Charette 2009) are currently integrated in a
modern car. This situation has also an impact on the amount of software in cars today, which can total 150
million lines of code (Eitdigital 2016). The industry is facing new problems through the emergence of many
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new (assistance-) features that are also influencing each other. In turn, this raises the complexity level in the
design, development and verification of complex systems and imposes an enormous effort for engineers in
developing their applications. In terms of safety, these systems must fulfill standards such as the ISO26262
(functional safety for road vehicles), (ISO 26262 2011). Since this standard is now treated as state of the art
in court, OEMs and their suppliers are required to develop and test their systems towards the recommended
measures and methods.

When we discuss the design of a system, a single modeling language immediately springs mind, the Unified
Modeling Language (UML), (Group 2015). Having the roots in the software domain, UML paved the way
and established a model-based thinking in various engineering domains, far across the borders of conven-
tional software design. Since UML comes with several extensions such as MARTE (OMG 2016), SysML
(Omg 2015) or EAST-ADL (EAST-ADL 2017), furthermore engineers from different domains can use the
full potential of an object-oriented approach. MARTE was introduced to overcome the enormous complex-
ity issues in the design of real-time and embedded systems. It provides capabilities to model hardware,
software as also as system design.

Since a state of the art car of today exists not only in one single version, but rather in several hundreds of
variants all with different features, each of these must be exhaustively tested to fulfill the standards. Millions
of test kilometers must be driven to ensure the reliability of a car and it is neither economic nor safe to test
them in a real environment (Maurer, Gerdes, Lenz, and Winner 2015). Simulation plays an ever increasing
and important role in the verification of the modern car because of its advantage in easily varying the virtual
environment and to representing the car in different variations, not least from an economical perspective.
Simulations can be done in early development phases, where the detailed implementation of a function is
still undecided and furthermore, on platform specific models where the hardware and software are explicitly
defined (virtual prototype). Applied verification methods and tests can be monitored, reproduced and rerun
every time. Another advantage of simulation is that it cannot only be run day and night, but also massively in
parallel. A specification and simulation language, which shares the same philosophy as the UML/MARTE
approach, is SystemC (Accellera Systems Initiative 2017). Like UML, it shares the MDA (Model Driven
Architecture) approach, starting from a computational independent system design, down to hardware and
software design.

The ISO26262 recommends different verification methodologies used for the hardware platform use. These
includes design walk through, FTA/ FMEA, hardware architectural metrics evaluation but more importantly,
hardware prototyping and simulation for higher ASIL levels. These simulations, including virtual prototyp-
ing, can then be used for further hardware verification methods such as fault injection test, which is currently
the key for testing the reliability of the hardware. Several research institutes are now working on execut-
ing fault injection, also on higher abstraction level such as transaction level modeling (TLM). This has the
advantage that this method can be applied on faster simulation models without losing information from the
more detailed models (RTL, register transfer level). Virtual prototyping has the benefit that embedded soft-
ware can be tested much earlier, before a first real hardware prototype is available. Changes on a virtual
hardware design are much faster than changes on the real platform, which takes weeks or months of redesign
and production, which in turn has impact on time to market. With intensive simulation, corner cases but also
long term reliability errors can be encountered, which also prevents costly product recalls. Environmental
impacts on the virtual prototype can be simulated and reproduced, where real testbeds are not capable of this
kind of verification. The drawback, a complex virtual prototype (VP) is not developed overnight. It takes a
lot of effort, experienced designers and engineers to build a so called digital twin of the actual hardware. Our
proposal is thus to reuse models for virtual hardware prototyping from open libraries such as Open Virtual
Platform (OVP), (OVP 2017).

In this work we present a novel design and development flow for a safety aware virtual prototype. This de-
sign flow is conform to the ISO26262 standard and meets all its requirements to produce a reliable product
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in the end. The whole system, from a first functional specification down to hardware design, is specified by
standardized modeling languages. Before the virtual prototype is generated from the hardware specification,
several reliability analysis methods are applied and executed on this specification. This allows an early eval-
uation of the hardware design regarding safety, before testing the prototype in simulation. Furthermore, we
show the integration of the generated virtual prototype into the system design, to verify the interfaces and its
functionality. The whole methodology is available through the developed design and verification framework
named SHARC (Simulation and Verification of Hierarchical Embedded Microelectronic Systems), (CISC
2017).

2 RELATED WORK

The authors of (Macher, Stolz, Armengaud, and Kreiner 2015) aimed at achieving consistency of informa-
tion between several tools involved in the development process, through to a single source of information
principle. In the goal of achieving dependability (safety, security) in the development process between dif-
ferent teams and stakeholders, they decided against a document-centric approach and used the capabilities of
UML and SysML for their design. This in turn improved consistency, correctness, and completeness of the
entire system under development. The toolchain in this approach focused more on the system and software
development and did not take hardware development into account. The authors also propose to update their
profile in order to work efficiently on hardware development as such.

To overcome the issues with consistency within design and simulation models, the authors of (Sporer,
Macher, Armengaud, and Kreiner 2015) proposed a model transformation framework between SysML and
Matlab/Simulink. They support a consistent and traceable refinement from the early concept phase through
to software implementation and this in a bidirectional manner. The authors also claim that a model-based
design helps to enable different views for different stakeholders, different levels of abstraction, and central
storage of information. Nevertheless, the author’s focus was more on the software architecture generation
from system design rather than on the requirements for hardware design.

Popular approaches (Adler, Domis, Höfig, Kemmann, Kuhn, Schwinn, and Trapp 2011) and (David, Idasiak,
and Kratz 2009) have shown that UML as modeling language can be efficiently used with analysis and
verification methods such as FMEA (failure mode and effect analysis), fault tree analysis (FTA), design walk
through (Gvero, 2013), code-generation and many more. The drawback of UML, in terms of simulation to
verify the system behavior is, that code-generation can only be done at a very late stage or even at the end
of the design process, when all details are very well known. Later changes in design are costly and result
in inconsistent models and furthermore reverse-engineering is an error prone and cumbersome task. The
majority of components in new projects are reused and simply extended by the addition of new features to
reduce costs and time-to market. The reuse of whole safety concepts, well-trusted designs and mechanisms is
thus becoming more important to reduce the effort required for developing complex systems. This situation
prompts the urgent demand for new techniques to simulate the behavior in early development-phases by
reusing verified system components.

3 USE CASE

Throughout this paper we will demonstrate our methodologies on a relevant problem in today’s automotive
domain, a battery management system for Li-ion powered electrical vehicles. This industrial use case was
provided by CISC Semiconductor GmbH, based in Austria and the United States. This use case will help to
illustrate more fully the innovative capabilities and benefits of our approach. As more and more vehicles are
now powered by Li-ion batteries, the challenge for engineers to ensure reliability and fault tolerance is also
greatly increasing. It is crucial for ensuring safe operating conditions of a battery that monitoring systems
such as the battery management systems (BMS) measure the voltage, temperature and current of the battery
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very precisely. This information must be forwarded to a vehicle-wide controller network to ensure a reliable
and fully utilized system. Problems with overheating or even explosions have been frequent in the past.
The main cause of these problems was an excessively high energy intake from regenerative braking or harsh
environmental conditions. Management systems and mechanisms are thus essential to assure that persons
are not put at risk and that no damage is caused.

To achieve a first executable specification of our use case, we used the methodologies provided in (Weiss-
negger, Schuß, Kreiner, Pistauer, Kay, and Steger 2016), to connect the UML/MARTE design models with
reusable simulation models (model library) in SystemC (-TLM)/ SystemC-AMS. These functional models
are early executable models on a high level of abstraction and can be refined, depending on their purpose,
through to more detailed models. The provided model library contains analog and digital models to gain an
early and fast evaluation of the functional specification on system level. With this approach moreover, we
eliminate the tedious task of exporting our gathered data to other simulation tools such as Matlab/Simulink
and leave the UML/MARTE design as a single source of information. Furthermore, we rely on standardized
and open modeling and simulation languages and keep the costs for licenses low.

Figure 1: Overall system level description of the electric vehicle use case with UML/MARTE.

The overall system of the eVehicle is depicted in Figure 1. For reasons of simplification, we only consider
the major components of the electric vehicle, for the analysis of the battery and the BMS. This includes
the battery pack in Li-ion technology, the BMS which measures voltage and temperature of the battery, an
inverter ECU, a controller and the electric motor model. Two main factors influence the behavior of the
eVehicle. The driver provides the desired speed (rounds per minutes) and on the other hand the load on
the motor shaft. These stimuli can be set according to standardized maneuvers such as the New European
Drive Cycle (NEDC), or the newer standards known as the worldwide harmonized light-duty vehicles test
procedure (WLTP), which will be introduced in 2017.

4 SPECIFICATION OF THE HARDWARE PLATFORM

From the gathered information of our functional and executable specification we now delve deeper into the
hardware design. Since MARTE and SystemC share the same philosophy to move from system to hardware
and software development, we are now able to specify, through refinement, the internal architecture of our
BMS platform. As the major goal of this work is to build a ISO26262 safety aware platform, this is an
important step in the development process and takes a lot of effort into account (Kreiner 2015), since many
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different methods and measures have to be applied to the hardware platform to guarantee the final result of
a reliable and safe product.

Since the OVP virtual prototype consists more or less of a set of SystemC -(TLM) files including a TCL
script, one goal of this work is to include the whole generation of the virtual prototype into a seamless
design flow for safety critical systems. Furthermore, the design and configuration of the VP on a graphical
modeling standard, in this case UML/MARTE. This approach brings the advantage of being able to evaluate
and analyze the configuration of the hardware design before the actual prototype is generated from UML
models. OVP itself does not support verification regarding safety, nor is OVP till now embedded in a
seamless design flow.

As mentioned in the previous chapter, UML/MARTE provides several levels of detail for the specification
of the hardware platform. The hardware resource model (HRM) package provides several models to de-
scribe subsystems such as HwProcessor, HwBus, HwDevice or HwMemory in a logical and physical way.
Although, UML/MARTE provide a rich set of different stereotypes to describe the hardware platform, it
does not provide the level of detail for the hardware configuration as expected by the OVP methodology.
Several mandatory properties such as the BusInterface or Memory mapped or the VLNV (vendor, library,
name, version) principle are by now not supported in the MARTE standard.

To overcome these issues, we rely on the specification of the IP-XACT standard, which helps us to define
our platform with a sufficiently high degree of detail for the generation of the virtual prototype. Both, IP-
XACT and OVP rely on the VLNV principle for structuring the models. We thus built on approaches such
as (André, Mallet, Khan, and de Simone 2008) to extend the MARTE standard by properties in IP-XACT
for hardware description.

Figure 2: Hardware platform of SaVeSoC including IP-XACT extensions for MARTE.

Figure 2 depicts the composed structural architecture model of the platform consisting of a processor, bus,
memory, CAN and two ADCs. For simplification we only show the major components of the design of the
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battery management system. The designer can easily compose his system by using the standard models from
the MARTE library such as HwProcessor for the CPU, HwI_O or HwComponent for peripherals, HwRam
for memory or HwBus for the internal bus or CAN bus. Depending on the nature of the component, the
designer is able to extend the component with specific hardware properties in the IP-XACT standard such
as MemoryMaps and BusInterface. The properties from the IP-XACT standard are additionally shown in
the description of the MARTE model. Further extensions for IP-XACT such as VLNV can be added to the
hardware components as well.

5 GENERATION AND EVALUATION OF THE VIRTUAL PROTOTYPE

5.1 Evaluation of the Hardware Configuration

Based on the specification of our hardware platform in Fig. 2 we are able to perform different evaluation
methods on our hardware design. As mentioned in the previous chapters, there are several methods which
can be used to evaluate the reliability and safety of our hardware architecture, one of these is the hardware
architectural metrics evaluation. The hardware architectural metrics are handled in Part 5 (ISO 26262 2011)
of the ISO26262, product development at the hardware level. This evaluates the hardware architecture of the
item against the requirements for fault handling. This part also includes guidance on avoiding systematic
and random hardware failures by means of appropriate safety mechanisms. Each safety-related hardware el-
ement is analyzed regarding single point (SPFM), residual and multiple point faults (LFM). It also describes
the effectiveness of the hardware architecture in coping with random hardware failures (PMHF). Each hard-
ware part is to be protected by means of safety-mechanisms. The diagnostic coverage gives evidence of the
effectiveness of these mechanisms. Whether the item (system or array of systems according to ISO26262)
passes or fails a given ASIL is also a result of the hardware architectural metrics evaluation. In order to
achieve a specific ASIL, the values from Table 1 must be met (FIT- failure in time).

Table 1: Architectural Metrics - evaluates whether the hardware achieves a certain ASIL, according to
ISO26262.

ASIL B ASIL C ASIL D
SPFM ≥ 90% ≥ 97% ≥ 99%
LFM ≥ 60% ≥ 80% ≥ 90%
PMHF < 10-7h-1 < 10-7h-1 < 10-8h-1

To perform this evaluation on our hardware specification, we built on approaches such as (Weissnegger,
Pistauer, Kreiner, Römer, and Steger 2015), (Weissnegger, Pistauer, Kreiner, Kay, and Steger 2015) and
(Das and Taylor 2016). These approaches use the capabilities of UML/MARTE and IP-XACT to perform
several quantified methods to evaluate the reliability of the hardware platform. Furthermore, they defined an
extension in IP-XACT for fault models, which can be reused for different hardware platform configurations.
These reuse strategies are commonly used in industry and are known as clone and own. The existing and
reused safety models can give important feedback through an early safety assessment for a modified platform
or even a new product. Changes and adaption on the overall platform must be taken into account, of course
when reusing safety artifacts during development. Since the main contribution of this paper is the generation
and integration of the virtual prototype into a seamless design and development flow, we do not go into detail
on the hardware evaluation. A more detailed information is given in (Weissnegger, Pistauer, Kreiner, Römer,
and Steger 2015).
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5.2 Generation of the Virtual Prototype

One of the outlined goals in this work is to develop and test embedded software within the development
phases, on a realistic hardware prototype of the target system, before the actual platform is available. Em-
bedded software is often written in a desktop environment, on a general purpose operating system of the
host system. This approach often differs often significantly from the target platform and parts of the written
software need to be adjusted. One way to deal with this problem is the usage of an instruction set sim-
ulator (ISS) and hardware visualization. Due to a vendor variety of components within SoC design, the
simulation can be very difficult. Hardware emulators are very popular for this issue, but require the detailed
RTL description of the developed system, which is a contradiction to the outlined goal of a homogeneous
development environment. OVP makes it possible to create virtual platform models, with SystemC TLM
2.0 support. OVP models can be executed much faster than their counterparts developed in RTL, since their
level of abstraction is higher but still appropriate for modeling purposes.

Relying on the ideas of model driven engineering the virtual hardware prototypes is modeled in a graphical
way. After a comprehensive hardware safety analysis, the developed system design is moreover generated
and integrated into the existing modeling framework. Therefore a methodology was defined, which converts
the according UML platform description into a proprietary TCL file, containing the necessary information to
generate source code with OVPs iGen tool. For the graphical platform description we rely on the capabilities
of UML/MARTE. Additional properties, which exceeded MARTEs capabilities got defined by additional
IP-XACT stereotypes. Both TCL and IP-XACT are relying on the VLNV principle. Compiled to a shared
object the virtual platform can be simulated along with other components from the provided library. This
approach guarantees a seamless integration of platforms into the existing simulation framework and enable
the co-simulation of a virtual hardware platform together with a model of the physical environment in
which it is embedded. The OVP iGen converter takes the information from the TCL script and generates
a full SystemC TLM2.0 platform using the modular components of the OVP library. The resulting virtual
prototype can then be used for further hardware simulations, such as fault-injections on TLM level.

5.3 Integration and Verification of the Virtual Prototype

Since our whole methodology (from functional specification through to hardware and software design) re-
lies on the same modeling language and furthermore the same hardware description language respectively
system-modeling language, we are easily able to reapply our generated safety aware virtual prototype into
the functional specification of the system design. After generation, the hardware description of the SaVeSoC
platform with the whole interface specification is added to the UML model library and can be reapplied to
the system design including the generated simulation files in SystemC. This saves time in terms of integra-
tion effort, when testing the virtual prototype on the functionality of the whole system, as recommended in
ISO26262. System-level testbenches can also be reused for the verification of the entire system including
the integrated VP. The whole process is depicted in Figure 3. By adding a smaller V-model to the traditional
approach, we are closing the technological and organizational gap between system design and hardware
development which exists in today’s tool flows. Since our design and simulation languages in use, share
a seamless development flow, no information transfer is needed between those design levels. Changing
requirements in the specification can also be easily and efficient tested for the virtual prototype.

Figure 4 depicts the resulting system level description including the battery and new defined BMS hardware.
The battery component is no longer a black box where the functionality is described in SystemC. It is now
a white box, where the detailed hardware of the battery component is specified. It consists of the SaVeSoC
element, which is the hardware platform of the BMS including an application for plausibility checks. It
measures the voltage and temperature of the batterypack over two ADC and computes the state of charge
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Figure 3: Process of SaVeSoC integration into functional specification.

and stage of health. The interfaces of the battery model remained the same, since no changes have been
made to the interface description. Since we are relying on the same simulation engine, the virtual prototype
can now be easily tested on a higher level environment, which also speeds up the overall simulation time. A
challenge when integrating the VP to the functional specification was the communication interface between
the functional simulation environment of SystemC-AMS and the OVP platform, because these platforms
are mainly used to process data measured from embedded sensors. We thus implemented communication
channels which guarantee data exchanges between different SystemC dialects. The authors of (Lonardi and
Pravadelli 2015) rely on the idea that the simulation engine is executed in a single process, with the SystemC
and OVP simulator running in different software threads. The authors mainly focused on the capability
to co-simulate SystemC RTL models, with either QEMU or OVP. To avoid overheads from the use of
sockets, they established the communication channel via a shared memory and synchronization mechanism.
Furthermore they developed a SystemC bridge to enable the connections to the external hardware simulator.
Since the original component library is not meant to be cycle accurate, the main focus was set to establish
the communication between the existing SystemC-AMS components and the TLM2.0 models provided in
the OVP. The paper (Damm, Grimm, Haas, Herrholz, and Nebel 2008) describes the main properties of
both sides and how synchronization is performed internally. SystemC AMS provides so-called converter
ports to establish a connection between timed data flow (TDF) modules and an ordinary SystemC signal. In
the event of an access to such a port, the AMS kernel triggers an interrupt, which causes a context switch
to the SystemC/OVP simulator. The crucial part of the implementation was therefore the conversion from
SystemC-AMS linear signal flow (LSF) to TLM and how to handle the data stream of an arbitrary LSF
module to the ADC peripheral of the OVP platform.

Figure 5 shows the used components for converting the initial LSF signal to a TLM signal. The sca_lsf::sca_-
tdf_sink is a component of the SystemC AMS library, used to sample arbitrary input data and convert it to
TDF. The self-defined adc_module processes the TDF signal so that it is written to the Adin port of the adc0
within its processing() procedure. The adc0 is part of the OVP library, and was adapted slightly to meet
our needs. The port of the ADC is implemented with a call back function, which triggers the conversion
of the ADC. Afterwards it can be read with the implemented driver, executed on the CPU. Since the OVP
module requires the usage of a certail tlm_signal_port as TLM target socket for the communication, we
adapted and advanced the approach of (Damm, Grimm, Haas, Herrholz, and Nebel 2008) to meet our needs.
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Figure 4: Virtual Prototype integration into the functional specification of the system design to verify the
functionality.

Secondly, we omitted the suggested internal FIFO regarding data loss. This can be reasoned by reference to
the constant sampling rate of the AMS simulation. A fixed size FIFO would nevertheless lead to data loss if
the processor does not execute sufficient instructions per second.

Figure 5: Communication channel for the interaction between SystemC AMS and OVP TLM2.0.

6 CONCLUSION

In this paper we presented a seamless design and verification process for safety-critical systems. A standard-
ized modeling language based on UML was used to represent the design flow, from functional specification
down to hardware and software. This model-based approach eases the communication between different
stakeholders involved in the development process and serves as a single-source of information. Through
tight integration of recommended safety analysis methods such as FTA, FMEA, hardware architectural met-
rics and simulation-based verification, we achieved consistency, correctness and completeness throughout
the development process. The hardware architecture was evaluated by extensions to a well-known hardware
description in the industry, IP-XACT. Existing and reusable hardware description was used for system de-
sign and integration. Our tool-aided method helped to speed up the evaluation process, and to reduce costs
through reusability. The evaluated hardware description was then used to automatically generate a safety
aware hardware virtual prototype, which was used to test correctness regarding the functional specification.
This closes the technological and organizational gap in today’s toolchain of safety-critical system develop-
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ment. Furthermore, this early virtual prototype can be used for fault-injection tests, as recommended by
the functional safety standard. In addition our approach was developed as a plugin for the Eclipse, with the
result that every Papyrus UML editor can be used for safety aware development of cyber-physical systems,
simply by adding our plugin. This tool is named SHARC (Simulation and verification of HierARChical em-
bedded microelectronic systems) is to be published for download and is also used for educational purposes.
Further work will include the automatic generation of TLM fault-injection tests for the generated virtual
prototype.
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Abstract

The modern automotive market is heading towards fully automated self-driving cars. Following this evolution, the amount of new
assistance features for ensuring safe and reliable operations is rising, thus the design and verification of electric/electronic systems
is becoming more and more complex. Simulation-based verification is key nowadays to test the reliability of a system, since the
costs for physical tests cannot be handled anymore. Current tools and design flows hit the limits of complexity and therefore are
not capable to efficiently address software and hardware design and optimization in a joint way. Furthermore, the technological,
organizational and design gap in today’s flows are not covered by current methods and tools. To cope with the high complexity in
the integration of embedded systems, the use of advanced methods and design tools is more relevant than ever. In this work, we
present a design, simulation and verification framework named SHARC. This framework allows an efficient verification of safety-
critical networked embedded systems regarding functional safety (ISO 26262). Moreover, we achieve to merge a simulation-based
approach, including virtual prototyping, with quantified reliability analysis without losing consistency.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

In the automotive domain, safety plays an ever increasing role in the development of future vehicles. Today,
requirements, design and verification must follow stringed specifications from standards such as ISO26262 for func-
tional safety. The sensing and controlling is the work of the highly distributed electronic control units (ECU) and
it is no surprise, that through all these new features in cars, more than 100 of these microcontrollers1 are currently
integrated in a modern car. This situation has also an impact on the amount of software in cars today, which can total
150 million lines of code2. Since 60% of vehicle recalls are nowadays due to software defects3, new methods such
as virtual prototyping (VP) helps to test embedded software in much earlier design phases, before a first real hard-
ware prototype is available. Changes on a virtual hardware design are much faster than changes on the real platform,
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which takes weeks or months of redesign and production, which in turn has impact on time to market. With intensive
simulation, corner cases but also long term reliability errors can be encountered, which also prevents costly product
recalls. Environmental impacts on the virtual prototype can be simulated and reproduced, where real testbeds are not
capable of this kind of verification. The drawback, a complex VP is not developed overnight. It takes a lot of effort,
experienced designers and engineers to build a so called digital twin of the actual hardware. Our proposal is thus to
reuse models for virtual hardware prototyping from open libraries such as Open Virtual Platform (OVP),4.

In this work we present a novel design and verification framework named SHARC (Simulation and Verification of
Hierarchical Embedded Microelectronic Systems),5. In particular, we will focus on a design and verification flow for
a safety aware VP (SaVeSoC - Safety aware Virtual Prototype evaluation and verification of a System on Chip). This
design flow is conform to the ISO26262 standard and meets all its requirements to produce a reliable product in the
end. The whole system, from a first functional specification down to hardware design, is specified by standardized
modeling languages (UML/MARTE). Before the VP is generated from the hardware specification, several reliability
analysis methods are applied and executed on this specification. This allows an early evaluation of the hardware design
regarding safety, before testing the prototype in simulation. Furthermore, we show the integration of the generated
VP into the system design, to verify the interfaces and its functionality.

The whole process is depicted in Figure 1. By adding a smaller V-model to the traditional approach, we are closing
the technological and organizational gap between system design and hardware development which exists in today’s
tool flows. Since our used design and simulation languages share a seamless development flow, no information
transfer is needed between those design levels. Also changing requirements in the specification can be easily and
efficient tested towards the VP.

Item Definition

Development/Design Verification/Validation

Autom. Generation

FMEA/FTA

HW Arch Metrics 
Evaluation

System 
Integration Tests

System Safety 
Validation

Virtual Prototype
(SaVeSoC)

preAA

System Design

Hardware 
Design

Testing towards 
functional specification

SaVeSoC

Design walk through

Fault Injection

Technological and 
Organizational Gap

Fig. 1. Process of SaVeSoC integration into functional specification

2. Related Work

Popular approaches such as6 and7 have shown that UML as modeling language can be efficiently used with analysis
and verification methods such as failure mode and effect analysis (FMEA), fault tree analysis (FTA)8,9, design walk
through10, code-generation11,12,13 and many more. The drawback of UML, in terms of simulation to verify the system
behavior is, that code-generation can only be done at a very late stage or even at the end of the design process, when
all details are very well known. Later changes in design are costly and result in inconsistent models and furthermore
reverse-engineering is an error prone and cumbersome task. The majority of components in new projects are reused
and simply extended by the addition of new features to reduce costs and time-to market. The reuse of whole safety
concepts, well-trusted designs and mechanisms is thus becoming more important to reduce the effort required for
developing complex systems. This situation prompts the urgent demand for new techniques to simulate the behavior
in early development-phases by reusing verified system components.
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Two major European projects that also relate to a model-based design in the automotive domain are the SAFE14

(Safe Automotive soFtware architEcture) and MEANAD15 (Model-based Analysis & Engineering of Novel Archi-
tectures for Dependable Electric Vehicles) project. The objective of the SAFE project was to define development
processes complying with functional safety and to develop new methods for defining safety goals. Furthermore, the
aim of this project was to improve dependability from vehicle to component and the early evaluation of safety architec-
ture. During this project, this has been achieved by defining a meta-model for a model-based safety analysis, which is
based on existing technologies (ReqIF, EAST-ADL and AUTOSAR). With the scope on Fully Electric Vehicle (FEV)
and to bring the engineering of FEV to a next level, the MAENAD project extended the EAST-ADL2 standard with
advanced capabilities to facilitate development of dependable, efficient and affordable products. By using a common
modeling language in the project, they achieved to understand engineering information across different departments
and companies, to exchange engineering models between different organizations and to progress jointly on tools and
methodologies for modeling, analysis and synthesis. In addition, the MAENAD project proposes to use an overall
design methodology for FEV development.

3. Use Case

Throughout this paper we will demonstrate our methodologies on a relevant problem in today’s automotive domain,
a battery management system (BMS) for Li-Ion powered electrical vehicles. This industrial use case was provided by
CISC Semiconductor GmbH, based in Austria and the United States. This use case will help to illustrate more fully the
innovative capabilities and benefits of our approach. As more and more vehicles are now powered by Li-Ion batteries,
the challenge for engineers to ensure reliability and fault tolerance is also greatly increasing. It is crucial for ensuring
safe operating conditions of a battery that monitoring systems such as the BMS measure the voltage, temperature and
current of the battery very precisely. This information must be forwarded to a vehicle-wide controller network to
ensure a reliable and fully utilized system. Problems with overheating or even explosions have been frequent in the
past. The main cause of these problems was an excessively high energy intake from regenerative braking or harsh
environmental conditions. Management systems and mechanisms are thus essential to assure that persons are not put
at risk and that no damage is caused. For reasons of simplification, we only consider the major components of the
electric vehicle, for the analysis of the battery and the BMS. This includes the battery pack in Li-Ion technology, the
BMS which measures voltage and temperature of the battery, an inverter ECU, a controller and the electric motor
model.

To achieve a first executable specification of our use case, we used our methodologies provided in16, to connect
the UML/MARTE design models with reusable simulation models (system component library) in SystemC with
extensions such as transaction level modeling (TLM) and analog mixes signal (AMS). These functional models are
early executable models on a high level of abstraction and can be refined, depending on their purpose, through more
detailed models. The provided model library contains analog and digital models to gain an early and fast evaluation of
the functional specification on system level. This functional specification has been tested by the automatic generated
testbenches described in17. With this approach, we moreover eliminate the tedious task of exporting our gathered
data to other simulation tools such as Matlab/Simulink and leave the UML/MARTE design as a single source of
information. Furthermore, we rely on standardized and open modeling and simulation languages and keep the costs
for licenses low.

4. Specification and Configuration the Hardware Platform

From the gathered information of our functional and executable specification we now delve deeper into the hard-
ware design. Since MARTE and SystemC share the same philosophy to move from system to hardware and software
development, we are now able to specify, through refinement, the internal architecture of our BMS platform. As the
major goal of this work is to build a ISO26262 safety aware platform, this is an important step in the development
process and takes a lot of effort into account18, since many different methods and measures have to be applied to the
hardware platform to guarantee a reliable and safe product in the end.

A goal of this work is to include the whole generation of the VP into a seamless design flow for safety criti-
cal systems. Furthermore, the design and configuration of the VP on a graphical modeling standard, in this case
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UML/MARTE. This approach brings the advantage to evaluate and analyze the configuration of the hardware design
before the actual prototype is generated from UML models. OVP itself does not support verification regarding safety,
nor is OVP till now embedded in a seamless design flow.

Although, UML/MARTE provide a rich set of different stereotypes to describe the hardware platform (HwBus,
HwMemory, HwProcessor), it does not provide the level of detail for the hardware configuration as expected by the
OVP methodology. Several mandatory properties such as the BusInterface, MemoryMaps or the VLNV principle are
by now not supported in the MARTE standard. To overcome this issues, we rely on the specification of the IP-XACT
standard, which helps us to define our platform in a sufficient high degree of detail for the generation of the VP. Both,
IP-XACT and OVP rely on the VLNV principle for structuring the models. Therefore, we built on approaches such
as19 to extend the MARTE standard by properties in IP-XACT for hardware description. Figure 2 shows a snapshot

Fig. 2. Hardware platform of SaVeSoC including IP-XACT extensions for UML/MARTE.

of the composed structural architecture model of the platform consisting of a processor, bus, memory, CAN and two
ADC. For simplification we only show the major components of the design of the battery management system. The
designer can easily compose his system by using the standard models from the MARTE library. Depending on the
nature of the component, the designer is able to extend the component with specific hardware properties in the IP-
XACT standard such as MemoryMaps and BusInterface. The properties from the IP-XACT standard are shown in
the description of the MARTE model. Further extensions for IP-XACT such as VLNV can be added to the hardware
components as well.

5. Evaluation of the Virtual Prototype

5.1. Evaluation of the Hardware Configuration

Based on the specification of our hardware platform in Fig. 2 we are able to perform different evaluation methods
on our hardware design. As mentioned in the previous chapters, there are several methods which can be used to
evaluate the reliability and safety of our hardware architecture, one of these is the hardware architectural metrics
evaluation. The hardware architectural metrics are handled in Part 520 of the ISO26262, product development at the
hardware level. This evaluates the hardware architecture of the item against the requirements for fault handling. This
part also includes guidance on avoiding systematic and random hardware failures by means of appropriate safety
mechanisms. Each safety-related hardware element is analyzed regarding single point (SPFM), residual and multiple
point faults (LFM). It also describes the effectiveness of the hardware architecture in coping with random hardware
failures (PMHF). Each hardware part is to be protected by means of safety-mechanisms. The diagnostic coverage
gives evidence of the effectiveness of these mechanisms. Whether the item (system or array of systems according to
ISO26262) passes or fails a given ASIL is also a result of the hardware architectural metrics evaluation. In order to
achieve a specific ASIL, the values from Table 1 must be met (FIT- failure in time).

To perform this evaluation on our hardware specification, we built on approaches such as21,22 and23. These ap-
proaches use the capabilities of UML/MARTE and IP-XACT to perform several quantified methods to evaluate the
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reliability of the hardware platform. By adding following safety properties as extension to the IP-XACT standard they
achieved reusability of hardware safety artifacts:

Failure rate (FR) - is usually known by the vendor of the component. It is a result of field return and statistical
data, where expert judgment can also be considered.
Failure modes (FM) - describes the different modes where a failure can occur. The failure modes depend on the
application in which the element is used.
Safety mechanism (SM) - Implemented mechanism to detect and control faults. It prevents faults from violating the
safety goal. If a fault is detected, a safe state is initiated.
Diagnostic coverage (DC) - is the effectiveness of the internal safety mechanism implemented to cover single point,
residual or latent faults.

These reuse strategies are commonly used in industry and are known as clone and own. The existing and reused
safety models can give important feedback through an early safety assessment for a modified platform or even a new
product. Changes and adaption on the overall platform must be taken into account, of course when reusing safety
artifacts during development. Since the main contribution of this paper is the generation and integration of the virtual
prototype into a seamless design and development flow, we do not go into detail on the hardware evaluation. A more
detailed description of the developed approach is given in21.

Table 1. Architectural Metrics - evaluates whether the hardware achieves a certain ASIL, according to ISO26262.
ASIL B ASIL C ASIL D

SPFM ≥ 90% ≥ 97% ≥ 99%
LFM ≥ 60% ≥ 80% ≥ 90%
PMHF < 10-7h-1 < 10-7h-1 < 10-8h-1

5.2. Generation, Integration and Verification of the Virtual Prototype

One of the outlined goals in this work is to develop and test embedded software within the development phases, on
a realistic hardware prototype of the target system, before the actual platform is available. By applying a model based
approach in UML/MARTE, the designer is able to configure the whole hardware platform, for instance instructions per
seconds of the processor, which affects the simulation time directly. The designer uses the standard MARTE models
from the library and adds additional IP-XACT properties to his models. After the evaluation of the design regarding
SPFM, LFM and PMHF, the description of the platform is converted to a TCL description in the OVP standard.
The OVP iGen converter takes the information from the TCL script and generates a full SystemC- platform using
the modular components of the OVP library. The resulting virtual prototype can then be used for further hardware
simulations, such as fault-injections on TLM level24,25. Since our whole methodology (from functional specification
through to hardware and software design) relies on the same modeling language and furthermore the same hardware
description language respectively system-modeling language, we are easily able to reapply our generated safety aware
VP into the functional specification of the system design. After generation, the hardware description of the SaVeSoC
platform with the whole interface specification is added to the UML model library and can be reapplied to the system
design including the generated simulation files in SystemC. This saves time in terms of integration effort, when
testing the virtual prototype on the functionality of the whole system, as recommended by ISO26262. System level
testbenches can also be reused for the verification of the entire system including the integrated VP. Figure 3 depicts
the resulting system level description including the battery and new defined BMS hardware. The battery component
is no longer a black box where the functionality is described in SystemC. It is now a white box, where the detailed
hardware of the battery component is specified. It consists of the SaVeSoC element, which is the hardware platform of
the BMS including an application for plausibility checks. It measures the voltage and temperature of the batterypack
over two ADC and computes the state of charge and stage of health. Since we are relying on the same simulation
engine, the virtual prototype can now be easily tested on a higher abstraction level, which also speeds up the overall
simulation time. A challenge when integrating the VP to the functional specification was the communication interface
between the functional simulation environment of SystemC-AMS and the OVP platform, because these platforms are
mainly used to process data measured from embedded sensors. We thus implemented communication channels which
guarantee data exchanges between different SystemC dialects (SystemC TLM2.0, SystemC AMS).
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Fig. 3. Virtual Prototype integration into the functional specification of the system design to verify its functionality.

5.3. Distribution of Simulation Tasks to a Cloud-based Environment

To verify the functionality, we integrated our generated VP into the functional specification of our system design.
This specification is tested with the constrained random verification (CRV) principle in the Universal Verification
Methodlogy (UVM) standard and measured towards functional coverage. Functional coverage is defined as a metric
which is used to determine the completeness and verification process of the design. It emphasizes design verification
where the focus, besides functional process of a design, is also on non-functional aspects such as safety, timing or
power. Functional coverage tells us about the quality of a testbench and what portion of the design has been activated
and tested during the simulation run (controllability). On the other hand, observability shows the ability to observe
effects of the simulation (white-box vs. black-box testing). Thus, this metric allows us to answer the crucial question
in the verification process ”Are we done, yet?”. We can classify coverage26 by their method of creation (implicit vs.
explicit) and their origin of source (specification vs. implementation). Line coverage and expression coverage are two
examples of an implicit coverage metric and can be automatically derived from the code, whereas functional coverage
(explicit coverage metric) has to be defined and implemented by the engineer, derived from the various requirements
and the specification document. Functional coverage is distinguished between two simulation methodologies, direct
testing and constrained random verification, whereas the later one is able to achieve a higher distribution over the
huge space of the available input stimuli. This mechanism increases the coverage and the ability to find corner cases
in the design, by creating random tests, which not have been found by direct testing. The coverage space classified
by a implicit specification (also known as intelligent verification) is a current academic research area, where the
coverage metrics are automatically extracted by a tool and are derived from the design specification. These higher-
level functional behaviors cannot be automatically derived from the implementation alone and need the information
from the specification as well.

To satisfy the demand on a high functional coverage, we automatically derive testbenches from semi-formal safety
requirements (extension to SysML) in early phases of development. With this approach we are able to cover all
possible parameters and various variants of a vehicle. Any shortcomings in the design can thus be deteted much
ealier in the development process to reduce costs and time-to-market. More detailed of this approach is given in
publication17.

Since automatic generation of testbenches in combination with CRV produces a high amount of simulation tasks
we developed an extension to the traditional UVM layered architecture for parallel execution in a cloud-based envi-
ronment27. Since the overall result of a simulated sequence does not affect other configurations in any way, parallel
processing of various sequences is possible. Through applying message patterns from the Enterprise Integration Pat-
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terns28 on the UVM standard and furthermore integration into a whole framework we could speed up the verification
process of complex embedded systems. Due to the fact that simulation of sequences is the most time consuming part
of the verification, a theoretical linear speedup can be expected. The execution environment can be switched between
private/internal clusters, but also public cloud solutions such as Amazon AWS29 or Microsoft Azure30. The benefits
of this approach are reduction of simulation time, license costs, flexible infrastructure, defined levels of abstraction,
efficient degree of capacity utilization and prevention of data loss.

Figure 4 depicts our design, simulation and verification framework SHARC. It is based on the Eclipse UML editor
Papyrus31 and allows the execution of UML/MARTE models by using our system component library. This library
includes digital and analog simulations models which can communicate through defined interfaces. The use case of
a BMS, shown in the center of this figure, is designed and configured with the help of executable UML/MARTE
models.

Fig. 4. Screenshot of SHARC, a design and simulation framework for the verification of (safety-critical) embedded systems in the automotive
domain.

6. Conclusion

In this work we presented a novel design and simulation framework for the verification of safety-critical systems.
A standardized modeling language based on UML was used to represent the design flow, from functional specification
down to hardware and software, which is in conformance with the functional safety standard (ISO26262). This model-
based approach eases the communication between different stakeholders involved in the development process and
serves as a single-source of information. Through tight integration of recommended safety analysis methods such as
FTA, FMEA, hardware architectural metrics and simulation-based verification, we achieved consistency, correctness,
and completeness throughout the development process. The used UML profile MARTE and extensions to IP-XACT
helped to specify and evaluate the hardware in early development stages. From this specification a virtual prototype
was generated, which can be tested by fault injection techniques on a higher abstraction level. Moreover, we showed
the seamless integration of the virtual prototype into the functional specification to verify its functionality. Through
relying on a cloud-based and distributed environment we are able to speed-up the verification process and by using our
approach, we achieve to close the technological and organizational gap in today’s toolchain of safety-critical system
development.
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