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ABSTRACT

Regression is the most popular statistical methodology for analysing empirical problems in
economics, life sciences and social sciences. Thus, there exists a large diversity of models
from the simple linear regression model to the more complex nonparametric regression
model. While the parametric model assumes the mean response variable to be a linear
combination of the explanatory variables, the nonparametric model uses flexible techniques
which enable the automatic and data-driven estimation of the nonlinear effects. In this
thesis, the parametric and the nonparametric regression models are introduced, including
detailed theory about the estimation procedures. The subclass of generalized additive
models is then used to model renting and selling prices for houses located in Sydney, since
this class of models allows the inclusion of spatial effects. Therefor two datasets are used
which, additionally to the renting or selling price, contain information about the houses’
characteristics. The derived house price model is further used to forecast the renting
and selling prices of houses in Sydney for the nearest future. In contrast to most of the
literature on forecasting house prices, which only model the average trend of the price
for the future, the model derived in this thesis allows to forecast the price of any specific
house with particular properties and location at a time of interest. The derived model as
well as the forecast turn out to provide a good fit to the data.

ZUSAMMENFASSUNG

Regression ist die populärste statistische Methodik zur Analyse von empirischen Problemen
in der Wirtschaft, den Lebenswissenschaften und den Sozialwissenschaften. Aus diesem
Grund existiert eine breite Vielfalt an Modellen vom einfachen linearen bis hin zum
komplexeren nicht-parametrischen Regressionsmodell. Während das parametrische Regres-
sionsmodell die zu erwartende Response-Variable als Linearkombination der erklärenden
Variablen darstellt, verwendet das nicht-parametrische Regressionsmodell flexible Tech-
niken, welche die automatische und datengesteuerte Schätzung der nicht-linearen Effekte
erlauben. In dieser Arbeit werden die parametrischen und die nicht-parametrischen Re-
gressionsmodelle und die detaillierte Theorie zu den zugehörigen Schätzungsverfahren
vorgestellt. Die Unterklasse der generalisierten additiven Modelle wird schließlich zur
Modellierung von Miet- und Verkaufspreisen von Häusern in Sydney verwendet, da diese
Modellklasse das Inkludieren geografischer Effekte erlaubt. Hierfür werden zwei Datensätze
eingesetzt, welche zusätzlich zu den Miet- bzw. Verkaufspreisen auch Eigenschaften der
Häuser beinhalten. Das hergeleitete Hauspreismodell wird des Weiteren zur Vorhersage
von Miet- und Verkaufspreisen für Häuser in Sydney in naher Zukunft verwendet. Im
Gegensatz zum Großteil der Literatur zu Vorhersagemodellen für Hauspreise, welche nur
den durchschnittlichen Trend zukünftiger Preise modellieren, prognostiziert das in dieser
Arbeit hergeleitete Modell den Preis eines speziellen Hauses mit gegebenen Eigenschaften
und Standort zu einem interessierenden Zeitpunkt in der Zukunft. Es stellt sich heraus,
dass das gefundene Modell und auch die Vorhersage die Daten gut abbilden.
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CHAPTER 1

Introduction

The housing market plays a decisive role in everyday life. The standard of living of every
person is directly influenced by house rents and house prices, since everyone needs a place
to live. Thus, house price developments have an essential impact on financial stability
and real economic activity. The financial crisis in the year 2007 was for example provoked
by the sudden and immense downturn in U.S. house prices in the year 2006. This crisis
demonstrated the need of forecasting the trend of house prices for the nearest future for fi-
nancial stability. Furthermore, the prediction of house price developments is also important
in terms of mortgage default and property taxes, as well as investment and policy decisions.

For all these reasons, the goal of this thesis is to derive a statistical model which allows to
forecast the renting and selling prices of houses located in Sydney. We use two datasets
containing information about the rented or sold houses regarding the houses’ characteristics
as well as the geographic position and the day of advertisement or respectively the day of
the sale. This thesis is divided into two parts, namely the theoretical and the practical part.

The theoretical part starts with the simplest class of regression models, namely the Para-
metric Regression Models in Chapter 2. These models assume the mean response variable
to be a linear combination of the explanatory variables. The big advantage of these
models is their simplicity. However, the assumption of a purely linear model is not suitable
for many practical applications. Therefore, the more complex class of Nonparametric
Regression Models is introduced in Chapter 3. The simplest subclass of these models are
the Univariate Smoothing Models, which explain the expected response variable through a
deterministic function f depending on one explanatory variable. This is done by defining
the space of functions of which f is an element of by choosing a suitable basis. The
following sections in Chapter 3 present the most important basis functions and their use.
In Section 3.4 the univariate models are extended yielding the Bivariate Smoothing Models,
where the response variable depends on two different covariates. This concept is further
generalized to the class of Multivariate Smoothing Models. Additive Models, defined in
Section 3.6, allow spatial effects by including geographic locations as covariates, which
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1 Introduction

is important in terms of modeling house prices. Furthermore, it is possible to include
different ways of interactions between the explanatory variables. All these generalizations
lead to the class of Generalized Additive Models in Section 3.7. These models describe a
function of the response variable through an additive model and the response variable is
assumed to follow a distribution from a member of the linear exponential family, which is
a specific class of distributions. The last section of Chapter 3 deals with the problem of
model choice and diagnostics.

All the theory of Chapter 2 and 3 of this thesis is used to derive a model for the renting
and selling prices of houses located in Sydney. The used datasets of rented and sold houses
between the years 2008 and 2015 are described and analysed in detail in Chapter 4 to get
a more detailed insight into the behaviour of the house price. The obtained information
is then used in Chapter 5 to derive a hedonic price model for rented and sold houses in
Sydney. All the calculations are done with the mgcv package of the program R, which
is introduced in the first section of this chapter. We first try a model with normally
distributed prices and go on with the assumption of renting and selling prices which follow
a gamma distribution. We then model the house rents and the house prices seperately. In
the last subsection we try a joint model for both datasets. The last Chapter 6 uses the
derived joint model to forecast the renting and selling prices of Sydney for the calendar
year 2016. Finally, the prediction of the price-rent ratio in the year 2016 is done, which is
the ratio of property prices relative to rents. This ratio increased from about 25 in 2014
to 32 years of rent in 2016. This means that in 2016 the price of the house equals about
32 years of rent, whereas in the year 2014 one only had to pay about 25 yearly rents to
cover the house price.

2



CHAPTER 2

Parametric Regression

2.1 Classical Linear Model

The Classical Linear Model (LM) is defined by McCullagh and Nelder (1989) as

E(yyy) = µµµ = XβXβXβ,

where yyy = (y1, . . . , yn)T is a vector of observations, whose components are independently
distributed with means µµµ = (µ1, . . . , µn)T. The n × p design matrix XXX consists of the
explanatory variables or covariates xij , where each row xxxi = (xi0, . . . , xi,p−1) of XXX refers to
a different observation i and each column to a different covariate j. The p× 1 vector of
parameters βββ = (β0, . . . , βp−1)T consists of the unknown values and has to be estimated
from the data. Hence, for the mean of yyy it follows that

E(yi) = µi =

p−1∑
j=0

xijβj for i = 1, . . . , n.

The first column of XXX is equal to one, which means that xi0 = 1 for i = 1, . . . , n. Thus,
the model takes the form

yi = β0 + β1xi1 + · · ·+ βp−1xi,p−1 + εi for i = 1, . . . , n,

where the errors ε1, . . . , εn are independent and identically distributed with zero mean
and variance σ2. In most of the cases, the error terms are assumed to follow a normal
distribution. In this special case, the response vector yyy is normally distributed with mean
XβXβXβ and variance σ2IIIn, where IIIn denotes the n× n identity matrix.

The estimator β̂̂β̂β in the classical linear model can be found by minimizing the least-squares
criterion

SSE(βββ) = (yyy −XβXβXβ)T(yyy −XβXβXβ). (2.1.1)

3



2 Parametric Regression

The value of βββ that minimizes (2.1.1) is found to be

β̂̂β̂β = (XXXTXXX)−1XXXTyyy.

The vector of the fitted values can therefore be written as

µ̂̂µ̂µ = Xβ̂Xβ̂Xβ̂ = XXX(XXXTXXX)−1XXXTyyy = HyHyHy,

where HHH = XXX(XXXTXXX)−1XXXT is a symmetric and idempotent matrix, called the hat matrix.

The classical linear model has a number of drawbacks, as described in detail in Fahrmeir,
Kneib, Lang, and Marx (2013). In most of the cases, the error terms εi are assumed to
be normally distributed, so the linear model is well suited for regression analyses when
the response variable is continuous and at least approximately normally distributed. In
addition, the mean of the response is assumed to be a linear combination of covariates. In
some cases, the assumption of an approximately normally distributed response variable or
the linear relationship can be ensured by using an appropriate transformation. Nonetheless,
there are many applications where the response is not a continuous variable, but rather
binary, categorical or a count variable. Furthermore, there are cases where the distribution
of the continuous response variable is skewed, then it is often advantageous to use, for
example, the gamma distribution. In the linear model, the error variances are assumed to
be homoscedastic, which means that E(yi) = σ2 for all i = 1, . . . , n, thus all observations
fluctuate with a constant variability around the regression surface. Additional to the
homoscedastic variances, the errors are assumed to be uncorrelated, which means that
Cov(εi, εj) = 0, for i 6= j. There are some cases, where these assumptions are not realistic,
especially for time series or longitudinal data.

Nevertheless, the classical linear model is very simple in its structure and well interpretable
for its user. The estimate can be simply computed without much effort. After all, the
linear regression model is very useful, if the dependence of the mean of yi on xxxi is linear
or almost linear for i = 1, . . . , n, since it can be simply computed and provides a concise
description of the data. However, if the dependence of yi on xxxi is far from linear, modeling
the mean linearly in the parameters would not always provide a good fit. Therefore, many
extensions of the classical linear model exist.

2.2 Generalized Linear Model

The Generalized Linear Model (GLM) is an extension of the classical linear model, which
can deal with some of the disadvantages of the classical linear model. According to
McCullagh and Nelder (1989), the GLM consists of the following components:

4



2.2 Generalized Linear Model

• The random component : the response variable y follows the distribution of a member
of the one parameter exponential family with E(y) = µ. The density or probability
mass function of this exponential family is defined as

f(y|θ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
for some specific functions a(·), b(·), and c(·). The parameter θ is called the canonical
parameter. If φ is known, this is an exponential family model with canonical
parameter θ. The parameter φ is called the dispersion parameter. The normal, the
binomial, the poisson and the gamma distribution are all members of this exponential
family. It can be shown that

E(y) = b′(θ) = µ,

var(y) = a(φ)b′′(θ) = a(φ)V (µ)

holds for the response variable y with a distribution from the exponential family.
The variance of y is therefore the product of the function V (µ), the variance function,
which depends on the canonical parameter only, and a(φ), which is independent of θ
and depends only on φ.

• The systematic component : the covariates xxx = (x0, . . . , xp−1)
T build the linear

predictor η given by

η = xxxTβββ.

• The link funktion: the link function g(·) describes the relation between the random
and the systematic component as

g(µ) = η

where g(·) is assumed to be a monotonic twice differentiable continuous function.
Therefore, in the GLM, a function of the mean of the response variable is modeled
linearly in some parameters. Some popular link functions for binary responses are

– the logit link with η = log( µ
1−µ),

– the probit link with η = Φ−1(µ), where Φ(·) is the normal cumulative distribution
function and

– the complementary log-log with η = log(− log(1− µ)).

In the GLM, the parameter βββ is estimated by maximizing the likelihood criterion. This is
done by calculating the first derivative of the log-likelihood function with respect to βββ and
setting it to zero. Since the resulting system of equations is not linear in βββ, it can be solved
with the Newton-Raphson method. This procedure will not be discussed in this thesis,
but can be read in McCullagh and Nelder (1989). Another method for estimating βββ is
the Iteratively Re-Weighted Least-Squares (IRLS) procedure. This procedure is described
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2 Parametric Regression

in Section 3.7.1 in case of penalized likelihood estimation and works analogously for the
GLM, when leaving out the penalty term.

In summary, a specific GLM is completely determined by the member of the exponential
family, the choice of the link or response function and the definition and selection of the
covariates. In the classical linear model, the mean and the linear predictor are identical.
This special link function is called the identity link and both η and µ can take any value
on the real line. When considering a poisson distribution, for example, it must be assured
that µ > 0, thus the log link η = log µ may be more attractive than the identity link
because η might be negative while µ must not be. The link function is also reasonable
for the binomial distribution where 0 < µ < 1, thus the link function should map the
interval (0, 1) on the whole real line, which can be achieved for example with the probit link.

Despite the simple and well interpretable characteristics of a GLM, there are many practical
applications where a purely linear model is not sufficient. This insufficiency could result
from uncertainty about the specific form of an effect of the covariate on the response. The
next chapter will therefore focus on flexible regression techniques for nonlinear effects.
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CHAPTER 3

Nonparametric Regression

The main tool in nonparametric regression is the so-called smoother. Hastie and Tibshirani
(1990) defined a smoother as a tool for summarising the trend of a response variable y
as a function of a predictor variable z. The estimated trend is then less variable than y
itself, which is the reason for the name smoother. A smoother is nonparametric because it
does not assume a rigid form for the dependence of y on z. The estimate produced by a
smoother is called a smooth. There are two main uses for smoothers. Firstly, a smoother
can show the trend between a response variable y and a predictor variable z and thus has
a descriptive use. The other main application is the estimation of the dependency of the
mean of y on the predictor, as can be seen in the following sections.

3.1 Univariate Smoothing

The simplest form of a smoother is the flexible modeling of the effect of one continuous
covariate on a continuous dependent variable and is called Univariate Smoothing or
Scatterplot Smoothing, since the data can be best visualized in a scatter plot and the
intention is to find a smooth function representing the effect of the covariate. The data is
assumed to be given in the form (yi, zi), i = 1, . . . , n, where the yi are observations of the
response variable and the zi represent the corresponding values of the continuous covariate.
The standard univariate nonparametric regression model, as described in Fahrmeir et al.
(2013), is given by

yi = f(zi) + εi for i = 1, . . . , n. (3.1.1)

The response variable can therefore be explained through a deterministic function of the
covariate plus an additive error term. To simplify the estimation problem, qualitative
constraints concerning the smoothness and therefore the continuity and the differentiability
of the function f , are imposed. The error terms are assumed to be independent and
identically distributed with E(εi) = 0 and var(εi) = σ2 for i = 1, . . . , n. Hence, for the
response variable it follows that

E(yi) = f(zi) and var(yi) = σ2 for i = 1, . . . , n.

7



3 Nonparametric Regression

Wood (2006) explains in his book that f has to be represented in such a way that (3.1.1)
becomes a linear model, to make it possible to estimate f . This can be done by defining
the space of functions of which f is an element by choosing a basis. If Bj(z) is the jth
basis function, then f has the representation

f(z) =
d∑
j=1

γjBj(z) (3.1.2)

for some values of the unknown parameters γj . This yields a linear model when substituting
Equation (3.1.2) into (3.1.1). The linear representation of f is the reason, why Eilers and
Marx (1996) wrote that the name nonparametric is not well chosen for spline smoothers,
since they are described by parameters, although their number can be large. Therefore,
they think it might be better to talk about overparametric techniques. In the next sections
different basis functions for f are introduced.

3.1.1 Regression Splines

As a first approach for nonparametric regression, Polynomial Splines or Regression Splines
are considered. The idea is to partition the domain of the covariates into intervals and
estimate a polynomial for each interval seperately. Furthermore, smoothness restrictions
are imposed to guarantee that the function values coincide at the interval boundaries.
Fahrmeir et al. (2013) defined a regression spline as follows:

A function f : [a, b]→ R is called a polynomial or regression spline of degree l ≥ 0 with
knots a = κ1 < · · · < κm = b, if it fulfills the following conditions:

• f(z) is (l−1)-times continuously differentiable. The special case of l = 1 corresponds
to f(z) being continuous but not differentiable. If l = 0, no smoothness requirements
are imposed.

• f(z) is a polynomial of degree l on the intervals [κj, κj+1) defined by the knots.

The global smoothness of the spline is regulated by the degree l of the spline, whereas the
diversity of available functions is driven by the number of knots m. There are different
popular variants for representing the set of polynomial splines for a given degree and knots
configuration: the Truncated Power Series, the B-Splines and the Natural Cubic Splines,
which are discussed in detail in the following sections.

In summary, the regression splines are an attractive tool for nonparametric regression
because of their computational cleanliness. However, the biggest drawback is the difficulty
in choosing the number and the position of the knots. Section 3.1.5 will deal with this
problem.
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3.1 Univariate Smoothing

3.1.2 Truncated Power Series

The functions

B1(z) = 1, B2(z) = z, . . . , Bl+1(z) = zl

Bl+2(z) = (z − κ2)l+, . . . , Bd(z) = (z − κm−1)l+

are considered, where

(z − κj)l+ =

{
(z − κj)l z ≥ κj

0 otherwise.

It can be shown that there exists a uniquely determined linear combination of these
d = m+ l − 1 functions for each polynomial spline of degree l. The basis spanned by the
functions B1, . . . , Bd is called Truncated Power Series Basis (TP Basis). This is in fact a
basis, since every polynomial spline can be uniquely represented using these functions and
the polynomial splines form a d-dimensional vector space. In this case, the nonparametric
regression model can be written as

yi = γ1 + γ2zi + · · ·+ γl+1z
l
i + γl+2(zi − κ2)l+ + · · ·+ γl+m−1(zi − κm−1)l+ + εi

=
d∑
j=1

γjBj(zi) + εi.

The first part of the model is a global polynomial of degree l, whereas the second part
allows the use of local polynomials in every interval and fulfills the global smoothness
restriction.

The main advantage of regression splines is the fact that the nonparametric regression
problem can be written and estimated as a linear model with a large number of parameters
γj. If the design matrix is defined as

ZZZ =

B1(z1) . . . Bd(z1)
...

...
B1(zn) . . . Bd(zn)

 =

1 z1 . . . zl1 (z1 − κ2)l+ . . . (z1 − κm−1)l+
...

...
1 zn . . . zln (zn − κ2)l+ . . . (zn − κm−1)l+

 ,

the linear model
yyy = ZγZγZγ + εεε, (3.1.3)

is obtained, where yyy = (y1, . . . , yn)T is the vector of the response variables, γγγ = (γ1, . . . , γd)
T

the coefficient vector and εεε = (ε1, . . . , εn)T the vector of the error terms. This linear model
can be estimated with the usual least-squares criterion and the estimator is thus

γ̂̂γ̂γ = (ZZZTZZZ)−1ZZZTyyy, (3.1.4)

and the estimated mean function is

f̂(z) = ZZZT
1 (z)γ̂̂γ̂γ, (3.1.5)

9



3 Nonparametric Regression

where ZZZ1(z) = (B1(z), . . . , Bd(z))T.

Despite the simplicity of the TP basis, alternative basis are often used in practice. This
results from the fact that the calculation of the TP basis functions can cause numerical
instabilities for covariates with large values. Furthermore, if knots are very close to each
other, the TP basis functions are nearly linear dependent. Therefore, the B-Splines are a
numerically favorable polynomial spline basis.

3.1.3 B-Splines

Basic Splines or shortly B-Splines are piecewise polynomials which are joined together
smoothly at the given knots, so that the smoothness requirements are fulfilled (Eilers and
Marx, 1996). More specifically, a B-spline of degree l consists of l + 1 polynomial pieces of
degree l and they join at l inner knots. The derivatives up to order l− 1 are continuous at
the joining points and the B-Spline overlaps with 2l polynomial pieces of its neighbours.
Furthermore, it is positive on a domain spanned by l + 2 knots and is zero everywhere
else. At a given point z, there are l + 1 nonzero B-Splines.

The function f(z) can then be represented as a linear combination of d = m+ l − 1 basis
functions as

f(z) =
d∑
j=1

γjBj(z).

The basis functions are defined recursively as

B0
j (z) = I(κj ≤ z ≤ κj+1) =

{
1 κj ≤ z ≤ κj+1

0 otherwise.

for order l = 0 and

Bl
j(z) =

z − κj−l
κj − κj−l

Bl−1
j−1(z) +

κj+1 − z
κj+1 − κj+1−l

Bl−1
j (z)

for a degree l ≥ 1. For this definition, m interior knots κ1, . . . , κm and 2l outer knots
are used, so the knots sequence is κ1−l, κ1−l+1, . . . , κm+l−1, κm+l. Some advantages of the
B-spline basis are its local definition and the fact that the basis functions are bounded
from above so that there are no numerical problems. Furthermore, the estimation of a
polynomial spline in B-spline representation can be performed, as well as the TP basis as
a linear model with the design matrix

ZZZ =

B
l
1(z1) . . . Bl

d(z1)
...

...
Bl

1(zn) . . . Bl
d(zn)

 .
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3.1 Univariate Smoothing

This design matrix has some special characteristics due to the properties of the B-spline
basis functions. Every row of the design matrix sums up to one and therefore the intercept
is contained in the span of the basis. Furthermore, the design matrix ZZZ mainly consists of
zeros. The resulting linear model has the same form as the TP basis model (3.1.3) and
the estimators are given as in (3.1.4) and (3.1.5).

As already mentioned, the main drawback of the regression spline is the free choice of the
position and number of knots used. To overcome this problem of the dependence on the
chosen knots, the estimation problem can be regularized through the introduction of a
roughness penalty. The resulting splines are called P-Splines and described in detail in
Eilers and Marx (1996). The idea of the roughness penalty is to introduce an additional
penalty term in the least-squares criterion to prevent overfitting and then minimize the
resulting Penalized Least-Squares (PLS) Criterion. This procedure is discussed in Section
3.2.

3.1.4 Cubic Smoothing Splines

A Smoothing Spline is not constructed like the splines already discussed in the previous
sections. A smoothing spline is obtained when minimizing the Penalized Sum of Squares

n∑
i=1

(yi − f(zi))
2 + λ

∫ b

a

f ′′(z)2dz (3.1.6)

among all functions f(z) which are twice differentiable (Hastie and Tibshirani, 1990). The
first term minimizes the squared error of the model, whereas the second term penalizes
curvature in the function. The parameter λ is called the smoothing parameter. Small
values of λ produce wiggly curves whereas large values of λ produce smoother ones. For
λ → 0 an interpolating spline is obtained and for λ → ∞ the solution of (3.1.6) is a
straight line. Therefore, the selection of the smoothing parameter λ is a crucial step in
the application of smoothing splines, which will be discussed in Section 3.3.

It can be shown that there exists an explicit, unique minimizer of Criterion (3.1.6). This
minimizer is called a Natural Cubic Spline. A function f(z) is called a natural cubic spline
based on the knots a ≤ κ1 < · · · < κm ≤ b, if the following requirements are fulfilled:

• f(z) is a cubic polynomial spline for the given knots, which means that f(z) is a
regression spline of degree 3.

• f(z) satisfies the natural boundary conditions f ′′(a) = f ′′(b) = 0, which means that
f(z) is linear in the intervals [a, κ2] and [κm−1, b].

Firstly, it can be shown that for given points (κi, wi) (i = 1, . . . ,m and m ≥ 2), there
exists a unique natural cubic spline f which interpolates the points (κi, wi), which means
that f(κi) = wi for i = 1, . . . ,m. The proof of this statement can be found in Green and
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3 Nonparametric Regression

Silverman (1994). A possible choice for obtaining the smoothest possible function that
interpolates given points would be the function which minimizes

∫
f ′′(z)2dz among all

twice differentiable functions which interpolate the data. This is the reason why the PLS
criterion has the form (3.1.6).

As a next step, it will be shown that among all functions that are continuous on [a, b],
have absolutely continuous first derivatives and interpolate the values w1, . . . , wn at the
points κ1, . . . , κm, the natural cubic spline is the one that minimizes∫ b

a

f ′′(z)2dz.

To prove this statement, the idea of Green and Silverman (1994) is followed. Denote f(z)
as the natural cubic spline for the points κ1, . . . , κm and let f̃(z) be an interpolant of
(κi, wi) other than f(z). Furthermore, let h(z) = f̃(z)− f(z). Integrating by parts and
using the natural boundary conditions f ′′(a) = f ′′(b) = 0 yields∫ b

a

f ′′(z)h′′(z)dz = f ′′(b)h′(b)− f ′′(a)h′(a)−
∫ b

a

f ′′′(z)h′(z)dz (3.1.7)

= −
∫ b

a

f ′′′(z)h′(z)dz

= −
m−1∑
i=1

f ′′′(κ+
i )

∫ κi+1

κi

h′(z)dz

= −
m−1∑
i=1

f ′′′(κ+
i )(h(κi+1)− h(κi)) = 0,

where the equality in line 2 results from the fact that f(z) is made up of piecewise cubic
polynomials, thus f ′′′(z) is constant over any interval (κi, κi+1). The last equality holds
because h(κi) = 0 for i = 1, . . . ,m, since both f and f̃ interpolate the values wi. It follows
that ∫ b

a

f̃ ′′(z)2dz =

∫ b

a

(f ′′(z) + h′′(z))2dz

=

∫ b

a

f ′′(z)2dz + 2

∫ b

a

f ′′(z)h′′(z)dz +

∫ b

a

h′′(z)2dz

=

∫ b

a

f ′′(z)2dz +

∫ b

a

h′′(z)2dz ≥
∫ b

a

f ′′(z)2dz,

with equality only if h is linear on [a, b]. Since h(κi) = 0 for i = 1, . . . ,m, this can only
happen, if h is zero, which means that f = f̃ .

Moreover, it can be shown that among all functions that are continuous on [a, b] and have
absolutely continuous first derivatives, the natural cubic spline f(z) is the function that
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3.1 Univariate Smoothing

minimizes Criterion (3.1.6). Wood (2006) proved this assumption by supposing that there
is some other function f̂ which minimizes (3.1.6). Then (κi, f̂(κi)) can be interpolated
using the cubic spline f(z). Since they both minimize the penalized least-squares criterion,
their sum of squares have to be the same. Given what was just shown above, the natural
cubic spline f(z) has a smaller integrated squared second derivative which would mean
that f(z) yields a smaller sum of squares term. That is a contradiction, unless f̂ = f . The
existence and uniqueness of the minimizer of (3.1.6) will not be shown in this thesis, but
can be read in Green and Silverman (1994).

To sum up, smoothing splines seem to be the ideal smoother. Nevertheless, one drawback
of smoothing splines is that they have as many free parameters as there are observations,
which is no problem with univariate smoothing, but becomes a problem as soon as there
are more covariates. Consequently, there are implementations where the basis is reduced.
One possibility is to reduce the basis utilizing a spectral decomposition of the design
matrix. This aspect is discussed in in Section 3.4.2 in the context of thin plate splines.

3.1.5 Influence of the knots and the basis dimension

The choice of the number and the position of the knots is an important step when modeling
with splines. If too many knots are used, this results in overfitting the data and too
few knots lead to underfitting. There are algorithms for optimizing the number and the
position of the knots, as for example proposed by Friedman and Silverman (1989). In
general, there is no all-purpose rule for this problem. The more knots we use, the more
flexible the estimated function is, but also the more wiggly the function gets. Therefore, in
every modeling application, the optimal number of knots has to be seperately considered
depending on the concrete problem.

Additional to the number of knots, the position of the knots along the covariate axis has
to be chosen. In practice, there are three commonly used techniques:

• Equidistant knots : This is a very common and easy approach. Therefor the domain
[a, b] is split into m− 1 intervals to obtain the knots

κj = a+ (j − 1) · h for j = 1, . . . ,m with h =
b− a
m− 1

.

• Quantile-based knots : The (j−1)/(m−1)-quantiles, for j = 1, . . . ,m, of the observed
values z1, . . . , zn are used as knots. The advantage of this approach is, that many
knots are placed in areas with a large number of observations.

• Visual knot choice: The decision of the placement of the knots can also be made by
studying the scatter plot of the data.
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3 Nonparametric Regression

Another main challenge is the selection of the basis dimension. Kim and Gu (2004) have
done some empirical studies and suggested the use of d = cn2/9 for cubic splines, where n
is the size of the data. They suggested using c ≈ 10 based on their simulation. Many other
authors proposed to choose the basis dimension depending on the number of covariates
as well as on the sample size. It is indeed difficult to say, if the chosen basis dimension
is a good pick. However, as discussed in Wood (2006), it is important to note that the
exact size of basis dimension is not that critical. He proposed to decide roughly, in any
particular application, how large the basis dimension is fairly certain to provide adequate
flexibility. The basis dimension only gives an upper bound on the flexibility of the term
whereas the smoothing parameter controls the actual effective degrees of freedom, which
are explained in the next section.

3.2 Penalized Least-Squares Criterion

As already mentioned, the problem of the number and the placement of the knots as well
as the controlling of the smoothness of the curve, can be solved by introducing a penalty
for the coefficients of the corresponding basis functions. This means that instead of the
usual residual sum of squares, the penalized least-squares criterion is used, where a penalty
term is added to the residual sum of squares. There are many different ways for creating
such a penalty, depending on the basis which is used for the model.

When considering a TP basis of degree l, Fahrmeir et al. (2013) proposed that the sum of
squared coefficients

d∑
j=l+2

γ2
j

is a good choice for a penalty, since the coefficients with indexes j = l + 2, . . . , d are
associated with the truncated powers. In this case, the penalized residual sum of squares

PLS(λ) =
n∑
i=1

(
yi −

d∑
j=1

γjBj(zi)

)2

+ λ
d∑

j=l+2

γ2
j

is minimized. The smoothing parameter λ ≥ 0 controls the influence of the penalty term.
For λ→ 0, the penalty term disappears and the penalized residual sum of squares equals
the standard residual least-squares. For λ→∞, the PLS(λ) is dominated by the penalty
term and thus γ̂j = 0 for j = l+2, . . . , d, which means that the estimate for f(z) is a polyno-
mial of degree l. The selection of the smoothing parameter λ is discussed in the next section.

If f(z) is represented with B-splines or smoothing splines, an appropriate penalty is
less obvious. Since the derivatives of a function respresent a measure for the variability,
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3.2 Penalized Least-Squares Criterion

penalties based on the derivatives are attractive. The most common penalty is of the
form ∫

f ′′(z)2dz. (3.2.1)

For B-splines, the construction of this penalty is a simple approach. This yields from the
fact that the derivative of the B-spline can easily be computed. For every single basis
function, the first derivative is

∂

∂z
Bl
j(z) = l ·

(
1

κj − κj−l
Bl−1
j−1(z)− 1

κj+1 − κj+1−l
Bl−1
j (z)

)
.

This statement can be proved with complete induction to the degree l, which is just
computational effort and will therefore not be shown in this thesis. The first derivative of
the polynomial spline can then be written as

∂

∂z

d∑
j=1

γjB
l
j(z) = l ·

d∑
j=1

γj − γj−1

κj − κj−l
Bl−1
j−1(z).

The derivative can thus be written in terms of the differences of the basis coefficients
and the basis functions of one lower degree. Higher-order derivatives can be expressed
analogously using higher-order differences. Eilers and Marx (1996) therefore proposed
to use the finite differences of the coefficients of adjacent B-splines as penalty. The PLS
criterion in this case has the form

PLS(λ) =
n∑
i=1

(
yi −

d∑
j=1

γjBj(zi)

)2

+ λ
d∑

j=k+1

(∆kγj)
2,

where ∆k denotes the kth-order differences, recursively defined by

∆1γj = γj − γj−1,

∆2γj = ∆1γj −∆1γj−1 = γj − 2γj−1 + γj−2,

...

∆kγj = ∆k−1γj −∆k−1γj−1.

If the penalty term is chosen, the resulting PLS criterion can be minimized. In the rest
of the thesis, the chosen penalty will be (3.2.1). However, the following calculations can
simply be adapted to other penalties. Since f(z) is assumed to be respresented with basis
functions as

f(z) =
d∑
j=1

γjBj(z),

the penalty term can be written as∫
f ′′(z)2dz =

d∑
i=1

d∑
j=1

γiγj

∫
B′′i (z)B′′j (z)dz = γγγTKγKγKγ
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3 Nonparametric Regression

with the vector of coefficients γγγ and the penalty matrix KKK defined elementwise by

KKKij =

∫
B′′i (z)B′′j (z)dz.

The resulting PLS criterion has the form

PLS(λ) = (yyy −ZγZγZγ)T(yyy −ZγZγZγ) + λγγγTKγKγKγ,

since the regression model has the linear form yyy = ZγZγZγ + εεε. The minimization of this
optimization criterion yields the estimate

γ̂̂γ̂γ = (ZZZTZZZ + λKKK)−1ZZZTyyy.

Thus, the difference to the estimate in the classical linear model is the additional λKKK term.
The estimated function is

f̂ = Zγ̂Zγ̂Zγ̂ = ZZZ(ZZZTZZZ + λKKK)−1ZZZTyyy = SSS(λ)yyy,

where SSS(λ) = ZZZ(ZZZTZZZ + λKKK)−1ZZZT is called the n× n smoother matrix. The meaning of
this matrix will be explained later.

For computation it is not advisable to use these expressions. Orthogonal methods are to
be preferred regarding greater numerical stability. For this methods, note that((

yyy
000

)
−
(

ZZZ√
λBBB

)
γγγ

)T((
yyy
000

)
−
(

ZZZ√
λBBB

)
γγγ

)
= (yyy −ZγZγZγ)T(yyy −ZγZγZγ) + λγγγTKKKγγγ, (3.2.2)

where BBB is any square root of the matrix KKK such that BBBTBBB = KKK. As described in
Wood (2004) and Wood (2011), BBB can be obtained by a spectral decomposition or pivoted
Choleski decomposition. It can be seen in (3.2.2) that the least-squares term on the right
hand side is just a least-squares criterion for a model in which the model matrix ZZZ has
been augmented with a square root of the matrix BBB and the response vector yyy with d
zeros. Once the matrix BBB has been calculated, the augmented least-squares problem on
the left hand side can be solved using orthogonal methods to solve the original penalized
least-squares model on the right hand side.

The smoother matrix SSS(λ) gives a measure to evaluate the approximate dimension of
the smoothness for an estimated function. The equivalent degrees of freedom or effective
number of parameters of a smoother are defined as

df(SSS(λ)) = tr(SSS(λ)),

where tr(SSS(λ)) =
∑n

i=1SSSii(λ) is the trace of the matrix SSS(λ). This measure results
from ideas for the linear model, where the number of parameters can be computed as
tr(HHH) = p from the hat matrix HHH = XXX(XXXTXXX)−1XXXT. In fact, the number of parameters
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is reproduced in the model without penalization, while in the case of penalization the
penalty effectively reduces the number of parameters. For polynomial splines, the effective
number of parameters equals the number of basis functions, whereas for penalized splines
the effective number of parameters decreases with an increasing smoothing parameter.
Furthermore, there are two other definitions of the equivalent degrees of freedom (Hastie
and Tibshirani, 1990). They are given by tr(SSSSSST) and n− tr(2SSS−SSSSSST). These definitions
are useful for different purposes and can be motivated again with the linear regression
model. For smoothing splines it can be shown that tr(SSSSSST) ≤ tr(SSS) ≤ tr(2SSS −SSSSSST).

3.3 Selection of the Smoothing Parameter

As already seen in the previous sections, the smoothing parameter plays an important
role in the estimation of nonparametric regression models and thus has to be considered
in detail. There are different automatic procedures available for choosing the smoothing
parameter. One possible choice is to choose the smoothing parameter by minimizing
the Akaike Information Criterion (AIC), of which there are slightly different definitions.
Fahrmeir et al. (2013) defined it as

AIC = n log(σ̂2) + 2(df + 1), (3.3.1)

where σ̂2 =
∑

(yi − f̂(zi))
2/n is the maximum likelihood estimator for σ2 under the

considered model and df are the degrees of freedom of the model. In general, the AIC is
defined as

AIC = −2 logL(µ̂̂µ̂µ, σ̂2|yyy) + 2(df + 1),

where L(µ̂̂µ̂µ, σ̂2|yyy) is the likelihood function estimated for the maximum likelihood estimators
µ̂̂µ̂µ and σ̂2, based on a normally distributed response yyy with mean µµµ and variance σ2IIIn.
When calculating −2 logL(µ̂̂µ̂µ, σ̂2|yyy), we obtain n log σ̂2 plus a constant. Thus, the essential
part of the AIC is given as (3.3.1). When minimizing the AIC, we therefore maximize
the log-likelihood, but also use the number of parameters as a form of penalization for
the model complexity. In contrast to linear models, the AIC uses the effective number of
parameters instead of the actual number of parameters.

A more common approach for the selection of the smoothing parameter is the Cross
Validation Criterion (CV Criterion). This criterion results from the fact that both the
bias and the variance of a fitted smooth function depend on the smoothing parameter.
Let the bias be defined as bbbλ = E(SSS(λ)yyy)− f = SSS(λ)f − f . It is not possible to decrease
both bias and variance simultaneously. Therefore, a measure which includes both of them
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is minimized, namely the Average Mean Squared Error (MSE), given as

MSE(f̂(z)) =
1

n

n∑
i=1

E(f̂(zi)− f(zi))
2

=
1

n

n∑
i=1

var(f̂(zi)) +
1

n

n∑
i=1

b2
λ(zi)

=
tr(SSS(λ)SSS(λ)T)

n
σ2 +

bbbTλbbbλ
n

,

with bbbλ = (bλ(z1), . . . , bλ(zn))T. Is the amount of smoothing increased, then the bias will
increase while the variance will decrease, and conversely when the amount of smoothing
is decreased. This is in fact true, since tr(SSS(λ)SSS(λ)T) decreases, when the amount of
smoothing increases, whereas the elements of bbbλ increase and conversely. Since a naive
approximation of the MSE is the average residual sum of squares

1

n

n∑
i=1

(yi − f̂(zi))
2,

which is minimized for f̂(zi) = yi, this procedure is not useful. As a consequence,
the squared prediction error for new observations is rather used for determining an
optimal smoothing parameter. The Average Predictive Squared Error (PSE) is defined by
Hastie and Tibshirani (1990) as

PSE(λ) =
1

n

n∑
i=1

E(y∗i − f̂(zi))
2,

where y∗i is a new observation at zi, which means that y∗i = f(zi) + ε∗i with ε∗i independent
of εi. It can be shown that PSE(λ) = MSE(λ) + σ2. The CV works as follows: A
smoothing parameter λ is fixed and the smooth is estimated at zi by leaving out points
(yi, zi) one at a time, based on the remaining n− 1 observations. Let f̂ (−i)(z) denote the
estimated mean obtained when removing the observation (yi, zi). The estimated mean will
then be used to predict the function value f(zi) at the eliminated observation. By doing
this for every point (yi, zi), the cross validation criterion is obtained as

CV (λ) =
1

n

n∑
i=1

(yi − f̂ (−i)(zi))
2.

The selection of the smoothing parameter then works as follows: CV (λ) is computed for
a range of values of λ and the minimizing λ̂ is selected. The cross validation criterion is
justified by the fact that

E(CV (λ)) ≈ PSE(λ), (3.3.2)

and furthermore, that the minimizer of CV (λ) is close to the minimizer of PSE(λ).
Property (3.3.2) yields from

E
(
yi − f̂ (−i)(zi)

)2

= E
(
yi − f(zi) + f(zi)− f̂ (−i)(zi)

)2

= σ2 + E
(
f(zi)− f̂ (−i)(zi)

)2

,
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where the cross-product term is zero because f̂ (−i)(zi) is independent of yi. It follows
analogously that

E
(
y∗i − f̂(zi)

)2

= σ2 + E
(
f(zi)− f̂(zi)

)2

.

With the additional assumption f̂ (−i)(zi) ≈ f̂(zi), the claim in (3.3.2) is justified. The
average mean-squared error thus differs from the average predictive squared error only by
the constant σ2. Wood (2006) argumented that complicated models are always preferred
over simpler ones, when just looking at their ability to fit the data from which they were
estimated. If the model is chosen in order to maximize the ability to predict data to which
the model was not fitted, the problem vanishes.

As a next step, the calculation of f̂ (−i)(zi), the fit at zi with the ith point removed, named
by Hastie and Tibshirani (1990) as the jackknifed fit at zi, will be discussed. To do so,
the corresponding smoother for n− 1 points must be defined, while leaving out the point
(zi, yi). Therefore, a definition of f̂ (−i)(zi) is given, by utilizing the smoother matrix SSS(λ).
This yields

f̂ (−i)(zi) =
n∑

j=1

j 6=i

SSSij(λ)

1−SSSii(λ)
yj. (3.3.3)

To prove (3.3.3), the elements of each row of SSS(λ) are thought as weights, which makes
sense since the smoother matrix is constant preserving, that is SSS(λ)111 = 111, for an n-vector
of ones 111. This implies that the sum of the weights in each row is one. To calculate
f̂ (−i)(zi), the weight on the ith observation is set to zero while the remaining weights are
increased such that they sum up to one. This yields (3.3.3).

The Statement (3.3.3) implies an important relationship, namely

f̂ (−i)(zi) =
n∑

j=1

j 6=i

SSSij(λ)yj +SSSii(λ)f̂ (−i)(zi). (3.3.4)

In terms of deletion diagnostics, (3.3.4) says that if we add a new point that lies exactly on
the regression surface, that point does not change the fitted regression. It must be pointed
out that the above statement does not hold in full generality for all types of smoothers.
However, it is still used to approximate the CV and it can be shown that it is valid for
cubic smoothing splines. To see that, assume that f̂ (−i) minimizes the PLS criterion

n∑
j=1

j 6=i

(yj − f(zj))
2 + λ

∫
f ′′(z)2dz (3.3.5)

for a sample size of n−1. Suppose the point (zi, f̂
(−i)(zi)) is added to the sample. Then the

value of (3.3.5) stays the same and therefore, f̂ (−i) must still minimize the PLS criterion
(3.3.5) for sample size n because if there was another cubic spline producing a smaller
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value of (3.3.5), this spline would also produce a smaller value over the original n−1 points.

From (3.3.3) it follows that

yi − f̂ (−i)(zi) =
yi − f̂(zi)

1−SSSii(λ)
,

and thus f̂ (−i)(zi) can be computed using f̂(zi) and SSSii(λ) and it is not necessary to
actually remove the ith point from the data and recompute the smooth.

To sum up, the cross validation sum of squares can be written as

CV (λ) =
1

n

n∑
i=1

(
yi − f̂(zi)

1−SSSii(λ)

)2

.

Since it was not known for a long time, how to compute the diagonal elements SSSii(λ) for
a smoothing spline in O(n) operations, another cross validation was introduced, namely
the Generalized Cross Validation (GCV) (Craven and Wahba, 1978). The GCV replaces
SSSii(λ) by its average value tr(SSS(λ))/n, which yields

GCV (λ) =
1

n

n∑
i=1

(
yi − f̂(zi)

1− tr(SSS(λ))/n

)2

.

The sum of the diagonal elements of the smoother matrix SSS(λ), the trace of SSS(λ), corre-
sponds to the definition of the equivalent degrees of freedom. The original motivation for
the GCV is no longer valid, since there currently are algorithms that can compute SSSii(λ) for
the cubic smoothing spline in O(n) operations. Hutchinson and de Hoog (1985) described
an algorithm for computing the diagonal elements of SSS(λ). Nevertheless, Wood (2006) ex-
plained that the GCV in contrast to the CV is invariant under orthogonal transformations
of the data.

It can be shown that both criteria, AIC and GCV, are asymptotically equivalent (Fahrmeir
et al., 2013), but can be clearly different in some applications. The optimal smoothing
parameter can thus be found by defining a grid of candidate smoothing parameters and
choosing the value that minimizes the criterion. Care has to be taken since it cannot
be guaranteed that the function has a unique minimum. Direct optimization is possible
for univariate smoothing models, but is no longer efficient when considering more than
one covariate. For the multivariate regression model, there are algorithms for an efficient
minimization of the AIC and the GCV. The regression model with multiple predictors will
be the focus in the following sections.

20



3.4 Bivariate Smoothing

3.4 Bivariate Smoothing

Thus far, nonparametric regression models with one single continuous covariate were
considered. In this section, the concept of bivariate smoothing is introduced. The idea of
bivariate smoothing is to model the predictor variable yi as a function of two continuous
covariates zi1 and zi2, which yields

yi = f(zi1, zi2) + εi, for i = 1, . . . , n. (3.4.1)

In many applications bivariate smoothing is reasonable, for example when considering
longitudinal and latitudinal data. In this special case, it is necessary to model a function
depending on both, longitude and latitude. In general, bivariate or even multiple smoothing
with more than two covariates is required, when there is interaction between the covariates.
Bivariate smoothing models are obtained by generalizing the univariate smoothing models.
Some common methods for bivariate smoothing are, for example, the Tensor Product
P-Splines, the Thin Plate Splines and the SOAP Film Smooths, which are introduced in
the following sections.

3.4.1 Tensor Product P-Splines

According to Fahrmeir et al. (2013), the Tensor Product Bases are obtained when con-
sidering pairwise products of two univariate bases constructed for univariate smooths.
Firstly, the univariate bases for the covariates z1 and z2 are constructed, yielding the basis
functions B

(1)
j (z1) (j = 1, . . . , d1) and B

(2)
r (z2) (r = 1, . . . , d2). By multiplying these basis

functions, the basis functions of the tensor product bases are obtained and have the form

Bjr(z1, z2) = B
(1)
j (z1) ·B(2)

r (z2) for j = 1, . . . , d1, r = 1, . . . , d2.

The function f in (3.4.1) thus has the representation

f(z1, z2) =

d1∑
j=1

d2∑
r=1

γjrBjr(z1, z2),

with regression coefficients γjr, defined for j = 1, . . . , d1 and r = 1, . . . , d2. At first sight,
it seems that the tensor product approaches are much more complex than the univariate
ones. It is indeed possible to represent the tensor product splines in form of a large linear
model and therefore, the tensor product splines are not that complex as one would expect.
The design matrix ZZZ can be written with rows

zzzTi = (B11(zi1, zi2), . . . , Bd11(zi1, zi2), . . . , B1d2(zi1, zi2), . . . , Bd1d2(zi1, zi2))

for i = 1, . . . , n and the corresponding vector of regression coefficients as

γγγ = (γ11, . . . , γd11, . . . , γ1d2 , . . . , γd1d2)
T.
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Thus, bivariate smoothing approaches can also be estimated within the scope of linear
models, since it follows that

yyy = ZγZγZγ + εεε.

Nevertheless, it is important to compute the estimator γ̂̂γ̂γ in a numerically efficient way, since
the number of parameters is much larger as in the univariate case. This calculation can for
example be done by utilizing univariate tensor product B-splines for zzz1 and zzz2 and ben-
efiting from the sparse structure of the design matrix, as already mentioned in Section 3.1.3.

As already discussed in Section 3.2 in the case of univariate smoothing, a penalty term has
to be added to the usual least-squares problem to ensure obtaining an adequate smooth
curve. In the two-dimensional case, one way to construct penalties, is to use the Kronecker
products of univariate penalty matrices. This means that the resulting penalty matrix has
the form

KKK = IIId2 ⊗KKK1 +KKK2 ⊗ IIId1 , (3.4.2)

where IIId is the d-dimensional identity matrix. The Kronecker product AAA⊗BBB of a n× p
matrix AAA and a r × q matrix BBB is defined as the nr × pq matrix

AAA⊗BBB =

a11BBB a12BBB · · · a1pBBB
...

...
...

an1BBB an2BBB · · · anpBBB

 .

Then the properties

(AAA⊗BBB)T = AAAT ⊗BBBT and (ABABAB)⊗ (CDCDCD) = (AAA⊗CCC)(BBB ⊗DDD) (3.4.3)

hold for matrices of appropriate order. The matricesKKK1 andKKK2 in (3.4.2) can be calculated
as

KKK1 = DDDT
1DDD1 and KKK2 = DDDT

2DDD2,

where DDD1 and DDD2 are the matrices of univariate first order differences in z1 and z2 direction,
respectively. The penalty matrix (3.4.2) is obtained as follows: Applying the matrix
IIId2 ⊗DDD1 to the vector γγγ yields row-wise first-order differences. Thus, the sum of all
squared row-wise differences is

γγγT(IIId2 ⊗DDD1)T(IIId2 ⊗DDD1)γγγ =

d2∑
r=1

d1∑
j=2

(γjr − γj−1,r)
2.

Analogously, the squared column-wise differences are

γγγT(DDD2 ⊗ IIId1)T(DDD2 ⊗ IIId1)γγγ =

d1∑
j=1

d2∑
r=2

(γjr − γj,r−1)2.

Summing up the squared row-wise and the squared column-wise differences yields the
penalty matrix

KKK = (IIId2 ⊗DDD1)T(IIId2 ⊗DDD1) + (DDD2 ⊗ IIId1)T(DDD2 ⊗ IIId1).
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Using Properties (3.4.3), the penalty matrix can be written in the form (3.4.2) and therefore
the resulting penalty has the form

λγγγTKγKγKγ = λγγγT(IIId2 ⊗KKK1 +KKK2 ⊗ IIId1)γγγ.

The idea of building two-dimensional penalties based on row-wise or column-wise differences
can also be extended to difference matrices of a higher order. In this case, the penalties
have the form

λγγγTKKKγγγ = λγγγT
(
IIId2 ⊗KKK

(k1)
1 +KKK

(k2)
2 ⊗ IIId1

)
γγγ,

where KKK
(k1)
1 and KKK

(k2)
2 are the univariate penalty matrices of orders k1 and k2. A penalty

based on squared second-order differences can thus be obtained with k1 = k2 = 2.

One of the main drawbacks of tensor product P-splines is the fact that, as with univariate
splines, the optimal number and position of knots has to be chosen. The problem that
may occur is that there may be data regions with no observations, so it is impossible to
estimate the corresponding coefficients of the basis functions. The same problem may
occur in the univariate case, when the data has large gaps. However, this problem is
more common in the two-dimensional case and can be eliminated by adding a penalty
for regularizing the estimation problem. Another way to overcome the above mentioned
problem, is the use of Thin Plate Splines or SOAP Film Smooths.

3.4.2 Thin Plate Splines

Thin Plate Splines are a way of constructing bivariate basis functions by using Radial
Bases. According to Fahrmeir et al. (2013), a radial basis function is a function of the
Euclidean distance between a knot κκκ = (κ1, κ2) and an observation point zzz = (z1, z2),
which means that

Bκ(zzz) = B(‖zzz − κκκ‖) = B(r),

where B is a suitably chosen scalar function and r = ‖zzz−κκκ‖ = ((z1−κ1)2 +(z2−κ2)2)0.5 is
the Euclidean distance. The name radial bases results from the fact that the contour plots
of the radial basis functions consist of circular contour lines, whereas the contour plots of
tensor product B-splines clearly deviate from circles. The chosen knots of a radial basis are
typically a subset of the observation points, which means that {κ1, . . . , κm} ⊂ {z1, . . . , zn},
so the distribution of the radial basis functions matches the distribution of the data. Thus,
it is no problem for the radial bases if there are regions in the data with no observations.

In the one-dimensional case, the natural cubic spline can be found by finding the smoothest
curve that interpolates a given set of data and fulfills smoothness restrictions in terms of
integrated squared second derivative. In the bivariate case, a functional J(f) has to be
found, which measures the overall roughness of f = f(z1, z2) in an analogous way as in
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the univariate case. Green and Silverman (1994) imposed some desiderata for a suitable
roughness functional J(f) and defined an appropriate one as

J(f) =

∫ ∫
R2

[(
∂2f

∂z2
1

)2

+ 2

(
∂2f

∂z1∂z2

)2

+

(
∂2f

∂z2
2

)2
]
dz1dz2. (3.4.4)

If the second derivatives of f are square-integrable over R2, then the penalty function J(f)
will be finite. By minimizing J(f) subject to certain constraints, which will be discussed
later, we obtain the thin plate splines. The penalty function J(f) does indeed quantify
the roughness of f , since J(f) will be large if f exhibits high local curvature because
then the second derivatives will be large. According to Green and Silverman (1994), the
penalty function J(f) has some good properties. It can for example be shown that if
the coordinates in R2 are rotated, then J(f) is unaffected. Furthermore, J(f) is always
non-negative, and it is zero if and only if f is a linear function. The details of these
properties can be read in Green and Silverman (1994).

The importance of the thin plate splines is the fact that they have an optimality property.
More precisely, the thin plate spline uniquely minimizes J(f) subject to the interpolation
conditions f(κi1, κi2) = wi for i = 1, . . . , n, for a given set of values w1, . . . , wn and knots
κκκi = (κi1, κi2). The exact proof of this statement will not be given in this thesis, but major
steps of the proof will be provided by discussing further properties of thin plate splines. A
sketch of the proof is given in Green and Silverman (1994).

Firstly, a thin plate spline will be defined in general, without the penalty function J(f).
Suppose the dataset zzz1, . . . , zzzn in R2 is given. A function f is called a thin plate spline if
and only if it is of the form

f(zzz) =
n∑
i=1

γiη(‖zzz − zzzi‖) +
2∑
j=0

βjφj(zzz), (3.4.5)

for suitable constants γi (i = 1, . . . , n) and βj (j = 0, 1, 2). The function η is given as

η(r) =

{
1

16π
r2 log(r2) for r > 0

0 otherwise,

and the functions φj are defined for a point zzzi = (zi1, zi2) by

φ0(zzzi) = 1,

φ1(zzzi) = zi1,

φ2(zzzi) = zi2,

so that every linear function can be written as a linear combination of the φj. In the
above definition (3.4.5), ‖zzz‖ denotes the Euclidean norm of a vector zzz, which means that

24



3.4 Bivariate Smoothing

‖zzz‖ = zzzTzzz. Furthermore, the function f in (3.4.5) is called a natural thin plate spline, if
the vector γγγ = (γ1, . . . , γn)T satisfies

XXXTγγγ = 0, (3.4.6)

where XXX is defined by

XXX =


1 zzz1

1 zzz2
...

...
1 zzzn

 . (3.4.7)

From the restriction (3.4.6) it follows immediately that

n∑
i=1

γi =
n∑
i=1

γizzzi = 0.

As a next step, it can be shown that if f is a thin plate spline, then J(f) is finite if and
only if f is a natural thin plate spline. Furthermore, if f is a natural thin plate spline,
then

J(f) = γγγTZγZγZγ,

where ZZZ is a n× n matrix with components

ZZZij = η(‖zzzi − zzzj‖)

=
1

16π
‖zzzi − zzzj‖2 log ‖zzzi − zzzj‖2,

and ZZZii = 0.

Finally, for given values w1, . . . , wn, there exists a unique natural thin plate spline f on
the set zzz1, . . . , zzzn, which are distinct non-collinear points in R2, such that

f(zzzi) = wi for i = 1, . . . , n.

Thus, for a given set of values, there exists a unique natural thin plate spline that interpo-
lates the given values. When putting all the above statements about thin plate splines
together, it can be shown that there exists a natural thin plate spline interpolant which
uniquely minimizes J(f).

The representation (3.4.5) can be written in matrix notation as

yyy = XβXβXβ +ZγZγZγ + εεε,

where XXX is defined as in (3.4.7), βββ = (β0, β1, β2)T is the corresponding coefficients vector
and the matrix ZZZ, as already defined before, contains the radial basis functions evaluated
at the observed covariate values, which means that

ZZZij = Bj(zi1, zi2) = η(‖zzzi − zzzj‖).
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To obtain an identifiable version, an additional restriction has to be made, since there
are n + 3 parameters and therefore the model is overspecified. As already mentioned,
a suitable choice is the restriction XXXTγγγ = 000, which ensures that the linear part of the
model is orthogonal to the radial basis functions part. Furthermore, as outlined before,
the penalty term (3.4.4) can be written as

γγγTZγZγZγ,

so in this case, the penalty matrix equals the design matrix. Hence, the criterion which
has to be minimized can be represented as

(yyy −XβXβXβ −ZγZγZγ)T(yyy −XβXβXβ −ZγZγZγ) + λγγγTZγZγZγ, (3.4.8)

subject to the constraint

XXXTγγγ = 000.

The problem with this minimization is that when minimizing (3.4.8), a system of (n+ 3)×
(n+ 3) equations has to be solved. It is therefore reasonable to obtain low rank approxi-
mations to the thin plate spline. Wood (2003) proposed using a spectral decomposition
of the design matrix ZZZ to obtain an optimal approximation as close to the solution as
possible. The idea is to find the parameter space basis of a given rank that perturbs the
given problem as little as possible and solve the resulting low rank problem. Firstly, the
spectral decomposition

ZZZ = ΓΓΓΩΩΩΓΓΓT

has to be computed, where ΓΓΓ is an orthonormal matrix of eigenvectors and ΩΩΩ consists of
the corresponding eigenvalues in descending order. The idea is to replace ZZZ by ZZZd, where
ZZZd is the best rank d approximation to ZZZ in the sense of the spectral norm ‖ZZZ−ZZZd‖, where
the spectral norm of a matrix AAA corresponds to the square root of the largest eigenvalue
of the positive semidefinite matrix AAA. Therefore, the matrices ΓΓΓd and ΩΩΩd are defined as
submatrices of ΓΓΓ and ΩΩΩ, respectively, associated with the d largest eigenvalues. Wood
(2003) showed, that for ZZZd it follows that

ZZZd = ΓΓΓdΩΩΩdΓΓΓ
T
d .

When replacing ZZZ by ZZZd, the original estimation problem is projected into the opti-
mal d-dimensional subspace, where d can be chosen such that the approximation error
is as small as possible. The exact proof and procedure is discussed in detail in Wood (2003).

It is also possible to define the penalty functional J(f) in general form for more than two
dimensions. When considering q points zzz1, . . . , zzzq in the d-dimensional space, J(f) has
the form

Jqd(f) =
∑

α1+···+αq=d

d!

α1! . . . αq!

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
∂df

∂zzzα1
1 . . . ∂zzz

αq
q

)2 q∏
j=1

dzzzj.
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Wahba (1990) showed that a general thin plate spline is the solution of the following
problem: Find the function f that minimizes

1

n

n∑
i=1

(yi − f(zi1, . . . , zid))
2 + λJqd(f).

The details of this general case is discussed in detail in Wahba (1990) and we will not go
into detail in this thesis.

3.4.3 SOAP Film Smooths

Conventional smoothing methods have the disadvantage that they have problems when
smoothing across boundary features. This problem may occur when considering a geo-
graphical area where the boundaries of the domain matter, such as for instance a bay.
The conventional smoothing methods tend to smooth across the water, resulting in inap-
propriate estimates on either side of the bay. Thus, another class of smoothers has to be
introduced to deal with complicated subregions of R2, while still remaining computationally
efficient. This class of smooths is introduced by Wood, Bravington, and Hedley (2008)
and is called the SOAP Film Smooth.

Firstly, this class of smooths is motivated by a physical model. Consider a region Ω on the
x−y plane in which we are interested. A loop of wire is taken to follow the boundary of the
region on the plane. The known function values at the boundary are given by the vertical
displacement of the loop above the plane. The name SOAP film smooth results from the
fact, that an appropriate smooth function over this domain is obtained by considering a
soap film supported by the boundary wire. For defining this soap film, the assumption
that the vertical displacement of the wire is small enough, has to be made. Then the
height of the soap film inside the boundary is given by a function f = f(x, y) satisfying
the boundary conditions and

∂2f

∂x2
+
∂2f

∂y2
= 0.

Furthermore, the soap film should distort smoothly from its minimum energy configuration
by moving vertically towards the data. Therefore, an appropriate measure of the total
degree of distortion is

JΩ(f) =

∫
Ω

(
∂2f

∂x2
+
∂2f

∂y2

)2

dxdy. (3.4.9)

It must be pointed out that in contrast to the other sections in this thesis, the variables
x and y here denote the covariates in x- and y-direction, respectively. The value of the
function f at the point (x, y) will be defined by z. There are three differences between the
penalty functional (3.4.9) and the penalty functional (3.4.4) from the thin plate spline:

• The functional (3.4.9) is integrated over Ω instead of the whole x− y plane as in the
functional of the thin plate splines,
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• in the penalty functional (3.4.9) there is no mixed second derivative term,

• and in the functional of the thin plate splines, the different terms are being squared
separately, whereas in the case of SOAP film smooths, the sum of the second
derivatives is squared.

The latter difference is the most important one. It allows the second derivatives with
respect to x and y to be traded off against each other, which means, that the space of
functions for which JΩ(f) is zero is infinite dimensional. Thus, functions with zero penalty
can meet any boundary condition by being curved enough.

Assume that there are n data points z1, . . . , zn on the domain (x1, y1), . . . , (xn, yn). The
SOAP film smooths are obtained by minimizing

n∑
i=1

(zi − f(xi, yi))
2 + λJΩ(f)

with respect to f and subject to some known boundary conditions. Wood et al. (2008)
proved the SOAP film interpolant theorem in their article: Consider a smooth function
f ∗(x, y) over a x− y plane and let B be a collection of closed loops in that plane, such that
no two loops intersect and one outer loop encloses all the others. Furthermore, let Ω be the
region which is made up of all points (x, y) which are interior to an odd total number of
loops. The function f ∗(x, y) is assumed to be exactly known on B and zi = f ∗(xi, yi) for
i = 1, . . . , n are observations of f ∗ for locations (xi, yi) in Ω. Let f(x, y) be the function
with the following properties:

• It interpolates the known values for f ∗ in B and the zi at the points (xi, yi) for
i = 1, . . . , n.

• It satisfies the Poisson equation

∂2f

∂x2
+
∂2f

∂y2
= 0 (3.4.10)

on B.

• It minimizes the Laplace equation

JΩ(f) =

∫
Ω

(
∂2f

∂x2
+
∂2f

∂y2

)2

dxdy. (3.4.11)

Then f is the function such that

∂2f

∂x2
+
∂2f

∂y2
= ρ, (3.4.12)

where
∂2ρ

∂x2
+
∂2ρ

∂y2
= 0, (3.4.13)
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except at the points (xi, yi) for i = 1, . . . , n and ρ = 0 on B. The proof of this statement
can be read in Wood et al. (2008). The Laplace Equation (3.4.11) and the Poisson Equation
(3.4.10) are among the most well studied in the theory of partial differential equations
due to their frequent occurence in physics. The same construction as described above can
be used for bounded domains in Rk for any positive integer k. In this thesis, we restrict
ourselves to the two-dimensional case.

It must be pointed out that for one-dimensional regions, the SOAP film penalty (3.4.9)
equals the cubic spline penalty (3.2.1). According to (3.4.12) and (3.4.13), the SOAP film
interpolant of (xi, yi) on the interval [a, b] is defined in the one-dimensional case by

∂2f

∂x2
= ρ, where

∂2ρ

∂x2
= 0,

except at the points xi where f(xi) = zi for i = 1, . . . , n. Furthermore, the boundary
conditions are that f(a) and f(b) are known and f ′′(a) = f ′′(b) = 0 holds. Thus, the
second derivative of f , ρ, is piecewise linear with derivative discontinuities at the points xi
for i = 1, . . . , n. It follows that f is a natural cubic spline interpolant.

Wood et al. (2008) also proved the theorem of SOAP film smoothing. For this theorem, let
the setup be exactly as in the SOAP film interpolant theorem, except that the values zi
are now measured with error. Let fff = (f(x1, y1), . . . , f(xn, yn))T, then the function f(x, y)
which minimizes

‖zzz − fff‖2 + λJΩ(f) (3.4.14)

subject to the known conditions on B, must satisfy (3.4.12) and (3.4.13). This characteri-
zation is the key to the computation of the SOAP film smoothers.

As a next step, the smoother and the basis-penalty representation are constructed. There-
fore denote ρi(x, y) as the function which is zero on B, satisfies Property (3.4.13) in Ω
except at the single point (xi, yi) and∫

Ω

ρi(x, y)dxdy = 1.

Then every function ρ(x, y) which satisfies Property (3.4.13) in Ω expect at the points
(xi, yi) for i = 1, . . . , n can be written as a linear combination of the ρi with coefficients γi
because of the linearity of (3.4.13). This yields

ρ(x, y) =
n∑
i=1

γiρi(x, y),

and for the penalty it follows that

JΩ = γγγTSSSγγγ,
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where the matrix SSS is given by

SSSij =

∫
Ω

ρi(x, y)ρj(x, y)dxdy.

To write f in terms of γi for i = 1, . . . , n, define h(x, y) as the solution to (3.4.12) with
ρ(x, y) = 0 for all x, y and subject to the boundary condition that f(x, y) is known on B.
Let gi(x, y) be the solution of (3.4.12) with ρ(x, y) = ρi(x, y) and the boundary condition
that f is zero on B. Then the SOAP film smoother can be respresented as

f(x, y) = h(x, y) +
n∑
i=1

γigi(x, y)

because of the linearity of (3.4.12). Due to the fact, that the Laplace and the Poisson
equation are well studied problems, the computation of h, gi, ρi, and thus the matrix SSS, is
computationally straightforward.

To sum up, the minimization criterion (3.4.14) becomes the standard penalized regression
problem of minimizing

‖zzz − hhh−ZγZγZγ‖2 + λγγγTSSSγγγ

with respect to γγγ. The design matrix ZZZ is defined as ZZZij = gj(xi, yi) and the vector
hhh = (h(x1, y1), . . . , h(xn, yn))T. The procedure of choosing the smoothing parameter λ is
the same as already mentioned in Section 3.3.

There may be applications where the data lies in a problematic boundary region, but we
do not have specific knowledge about the value of the function on that boundary. In this
case, the values of the function on the boundary have to be modeled. To do so, assume
that B consists only of a single closed loop. The loop should be parameterized in terms of
r, where r is the distance along the loop from some fixed starting point on B. Thus, the
coordinates of B are given as (xB(r), yB(r)). Let fb(r) = f(xB(r), yB(r)) be the boundary
function. Suppose that fb(r) has the basis representation

fb(r) =
J∑
j=1

αjνj(r) (3.4.15)

for some parameters αj and known basis functions νj(r). This representation is a cyclic
penalized regression spline smoother in r, that is a function that has the same value and
first few derivatives at its upper and lower boundaries. The penalty functional

Jb(fb) = αααTSSSbααα

should be associated with the smoother, where SSSb is a smoother matrix of known coefficients.
It can then be shown that the function h(x, y) has the representation

h(x, y) =
J∑
j=1

αjhj(x, y),
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3.5 Higher-Dimensional Smoothing

where hj(x, y) is the solution of (3.4.12) with ρ(x, y) = 0 and the boundary condition
resulting from setting αj = 1 and αi = 0 for i 6= j in (3.4.15). The calculation of the
hj(x, y) is easy, using the same method as for the gi(x, y). Details of the computation can
be read in Wood et al. (2008).

Finally, given the basis functions and penalty for the boundary model, the criterion which
has to be minimized with respect to ααα and γγγ, can be rewritten as

‖zzz −AαAαAα−ZγZγZγ‖2 + λγγγTSSSγγγ + λbααα
TSSSbααα,

where AAAij = hj(xi, yi). The smoothing parameters λ and λb can be selected by an
appropriate criterion, like the AIC or the GCV. The restriction to the case where B is
a single closed loop can be generalized without any extra difficulties. For each loop of
B a cyclic smooth can be used, each with an associated penalty. Thus, the SOAP film
smooths are in practice very convenient because of their computational efficieny. Since the
model can be evaluated with basis functions and a quadratic penalty for the smoothers,
the computational and theoretical machinery, which is already available, can be used.

3.5 Higher-Dimensional Smoothing

The ideas of bivariate smoothing can also be applied to higher-dimensional regression
problems. The models of higher-dimensional surfaces have the form

yi = f(zi1, . . . , ziq) + εi for i = 1, . . . , n, (3.5.1)

for covariates zzz1, . . . , zzzq. These models are used when there is interaction between the
covariate values zzz1, . . . , zzzq. Higher-dimensional tensor product splines result for example
when considering all possible interactions of the univariate splines for zzz1, . . . , zzzq. The
penalty matrices for model (3.5.1) can be constructed as in the bivariate case with the
Kronecker product. For the special case q = 3 the penalty matrix has the form

IIId3 ⊗ IIId2 ⊗KKK1 + IIId3 ⊗KKK2 ⊗ IIId1 +KKK3 ⊗ IIId2 ⊗ IIId1 ,

where KKK1, KKK2 and KKK3 are the univariate penalty matrices for the covariates zzz1, zzz2 and
zzz3. When considering radial bases, the construction of the higher-dimensional surface is
even simpler, since the basis functions only depend on the Euclidean distance between
two points, which is defined in Rq as well as in R2.

Nevertheless, higher-dimensional functions which are estimated nonparametrically rely on
a large number of parameters and therefore, the estimation is computationally expensive.
Furthermore, a good coverage of the observation domain is only obtained when the
number of parameters for each dimension is larger than what is used in the univariate
smoothing problem. This problem is called the curse of dimensionality and means that
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neighbourhoods with a fixed number of points become less local as the dimensions increase.
By doing so, the problem of a large number of parameters that need to be estimated
occurs again. Consequently, it is advisable not to use surfaces with dimension higher than
q = 2. In practice, it is common to use an additive structure for the function f , which
means that

f(zi1, . . . , ziq) = f1(zi1) + · · ·+ fq(ziq) for i = 1, . . . , n.

This yields the class of additive models, which will be discussed in detail in the next
section.

3.6 Additive Model

In the previous sections, various methods were introduced for flexibly modeling the effect
of a continuous covariate z on the response variable y without a restrictive functional
form of the effect f(z). The methods were extended to the bivariate and the higher-
dimensional case with continuous covariates z1, . . . , zq. However, there are cases where
the effect of the continuous covariates z1, . . . , zq on the response y cannot be described
by a simple functional form. Therefore, it is reasonable to model these effects in form
of a function f(z1, . . . , zq). As already seen in the previous section, the estimation of
such high-dimensional functions is problematic. Consequently, a more restrictive additive
structure for the effect of the covariates is used in practice.

Consider observations (yi, xi1, . . . , xik) for i = 1, . . . , n of a continuous response vector
yyy and covariates xxx1, . . . ,xxxk, and observations (zi1, . . . , ziq) for i = 1, . . . , n of additional
continuous covariates zzz1, . . . , zzzq. The effects of xxx1, . . . ,xxxk on yyy are modeled through a
linear predictor, whereas the effects of zzz1, . . . , zzzq on yyy are modeled nonparametrically. An
Additive Model is defined by Fahrmeir et al. (2013) as

yi = f1(zi1) + · · ·+ fq(ziq) + β0 + β1xi1 + · · ·+ βkxik + εi (3.6.1)

= f1(zi1) + · · ·+ fq(ziq) + ηlini + εi

= ηaddi + εi

with

ηlini = β0 + β1xi1 + · · ·+ βkxik and ηaddi = f1(zi1) + · · ·+ fq(ziq) + ηlini ,

and i = 1, . . . , n. The error terms εi are assumed to be independent and identically
distributed with zero mean and variance σ2. In the special case where the linear predictor
ηlini is zero, model (3.6.1) is called partial linear model or semiparametric model. The
advantage of model (3.6.1) is that it is additive in the predictor effects, which means that
once the model is fitted, the predictor effects can be examined separately. However, the
additive model has an identification problem, since if we add a constant a 6= 0 to the
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function f1(zi1) and subtract the same constant at the same time from the second function
f2(zi2), the sum

f1(zi1) + f2(zi2) = f1(zi1) + a+ f2(zi2)− a

and also the predictor ηaddi , remain the same. Hence, it is necessary to impose further
restrictions by fixing the level of the functions. This is usually done by ”centering the
functions around zero”, which means that the restrictions

n∑
i=1

f1(zi1) = · · · =
n∑
i=1

fq(ziq) = 0

are imposed. It must be pointed out that the functions f1, . . . , fq in (3.6.1) need not to be
univariate and smooth. They can also be higher-dimensional, as well as categorical variable
terms and there might be interactions as well. These generalizations are discussed in
Section 3.7. This section focuses on the case, where the functions f1, . . . , fq are univariate
and smooth.

For the estimation of the additive model, each function fj for j = 1, . . . , q can be
approximated by

fj(zj) =

dj∑
l=1

γjlBl(zj)

with basis functions Bl. The basis functions can be B-splines, smoothing splines or other
basis functions and it is also possible to choose different types of basis functions for the
different functions fj. Each vector fff j = (fj(z1j), . . . , fj(znj))

T can then be written as

fff j = ZZZjγγγj,

where γjγjγj = (γj1, . . . , γjdj )
T is the vector of regression coefficients and the design matrix ZZZj

is defined as

ZZZj[i, l] = Bl(zij).

Thus, model (3.6.1) can be written in matrix notation as

yyy = ZZZ1γγγ1 + · · ·+ZZZqγγγq +XβXβXβ + εεε, (3.6.2)

where yyy = (y1, . . . , yn)T is the vector of the response values, βββ = (β0, . . . , βk)
T the vector of

regression coefficients of the linear part of the predictor with corresponding design matrix
XXX, and εεε = (ε1, . . . , εn)T is the vector of the error terms. If the coefficient vectors γγγ1, . . . , γγγq
are estimated unrestrictedly using ordinary least-squares, the model (3.6.2) would just be
a large linear model. However, the estimation is in general done by introducing penalties of
the form λjγγγ

T
jKKKjγγγj for each function fff j , to ensure smoothness properties of the estimates.

This procedure is explained later in the case of structured additive regression models.
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3.6.1 Geoadditive Model

The data for geoadditive models is in general given through observations (yi,xxxi, zzzi) for
i = 1, . . . , n, where yyy is the response vector and xxx, zzz the covariates. Furthermore, there
are additional values si for i = 1, . . . , n, which are associated with a geographic location
index s. There are two different cases for the location index s. On the one hand, s can be
discrete by taking the values s ∈ {1, . . . , d}. In this case, si denotes a specific region, in
which the individual or the unit i was observed. These specific regions can be, for example,
districts or postcode areas. On the other hand, s can be a continuous variable given by
the coordinates of R2, which means that for every unit i, the corresponding location si is
exactly known and given as a pair of longitude and latitude. The geoadditive model has
the form

yi = ηaddi + fgeo(si) + εi (3.6.3)

= f1(zi1) + · · ·+ fq(ziq) + fgeo(si) + β0 + β1xi1 + · · ·+ βkxik + εi,

for i = 1, . . . , n. Thus, additional to the assumptions for the additive model, the predictor
is expanded by a spatial effect fgeo(si) of the location variable si for i = 1, . . . , n. Fahrmeir
et al. (2013) described the spatial effect fgeo(s) as a surrogate for unobserved spatial
variables not included in the data. Depending on whether s is continuous or discrete,
different methods for estimating the function fgeo(s) can be applied. For discrete s, the
property si = s implies that the ith observation belongs to region s with s ∈ {1, . . . , d}.
In this case, fgeo(si) denotes the spatial effect of region s = si.

In geoadditve models, the vector fff geo = (fgeo(s1), . . . , fgeo(sn))T of the spatial effect can
be represented as

fff geo = ZZZgeoγγγgeo

with the corresponding vector of regression coefficients γγγgeo = (γgeo,1, . . . , γgeo,d)
T. The

n× d design matrix ZZZgeo is an incidence matrix, which means that

ZZZgeo[i, s] =

{
1 if si = s

0 otherwise.

The geoadditive model can thus be represented in matrix notation as

yyy = ZZZ1γγγ1 + · · ·+ZZZqγγγq +ZZZgeoγγγgeo +XβXβXβ + εεε,

which is just the additive model (3.6.2) extended by the additional spatial effect ZZZgeoγγγgeo.
The variable selection and model choice in geoadditive regression models is discussed in
more detail in Kneib, Hothorn, and Tutz (2009).

3.6.2 Model with Interactions

The additive and the geoadditive model are purely main effect models with nonparametric
functions f1, . . . , fq and an optional spatial effect fgeo. However, it is also possible that
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there is interaction between two ore more covariates, so that a purely main effect model
will not be sufficient. According to Fahrmeir et al. (2013), there are different types of
interaction terms. The most common type of interaction is the nonparametric interaction
between two continuous covariates z1 and z2. This interaction can be modeled by adding
a smooth function f1|2(z1, z2) to the predictor. This can be done in two different ways.

On the one hand, the effect of z1 and z2 can be considered by the function f1|2(z1, z2), but
the one-dimensional main effects f1(z1) and f2(z2) are not included in the model. This
yields

yi = f1|2(zi1, zi2) + f3(zi3) + · · ·+ fq(ziq) + ηlini + εi for i = 1, . . . , n. (3.6.4)

As in the additive model without interaction terms, the level of f1|2(z1, z2) is not identified
and thus the function has to be centered around zero, which means that it has to be
assumed that

n∑
i=1

f1|2(zi1, zi2) = 0.

When using model (3.6.4), it must be assured that the existing dataset contains enough
data combinations of z1 and z2 to estimate a two-dimensional surface. Otherwise, it is
advisable to use a pure main effects model.

On the other hand, a two-dimensional function f1|2(z1, z2) can be added to the predictor
in addition to the main effect functions f1(z1) and f2(z2). This results in the model

yi = f1(zi1) + f2(zi2) + f1|2(zi1, zi2) + f3(zi3) + · · ·+ fq(ziq) + ηlini + εi, (3.6.5)

for i = 1, . . . , n. In this case, the problem of identifiability is more complicated. Iden-
tifiability is guaranteed if in addition to centering all functions fi(zi) around zero, all
interaction terms f1|2(zi1, zi2) are centered around zero as well. By doing so, the interaction
f1|2(z1, z2) can be seen as a deviation from the main effects.

In both cases (3.6.4) and (3.6.5), the interaction term f1|2(z1, z2) is generally modeled with
tensor product P-splines or radial bases. When the interaction vector is defined as

fff 1|2 = (f1|2(z11, z12), . . . , f1|2(zn1, zn2))T,

the large linear model can be written as

yyy = ZZZ1γγγ1 + · · ·+ZZZqγγγq +ZZZ1|2γγγ1|2 +XXXβββ + εεε,

where ZZZ1|2 is the design matrix of the interaction term with corresponding coefficient
vector γγγ1|2, so that

fff 1|2 = ZZZ1|2γγγ1|2.
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The coefficients γγγ1, . . . , γγγq, γγγ1|2 can then be estimated using the penalized least-squares
method described in the next section in case of the structured additive models.

Another way of possible interaction, is the one between a continuous variable z1 and a
binary variable x1 ∈ {0, 1}, modeled through the interaction term fz1|x1(z1) · x1. This
yields the model

yi = f1(zi1) + · · ·+ fq(ziq) + fz1|x1(zi1)xi1 + β0 + β1xi1 + · · ·+ βkxik + εi, (3.6.6)

where except of the added interaction term, the model is the same as the additive
model (3.6.1). Once again, the function fz1|x1 has to be centered around zero, otherwise
the model is not identifiable. Model (3.6.6) is then called a Varying Coefficients Model.
If the binary variable x1 = 0, then f1(z1) is the nonlinear effect of z1, whereas if x1 = 1,
then f1(z1) + fz1|x1(z1) + β1 is the nonlinear effect of z1. The sum fz1|x1(z1) + β1 is called
the varying effect for x1 = 1 depending on z1. The variable z1 in this case is also called
the effect modifier of x1, and x1 is called the interaction variable.

The same procedure can be done for a three-level categorical variable x ∈ {1, 2, 3}, which
is coded by the dummy variables x1 and x2 as

(x1, x2) =


(1, 0) if x = 1

(0, 1) if x = 2

(0, 0) if x = 3.

This results in the model

yi = f1(zi1) + · · ·+ fq(ziq) + fz1|x1(zi1)xi1 + fz1|x2(zi1)xi2 + β0 + β1xi1 + · · ·+ βkxik + εi.

The interpretation is similar to the one before. The effect of z1 is given as f1(z1) +
fz1|x1(z1) + β1 if x = 1, and as f1(z1) + fz1|x2(z1) + β2 if x = 2, whereas the nonlinear effect
of z1 is given as f1(z1) if x = 3. However, we will restrict ourselves to the case of one
binary variable x1. For representing the varying coefficients model as a large linear model,
the functions f1, . . . , fq, fz1|x1 can be modeled with the basis function approach as

fz1|x1(z1) =
d∑
l=1

γint,lBl(z1) and fi(zi) =
d∑
l=1

γlBl(zi) for i = 1, . . . , q

with the vector of coefficients γγγint = (γint,1, . . . , γint,d)
T. Therefore, the interaction term

fff int = (fz1|x1(z11)x11, . . . , fz1|x1(zn1)xn1)T can be represented as

fff int = ZZZintγγγint,

where the design matrix ZZZint is defined by

ZZZint[i, l] = Bl(zi1)xi1.
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Thus, the varying coefficients model can be written as

yyy = ZZZ1γγγ1 + · · ·+ZZZqγγγq +ZZZintγγγint +XβXβXβ + εεε.

The concept of varying coefficients is also useful in geoadditive models. In this case,
an interaction term fgeo|z(s) · z between the location variable s and a binary or even
multicategorical variable z is included in the geoadditive model (3.6.3). This model is
then called a model with spatially varying coefficients or geographically weighted regression
model.

3.6.3 Structured Additive Regression Model

The various terms in a model discussed in the previous sections can also be combined into
one model. This means, a model can include all main effects and spatial effects, as well
as interaction terms. According to Fahrmeir et al. (2013), the resulting model is called a
Structured Additive Regression (STAR) Model and has the form

yi = f1(vi1) + · · ·+ fq(viq) + β0 + β1xi1 + · · ·+ βkxik + εi for i = 1, . . . , n, (3.6.7)

where vvv1, . . . , vvvq are n-dimensional covariates of different types, constructed from the
original variables. For example, f1(vi1) = f1(zi1) can be a nonlinear effect of zzz1, f2(vi2) =
fgeo(si), f3(vi3) = f1|2(zi1, zi2), and so on.

Defining the vectors fff j = (fj(v1j), . . . , fj(vnj))
T of functions evaluated at the observations

of the covariates vvv1, . . . , vvvq, it follows that

fff j = VVV jγγγj,

and thus, the model (3.6.7) can be written in matrix notation as

yyy = VVV 1γγγ1 + · · ·+ VVV qγγγq +XβXβXβ + εεε, (3.6.8)

for suitable design matrices VVV j and corresponding coefficient vectors γγγj . For simplicity, we
write LS = LS(γγγ1, . . . , γγγq,βββ) for the penalized least-squares criterion, which is given by

LS = (yyy−VVV 1γγγ1−· · ·−VVV qγγγq−XβXβXβ)T(yyy−VVV 1γγγ1−· · ·−VVV qγγγq−XβXβXβ)+
d∑
j=1

λjγγγ
T
jKKKjγγγj. (3.6.9)

The penalty matrices KKKj depend on the specific type of the function fj and the chosen
penalty. Thus, a STAR model is characterized by the matrices VVV j and the penalty matrices
KKKj.

For the minimization of (3.6.9), we first assume that λj is known for all j = 1, . . . , n. The
estimation of the smoothing parameters λj will be discussed later. There are two different
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ways to minimize (3.6.9): iterative minimization with the backfitting alorigthm or direct
minimization of the penalized least-squares criterion. The idea of the backfitting algorithm
is to iteratively estimate f̂̂f̂f 1, . . . , f̂̂f̂f q, β̂̂β̂β by smoothing of some partial residuals. From (3.6.8)
it follows that

fff j ≈ yyy − fff 1 − · · · − fff j−1 − fff j+1 − · · · − fff q −XβXβXβ,

when the errors εεε are neglected. If we already have estimators β̂̂β̂β and f̂̂f̂f l for l 6= j, then

yyy −
∑
l 6=j

f̂̂f̂f l −XβXβXβ

can be interpreted as a residual vector without f̂̂f̂f j. To obtain an estimate for fff j, the
smoother SSSj(λj) has to be applied to the residual vector. This yields

f̂̂f̂f j = SSSj(λj)(yyy −
∑
l 6=j

f̂̂f̂f l −Xβ̂Xβ̂Xβ̂). (3.6.10)

The updated β̂̂β̂β is defined as

β̂̂β̂β = (XXXTXXX)−1XXXT(yyy − f̂̂f̂f 1 − · · · − f̂̂f̂f q). (3.6.11)

When using basis function approaches, all estimators can be respresented as

f̂̂f̂f j = VVV j(VVV
T
j VVV j + λjKKKj)

−1VVV T
j (yyy −

∑
l 6=j

f̂̂f̂f l −Xβ̂Xβ̂Xβ̂).

This estimation was already derived in Section 3.2 in the case of univariate smoothing.
In the case of STAR models, the form of VVV j and the penalty matrix KKKj depend on the
type of smoother used. The backfitting algorithm works as follows: Firstly, the values
f̂̂f̂f 1, . . . , f̂̂f̂f q, β̂̂β̂β are initialized with some starting values. Then the estimates for f̂̂f̂f j and β̂̂β̂β
are updated using (3.6.10) and (3.6.11), until the estimated functions do not differ more
than a small given increment in two subsequent iterations.

Another way to compute the penalized least-squares estimator is through direct mini-
mization of Criterion (3.6.9) with a non-iterative procedure. To minimize the penalized
least-squares criterion, the first derivatives of the penalized least-squares criterion have to
be computed with respect to the unknown parameters. The first derivatives are

∂

∂γγγ1

LS = −VVV T
1yyy + (VVV T

1VVV 1 + λ1KKK1)γγγ1 + VVV T
1VVV 2γγγ2 + · · ·+ VVV T

1VVV qγγγq + VVV T
1XβXβXβ,

∂

∂γγγ2

LS = −VVV T
2yyy + VVV T

2VVV 1γγγ1 + (VVV T
2VVV 2 + λ2KKK2)γγγ2 + VVV T

2VVV 3γγγ3 + · · ·+ VVV T
2VVV qγγγq + VVV T

2XβXβXβ,

...

∂

∂γγγq
LS = −VVV T

q yyy + VVV T
qVVV 1γγγ1 + · · ·+ VVV T

qVVV q−1γγγq−1 + (VVV T
qVVV q + λqKKKq)γγγq + VVV T

qXβXβXβ,

∂

∂βββ
LS = −XXXTyyy +ZZZTVVV 1γγγ1 + · · ·+ZZZTVVV qγγγq +XXXTXβXβXβ.
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Setting these derivatives to zero, yields the system of equations
VVV T

1VVV 1 + λ1KKK1 VVV T
1VVV 2 . . . VVV T

1VVV q VVV T
1XXX

VVV T
2VVV 1 VVV T

2VVV 2 + λ2KKK2 . . . VVV T
2VVV q VVV T

2XXX
...

. . .
...

...
VVV T
qVVV 1 . . . VVV T

qVVV q−1 VVV T
qVVV q + λqKKKq VVV T

qXXX
ZZZTVVV 1 . . . ZZZTVVV q−1 ZZZTVVV q ZZZTXXX




γγγ1

γγγ2
...
γγγq
βββ

 =


VVV T

1yyy
VVV T

2yyy
...

VVV T
q yyy

XXXTyyy

 .

For small q and a relatively modest number of knots used, for example when modeling
fff 1, . . . , fff q with P-splines, the direct estimation of the above system of equations works
well. If γγγ1, . . . , γγγq are high-dimensional, the solution of the system of equations has to
be solved iteratively, for example with the Gauß-Seidel algorithm. This algorithm is not
described here, but can be read in Buja, Hastie, and Tibshirani (1989).

The estimation of the model coefficients only works, if the smoothing parameters λj are
known. There are two common approaches: the estimation with the Un-Biased Risk
Estimator (UBRE) or the Generalized Cross Validation (GCV). The decision on the
estimation criterion is made based on the scale parameter φ, which equals the variance
σ2 in the normal distribution. The smoothing parameter is estimated by minimizing the
UBRE when σ2 is known, whereas the GCV is used when it is unknown.

Let us first assume that the scale parameter is known. One possible way to choose the
smoothing parameter λλλ would be to choose it in a way that the estimator µ̂̂µ̂µ is as close
as possible to the true mean µµµ = E(yyy). To do so, an appropriate measure might be the
expected Mean Squared Error (MSE) of the model, which is defined by Wood (2006) as

E(M) = E
(
‖µµµ− VVV 1γ̂̂γ̂γ1 − · · · − VVV qγ̂̂γ̂γq −Xβ̂Xβ̂Xβ̂‖2/n

)
.

Using the smoother matrix SSS(λλλ) and yyy = µµµ+ εεε, it follows that

M = ‖µµµ−SSS(λλλ)yyy‖2/n = ‖yyy −SSS(λλλ)yyy − εεε‖2/n

=
1

n
(‖yyy −SSS(λλλ)yyy‖2 + εεεTεεε− 2εεεT(yyy −SSS(λλλ)yyy))

=
1

n
(‖yyy −SSS(λλλ)yyy‖2 − εεεTεεε− 2εεεTµµµ+ 2εεεTSSS(λλλ)εεε).

When calculating the expected value of the last term, we obtain

E(εεεTSSS(λλλ)εεε) = E(tr(εεεTSSS(λλλ)εεε)) = E(tr(SSS(λλλ)εεεεεεT)) = tr(SSS(λλλ) E(εεεεεεT))

= tr(SSS(λλλ)III)σ2 = tr(SSS(λλλ))σ2,
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thus, for E(M) it follows that

E(M) =
1

n

(
E(‖yyy −SSS(λλλ)yyy‖2 − E(εεεTεεε)− 2 E(εεεT)µµµ+ 2 E(εεεTSSS(λλλ)εεε)

)
=

1

n

(
E(‖yyy −SSS(λλλ)yyy‖2 − E

(
n∑
i=1

ε2i

)
+ 2 tr(SSS(λλλ))σ2

)
= E(‖yyy −SSS(λλλ)yyy‖2)/n− σ2 + 2 tr(SSS(λλλ))σ2/n.

For choosing the smoothing parameters, an estimate of this expected MSE is minimized,
namely the Un-Biased Risk Estimator (UBRE) or Mallow’s Cp (Mallows, 1973)

νu(λλλ) = ‖yyy −SSS(λλλ)yyy‖2/n− σ2 + 2 tr(SSS(λλλ))σ2/n.

For known σ2, the estimation of λλλ with the UBRE works very well. Problems occur when
σ2 has to be estimated.

For an unknown scale parameter, the smoothing parameter is estimated with the General-
ized Cross Validation (GCV), which works with the mean squared prediction error instead
of the mean squared error. The GCV in the univariate case, discussed in Section 3.3, can
be generalized to

GCV =
n‖yyy − µ̂̂µ̂µ‖2

(n− tr(SSS(λλλ))2
.

The derivation works analogously to the univariate case and will therefore not be discussed
in detail here. This derivation and details about the minimization of the UBRE and the
GCV can be read in Wood (2006).

Another way to estimate the smoothing parameter is to minimize the AIC criterion, which
is given for STAR models with Gaussian errors by

AIC = n log(σ̂2) + 2(tr(SSS(λλλ)) + 1),

where σ̂2 =
∑n

i=1 (yi − η̂i)2/n is the maximum likelihood estimator of the error variance
and SSS(λλλ) is the smoother matrix of the full STAR model. This criterion works for Gaussian
errors since in this case ŷ̂ŷy = SSS(λλλ)yyy. For non-Gaussian errors, the corresponding matrix
from the model has to be used.

3.7 Generalized Additive Model

The Generalized Additive Model (GAM), introduced by Hastie and Tibshirani (1990),
follows from an structured additive model, as the generalized linear model follows from the
classical linear model. That is, the predictor effects are still assumed to follow an additive
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structure, but the distribution of the responses as well as the link between the predictors
and the mean can be quite general. Thus, the GAM has the form

g(µi) = f1(vi1) + · · ·+ fq(viq) + β0 + β1xi1 + · · ·+ βkxik for i = 1, . . . , n,

where µi = E(yi) and the responses yi are from some exponential family distribution. The
function g is assumed to be a known, monotonic and twice differentiable link function.
The functions f1, . . . , fq as well as the covariates vvv1, . . . , vvvq and xxx1, . . . ,xxxk are defined as
in the structured additive model (3.6.7). The generalized additive model therefore differs
from a generalized linear model in that an additive predictor replaces the linear predictor.
Many useful models fall into the class of generalized additive models, for example the
logistic additive model, where the link function, when applied to binary response data,
takes the form g(µµµ) = log (µµµ/(1− µµµ)).

3.7.1 The Penalized Iteratively Re-Weighted Least-Squares
Procedure

For notational simplicity, we define the design matrix Ṽ̃ṼV = (VVV 1, . . . ,VVV q,XXX), containing all
design matrices of the GAM. Furthermore, all regression coefficients are combined in one
vector, namely δδδT = (γγγT1 , . . . , γγγ

T
q ,βββ

T). The estimation of the parameter vector δδδ as well as
fff 1, . . . , fff q can be done with the penalized likelihood function, defined by

lp(θθθ(δδδ)|yyy) = l(θθθ(δδδ)|yyy)−
q∑
j=1

λjδδδ
TKKKjδδδ, (3.7.1)

where l(θθθ(δδδ)|yyy) denotes the log-likelihood function and the smoothing parameters λj
again control the tradeoff between goodness of fit of the model and the smoothness.
The estimaton of the smoothing parameters will be discussed later. In this section
we assume that the smoothing parameters are known. In contrast to additive models,
where the estimation was done with penalized least-squares, the GAMs are fitted by
penalized likelihood maximization. To maximize the penalized likelihood function (3.7.1),
Wood (2006) introduced the Penalized Iteratively Re-Weighted Least Squares (P-IRLS)
scheme. For notational simplicity, define KKK =

∑q
j=1 λjKKKj. For the P-IRLS algorithm, the

derivatives of lp with respect to δj have to be calculated and set to zero, since we want to
maximize lp. The log-likelihood function is defined by

l(θθθ(δδδ)|yyy) =
n∑
i=1

(
yiθi − b(θi)

φ
+ c(yi, φ)

)
.
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and the derivative is

∂l(θθθ(δδδ)|yyy)

∂δj
=

n∑
i=1

(
yi − b′(θi)

φ

)
∂θi
∂δj

=
n∑
i=1

(
yi − b′(θi)

φ

)
∂θi
∂µi

∂µi
∂δj

,

because of the chain rule. Furthermore, it follows that

∂θi
∂µi

=
∂θi

∂b′(θi)
=

1

b′′(θi)
=

1

V (µi)
.

Thus, for the derivative of the penalized log-likelihood follows that

∂lp(θθθ(δδδ)|yyy)

∂δj
=
∂l(θθθ(δδδ)|yyy)

∂δj
− (KδKδKδ)j =

1

φ

n∑
i=1

yi − µi
V (µi)

∂µi
∂δj
− (KδKδKδ)j = 0, (3.7.2)

where (·)j denotes the jth row of a vector. It must be pointed out that the weights a(φ)
were set to φ, without loss of generality. The above equations are exactly those that would
have to be solved to find δ̂̂δ̂δ in the penalized non-linear least-squares problem

Sp =
n∑
i=1

(yi − µi)2

var(yi)
+ δδδTKKKδδδ, (3.7.3)

where the variance of yi is assumed to be known. This penalized least-squares problem
is solved by calculating the derivatives with respect to δj, but the resulting system of
equations is already given in (3.7.2). The P-IRLS is an iterative method. Assume we start

with an estimated parameter δ̂̂δ̂δ[k] at the kth iterate and vectors ηηη[k] and µµµ[k], calculated as
η

[k]
i = Ṽ̃ṼV iδ̂̂δ̂δ

[k] and µ
[k]
i = g−1(η

[k]
i ). Defining the diagonal matrix VVV [k] with diagonal elements

VVV [k]ii = V (µ
[k]
i ) yields

Sp = ‖
√
VVV −1

[k] (yyy − µµµ(δδδ))‖2 + δδδTKδKδKδ.

When replacing µµµ by its first order Taylor expansion around δ̂̂δ̂δ[k], Sp becomes

Sp ≈ ‖
√
VVV −1

[k] (yyy − µµµ
[k] − JJJ(δδδ − δ̂̂δ̂δ[k]))‖2 + δδδTKδKδKδ,

where JJJ denotes the Jacobian matrix, given as JJJ ij = ∂µi
∂δj

∣∣
δ̂̂δ̂δ[k]

. It follows that

g′(µi)
∂µi
∂δj

= Ṽ̃ṼV ij,

since g(µi) = Ṽ̃ṼV iδδδ and therefore,

JJJ ij =
∂µi
∂δj

∣∣∣∣
δ̂̂δ̂δ[k]

=
VVV ij

g′(µ
[k]
i )

.
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DefiningGGG as a diagonal matrix with diagonal elementsGGGii = g′(µ
[k]
i ) yields that JJJ = GGG−1Ṽ̃ṼV .

Thus, the approximation for Sp becomes

Sp ≈ ‖
√
VVV −1

[k]GGG
−1
[
GGG(yyy − µµµ[k]) + ηηη[k] − Ṽ δṼ δṼ δ

]
‖2 + δδδTKδKδKδ (3.7.4)

= ‖
√
WWW [k](zzz[k] − Ṽ β̃Ṽ β̃Ṽ β̃)‖2 + δδδTKδKδKδ,

where zzz[k] is a vector of pseudodata given as

zzz[k] = g(µ
[k]
i )(yi − µ[k]

i ) + Ṽ̃ṼV iδ̂̂δ̂δ
[k],

and WWW [k] is a diagonal matrix with diagonal elements

w
[k]
i =

1

V (µ
[k]
i )g′(µ

[k]
i )2

.

To sum up, the P-IRLS method works as follows: For given estimates δ̂̂δ̂δ[k] the pseudodata
zzz[k] and the weights w

[k]
i have to be estimated. Using these values, Sp as given in (3.7.4)

is minimized with respect to δδδ to find δ̂̂δ̂δ[k+1]. The procedure is then again started with k
replaced by k + 1. These steps are iterated to convergence. The converged δ̂̂δ̂δ minimizes
(3.7.3) and is thus the maximum likelihood estimate. It must be pointed out that only

values for µµµ[0] and ηηη[0] have to be initialized at the beginning, but not for δ̂̂δ̂δ[0]. The method
is usually started by setting µ

[0]
i = yi and η

[0]
i = g(µ

[0]
i ) and the algorithm converges in most

practical approaches. The P-IRLS is very similar to the IRLS algorithm for GLMs, where
the algorithm works analogously just without the penalty term. The IRLS algorithm was
introduced by Nelder and Wedderburn (1972) and the derivation of the P-IRLS can be
read in McCullagh and Nelder (1989).

3.7.2 Estimation of the Smoothing Parameter

For estimating the smoothing parameter λλλ in GAMs, the minimization of the UBRE and
the GCV from STAR models can be generalized. The GCV score in the generalized case
is

GCV =
n
∑n

i=1 V (µ̂i)
−1(yi − µ̂i)2

(n− tr(SSS(λ))2

and the UBRE score

νu(λλλ) =
1

n

n∑
i=1

V (µ̂i)
−1(yi − µ̂i)2 − σ2 +

2

n
tr(SSS(λ))σ2,

where V (µi) is the variance function, defined as in the GLM. Details about the derivation
of the generalized UBRE and GCV can be read in Wood (2006). Algorithms and details
regarding the minimization of the different criteria for estimating the smoothing parameters
can be read in Gu and Wahba (1991), Wood (2000) and Wood (2004).

43
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3.8 Model Choice and Diagnosis

3.8.1 Model Choice

This section focuses on how to carry out a regression analysis and to find a suitable
model for a given dataset. As explained in Fahrmeir et al. (2013), the first step in every
statistical application is the analysis of the dataset. It is important to get insight into
the distribution and the behaviour of the variables. In this descriptive analysis of the
data, the first step is the description of the distribution of the variables in the dataset.
Furthermore, the data has to be checked for extreme values or limited information in some
regions. Sometimes it is necessary to exclude extreme observations from the data. The
problem of missing information is very common in the case of binary covariates when one
category is not populated at all or only very sparsely. In this case it is often useful to com-
bine individual categories or in the extreme case, a covariate may be useless for the analysis.

A next important step is the correlation analysis. This means that in case of continuous
responses, graphical two-dimensional correlation analyses between the response values and
each covariate gives an important insight in the type and the strength of the relationship.
Important graphical tools for this step are scatter plots and box plots. It must be pointed
out that we are only investigating two-dimensional correlations in this step, so that other
correlations have to be considered in a further investigation. When considering discrete
responses, the graphical tools are of limited use.

When trying to find a suitable model for a given dataset, the choice on the link function
between the mean of the response and the additive predictor is very important. To obtain
more flexibility, the link function is often estimated from the data. The logit link, for
example, is symmetric, but the data must not be. In this case, it would be better to use
an asymmetric link function, for example the complementary log-log. For linear models,
there are approaches for estimating the link function. In nonparametric models, the choice
on the link function has to be made by considering the properties of the data and also by
comparing different models with different link functions.

An important issue is the decision about how the covariates should be included in the
model. It is possible that there are nonlinear covariate effects as well as spatial effects
and also interaction terms. A typical way to find a suitable model is to start with a pure
main effects model and consider interactions in subsequent steps. In general, it is not
advisable to include all variables in the model without reflecting their correlation to the
response variable. Care has to be taken because there is always the risk of overfitting
the data. However, it is important to try different models, for example with and without
spatial effect or interaction terms and to compare these models with model choice criteria
described in the next section. Sometimes there are covariate effects that are nearly linear,
so that parts of the model can be modeled parametrically. An analysis of the heterogeneity
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effects provides information about covariates or interactions that are not already included
in the model. This effect can be, for example, generated from geographic areas. When
including new covariates in this case, for example a binary dummy variable, the spatial or
cluster-specific effect should be decreased. Therefore, it is advisable to compare models
with and without these spatial or cluster-specific effects. It must be pointed out that there
will not be one perfect model, but rather several models which fit the data almost equally
well.

3.8.2 Model Diagnostics

The tools of model diagnostic check the adequacy of a working model and also test assump-
tions, which were made for the modeling process, such as homoscedasticity of the error
terms. For continuous responses, residual plots are a useful tool for model diagnostics.
Appropriate residuals for nonparametric models are discussed later. This residual plots
can provide information about misspecified covariate effects. This could mean that a
nonlinear effect is wrongly modeled linearly, that there are missing covariates, or that
there are missing interactions. As explained in the sections before, interactions should
not be unnecessarily included in the model since they can increase the complexity of the
model. Residual plots can also provide information about heteroscedastic or correlated
error terms. In this case, Fahrmeir et al. (2013) discuss alternatives in Sections 3.1.2,
4.1.3. and 4.1.4. Last but not least, outliers can be detected when using residual plots.
In semiparametric models, robust procedures do not exist, since this class of models is
much less developed than linear models. One useful way to overcome this problem is to re-
fit the model without the outlying observations and compare the difference in the model fits.

During the modeling process, we use different estimation concepts. Model estimation is
for example done with penalized likelihood or penalized least-squares and the smoothing
parameter estimation is done with the GCV or the AIC. To ensure model stability, it
is necessary to estimate the model under different estimation concepts and compare the
estimation results. The model is stable, when there are no large differences between the
different estimation results.

The analysis of variance is a very useful tool for interpreting the effects of factors and their
interactions in linear models. For generalized linear models, the residual sum of squares of
non-normal distributions is no longer an appropriate measure. Therefore, another measure
is introduced for generalized linear models, namely the likelihood-ratio statistic or also
called deviance (Hastie and Tibshirani, 1990). The scaled deviance for a fitted model is
defined by

1

φ
D(yyy, µ̂̂µ̂µ) = 2(l(µ̂̂µ̂µ|yyy)− l(yyy|yyy)),

where µ̂̂µ̂µ is the parameter vector that maximizes the log-likelihood function l(µµµ|yyy) over
all µµµ. Thus, the deviance plays the role of the residual sum of squares for generalized
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models and can be used for estimating the goodness-of-fit and also for comparing nested
models. The asymptotic distribution theory for generalized linear models is well known,
whereas the distribution theory for nonparametric and additive models is undeveloped.
Nevertheless, it is common to perform informal deviance tests using the χ2 distribution to
compare models. When using the mgcv package in R from Simon N. Wood, another tool
for comparing different models is the Deviance explained, calculated as

Deviance explained = 1− Residual Deviance

Null Deviance
,

where the null deviance shows how well the response variable is predicted by a model that
includes only the intercept, whereas the residual deviance is the deviance of the fitted
model. The deviance explained is given in percent and large values imply a good fit of the
model.

As already mentioned before, model diagnostics mostly rely on the different types of
residuals. The ordinary, the standardized, and the partial residuals can be defined in
a similar way to those in the linear model, whereas there is no analogue definition for
studentized residuals. Residuals can be used to investigate the adequacy of the considered
model, relating to choice of the variance function, the link function and the predictor.
Residuals can also reveal the presence of outliers in the data. There are also appropriate
residuals for generalized linear models.

According to McCullagh and Nelder (1989), the Pearson Residuals are defined by

rP =
y − µ̂√
V (µ̂)

,

thus they are raw residuals scaled by the standard deviation of y, if the scale parameter
φ = 1. The main drawback of the Pearson residuals is that the distribution of rP of
non-normal distributions is often skewed, so it does not have the same properties as a
normal-theory residual. Therefore, for defining the Anscombe Residuals, a function A(y) is
taken instead of y, where the function A(·) is chosen to make the distribution of A(y) as
close to the normal distribution as possible. The Anscombe Residuals are defined by

rA =
A(y)− A(µ̂)

A′(µ̂)
√
V (µ̂)

,

where the function A(·) is given in generalized linear models as

A(·) =

∫
dµ

V 1/3(µ)
.

Finally, the Deviance Residuals are defined as

riD = sign(yi − µ̂i)
√
di,
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where the unscaled deviance is assumed to be represented as

D(yyy, µ̂̂µ̂µ) =
n∑
i=1

di.

The values of the Anscombe and the deviance residuals are often very similar, although the
functional forms for non-normal distributions are very different. Goodness-of-fit criteria
such as AIC or the GCV can be used in case of GAMs for the variable selection and also
the model choice.
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CHAPTER 4

Exploratory Analysis of the House Price Data

4.1 Description of the House Price Data

In this chapter, the datasets of rented and sold houses in Sydney are described and
analysed, before deriving a hedonic model describing the renting and selling prices of these
houses in the next chapter. Two different datasets are used in this thesis. The first dataset
contains rental prices of houses located in Sydney, whereas the other file consists of selling
prices of houses in Sydney. In the rest of the thesis, the data from the first file will be
named as ”the rents” and the one from the second file as ”the sales”. There is information
about 329.141 houses in the rents and 561.977 in the sales. Both datasets consist of a
number of columns with information about each rented or sold house.

To distinguish between the different houses, each house in the rents and in the sales has its
own ID. All the IDs are summarised in the variable ID2 and contained in the first column
of each dataset. Many IDs can be found more than once, thus these houses were rented or
sold repeatedly. For each transaction, there is a corresponding price, placed in the next
column of the dataset. The variable PRICE is given in Australian Dollar, which will be
abbreviated in this thesis with the sign $. It must be pointed out that the rents are given as
weekly prices. The sale prices run from 851$ to 44.000.000$, whereas the cheapest house in
the rents costed 20$ per week and the most expensive house 10.000$ per week. In addition
to the house price or weekly rent, there is further information about every house given in
the data, related to type, size and other characteristics of the house and most importantly
the time of transaction for the sales and the date of advertisement for the rents, respectively.

Firstly, the area of Sydney was divided into 16 regions, labeled with the letters A to
P. These regions are obtained by clustering postcode areas according to RESIDEX, an
Australian provider of property information. The subdivision of Sydney into the different
regions is shown in Figure 4.1. The allocation of the houses in the different regions
is given by the variable REGION, which takes a value between the letters A and P.
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region label postcode

Inner Sydney A 2007 - 2011, 2015 - 2020
Eastern Suburbs B 2021 - 2036
Inner West C 2037 - 2050
Lower North Shore D 2060 - 2069
Upper North Shore E 2070 - 2077, 2079 - 2087
Mosman-Cremome F 2088 - 2090
Manly-Warringah G 2092 - 2097, 2099 - 2108
North Western H 2110 - 2122, 2125 - 2126
Western Suburbs I 2127 - 2128, 2130 - 2138, 2140 - 2145
Parramatta Hills J 2146 - 2148, 2150 - 2159
Fairfield-Liverpool K 2160 - 2168, 2170 - 2179
Canterbury-Bankstown L 2190 - 2200
St. Georges M 2203 - 2214, 2216 - 2223
Cronulla-Sutherland N 2224 - 2234
Campbelltown O 2556 - 2560, 2563 - 2570
Penrith-Windsor P 2745, 2747 - 2750, 2752 - 2754, 2756 - 2763,

2765 - 2770, 2773 - 2775, 2777

Table 4.1: The regions of Sydney with the corresponding identification as letter and the
corresponding postcode

Furthermore, every house in the datasets was assigned with the corresponding postcode
and the geographic location, given as pair of longitude and latitude. There are 232 different
postcodes in the area of Sydney given by the variable POSTCODE. The different regions
and their corresponding postcodes are shown in Table 4.1. The variable LONGITUDE
runs from 150◦ to 151, 34◦ and the variable LATITUDE from −34, 2◦ to −33, 41◦. The
variables REGION, POSTCODE, LONGITUDE and LATITUDE therefore give us exact
information about the location of each house in the datasets.

Another column in the datasets, named as PROPTYPE, provides information about the
type of the rented or sold house. There are five different types of houses in the datasets:
Cottages, Houses, Semis, Terraces, and Villas. The houses in the rents and the sales
also differ regarding their number of bedrooms, number of bathrooms, number of parking
places and the size of the land area. The number of bathrooms and bedrooms both varies
from one to six and is given in the columns BATH and BED, respectively. The variable
PARKING shows us that the majority of the houses has between one and twelve parking
places, but there is a smattering of houses with more than that. The land area of the
sold and the rented houses, given by the variable AREA, ranges from 100 to 5000 square
meters. Hence, all these variables give us information about the house characteristics
additional to the geographic location of each house.

In addition to the abovementioned information about the house itself, the column DATE
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gives important information by specifying the date of advertisement or the date of the
sale. These dates run from the 19th of June 2002 to the 31st of December 2014 in the
rents and those for the sales from the 1st of January 2001 to the 31st of December 2014.
The columns YEAR, MONTH, DAY consist of the specific information about the year,
month or day, whereas the column TIME defines a continuous time scale calculated from
the exact transaction date from house i as

TIMEi = YEARi +
MONTHi − 1 + DAYi−1

30

12
.

It must be pointed out that with this time scale, we assume every month to have 30 days
and every year to consist of 360 days. This continuous time scale is useful when modeling
the trend of the renting or selling prices, as we will see in the next chapter.

Finally, it must be pointed out that there were many incomplete observations in the
datasets, which were reconstructed by applying a specific algorithm. The reconstruction
algorithm was performed by Sofie Waltl and is explained in detail in Waltl (2016b). The
algorithm uses the fact, that most of the houses are sold or rented repeatedly, so if house
characteristics were observed once, they can be reused if they are missing at another point
in time.

To sum up, the two datasets for the rented and sold houses give us information about
the time of advertisement for the rents or the day of the sale, respectively, as well as
information about the properties of the rented or sold house, like the number of bedrooms
and bathrooms, the size of the land area and the number of parking places. The geographic
location of each house in the datasets is in addition given as region, corresponding postcode
and longitude and latitude.

4.2 Analysis of the House Price Data

In this section, the two datasets of rented and sold houses in Sydney are analysed to get
a deeper insight into the distribution of the variables and also the relationship between
them. Since the goal of this thesis is to find a model to forecast house prices and rents
for the nearest future, data from before the year 2008 may have limited impact. On the
one hand that is due to the financial crisis in the year 2007, which had at that time an
influence on the housing market and also the peak of a housing boom in 2004. On the
other hand, in terms of forecasting it is better to mainly use current information. Going
back into the past for more than six years is therefore not necessary. For these reasons, all
of the following analysis and modeling in this thesis only uses the house rent and house
price data from 2008 to 2014. This leaves us with information about 217.739 rented houses
and 277.361 sold houses within the considered years.
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number of parking places
frequency

rents sales

1 103.471 87.234
2 72.445 112.258
3 8.520 18.226
4 3.936 9.109
5 618 1.527
6 395 1.144
7 50 206
8 48 214
9 15 55
10 7 35
11 3 13
12 4 17
13 - 4
14 - 6
15 - 2
16 - 1
18 - 1
20 - 3
21 1 -
23 - 1
24 - 1
25 1 -
40 1 -
111 1 -
222 1 -
255 - 1

Table 4.2: Frequency of the different number of parking places corresponding to the houses
in the rents and in the sales

As already discussed in Section 3.8, the first important step in every statistical modeling
application is the basic analysis of the data before deriving a suitable model. It is necessary
to get to know the distribution of the variables in the data. Sometimes it is useful to
exclude extreme observations to prevent sophisticating the model. For example, there
are a few houses in the data with more than 14 parking places. More precisely, there are
houses with for example 111, 222 or 255 parking places in the data. This distribution
of the parking places is depicted in Table 4.2. Since there are too many extreme values,
there probably are quite a few erroneous entries in this column. Therefore, the variable
PARKING is excluded from further analysis.

As a next step, the different regions are analysed. In order to do that we are first inter-
ested in the distribution of the rented and sold houses in the datasets over the regions.
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Table 4.2 shows us that compared to the other regions of Sydney, there are only few
houses in the rents and in the sales that are located in the regions A and F. This may
be due to the fact, that these regions are the inner city of Sydney, where apartments
are more common than houses. We can see that there are more houses in the dataset
of the sales and that these houses are more frequently located in the outer regions H to
P. However, the distribution of the rented houses over the regions A to P shows nearly
the same behaviour as the distribution of the sold houses. Furthermore, the means of
the weekly rents and the house prices in the different regions were calculated for each
year separately to get an overview of the geographical behaviour. It can be seen in
Table 4.3, that there is a nearly linear increase in the mean renting and selling prices
from 2008 to 2014 in every region. This correlation between the renting or selling price,
respectively, and the time is also depicted in Figure 4.3. In order to get insight into the
geographical behaviour of the house price, the mean rent and house price of every region
was calculated and plotted in Figure 4.4. The darker the colour of the region in the map,
the more expensive the region is. The map shows that the regions in the west of Sydney
are the cheapest and the house price increases as the region gets closer to the east coast.
The regions B and F are the most expensive ones, whereas the regions O, P, and K are
the cheapest. These characteristics of the house price hold for both, the rents and the sales.

Next we are interested in the distribution of the different types of houses. Figures 4.5 and
4.6 show the frequency of every type of house in the regions A to P. It can be seen that
terraces are mostly located in regions A to C at the east coast of Sydney, whereas villas
most frequently stand in the outer regions H to P in the west. The other types of houses,
namely the cottages, the houses, and the semis, are almost evenly distributed over the
different regions. This behaviour of the distribution of the type of the house holds for both,
the rents and the sales. In summary, the distribution of the type of the house as well as
the corresponding mean prices are given in Table 4.4. Looking at Table 4.4 it seems, that
the terrace is the most expensive type of house and the villa the cheapest one. However,
when interpreting this prices care has to be taken, since terraces are mainly located in the
most expensive areas, whereas the villas stand in the cheap west of Sydney. Thus, there
might be a correlation between the region and the type of the house. Therefore, the mean
prices of the different types of the houses have to be interpreted carefully. It can be seen
in the table that the house is by far the most common type.

Furthermore, the influence of the number of bedrooms, the number of bathrooms and
the size of the land area should be evaluated. Therefore, we calculate the mean prices
depending on the number of bedrooms, the number of bathrooms and the size of the
land area. The results are pictured in Table 4.5. It can be seen that the house price of
the rents and the sales rises, if the number of bathrooms or bedrooms increases, which
would be expected intuitively. The frequency of the different number of bedrooms and
bathrooms, respectively, is also depicted in Figure 4.7, which shows that the most common
number of bedrooms is three and four whereas the houses in the rents and also in the
sales most frequently have one or two bathrooms. There is also a correlation between
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the number of bedrooms and the number of bathrooms. Figure 4.8 shows us, that if the
number of bedrooms increases, also the number of bathrooms augments. This behaviour
can also be seen in Table 4.6. Table 4.7 depicts the mean prices of the rents and of the
sales depending on the number of bedrooms and bathrooms. It can be seen that the price
rises for increasing number of bedrooms and also for increasing number of bathrooms.
There are some outliers in the table, for example is the mean price for a rented house with
five bathrooms and one bedroom only 210$. In fact, some of the values in the table have
to be taken with care, since there are only a few houses with the corresponding number of
bedrooms and bathrooms. In the case of the above mentioned example, there are only two
houses with five bathrooms and one bedroom in the rents and those houses are located
in the cheap regions I and J, respectively. Table 4.6 shows us, that there are only a few
houses with more than four bathrooms and only one or two bedrooms in both, the rents
and the sales. These outliers might be data errors.

The interpretation of the effect of the size of the land area on the house price is more
difficult. It can be seen in Table 4.5 that the house price augments for increasing size of
the land area, but only up to an area of 2.000 to 3.000 square meters. The house price then
falls for an area greater than 3.000 square meters. A possible reason for this behaviour
may lie in the fact, that houses with a large land area are more frequently located in
the outer regions of Sydney in the west, where the house price is much lower than in the
east. The variable AREA gives us the land area in square meter and not the area of the
corresponding house itself, thus the price per square meter might be cheaper in the outer
regions. The distribution of the houses with an area greater than 4.000 square meters
over the regions A to P can be seen in Figure 4.9. Another explanation might be, that
the variable AREA gives the size of the land area but not the actual size of the structure.
Therefore, a large land area must not correspond with a large living area which might lead
to a complicated nature of the effect. Analysing the land area conditional on the number
of bedrooms, which is a proxy for the living area, might disentangle the effect.

In summary, the analysis of the dataset has shown important aspects, which are necessary
for deriving a model for the house price. Firstly, there is a dependence of the house price
on the date of the sale or the date of advertisement, respectively. Secondly, the spatial
location of the house plays a decisive role in pricing the house. The location of the house
measures many things at the same time. On the one hand, the location determines the
distance to public amenities such as schools, parks, beaches, shopping centers and public
transportation. The location may for example determine the school district and hence,
which public school kids are assigned to. A school district with a good public school may
therefore have higher house prices. On the other hand, the spatial location also measures
things like air pollution, crime rates and traffic noise. Areas with higher crime rates or
houses near main streets may have lower house prices. Furthermore, there is a correlation
between the type of the house and the regional location and thus also between the house
price and the type of the house. At this point it is difficult to say, whether the information
of the type of the house gives us additional information about the house price, when
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there is already information about the geographic location. Last but not least, there is
an influence of the number of bedrooms, the number of bathrooms as well as the size
of the land area on the house price. With this knowledge, a model, which describes the
price of a specific house subject to the just mentioned variables will be derived in the next
chapter.
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Figure 4.1: The subdivision of Sydney into 16 different regions named with the letters A
to P
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Figure 4.2: Frequency of rented (top) and sold (bottom) houses in the regions A to P
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rents

region 2008 2009 2010 2011 2012 2013 2014

A 642 655 701 733 747 786 840

B 1.049 1.096 1.103 1.177 1.170 1.224 1.263

C 596 616 666 714 724 764 793

D 847 860 925 946 985 1.007 1.068

E 775 762 823 858 863 881 916

F 1.335 1.338 1.524 1.603 1.551 1.535 1.621

G 831 845 927 959 968 1.001 1.045

H 534 551 575 613 619 641 668

I 437 451 485 511 520 540 559

J 437 446 478 511 520 519 539

K 360 382 408 425 433 446 463

L 406 423 448 467 479 493 526

M 452 468 510 535 548 565 593

N 538 564 600 624 633 647 673

O 330 346 385 398 414 421 437

P 327 349 377 398 410 417 428

sales

region 2008 2009 2010 2011 2012 2013 2014

A 839 916 1.011 1.033 1.001 1.169 1.343

B 1.958 1.908 2.090 1.981 1.903 2.232 2.477

C 909 946 1.103 1.081 1.071 1.224 1.374

D 1.454 1.397 1.565 1.546 1.546 1.676 1.904

E 1.004 1.030 1.118 1.097 1.116 1.237 1.451

F 2.510 2.243 2.496 2.608 2.540 2.588 3.018

G 1.235 1.242 1.348 1.277 1.262 1.379 1.508

H 800 831 967 951 956 1.080 1.297

I 615 666 779 773 797 900 1.084

J 523 539 601 599 623 699 831

K 382 411 457 467 486 538 634

L 472 493 586 596 616 688 818

M 648 687 786 791 801 885 1.041

N 741 788 886 866 887 945 1.068

O 339 358 390 395 412 446 518

P 359 378 406 413 429 465 543

Table 4.3: Mean prices of the weekly rents and the ones for the sales in thousand $,
calculated for each region depending on the year

58



4.2 Analysis of the House Price Data

Figure 4.3: Trend of the mean renting (top) and the mean selling prices (bottom) in the
regions A to P over the years 2008 until 2014
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Figure 4.4: Mean renting (top) and selling (bottom) prices in the different regions of
Sydney
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Type of House Cottage House Semi Terrace Villa

rents
frequency 842 202.778 6.300 4.348 3.471
mean price 611 616 559 803 440

sales
frequency 1.150 270.378 3.276 1.279 1.278
mean price 846.105 853.211 764.423 1.161.793 485.000

Table 4.4: Frequency and mean prices of the different types of houses in the rents and in
the sales

(a) Cottage (b) House

(c) Semi (d) Terrace

(e) Villa

Figure 4.5: Frequency of the different types of rented houses in the regions A to P
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(a) Cottage (b) House

(c) Semi (d) Terrace

(e) Villa

Figure 4.6: Frequency of the different types of sold houses in the regions A to P
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(a) rents: number of bedrooms (b) sales: number of bedrooms

(c) rents: number of bathrooms (d) sales: number of bathrooms

(e) rents: size of the land area (f) sales: size of the land area

Figure 4.7: Frequency of the different number of bedrooms, bathrooms and the size of the
land area for the rented (left) and for the sold (right) houses
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bedrooms 1 2 3 4 5 6

rents
frequency 5.379 33.368 110.452 55.325 11.042 1.559
mean price 327 500 541 746 1.092 1.248

sales
frequency 703 20.007 111.708 87.507 25.240 4.172
mean price 690.809 719.273 685.719 933.148 1.363.125 1.664.886

bathrooms 1 2 3 4 5 6

rents
frequency 127.164 70.562 16.825 2.271 416 101
mean price 480 695 1.098 1.734 2.301 2.686

sales
frequency 106.150 100.025 35.473 5.796 1.202 319
mean price 618.261 853.000 1.284.733 2.160.210 3.285.156 4.317.466

area 0 - 1000 1000 - 2000 2000 - 3000 3000 - 4000 4000 - 5000

rents
frequency 199.211 14.578 2.273 1.007 777
mean price 611 681 636 604 581

sales
frequency 256.733 18.082 1.588 531 576
mean price 813.614 1.307.374 1.654.988 1.390.910 1.032.276

Table 4.5: Frequency and mean renting and selling prices of houses with different number
of bedrooms and bathrooms as well as the different sizes of the land area

rents

bedrooms 1 2 3 4 5 6

bathrooms

1 5.237 29.480 79.041 11.633 638 60
2 100 2.551 28.861 33.744 4.437 483
3 18 64 2.386 9.047 4.627 591
4 3 1 94 779 1.097 270
5 2 1 4 85 182 122
6 3 0 1 9 53 29

sales

bedrooms 1 2 3 4 5 6

bathrooms

1 658 17.916 74.357 12.236 680 53
2 18 1.830 33.738 54.191 8.947 998
3 12 40 2.632 18.745 11.941 1.757
4 5 16 103 1.690 2.853 881
5 1 2 19 175 576 330
6 0 1 8 28 108 114

Table 4.6: Frequency of houses with different number of bedrooms and bathrooms in the
rents and in the sales
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Figure 4.8: Frequency of the different number of bedrooms depending on the number of
bathrooms for the rents (top) and for the sales (bottom)

65



4 Exploratory Analysis of the House Price Data

rents

bedrooms 1 2 3 4 5 6

bathrooms

1 325 488 480 526 567 584
2 418 614 673 705 801 765
3 375 997 949 1.087 1.194 1.150
4 400 950 1.421 1.662 1.832 1.707
5 210 480 923 2.346 2.252 2.504
6 318 - 1.300 2.326 2.952 2.642

sales

bedrooms 1 2 3 4 5 6

bathrooms

1 676 702 594 632 671 1.100
2 1.113 868 841 841 954 926
3 909 1.071 1.192 1.253 1.355 1.304
4 800 1.233 2.318 2.179 2.221 2.080
5 1.905 4.700 1.651 3.647 3.372 3.355
6 - 2.900 1.160 4.626 5.158 4.337

Table 4.7: Mean prices of the weekly rents and the ones for the sales in thousand $
depending on the number of bedrooms and bathrooms of the house

Figure 4.9: Frequency of the houses in the rents (left) and in the sales (right) with area
greater than 4.000 square meters, over the regions of Sydney
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CHAPTER 5

A Hedonic House Price Model for Sydney

There are many reasons, why it is important to model the trend of the house price and
to forecast it for the nearest future. In their paper an de Meulen, Micheli, and Schmidt
(2011) explained that variations in the house price have an important impact on the
financial stability and the real economic activity. They argued that the decline of house
prices in the year 2007 led to a huge deterioration of financial institutions balance sheets
and consequently provoked the financial crisis. More specific, the trigger of the financial
crisis were, amongst others, speculative price bubbles, which produced deep recessions
accompanied by huge employment reductions (Kholodilin and Siliverstovs, 2014). Such
a price bubble exists, if the reason that the price is high today is only because investors
believe that the selling price is high tomorrow (Stiglitz, 1990). Leamer (2007) actually
states in his paper that the housing market predicted eight out of ten post World War II
recessions. Moreover, according to Gupta and Kabundi (2010) the trend of the house price
can be an indicator for the future movement of inflation. On the other hand, if economy
booms, there is expansion in the employment and also in the construction in the housing
market due to the excess demand, which pushes the house prices upwards (Plakandaras,
Gupta, Gogas, and Papadimitriou, 2015). For all these reasons, there is much interest in
modeling and forecasting house prices for economic stability.

There are price indexes for explaining the housing market. Standard hedonic indexes are
obtained with linear regression models and show average movements of average homes
in average locations. Thus they can detect mean changes of house prices over time. An
introduction to house price indexes with geospatial data can be found in Hill and Scholz
(2014). It is also possible to derive other house price indexes. A hedonic house price
index in continuous time for Sydney over the period from 2001 to 2011 is derived in Waltl
(2016a). Furthermore, as proposed by Waltl (2016b), quantile regression models can be
used instead of linear regression models to construct hedonic indexes for different locations.
These models are used in order to do some analysis on the house sales in Sydney between
2001 and 2014.
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5 A Hedonic House Price Model for Sydney

For examining the housing market the price-rent ratio, which is the ratio of property prices
relative to rents, is an indicator of the increase of the price of residential property. The
main reason why the ratio is of interest is the user cost of housing. The user cost formula
links the price-rent ratio with the expected capital gains and other rates (for example
interest rate and property tax rate). The meaning of the price-rent ratio will be discussed
in detail in Section 6.2. In terms of Sydney there are several papers of research work
considering the Sydney housing market, for example the work of Hill and Syed (2016).
Another example is the work of Hatzvi and Otto (2008), who used quarterly data of the
36 Local Government Areas of Sydney from 1991 to 2006. They found out that variations
in price-rent ratios assume future real rent growth. Furthermore, their results suggested
that the boom in Sydney property prices within the considered years can be explained
with the lower long-term real interest rates. Thus, the asset pricing theory in Sydney can
explain the residential property prices.

The goal of this chapter is to derive a generalized additive model, which shows the trend
of the renting and selling prices of houses in Sydney over the period of the years 2008
to 2014. One big advantage of using splines when modeling geospatial data is the fact
that in contrast to kernel estimators, splines have no problems at the boundaries of the
considered domain, since they are estimated locally. Furthermore, hedonic price indexes
show the average price movement of average homes, where averaging house characteristics
like the size of the land area or the number of bedrooms is possible, but calculating an
average location makes no sense. Therefore, it is reasonable to include the information
about the location as a geospatial effect, as mentioned in Hill and Scholz (2014). The
theory of including a geospatial effect in a model was already introduced in Section 3.6.1.
The obtained model can then be used in the following chapter to forecast the rents and the
house prices for the nearest future. All the following calculation is done with the program
R using the mgcv package, which will be introduced shortly in the next section.

5.1 The mgcv Package in R

For fitting GAMs in the program R, Simon Wood implemented the package mgcv (Mixed
GAM Computation Vehicle). An introduction to this package can be found in the book
Wood (2006). The mgcv package contains many different functions in terms of fitting a
GAM, but the most important one for our purpose is the function gam(). This function fits
a generalized additive model to a given dataset. When fitting such a model, all properties
of the model can be specified, like how the variables are included in the model, which
member of the exponential family and what kind of link function is used and also the
selection method of the smoothing parameter can be chosen. The function and its most
important arguments are given by

1 > gam(formula , family=gaussian(link=identity), data=list(),

2 method="GCV.Cp")
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The first argument formula specifies the form of the GAM, by determining how the
covariates are included in the model. This formula argument can be specified, for example,
as

1 y ~ s(x, bs="cr", k=20) + z

In this formula, y defines the response variable and x and z the explanatory variables. In
this example, the covariate x enters the model nonparametrically, since it is given as a
function s(x), whereas the covariate z is included linearly. In case of the nonparametric
term, it is also possible to choose the basis functions for the smoother. This can be done
with the argument bs in the function s(). The GAM is fitted with cubic regression splines
when the argument is set to "cr" and with thin plate regression splines when it is set to
"tp". There are also other basis functions available, but these two are the most important
ones for our purpose. If we consider multivariate smoothing, which means that the function
s() takes several predictor variables as arguments, then there are two possible types of
smooths. Within the function s(), the bs argument can be set to "tp" for thin plate
splines or to "te" for tensor product splines. The theory about the above mentioned basis
functions was already introduced in Chapter 3.

The last important argument in the nonparametric term of the above formula is the
number of knots used for fitting the splines. This argument can be left out and then the
default of k = 10 is used. To find a suitable basis dimension, one can start with a small
number of knots and increase them in every step. There are sufficiently enough knots
used for fitting, if the score of the chosen optimization criterion is not getting smaller any
more when the knots are increased. The basis dimension also sets the maximum possible
degrees of freedom allowed for each term, since the actual effective degrees of freedom are
estimated from the data with an upper limit of k − 1.

The next argument of the function gam() is the family argument, which determines the
member of the exponential family used for the model. This argument can be, amongst
others, gaussian(), binomial(), poisson() or Gamma(). There are also other distribu-
tions which can be used here, but they are not important for our task. The argument
in the exponential family member sets the chosen link function used for the model. The
data argument refers to a data frame or a list containing the model response variable
and all covariates. The argument method determines the smoothing parameter selection
method. It can be set either to "GCV.Cp", "UBRE", "AIC" or to "fREML". The selection of
the smoothing parameter via GCV, UBRE and AIC was already discussed in the different
sections of Chapter 3. The estimation with the fast stable restricted maximum likelihood
(fREML) works with Newton-Raphson rather than Fisher scoring. Details about the
algorithm can be read in Wood (2011) and will not be further discussed in this thesis.

Once the model is fitted, mgcv offers a few additional functions for obtaining further
information about it. One example is the summary() or summary.gam() function, which
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returns the estimated parameters of the fitted model, the significance of the covariates and
also the values for the GCV, UBRE, AIC or fREML score, respectively. In short, it gives a
summary of the fitted model. Furthermore, an Analysis of Variance (ANOVA) can be done
with the anova() or anova.gam() function, which returns the degrees of freedom of each
term and also the corresponding p-values. The function gam.check() gives diagnostic
information about the fitting procedure and results, which include residual plots and
information about the convergence of the smoothness selection optimization. The function
plot.gam() plots the component smooth functions of the model as well as the parametric
model components on the scale of the linear predictor. Moreover, the function vis.gam()

allows producing plots with model predictions from the fitted model, which can also be
three-dimensional. When the dataset of interest is very large, the function bam() can be
used instead of the function gam(), which works in the same manner as the function gam().
There exist also many other functions in terms of GAMs which will not be discussed here,
but details about them can be read in the description of the mgcv package.

5.2 Derivation of a Hedonic House Price Model

Hedonic models regress the price of a house on a vector of physical and locational charac-
teristics, whose prices are not independently observed. Thus, these models offer a flexible
way to control for differences in quality and location (Waltl, 2016a). Decomposing property
prices into different price determining components leads the hedonic price function. Addi-
tionally, time effects are used to measure the effect of the time the price announcement
was made.

The exploratory analysis in Chapter 4 has shown that the renting and selling prices of
houses in Sydney depend on the date of advertisement or the day of the sale, respectively,
as well as on the number of bedrooms and bathrooms, the size of the land area, the
location and the type of the house. With this information we can derive a hedonic model
for the house price and for the weekly rents containing the just mentioned variables. As
we have seen in Chapter 3, there are different ways of including a variable in a model and
also of choosing a suitable link function and a proper member of the exponential family.
In the next section, we begin with the simplest model, as we assume the rents and the
sales to follow a normal distribution with an identity link.

5.2.1 House Price Model with Normally distributed Prices

As a first step, we assume that the renting and selling prices yi of house i (i = 1, . . . , n)
can be described by a normal distribution. We suppose that the house prices and the rents
change smoothly over time and also that the size of the land area can be described by a
smooth function. Furthermore, there should be a bivariate smooth term depending on the
longitude and latitude of the house, controlling the effect of the geographical position. In
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terms of the number of bedrooms and bathrooms, we try two different models. In the first
model the variables bed and bath are included linearly, whereas in the second model they
are included as categorical variables. Thus, we obtain the models mr bed bath linear

(for the rents) and ms bed bath linear (for the sales) in (5.2.1), as well as the models
mr bed bath factor (for the rents) and ms bed bath factor (for the sales) in (5.2.2).
The models are therefore defined by

ηi = β0 + f1(timei) + f2(areai) + fgeo(longi, lati) + βbedbedi + βbathbathi, (5.2.1)

ηi = β0 + f1(timei) + f2(areai) + fgeo(longi, lati) +
6∑
j=2

βbed
j 1j(bedi)

+
6∑

k=2

βbath
k 1k(bathi), (5.2.2)

where ηi = µi. Thus, the linear predictor equals the mean of the renting or selling price µi
of house i. Consequently, the linear predictor ηi consists of a parametric part containing
information about the number of bedrooms and bathrooms, as well as a nonparametric
part consisting of the geographic location, the size of the land area and the date of
advertisement or the day of the sale, respectively. The difference between the two models
(5.2.1) and (5.2.2) is the parametric part. In the first model the number of bedrooms and
bathrooms enters the model linearly. This means that there is one parameter βbath and
βbed, respectively, which is multiplied with the number of bedrooms or bathrooms. In
the second model, the number of bedrooms and bathrooms is modeled by a categorical
variable, which means that in contrast to the first model, for each number of bedrooms
and bathrooms there is a different parameter βbath or βbed and only the parameters corre-
sponding to the actual number of bedrooms and bathrooms enter the model.

We first want to know which model, (5.2.1) or (5.2.2), has a better fit to the house rents
and the house sales data. As argued in Chapter 4, we only use data from the years 2008 to
2014. The fitting of the models is done with the program R with the function bam() from
the mgcv package. The call of the function bam() used for fitting the rents is as follows.

1 mr_bed_bath_linear <- bam(PRICE ~ s(TIME , bs="cr", k=20)

2 + s(LONG ,LAT , bs="tp", k=100)

3 + s(AREA , bs="cr", k=20)

4 + BED + BATH , data=houserents2008)

5 mr_bed_bath_factor <- bam(PRICE ~ s(TIME , bs="cr", k=20)

6 + s(LONG ,LAT , bs="tp", k=100)

7 + s(AREA , bs="cr", k=20)

8 + factor(BED) + factor(BATH), data=houserents2008)

The call for fitting the sales is analogue. The two datasets houserents2008 and
housesales2008 contain the information about the rented and sold houses, respectively,
from the years 2008 to 2014. The fitting procedure uses cubic regression splines for the
functions depending on the time and on the size of the land area with 20 knots and thin
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link model fREML GCV
Deviance
explained

rents

identity mr bed bath linear 1, 49 · 106 5, 17 · 104 66, 0%
identity mr bed bath factor 1, 48 · 106 4, 90 · 104 67, 9%

log mrlog bed bath factor 1, 46 · 106 4, 01 · 104 73, 7%
log mrlog bed bath region factor 1, 46 · 106 3, 97 · 104 73, 9%
log mrlog bed bath region factor 2 1, 48 · 106 4, 86 · 104 68, 1%
log mrlog bed bath proptype factor 1, 46 · 106 3, 99 · 104 73, 8%

sales

identity ms bed bath linear 3, 57 · 106 1, 90 · 1011 63, 8%
identity ms bed bath factor 3, 56 · 106 1, 77 · 1011 66, 4%

log mslog bed bath factor 3, 52 · 106 1, 34 · 1011 74, 6%
log mslog bed bath region factor 3, 52 · 106 1, 29 · 1011 75, 5%
log mslog bed bath region factor 2 3, 57 · 106 1, 86 · 1011 64, 5%
log mslog bed bath proptype factor 3, 52 · 106 1, 33 · 1011 74, 6%

Table 5.1: Summary of the rounded GCV and fREML scores as well as the deviance
explained for the different fitted models for the rents and for the sales

plate splines for the bivariate function depending on the longitude and latitude with 100
knots. In the above call of the function bam(), the default fREML procedure was used for
fitting the model.

We can now compare the resulting deviance explained and the fREML score of the
models. For stability in the model choice, we can also fit the models once again using
the GCV as optimizing method. The corresponding scores of the GCV and the fREML
and the deviance explained of the models are depicted in Table 5.1. It can be seen
that for the rents as well as for the sales, the scores of the model with included factor
variables for the number of bedrooms and bathrooms are smaller than for the model
where they are included linearly. In addition, the corresponding deviance explained is
higher for the models mr bed bath factor and ms bed bath factor than for the models
mr bed bath linear and ms bed bath linear. From this it follows that model (5.2.2) is
a better fit to both, the rents and the sales, than model (5.2.1).

Furthermore, we want to check, if the log link is a better choice than the identity link.
Thus, the models mrlog bed bath factor and mslog bed bath factor are fitted, which
are defined as the model (5.2.2) before, since we have seen that this model works better
than model (5.2.1), but use the log link instead of the identity link. This means that the
linear predictor ηi is defined as ηi = log(µi), where µi is the mean renting or selling price,
respectively. The basis functions and the number of knots used for the fitting procedure
are chosen as before. The results are again depicted in Table 5.1. For the models with a
log link, the fREML and also the GCV scores are considerably smaller than for the models
with an identity link and also the deviance explained is quite higher. Thus, for the house
rents as well as for the house sales data, the log link is a better choice than the identity link.
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For the fitted models above, the geographic location of the house was included in the model
as a bivariate function depending on the longitude and latitude, so we have assumed that
the region of the house has no additional information on the house price. If this is true,
then there is a smooth crossing of the price over the boundaries of the different regions.
However, it would also be possible that there are regions which are more expensive than
others and that there is a price jump at the boundaries. Consequently we have to check,
if a model with included information about the region of each house is better than one
without this information. To test this assumption, we add a new categorical variable for the
region of the house to our models and obtain the models mrlog bed bath region factor

for the rents and mslog bed bath region factor for the sales, defined by

ηi = β0 + f1(timei) + f2(areai) + fgeo(longi, lati) +
6∑
j=2

βbed
j 1j(bedi)

+
6∑

k=2

βbath
k 1k(bathi) +

16∑
l=2

βregion
l 1l(regioni). (5.2.3)

Since we have seen above that the log link is better than the identity link, we fit these
models with the log link, thus ηi = log(µi). Furthermore, the variables bed and bath

are included as factor variables. In this model, the categorical variable for the region
regulates the possible jumps in the price at the boundaries of the regions. In Table 5.1 it
can be seen that there is neither any great improvement in the GCV or fREML score nor
in the deviance explained when information about the region is included, but the model
complexity increases. It is also possible to test whether (5.2.3) fits better than model
(5.2.2) via hypothesis testing. This can be done in R with the anova.gam() function. The
call and the output of the function is as follows.

1 > anova.gam(mrlog_bed_bath_factor ,

2 mrlog_bed_bath_region_factor , test="F")

4 Analysis of Deviance Table

6 Model 1: PRICE ~ s(TIME , bs="cr", k=20)

7 + s(AREA , bs="cr", k=20)

8 + s(LONG , LAT , bs="tp", k=100)

9 + factor(BED) + factor(BATH)

10 Model 2: PRICE ~ s(TIME , bs="cr", k=20)

11 + s(LONG , LAT , bs="tp", k=100)

12 + s(AREA , bs="cr", k=20)

13 + factor(BED) + factor(BATH) + factor(REGION)

15 Resid. Df Resid. Dev Df Deviance F Pr(>F)

16 1 216832 8692670446

17 2 216817 8610807029 15.211 81863417 135.51 < 2.2e-16 ***

18 ---
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19 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

21 > anova.gam(mslog_bed_bath_factor ,

22 mslog_bed_bath_region_factor ,test="F")

24 Analysis of Deviance Table

26 Model 1: PRICE ~ s(TIME , bs="cr", k=20)

27 + s(AREA , bs ="cr", k=20)

28 + s(LONG , LAT , bs="tp", k=100)

29 + factor(BED) + factor(BATH)

30 Model 2: PRICE ~ s(TIME , bs="cr", k=20)

31 + s(LONG , LAT , bs="tp", k=100)

32 + s(AREA , bs="cr", k=20)

33 + factor(BED) + factor(BATH) + factor(REGION)

35 Resid. Df Resid. Dev Df Deviance F Pr(>F)

36 1 247529 3.3122e+16

37 2 247512 3.1898e+16 17.806 1.2241e+15 533.92 < 2.2e-16 ***

38 ---

39 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The function anova.gam() tests, whether the more complex model of two nested models is
a better choice than the simpler one. The above call of the function tests the hypothesis

H0 : βregion
2 = · · · = βregion

16 = 0

H1 : βregion
2 , . . . , βregion

16 arbitrary.

It must be pointed out that the p-value in the output is only an approximation and thus
has to be taken with care. The approximation is most accurate when the comparison is
done for unpenalized terms, as in our case here. However, since we have a large dataset, it
is better to look at the values of the deviance. The residual deviance compared to the
residual degrees of freedom and the size of the dataset hardly decreases when adding the
categorical variable region. This holds for both, the model for the house rents and the
one for the house sales. Certainly, the residual deviance and the degrees of freedom are
quite high for all models, escpecially for the models for the house sales, since we have big
datasets. Thus, it is difficult to interpret, whether there is improvement in the deviance or
not and consequently it is not advisable to use such a test in our case. Therefore, we
can restrict ourselves to the use of the GCV and fREML scores for the model choice and
conclude that the price of the house and the rent is smooth over the boundaries of the
different regions and that there are no jumps. Hence, it is not necessary to include the
region as an additional covariate in the model.

Moreover, it should be checked, whether the exact location of each house is at all necessary
to explain the house price and the house rent or if the region of the house is sufficient. To
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check this speculation, we fit new models similar to the model (5.2.3), but the bivariate
function depending on the longitude and latitude of the house is excluded. The models
mrlog bed bath region factor 2 and mslog bed bath region factor 2 thus have the
form

ηi = β0 + f1(timei) + f2(areai) +
6∑
j=2

βbed
j 1j(bedi) +

6∑
k=2

βbath
k 1k(bathi)

+
16∑
l=2

βregion
l 1l(regioni). (5.2.4)

The corresponding scores of the models of interest are listed in Table 5.1. We can see,
that the fREML and the GCV scores get much higher if we exclude the longitude and the
latitude information and also the deviance explained gets lower. Hence, the exact location
of the house is an important information for the house price and the weekly rents and
only the region of the house is not sufficient for modeling the renting and selling prices.

As a last step, we want to analyse the influence of the type of the house on the house
price as well as on the house rent. Chapter 4 has shown, that it is not clear whether
the type of the house gives important information additional to the location of the
house, since the different types of houses are located in specific regions. Thus, it might
be sufficient, to just include the location of the house in the model. So we try a last
model, named for the rents as mrlog bed bath proptype factor and for the sales as
mslog bed bath proptype factor, which is defined as

ηi = β0 + f1(timei) + f2(areai) + fgeo(longi, lati) +
6∑
j=2

βbed
j 1j(bedi)

+
6∑

k=2

βbath
k 1k(bathi) +

5∑
l=2

βproptype
l 1l(proptypei). (5.2.5)

When comparing the scores of this model in Table 5.1 with the scores of the model without
the categorical variable proptype, we can see that there is hardly any improvement in
the goodness-of-fit if we include the variable proptype to the model, but the model
complexity increases. Therefore, the location of the house is sufficient for modeling the
house price and also the weekly rents and it is not necessary to additionally include
information about the type of the house.

To sum up, we have seen that a model with a log link which includes the date of
advertisement or the date of the sale of the house, the size of the land area as univariate
smooth functions, the longitude and latitude as a bivariate smooth function and the
number of bedrooms and bathrooms as categorical variables fits the given data about
rented and sold houses best. Additional information about the region or the type of the
house does not improve the goodness-of-fit. Thus, the best model compared to the others
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is the model mrlog bed bath factor for the rents and mslog bed bath factor for the
sales. To this point, we do not know, if the normal distribution is a good choice for the
GAM. In the next section, we are going to compare the results of normally distributed
prices with models fitted with the gamma distribution.

5.2.2 House Price Model with Gamma distributed Prices

In the above section, we assumed the house prices and the weekly rents to be normally
distributed. However, it is also possible, that they follow another member of the ex-
ponential family, for example the gamma distribution. In this section, we want to fit
models using the gamma distribution instead of the normal distribution and compare
the results with the ones before. We have already seen, that the log link is a better
choice than the identity link and that we should include the variables bed and bath

as categorical variables, the variables time and area as univariate smooth terms and
the geographical position of the house, given as longitude and latitude, as bivariate
smooth term. In the case of normally distributed house prices and rents, there was
hardly any improvement in the goodness-of-fit when including additional information
about the region or the type of the house, respectively. We now want to refit the models
(5.2.2), (5.2.3) and (5.2.5) using the gamma distribution instead of the normal distribution.
This yields the models mrgamma bed bath factor, mrgamma bed bath region factor and
mrgamma bed bath proptype factor and the analogue ones for the sales. The correspond-
ing scores of the smoothing procedure and the deviance explained are shown in Table 5.2.
When comparing the values in this table with the ones in Table 5.1 before, we can see that
for each model, the gamma distribution is a better choice than the normal distribution,
since the deviance explained of the models based on the gamma distribution is quite higher
than the one for the models using the normal distribution. Furthermore, like before in
the case of normally distributed prices, the additional information about the region and
the type of the house, respectively, has hardly any improvement on the scores or on the
deviance explained. Thus, the variables proptype and region do not need to be included
in the model, since they only increase the model complexity and not the goodness-of-fit.
The best model therefore is the model mrgamma bed bath factor for the rents and the
model msgamma bed bath factor for the sales.

Until now it is not clear, whether there exists interaction between the variables and therefore,
if it is necessary to include interaction terms in the model. It could be possible, for example,
that the geographical behaviour of the price changes over time. To check this assumption,
we fit the model mrgamma bed bath factor and the model msgamma bed bath factor

two times, once for the years 2008 to 2010 and once for the years 2012 to 2014. With
these models it is possible to test, if the spatial structure of the price is the same for the
different years. If the spatial structure is the same, then there is no interaction between
the geographical position and the time. To plot the spatial structure of the price and the
rent under the model, the function vis.gam() can be used. This function allows us to
produce perspective or contour plots of model predictions. The call of the function is
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model fREML GCV
Deviance
explained

rents
mrgamma bed bath factor −6, 01 · 103 5, 52 · 10−2 85, 1%

mrgamma bed bath region factor −7, 64 · 103 5, 54 · 10−2 85, 2%
mrgamma bed bath proptype factor −7, 54 · 103 5, 44 · 10−2 85, 2%

sales
msgamma bed bath factor −1, 21 · 104 5, 29 · 10−2 89, 0%

msgamma bed bath region factor −1, 29 · 104 5, 26 · 10−2 89, 1%
msgamma bed bath proptype factor −1, 28 · 104 5, 47 · 10−2 89, 1%

Table 5.2: Summary of the rounded fREML and GCV scores as well as the deviance
explained for the different models using the gamma distribution

1 > vis.gam(mr2008_2010, view=c("LONG","LAT"), n.grid =100,

2 theta =-135, too.far =0.05)

The argument view in the function vis.gam() determines the two main effect terms of
the model mr2008 2010 which are displayed on the x and y dimensions of the plot. The
argument n.grid fixes the number of grid nodes in each direction used for calculating the
plotted surface. The argument of theta is set to −135◦ because then the coordinates are
being rotated. In our case, we rotate the coordinates in order to have a better perspective
on the spatial effect of the house price. The last argument, too.far, excludes grid nodes
that are too far from the points defined by the variables. Another possibility for showing
the spatial effect of the house price is the call of the function vis.gam() and setting the
plot.type argument to "contour". In this case, the spatial structure of the price is
plotted as a two-dimensional plot.

To see if the spatial strucure changes over time, we plot the renting and selling prices
depending on the longitude and latitude for the models from 2008 to 2010 (mr2008 2010

and ms2008 2010) and for the models from 2012 to 2014 (mr2012 2014 and ms2012 2014)
with the function vis.gam(), using the call of the function before. The two plots for the
rents between 2008 and 2010 and from 2012 to 2014, respectively, can be found in Figure
5.1 and those for the sales in Figure 5.2. Since there is hardly any difference in the spatial
structure of the different years neither for the rents nor for the sales, there is no evidence,
that there is interaction between the time and the geographical position.

Furthermore, we can compare the estimated parameters for the models from 2008 to 2010
with the ones from 2012 to 2014 to see, if there is interaction between the number of
bedrooms and bathrooms and the time. The relevant part of the output from the function
summary() for each model is as follows.

1 > summary(mr2008_2010)

3 Parametric coefficients:
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4 Estimate Std. Error t value Pr(>|t|)

5 (Intercept) 5.628485 0.005234 1075.44 <2e-16 ***

6 factor(BED)2 0.343922 0.005566 61.78 <2e-16 ***

7 factor(BED)3 0.527003 0.005385 97.86 <2e-16 ***

8 factor(BED)4 0.676179 0.005714 118.34 <2e-16 ***

9 factor(BED)5 0.774080 0.006730 115.02 <2e-16 ***

10 factor(BED)6 0.786985 0.010983 71.66 <2e-16 ***

11 factor(BATH)2 0.154919 0.002076 74.64 <2e-16 ***

12 factor(BATH)3 0.393405 0.003584 109.76 <2e-16 ***

13 factor(BATH)4 0.640802 0.008271 77.47 <2e-16 ***

14 factor(BATH)5 0.870727 0.018313 47.55 <2e-16 ***

15 factor(BATH)6 1.013150 0.037996 26.66 <2e-16 ***

17 > summary(mr2012_2014)

19 Parametric coefficients:

20 Estimate Std. Error t value Pr(>|t|)

21 (Intercept) 5.769947 0.004766 1210.67 <2e-16 ***

22 factor(BED)2 0.334690 0.005168 64.77 <2e-16 ***

23 factor(BED)3 0.521313 0.004925 105.86 <2e-16 ***

24 factor(BED)4 0.649659 0.005249 123.78 <2e-16 ***

25 factor(BED)5 0.744294 0.006257 118.96 <2e-16 ***

26 factor(BED)6 0.752961 0.010522 71.56 <2e-16 ***

27 factor(BATH)2 0.130956 0.002020 64.81 <2e-16 ***

28 factor(BATH)3 0.329142 0.003580 91.95 <2e-16 ***

29 factor(BATH)4 0.529367 0.008155 64.91 <2e-16 ***

30 factor(BATH)5 0.732827 0.018251 40.15 <2e-16 ***

31 factor(BATH)6 0.962926 0.035963 26.77 <2e-16 ***

33 > summary(ms2008_2010)

35 Parametric coefficients:

36 Estimate Std. Error t value Pr(>|t|)

37 (Intercept) 13.054340 0.014351 909.677 < 2e-16 ***

38 factor(BED)2 0.096007 0.014526 6.609 3.89e-11 ***

39 factor(BED)3 0.197130 0.014411 13.680 < 2e-16 ***

40 factor(BED)4 0.292893 0.014533 20.153 < 2e-16 ***

41 factor(BED)5 0.345180 0.014793 23.333 < 2e-16 ***

42 factor(BED)6 0.335229 0.016046 20.892 < 2e-16 ***

43 factor(BATH)2 0.125556 0.002097 59.880 < 2e-16 ***

44 factor(BATH)3 0.300383 0.003196 93.992 < 2e-16 ***

45 factor(BATH)4 0.548116 0.006484 84.540 < 2e-16 ***

46 factor(BATH)5 0.814896 0.012668 64.328 < 2e-16 ***

47 factor(BATH)6 0.971672 0.027397 35.467 < 2e-16 ***

49 > summary(ms2012_2014)
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51 Parametric coefficients:

52 Estimate Std. Error t value Pr(>|t|)

53 (Intercept) 13.347398 0.012366 1079.349 < 2e-16 ***

54 factor(BED)2 0.038345 0.012547 3.056 0.00224 **

55 factor(BED)3 0.123736 0.012423 9.960 < 2e-16 ***

56 factor(BED)4 0.213588 0.012516 17.066 < 2e-16 ***

57 factor(BED)5 0.265417 0.012666 20.955 < 2e-16 ***

58 factor(BED)6 0.252851 0.013374 18.906 < 2e-16 ***

59 factor(BATH)2 0.097272 0.001754 55.445 < 2e-16 ***

60 factor(BATH)3 0.237096 0.002526 93.854 < 2e-16 ***

61 factor(BATH)4 0.435769 0.004561 95.543 < 2e-16 ***

62 factor(BATH)5 0.683118 0.009394 72.718 < 2e-16 ***

63 factor(BATH)6 0.847676 0.018209 46.552 < 2e-16 ***

We want to compare the parameter estimates associated with the number of bedrooms
and bathrooms for the different periods. When looking at the summary of the models for
the rents, mr2008 2010 and mr2012 2014, we can see that the parameter estimates for the
factor variables bed and bath are nearly the same. Between the years 2008 and 2010 the
rent of a house with six bedrooms was exp(0, 787) = 2, 197 times more expensive than a
house with one bedroom and between the years 2012 and 2014 exp(0, 753) = 2, 123 times.
Compared with a house with one bathroom, the rent of a house with two bathrooms was
exp(0, 155) = 1, 168 times more expensive in the years 2008 to 2010 and exp(0, 131) = 1, 14
times in the years 2012 to 2014. The difference in the parameters of the models for the
sales is also very small and thus, does not have much impact on the model output. As
there is hardly any difference in the parameter estimates for the different years, we assume
the variables bed and time as well as the variables bath and time to have no interaction,
since an additional interaction term only deteriorates the complexity of the models.

Next we want to check, if there is interaction between the time and the size of the land
area. To do so, we plot the dependence of the rent and the house price, respectively,
on the size of the land area for the models from the years 2008 to 2010 and from 2012
to 2014. This can be done in R with the function plot.gam(). This function plots the
component smooth functions of the models as well as the parametric model components
on the scale of the linear predictor. The third plot we obtain is the renting or selling
price, respectively, depending on the size of the land area. The corresponding plots are
depicted in Figure 5.3. We can see that the behaviour of the sales in the years 2008 to
2010 depending on the size of the land area is essentially the same as in the years 2012 to
2014. The same holds for the weekly rents, but with a slight deviation. Since there is not
much difference in the behaviour of the models for the different years, we can assume that
there is no interaction between the variables time and area.

We further assume that there is no interaction between the remaining variables, since
interaction complicates the model and we have already analysed the most important
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interactions which include the variable time. Thus, we have found our “best“ model. The
model for describing the weekly rents and the house prices has the form

ηi = β0 +f1(timei)+f2(areai)+fgeo(longi, lati)+
6∑
j=2

βbed
j 1j(bedi)+

6∑
k=2

βbath
k 1k(bathi),

(5.2.6)
where ηi = log(µi) with the mean of the weekly rent or house price µi of house i, where
the weekly rent and the house price follow the gamma distribution.

Since we have found our models for describing the trend of the renting and selling prices
of houses in Sydney, we are now able to analyse and describe them depending on the
covariates. Firstly, we want to get an overview of the estimated parameters of the models.
The output of the function summary() for the model (5.2.6) fitted to the rents and to the
sales is as follows.

1 > summary(mrgamma_bed_bath_factor)

3 Family: Gamma

4 Link function: log

6 Formula:

7 PRICE ~ s(TIME , bs = "cr", k = 20) + s(LONG , LAT , bs = "tp",

8 k = 100) + s(AREA , bs = "cr", k = 20) + factor(BED)

9 + factor(BATH)

11 Parametric coefficients:

12 Estimate Std. Error t value Pr(>|t|)

13 (Intercept) 5.710912 0.003239 1763.15 <2e-16 ***

14 factor(BED)2 0.338494 0.003485 97.12 <2e-16 ***

15 factor(BED)3 0.523398 0.003342 156.60 <2e-16 ***

16 factor(BED)4 0.660181 0.003559 185.51 <2e-16 ***

17 factor(BED)5 0.755145 0.004229 178.54 <2e-16 ***

18 factor(BED)6 0.762948 0.007077 107.80 <2e-16 ***

19 factor(BATH)2 0.142552 0.001348 105.77 <2e-16 ***

20 factor(BATH)3 0.360280 0.002361 152.61 <2e-16 ***

21 factor(BATH)4 0.587739 0.005410 108.65 <2e-16 ***

22 factor(BATH)5 0.804727 0.012162 66.17 <2e-16 ***

23 factor(BATH)6 0.958933 0.024333 39.41 <2e-16 ***

24 ---

25 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

27 Approximate significance of smooth terms:

28 edf Ref.df F p-value

29 s(TIME) 15.03 17.11 1492.41 <2e-16 ***

30 s(LONG ,LAT) 97.89 98.98 2954.61 <2e-16 ***

31 s(AREA) 14.33 16.29 10.23 <2e-16 ***
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32 ---

33 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

35 R-sq.(adj) = 0.724 Deviance explained = 85.1%

36 fREML score = -6009.6 Scale est. = 0.055199 n = 216976

38 > summary(msgamma_bed_bath_factor)

40 Family: Gamma

41 Link function: log

43 Formula:

44 PRICE ~ s(TIME , bs = "cr", k = 20) + s(LONG , LAT , bs = "tp",

45 k = 100) + s(AREA , bs = "cr", k = 20) + factor(BED)

46 + factor(BATH)

48 Parametric coefficients:

49 Estimate Std. Error t value Pr(>|t|)

50 (Intercept) 13.203982 0.008796 1501.061 <2e-16 ***

51 factor(BED)2 0.062708 0.008914 7.035 2e-12 ***

52 factor(BED)3 0.156700 0.008835 17.737 <2e-16 ***

53 factor(BED)4 0.248540 0.008904 27.914 <2e-16 ***

54 factor(BED)5 0.299505 0.009033 33.158 <2e-16 ***

55 factor(BED)6 0.287754 0.009655 29.802 <2e-16 ***

56 factor(BATH)2 0.113074 0.001264 89.476 <2e-16 ***

57 factor(BATH)3 0.268954 0.001873 143.611 <2e-16 ***

58 factor(BATH)4 0.488596 0.003575 136.683 <2e-16 ***

59 factor(BATH)5 0.745636 0.007274 102.503 <2e-16 ***

60 factor(BATH)6 0.920806 0.014531 63.368 <2e-16 ***

61 ---

62 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

64 Approximate significance of smooth terms:

65 edf Ref.df F p-value

66 s(TIME) 17.03 18.50 4010 <2e-16 ***

67 s(LONG ,LAT) 98.73 99.00 8128 <2e-16 ***

68 s(AREA) 17.73 18.72 1822 <2e-16 ***

69 ---

70 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

72 R-sq.(adj) = 0.725 Deviance explained = 89%

73 fREML score = -12068 Scale est. = 0.052908 n = 247659

The output shows us that due to missing values in the two datasets, the number of data
used for fitting the weekly rents was 216.976 and the number of data used for fitting the
house sales was 247.659. We now want to analyse the impact of the number of bedrooms
and bathrooms on the weekly rents. Compared to a house with only one bedroom, a
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house with two bedrooms is exp(0, 338) = 1, 402 times more expensive and a house with
six bedrooms even exp(0, 763) = 2, 145 times. Moreover, the rent of a house with six
bathrooms is exp(0, 959) = 2, 609 times more expensive than the one of a house with only
one bathroom. This analysis works similar for the sale prices. A house with two bedrooms
has a exp(0, 063) = 1, 065 times higher price compared to a house with only one bedroom
and a house with two bathrooms is exp(0, 113) = 1, 12 times more expensive than a house
with one bathroom. This once again shows us that the variables bed and bath should not
be included linearly, since the raise in the weekly rents and the house price is not linear in
the number of bedrooms and bathrooms. For example, the increase of the weekly rent
from a house with five bedrooms to a house with six bedrooms is less than the raise in the
rent between a house with two bedrooms and one with three bedrooms. It can also be seen
in the output that the significance of all covariates is very high. Furthermore, the function
summary() shows us the smooth terms with corresponding p-values and effective degrees of
freedom. It can be seen, that k − 1 is an upper bound for the effective degrees of freedom
for each term, where k is the number of knots used for the splines. In the last two lines of
the output, we can see the corresponding fREML scores and the deviance explained, which
were already discussed before. Moreover, the estimated scale or dispersion parameter φ̂
is given in the last line. The meaning of this parameter was already discussed when the
exponential family was introduced in Section 2.2. In case of the gamma distribution, the
variance can be estimated as

v̂ar(y) = φ̂µ̂2,

where E(y) = µ. This means that the variance is proportional to the square of the mean.
Thus, the standard deviation is

√
0.05 = 0.2236 times the estimated mean prices.

It is also possible to produce some residual plots and to obtain further information about
the fitting process. This can be achieved with the function gam.check() in R. With the
following code we can get some diagnostic information about the fitting procedure and
results for our two models.

1 > gam.check(mrgamma_bed_bath_factor)

3 Method: fREML Optimizer: perf newton

4 full convergence after 7 iterations.

5 Gradient range [ -5.04982e -06 ,4.812226e-06]

6 (score -6009.572 and scale 0.05519938).

7 Hessian positive definite , eigenvalue range [3.888066 ,108480.5].

9 Basis dimension (k) checking results. Low p-value (k-index <1)

10 may indicate that k is too low , especially if edf is close to k’.

12 k’ edf k-index p-value

13 s(TIME) 19.000 15.029 0.988 0.20

14 s(LONG ,LAT) 99.000 97.893 0.859 0.00

15 s(AREA) 19.000 14.326 0.980 0.14

17 > gam.check(msgamma_bed_bath_factor)

82



5.2 Derivation of a Hedonic House Price Model

19 Method: fREML Optimizer: perf newton

20 full convergence after 9 iterations.

21 Gradient range [ -5.173933e -07 ,5.100256e-07]

22 (score -12068.22 and scale 0.05290794).

23 Hessian positive definite , eigenvalue range [7.022519 ,123822].

25 Basis dimension (k) checking results. Low p-value (k-index <1)

26 may indicate that k is too low , especially if edf is close to k’.

28 k’ edf k-index p-value

29 s(TIME) 19.000 17.033 0.988 0.26

30 s(LONG ,LAT) 99.000 98.734 0.730 0.00

31 s(AREA) 19.000 17.725 0.979 0.10

This output gives us information about the fitting procedure and the corresponding results.
Furthermore, a test whether the basis dimension for a smooth term is adequate was done.
This test works as follows: an estimate of the residual variance is calculated based on
differencing residuals that are near neighbours according to the covariates of the smooth.
The resulting estimate is then divided by the residual variance. This ratio is then called
k-index and can be found in the output. Since all the values for the k-index are close to
1, it is not very likely that there is a missed pattern left in the residuals. The p-values of
all smooth terms are very low and suggest, that every term is significant. In general, low
p-values may indicate that the basis dimension k is too low, especially if the reported
effective degrees of freedom are close to k′, which is an upper bound for the effective
degrees of freedom (k′ = k − 1). The corresponding plots are depicted in Figure 5.4. The
first plot at the upper left shows extreme tails deviating from the straight line of the QQ
plot. This is due to the fact that we have very large datasets and thus, there will not be a
perfect distributional assumption. Despite these deviations we will assume our house rents
and house prices to follow a gamma distribution, since the earlier calculated fREML and
GCV scores as well as the deviance explained of the models using the gamma distribution
were quite good. The plot on the upper right suggests that the variance is approximately
constant as the mean increases for both, the rents and the sales. Furthermore, the lower
left histograms seem to be approximately consistent with normality. Last but not least,
the lower right plot shows in both cases the relationship between the response and the
fitted values. This relationship seems to be positive, which is not problematic.

Moreover, we can plot the component smooth functions of the models as well as the
parametric model components on the scale of the linear predictor. In R, this can be done
with the function plot.gam(). This function returns three different plots in our case.
The first two plots for the rents are shown in Figure 5.5 and for the sales in Figure 5.7,
whereas the third plot gives an two-dimensional overview of the price depending on the
location in Sydney, which is not depicted here, since the later used vis.gam() function
gives a better insight into the geographical behaviour. When looking at the top of Figure
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5.5, we can see the trend of the weekly rents depending on the date of advertisement. The
function is almost linear. Thus, we can assume the weekly rents to increase linearly over
time. The plot at the bottom shows the dependence of the weekly rent prices depending
on the size of the land area. We can see that there is a rise in the rent prices between a
land area of about 100 to approximately 3.500 square meters. Beginning at a land area
of about 3.500 square meters, there is a slight decrease in the rent prices up to a size
of 5.000 square meters. This behaviour may be explained by the fact that houses with
a larger land area are more frequently located in the cheaper, outer regions of Sydney.
Furthermore, the area defines the land area of the house. Thus the actual size of the
house may be much smaller than the land area. A very similar behaviour can be seen
in Figure 5.7 in the case of house prices. Only the house prices depending on the time
deviate slightly from a linear function. The trend of the house prices depending on the
area shows the same behaviour as the weekly rents.

The output of the function vis.gam() is shown in Figure 5.6 for the rents and in Figure
5.8 for the sales. The plots for the rents and for the sales look very similar. The two
plots at the top show the house price and the rent price, respectively, depending on
the geographical position of the house. Care has to be taken, since the plot has been
rotated. Thus the most expensive areas are the regions in the East at the coast of Sydney,
whereas regions in the west of Sydney are less expensive. The same behaviour can be
seen in the plots at the bottom. The lighter the colour of the plot, the more expensive
the renting or selling price is. This behaviour of the house price and the weekly rents
depending on the geographical position of the house was already depicted in Figure 4.4
in Chapter 4. Again care has to be taken, since the plots at the top and at the bot-
tom of Figures 5.6 and 5.8 are not directly comparable, since the plots at the top are rotated.

When looking at the function depending on the size of the land area at the bottom of
Figure 5.5 and Figure 5.8, we can see that the function nearly behaves like the logarithm
function. Hence, we finally want to compare the above “best“ model with a model, where
the smooth term depending on the size of the land area is replaced by the logarithm to
simplify and stabilize the model. The models mrgamma bed bath factor log area and
msgamma bed bath factor log area are defined by

ηi = β0 + f1(timei) + βarea log(areai) + fgeo(longi, lati) +
6∑
j=2

βbed
j 1j(bedi)

+
6∑

k=2

βbath
k 1k(bathi), (5.2.7)

with the log link ηi = log(µi). The corresponding AIC and deviance explained of the
models (5.2.6) and (5.2.7) are depicted in Table 5.3. We can see, that the AIC for the
model with the general smooth term for the variable area is hardly smaller than the one
for the model with the logarithm term. Moreover, the deviance explained is nearly the
same for both models. To sum up, we can conclude that model (5.2.7) fits the house rent
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model AIC Deviance explained

mrgamma bed bath factor 2.626.177 85, 1%
mrgamma bed bath factor log area 2.626.346 85, 1%

msgamma bed bath factor 6.593.123 89, 0%
msgamma bed bath factor log area 6.594.721 88, 9%

Table 5.3: Summary of the AIC as well as the deviance explained for model (5.2.6) and
model (5.2.7) for the rents and for the sales

and the house sale data as good as model (5.2.6), but is clearly simpler and thus to prefer.

5.2.3 Joint House Price Model for Renting and Selling Prices

In the section before, we have demonstrated that the renting and selling prices of houses
in Sydney can be fitted with model (5.2.7). Thus, the chosen model for the rented and
sold houses has the same structure, but they were fitted seperately and have different
parameter estimates. When looking at Figures 5.6 and 5.8 we can see that the spatial
structure for the rents and for the sales is nearly the same. Furthermore, in this section,
we assume the parameters for the categorical variables bed and bath to be the same for
the rents and the sales, except for the intercept, which is higher for the sales. The only
function in the model that is different for the rents and the sales should be the function
depending on the time, since we have seen in Figures 5.5 and 5.7 that the behaviour of
the weekly rents over the time is not the same as for the house sales. We now want to fit
model (5.2.7) again, using the house rents and the house sales data at once in one model.
Thus, we only obtain one vector of estimated parameters for the rents and for the sales.
We define our new model, based on all of the data, as

ηi = βrent
0 1rent(typei) + βsale

0 1sale(typei)

+ f rent1 (timei)1rent(typei) + f sale1 (timei)1sale(typei)

+ βarea log(areai) + fgeo(longi, lati)

+
6∑
j=2

βbed
j 1j(bedi) +

6∑
k=2

βbath
k 1k(bathi), (5.2.8)

where the linear predictor ηi is the logarithm of the mean price of the rent or house price
of house i and the type of the house price can be either rent or sale. Thus, we assume the
weekly rents and the house sales to have a different intercept βrent

0 and βsale
0 , respectively,

and the model also includes different functions depending on the time, namely f rent1 (timei)
and f sale1 (timei). Moreover, we assume that the rents and the sales have a joint function
depending on the geographical position and also that the factor variables bed and bath

are the same, as well as the estimated parameter for the logarithm depending on the size
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of the land area.

To fit the model to all of the data, we first have to combine the datasets houserents2008
and housesales2008. This is done by first adding a new column named as TYPE, which
is a categorical variable with labels "rent" and "sale", and then merging the datasets
to the new dataset houses2008. With this new dataset, we can now fit our new model
defined before in (5.2.8). The call in R is

1 m_all_data <- bam(PRICE ~ s(TIME , bs="cr", k=20, by=TYPE)

2 + s(LONG ,LAT , bs="tp", k=100) + TYPE

3 + log(AREA) + factor(BED) + factor(BATH),

4 family=Gamma(link=log), data=houses2008)

This call looks like the ones used before in Chapter 5, but now there is an additional
argument in the function s() depending on the time, namely the by argument. This
argument creates different smooth functions depending on the time for the rents and
for the sales, like we defined the model before in (5.2.8) using the indicator function.
Furthermore, we have an additional factor variable type, which enables the model to have
different intercepts for the rents and for the sales. After fitting the model to the data, we
can have a look at the output of the summary() function.

1 > summary(m_all_data)

3 Family: Gamma

4 Link function: log

6 Formula:

7 PRICE ~ s(TIME , bs = "cr", k = 20, by = TYPE) + s(LONG , LAT ,

8 bs = "tp", k = 100) + TYPE + log(AREA) + factor(BED)

9 + factor(BATH)

11 Parametric coefficients:

12 Estimate Std. Error t value Pr(>|t|)

13 (Intercept) 5.0184370 0.0072619 691.07 <2e-16 ***

14 TYPEsale 7.1262555 0.0007926 8991.04 <2e-16 ***

15 log(AREA) 0.1135285 0.0009964 113.94 <2e-16 ***

16 factor(BED)2 0.3326162 0.0035144 94.64 <2e-16 ***

17 factor(BED)3 0.4966282 0.0034037 145.91 <2e-16 ***

18 factor(BED)4 0.6122873 0.0035189 174.00 <2e-16 ***

19 factor(BED)5 0.6801033 0.0037918 179.36 <2e-16 ***

20 factor(BED)6 0.6743988 0.0049984 134.92 <2e-16 ***

21 factor(BATH)2 0.1214223 0.0010140 119.75 <2e-16 ***

22 factor(BATH)3 0.3052339 0.0016076 189.88 <2e-16 ***

23 factor(BATH)4 0.5539133 0.0032884 168.45 <2e-16 ***

24 factor(BATH)5 0.8243851 0.0069240 119.06 <2e-16 ***

25 factor(BATH)6 1.0148461 0.0138700 73.17 <2e-16 ***

26 ---
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27 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

29 Approximate significance of smooth terms:

30 edf Ref.df F p-value

31 s(TIME): TYPErent 15.82 17.72 1410 <2e-16 ***

32 s(TIME): TYPEsale 17.60 18.74 3069 <2e-16 ***

33 s(LONG ,LAT) 98.70 99.00 9539 <2e-16 ***

34 ---

35 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

37 R-sq.(adj) = 0.809 Deviance explained = 99.2%

38 fREML score = 29662 Scale est. = 0.066387 n = 464635

In the first lines of the estimated parametric coefficients, we can see that the intercept
for the weekly rents is exp(5, 018) = 151, 11, whereas the intercept for the house sales is
exp(5, 018) · exp(7, 126) = 187.962, 92. The factor variables bed and bath are independent
of the type, thus, for example, a house with two bedrooms is exp(0, 333) = 1, 395 times
more expensive than a house with one bedroom and a house with two bathrooms is
exp(0, 121) = 1, 129 times more expensive than one with just one bathroom. This holds
for both, the rented houses as well as for the sold houses. Furthermore, the table shows
us the summary of the smooth terms depending on the time and on the geographical
position. As already mentioned before, there are different smooth terms depending on
the time for the rented and for the sold houses, whereas there is one joint smooth term
depending on the geographical position of the house. The last two lines of the output
have to be interpreted carefully. The deviance explained of the model is 99,2% which
is quite high, but that is due to the fact that we now have information about 464.635 houses.

The plot.gam() function allows us to plot the smooth terms depending on the time. The
results are depicted in Figure 5.9. When comparing these plots with the plots in Figures
5.5 and 5.7 from before, where the rents and the sales where fitted seperately, we can see
that the behaviour of the price depending on the time is the same, for the rents as well as
for the sales. Moreover, we can have a look at the spatial structure of the model. The
output of the vis.gam() function is illustrated in Figure 5.10. These plots can once again
be compared with the plots in Figures 5.6 and 5.8. We can see that there is hardly any
difference in the spatial structure of the joint model and the one for the models, where the
rents and the sales were fitted seperately. To sum up, the results have shown us that the
assumption of one joint model for the rented and the sold houses is hardly worse than if
we assume the two datasets to behave like different models. With this result, we can now
go on with our task of forecasting renting and selling prices for houses in Sydney in the
next chapter.
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Figure 5.1: The spatial structure of the weekly rents from 2008 to 2010 (left) and from
2012 to 2014 (right)
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Figure 5.2: The spatial structure of the house prices from 2008 to 2010 (left) and from
2012 to 2014 (right)
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Figure 5.3: The dependence of the weekly rents on the size of the land area (top) and for
the sales (bottom) for the years 2008 to 2010 (left) and for the years 2012 to
2014 (right)
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Figure 5.4: Some basic model checking plots for the models mrgamma bed bath factor

(top) and msgamma bed bath factor (bottom)
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Figure 5.5: The trend of the weekly rents over the years 2008 to 2014 (top) and
over the size of the land area (bottom) under the estimated model
mrgamma bed bath factor
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Figure 5.6: The price of the weekly rents over the region of Sydney under the estimated
model mrgamma bed bath factor
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Figure 5.7: The trend of the house price over the years 2008 to 2014 (top) and over the size of
the land area (bottom) under the estimated model msgamma bed bath factor
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Figure 5.8: The price of the sales over the region of Sydney under the estimated model
msgamma bed bath factor
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Figure 5.9: The price of the weekly rents (top) and the house sales (bottom) depending
on the time under the joint model m all data
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Figure 5.10: The spatial structure of the price of the weekly rents as well as for the house
sales under the joint model m all data
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CHAPTER 6

Forecasting House Prices for Sydney

As already mentioned before, the sudden and immense downturn in the U.S. house prices
in the year 2006 triggered the global financial crisis in the year 2007 and consequently
raised the interest in forecasting house prices for the near future for economic stability
(Plakandaras et al., 2015). Therefore, many authors published papers about forecasting
house prices. Most of them, for example Kholodilin and Siliverstovs (2014), work with a
set of predictor variables divided into macroeconomic variables and confidence indexes.
Housing lending rates, stock exchange price and performance indexes are classified as
macroeconomic variables. an de Meulen et al. (2011) included indicators based on
consumer surveys asking for example about the financial and economic situations of
households as well as planned housing-related purchases and savings. They showed that
the expected financial situation and the information on planned major purchase and
intended savings are relevant for forecasting house prices. Other predictors like the
unemployment rate, population and employment also play a decisive role in terms of
forecasting, since income and employment variables give an insight into the ability of
households to secure housing and thus reflect the housing demand (Rapach and Strauss,
2007).

The majority of the literature uses econometric models for forecasting. an de Meulen
et al. (2011) for example, use Autoregressive Distributed Lag (ARDL) and Vector
Autoregression (VAR) models and combinations of them, whereas Plakandaras et al.
(2015) compare Bayesian Vector Autoregressive (BVAR) and Bayesian Autoregressive
(BAR) models. Information about house characteristics are also included in the set of
predictor variables when forecasting house prices. Thus, most of the literature derives
models for forecasting a particular price index, which shows the average movement of
an average home. Case and Shiller (1990) even found evidence of positive serial correla-
tion in real housing price, which means that house prices are forecastable to a certain degree.

While most of the literature works with economic forecasting methods, in this thesis we
want to forecast house prices with a generalized additive model derived in the previous
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chapter. This model allows us to forecast the house rent or the house price for a specific
house with given properties and a particular location at a time of interest. Hence, in
contrast to the above mentioned literature on forecasting, where only the average trend of
the house price can be forecasted, macroeconomic variables such as stock exchange prices
or unemployment rates are not included in the model. Hence the model assumes no major
changes in the macroeconomic environment nor fundamental changes in expectations in
the nearer future.

6.1 Forecasting Renting and Selling Prices

In Chapter 5 we have seen that it is possible to fit the rents and the sales in one joint
model, which is defined by

ηi = βrent
0 1rent(typei) + βsale

0 1sale(typei)

+ f rent1 (timei)1rent(typei) + f sale1 (timei)1sale(typei)

+ βarea log(areai) + fgeo(longi, lati)

+
6∑
j=2

βbed
j 1j(bedi) +

6∑
k=2

βbath
k 1k(bathi),

where ηi = log(µi) and µi is the mean of the weekly rent or house sale of house i,
respectively. Therefore, we assumed that the rents and the sales have a different intercept
and a different smooth term depending on the time and that they have a joint smooth
term for the spatial structure and the same parameters for the categorical variables bed

and bath. In this section, we will use this model to forecast weekly rents and also house
sales for the nearest future. Thus, we will predict the rent and the house price of a given
house with specific properties and a particular location.

In Figure 5.9 we have seen that the increasing trend of the rents is nearly linear while
the one for the sales is more wiggly. Nevertheless, the last increase of the price of sold
houses between the years 2014 and 2015 is nearly linear. Therefore, forecasting can be
done straighforward by extrapolating the price function depending on the time linearly.
The prediction for the rents is now done for yearly rents, thus we multiply the given weekly
rents by 52. The plot in Figure 6.1 is obtained with the following code.

1 time <- seq (2008, 2016, by =0.05)

2 bed <- "1"

3 bath <- "1"

4 area <- 600

5 long <- 151

6 lat <- -33.8

7 rent.data <- expand.grid(TIME=time ,BED=bed , BATH=bath ,

8 AREA=area , LONG=long , LAT=lat , TYPE="rent")

9 pred.rents <- predict(m_all_data , newdata=rent.data ,
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10 type="response", se=TRUE)

11 sale.data <- expand.grid(TIME=time , BED=bed , BATH=bath ,

12 AREA=area , LONG=long , LAT=lat , TYPE="sale")

13 pred.sales <- predict(m_all_data , newdata=sale.data ,

14 type="response", se=TRUE)

15 plot(time , (52*pred.rents$fit), type="l")

16 plot(time , pred.sales$fit , type="l")

We first define the time sequence up to the end of the calendar year 2016 and determine
the characteristics of any given house of which we want to forecast the yearly rent and
the house price. Thus, we have to define the number of bedrooms and bathrooms, the
size of the land area and the geographic coordinates (longitude and latitude). It must be
pointed out that the choice of the values is not relevant to the forecast, since the shape of
the function stays the same for other given values, as the function is only shifted on the
y-axis. Thus, we forecast the yearly rent and the house price of a house with one bedroom
and one bathroom, a land area size of 600 square meters, which is located at a longitude
of 151◦ and a latitude of −33, 8◦. The prediction for the rent and the house price is a
linear increase up to the end of 2016, where only the height of the price on the y-axis is
dependent on the chosen house characteristics.

Our forecast therefore predicts the rent and the house price of a specific house with
particular properties for the nearest future. In contrast to that, most of the literature on
forecasting house prices derived a house price index which shows the general movement
of the house price. With this general house price index, it is not possible to forecast the
price of a specific house as our model allows.

6.2 Trend of the Price-Rent Ratio

In the introduction of Chapter 5, the importance of the price-rent ratio was already
mentioned. As described by Hill and Syed (2016), every durable good should follow the
equilibrium condition

Rt = utPt, (6.2.1)

where Rt is the period t rental price and utPt the user costs of the good, which is the
present value of buying it, using it for one period and then selling it. More precisely, the
user costs consist of the purchase price Pt and the per dollar user costs ut. The per dollar
user costs can be calculated as

ut = rt + ωt + δt + γt − gt,

where rt is the risk-free interest rate, ωt the property tax rate, δt the depreciation rate
for housing and γt denotes the risk premium of owning the house instead of renting
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it. Furthermore, gt is the expected capital gain which is not directly observable. From
Equation (6.2.1) it follows that

Pt
Rt

=
1

ut
. (6.2.2)

This equilibrium condition assumes Pt and Rt to be calculated for properties of equivalent
quality. The expected capital gain can then be computed as

gt = rt + ωt + δt + γt −
Rt

Pt
. (6.2.3)

Details about this procedure and results for Sydney over the period 2001 to 2009 can be
read in Hill and Syed (2016).

For financial stability it is therefore also necessary to forecast the price-rent ratio for the
nearest future. Thus, we have to express the ratio of the rents and the sales in our model.
To derive the price-rent ratio, we write the linear predictor of the rents and the sales
seperately, but both under the same joint model. Thus, the rents and the sales can be
calculated as

ηrenti = βrent
0 + f rent1 (timei) + βarea log(areai) + fgeo(longi, lati) +

6∑
j=2

βbed
j 1j(bedi)

+
6∑

k=2

βbath
k 1k(bathi), (6.2.4)

ηsalei = βsale
0 + f sale1 (timei) + βarea log(areai) + fgeo(longi, lati) +

6∑
j=2

βbed
j 1j(bedi)

+
6∑

k=2

βbath
k 1k(bathi), (6.2.5)

where ηrenti = log(µrenti ) for the mean of the rent prices µrenti and ηsalei = log(µsalei ) for
the mean of the sale prices µsalei . We are now interested in the behaviour of the mean rent
and selling price of a specific house with j bedrooms and k bathrooms on an area of size
area and at the location long and lat. The mean rent and selling price of this house is

µrent = exp(βrent
0 + f rent1 (time) + βarea log(area) + fgeo(long, lat) + βbed

j + βbath
k ),

µsale = exp(βsale
0 + f sale1 (time) + βarea log(area) + fgeo(long, lat) + βbed

j + βbath
k ).

Thus the ratio of these two means is

µsale

µrent
= exp((βsale

0 − βrent
0 ) + (f sale1 (time)− f rent1 (time)). (6.2.6)

The ratio of the mean rent and selling price of any specific house at any given location in
our model therefore only depends on the time. However, this is not true in reality. As
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already mentioned before, Equation (6.2.2) assumes the rental and selling prices to be
calculated for properties of equivalent quality. Hill and Syed (2016) therefore computed
quality-adjusted price-rent ratios by ordering the rented and sold dwellings each year from
the cheapest to the most expensive and computing the price-rent ratio for the lower quartile,
median and the upper quartile sold houses and likewise for the lower quartile, median
and upper quartile rented houses. They found out that the price-rent ratio increases from
the lower to the upper end of the market. There are many different explanations for this
behaviour. One reason is the fact that user cost may be lower at the high end of the
market and thus the equilibrium price-rent ratio higher, as can be seen in Equation (6.2.2).
These lower user cost are due to lower depreciation rate and lower risk premium at the
high end of the market, but also the expected capital gain may be higher at the high end
of the market. More details and explanations on this behaviour of the price-rent ratio can
be read in Hill and Syed (2016).

Despite these contradictions to our assumption that the price-rent ratio only depends
on the time, we will use Equation (6.2.6) to forecast the price-rent ratio for the
nearest future. We have seen in Section 5.2.3 that the behaviour of the estimated
parameters for the land area, the longitude and lattitude and also the number of
bedrooms and bathrooms is nearly the same for the rented and sold houses. There-
fore, we assume the price-rent ratio for reasons of simplification to only depend on the time.

The forecast of the price-rent ratio works in R like the one in the section before.

1 time <- seq (2008, 2016, by =0.05)

2 bed <- "1"

3 bath <- "1"

4 area <- 600

5 long <- 151

6 lat <- -33.8

7 rent.data <- expand.grid(TIME=time , BED=bed ,BATH=bath ,

8 AREA=area , LONG=long , LAT=lat , TYPE="rent")

9 pred.rents <- predict(m_all_data , newdata=rent.data ,

10 type="response", se=TRUE)

11 sale.data <- expand.grid(TIME=time , BED=bed , BATH=bath ,

12 AREA=area , LONG=long , LAT=lat , TYPE="sale")

13 pred.sales <- predict(m_all_data , newdata=sale.data ,

14 type="response", se=TRUE)

15 plot(time , pred.sales$fit/(52*pred.rents$fit), type="l")

In this case, the defined characteristics of the specific house are not relevant to the
price-rent ratio, since we have seen before that this ratio only depends on the time and
not on any specific properties of the house. The trend of the price-rent ratio is plotted in
Figure 6.2. While the house price at the beginning of the year 2014 was about 25 times
of the corresponding yearly rent, the prediction shows us that at the beginning of the
year 2016 one has to pay more than 32 yearly rents to cover the respective house price.
From the beginning of the year 2012 onwards, there was an increase in the house prices
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compared to the house rents, since house prices increase faster than rents. Hence, over the
years it has become more and more expensive to buy a house compared to renting a house.

Last but not least, we are interested in the standard errors of the index just derived to
determine the accuracy of our prediction. To derive such standard errors we use the fact
that every GAM has an underlying parametric representation, thus it is possible to obtain
the so-called prediction matrix. When looking at model (6.2.4) for the weekly rents for
example, the prediction matrix XXXrent is the matrix which maps the estimated parameters
β̂̂β̂βrent to the predictions of the linear predictor η̂̂η̂ηrent, which means that

η̂̂η̂ηrent = XXXrentβ̂̂β̂βrent.

The analogue relationship holds for model (6.2.5) for the sales, where the linear predictor
η̂̂η̂ηsale is obtained as

η̂̂η̂ηsale = XXXsaleβ̂̂β̂βsale.

Since we are interested in the price-rent ratio, it follows under model (5.2.8) with joint

parameter estimates vector β̂̂β̂β that

µµµsale

µµµrent
= exp((XXXsale −XXXrent)β̂̂β̂β),

where we assume the prediction matrices XXXrent and XXXsale to be the model matrices
under the model over the time period from 2008 to 2016 for the rents and for the sales,
respectively. According to Wood (2006), the prediction matrix is useful for the caluclation
of variances for combinations of linear predictor values, like in our case the ratio of two
linear predictors. To calculate the standard errors, we define the difference of the linear
predictors as

δ̂̂δ̂δ = (XXXsale −XXXrent)β̂̂β̂β.

We obtain the standard errors of these difference of linear predictors by calculating the
square roots of the diagonal elements of

v̂ar(δ̂̂δ̂δ) = (XXXsale −XXXrent)v̂ar(β̂̂β̂β)(XXXsale −XXXrent)T.

Since we are interested in the variance of exp(δ̂̂δ̂δ)/52 and not in the variance of δ̂̂δ̂δ, we have
to apply the delta method. This yields the linear approximation

exp(δ̂̂δ̂δ)/52 = exp(δδδ)/52 +
∂ exp(δδδ)/52

∂βββT
(β̂̂β̂β − βββ).

The derivative is calculated as

∂ exp(δδδ)/52

∂βββT
(β̂̂β̂β − βββ) =

1

52
diag(exp(δδδ))(XXXsale −XXXrent).

Thus the variance of interest can be approximated by

v̂ar(exp(δ̂̂δ̂δ)/52) =
1

522
diag(exp(δ̂̂δ̂δ))(XXXsale −XXXrent)v̂ar(β̂̂β̂β)(XXXsale −XXXrent)T diag(exp(δ̂̂δ̂δ)).
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6.2 Trend of the Price-Rent Ratio

This result can now be used to plot the trend of the price-rent ratio with corresponding
pointwise confidence intervals. The plot in Figure 6.2 is obtained with the following
R-Code.

1 X.rent <- predict(m_all_data ,newdata=r.data ,type="lpmatrix")

2 X.sale <- predict(m_all_data ,newdata=s.data ,type="lpmatrix")

3 delta <- (X.sale -X.rent) %*% coef(m_all_data)

4 library(Matrix)

5 var.delta <- (X.sale -X.rent) %*% m_all_data$Vp %*%

6 t(X.sale -X.rent)

7 diag.delta <- Diagonal(x=exp(delta))

8 sd.delta <- sqrt(diag(diag.delta %*% var.delta %*%

9 diag.delta))/52

10 lines(time ,exp(delta)/52+2*sd.delta ,type="l", col="red")

11 lines(time ,exp(delta)/52-2*sd.delta ,type="l", col="red")

The function predict() in R returns the prediction matrices, if the type argument is
set to lpmatrix. The estimated variance of the parameter vector β̂̂β̂β under the model
can be obtained with the call m all data$Vp. The rest of the input is a straightforward
calculation of the above derived standard error. Finally, the plot in Figure 6.2 shows the
prediction with corresponding 95% confidence intervals. The forecast for the year 2016
seems to be a good prediction, since the confidence interval is not that wide. To sum up,
we have derived a model which shows a good fit to the data and also provides a good
forecast for the nearest future. The prediction shows us that house prices in comparison
to house rents will get more and more expensive in the future.

105



6 Forecasting House Prices for Sydney

Figure 6.1: Prediction for the yearly rents and the house sales for the calendar year 2016
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6.2 Trend of the Price-Rent Ratio

Figure 6.2: Prediction of the price-rent ratio for the calendar year 2016 with corresponding
95% confidence intervals
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CHAPTER 7

Summary

This thesis provided insight into the large area of regression models. In the theoretical
part of the thesis, the parametric and the nonparametric regression models were
introduced and the different choices of basis functions used for the smoothing procedure
presented. The theory of minimising the penalized least-squares criterion as well as
the selection of the smoothing parameter was discussed in detail. Starting with the
simplest univariate smoothing model, the bivariate and the multivariate smoothing
model and finally the additive model were introduced. The additive model was further
extended, so that it is possible to include geographical data and interactions between
the covariates in the model. Last but not least, the generalized additive model, which
allows to model a function of the response variable with an additive model and the
response variable to follow the distribution of a member of the exponential family, was
obtained. The chapter on nonparametric regression models finished by discussing the
model choice and diagnostics in order to be able to check the adequacy of the chosen model.

The detailed theory on the nonparametric regression models was then used in the practical
part. Two datasets with renting and selling prices of houses located in Sydney were used
which also contained additional information about the houses’ characteristics and the date
of advertisement or the date of the sale, respectively. It started with a generalized additive
model, assuming the house rent and the house price to follow a normal distribution. By
trying different models and comparing their GCV and fREML scores it was found out
that information about the date of advertisement or the date of the sale, respectively, the
size of the land area, the location of the house given as longitude and latitude, as well as
the number of bedrooms and bathrooms are relevant for explaining the renting and selling
prices. In contrast, additional information about the region or the type of the house does
not substantially improve the goodness-of-fit. While the date of advertisement or the
date of the sale, respectively, and the size of the land area should each be included as
a univariate smooth function, the location of the house given as longitude and latitude
should be handled as a bivariate smooth function. Modeling the number of bedrooms and
bathrooms as categorical factors showed a better fit to the data than including them as
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7 Summary

linear terms.

It was tried to fit the data using the identity link, but it was found that the log link
is clearly a better choice. Furthermore, the assumption of gamma distributed renting
and selling prices provides a better fit to the data than the assumption of a normal
distribution. The most important interactions between the covariates were tried, namely
the ones including the variable time and it showed that it is not necessary to consider
interaction terms in the models. In conclusion, the univariate function depending on the
size of the land area was exchanged by the logarithm function in order to simplify and
stabilize the model.

The derivation of the price model was first done for the renting and selling prices
seperately, yielding a model for the house rents and one for the house sales. These
two models showed that the behaviour of the model terms is nearly the same for both
models. The only exceptions are the term depending on the time and the intercept.
This advised us to finally try a joint model for the house rents and the house prices.
It showed that the assumption of one joint model for the rented and sold houses is
hardly worse than if it is assumed that the renting and selling prices follow seperate models.

The derived model was further used in the last chapter to forecast the renting and selling
prices as well as the price-rent ratio for the nearest future. The forecast for the renting
and selling prices was just a linear extrapolation of the price curve, yielding that the trend
of the house rents and house prices is a linear increase in the calendar year 2016. When
looking at the ratio of the mean renting and selling prices under the estimated model,
it showed that this ratio only depends on the time. Thus, we were able to forecast the
price-rent ratio by extrapolating linearly. Finally, we derived pointwise 95% confidence
intervals and concluded that our forecast seems to be a good prediction for the year 2016.
The linear trend of the price-rent ratio tells us that house prices in comparison to the
house rents will get more and more expensive. This factor more precisely ranges from
about 25 in the year 2014 up to 32 in 2016, thus one has to pay 32 yearly rents in 2016 to
cover the corresponding house price.
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