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Abstract
This thesis discusses different statistical approaches to fatigue data focused on

the total life approach. Different statistical models are introduced, analysed, and
used to model an exemplary data set from the literature.

Among these models we find two very common models, the Linear Model and the
Generalized Linear Model, representing de facto the status quo. Additionally, we
introduce two alternative approaches; In the first one, we are modelling the distri-
bution parameters of the chosen distribution due to the characteristic behaviour of
fatigue data (called Parameter Regression Model); The second one is intended to
avoid or relax the problem of few data points by standardizing the observations to a
common distribution (called Standardizing Approach Model).

A comparison of the introduced models with the free statistic software R in terms of
their ability to describe the data’s median and scatter leads to a model ranking. In
this ranking the Standardizing Approach Model is listed first, followed by the Gen-
eralized Linear Model. The next best models are the Parameter Approach Model at
the same level as the Linear Model with three predictors. The last listed model is
the Linear Model with two predictors. All statistical analyses were carried out using
the open source program R (version 3.2.3).

Zusammenfassung

In dieser Masterarbeit werden verschiedene statistische Ansätze für das Arbeiten
mit Ermüdungsdaten basierend auf dem Ermüdungsbruch diskutiert. Dabei werden
mehrere statistische Modelle eingeführt, analysiert und an einen Datensatz aus der
Literatur angepasst.

Unter diesen Modellen finden sich zwei oft verwendete Modelle wieder, das Lineare
Modell und das Generalisierte Lineare Modell, welche in der Praxis oft noch den Sta-
tus Quo darstellen. Darüber hinaus werden wir zwei alternative Ansätze besprechen.
Beim ersten Modell modellieren wir die Parameter der gewählten Verteilung basierend
auf Charakteristika von Ermüdungsdaten, es wird Parameter Regression Model ge-
nannt. Der zweite Ansatz zielt darauf aus, das Problem weniger Datenmessungen
zu eliminieren oder zumindest abzuschwächen, indem die Beobachtungen zu einer
einheitlichen Verteilung hin transformiert werden. Das entsprechende Modell wird
Standardizing Approach Model genannt.

Ein Vergleich der eingeführten Modelle mit der freien Statistiksoftware R basierend
auf deren Präzision beim darstellen des Medians und der Streuung des Datensatzes
führt uns zu einem Ranking. Bei diesem wird das Standardizing Approach Model vor
dem Generalisierten Linearen Modell als erstes gereiht. Den dritten Platz teilen sich
das Parameter Regression Model und das Lineare Modell mit drei Prädiktoren. Das
letztgereihte Modell ist das Lineare Modell mit zwei Prädiktoren. Sämtliche statis-
tische Analysen wurden mit dem Programmpaket R (Version 3.2.3) durchgeführt.
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1. Introduction

This thesis discusses different statistical approaches to fatigue data focused on the
total life approach. Different statistical models are introduced, analysed, and used
to model an exemplary data set from the literature.

This first chapter gives an insight on the thesis structure. The chapters are described
shortly and the exemplary data set is introduced. Findings of the author using this
data set are also described.

In chapter two we introduce the fatigue phenomenon, review the history of fatigue
research, and identify different approaches to fatigue. These insights explain, why
we are interested in this field of research. Starting with safety concerns of mining
and rail-road companies different theories of fatigue were discussed. Also the tools
for analysing this problem, such as the Wöhler or S-N curve are introduced in the
process. From a presented separation of fatigue approaches, we then focus on the
total life approach. Furthermore, we explain how exactly stress is applied in the
Wöhler experiment, one case of application in the context of the total life approach.

The third chapter introduces regression analysis and two very common regression
analysis model types, the Linear Model and the Generalized Linear Model. For both
of these models, we discuss the model definitions and assumptions. Furthermore, we
define the model parameter estimates and introduce hypothesis tests in this context.
They are still widely used models due to their easy handling and simple interpreta-
tion and hence represent the status quo.

Chapter four introduces statistical fundamentals, such as estimators, confidence in-
tervals, and hypothesis tests. The formal definitions are used to build a common
ground for further discussions. We used examples to illustrate the definition and
deduce estimators, confidence intervals, and hypothesis tests for our practical appli-
cations.

In chapter five we elaborate a methodology for analysing fatigue data in a defined
form with parameter regression. To visualise the procedure we use an exemplary
data set from the literature. Starting with moment modelling we proceed to parame-
ter modelling for particular distributions. This modelling approach is then analysed
by using simulations for different distributions in combination with multiple fitting
methods.

The sixth chapter introduces a methodology for standardizing the given data points
from different stress levels of the Wöhler curve and working with the much bigger,
standardized dataset. This allows us to calculate estimates and quantiles more effi-
ciently. This approach is intended to reduce the disadvantage of the low number of
data points in the context of fatigue data due to high experiment costs.
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Chapter seven is used to apply the introduced models from chapter two to our ex-
emplary data set from literature. Thereby, we used axis transformations to provide
conditions suitable for the model assumptions. This leads us to different models
providing confidence intervals and prediction intervals for the given fatigue data.

In chapter eight we compare the different models introduced in the previous chap-
ters. This includes two Linear Models, one Generalized Linear Model, a Parameter
Regression Model adjusted to fatigue data, and a Standardizing Approach Model.
Two aspects are used for the comparison - the ability to fit the median and the ability
to describe the scatter.

1.1 The Dataset

In this thesis we are working with the AAW dataset which is taken from Shen (1994,
pp. 259 ff.) and can be found in Table 1. It includes two hundred observations, with
twenty observations for each of the ten stress levels.

Table 1: Annealed Aluminium Wire (AAW) fatigue data

stress level[MPa]
294.3 220.7 176.6 134.9 105.4 83.4 73.6 56.4 54 51.5

100 cycles to failure
53 51 62 91 128 182 120 1140 2850 8200
62 61 94 93 156 250 400 1300 3080 8390
65 70 100 94 174 257 450 1570 3360 9380
66 77 100 97 190 286 480 1570 3770 10240
70 86 102 145 190 290 620 1590 3800 10400
75 90 108 159 197 337 650 1700 3960 10480
80 91 113 160 200 350 650 1800 4270 11000
84 93 126 162 210 364 670 2010 4970 11030
87 96 128 179 213 399 700 2050 5100 11360
88 97 139 185 244 400 800 2100 5510 11450
90 97 140 198 251 407 810 2300 5600 11470
92 101 142 208 254 440 830 2440 5950 11500
92 103 143 210 267 451 880 2500 6170 11510
94 112 147 218 268 460 910 2510 6600 11630
95 115 151 221 269 461 920 2570 6680 12000
95 116 152 224 283 468 940 2660 6850 12100
98 123 166 224 285 487 950 2730 7140 13190

100 125 169 257 295 500 1040 2870 7330 13200
105 134 170 258 309 543 1080 2960 8490 13210
118 159 182 278 382 556 1120 3090 8950 16300

This data is taken from Shen (1994, pp. 262), Table D.1 and describes a fa-
tigue test conducted with ten stress-levels, each with 20 iterations. It is originally
released by Freudenthal (1952).

Shen (1994) used this dataset among others to develop methods for providing a sta-
tistical summary of material fatigue stress-life data for engineering design purposes
within his PhD thesis. As significant achievements, he described the following state-
ments:

2



• The bilinear model seems to provide a consistently adequate description of the
trend of fatigue data, using representative fatigue data sets.

• The pure X error sources model seems to provide a consistently adequate de-
scription of the uncertainties observed in heteroscedastic fatigue data (like the
AAW dataset represented in Table 1). The pure X error source model is based
on recognition of the uncertainties in local fatigue stress.

For understanding this achievements we first need to introduce the bilinear model
and the pure X error source model. The bilinear model represent a model for the
mean µY and is defined by the implicit equation

x = a1 + a2(µY + a5

√
(µY − a3)2 + a4),

with the parameter vector a = (a1, a2, a3, a4, a5), the stress (or transformed stress)
x and the mean µY for the response Y (cycles to failure or transformed cycles to
failure). For the pure X error source model we first have to have a look at the model
defined by the equation

Y = yL(x+ εxL ; a) + εyL . (1.1)

This equation models the response Y (cycles to failure or transformed cycles to
failure) as function yL of the stress (or transformed stress) x + εxL and the model
parameter vector a added to the error term εyL . The stress (or transformed stress)
x + εxL consists of the mean x and an error term εxL . This X error source is ex-
plained by different disseminated stresses on the material sample, which lead to an
unknown stress at the point of crack initialisation. A pure X error source model is
now characterised by the equation

Y = yL(x+ εxL ; a),

which result from Equation (1.1) when setting εyL to zero. It is furthermore assumed
that εxL ∼ N(0, σ2

xL
) holds.
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2. Fatigue

2.1 The fatigue phenomenon

Fatigue is the phenomenon describing the damage and failure of materials under
cyclic stress (Suresh, 1998). In our context, the main focus of fatigue is directed
towards the failure of materials. The cyclic stress causes material failures with a
much lower peak value than the safe load determined. The form of fatigue, as well
as the materials which are effected by fatigue, are numerous.

There are multiple forms of fatigue failure, such as mechanical fatigue, creep-fatigue,
thermomechanical fatigue, corrosion fatigue, sliding contact fatigue, rolling contact
fatigue, and fretting fatigue (Suresh, 1998). Mechanical fatigue is based on mere
fluctuations in externally applied stresses; Creep-fatigue is the combination of me-
chanical fatigue and high temperatures; Thermomechanical fatigue describes creep-
fatigue with fluctuating temperature; Corrosion fatigue takes place in the presence
of chemically aggressive environments; Sliding contact fatigue or rolling contact fa-
tigue emerge in conjunction with stress applied to sliding or rolling contact between
materials Fretting fatigue describes the failure due to pulsating stresses along with
oscillating motion and frictional sliding between surfaces.

The number of materials affected by fatigue is considerable high (Suresh, 1998). Due
to the nature of fatigue, it occurs everywhere cyclic stress is applied, no matter if the
materials are metallic or non-metallic, brittle or ductile, monolithic or composite,
natural or synthetic. The main focus of the fatigue research is directed towards
metallic materials; although, there is an interest also in ceramic, polymers, and their
composites. This trend starting in the 1990s is motivated in mechanical, thermal and
environmental characteristics of these materials unobtainable in conventional metals.

2.2 History of fatigue research

Fatigue research dates back to the first half of the nineteenth century based on pub-
lished reports (Suresh, 1998). Starting with studies about metal fatigue in mining
(Albert, 1838), an increasing interest in this phenomenon was observable animated by
the emerging use of ferrous structures, especially in the railway industry. The Insti-
tution of Mechanical Engineers in Britain started to explain the fatigue phenomenon
with the so-called crystallization theory. According to this theory, the crystallization
of the underlying microstructure caused the fatigue failure. In this context, August
Wöhler characterized fatigue behaviour in terms of the still used and very famous
stress amplitude-life (S–N) curves.

Wöhler’s S-N curve is showing the result of the so-called Wöhler experiment originally
using a rotating bending machine (Suresh, 1998). This machine is used to expose a
test sample to cycling rotation and/or bending stress with a fixed maximum peak
value, called the stress level. The number of cycles until the failure occurs is denoted
as cycles to failure. Due to time and cost constraints, the number of cycles is lim-
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ited; A sample surviving a large, fixed number of cycles is called a run-out sample.
This is done for multiple stress levels and multiple test samples per stress level. The
resulting values are plotted as points - stress level (S) against the logarithmic scale
of cycles to failure (N). A smooth curve representation of the resulting scatter plot is
called Wöhler or S-N curve and can be seen in Figure 1. In this figure the endurance
limit σe is shown; It characterizes the stress level below which a material is expected
to have no fatigue failure.

103 104 105 106 107

σe

cycles to failure, Nt

st
re

ss
am

p
li
tu

d
e,
σ
a

Figure 1: Typical S-N curve showing the total fatigue life of a nominally smooth-surfaced,
’defect-free’ material (Suresh, 1998). The total fatigue life is defined as the sum of the
number of cycles to initiate a fatigue crack and the number of cycles to propagate it
subcritically to some final crack size.

The crystallization theory about the fatigue phenomenon was disproved and hence
laid to rest based on optical micrographs of cyclic damage on the sample surface
(Suresh, 1998), starting in 1900. The examined samples showed cracks with the pro-
gression of the fatigue deformation (Ewing and Rosenhain, 1899). A single major
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crack leads to the fatigue failure in the sequel.

By the 1930s multiple properties of the fatigue behaviour were examined; the fatigue
phenomenon becomes a major scientific research field (Suresh, 1998). Basquin, for
example, showed, that a log-log plot of the stress level against the number of circles
to failure reflects the fatigue behaviour of metals in a wide stress range (Basquin,
1910). Also the influence of vibrations and heat to the lifespan of materials were
discussed.

The linear elastic fracture mechanics approach was initiated by Irwin (1997) in 1957,
who take up the crack growth observation during the fatigue deformation from the
early 1900s (Suresh, 1998). He showed, that the force forming a crack could be ex-
pressed in terms of the scalar quantity known as the stress intensity factor (K). This
lead to the assumption, that the increment of fatigue crack advance per stress cycle
(da/dN) could be related to the range of the stress intensity factor (∆K) (Paris
et al., 1961). A major advantage of this technique is, that no detailed information
about the fatigue crack mechanisms is needed.

Researchers directed their attention increasingly on the mechanisms of subcritical
crack growth due to the introduction of the electron microscopy (Suresh, 1998),
starting in the 1960s. This microscopy was able to shine a light on various mechani-
cal, microstructural and environmental factors related to fatigue deformation, crack
initiation, and crack growth. Among others, Suresh and Moss (1980) categorized the
basic crack properties and deduced further information for them.

The geometrical conditions of fatigue cracks moved in the research focus (Suresh,
1998). Pearson (1975) identified the ’short crack problem’ in 1975, describing, that
comparable small cracks show a higher crack growth than tall cracks when stressed
with the same value of ∆K. It also occurs, that the crack growth rate diminishes
with an increasing crack length. This phenomenon points towards a geometrical de-
pendence of the crack growth.

Fatigue research creates models to estimate material’s useful fatigue life, so called
life prediction models (Suresh, 1998). Such models include at least fatigue failure
under fixed amplitudes of cyclic stress. More complex models need to handle variable
and multi-axial stress amplitudes, corrosive environments, and extreme temperatures
since structural components are exposed to these service conditions. The model
creation for such complex conditions is one of the hardest tasks in fatigue research.

2.3 Approaches to fatigue

There are different approaches to fatigue, they can be categorized into ’total life ap-
proaches’, ’defect-tolerant approaches’, ’safe-life’ and ’fail-safe’ approaches (Suresh,
1998). These approaches incorporate the role of crack initiation and crack growth
differently in the calculation of useful fatigue life. Also, the useful fatigue live defini-
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tion varies from one approach to the other.

Total life approaches account for the total life of material samples; It is defined as
the number of cycles to crack initiation plus the number of cycles until failure oc-
curs (Suresh, 1998). The total life cycles to failure are determined using initially
uncracked samples under controlled stress amplitudes. In this context, the S-N curve
is a famous example of data representation, shown in Figure 1.

The defect-tolerant approach not only takes the cycles to failure into account but
rather the circles until a critical crack size emerges in the material (Suresh, 1998).
The basic idea is, that all materials do have cracks which propagate under stress
cycles. Fatigue life is defined as the number of cycles until a sample shows cracks of
critical size. This conservative approach has been used in critical applications when
a failure result in the loss of human lives.

Safe-life and fail-safe approaches were created by aerospace engineers for their spe-
cial requirements to failure avoidance (Suresh, 1998). For the first one, the sample
is tested in the laboratory using the typical conditions for its field of application.
The fatigue life estimation, gained from this approach is then modified with a safety
factor to obtain the component’s ’safe-life’ prediction. Components are exchanged
after reaching the safe-life, independent of their condition. This approach depends on
the prevention of an initial crack. The fail-safe concept, on the other hand, grounds
in the idea, that the failure of one component should not destroy the structural in-
tegrity of the overall structure. Damaged components are replaced within a regular
inspection of the structure.

2.4 Stress amplitude categorization

For a generic material sample, one has to differentiate three normal stresses and six
shear stresses (Schlottmann and Schnegas, 2016). The stresses are represented as
tensors and can be transformed into main stress tensors without shear stresses for
homogeneous and isotropic materials, see Figure 2. A matrix representation of this
situation is given in Equation (2.1).

σT =

σx τxy τxz
τyx σy τyz
τzx τzy σz

→
σ1 0 0

0 σ2 0
0 0 σ3

 (2.1)

The most simple geometric form of a material sample is the bar (Schlottmann and
Schnegas, 2016). In a bar-shaped sample there are the quantities axial force Fa(s),
bending moment Mb(s), torsional moment Mt(s), and shear force Fs(s), see Figure
2. These quantities result in the stresses σa, σb, τt, and τs; The relation between
forces/moments and stresses and also the related stress tensors are listed in Table 4.
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τxz

τxy

σx

σy

τyz

τyx

σz

τzy

τzx

a)

σ1

σ2

σ3

b)

Figure 2: a) Normal and shear stresses b) Main stresses observable on a material sample
(Schlottmann and Schnegas, 2016).

Fa(s)

Mt(s)

Fs(s)

Mb(s)

x, s

y
z

σa(s)

a)

σb(s)

b)

τt(s)

c)

τs(s)

d)

Figure 3: Stress in bar-shaped material samples (Schlottmann and Schnegas, 2016). a)
Stress based on axial force Fa(s); b) Stress based on bending moment Mb(s); c) Stress
based on torsional moment Mt(s); d) Stress based on shear force Fs(s)
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Load (force/moment) Visualisation Calculation Stress tensor

Axial force Fa(s)

Fa(s)

σa

σa = Fa(s)
A

σ1 0 0
0 0 0
0 0 0


σ1 = σa

Bending moment Mb(s)

Mb(s)

σb
σb =

Mb(s)

Wz

σb =
Mb(s)

Iz
· y

σ1 0 0
0 0 0
0 0 0


σ1 = σb

Torsional moment Mt(s)

Mt(s)

τt
τt =

Mt(s)

Wt

τt =
Mt(s)

It
· r

σ1 0 0
0 σ2 0
0 0 0


σ1 = |τt|
σ1 = −σ2

Shear force Fs(s)

Fs(s)

τsmax

•

τsmax = χFs
A

σ1 0 0
0 σ2 0
0 0 0


σ1 = |τsmax|
σ1 = −σ2

A · · · cross sectional area
Iz, It · · · inertia torque
Wt · · · moment of resistance
χ · · · ratio of maximum shear stress to nominal shear stress

Figure 4: Basic stresses in bar-shaped material samples (Schlottmann and Schnegas, 2016).
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Besides the bar-shaped form and the loads shown in Table 4, there is a list of geomet-
ric forms in combination with applied loads used as model cases (Schlottmann and
Schnegas, 2016). These so-called stress states can be categorized into rotationally
symmetric states, shell states, material states including a notch, and rolling/sliding
contact states. Examples for the rotationally symmetric case are the cylinder, the
hole in an endless plate, the thin pipe, or the spherical shell. Shell states are for
example the plate or the shell under load. Exemplary forms of notches are cycles
and parabolas. Rolling/Sliding contact states are, for example, two spheres, two
cylinders, or the bolt (ingrained cylinder) under load.

An essential consideration when talking about fatigue is the stress behaviour over
time (Schlottmann and Schnegas, 2016). Besides the cyclic stress, which constitutes
the most important stress behaviour, also static stress and stochastic stress behaviour
are considered. Cyclic stress is characterized by a periodical stress over time curve;
The probably most famous example for a periodical curve is the sinus curve. Static
stress is defined by a constant stress amplitude over time. Stochastic stress is present
when the correlated stress over time curve is random within given limitations.

The stress range is divided into three areas for each material sample based on the
Wöhler curve (Schlottmann and Schnegas, 2016). The value range up to 103...104

stress cycles is called Low-Cycle-Fatigue (LCF) area. The value range starting with
106...107 stress cycles is called Very-High-Cycle-Fatigue (VHCF) area. The value
range in between is called High-Cycle-Fatigue (HCF) area.
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3. Regression Analysis

3.1 What is regression analysis

Regression analysis is a technique to identify the main features of relationships be-
tween quantities in a system based on measured data (Draper and Smith, 2014). With
the knowledge of how a variable influences another variable within the same system,
we are either able to adjust the system to our needs or to make predictions among
other things. In the first case, this might include the effect the working temperature
has on the quality of a product in a production line; Then we can manipulate the
temperature to gain the best possible product quality. In the last mentioned case,
we could use air measurements to predict the rain possibility for the next day.

Two main types of variables are used in this setting; the predictor variables and
the response variables (Draper and Smith, 2014). Predictor variables are those, who
are observed or can be set to a value within the considered system. The response
variables, in contrast, are the variables influenced by the change of the predictor
variables. In the earlier production line example, the working temperature is the
predictor variable and the product quality is the response variable.

The type of relationship ranges from a simple linear relation to a much more complex
behaviour, which can not be reproduced easily (Draper and Smith, 2014). A linear
relation between two variables in this context does not refer to linearity in the proper
sense like used when talking about a linear function. This is due to the probabilistic
nature of the observed variables; Instead of the relation y = f(x) in case of two
variables we consider the relation y = f(x) + ε, with ε as a random error and the
so-called model function f(x) as e.g. linear function. This is also true in case x, y
and ε are vectors. For complex relations, we can apply approximations using simple
mathematical functions, e.g. polynomials.

The model function is generally of a predefined form and depends on the predic-
tor variables and a parameter vector, the random error distribution type is known
(Draper and Smith, 2014). The parameters are estimated from the data, meaning
the observations for response and predictor variables. This process of determining
the parameters is called fitting the model to given data. The random error is often
assumed to be normally distributed with mean zero. It is also common to assume
independent random errors.

3.2 The Linear Model and its extensions

A very popular series of statistical models are represented by the Linear Model and
its extensions, the Generalized Linear Model, and the Generalized Additive Model
(Wood, 2006). They vary in their ability to model data based on the basic model
assumptions. The simpler models (such as the Linear Model) have very inflexible
model assumptions but can offer a wide variety of theoretical derivations and well-
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founded statements. With rising level of complexity, like in the Generalized Linear
Model or even in the Generalized Additive Model we are able to model more and
more relationships between data, but increasingly loose the potential for well-founded
derivations. We will talk about the first two of these models.

A linear model (LM) is a statistical model for a univariate response variable, which
is expressed as the linear combination of predictor variables (called linear predictor)
and a random error with mean zero (Wood, 2006). Linearity in this context means,
that the linear predictor depends linearly on the parameters, which are the coeffi-
cients of the linear combination. This model is widely used in most science branches
for modelling tasks. It is an easy to use model, with elegant theory.

The Generalized Linear Model (GLM) extends the LM by relaxing the linearity and
distribution assumption (Wood, 2006). Instead of assuming the expected value of the
response to be the linear predictor, we are now assuming it as a smooth monotonic
function of the linear predictor. The normal distribution assumption is replaced by
the exponential family distribution assumption. The exponential family embeds mul-
tiple distributions, such as the Normal, Poisson, Binomial, and Gamma distribution.

3.2.1 Linear Model

The linear model is described with the following equation (Wood, 2006):

µ = Xβ, y ∼ N(µ, Inσ
2), y = µ+ ε, (3.1)

whereas µ represents the expectation vector of the response vector y, X stands for the
model matrix including the predictor variables with n rows and p columns, β describes
the p-dimensional model parameter vector, In constitutes the identity matrix of rank
n, and σ represents the constant model variance parameter. Equation (3.1) embeds
multiple observations; the i-th entry of the vector µ in combination with the i-th row
of the model matrix and the parameter vector β stands for one observation. The
statement can be rewritten as:

µi = Xiβ, yi ∼ N(µi, σ
2), yi independent, 1 ≤ i ≤ n,

whereas X = (x1x2 · · ·xn)T and row vectors xi = (xi,1, · · · , xi,p). The structure
of the Xi row vectors define the model properties. For example, a constant value
xi,j = 1 1 ≤ i ≤ n, j = j0 adds a constant summand into the expectation term. A
classification into p different categories, or cells can be gained by including p columns
into the model matrix with xi,j = 1, if the i-th observation is in the j-th cell or class,
and xi,j = 0 otherwise. Each column in the model matrix represents the realisation
of one predictor, each row in the model matrix represents one statistical entity. The
vector y represents the realisations of the response variable Y .

The least square method is used to obtain an estimate for the parameter vector β
(Wood, 2006). Starting with n observations (yi, xi,1, · · · , xi,p) for 1 ≤ i ≤ n one can
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calculate the squared error term S in dependency of β:

S(β) =

n∑
i=1

(yi − µi(β))2 = ‖y −Xβ‖2, (3.2)

with y = (y1, · · · , yn). Minimizing the term (3.2) with respect to β leads to the point
estimator β̂, which can be expressed as (see Theorem A.31):

β̂ = arg min
β

S(β) = (XTX)−1XT y. (3.3)

The least square parameter estimate β̂ is normally distributed (Wood, 2006). It’s
expected value equals the true parameter vector β, hence it is unbiased. Since β̂ is a
linear combination of normal random variables, it is a normal random variable itself.
Additionally its covariance matrix equals (XTX)−1σ2. To sum up β’s distribution
properties one can write (see Theorem A.32)

β̂ ∼ N(β, (XTX)−1σ2).

An estimation for the model parameter σ can be calculated as (Wood, 2006):

σ̂2 =
1

n− p

n∑
i=1

(
yi − µi(β̂)

)2

=
1

n− p
‖y −Xβ̂‖2 =

S(β̂)

n− p
.

This estimator is independent of the estimator β̂ (due to the independence of β̂ and
S(β̂), see Theorem A.33) and can be used to build a hypothesis test for single pa-

rameter estimates β̂i (H0 : βi = 0). This is possible, since (n − p) σ̂2

σ2 is chi-squared

distributed with (n−p) degrees of freedom (see Theorem A.34). Consequently, β̂i−βi√
σ̂2
β̂i

is t-distributed with (n− p) degrees of freedom, whereas σ̂2
β̂i

describes the i-th diag-

onal element of β̂’s covariance matrix (XTX)−1σ2 (see Proposition A.35).

A central role is assigned to the so called influence or hat matrix H, which transforms
a data vector y into fitted values µ̂ = Hy (Wood, 2006). Due to the Equation (3.1)
and Equation (3.3) we can write:

µ̂ = Xβ̂ = X(XTX)−1XT y = Hy, H := X(XTX)−1XT .

The diagonal element hii of the hat matrix H is also called the leverage of the i-th
observation.

A useful quantity to check the model base assumption is the residual (Draper and
Smith, 2014). It is defined as the difference between the observed value and the fitted
value, ri = yi− µ̂i. The vector of residuals r can be written as r = y− µ̂ = y−Hy =
(I −H)y, hence it is a normal distributed random vector (as combination of normal
distributed random vectors, see Example A.28). It holds r ∼ N(0, σ2(I − H)). By
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standardizing we gain the standardized residual d = r
σ̂ . The i-th studentized residual

r∗i for 1 ≤ i ≤ n is given as:

r∗i =
ri√

σ̂2(1− hii)
,

with expectation zero and variance one.

The quantities R2 and R2
adj can be used to compare model adequacy (Draper and

Smith, 2014). They are defined by:

R2 = 1−
∑n

i=1 r
2
i∑n

i=1(yi − ȳ)2
with ȳ =

1

n

n∑
i=1

yi

and

R2
adj = 1− n− 1

n− p

(
1−R2

)
.

The denominator depends only on the observations and is independent of the chosen
model. The numerator, on the other hand, depends on the model and will not rise
when adding another predictor. Hence R2 will decrease or stay the same when adding
another predictor to the model. R2

adj also considers the number of used predictors
in the model and might also decrease when adding another predictor. One could
start with the model only containing the intercept and adding predictors till R2

adj is
maximal or till the change is very small. This approach is called forward selection.
When starting with a model containing the largest number of predictors and remov-
ing them till R2

adj reaches the maximum or does not change too much, a backward
selection is done. Comparing those quantities seems reasonable within the same set
of predictors and responses.

The influence of an observation on the parameter estimate β̂ can be measured using
the Cook’s Distance Di (Cook, 1977; Draper and Smith, 2014). It is defined for the
i-th observation as:

Di =
(β̂(i) − β̂)TXTX(β̂(i) − β̂)

pσ̂2
=

(r∗i )
2hii

p(1− hii)
,

whereas β̂(i) describes the parameter estimator for β in the model ignoring observa-
tion i and hii describes the i-th diagonal element of the hat matrix H. Montgomery
et al. (2012) recommend to classify values larger than one as influential.

The F-ratio test can be used to test if several model parameters are simultaneous
zero (Wood, 2006). Therefore we have a look at two estimates. First, we have the
full model estimate β̂ ∈ Rp including all p parameters. Second, we have the reduced
model estimate β̇ ∈ Rp−q including all parameters from the full model, but the q
tested ones. Then we can write for the test statistic (see Theorem A.36):
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F (β̂, β̇) =
n− p
q
·
∑n

i=1(yi − µ̇i)2 −
∑n

i=1(yi − µ̂i)2∑n
i=1(yi − µ̂i)2

=
n− p
q
· ‖y −Xβ̇‖

2 − ‖y −Xβ̂‖2

‖y −Xβ̂‖2

=
n− p
q
· S(β̇)− S(β̂)

S(β̂)
∼ Fq,n−p. (3.4)

If the value F (β̂, β̇) is now larger then the reference value fq,n−p,1−α (1− α quantile

of the Fq,n−p distribution) we need to work with the full model estimate β̂, otherwise
the reduced model estimate β̇ is sufficient. In this setting the null hypothesis is, that
taking the reduced model is sufficient. The value of α describes the accepted type 1
error probability; This is the probability, that the null hypothesis is wrongly rejected.

3.2.2 Generalized Linear Model

A GLM is given with (Wood, 2006):

g(µi) = Xiβ, Yi ∼ Exp(θi, φ)

with µi = E[Yi], g as smooth monotonic ’link function’, X = (x1x2 · · ·xn)T as model
matrix with rows xi = (1, xi,1, · · · , xi,p) (1 ≤ i ≤ n), β as parameter vector, and
Exp(θi, φ) as distribution from the exponential family.

The exponential family used in GLMs describes a wide range of distributions (Wood,
2006). A distribution is member of the exponential family, if it’s density or probability
function f can be written as:

f(y, θ) = e
yθ−b(θ)
a(φ)

+h(y,φ)
,

whereas a(·), b(·) and h(·, ·) describe real, known functions. The scale parameter φ
is a known value for which a(φ) > 0 holds, and θ is a known parameter. We write
f ∈ Exp(θ, φ) for the distribution f as member of the exponential family. Examples
for member of the exponential family are Normal-, Binomial-, Poisson-, Exponential-,
and Gamma-distribution.

Example 3.1. (Poisson distribution)
The discrete Poisson distribution, defined for random variable X ∼ Poi(λ) through

P(X = k) = λk

k! e
−λ for k ∈ N≥0 and λ > 0 is member of the exponential family. The

corresponding probability function can be rewritten as:

P(X = k) =
λk

k!
e−λ =ek·log(λ)−λ−log(k!)

=e
k·θ−eθ

1
−log(k!),

for a(φ) = 1, θ = log(λ), b(θ) = eθ and h(k, φ) = − log(k!).
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Example 3.2. (Gamma distribution)
The Gamma distribution (see Definition A.16) is member of the exponential family.

The density function can be rewritten as:

f(x) =
xk−1e−xλλk

Γ(k)

=e
x(−λ/k)+log(λ/k)

1/k
+k·log(k)+(k−1) log(x)−log(Γ(k))

=e
x·θ+log(−θ)

φ
+ 1
φ

log
(

1
φ

)
+
(

1
φ
−1
)

log(x)−log
(

Γ
(

1
φ

))
,

for a(φ) = φ = 1
k , θ = −λ

k , b(θ) = − log(−θ) and h(x, φ) = 1
φ log( 1

φ) + ( 1
φ −

1) log(x)− log(Γ( 1
φ)).

For a exponential family member we can express certain distribution characteristics
in form of distribution function elements (Wood, 2006). The expectation value µ
can be expressed as µ = E(y) = b′(θ), and the variance V ar(y) can be written as
V ar(y) = a(φ)b′′(θ). Whereas the variance is rewritten as V ar(y) = a(φ)b′′(θ) =
a(φ)V (µ) with V (µ) = b′′((b′(µ))−1) as the so called variance function V (·) only de-
pends on µ due to the identity θ = (b′(µ))−1 .

To obtain the parameter vector estimate β̂ the Iterative Re-weighted Least Square
(IRLS) method is used (Wood, 2006). Starting with β’s log-likelihood function l(β) =∑n

i=1 log[fθi(yi)], we end up solving the equation

n∑
i=1

(yi − µi)
V (µi)

· ∂µi
∂βj

= 0 ∀j.

This equation is solved by the following procedure (Nelder and Baker, 1972):

1) Set start values µ[0] and η[0] for the iteration. Usual start values are µ
[0]
i = yi

and η
[0]
i = g(µ

[0]
i ).

2) Calculate the vector entries z[k] and the diagonal matrix entries W [k] as

z
[k]
i = g′(µ[k])(yi − µ[k]

i ) + η
[k]
i ,

W
[k]
ii =

1

V (µ
[k]
i )g′(µ

[k]
i )2

.

3) Minimize the expression ‖
√
W [k](z[k]−Xβ)‖2 with respect to β, to gain β̂[k+1]:

β̂[k+1] = arg min
β
‖
√
W [k](z[k] −Xβ)‖2

These result is used to calculate the two vectors µ[k+1] and η[k+1]:

η[k+1] = Xβ̂[k+1],

µ
[k+1]
i = g−1(η

[k+1]
i ) 1 ≤ i ≤ n.
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An estimator for the scale parameter φ can be calculated based on the Pearson
statistic in case it is unknown (Wood, 2006). Starting from the Pearson statistic,
given by

X2 =
n∑
i=1

(yi − µi)2

V (µi)
,

we define the estimator φ̂ as:
φ̂ = X̂2/(n− p). (3.5)

The asymptotic distribution of the estimate gained from the IRLS procedure for
known parameter φ can be stated (Wood, 2006). The estimator is asymptotically
normal distributed with the following mean and variance:

E(β̂) = β

and
V ar(β̂) = (XTWX)−1φ,

whereas W = diag(wi) is a diagonal matrix with wi =

(
V (µi)g

′(µi)
2

)−1

, 0 ≤ i ≤ n.

Consequently we get an asymptotic confidence interval I(x) with confidence level
1− α ∈ [0, 1] for the expectation of the response:

I(x) =

[
g−1

(
xT β̂ − u1−α/2x

T ˆV ar(β̂)x

)
, g−1

(
xT β̂ + u1−α/2x

T ˆV ar(β̂)x

)]
,

when uα is denoting the α-quantile of the standard normal distribution and ˆV ar(β̂)
is denoting the evaluation of V ar(β̂) with µ̂i.

A confidence interval for the expectation of the response can approximatively be
given for unknown parameter φ (Wood, 2006) . Based on the assumption that Y :=
β̂−β√
φ
∼ N(0, (XTWX)−1) and U := φ̂(n−p)

φ ∼ χ2
n−p are independent, we gain the

t-distributed random variable vector T := Y√
U/(n−p)

= β̂−β√
φ̂

with mean 0, covariance

matrix (XTWX)−1, and (n−p) degrees of freedom. This leads to the approximative
confidence interval I(x) with confidence level α ∈ [0, 1]:

I(x) =

[
g−1

(
xT β̂−tn−p,1−α/2xT (XT ŴX)−1φ̂x

)
, g−1

(
xT β̂+tn−p,1−α/2x

T (XT ŴX)−1φ̂x

)]
,

when tν,α is denoting the α-quantile of the t-distribution with ν degrees of freedom,
Ŵ is denoting the evaluation of W with µ̂i, and φ is the estimated scale parameter φ.

Model selection can be done using the so called Akaike Information Criterion (AIC)
(Wood, 2006). This value is defined as AIC(β̂) = 2[−l(β̂) + p] for known dispersion
parameter φ and AIC(β̂) = 2[−l(β̂) + p+ 1] for unknown dispersion parameter φ; In
this equation l(β̂) stands for the maximized likelihood of the model corresponding to
the parameter estimate β̂ and p denotes the number of parameters in the model.
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A generalized likelihood ratio test can be used to test if several model parameters are
simultaneous zero in case the scale parameter φ is known (Wood, 2006). Examples for
exponential family members with known scale parameter are the Poisson distribution
and the Binomial distribution. Therefore we have a look at two estimates. First, we
have the full model estimate β̂ ∈ Rp including all p parameters. Second, we have the
reduced model estimate β̇ ∈ Rp−q including all parameters from the full model, but
the q tested ones. If the null hypothesis is true, i.e. the reduced model is sufficient,
then we have with l(β̃) for the maximized likelihood of the model corresponding to
the parameter estimate β̃:

C(β̂, β̇) = 2[l(β̂)− l(β̇)] ∼ χ2
q .

This means, that we have to take the full model, if C(β̂, β̇) is higher then the refer-
ence value cq,1−α (1−α quantile of the χ2

q distribution). The value of α describes the
accepted type 1 error probability; This is the probability, that the null hypothesis is
wrongly rejected.

A hypothesis test based on the so called deviance can be used to test if several model
parameters are simultaneous zero in case the scale parameter φ is unknown (Wood,

2006). The deviance D(β̂) of a model with estimated parameter vector β̂ is defined
as:

D(β̂) = 2[l(β̂max)− l(β̂)]φ

=

n∑
i=1

2wi

[
yi(θ̂i(β̂max)− θ̂i(β̂))− b(θ̂i(β̂max)) + b(θ̂i(β̂))

]
,

with wi = φ/ai(φ) and β̂max as the parameter estimate of the saturated model: the
model with as many parameters as data points (n = p). θ̂max and θ̂ describe the
maximum likelihood estimates of the parameters for the saturated model and the
model of interest (θi(β) = (b′(µi(β)))−1 = (b′(g−1(Xiβ)))−1). If the null hypothesis
is true, i.e. the reduced model is sufficient, then we have for β̂ as the estimate for the
full model (p parameters) and β̇ the estimate for the reduced model (p−q parameter)
the approximate result:

F (β̂, β̇) =
n− p
q

D(β̇)−D(β̂)

D(β̂)
∼̇Fq,n−p.

If the value F (β̂, β̇) is now larger then the reference value fq,n−p,1−α (1− α quantile

of the Fq,n−p distribution) we need to work with the full model estimate β̂, otherwise
the reduced model estimate β̇ is sufficient. The value of 1−α describes the accepted
type 1 error probability; This is the probability, that the null hypothesis is wrongly
rejected.
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4. Statistical Fundamentals

The following chapter introduces concepts needed for the discussion of statistical
models and their treatment, following Rüschendorf (2014). Starting with the defini-
tion of a statistical model we will discuss estimators and statistical tests. Those two
concepts are central for working with statistical models, especially when it comes to
predictions.

A statistical model or experiment E = (X ,A,P) is formally defined as a triple,
consisting of a base set X , a sigma algebra A defined on this base set X , and a para-
metric family of probability distributions P. The pair (X ,A) is forming a measurable
space, an element of X is called sample. In contrast to a probability space, P does not
only determine one probability measure but a range of possible probability measures.

As an example for a statistical model, we can name the Linear Model, defined in
section 3.2.1. The base set is the set of the n-dimensional real numbers Rn. The sigma
algebra on Rn is defined by the Borel sigma algebra B(Rn), the smallest sigma algebra
containing all open subsets of Rn. The parametric family of probability distributions
P is given with the normal distribution family P = {N(µ, σ)|µ ∈ R, σ ∈ R>0}. The
response vector y (as realization and not as random variable) is a sample.

4.1 Estimation Theory

A point estimator can be defined within a statistical model (Rüschendorf, 2014).
Therefore we express the statistical model’s family of probability distributions as
P = {Pθ|θ ∈ Θ ⊆ Rd}. In this setting any function T : X → f(Θ) is a point estima-
tor for f(θ). A point estimator can be used to get insight about the unknown, true
parameter vector θ, or functions of it. It is central, that a point estimator is in all
relevant cases a random variable or random vector.

A desired feature of a point estimator is, that the expectation of its value equals
the true parameter, i.e. it is unbiased. Therefore, we introduce the term bias of an
estimator T estimating f(θ) as Biasθ(T ) = Eθ(T ) − f(θ). The estimator is called
unbiased, if its bias is zero for all possible values of θ, i.e. Biasθ(T ) = 0 ∀θ ∈ Θ.

Example 4.1. (point estimator - normal distribution)
Let E = (Rn,B(Rn),P) with P = {Pθ|θ = (µ, σ2) ∈ Θ = R × R>0}. Xn =

(X1, ..., Xn) with Xi
iid∼ N(µ, σ2) for unknown µ ∈ R and σ2 ∈ R+ describes a sample

from E. We define the following two point estimator:

• µ̂ = Tµ(Xn) = 1
n

∑n
i=1Xi,

• σ̂2 = Tσ2(Xn) = 1
n−1

∑n
i=1(Xi − Tµ(Xn))2 or σ̂ = Tσ(Xn) =

√
Tσ2(Xn),

or equivalently T = (Tµ(Xn), Tσ2(Xn)) : Rn → Θ. When we are looking at the
expectation of these point estimators we can see, that they are unbiased:

E(Tµ(Xn)) =
1

n

n∑
i=1

E(Xi) =
1

n
nµ = µ,
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E(Tσ2(Xn)) =
1

n− 1
E
( n∑
i=1

(Xi − Tµ(Xn))2

)

=
1

n− 1
E
( n∑
i=1

(X2
i + Tµ(Xn)2 − 2X2

i Tµ(Xn))

)

=
1

n− 1
E
( n∑
i=1

X2
i +

1

n

n∑
i=1

Xi

n∑
j=1

Xj −
2

n

n∑
i=1

Xi

n∑
j=1

Xj

)

=
1

n− 1

( n∑
i=1

E(X2
i )− 1

n

n∑
i=1

E(X2
i )− 1

n

n∑
i 6=j

E(Xi)E(Xj)

)

=
1

n− 1

(
n− 1

n

n∑
i=1

(V ar(Xi) + E(Xi)
2)− (n− 1)E(Xi)

2

)
=V ar(Xi) + E(Xi)

2 − E(Xi)
2 = σ2.

As shown in Example A.28, E(Tµ(Xn)) follows a normal distribution N(µ, σ
2

n ) and
for the sample variance (n− 1)Tσ2(Xn)/σ2 ∼ χ2

n−1 holds - as described in Example
A.7. Unfortunately the distribution of Tσ2(Xn) is expressed in terms of the unknown
parameter σ2.

A confidence interval is used to determine a likely range for an estimator based
on a sample. Hence it is a function, mapping a sample onto a multidimensional
interval including the point estimator. We are talking from a confidence interval
for a parameter estimate with confidence level 1 − α, if the probability, that the
parameter estimate is inside the interval is at least 1− α.

Example 4.2. (Two-sided confidence interval µ - normal distribution N(µ, σ2))
Assume a situation as given in Example 4.1. For the confidence interval we are look-

ing at the term Z =
Tµ(Xn)−µ
Tσ(Xn)/

√
n

, which follows, as shown in Example A.9, a Student’s-

t distribution with (n − 1) degrees of freedom. Let Tn−1(x), x ∈ R denote the cumu-
lative distribution function of Z and tn−1,u = T−1

n−1(u), u ∈ [0, 1] the corresponding
u-quantile. We are now looking for an interval C ∈ CI1−α(µ) : C = [l, r] : l, r ∈ R:

P (l ≤ µ ≤ r) = P

(
Tµ(Xn)− r
Tσ(Xn)/

√
n
≤ Tµ(Xn)− µ
Tσ(Xn)/

√
n
≤ Tµ(Xn)− l
Tσ(Xn)/

√
n

)
= P (tn−1,r2 ≤ Z ≤ tn−1,l2).

The last equation holds for some r2, l2 ∈ R, depending on r and l since the inverse of
the cumulative distribution function Tn−1 is a surjective mapping to R. If we want a
CI with confidence level 1− α the following inequality needs to be satisfied:

P (tn−1,r2 ≤ Z ≤ tn−1,l2) = l2 − r2 ≥ 1− α. (4.1)

The corresponding CI can be expressed as:

Tµ(Xn)− r
Tσ(Xn)/

√
n

= tn−1,r2 ⇔ r = Tµ(Xn)− tn−1,r2

Tσ(Xn)√
n
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and
Tµ(Xn)− l
Tσ(Xn)/

√
n

= tn−1,l2 ⇔ l = Tµ(Xn)− tn−1,l2

Tσ(Xn)√
n

.

If we now demand (4.1) as equality and a symmetry in the sense of l2 + r2 = 1 we
obtain l2 = 1− α/2, r2 = α/2 and:

C = [Tµ(Xn)− tn−1,1−α/2Tσ(Xn)/
√
n, Tµ(Xn)− tn−1,α/2Tσ(Xn)/

√
n]

= [Tµ(Xn)− tn−1,1−α/2Tσ(Xn)/
√
n, Tµ(Xn) + tn−1,1−α/2Tσ(Xn)/

√
n],

since tn−1,a = −tn−1,1−a holds.

4.1.1 Two special estimator classes

Very famous approaches of estimator creation are represented by the maximum like-
lihood and the moment approach. Both approaches have their strengths and weak-
nesses. The maximum likelihood estimator might be hard to find, since it sometimes
cannot be expressed in a computable form, but has great theoretical features. The
moment estimator is usually more easy to find as the maximum likelihood estimator
but implicates some unfavourable features.

The maximum likelihood estimator is the estimator, for which the maximum likeli-
hood function (probability density function evaluated for the given sample and with
distribution parameters as arguments) is maximal. The distribution of a maximum
likelihood estimator is approaching a normal distribution for a rising number of ob-
servations.

The moment estimator is gained by replacing the theoretical moments through the
empirical moments when expressing the distribution parameters as a function of the
distribution moments. One of its disadvantages is, that the gained estimators are not
necessarily out of the right domain. When starting with a statistical model including
the probability family P = {Pθ|θ ∈ Θ ⊆ Rd}, the moment estimator θ̂ does not
necessarily feature θ̂ ∈ Θ.

4.2 Test Theory

A statistical test can be used to decide between to statements ’The parameter is in
the specified range’ and ’The parameter is not in the specified range’. One of the
statements is called null hypothesis H0, the other is called alternative hypothesis H1.
Formally, a test is defined as function mapping a sample of a statistical model to
either 0 or 1. If the mapping equals 0 the sample speaks for H0 and we can not reject
H0; If the mapping equals 1 the sample speaks against H0 and we reject H0 for H1.

A statistical test with significance level α ∈ [0, 1] rejects H0 wrongly with a proba-
bility smaller or equal to α. This error is called type I error. Thereby we often look
at the corresponding p-value - the value for α, for which the specific test evaluated
for a sample changes from 0 to 1. This p-value represents the probability to reject
H0 wrongly.
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Example 4.3. (Comparison of variances - normal distribution)

Let us assume two iid samples Xn1 with Xi
iid∼ N(µX , σ

2
X), 1 ≤ i ≤ n1 and Y n2

with Yi
iid∼ N(µY , σ

2
Y ), 1 ≤ i ≤ n2. The parameters µX , µY , σ

2
X and σ2

Y are unknown.
We are interested if there is a difference in the variances σ2

X and σ2
Y . The null

hypothesis can be written as H0 : θ ∈ {θ = (µX , µY , σ
2
X , σ

2
Y )|σ2

X = σ2
Y } and the

alternative hypothesis as H1 : θ ∈ {θ = (µX , µY , σ
2
X , σ

2
Y )|σ2

X > σ2
Y }. As shown in

Example A.11 the quotient

Z =
Tσ2(Xn1)/σ2

X

Tσ2(Y n2)/σ2
Y

is Fn1−1,n2−1 distributed. Under H0 the term Z can be rewritten as:

Z(Xn1 ,Y n2) =
Tσ2(Xn1)

Tσ2(Y n2)
∼ Fn1−1,n2−1.

If we write fn1−1,n2−1,α for the α-quantile of Fn1−1,n2−1 the test φ can be expressed
as:

φ(Xn1 ,Y n2) =

{
1, Z(Xn1 ,Y n2) ≥ fn1−1,n2−1,1−α

0, else
.

Since σ2
Y > σ2

X is not part of Θ the numerator of the fraction Z should be the one
gained from the sample with higher sample variance.

Another very important test is the Kolmogorov-Smirnov test (Massey Jr, 1951),
which is used to compare the sample cumulative distribution function to a reference
cumulative distribution function.

Example 4.4. (Kolmogorov-Smirnov test)
We are investigating the null hypothesis H0 : θ ∈ Θ0 = {θ0} and the alternative

hypothesis H1 : θ ∈ Θ1 = Θ \ {θ0}. Here we could create Θ in a way, that a arbitrary
high number of distributions are covered (e.g. with a indicator function I) and that
is why also the cumulative distribution function can be tested. Let Xn be the random
sample and F0 the continuous cumulative distribution function under H0. The sample
cumulative distribution function is given with:

FXn(x) =
1

n

n∑
i=1

I(Xi ≤ x),

the test variable d is defined as

d(Xn) = sup
x∈R
|F0(x)− FXn(x)|.

Under H0 the random variable d(Xn) is independent of F0 and can be compared to
the (1 − α)-quantile kn,1−α of the distribution of d(Xn), see for example Massey Jr
(1951). The test φ is given with:

φ(Xn) =

{
1, d(Xn) ≥ kn,1−α
0, else

.
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5. Parameter Regression and Fatigue Data

5.1 Moment Approach

In this chapter we trying to model the structure of fatigue data. We consider situa-
tions, where a test object gets stressed periodically with always the same amplitude,
called stress-level in this context. The cycles survived by the object are called cycles
to failure or time to failure. One is now interested in the distribution of the quan-
tity time to failure depending on the stress-level. Therefore we make the following
assumptions:

A1) There is a largest stress-level, denoted here as the minimum stress-level Smin,
for which the tested object will not suffer failure.

A2) There is a smallest stress-level, denoted here as the maximum stress-level Smax >
Smin, for which the tested object will failure immediately.

A3) A higher stress-level reduces the expected time to failure.

A4) A higher stress level reduces the variability for the time to failure.

A5) The distribution of the time to failure is one out of a parametric family of
distributions (having k parameters). The parameters depend on the stress-
level.

Based on those assumptions we will model the first k central moments in the range
between the minimum- and maximum stress-level based on the observations. By
using the moment estimators we can subsequently calculate parameter estimators
for this stress-range, where possible.

For this approach, we need several observations for multiple stress-level.

5.1.1 Modelling Moments

From the assumptions A1 and A2 one can conclude, that the expected value for the
time to failure is infinity for the minimum stress-level Smin and zero for the max-
imum stress-level Smax. In between Smin and Smax the expectation as a function
from the stress-level is strictly monotone decreasing, due to assumption A3. Similar
considerations lead to strictly monotone decreasing variance function (variance as a
function of the stress-level) from the variance at the minimum stress-level denoted
as Vmin to zero at the maximum stress-level. It might be reasonable to assume Vmin
to be infinity - as done here from now on. Suitable functions for modelling the
moment structure as function of the stress level could be for example f(x) = 1

x or
f(x) = log(x) adapted to minimum and maximum stress level. If there is a need for
higher moments more assumptions need to be made on the structure of those higher
moments. The empirical moments might be helpful for deciding on the structure.

After deciding on the moment structures we need to adopt the general structure to
the observations. We are having k functions f1, · · · , fk which depend on the stress-
level and other parameters, like the minimum stress-level or the maximum stress-
level. There might also be other parameters which are used to describe the empirical

25



moments better. The least square or maximum likelihood procedure can now be used
to determine the unknown parameters and lead us to the specific moment structure
- described by k functions, all of which are only depending on the stress-level.

5.1.2 Example AAW Dataset

In this section and beyond, we are working with the AAW dataset which is taken
from Shen (1994, pp. 259 ff.) and can be found in Table 1 listed in Section 1.1. For
the distribution family we choose the gamma-family (see Definition A.16), containing
two parameters k and θ as used in Section 3.2. The expectation will be modelled
with f(x) = 1

x and the variance will be modelled with f(x) = 1
x2 , more precisely we

assume for X as time to failure and S as stress-level:

• E(s, Smin, Smax, c1, c2) = E[X|S = s] =
(
Smax−Smin
s−Smin − 1

)
c1,

• V (s, Smin, Smax, c1, c2) = V ar[X|S = s] =
(
Smax−Smin
s−Smin − 1

)
Smax−Smin
s−Smin c2.

In the next step the least square method is used to calculate the parameters Smin, Smax, c1

and c2. Thus we minimize the following target function:

R(Smin, Smax, c1, c2) =
10∑
i=1

(
µ(si)− E(si, Smin, Smax, c1, c2)

µ(si)

)2

+
10∑
i=1

(
σ2(si)− V (si, Smin, Smax, c1, c2)

σ2(si)

)2

,

whereas si, i ∈ {1, · · · , 10} describe the observation’s stress-levels, µ(si) denote the
empirical first moment for stress-level si and σ2(si) describes the central empirical
second moment for stress-level si. The result can be seen in Table 2 and Figure 5.

Table 2: Parameter estimates - moment structure

Parameter Smin Smax c1 c2

Estimate 49.32 649.36 3038 463480
Estimates of parameters when using the Least Square method
for the gamma distribution.

For X ∼ Gamma(k, θ) one can write the expectation as E[X] = k · θ and the vari-

ance as V ar[X] = k · θ2. This leads us to θ(s) = V (s)
E(s) = c2

c1

(
Smax−Smin
s−Smin

)
and

k(s) = E2(s)
V (s) = E(s)

θ(s) =

(
1 − s−Smin

Smax−Smin

)
c21
c2

. The resulting and observed values are

shown in Figure 5.
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Figure 5: Plot of the empirical moments and the specific moment structure of cycles to
failure (ctf) for the first and second central moment using the moment approach according

to Section 5.1. Additionally the empirical and calculated values for θ(s) = variance(s)
mean(s)

and

k(s) = mean(s)2

variance(s)
are shown.
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5.2 Parameter Approach

When apply the above procedure to more complex distributions calculating parame-
ters out of the moments is a nontrivial task. Here, a complex distribution is meaning
a distribution, for which the moments can not be written as an easily computable
function of the parameters. The Weibull distribution X ∼ Wbl(λ, k) (see Defi-
nition A.15) for example feature the following moments: E[X] = λΓ(1 + 1/k) and
V (X) = λ2

(
Γ(1+2/k)−Γ2(1+1/k)

)
with Γ(t) =

∫∞
0 xt−1ex dx denoting the gamma

function. One can consider modelling the parameters instead of the moments to avoid
such problems. Similar to modelling the moments one needs to decide on the general
structure of the modelling-functions and apply a maximum-likelihood or least square
fit to this general structure to get the specific structure of the parameter-functions,
called estimated parameter-function in this context.

5.2.1 Example AAW Dataset

Now we try to adopt the Generalized Extreme Value distributionGEV (ξ, σ, µ), ξ, µ ∈
R, σ ∈ R>0 (see Definition A.17) to the given structure. Therefore we first calculate
the parameter for each stress-level using the maximum likelihood approach and plot
the result, see Figure 6, to get an idea of the functions to use for the modelling.
Those parameters will be called observed parameters and be denoted as ξi, σi and µi
when the index refers to the stress-level si, i ∈ {1, · · · , 10}.

It seems that there is no structure when looking at the maximum likelihood esti-
mates for ξ in Figure 6. This might be an indicator for a random error and suggest
to model this parameter as constant. There is also no indication, that ξ depends
on the other parameters σ and µ. That is why one can minimize ξ independently
from the other parameters and simply take the mean of the ξ-estimates to get the
parameter function ξ(s) = ξ = 1

10

∑10
i=1 ξi.

The structure of the other two parameter looks very similar to those observed in
Figure 5 when modelling the first two moments. That is why a similar structure is
assumed for the stress-level s and structure parameters Smin, Smax, c1, c2:

• σ(s, Smin, Smax, c1, c2) =
(
Smax−Smin
s−Smin − 1

)
c1,

• µ(s, Smin, Smax, c1, c2) =
(
Smax−Smin
s−Smin − 1

)
c2.

The resulting model is denoted as model pr:

Yi
iid∼ GEV

(
ξ,

(
Smax − Smin
s− Smin

− 1

)
c1,

(
Smax − Smin
s− Smin

− 1

)
c2

)
. (5.1)

We now gain the estimates (ξ̂, Ŝmin, Ŝmax, ĉ1, ĉ2) by applying the maximum likelihood
method:

(ξ̂, Ŝmin, Ŝmax, ĉ1, ĉ2) = arg max
R5,Smin<Smax

n∏
i=1

f(si, ξ, Smin, Smax, c1, c2),
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Figure 6: Plot of the GEV maximum likelihood estimates for the AAW dataset at each
stress level.

with f(si, ξ, Smin, Smax, c1, c2) as the value of the density function given in A.4 with
parameters (ξf , µf , σf ): ξf = ξ, µf = µ(s, Smin, Smax, c1, c2), and σf = σ(s, Smin, Smax, c1, c2).
This leads us with computer optimization to the structure parameters shown in Table
3 and Figure 7.

Table 3: Parameter estimates - parameter structure

Parameter ξ Smin Smax c1 c2

Estimate -0.16 50.13 21698 22.14 66.64
Estimates of structure parameters when using the maximum likelihood
method for the GEV distribution.
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Figure 7: Plot of the GEV maximum likelihood estimates for the AAW dataset at each
stress level and the fitted parameter structure.

When now calculating the moments out of this estimated parameter function we get
estimated moment functions. Therefore we apply the following relations (we write
ξ(s) = ξ, µ(s) = µ(s, Smin, Smax, c1, c2), and σ(s) = σ(s, Smin, Smax, c1, c2)):

• E(s) = E[X|S = s] = µ(s) + σ(s)Γ(1−ξ(s))−1
ξ(s) ,

• V (s) = V ar[X|S = s] = σ2(s)Γ(1−2ξ(s))−Γ2(1−ξ(s))
ξ2(s)

,

for ξ 6= 0, ξ < 1/2 and for ξ = 0:

• E(s) = E[X|S = s] = µ(s) + σ(s)γ,

• V (s) = V ar[X|S = s] = σ2(s)π
2

6 ,

where γ denotes Euler’s constant (γ = limn→∞(−ln(n) +
∑n

k=1
1
k ) ≈ 0.577). For

ξ ≥ 1/2 the variance is infinite - this case is not of interest to us. The results can be
seen in Figure 8. The fitted model is visualized in Figure 9.
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Figure 8: Plot of the GEV empirical moments for the AAW dataset at each stress level
and the fitted moment structure.
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Figure 9: Plot of the GEV estimated median for the AAW dataset at each stress level with
quantile lines (0.05, 0.95). The red starts are inside the 0.9 quantile area, the blue circles
are outside. There are 88.5% of the observations falling in this area.
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5.2.2 Simulation Settings

Simulations can be used to proof the model reliability in a controlled context. These
simulations can be used to answer the question: How adequate can we determine
the structure parameters if all assumptions are met? This is done by defining ’true’
structure parameters and repetitive generating observations based on the base as-
sumptions. In the next step, the generated data is used to calculate the structure
parameter estimates. Finally, we can compare the ’true’ structure parameters with
their estimates.

There are multiple ways to estimate the structure parameters, we will use the Max-
imum Likelihood approach and the Least Square approach with different weights.
For the Least Square approach, we first calculate the Maximum Likelihood estimates
of the distribution parameter vector θ̇(x) for each stress level x individually. When
denoting the structure parameter vector as η = (η1, · · · , ηk) we can express the distri-
bution parameter vector θ = (θ1, · · · , θj) for a given stress level x as function of the
structure parameter vector and the stress level θ = θ(η, x). We gain the ML estimate
η̂ML, the unweighted LS estimate η̂LSabs, the individual weighted LS estimate η̂LSind, and
the mean weighted LS estimate η̂LSmean by performing the following minimizations:

η̂ML = arg min
η′∈Ω

n∑
i=1

− log(fθ(η′,xi)(yi)),

η̂LSabs = arg min
η′∈Ω

j∑
s=1

n∑
i=1

(
θ(η′, xi)s − θ̇(xi)s

)2
,

η̂LSind = arg min
η′∈Ω

j∑
s=1

n∑
i=1

(
θ(η′, xi)s − θ̇(xi)s

θ̇(xi)s

)2

, (5.2)

η̂LSmean = arg min
η′∈Ω

j∑
s=1

n∑
i=1

(
θ(η′, xi)s − θ̇(xi)s∑

xa=xi
θ̇(xa)s

)2

.

In this equations we assume n observations (yi, xi) for multiple stress-levels, i.e. val-
ues for xi with multiple occurrences. Those multiple occurrences are needed for the
Least Square estimates - for calculating the individual Maximum Likelihood esti-
mates θ̇ at each stress level. The sum over all n observations in the Least square
estimates can be reduced to a sum over the stress levels for calculation performance
purposes. fθ(η′,x) describes the density of the distribution for stress level x and struc-
ture parameter vector η′.

We use multiple distributions for the simulation of Y to be able to compare the esti-
mation performance of the approach over different distributions. Besides the Normal-
and the Log-normal distribution (see Definition A.1 and A.3) we also take the GEV
distribution (see Definition A.17) into account.

The structure parameter vector and its link to the density function parameter vector,
the structure functions, for stress x are constructed in line with the considerations of
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Table 4: Structure parameter vectors for simulation

Distribution Parameter vectors
ξ Smin Smax c1 c2

Normal - 49.60 346 7261 1401
Log-normal - 47.30 323 0.092 0.293
GEV -0.22 49.64 22760 17.25 63.40

Structure parameter vector values used for the simulation for Normal, Log-
normal, and GEV distribution.

Section 5.2. They are given for the three distributions N(µN , σN ), LN(µLN , σLN ),
and GEV (ξGEV , µGEV , σGEV ) as:

σN = σLN = σGEV = σ(x, Smin, Smax, c1, c2) =

(
Smax − Smin
x− Smin

− 1

)
c1,

µN = µLN = µGEV = µ(x, Smin, Smax, c1, c2) =

(
Smax − Smin
x− Smin

− 1

)
c2. (5.3)

ξGEV = k.

This leads us to the following structure parameter vectors η:

• Normal distribution: η = ηN = (Smin, Smax, c1, c2)T ,

• Log-normal distribution: η = ηLN = (Smin, Smax, c1, c2)T ,

• GEV distribution: η = ηGEV = (ξ, Smin, Smax, c1, c2)T .

We are trying to simulate data similar to the data in Table 1. This means we choose
’true’ structure parameter vectors for the simulation in the range of the parameter es-
timates gained from this data, see Table 4. Furthermore, we will have ten stress levels
and r ∈ {5, 10, 20, 30, 40, 50, 100} observations per stress level. For each distribution
and each value of r we generate 104 datasets and calculate the structure parameter
vector with the Maximum Likelihood method and the three different weighted Least
square approaches. An overview of this procedure is given in Table 5.

The simulation procedure was implemented using the free statistic software R. The
random number creation is done using the functions rnorm, rlnorm, and rgev (from
the library evir).

5.2.3 Simulation Results

In this section we present the results of the simulation described in the previous
Section 5.2.2. We have generated for each value of r (data points per stress level)
and each distribution 104 data-sets. Each of these data sets is used to calculate a
structure parameter estimation vector. If we now calculate the arithmetic mean of
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Table 5: Overview of the simulation procedure

Simulation - Overview
(1. Determination of the distribution (Normal-,Log-normal- or GEV-distribution)

and the number of data points per stress level r ∈ {5, 10, 20, 30, 40, 50, 100}
(2. Determination of the structure functions (see equations (5.3))
(3. Determination of the ’true’ structure parameter vectors (see Table 4)
(4. Generation of 104 times r data points for each of the ten stress levels
(5. Estimation of the structure parameter vectors with four

different approaches (see equations (5.2))
Overview of the simulation procedure used to proof the reliability in a controlled context.

these structure parameter estimation vectors up to the k-th estimation we gain a
mean estimation vector in dependency of the number of simulations k. The same
procedure can be applied to the standard derivation in dependency of the number
of simulations k. The mean of the last 1% of the estimation means and standard
derivations is used to calculate the values sd and mean, leading to the values:

• meandistr for r ∈ {5, 10, 20, 30, 40, 50, 100} and dist ∈ {N,LM,GEV },
• sddistr for r ∈ {5, 10, 20, 30, 40, 50, 100} and dist ∈ {N,LM,GEV }.

Thereby, the abbreviation N denotes estimates gained from the Normal distribution,
the abbreviation LN intends the Log-normal distribution estimates, and the abbre-
viation GEV stands for the GEV-distribution estimates.

Normal distribution

The tables 6, 7, 8, and 9 show the relative error between the true parameter vector
and meandistr for each vector element in percent. With θ′ as vector entry of meandistr

and θ as the corresponding ’true’ parameter vector entry, it is calculated with:

P (θ′) =

∣∣∣∣θ − θ′θ

∣∣∣∣ · 100. (5.4)

By comparing Table 6, 7, 8, and 9 we see, that the parameter Smin differs not more
than one-tenth of a percent to the ’true’ parameter, except for the LS-method, mean
weighted, and r = 5. The values for the ML-method, Table 6 and the LS-method,
individually weighted, Table 8 yield approximately the ’true’ parameters with a de-
viation of not more than 3.61 or 1.18 percentage for r = 100.
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Table 6: P (θ′) Normal distribution/ML-method

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 49.6 0.02 0.00 0.01 0.02 0.02 0.02 0.02
Smax 346.0 3.10 2.88 3.36 3.41 3.54 3.52 3.61
c1 7261.0 1.07 1.15 1.43 1.53 1.58 1.61 1.64
c2 1401.0 3.16 1.63 1.12 0.87 0.76 0.80 0.53

’True’ parameter values and relative deviation in percent of the simulation results
for different values of r and the Normal distribution/ML method.

Table 7: P (θ′) Normal distribution/LS-method unweighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 49.6 0.02 0.04 0.06 0.09 0.07 0.09 0.09
Smax 346.0 331.91 317.23 324.67 358.50 330.72 370.64 383.00
c1 7261.0 65.35 65.90 67.46 74.22 68.31 74.10 74.29
c2 1401.0 66.41 66.47 67.65 74.31 68.38 74.21 74.33

’True’ parameter values and relative deviation in percent of the simulation results for
different values of r and the Normal distribution/LS method - unweighted.

Table 8: P (θ′) Norma distribution/LS-method individually weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 49.6 1073007.98 0.02 0.01 0.01 0.01 0.00 0.00
Smax 346.0 3.10 0.94 0.44 0.26 0.20 0.09 0.07
c1 7261.0 268663.93 2.37 1.12 0.74 0.58 0.34 0.21
c2 1401.0 94773.95 12.89 6.02 3.96 3.00 2.31 1.18

’True’ parameter values and relative deviation in percent of the simulation results for
different values of r and the Normal distribution/LS method - individually weighted.

Table 9: P (θ′) Normal distribution/LS-method mean weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 49.6 0.34 0.08 0.00 0.08 0.05 0.08 0.09
Smax 346.0 278.52 304.44 319.44 347.00 322.69 342.33 338.75
c1 7261.0 41.34 60.20 68.42 78.03 71.99 78.28 78.20
c2 1401.0 50.12 62.86 69.50 78.23 72.35 78.43 78.25

’True’ parameter values and relative deviation in percent of the simulation results for
different values of r and the Normal distribution/LS method - mean weighted.

Log-normal distribution

The tables 10, 11, 12, and 13 show the relative error between the true parameter
vector and meandistr for each vector element in percent. With θ′ as vector entry of
meandistr and θ as the corresponding ’true’ parameter vector entry, it is calculated
with formula 5.4.
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Table 10: P (θ′) Log-normal distribution/ML-method

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 47.30 28.85 29.20 29.66 29.99 30.20 30.24 30.18
Smax 323.00 2.45 2.48 2.53 2.56 2.59 2.59 2.60
c1 0.09 206.04 208.82 212.44 214.89 216.62 217.03 216.78
c2 0.29 150.50 152.98 155.92 157.51 158.72 159.20 159.27

’True’ parameter values and relative deviation in percent of the simulation results for
different values of r and the Log-normal distribution/ML method.

Table 11: P (θ′) Log-normal distribution/LS-method unweighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 47.30 32.73 25.50 20.05 20.36 23.03 22.76 26.29
Smax 323.00 23.55 23.95 24.25 24.22 24.07 24.08 23.86
c1 0.09 130.44 96.81 71.36 73.02 85.65 84.48 101.15
c2 0.29 6.87 2.49 2.15 5.53 5.00 6.55 7.15

’True’ parameter values and relative deviation in percent of the simulation results
for different values of r and the Log-normal distribution/LS method - unweighted.

Table 12: P (θ′) Log-normal distribution/LS-method individually weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 47.30 2.03 2.09 2.27 2.42 2.47 2.50 2.51
Smax 323.00 0.18 0.18 1.53 2.10 2.34 2.55 3.02
c1 0.09 17.51 17.71 16.68 17.05 17.17 17.08 16.51
c2 0.29 29.28 13.05 6.10 3.98 3.07 2.32 1.16

’True’ parameter values and relative deviation in percent of the simulation results
for different values of r and the Log-normal distribution/LS method - individually
weighted.

Table 13: P (θ′) Log-normal distributed/LS-method mean weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 47.30 3.13 3.38 3.80 4.04 4.18 4.29 4.52
Smax 323.00 3.18 3.71 4.26 4.59 4.61 4.40 3.86
c1 0.09 22.64 23.60 25.76 26.88 27.84 28.77 30.97
c2 0.29 5.99 2.77 1.31 0.93 0.66 0.48 0.26

’True’ parameter values and relative deviation in percent of the simulation results
for different values of r and the Log-normal distribution/LS method - mean weighted.

The results of the LS-method, mean weighted, Table 13 and LS-method, individu-
ally weighted, Table 12 fit the ’true’ parameter best with a maximum deviation of
31 or 16.5 percent for r = 100. Thereby, the results of the individually weighted
LS-method are more precise as the results of the mean weighted LS-method, except
for the parameter c2.

36



GEV distribution

The tables 14, 15, 16, and 17 show the relative error between the true parameter
vector and meandistr for each vector element in percent. With θ′ as vector entry of
meandistr and θ as the corresponding ’true’ parameter vector entry, it is calculated
with formula 5.4.

Table 14: P (θ′) GEV-distribution/ML-method

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
ξ -0.22 11.16 4.98 3.65 2.56 2.05 1.94 1.05
Smin 49.64 0.08 0.04 0.02 0.01 0.01 0.01 0.01
Smax 22760.00 8.16 8.42 8.53 8.56 8.57 8.57 8.57
c1 17.25 7.01 8.03 8.92 9.11 9.22 9.32 9.34
c2 63.40 9.95 9.69 9.65 9.59 9.56 9.55 9.53

’True’ parameter values and relative deviation in percent of the simulation results
for different values of r and the GEV distribution/ML method.

Table 15: P (θ′) GEV-distribution/LS-method unweighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
ξ -0.22 11.01 16.40 78.75 16.82 9.79 4.65 4.13
Smin 49.64 0.11 0.06 0.04 0.02 0.01 0.01 0.00
Smax 22760.00 23.41 16.49 11.21 8.83 7.41 6.36 4.76
c1 17.25 11.73 9.48 8.68 8.28 8.25 7.69 7.73
c2 63.40 50.13 26.21 14.78 10.59 8.36 6.56 3.95

’True’ parameter values and relative deviation in percent of the simulation results
for different values of r and the GEV distribution/LS method - unweighted.

Table 16: P (θ′) GEV-distribution/LS-method individually weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
ξ -0.22 77.28 82.90 76.95 63.32 52.09 42.20 17.61
Smin 49.64 6.70 0.03 0.25 0.03 0.02 0.02 0.04
Smax 22760.00 2.37 11.40 2.86 27.91 32.13 45.41 147.65
c1 17.25 107.21 96.82 13.51 46.38 31.68 23.84 12.94
c2 63.40 546.34 154.98 26.46 54.47 35.92 26.07 11.95

’True’ parameter values and relative deviation in percent of the simulation results for
different values of r and the GEV distribution/LS method - individually weighted.

The results of the ML-method, Table 14 and LS-method, unweighted, Table 15 fit the
’true’ parameter best with a maximum deviation of 9.5 or 7.7 percent for r = 100.
The LS-method, individually weighted, Table 16 features a deviating trend for pa-
rameter Smax for increasing values of r. Also the behaviour of parameter Smax for
the LS-method, mean weighted, Table 17 is surprising - the relative deviation is very
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Table 17: P (θ′) GEV-distribution/LS-method mean weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
ξ -0.22 55.78 3.61 8.15 5.64 4.59 3.60 2.92
Smin 49.64 0.40 0.14 0.08 0.06 0.04 0.04 0.02
Smax 22760.00 136.12 94.48 27.93 234.14 122.16 198.63 187.74
c1 17.25 24.07 26.49 1.15 8.03 3.00 7.25 2.88
c2 63.40 54.89 43.03 6.11 11.29 3.30 5.38 6.61

’True’ parameter values and relative deviation in percent of the simulation results for
different values of r and the GEV distribution/LS method - mean weighted.

high (for r = 20: 28% and for r = 30: 234%). The ML-method also shows a rising
trend in the parameter Smax’s deviation from the ’true’ parameter; However, this
trend is minor and vanishing for r = 40, 50, 100.

5.2.4 Simulation Interpretation

In this section we try to answer the question: Is it possible to reliable estimate the
true parameters? The structure parameters are good predictable in some cases,
depending on the chosen fitting method (ML-method, LS-method without, individu-
ally or mean weighted) and distribution (Normal, Log-normal, or GEV-distribution).

We are introducing another quantity to evaluate the parameter estimates:

A(θ′) =

∣∣∣∣ θ − θ′std(θ′)

∣∣∣∣, (5.5)

with θ′ as vector entry of meandistr , std(θ′) as vector entry of sddistr , and θ as the
corresponding ’true’ parameter vector entry.

Normal distribution (ML-method preferable)
When looking at Table 8 we see, that the individually weighted LS-method is good
compared to the other methods, for high values of r(maximum deviations for r = 50:
2.3% and for r = 100: 1.2%). Unfortunately, it is useless for small values of r, e.g.
for r = 5 we gain a deviation of 106%. The ML-method, in contrast, is achieving
low deviations for high values of r and is also adequate for low values of r. This
reliability is the reason why it should be preferred. The tables 19 and 18 show, that
the ’true’ parameter is always located within a symmetrical two standard deviation
size interval around the parameter estimate.

Log-normal distribution (mean weighted LS-method preferable)
For the Log-normal distribution in combination with the individually weighted LS-
method we gain low deviations between the ’true’ and the estimated parameter, but
also the standard deviation is very low. This results into a deviation of 19 standard
deviations between the parameter estimate of Smin and its ’true’ value (see Table
20). For the mean weighted LS-method, which performs tendentially poorer as the
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Table 18: Deviation A(θ′) Normal distribution/LS-method individually weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 49.6 0.0111 0.0220 0.0330 0.0127 0.0294 0.0088 0.0128
Smax 346.0 0.1636 0.1573 0.0971 0.0894 0.0723 0.0826 0.0527
c1 7261.0 0.0102 0.2855 0.1912 0.1637 0.1544 0.1134 0.0855
c2 1401.0 0.0120 1.0958 0.7569 0.6405 0.5787 0.5293 0.3612

This table shows the deviation of the estimate to the ’true’ parameter, measured in stan-
dard deviations of the parameter estimate in case of the Normal distribution and the indi-
vidually weighted LS-method.

Table 19: Deviation A(θ′) Normal distribution/ML-method

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 49.6 0.0586 0.0139 0.0439 0.0782 0.0905 0.1097 0.1156
Smax 346.0 0.1244 0.1259 0.1374 0.1394 0.1427 0.1428 0.1442
c1 7261.0 0.0954 0.1113 0.1327 0.1423 0.1455 0.1492 0.1505
c2 1401.0 0.2038 0.1256 0.0934 0.0762 0.0666 0.0717 0.0466

This table shows the deviation of the estimate to the ’true’ parameter, measured in stan-
dard deviations of the parameter estimate in case of the Normal distribution and the ML-
method.

individually weighted LS-method, this behaviour does not appear (see Table 21). All
parameter estimates are not more than 1.15 standard deviations away from the ’true’
parameter values. Hence, it seems, that in this case the mean weighted LS-method
is more suitable for the parameter estimation as the individually weighted LS-method.

Table 20: Deviation A(θ′) LogN distribution/LS-method individually weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 47.300 3.3421 3.1690 4.4813 6.8299 9.4666 12.3368 19.0447
Smax 323.000 0.0323 0.0625 0.6618 1.0695 1.2787 1.4264 1.9312
c1 0.092 2.0071 2.6954 3.4592 4.1471 4.7319 5.0643 6.0463
c2 0.293 1.8460 1.4498 1.0916 0.9093 0.8241 0.7038 0.5019

This table shows the deviation of the estimate to the ’true’ parameter, measured in standard
deviations of the parameter estimate in case of the Log-normal distribution and the individually
weighted LS-method.
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Table 21: Deviation A(θ′) Log-normal distribution/LS-method mean weighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
Smin 47.300 1.1457 1.0357 1.0180 1.0240 1.0324 1.0354 1.0515
Smax 323.000 0.5448 0.5880 0.7099 0.8490 0.9133 0.9452 1.0155
c1 0.092 1.1114 0.9823 0.9485 0.9420 0.9543 0.9738 1.0296
c2 0.293 0.5537 0.3787 0.2569 0.2286 0.1842 0.1488 0.1146

This table shows the deviation of the estimate to the ’true’ parameter, measured in standard
deviations of the parameter estimate in case of the Log-normal distribution and the mean
weighted LS-method.

GEV-distribution (unweighted LS-method preferable)
Especially the estimated value of Smax is very far away (866 standard deviations) from
the ’true’ value when using the ML-method. This is also true, for the parameters
c1 and c2, although not so extreme (see Table 22). Compared to this deviations, the
unweighted LS-method produces much more reliable estimates (see Table 23).

Table 22: Deviation A(θ′) GEV-distribution/ML-method

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
ξ -0.22 0.2145 0.1551 0.1753 0.1543 0.1460 0.1556 0.1242
Smin 49.64 0.1662 0.1195 0.0845 0.0667 0.0636 0.0669 0.0570
Smax 22760.00 7.4733 15.7044 39.6367 82.7537 138.5649 322.2551 866.3001
c1 17.25 0.5395 0.9063 1.4656 1.8293 2.1264 2.4328 3.4927
c2 63.40 2.0223 2.7179 3.7493 4.4881 5.1152 5.6793 8.0785

This table shows the deviation of the estimate to the ’true’ parameter, measured in standard deviations
of the parameter estimate in case of the GEV distribution and the ML-method.

Table 23: Deviation A(θ′) GEV-distribution/LS-method unweighted

Parameter Real r=5 r=10 r=20 r=30 r=40 r=50 r=100
ξ -0.22 0.0007 0.0034 0.0143 0.0151 0.0113 0.0060 0.0078
Smin 49.64 0.1216 0.0925 0.0847 0.0521 0.0391 0.0467 0.0108
Smax 22760.00 0.8486 0.7732 0.6648 0.5909 0.5568 0.5176 0.4918
c1 17.25 0.0920 0.4132 1.0552 0.6014 0.2282 1.3181 1.6607
c2 63.40 0.4191 0.6323 0.6733 0.5383 0.2579 0.4729 0.3895

This table shows the deviation of the estimate to the ’true’ parameter, measured in standard
deviations of the parameter estimate in case of the GEV distribution and the unweighted
LS-method.

Another question of interest is: Is there a preferable method of estimating the struc-
ture parameter vector? The answer to this question seems to be no. In our simulation
context, it was not possible to clearly identify one estimation technique for all con-
sidered distributions and all numbers of r, which yields the most reliable results (see
Table 24). For the Normal distribution, we identified the ML-method as most suit-
able for estimating purposes; The Log-normal distributed data points towards the
mean weighted LS-method; The unweighted LS-method and the ML method yield
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the best results for the GEV distributed datasets. Also, the individually weighted
LS-method seems to be useful in some contexts.

Table 24: Comparison - best methods r = 20

Parameter F(θ′)
Normal Log-normal GEV GEV

ML LS - mean weighted LS - unweighted ML

ξ

∣∣ θ−θ′
std(θ′)

∣∣ - - 0.0143 0.1753∣∣ std(θ̂)
θ

∣∣ - - 30.7579 0.2011

Smin

∣∣ θ−θ′
std(θ′)

∣∣ 0.0439 1.0180 0.0847 0.0845∣∣ std(θ̂)
θ

∣∣ 0.0025 0.0063 0.0044 0.0022

Smax

∣∣ |θ−θ′|
std(θ′)

∣∣ 0.1374 0.7099 0.6648 39.6367∣∣ std(θ̂)
θ

∣∣ 0.2365 0.5272 0.1899 0.0024

c1

∣∣ θ−θ′
std(θ′)

∣∣ 0.1327 0.9485 1.0552 1.4656∣∣ std(θ̂)
θ

∣∣ 0.1094 1.1985 0.0757 0.0559

c2

∣∣ θ−θ′
std(θ′)

∣∣ 0.0934 0.2569 0.6733 3.7493∣∣ std(θ̂)
θ

∣∣ 0.1215 1.1382 0.1912 0.0235
Comparison of the best methods for the Normal, Log-normal, and GEV distribution simulation
results and r = 20. We used the two quantities deviation from ’true’ parameter in standard

deviations
∣∣ θ−θ′
std(θ′)

∣∣ and scaled standard deviation
∣∣ std(θ′)

θ

∣∣.

5.2.5 Further considerations

Next steps in the analysis would be investigating the effects of structure parameter
fluctuation on the distribution parameters for the different stress levels as well as on
their moments. This would enable us to compare the methods independent of the
chosen distribution.

A variation of more parameters included in the simulation would allow further con-
clusions on the procedure. We could, for example, vary the number of stress levels,
as well as the location of the stress levels. How would these changes influence data
points and predictions within the stress level scope [min{Xi},max{Xi}]? Also, the
implementation of the optimization allows multiple settings; How do they influence
the results?

The procedure is not representative for the general fitting approach since it was
applied to exactly one structure parameter vector. Universal statements and conclu-
sions are not possible.

41



42



6. Standardizing Approach

One of the biggest problems when working with fatigue data is the small size of
data samples for evaluation, due to high testing costs. That is why the possibilities
to generate a prediction based on the observations, e.g. to calculate the mean and
variance, is limited. Therefore additional assumptions have to be made, such as the
specification of the underlying distribution. In this section, an approach for calculat-
ing cycle thresholds that will be reached by a certain share of stressed components
before failure will be presented. For describing this threshold we introduce the term
quantile.

6.1 Quantiles

Definition 6.1. (quantile)
The unique α-quantile of a random variable X with probability distribution function
FX(x) and α ∈ [0, 1] is defined as:

qXα = F←X (α) := inf{x : FX(x) ≥ α}.

Within a given context the random variable can be omitted and the α-quantile can be
written as qα.

Remark 6.2. For random variables with continuous and strictly monotone increas-
ing probability distribution function F (x) the α-quantile can be written as qα =
inf{x|F (x) ≥ α} = F−1(α).

Example 6.3. (empirical quantile)
Considering an independent and identically distributed data sample {Xi|1 ≤ i ≤
n} one can calculate quantile estimators q̂ by evaluating the empirical distribution
function Fn(x) given as

Fn(x) =
1

n

n∑
i=1

I{x≥xi},

for xi as realisation of the random variable Xi. This leads to the empirical quantile
and hence to the quantile estimator q̂α

q̂α = qnα = F←n (α) = inf{x : Fn(x) ≥ α}.

If we now sort the observations and denote the i-th smallest observation with x[i]

we observe, that only n + 1 different values for Fn(x) are taken on: 0, Fn(x[1]) =
1
n , · · · , Fn(x[n]) = n

n = 1 for each of which x[i] = inf{x : Fn(x) = Fn(x[i])}. This
especially leads to n possible values for qnα (α > 0): x[1], · · · , x[n] and simplifies the
term qnα to:

qnα = inf{x : Fn(x) ≥ α}
= min

1≤i≤n
{x[i] : Fn(x[i]) ≥ α}

= min
1≤i≤n

{
x[i] :

i

n
≥ α

}
= min

1≤i≤n
{x[i] : i ≥ α · n} = x[dα·ne].
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Remark 6.4. The empirical quantile is a distribution free approach, since no as-
sumption on the random variable distribution is needed. It is limited by the number
of observations to generate this estimation of the quantile, e.g. for α values in the
interval [0, 1/n] the quantile estimation will always be x[1].

Example 6.5. (empirical quantile - confidence interval)
For calculating a confidence interval for the α-quantile associated with an iid random
sample {Xi|1 ≤ i ≤ n} we study the random variable Y =

∑n
i=1 Yi with Yi =

I{qα≥Xi}. Since Yi is a Bernoulli random variable with parameter α and the variables
Yi are independent and identically distributed we conclude, that Y is a Bin(n, p)
random variable, a Binomial distributed random variable with parameters n and p.
Furthermore we can see a connection to the empirical density function Fn(x) of the
random sample:

Fn(qα) =
1

n

n∑
i=1

I{qα≥Xi}

=
1

n

n∑
i=1

Yi =
1

n
Y.

We can now determine a confidence interval [cYl , c
Y
u ] for the Bin(n, p) distributed

random variable Y and use it to generate a confidence interval [cqαl , c
qα
u ] for the α-

quantile, given with:

cqαl = F←n (cYl /n) = x[dcYl e],
cqαu = F←n (cYu /n) = x[dcYu e].

This can be proved by the following equation:

1− α = P[cYl ≤ Y ≤ cYu ] = P[cYl ≤ n · Fn(qα) ≤ cYu ]

= P[F←n (cYl /n) ≤ qα ≤ F←n (cYu /n)]

= P[cqαl ≤ qα ≤ c
qα
u ].

Especially when working with quantiles close to zero (α ≈ 1/n) and one (α ≈ (n −
1)/n) using the empirical quantiles is not suitable. Therefore one can assume an
underlying distribution and work with it’s quantiles.

Example 6.6. (quantile - underlying distribution)
For an independent and identically distributed data sample of random variables {Xi|1 ≤
i ≤ n} and there realisation {xi|1 ≤ i ≤ n} one can assume an underlying distri-

bution, e.g. the normal distribution Xi
iid∼ N(µ, σ2). In a first step the parameter

estimators µ̂ and σ̂2 for this sample are calculated by using for example the maxi-
mum likelihood method:

µ̂ =
1

n

n∑
i=1

xi

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.
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Afterwards the quantile function of the distribution is determined. In case of the
strictly monotone probability distribution function of the normal distribution one can
use the inverse of the distribution function of the standard normal distribution Φ(x)
to get the quantile of the parameter µ:

q̂α(µ) = µ̂+ σ̂Φ−1(α).

In general an approximative confidence interval with confidence level 1 − τ for τ ∈
[0, 1] can be constructed for q̂α by using the asymptotic distribution of maximum
likelihood estimates θML. For this approach the standard deviation of the parame-
ter estimates sd(θML

i ) are calculated and used to derive the asymptotic confidence
intervals

[θML
i + sd(θML

i )Φ−1(τ/(2k)), θML
i + sd(θML

i )Φ−1(1− τ/(2k))], 1 ≤ i ≤ k

with confidence level 1− τ/k, whereas k denotes the number of estimated parameters
and θML

i denotes the maximum likelihood estimate of the i-th parameter. The k-
dimensional interval Θ constructed out of the parameter confidence intervals is then
a confidence interval with confidence level 1− τ for the parameter vector. As a final
step one has to determine those two parameter-sets out of Θ, which yield the smallest
and the biggest value for the quantile of the random variable X; They describe the
confidence interval Iτ for the quantile. If q(θ)α describes the α quantile of the random
variable X, when evaluated for the parameter-vector θ ∈ Θ, the confidence interval
Iτ for qα can be written as

Iτ = [a, b],

with
a = inf

θ∈Θ
{q(θ)α},

b = sup
θ∈Θ
{q(θ)α}.

In the special case, where the distribution of the parameter estimates is known this
distribution can be used to construct a exact confidence interval for the quantile.
For our example we gain µ̂ ∼ N(µ, σ2/n) and σ̂2 ∼ σ2

n χ
2
n−1. Since q̂α is monotone

increasing with µ̂ and monotone decreasing with σ̂ (for α < 0.5) we have to calculate
the confidence interval [aµ, bµ] and [aσ, bσ] with confidence level 1 − τ/2 to get the
confidence interval Iτ for q with confidence level 1− τ given with

Iτ = [aµ + bσΦ−1(α), bµ − bσΦ−1(α)].

6.2 Terminology and Base Assumptions

In this section further on we will work with fatigue data consisting of observations
(Xi,Yi,j), whereas Xi describes the stress level under which the fatigue test was
carried out and can be seen as constant combined with Yi,j describing the number of
cycles to failure. Moreover we assume i ∈ {1, · · · , n} and j ∈ {1, · · · , k}. Additionally

we assume independence and identically distributed variables Yi,j
iid∼ F ′i at each stress

level Xi and independence of all observations Yi,j for distributions F ′i .
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6.3 Main Idea

The main idea of the following approach is, to map the observations to gain indepen-
dent and identically distributed observations. If such a function T (y, ω) : R>0×Ω→
R, strictly monotone in x, exists we automatically gain

Zi,j = T (Yi,j , ωi)
iid∼ Fi, ∀i, j

for a distribution Fi, because of the independence assumed at each stress level (Yi,j
iid∼

F ′i ); Additionally we assume

Fi = F, ∀i

for a distribution F . ωi ∈ Ω is a quantity dependent on the mapping and contains
information about the stress-level associated with the first argument of the function.

Example 6.7. (Normal distribution)
If we assume normally distributed fatigue data, i.e. we assume Yi,j ∼ N(µi, σ

2
i ) with

µi 6= µj and σ2
i 6= σ2

j for i 6= j the mapping T ′(y, (µ, σ)) : R>0× (R×R>0)→ R could
be

Z ′i,j = T ′(Yi,j , (µi, σi)) =
Yi,j − µi

σi
.

This would lead to Z ′i,j ∼ N(0, 1). Since in general µi and σi are unknown one could
work with the mapping

Zi,j = T (Yi,j , {Yi,l|1 ≤ l ≤ k}) =
Yi,j − 1

n

∑n
l=1 Yi,l√

1
n−1

∑n
l=1(Yi,l − 1

n

∑n
s=1 Yi,s)

2
=
Yi,j − µ̂i

σ̂i
,

whereas µ̂i and σ̂i describe estimates for µi and σi leading to

Zi,j ∼ Tk−1,

a student’s t distribution, as described in Section A.1. In this situation ωi is the tuple
(µ̂i, σ̂i).

This approach enables us to use n · k observations for estimating quantiles after the
transformation. In the next step, we will re-transform the estimated quantiles back
to the original axis. Therefore the inverse of the function T (y, ω) regarding the first
argument y by fixed second argument ω is needed

Definition 6.8. (transformation/re-transformation)
A transformation function is a function Tω(y) = T (y, ω) : R>0 × Ω → R, which is
continuous and strictly monotone in x when having ω fixed:

∀ω ∈ Ω : ∀y1, y2 ∈ R : y1 < y2 ⇒ Tω(y1) < Tω(y2),

or

∀ω ∈ Ω : ∀y1, y2 ∈ R : y1 < y2 ⇒ Tω(y1) > Tω(y1).
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The corresponding re-transformation function T−1
ω (z) = T−1(z, ω) : R × Ω → R for

argument z and ω is defined as the only solution y ∈ R to the equation

Tω(y) = z.

If ∀z ∈ R,∀ω ∈ Ω : T−1
ω (z) > 0 holds, the transformation and re-transformation

functions are denoted as positive transformation and re-transformation functions.

Remark 6.9. Since the quantity cycles to failure is a strictly non negative quantity
we are interested in providing positive estimates for it. For positive transformation
and re-transformation functions, this is automatically true.

Example 6.10. (Normal distribution - re-transformation function)
If we now consider the situation in Example 6.7, we obtain the re-transformation
function T−1

ω (z) as

T−1
(µ̂i,σ̂i)

(z) = z · σ̂i + µ̂i,

since

T(µ̂i,σ̂i)(z · σ̂i + µ̂i) =
(z · σ̂i + µ̂i)− µ̂i

σ̂i
= z

holds. For z < − µ̂i
σ̂i

the value for T−1
(µ̂i,σ̂i)

(z) is negative. Therefore the transformation
and re-transformation functions are not positive.

6.4 Estimating quantiles

Estimating quantiles q̂α and their confidence intervals [qlα, q
u
α] for an independent

and equally distributed dataset Zi,j = Tωi(Yi,j), i ∈ {1, · · · , n}, j ∈ {1, · · · , k}
seems to be easily possible considering Section 6.1. We now have to re-transform
these quantiles back using the re-transform function T−1

ωi (z). For deterministic re-
transformation functions this can be easily done.

Proposition 6.11. (re-transformation of quantiles)
Let Z be a random variable with continuous and strictly monotone increasing prob-
ability distribution function, qα the corresponding α-quantile and [a, b] a confidence
interval for a quantile estimator q̂α with confidence level 1− τ for τ ∈ [0, 1]. For the
random variable Y = T−1

ω (Z) with T−1
ω (x) as re-transformation function (with Tω(x)

as deterministic transformation function for deterministic values of ω) the following
holds:

a) T−1
ω (qα) is the α-quantile for Y , if Tω(x) is monotone increasing, otherwise it

is the (1− α)-quantile for Y .

b) The interval [T−1
ω (a), T−1

ω (b)] for a monotone increasing re-transformation func-
tion and [T−1

ω (b), T−1
ω (a)] for a monotone decreasing re-transformation is a con-

fidence interval for the α-quantile T−1
ω (qα) for Y with confidence level 1− τ .

Proof. a)
Since we are in the situation of a random variable Z with a continuous and strictly
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monotone increasing probability distribution function FZ(x) the α-quantile can be
rewritten as:

qZα = inf{x|FZ(x) ≥ α} = F−1
Z (α).

Since Tω(x) is a strictly monotone function in x, also T−1
ω (x) is strictly monotone.

We can now show, that also FT−1
ω (Z) = FY strictly monotone. It is continuous since

Tω(x) is continuous.

Assumption: There is an interval [a, b] : a 6= b∧P[a < Y ≤ b] = FY (b)−FY (a) = 0.
For a, b out of FY ’s domain of definition Tω(a) and Tω(b) are out of FZ ’s domain
of definition with Tω(a) 6= Tω(b), since Tω is strictly monotone. Therefore we can
write for monotone increasing transformation function Tω(x):

0 < P[Tω(a) < Z ≤ Tω(b)] = P[a < T−1
ω (Z) = Y ≤ b] = FY (b)− FY (a) = 0,

and for monotone decreasing transformation function Tω(x):

0 < P[Tω(a) < Z ≤ Tω(b)] = P[a > T−1
ω (Z) = Y ≥ b] = FY (b)− FY (a) = 0.

This now implies, that qYα = F−1
Y (α) holds and we finally obtain:

α = P[Z ≤ qα] =

{
P[Y ≤ T−1

ω (qα)] = FY (T−1
ω (qα)), T−1

ω (x) mon. increasing

P[Y ≥ T−1
ω (qα)] = 1− FY (T−1

ω (qα)), T−1
ω (x) mon. decreasing

.

b)

1− τ ≤ P[a ≤ qα ≤ b] =

{
P[T−1

ω (a) ≤ T−1
ω (qα) ≤ T−1

ω (b)], T−1
ω (x) mon. increasing

P[T−1
ω (b) ≤ T−1

ω (qα) ≤ T−1
ω (a)], T−1

ω (x) mon. decreasing
.

When applying the procedure of Proposition 6.11 for ω we would not get the α-
quantile, but a point estimator for the α-quantile, since we are working with the
point estimator for ω. If we use the appropriate quantiles of ω instead of the point
estimator ω we are able to construct the desired α-quantile. Getting such a quantile
might be a problem. This is expressed in Proposition 6.12.

Proposition 6.12. (stochastic re-transformation of quantiles)
Let Z be a random variable with continuous and strictly monotone increasing prob-
ability distribution function, [a, b] a confidence interval for the α-quantile qα with
confidence level 1− τ1 for τ1 ∈ (0, 0.5) and C a confidence area for ω ∈ Ω with confi-
dence level 1−τ2 for τ2 ∈ (0, 0.5). For the random variable Y = T−1

ω (Z) with T−1
ω (x)

as re-transformation function (with Tω(x) as transformation function and stochastic
values for ω) the following holds:

• The interval [T−1
ω1 (a), T−1

ω2 (b)] for a monotone increasing re-transformation func-

tion and [T−1
ω3 (b), T−1

ω4 (a)] for a monotone decreasing re-transformation is a con-
fidence interval for the α-quantile T−1

ω (qα) for Y with confidence level 1− (τ1 +
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τ2), whereas ωi, i ∈ {1, 2, 3, 4} is given with:

ω1 = arg inf
ω∈C

T−1
ω (a),

ω2 = arg sup
ω∈C

T−1
ω (b),

ω3 = arg inf
ω∈C

T−1
ω (b),

ω4 = arg sup
ω∈C

T−1
ω (a).

Proof.
We only proof the statement for a monotone increasing function Tω:

P[T−1
ω1 (a) ≤ T−1

ω (qα) ≤ T−1
ω2 (b)] = 1− P[T−1

ω (qα) 6∈ [T−1
ω1 (a), T−1

ω2 (b)] ∧ ω ∈ Ω]

= 1− P[T−1
ω (qα) 6∈ [T−1

ω1 (a), T−1
ω2 (b)] ∧ ω ∈ C]

− P[T−1
ω (qα) 6∈ [T−1

ω1 (a), T−1
ω2 (b)] ∧ ω ∈ Cc]

≥ 1− P[T−1
ω (qα) 6∈ [T−1

ω (a), T−1
ω (b)] ∧ ω ∈ C]

− P[T−1
ω (qα) 6∈ [T−1

ω1 (a), T−1
ω2 (b)] ∧ ω ∈ Cc]

≥ 1− P[T−1
ω (qα) 6∈ [T−1

ω (a), T−1
ω (b)]]− P[ω ∈ Cc]

= 1− P[qα 6∈ [a, b]]− P[ω ∈ Cc]
≥ 1− τ1 − τ2 = 1− (τ1 + τ2)

6.5 The AAW Dataset

Now we apply the described approach to the AAW-Dataset, which can be found in
Table 1 to gain the model sa. The transformation function is the following:

zi,j := Tωi(yi,j) = log

(
e

vi,j−ω
1
i

ω2
i + 1

)
, for vi,j =

1

yi,j
, (6.1)

with

ωi = (ω1
i , ω

2
i ) = (v̄i, svi) =

(
1

k

k∑
j=1

vi,j ,

√√√√ 1

k − 1

k∑
j=1

(
vi,j − v̄i

)2
)
.

As distribution we assume the two parameter Frechet distribution (e.g. see (Franke
et al., 2015)) with cumulative distribution function Fb,s(x), which can be written as:

F (x) = e−(b/x)s , b > 0, s > 0, x > 0.

Hence the model is given with:

zi,j = log

(
e
vi,j−v̄i
svi + 1

)
iid∼ Fb,s (6.2)
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Figure 10: Plot of the transformed observations using Equation (6.1). Additionally the
point estimators of the 0.7 and 0.95 quantiles as well as their 0.95 quantile values are
displayed.

Table 25: Transformed observations - Pairwise Kolmogorov-Smirnov test

stress 294.3 220.7 176.6 134.9 105.4 83.4 73.6 56.4 54 51.5
294.3 1.00 0.98 0.98 0.98 0.98 0.98 0.17 0.82 0.98 0.56
220.7 0.98 1.00 0.82 0.98 0.82 0.82 0.17 0.98 0.98 0.98
176.6 0.98 0.82 1.00 0.98 1.00 0.98 0.17 0.82 0.98 0.56
134.9 0.98 0.98 0.98 1.00 0.82 0.98 0.03 0.98 0.82 0.56
105.4 0.98 0.82 1.00 0.82 1.00 0.98 0.08 0.98 0.98 0.56
83.4 0.98 0.82 0.98 0.98 0.98 1.00 0.03 0.98 0.98 0.34
73.6 0.17 0.17 0.17 0.03 0.08 0.03 1.00 0.03 0.08 0.56
56.4 0.82 0.98 0.82 0.98 0.98 0.98 0.03 1.00 1.00 0.56
54 0.98 0.98 0.98 0.82 0.98 0.98 0.08 1.00 1.00 0.57
51.5 0.56 0.98 0.56 0.56 0.56 0.34 0.56 0.56 0.57 1.00

Pairwise Kolmogorov-Smirnov test p-values of the transformed observations using Equa-
tion (6.1), see Figure 10. This values describe the possibility of measuring the observed
data or even extremer data if H0 (the two datasets are from the same distribution) holds.
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0.3 quantile line (point estimator) - tranformed with point estimator
0.3 quantile line (0.05 quantile) - tranformed with point estimator

Figure 11: Plot of the observations with quantile lines, gained from re-transforming (with
point estimators) the quantiles of Figure 10 and piecewise linear behaviour of ω between
the observed values ωi, 1 ≤ i ≤ 10.
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Figure 12: Plot of the observations with quantile lines, gained from re-transforming (with
point estimators) the quantiles analog to Figure 11, with stress level 73.6 removed.
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7. Sample Application

In this section we will again work with the AAW dataset, taken from Shen (1994,
pp. 262); It can be found in Table 1.

When analysing the distribution at each of the ten given stress levels with the
Kolmogorov-Smirnov test, discussed in Section 4.4, we obtain the following p-values
for the Normal, Gamma, Weibull, and GEV distribution given in Table 26.

Table 26: Kolmogorov-Smirnov test p-values for the AAW data-set

stress p-values
GEV Gamma Weibull Normal distribution

y log(y) y−1/2

294.3 0.909 0.661 0.985 0.833 0.583 0.471
220.7 0.925 0.931 0.936 0.989 0.810 0.603
176.6 0.611 0.585 0.965 0.788 0.544 0.461
134.9 0.676 0.672 0.789 0.841 0.735 0.454
105.4 0.857 0.931 0.956 0.947 0.854 0.713
83.4 0.650 0.690 0.928 0.874 0.567 0.415
73.6 0.610 0.615 0.967 0.895 0.310 0.086
56.4 0.543 0.709 0.962 0.869 0.697 0.636
54.0 0.880 0.923 0.944 0.917 0.946 0.783
51.5 0.645 0.848 0.507 0.717 0.799 0.689

The p-values of the Kolmogorov-Smirnov test are shown for each
stress level once for the GEV, Gamma, and Weibull distribution
and once for the Normal distribution with three different axis-
transformations of Y . The log(y)-transformation correspond to the
log-normal distribution, y stands for the identical transformation.
These values describe the possibility of measuring the observed data
or even extremer data if H0 holds.

7.1 Analysis of Variance

In this section we ignore the ratio scale properties and treat the stress-level as a
factor. This is especially useful to investigate the properties of the data and to
check base requirements for possible data models, such as the Linear Model. For
example, the Levene test (Nordstokke and Zumbo, 2010) can be used to decide on
homogeneous variances for all stress-levels. The values for different transformations
of the response is given in Table 27. Only the log-transformation seems to justify a
homogeneous variance assumption; A rejection of the null hypothesis (homogeneous
variances among all stress-levels) would be a wrong decision in approximately one of
ten cases.

7.2 Adaption of the Linear Model

Subsequently, a Linear Model, as introduced in Chapter 5 will be adapted to the
data-set given in Table 1. Hence we are investigating the model Y = Xβ + ε with
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Table 27: Levene test p-values for the AAW data-set

transformation p-values
f(x) = x 2 · 10−24

f(x) = log(x) 0.098

f(x) = 1/
√

(x) 5 · 10−5

The p-values of the Levene
test are shown for each stress
level once for the original axis,
the log-transformed axis and,
the 1/

√
·-transformed axis.

ε ∼ N(0, σ2In). This especially means that the data at each stress-level needs to
be normal distributed with the same variance. We can use the Kolmogorov-Smirnov
test from Section 4.4 to validate the distribution-assumption (see Table 26) and the
Levene-test for equal variances (see Table 27) as well as the F-test (see table 28) in the
normal-distribution case from Section 4.3 to check the assumption of equal variances.

Table 28: F-test p-values for the AAW data-set: log-transformed data

Y \X 294.3 220.7 176.6 134.9 105.4 83.4 73.6 56.4 54 51.5
294.3 0.50 0.89 0.87 0.99 0.87 0.95 1.00 0.93 0.98 0.15
220.7 0.11 0.50 0.46 0.89 0.45 0.65 1.00 0.60 0.83 0.01
176.6 0.13 0.54 0.50 0.91 0.49 0.69 1.00 0.64 0.86 0.02
134.9 0.01 0.11 0.09 0.50 0.09 0.20 0.92 0.16 0.39 0.00
105.4 0.13 0.55 0.51 0.91 0.50 0.70 1.00 0.65 0.86 0.02
83.4 0.05 0.35 0.31 0.80 0.30 0.50 0.99 0.45 0.72 0.00
73.6 0.00 0.00 0.00 0.08 0.00 0.01 0.50 0.01 0.04 0.00
56.4 0.07 0.40 0.36 0.84 0.35 0.55 0.99 0.50 0.76 0.01
54.0 0.02 0.17 0.14 0.61 0.14 0.28 0.96 0.24 0.50 0.00
51.5 0.85 0.99 0.98 1.00 0.98 1.00 1.00 0.99 1.00 0.50

The p-values from the f-test, see Section 4.3, testing H0 : σX = σY against H1 : σX >
σY with log-transformed responses Y . This values describe the possibility of measuring
the observed data or even extremer data if H0 holds.

The simplest approach would be taking the stress-level as Y -values and the cycles
to failure as x-values. Since a comparison of Table 27 leads to the conclusion, that
log-transformed responses Y fit the model variance assumption better we will use the
transformed responses. In addition we will also transform the x axis with f(x) = 1

x
which support the linear expectation assumption of the model much better (see
Figure 13). When we now try to identify useful predictors for the model we could
take the (transformed) stress w to the power of d for 0 ≤ d ≤ 9 into account. This
leads us to the model lmd:

Zi = log(Yi) =

d∑
j=0

(
1

xi

)j
βj + εi =

d∑
j=0

wjiβj + εi, 1 ≤ i ≤ n, (7.1)

with εi ∼ N(0, σ2), k = 10 stress level, m = 20 iterations per stress level and hence
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n = k ·m = 200 equations. Each pair (Yi, xi) correspond to one entry in Table 1.
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Figure 13: Plots of the AAW Dataset. The left plot shows the original stress-levels, the
right one the inverse transformed stress-levels.

Since only ten different stress-levels are observed, a model with an intercept and nine
different slope parameters would fit the data perfectly, i.e. at each given stress-level,
the predicted response would be the mean of the observed responses at this stress-
level. When we look at the other R2 and R2

adj values in Table 29, corresponding to
the model i with the first i powers of x included we can observe, that there is nearly
no change in value after model two or three. The corresponding regression lines are
shown in Figure 14.

Table 29: R2 \R2
adj\AIC values for the AAW data-set

model R2 R2
adj AIC

lm0 0.000 0.000 776
lm1 0.911 0.910 294
lm2 0.951 0.951 176
lm3 0.959 0.959 141
lm4 0.963 0.962 124
lm5 0.965 0.964 117
lm6 0.965 0.964 117
lm7 0.966 0.965 111
lm8 0.967 0.966 109
lm9 0.968 0.967 104

The model stated here with lmi
correspond to the model with in-
tercept and i slope parameters -
the first i powers of w = 1

x
.

55



9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·10−2

log(cycles to failure), Z = log (Nt)

1/
st

re
ss

am
p
li
tu

d
e,
w

=
1 σ
a

lm2 : E[Z] = 9.2 − 52w + 14 · 103w2

lm3 : E[Z] = 7.6 + 534w − 45 · 103w2 + 17 · 105w3

Zi,j = log(Yi,j)

Figure 14: Plot of the transformed AAW Dataset with LM regression line.

Looking at the analysis plots for model lm2, Figure 15, we can see in the upper
left corner the Residual vs Fitted plot. Since the variation seems to be equal for all
fitted values the constant variance assumption seems to be met. A divergence of the
fitted-value structure can be observed - at some stress-levels, the residuals do not
vary around zero. On the QQ-plot of the standardized residuals at the upper right
corner one can see differences to the normal distribution quantiles at the left and
right of the plot. The values in the center of the plot seem to lie at the theoretical
quantile line. Since the values at the right and left are under the theoretical quan-
tile line we have a negative skewness, the mass of the distribution is focused on the
right. The Scale-Location plot in the lower left corner shows the fitted values against
the square of the standardized residuals. Their distribution should be close to a
Normal distribution; The Saphiro-Wilk test (Shapiro and Wilk, 1965) for normality
results in a p-value of 5.4 · 10−6. There is no indication against the homogeneity of
variance. In the lower right corner, the Residual vs Leverage plot shows high influ-
ential data-points. In our case, there are no such points, mainly because we discuss
a dataset, where we have multiple data-points with the same value for the predictors.
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Figure 15: Plot of the residuals, QQ-plot and Cook’s distance for the AAW data-set with
w and w2 as predictors.
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Figure 16: Plot of the residuals, QQ-plot and Cook’s distance for the AAW data-set with
w,w2 and w3 as predictors.

The analysis plot for model lm3, shown in Figure 16, shows a very similar struc-
ture. The only thing which seems to be improved is the Residual vs Fitted plot.
The Saphiro-Wilk test (Shapiro and Wilk, 1965) for normality results in a p-value of
1.4 · 10−5. Except for the third highest stress-level, the predicted values fit the ob-
servations good. Due to that, also the Scale-Location plot show slight improvements
in contrast to this plot when using model lm2.

The confidence and prediction intervals, according to Section 5, are shown in Figure
17 and Figure 18 for the original data. A confidence level 1 − α = 0.95 for both
intervals and both plots was chosen. We can say if the Linear Model assumptions
hold, that there is a chance of 95% the true population parameter is contained in
the confidence interval. That means, if we would repeat the procedure of gathering
data and calculating the confidence interval for another 99 times there would the
true population parameter be in 95 of the 100 confidence intervals on average. The
prediction interval is an estimation of a range which contains a new observation with
95% certainty.
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Figure 17: Plot of the LM confidence and prediction intervals for the AAW data-set with
w and w2 as predictors and 1− α = 0.95. The model response (mean) is also shown.
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Figure 18: Plot of the LM confidence and prediction intervals for the AAW data-set with
w,w2 and w3 as predictors and 1− α = 0.95. The model response (mean) is also shown.

Table 30: p-values for the AAW data-set - m3

stress mean sigma2 pval
294.3 8.951 0.115 0.169
220.7 9.246 0.115 0.463
176.6 9.485 0.115 0.566
134.9 9.784 0.115 0.668
105.4 10.093 0.115 0.499
83.4 10.528 0.115 0.503
73.6 10.911 0.115 0.001
56.4 12.632 0.115 0.000
54.0 13.123 0.115 0.612
51.5 13.761 0.115 0.000

Resulting parameter estimates with
KS-test p-values for the model con-
taining three predictors.
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7.3 Generalized Linear Model Approach

We have seen, that the assumption of normally distributed responses is not satis-
fied and the Gamma-distribution could be a suitable choice for the untransformed
responses, as shown in Table 26. Since the Gamma distribution is member of the
Exponential family, see Example 3.2, we can apply a GLM model with Gamma-
distributed responses. We are now working with the model glmd:

• Yi ∼ Gamma(k, λi),

• ηi = XT
i β =

∑d
j=0 x

j
i ,

• g(µi) = ηi.

In the context of an exponential family Exp(θi, φ), whereas the random variables Y
feature the density function

f(yi, θi, φ) = e
yiθi−b(θi)

a(φ)
+h(yi,φ)

,

we know from Example (3.2), that this density can be linked to the density func-
tion of a Gamma(k, λi) distributed random variable with the equations a(φ) = φ =
1
k , θi = −λi

k , b(θi) = − log(−θi) and h(yi, φ) = 1
φ log( 1

φ)+( 1
φ−1) log(yi)−log(Γ( 1

φ)).

We now need to decide with which link function g() we should work. Since g(µi) is
modelled with a linear function of the predictors we can use the sample mean of each
stress level to decide on g(). Since b(x) = − log(−x) holds we observe b′(x) = − 1

x
and get the canonical link as g(x) = (b′(x))−1 = − 1

x . This leads us to the model
glmd:

Yi ∼ Gamma(k, λi), E[Yi] = µi = − 1∑d
j=0 x

j
i

. (7.2)
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Figure 19: Plot of the identity link g(x) = x and the canonical link g(x) = − 1
x

evaluated
at the observed sample means.
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As shown in Figure 19 the canonical link seems to be suitable to map the sample
mean to a linear function. We can now calculate β̂, the estimate for β with the IRLS-
procedure and use it to get to the estimates for the parameter θi with θ̂i = g(b′(θ̂i)) =
xTi β̂. Through Definition 3.5 we obtain an estimate for the scale parameter φ:

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
=

1

n− p

n∑
i=1

(yi − µ̂i)2

b′′((b′(µ̂i))−1)
=

1

n− p

n∑
i=1

(yi − µ̂i)2

µ̂2
i

,

which also leads us to an estimate for the distribution parameter k̂ = 1
φ̂

. In combi-

nation with the identity θi = −λi
k we get the second distribution parameter estimate

with λ̂i = −θ̂ik̂. The p-values for these estimates are shown in Table 31 for different
numbers of predictors.

Table 31: Kolmogorov-Smirnov test p-values - GLM model

stress glm1 glm2 glm3 glm4 glm5 glm6 glm7 glm8

294.3 0.00 0.14 0.47 0.54 0.64 0.64 0.64 0.64
220.7 0.36 0.83 0.44 0.70 0.74 0.70 0.74 0.76
176.6 0.56 0.81 0.15 0.19 0.76 0.85 0.71 0.66
134.9 0.62 0.64 0.52 0.18 0.38 0.33 0.62 0.60
105.4 0.01 0.05 0.10 0.44 0.68 0.73 0.97 0.48
83.4 0.01 0.12 0.08 0.20 0.58 0.54 0.63 0.13
73.6 0.15 0.02 0.05 0.04 0.01 0.01 0.03 0.01
56.4 0.13 0.48 0.18 0.04 0.01 0.01 0.01 0.07
54.0 0.00 0.00 0.00 0.01 0.03 0.03 0.02 0.09
51.5 0.04 0.01 0.03 0.08 0.13 0.13 0.11 0.15

The p-values from the Kolmogorov-Smirnov test when using parameter
estimators gained from the GLM model. The model mi i ∈ {1, ..., 8} uses
the first i powers of the stress level and the intercept for estimating η.
This values describe the possibility of measuring the observed data or even
extremer data if H0 holds. All 200 observations are used for this fit.

Comparing the models with different numbers of predictors according to the AIC-
criteria as discussed in Section 3.2.2 leads to the model glm5, see Table 32. When
fitting the model to the observations the AIC recommends the model with an inter-
cept and the first five powers of the stress level for the linear predictor η.

Table 32: AIC values for different number of predictors

model glm1 glm2 glm3 glm4 glm5 glm6 glm7 glm8

AIC 4468.85 4459.07 4453.74 4450.59 4448.38 4450.30 4451.17 4449.25

AIC values for different GLMs using the Gamma distribution. The model glmi i ∈ {1, ..., 8}
uses the first i powers of the stress level and the intercept in the model.

In Table 33 we can see the parameter estimators for the gamma distribution for each
stress level. Once the parameters are estimated for each stress level without any
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restriction using the method of moments. The other estimation series uses the GLM
recommended by the AIC criterion. The related quantile lines which are based on the
gained point estimators of the generalized linear model glm5 can be found in Figure
21. When looking at the area between the 0.025 and 0.975 quantile lines one can see
that exactly 5% (10 observations out of 200) are outside. The same information with
inverted stress scale can be found in Figure 21; It can be used to compare it to the
Linear Models. The corresponding residual plot can be found in Figure 20.

Table 33: Parameter estimations - GLM models

individual estimators GLM fit - glm5

stress k̂ind 1/λ̂ind µ̂ind k̂glm5
single 1/λ̂glm5

single µ̂glm5
single

294.3 29.44 290.28 8545 11.58 737.97 8543
220.7 16.30 612.75 9985 11.58 862.25 9982
176.6 19.20 685.96 13170 11.58 1147.11 13280
134.9 10.70 1710.65 18305 11.58 1519.38 17590
105.4 16.58 1437.22 23825 11.58 2179.75 25236
83.4 15.46 2551.43 39440 11.58 3713.51 42993
73.6 9.26 8109.05 75100 11.58 5535.52 64087
56.4 15.07 14416.06 217300 11.58 24462.25 283213
54.0 10.23 53993.53 552150 11.58 39998.35 463083
51.5 42.26 26983.65 1140200 11.58 101058.00 1170006

Gamma distribution parameter estimations using the moment estimators
for the individual parameter estimations for each stress level and the GLM
estimations for all observations are shown in this table. The chosen model
for the GLM estimations are the one recommended by the AIC criterion,
namely model glm5. Also, the estimated mean µ is shown.
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Figure 20: Plot of the fitted values against the scaled residuals (r′i = Yi−µi
µi

) of the GLM
model glm5.
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Figure 21: Plot of the 0.05 and 0.95 quantile lines for the GLM m5 fitting all observations
(green, dashed, squares). The points represent the observations within the 90% quantile
area of the GLM glm5 (red, stars) and outside this area (blue, circles).
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Figure 22: Plot of the 0.05 and 0.95 quantile lines for the GLM m5 fitting all observations
(green, dashed, squares) with inverted stress axis. The points represent the observations
within the 90% quantile area of the GLM glm5 (red, stars) and outside this area (blue,
circles).
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8. Conclusion

In this thesis we discussed multiple models with different strength and weaknesses.
We started with the widely used Linear Model and Generalized Linear Model ap-
proaches as representatives of the status quo. Additionally, we investigated a model
based on parameter regression adjusted to the special context of fatigue data. As the
last discussed model we introduced the standardizing model.

For the Linear Model, we identified the polynomial model lm2 with two and lm3

with three predictors as best suitable for modelling the given data. Additionally, we
applied transformations to both axes; The stress axis was inversely transformed and
the cycle to failure axis was log-transformed. The corresponding model is given by
Equation (7.1).

The Generalized Linear Model was fitted to the data using the Gamma distribution
and the canonical link function with the linear predictor as a polynomial of degree
five, resulting in model glm5. It was chosen based on the best AIC value. The model
is defined by Equation (7.2).

The adaption of parameter regression to the context of fatigue data lead us to the
model pr. In this context the distribution type is fixed, only the parameters of the
distribution vary based on the stress level. We introduced a set of five parameters,
called structure parameters which can be used in combination with the stress level to
express the distributional parameters. By applying the maximum likelihood method
we gained the structure parameters, which define the GEV distribution parameters
for each stress level. This model is given in Equation (5.1).

Based on the idea of standardizing we gain the model sa. When using this approach
we assume the observations to be identically and independently distributed after a
transformation; This transformation may depend on a transformation-quantity calcu-
lated by all observations of this stress level, as in our case. Then we can estimate the
parameters and re-transform the quantiles gained. In between the stress levels, we
can use a piecewise linear function or splines to obtain the transformation-quantity
needed for re-transformation. The model is based on Equation (6.2).

We examine these five proposed models based on their ability to represent the AAW
dataset. The model abilities will be measured using two different perspectives, called
median fit quality and scatter fit quality. The median fit quality describes how good
the model can mirror the observed median; The scatter fit quality describes the
model’s ability to reflect the variation of the data. We want to clarify once again,
that we are not making general statements, but only statements for this very special
situation.
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8.1 Median Fit

We transformed the axis of all models to be able to compare them visually. A suit-
able axis transformation seems to be the inverse transformation for the stress level;
This allows an easy distinction of the tight arranged low-stress observations. For the
cycles to failure axis, we used a logarithmic scale; This neutralizes the intense varying
scatter behaviour. The estimates of the median are given in Figure 23. A remarkable
observation is, that the GLM glm5 is the only model not having a monotone median
curve. This can be observed in Figure 23 for low y-axis values ( 1

σa
≈ 0.4 · 10−2).
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Figure 23: Plot of the transformed AAW Dataset with median regression line of the Linear
Models lm2 and lm3 (see Equation (7.1)), the Generalized Linear Model glm5 (see Equation
(7.2)), the parameter regression model pr (see Equation (5.1)), and the standardizing
approach model sa from Section 6.5.

The scaled deviation between the model median and the observations allow a much
better analysis. Therefore, we have plotted the value of

Yi,j−medi
medi

(called residuals in
this context) against the model prediction of the median medi (called fitted values),
see Figure 24. For scaling purposes we divided the deviation by the fitted value; This
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results in visually similar spread residuals.

The Linear Models lm2 and lm3 are fitting the data appropriate, except for two
stress levels. The stress level associated with the third highest fitted values shows
only negative residuals; The stress level associated with the highest fitted values
shows nearly just positive residuals. This is a signal, that the median, which should
feature approximately as much negative residuals as positive residuals, is not pre-
dicted appropriate. We can say, that the residuals for model lm3 are much more
uniformly spread around zero.

For the Generalized Linear Model glm5 we observe a better mean fit quality as for
the Linear models. The stress levels associated with the third highest and the highest
fitted values are much better represented with the model glm5. However, the stress
levels associated with the third highest fitted value is still not adequate.

The Parameter Regression Model pr seems to reproduce the median curve in a simi-
lar quality as the Linear Models. Although there are multiple stress levels, for which
the residuals seem to have mostly the same sign, there is no stress level, for which
we have only positive or negative residuals. The unequally spread residuals are not
necessarily disturbing, due to the changing distribution over the stress level for this
model.

The Standardizing Approach leading to the model sa features an excellent mean
fitting quality due to the model characteristics. This is always the case if we have
equally distributed observations over all stress levels after the transformation.

Due to this observations, we are ranking the Standardizing Approach Model sa first
according to the median fit quality. The Generalized Linear Model glm5 and the
Parameter Regression Model pr seem to fit the median of the observed data similarly
and better as the two Linear Models lm2 and lm3. Between the two Linear Models,
we can clearly decide in favour of the model lm3 including an additional predictor in
comparison to the model lm2.
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Figure 24: Plot of the transformed AAW Dataset; Point estimates for the Linear Models
lm2 and lm3 (see Equation (7.1)), the Generalized Linear Model glm5 (see Equation (7.2)),
the parameter regression model pr (see Equation (5.1)), and the standardizing approach
model sa from Section 6.5 are used to calculate the Residuals. In this context we used the
median to centralize and scale the observations.
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8.2 Scatter Fit

To compare the variation of the different models we examine the quantile lines, given
in Figure 25. We can see a constant difference between the quantile lines for the
Linear Models on the logarithmic scale. The behaviour of the quantile lines for the
Parameter Regression Model and the GLM is similar to the behaviour of the lm3

model’s quantile line behaviour. The Standardizing Approach Model sa is estimat-
ing unrealistic quantile lines for one of the stress levels.

To determine the scatter fit quality of the models we examine the number of ob-
servations falling within the model quantile regions. We have decided to chose the
quantile regions q1 = (0, q0.25], q2 = (q0.25, q0.5], q3 = (q0.5, q0.75], and q4 = (q0.75,∞).
For each of the regions, we would expect one-quarter of the observations falling into
the region. This is true for the observations of each stress level and for all observa-
tions. The numbers of observations really falling into the regions are given in Table
34.

If we assume the model quantiles to be the true quantiles, we gain a Multinomial
distribution for the observations falling in one quantile region. Let Ni be the random
variable for elements falling in the quantile region qi and ni the realization of this
random variable. Then we can give the probability as

P[N = n] = P[N1 = n1, · · · , N4 = n4] =
n!∏4
i=1 ni!

(
1

4

)n
, (8.1)

for n =
∑4

i=1 ni observations. The according probabilities for each individual stress
level and each model are listed in Table 34. Additionally the product of those prob-
abilities for each model is listed in the sum/product row of the table. This value
represent the probability of gaining exactly these observations for all stress levels, if
the corresponding model is true, i.e. the quantile lines are the correct ones.

When comparing the models concerning their scatter fit ability, the Standardizing
Approach model fits the data best. Due to the probabilities gained by Equation
(8.1), we get the following ranking for the models based on their scatter fit quality:
sa (1.2·10−27), glm5 (1.2·10−33), lm3 (6.6·10−35), pr (1.4·10−36), and lm2 (3.3·10−42).
As a comparison we can take the maximum probability in this situation, i.e. the
probability, when we observe exactly 5 samples falling in each category for every
stress level, which is 1.9 · 10−20.
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Figure 25: Plot of the transformed AAW Dataset; Point estimates for the Linear Models
lm2 and lm3 (see Equation (7.1)), the Generalized Linear Model glm5 (see Equation (7.2)),
the parameter regression model pr (see Equation (5.1)), and the standardizing approach
model sa from Section 6.5.
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8.3 Overall Conclusion

Due to the superior performance of the Standardizing Model sa in both categories,
the median fit and the scatter fit quality, it seems to be best suitable to describe
the AAW data set. The disadvantage of this model is, that we always need multiple
observations per stress level. Also the behaviour of the quantile lines (see Figure 25)
is questionable.

The Generalized Linear Model glm5 seems to be the next best model. The non -
monotone behaviour of the model’s median line is suspect. Although not visible at
the plot, the values observed at the stress levels are monotone. This non - monotone
behaviour in between the stress levels seems to make this model unsuitable for inter-
polation in this range of the curve.

The next best models are the Linear Model lm3 and the Parameter Regression Model
pr. It is not possible to prefer one of these models against each other. The Linear
Model reproduce the scattering behaviour slightly better than the Parameter Re-
gression Model. Otherwise, the median fit quality is marginally better with the
Parameter Regression Model.

The Linear Model lm2 performs worse compared to the other applied models. This
is true for the median fit quality as well as for the scatter fit quality of the model.
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Table 34: Observations within quantile areas for all models

Model Stress
Number of Observations

Probability
(0, q0.25] (q0.25, q0.5] (q0.5, q0.75] (q0.75,∞)

lm2

294 5 11 4 0 1.9 · 10−5
221 4 8 6 2 1.5 · 10−3
177 1 6 7 6 8.4 · 10−4
135 4 1 5 10 2.1 · 10−4
105 2 7 6 5 2.5 · 10−3
83 5 6 7 2 2.5 · 10−3
74 4 4 4 8 3.9 · 10−3
56 16 4 0 0 4.4 · 10−9
54 5 3 5 7 5.1 · 10−3
52 0 0 3 17 1.0 · 10−9∑
/
∏

46 50 47 57 3.3 · 10−42

lm3

294 1 5 10 4 2.1 · 10−4
221 4 9 5 2 1.1 · 10−3
177 5 4 7 4 6.4 · 10−3
135 4 4 7 5 6.4 · 10−3
105 5 4 9 2 1.1 · 10−3
83 5 3 8 4 3.2 · 10−3
74 2 2 4 12 4.8 · 10−5
56 11 8 1 0 1.4 · 10−6
54 6 2 5 7 2.5 · 10−3
52 0 3 11 6 1.3 · 10−5∑
/
∏

43 44 67 46 6.6 · 10−35

glm5

294 4 3 11 2 1.9 · 10−4
221 4 5 7 4 6.4 · 10−3
177 5 4 7 4 6.4 · 10−3
135 4 4 3 9 1.8 · 10−3
105 6 4 8 2 1.6 · 10−3
83 6 5 7 2 2.5 · 10−3
74 4 1 4 11 9.6 · 10−5
56 10 7 3 0 2.0 · 10−5
54 3 4 2 11 1.9 · 10−4
52 2 7 10 1 6.0 · 10−5∑
/
∏

48 44 62 46 1.2 · 10−33

pr

294 0 3 4 13 2.5 · 10−6
221 3 5 7 5 5.1 · 10−3
177 4 4 8 4 4.0 · 10−3
135 5 5 7 3 5.1 · 10−3
105 9 8 2 1 7.6 · 10−5
83 8 8 4 0 5.7 · 10−5
74 4 4 4 8 4.0 · 10−3
56 8 7 5 0 9.1 · 10−5
54 2 4 3 11 1.9 · 10−4
52 2 12 5 1 1.9 · 10−5∑
/
∏

45 60 49 46 1.4 · 10−36

sa

294 6 2 8 4 1.6 · 10−3
221 4 7 5 4 6.4 · 10−3
177 6 3 7 4 4.2 · 10−3
135 4 4 7 5 6.4 · 10−3
105 6 3 6 5 5.9 · 10−3
83 5 3 8 4 3.2 · 10−3
74 2 7 11 0 5.5 · 10−6
56 6 4 4 6 7.4 · 10−3
54 7 2 4 7 1.8 · 10−3
52 5 8 3 4 3.2 · 10−3∑
/
∏

51 43 63 43 1.2 · 10−27

This table is showing how many observations are falling within the quantile areas
(0, q0.25], (q0.25, q0.5], (q0.5, q0.75], and (q0.75,∞) for the models lm2, lm3, glm5, pr,
and sa. In the last column the probabilities due to the Binomial distribution, see equa-
tion 8.1 are listed for each stress levels individually; The last probability entry for each
model is the product of the probabilities for the model’s individual stress levels.

74



A. Mathematical base

A.1 Distributions

Definition A.1. (Normal distribution)
The random variable X follows a Normal distribution N(0, 1) if its density is given

as:

fX(x) =
1√
2π
e−

x2

2 , x ∈ R. (A.1)

In this case the random variable Y = σ ·X+µ follows a N(µ, σ2) normal distribution.
Note, that fX(x) = fX(−x) holds, i.e. the distribution is symmetrical.

Example A.2. (Density of the N(µ, σ) distribution)
Let Y ∼ N(0, 1) be standard normal distributed. For X = σ ·X + µ ∼ N(µ, σ2) with
µ ∈ R, σ ∈ R>0 we can write the cumulative density function as:

FX(a) = P[X ≤ a] = P
[
X − µ
σ

≤ a− µ
σ

]
= P

[
Y ≤ a− µ

σ

]
= FY

(
a− µ
σ

)
.

This leads us to:

fX(a) =
d

da
FX(a) =

d

da
FY

(
a− µ
σ

)
=

=
1

σ
fY

(
a− µ
σ

)
=

1√
2πσ

e−
(a−µ)2

2σ2 .

Definition A.3. (Log-normal distribution)
The random variable X > 0 follows a Log-normal distribution LN(µ, σ2) if its loga-
rithm is Normal distributed log(X) ∼ N(µ, σ2).

Example A.4. (Density of the Log-normal distribution)
For X ∼ LN(µ, σ2) (and Y = log(X) ∼ N(µ, σ2)) we can write for the cumulative
density function FX(a):

FX(a) = P[X ≤ a] = P[log(X) ≤ log(a)] = FY (log(a)).

This leads us to:

fX(a) =
d

da
FX(a) =

d

da
FY (log(a)) =

= fY (log(a))
1

a
=

1

a

1√
2πσ

e−
(log(a)−µ)2

2σ2

Definition A.5. (Chi-squared distribution)

If Xi
iid∼ N(0, 1) for 1 ≤ i ≤ n, then the random variable Y =

∑n
i=1X

2
i is Chi-squared

distributed with n degrees of freedom. We will write Y ∼ χ2
n in this case.

75



Example A.6. (Density of the Chi-squared distribution)
For X ∼ χ2

1 (with X = N2, N ∼ N(0, 1)) we can identify the density fX(a) as, by
investigating the cumulative probability function FX(a):

FX(a) = P[X ≤ a] = P[N2 ≤ a]

= P[−
√
a ≤ N ≤

√
a] = FN (

√
a)− FN (−

√
a).

This equation leads us to

fX(a) =
d

da
FX(a) =

d

da
(FN (

√
a)− FN (−

√
a))

= fN (
√
a)

1

2
a−1/2 − fN (−

√
a)

(
− 1

2

)
a−1/2

= fN (
√
a)a−1/2 =

1√
2π
e−a/2a−1/2.

Example A.7. (Distribution of N(µ, σ2) sample variance 1)

When we are looking at an random sample Xi
iid∼ N(µ, σ2) for 1 ≤ i ≤ n the sample

variance σ̂2
n = 1

n−1

∑n
i=1(Xi − µ̂n)2 is Chi-squared distributed with n − 1 degrees of

freedom, if µ̂n = 1
n

∑n
i=1Xi denotes the sample mean. It is best shown with induction

that

(n− 1)σ̂2
n/σ

2 ∼ χ2
n−1 (A.2)

holds for n ≥ 2:

• n=2:

σ̂2
2/σ

2 =
1

σ2

(
X1 −

X1 +X2

2

)2

+
1

σ2

(
X2 −

X1 +X2

2

)2

=

(
X1 −X2

2σ

)2

+

(
X2 −X1

2σ

)2

=

(
X1 −X2√

2σ

)2

.

With small adoption to (A.7) we see, that X1−X2 is N(0, 2σ2) distributed and
as a consequence X1−X2√

2σ
is N(0, 1) distributed, hence its square follows a χ2

1

distribution.

• n >2:
We assume the equation holds for n − 1 we will show it for n. Therefore we
express the sample mean as:

µ̂n =
1

n

n∑
i=1

Xi =
1

n

( n−1∑
i=1

Xi +Xn

)
=

1

n

(
(n− 1)µ̂n−1 +Xn

)
,
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and the sample variance as:

(n− 1)σ̂2
n =

n∑
i=1

(Xi − µ̂n)2 =

n∑
i=1

(X2
i + µ̂2

n − 2Xiµ̂n)

=

n∑
i=1

X2
i + nµ̂2

n − 2µ̂n

n∑
i=1

Xi

=

n∑
i=1

X2
i − nµ̂2

n.

This leads us to:

(n− 1)σ̂2
n

=
n∑
i=1

X2
i − nµ̂2

n

=

n−1∑
i=1

X2
i +X2

n − n
(

1

n
((n− 1)µ̂n−1 +Xn)

)2

=

n−1∑
i=1

X2
i − (n− 1)µ̂2

n−1 + (n− 1)µ̂2
n−1 +X2

n

− 1

n

(
(n− 1)2µ̂2

n−1 +X2
n + 2(n− 1)µ̂n−1Xn)

)
= (n− 2)σ̂2

n−1 +
n− 1

n

(
µ̂2
n−1 +X2

n − 2µ̂n−1Xn

)
= (n− 2)σ̂2

n−1 +
n− 1

n

(
Xn − µ̂n−1

)2

,

and by dividing through σ2 we receive the equation:

(n− 1)σ̂2
n/σ

2 = (n− 2)σ̂2
n−1/σ

2 +

(
Xn − µ̂n−1

σ
√
n/(n− 1)

)2

.

Also here we can adopt (A.7) to see, that Xn − µ̂n−1 is N(0, n/(n − 1)σ2)

distributed and as a consequence Xn−µ̂n−1

σ
√
n/(n−1)

is N(0, 1) distributed, hence its

square follows a χ2
n−1 distribution. The needed independence is given according

to (Rice, 2006, pp. 197 ff.).

With the result (n − 1)σ̂2
n/σ

2 ∼ χ2
n−1 we know the distribution of σ̂2

n, unfortunately
this representation depends on the unknown parameter σ.

Definition A.8. (Student’s t-distribution)
If X ∼ N(0, 1) and Y ∼ χ2

n−1 are independent random variables, then

Z =
X√

Y/(n− 1)
(A.3)

is Student’s t-distributed with n − 1 degrees of freedom. We will write Z ∼ Tn−1 in
this case.
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Example A.9. (Distribution of N(µ, σ2) sample variance 2)
Student (1908) investigated the distribution of the random variable µ̂n−µ

σ̂n/
√
n

. Therefore
it is rewritten as:

µ̂n − µ
σ̂n/
√
n

=

µ̂n−µ
σ/
√
n√

σ̂2
n/σ

2
.

According to (A.8) the expression µ̂n−µ
σ/
√
n

is N(0, 1) distributed. Moreover (n−1)σ̂2
n/σ

2 ∼
χ2
n−1 holds due to (A.2). This leads us in combination with (A.3) to a Tn−1 distributed

random variable, since µ̂n and σ̂n are independent (Rice, 2006, pp. 195 ff.).

Definition A.10. (Snedecor’s F-distribution)
For two independent random variables X ∼ χ2

n and Y ∼ χ2
m the quotient:

F =
X/(n− 1)

Y/(m− 1)

follows a Snedecor’s F-distribution Fn,m with n and m degrees of freedom.

Example A.11. (Comparison of variances - normal distribution)
For an iid sample Xn of normal distributed variables Xi = N(µ, σ2), 1 ≤ i ≤ n the

following equation holds according to (A.7):

(n− 1)σ̂2
X/σ

2 ∼ χ2
n−1.

For two independent samples Xn and Xm with Xi
iid∼ N(µX , σ

2
X), Yi

iid∼ N(µY , σ
2
Y )

and estimates σ̂n, σ̇m the quotient

σ̂2
n/σ

2
X

σ̇2
m/σ

2
Y

is Fn−1,m−1 distributed.

Definition A.12. (Multivariate standard normal distribution)
A random vector X of dimension n is standard normal distributed, if its entries
Xi 1 ≤ i ≤ n are standard normal distributed and independent, i.e. Xi

iid∼ N(0, 1) 1 ≤
i ≤ n. We write X ∼ N(0, In).

Example A.13. (Density of the multivariate standard normal distribution)
We start with determining the joint cumulative distribution function FX(a) : Rn →

[0, 1] for a random vector X ∼ N(0, In):

FX(a) = P[X ≤ a] = P[X1 ≤ a1 ∧ · · · ∧Xn ≤ an]

=

n∏
i=1

P[Xi ≤ ai] =

n∏
i=1

FXi(ai) =

n∏
i=1

∫ ai

−∞
fXi(τi)dτi

=

∫ a1

−∞
· · ·
∫ an

−∞

n∏
i=1

fXi(τi)dτ1 · · · dτn
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Now, we can calculate the density function fX(a) as:

fX(a) =
n∏
i=1

fXi(ai) =
n∏
i=1

1√
2π
e−a

2
i /2

=
1

(2π)n/2
e−

1
2

∑n
i=1 a

2
i

=
1

(2π)n/2
e−

aT a
2

Definition A.14. (Multivariate normal distribution)
A random vector X of dimension n is normal distributed, if there exists a standard

normal distributed random vector Z of dimension k, such that X = AZ+µ holds for
µ ∈ Rn and A ∈ Rn×k. We write X ∼ N(µ,AAT ).

Definition A.15. (Weibull distribution)
The random variable X follows a Weibull distribution Wbl(λ, k), if its density is

given as:

fX(x) =
k

λ

(
x

λ

)k−1

e−(x/λ)k , λ > 0, k > 0,

for x ≥ 0 and zero otherwise.

Definition A.16. (Gamma distribution)
The random variable X follows a Gamma distribution Γ(k, θ), if its density is given

as:

fX(x) =
xk−1e−x/θ

Γ(k)θk
, k > 0, θ > 0,

for x > 0 and zero otherwise, with Γ(·) as the gamma function:

Γ(k) =

∫ ∞
0

xk−1e−xdx.

Definition A.17. (GEV distribution)
The random variable X follows a Generalized Extreme Value (GEV) distribution

distribution GEV (ξ, µ, σ), if its density is given as:

fX(x) =


1

σ

[
1 + γ

(x− µ
σ

)](−1/ξ)−1
e
−
[

1+ξ

(
x−µ
σ

)]−1/ξ

ξ 6= 0

1

σ
e−

x−µ
σ e−e

−x−µσ ξ = 0

, (A.4)

with ξ ∈ R, µ ∈ R, σ > 0 and 1 + ξ (x−µ)
σ > 0. The support is given with x ∈

[µ− σ/ξ,∞) for ξ > 0, x ∈ (−∞, µ− σ/ξ] for ξ < 0, and x ∈ R for ξ = 0.
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A.2 Moment-generating function

The following section is based on the explanation of (Rice, 2006, pp. 155 ff.).

Definition A.18. (Moment-generating function)
The moment generating function (MGF) for the continuous random variable X at
time t is defined as

MX(t) :=

∫ ∞
−∞

etxfX(x)dx = E[etX ],

if this term exists.

Proposition A.19. (MGF under linear transformation)
For a random variable X with MGF MX(t) we can express the MGF of Y = a+ bX
with a, b ∈ R as

MY (t) = Ma+bX(t) = eatMX(bt). (A.5)

Proof.

MY (t) = E(etY ) = E(eat+btX)

= E(eatebtX) = eatE(ebtX) = eatMX(bt).

Example A.20. (MGF for Y ∼ N(µ, σ2))
For X ∼ N(0, 1) we obtain with (A.1) for the moment generating function:

MX(t) =

∫ ∞
−∞

etxfX(x)dx =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx

=
1√
2π

∫ ∞
−∞

et
2/2−(x−t)2/2dx =

et
2/2

√
2π

∫ ∞
−∞

e−(x−t)2/2dx

=
et

2/2

√
2π

∫ ∞
−∞

e−u
2/2du = et

2/2.

This leads us for Y = µ+ σX ∼ N(µ, σ2) in combination with (A.5) to:

MY (t) = eµtMX(σt) = eµte
σ2

2
t2 .

Example A.21. (MGF for X ∼ χ2
1)

We examine the MGF for X ∼ χ2
1, using the density function of the chi-square
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distribution (see Example A.6):

MX(t) =

∫ ∞
0

etxfY (x)dx =

∫ ∞
0

etx
1√
2π
e−x/2x−1/2dx

=
1√
2π

∫ ∞
0

ex(t−1/2)x−1/2dx

=
1√
2π

∫ −∞
0

e−u
(

u

1/2− t

)−1/2 du

1/2− t

=
1√
2π

1√
1/2− t

∫ ∞
0

e−uu−1/2du

=
1√
2π

1√
1/2− t

Γ(1/2)

=
1√
2π

1√
1/2− t

√
π

=
1√
2

1√
1/2− t

= (1− 2t)−1/2

We used the substitution

u = x(1/2− t),

dx =
du

1/2− t
,

for which the integration boarders stay the same ((1/2− t) > 0 for interesting values
t < 1/2).

Proposition A.22. (MGF of the sum of independent random variables)
For Xi 1 ≤ i ≤ n independent random variables the MGF of Y =

∑n
i=1Xi is given

as:

MY (t) =
n∏
i=1

MXi(t).

Proof.

MY (t) = E[etY ] = E[et
∑n
i=1Xi ] = E[

n∏
i=1

etXi ] =

n∏
i=1

E[etXi ] =

n∏
i=1

MXi(t)

Example A.23. (MGF for X ∼ χ2
n)

Based on the MGF of a χ2
1 random variable (see Example A.21), we can calculate

the MGF of the random variable X ∼ χ2
n. Let X =

∑n
i=1N

2
i for Ni

iid∼ N(0, 1), then
the N2

i ∼ χ2
1 are independent and we can write according to Proposition A.22:

MX(t) =
n∏
i=1

MN2
i
(t) = Mn

N2
1
(t) = (1− 2t)−n/2
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Definition A.24. (Moment-generating function of a random vector)
The moment generating function (MGF) for the random vector X = (X1, · · · , Xn)
at time t = (t1, · · · , tn) is defined as

MX(t) := E[et
TX ],

if this term exists.

Proposition A.25. (MGF under linear transformation - random vector)
For an n-dimensional random vector X with MGF MX(t) we can express the MGF
of Y = a+BX with a ∈ Rn and B ∈ Rn×n as

MY (t) = Ma+BX(t) = ea
T tMX(Bt). (A.6)

Proof.

MY (t) = E[et
TY ] = E[et

T (a+BX)] = E[et
T aet

TBX ]

= E[et
T a]E[et

TBX ] = E[et
T a]E[e(BT t)TX ]

= et
T aMX(BT t)

Example A.26. (MGF for Y ∼ N(µ,Σ))
For the random vector X ∼ N(0, In) we obtain with the density of the random vector
(see Example A.13) the moment generating function:

MX(t) = E[et
TX ] =

n∏
i=1

E[etiXi ] =
n∏
i=1

MXi(t)

=
n∏
i=1

et
2
i /2 = e

1
2

∑n
i=1 t

2
i = e

tT t
2

Let now be Y = AX + µ, with Σ = AAT and hence Y ∼ N(µ,Σ), according to
Definition A.14.

MY (t) = MAX+µ(t) = et
TµMX(AT t) = et

Tµe
1
2

(AT t)TAT t

= et
Tµe

1
2
tTAAT t = et

Tµe
1
2
tTΣt

The following theorem was for example stated by Rice (2006, pp. 155).

Theorem A.27.
If the moment generating function of X is finite for t → 0 then the distribution of
X is uniquely determined. In other words, this means for two random variables X
and Y with MX(t) <∞ and MY (t) <∞ for t ∈ (−ε, ε) we can say:

PX = PY ⇔ MX(t) = MY (t) ∀t ∈ (−ε, ε).

82



Example A.28. (Distribution of the sum - Normal distribution)
When we are looking at a sequence of independent normal distributed random vari-

ables Xi ∼ N(µi, σi) for 1 ≤ i ≤ n we can see, that the sum Y =
∑n

i=1Xi ∼ N(µ̂, σ̂2)
of this sequence is also normal distributed. Moreover we can show µ̂ =

∑n
i=1 µi and

σ̂2 =
∑n

i=1 σ
2:

MY (t) =

n∏
i=1

MXi(t) =

n∏
i=1

eµite
σ2
i
2
t2 = e

∑n
i=1 µite

∑n
i=1 σ

2
i

2
t2 = eµ̂te

σ̂2

2
t2 . (A.7)

When we are looking at X̄ = Y
n = 1

n

∑n
i=1Xi and Xi

iid∼ N(µ, σ) we get in analogy to
the above situation X̄ ∼ N(µ̄, σ̄) with µ̄ = µ and σ̄ = σ√

n
:

MX̄(t) =
n∏
i=1

MXi/n(t) =
n∏
i=1

E[etXi/n] =
n∏
i=1

eµt/ne
σ2

2
(t/n)2

= eµte
(σ/
√
n)2

2
t2 = eµ̄te

σ̄2

2
t2 .

(A.8)

Example A.29. (Difference of independent χ2 random variables)
Let X ∼ χ2

p and Y ∼ χ2
q be two random variables with p, q ∈ N>0 and p > q. Then

we can calculate the distribution of Z = X − Y via the equation X = Z + Y , the
Proposition A.22, and Example A.23, if Z and Y are independent as:

MX(t) = MZ(t)MY (t)

(1− 2t)−p/2 = MZ(t)(1− 2t)−q/2

MZ(t) = (1− 2t)−(p−q)/2

Due to the unique characteristic of the MGF (see Theorem A.27) the random variable
Z is also chi-square distributed with (p− q) degrees of freedom, i.e. Z ∼ χ2

p−q.

Example A.30. (Distribution of the sum - normal distribution vectors)
When we are looking at independent random vectors Xi ∼ N(µi,Σi) i ≤ k and

their sum Y =
∑k

i=1Xi, we obtain for its MGF:

MY (t) = M∑k
i=1Xi

(t) = E[et
T
∑k
i=1 Xi ]

=
k∏
i=1

E[et
TXi ] =

k∏
i=1

et
Tµie

1
2
tTΣit

= et
T
∑k
i=1 µie

1
2
tT
∑k
i=1 Σit

Hence, we obtain Y ∼ N(
∑k

i=1 µi,
∑k

i=1 Σi), i.e. the sum of independent normal
distributed random vectors is itself a normal distributed random vector.
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A.3 Linear Model - Proofs

Theorem A.31. (Least square estimate β̂)
The least square estimate in a Linear Model, minimizing the squared error term

S(β) =

n∑
i=1

(yi − µi(β))2 = ‖y −Xβ‖2,

is given with
β̂ = arg min

β
S(β) = (XTX)−1XT y.

Proof.
We need to minimize the squared error sum S(β) with respect to β, which can be
rewritten as:

S(β) = ‖y −Xβ‖2 = (y −Xβ)T · (y −Xβ) = yT y − 2βTXT y + βTXTXβ.

By derivation of this term we obtain:

∂

∂β
S(β) = −2XT y + 2XTXβ.

We achieve a potential minimum by setting this derivation to zero; For the the least
square estimate β̂ we obtain:

XTXβ̂ = XT y.

For a regular matrix XTX we get the least square estimate β̂ as

β̂ = (XTX)−1XT y.

Since ∂2

∂β2S(β) = 2XTX we yield a positive semidefinite matrix, this term is indeed
a minimum.

Theorem A.32. (Distribution of β̂)
The least square estimate β̂ in a Linear Model is normal distributed, with expectation
β and variance (XTX)−1σ2, i.e.:

β̂ ∼ N(β, (XTX)−1σ2).

Proof.
According to Example A.28 the estimate β̂ as sum of normal distributed random
vectors is also normal distributed. Furthermore, we see:

E[β̂] = E[(XTX)−1XT y] = (XTX)−1XTE[y] = (XTX)−1XTXβ = β,

and

V ar[β̂] = V ar[(XTX)−1XT y] = (XTX)−1XTV ar[y]X(XTX)−1 = (XTX)−1σ2.
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Theorem A.33. (Independence of β̂ and S(β̂))
In the Linear Model the estimates β̂ and S(β̂) are independent.

Proof.
First we show, that Cov(β̂, r) = 0, whereas r = y−Xβ̂, and S(β̂) = rT r. We rewrite
β̂ and r, using the hat matrix H := X(XTX)−1XT and its property:

(I −H)X = (I −X(XTX)−1XT )X = X −X(XTX)−1XTX = X −X = 0.

This leads us to:

β̂ = (XTX)−1XT y = (XTX)−1XT (Xβ + ε) = β + (XTX)−1XT ε,

r = y −Xβ̂ = y −X(XTX)−1XT y = (I −H)y = (I −H)(Xβ + ε) = (I −H)ε.

For the covariance matrix of β̂ and r we get:

Cov(β̂, r) = Cov(β + (XTX)−1XT ε, (I −H)ε)

= (XTX)−1XTCov(ε, ε)(I −H)

= σ2(XTX)−1XT (I −H)

= σ2(XTX)−1XT − σ2(XTX)−1XTX(XTX)−1XT = 0.

Second, we show, that r is normal distributed. We can write r = y−Xβ̂ = (I −H)y
and according to Example A.28 it is normal distributed as linear combination of
normal distributed random vectors.

Since both, β̂ and r are normal distributed this implies, that they are independent.
The same holds for β̂ and S(β̂), since S(β̂) = rT r can be written as function of r.

Theorem A.34. (Distribution of S(β̂)/σ2)
In the Linear Model the random variable S(β̂)/σ2 is χ2 distributed with (n − p)

degrees of freedom.

Proof.
When we are looking at εT ε, we can rewrite this term as:

εT ε = (y −Xβ)T (y −Xβ)

= (y −Xβ̂ +Xβ̂ −Xβ)T (y −Xβ̂ +Xβ̂ −Xβ)

= (r +Xβ̂ −Xβ)T (r +Xβ̂ −Xβ)

= (r +X(β̂ − β))T (r +X(β̂ − β))

= rT r + (β̂ − β)TXTX(β̂ − β).

In the last step we used the following equation:

rTX = ((I −H)y)TX = yT (I −H)X = 0.
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This leads us to the equation

rT r/σ2 = εT ε/σ2 − (β̂ − β)TXTX(β̂ − β)/σ2. (A.9)

We know, that β̂ ∼ N(β, (XTX)−1σ2) and hence (β̂−β)(XTX)1/2/σ = N(0, I) and
according to Definition A.5 we get

(β̂ − β)TXTX(β̂ − β)/σ2 ∼ χ2
p,

since β got p entries. Furthermore, the term ε2ε/σ2 can be rewritten as:

εT ε/σ2 =

n∑
i=1

(εi/σ)2 ∼ χ2
n.

Since rT r/σ2 and (β̂−β)TXTX(β̂−β)/σ2 are independent (r and β̂ are independent,
see Theorem A.33) we know, that the distribution of rT r/σ2 is given as chi square
distribution with (n − p) degrees of freedom (see Example A.29), i.e. rT r/σ2 =
S(β̂)/σ2 ∼ χ2

n−p.

Proposition A.35. (Hypothesis test for βi = 0)

The random variable T = β̂i√
σ̂2
β̂i

can be used to test the hypothesis H0 : βi = 0. The

random variable σ̂2
β̂i

describes the i-th diagonal element of the matrix σ̂2(XTX)−1.

Under H0 T ∼ tn−p holds.

Proof.

Examining the term β̂i−βi√
σ̂2
β̂i

we can rewrite it with σ̂2
β̂i

= σ̂2vi,i (σ2
β̂i

= σ2vi,i), whereas

vi,i describes the i-th diagonal element of (XTX)−1 as:

β̂i − βi√
σ̂2
β̂i

=

β̂i−βi√
σ2
β̂i√

n−p
σ2 σ̂2/(n− p)

=

β̂i−βi√
σ2
β̂i√

S(β̂)
σ2 /(n− p)

∼ Tn−p.

This is true according to Definition A.8, since β̂i−βi√
σ2
β̂i

∼ N(0, 1) and S(β̂)
σ2 ∼ χ2

n−p (see

Theorem A.34) are independent due to the independence of β̂ and S(β̂) (see Theorem
A.33).

Theorem A.36. (F-ratio hypothesis test)
Having a model with p parameters and an estimate β̂ one can test q ≤ p param-

eters, when calculating the estimate β̇ for the original model excluding the specified
parameters. The test statistic is given with:

F (β̂, β̇) =
n− p
q
· S(β̇)− S(β̂)

S(β̂)
.

Under H0 F (β̂, β̇) ∼ Fq,n−p holds.

Proof.
See Wood (2006).
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