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Abstract

Brain-Computer interfaces (BCIs) provide a communication channel which directly
translates brain signals into different kinds of control commands. Most BCI systems
nowadays rely on rhythms of mainly sensorimotor but also other areas or visually
evoked P300, which either achieve low classification rates or are only applicable for
persons who have remaining muscular control of their eyes.
The aim of this thesis was to investigate the rarely explored field of tactile BCIs and
to develop a tactile hybrid BCI (hBCI) which incorporates different tactile modalities.
Such hBCIs, which combine different kinds of input channels, are used to increase over-
all BCI performance and stability. To reach the goal of such a tactile hBCI, a common
platform for BCI development was implemented which facilitates the creation of hBCIs
and the integration of already existing BCI systems or individual BCI components
with each other. One study in this thesis was carried out to investigate the stability of
somatosensory evoked potentials (SSSEPs) upon vibratory tactile stimulation. Another
study investigated the feasibility of using vibratory stimulation of multiple fingers on
one hand for a tactile BCI which relies on attention modulation. In parallel to these
studies, the already mentioned common implementation platform was developed.
The new components and interfaces were used in the studies mentioned before to
validate their functionality in real-world BCI scenarios. Different libraries for raw
data exchange, classification results delivery, and distributed event processing were
implemented, as well as tools like a data acquisition software called SignalServer and
an online scope for real time data visualization. Moreover, the developed code is open
source and available on GitHub in the tools4BCI project. A final hBCI study, which
utilized all components of the common implementation platform, finally brought the
development and the BCI parts of this thesis together. The study used SSSEPs and
transient tactile event-related potentials (tERPs) as features. These feature types were
fused together using two different fusion methods. All studies included screening
measurements to identify optimal individual tactile stimulation frequencies.
This thesis demonstrates that the brain response upon vibratory stimulation is stable
over time and similar across individual fingers of one hand. However, it was not
possible to achieve a classification above chance for SSSEP when the participants
focused their attention on a specific finger on one hand while another non-target
finger was stimulated at the same time. The final study proved the functionality of
the components of the common implementation platform. This study also showed
that a classification above chance, with SSSEP as a feature, is possible, which might be
related to a selection of person dependent stimulation frequencies. Fusing tERP and
SSSEP can significantly enhance the classification accuracy even further. Participants
who showed a higher relative band power increase during the screening also achieved
higher accuracy in the later BCI task. It was finally shown that individual modalities
might be better suited to detecting different BCI “states”. SSSEP appears to be the
better choice for identifying non-control (or idle) states, whereas tERP was better
suited to detecting focused attention on left-hand or right-hand stimulation.
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Zusammenfassung

Sogenannte BCIs (Brain-Computer Interfaces) ermöglichen eine direkt Umsetzung
von Hirnsignalen in unterschiedliche Kommandos und eröffnen dadurch einen
zusätzlichen Kommunikationskanal. Aktuelle BCI-Systeme nutzen zumeist Oszil-
lationen des Motorcortex oder anderer Hirnregionen oder verwenden visuell evozierte
P300 Potentiale. Derartige BCI-Systeme erreichen oftmals eine niedrige Klassifikation-
srate oder benötigen eine verbleibende Kontrolle über die motorischen Fähigkeiten
der Augen.
Ziel dieser Arbeit war es, das aktuell wenig erforschte Feld taktiler BCIs genauer zu
untersuchen und schlussendlich ein hybrides BCI (hBCI) zu erstellen, welches auf
mehreren taktilen Modalitäten aufbaut. Derartige hBCIs verwenden mehrere unter-
schiedliche Eingangssignale, um die Genauigkeit als auch die Stabilität aktueller BCIs
zu verbessern. Ein weiteres Ziel war es, eine gemeinsame Plattform zu entwickeln,
welche die Erstellung von hBCIs erleichtert und eine Integration mehrerer unter-
schiedlicher BCI-Systeme oder -Komponenten ermöglicht. In der ersten Studie dieser
Arbeit wurde die Stabilität somatosensorisch evozierter Potentiale (SSSEPs) über die
Zeit untersucht. Eine weitere Studie widmete sich der Untersuchung, ob die Erstel-
lung eines BCIs, das auf einer Fokussierung der Aufmerksamkeit basiert, möglich
ist, indem zwei Finger einer Hand stimuliert werden und ein Teilnehmer sich auf
eine der Stimulationen konzentriert. Parallel zu diesen Studien wurde die bereits
genannte Plattform entwickelt. Die neu entwickelten Komponenten wurden bereits in
den genannten Studien verwendet, um deren Funktionalität in echten BCI-Systemen
zu testen. Unterschiedliche Bibliotheken zur Übertragung von Biosignal-Rohdaten,
zur Übermittlung von Klassifikationsergebnissen oder zur Verteilung von Events in
BCI-Systemen wurden innerhalb dieser Plattform entwickelt sowie unterschiedliche
Hilfsmittel wie beispielsweise eine Software namens ”SignalServer“ zur Datenakquise
oder ein Signal-Visualisierungswerkzeug, um die gewonnenen Rohdaten live zu
analysieren. Der erzeugte Code ist in dem ”tools4BCI“ Projekt als Open-Source auf
GitHub verfügbar. Eine finale hBCI Studie, in der alle Komponenten des tools4BCI
Projektes zum Einsatz kamen, führte schlussendlich den Entwicklungsteil als auch
den BCI Teil zusammen. Diese Studie basierte auf dem Einsatz von SSSEPs als auch
von taktilen transienten Event-basierten Potentialen (tERPs) als Klassifikationsfeatures,
wobei beide Feature-Typen zu einem finalen Ergebnis anhand von unterschiedlichen
Strategien fusioniert wurden. In allen durchgeführten Studien wurde eine anfängliche

”Screening“-Messung durchgeführt, um optimale personenspezifische Stimulationsfre-
quenzen zu bestimmen.
Es konnte in dieser Arbeit gezeigt werden, dass SSSEP Muster, hervorgerufen durch
taktile Stimulation, auch über einen längeren Zeitraum stabil sind und sich des Weit-
eren nicht zwischen den einzelnen Fingern einer Hand unterscheiden. Es war jedoch
nicht möglich, ein BCI zu erstellen, in dem mehrere Finger einer Hand taktil stimuliert
wurden und ein Teilnehmer sich auf einen spezifischen Stimulus konzentrieren musste.
Die letzte Studie, in der alle Komponenten des tools4BCI Projektes zum Einsatz ka-
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men, zeigte die Funktionalität der entwickelten Plattform und ihre Einsatzbereitschaft
zur Anwendung in anderen BCI-Systemen. In dieser Studie wurde ebenfalls eine
signifikante Klassifikation über dem Zufallslevel für die SSSEP-Komponente erreicht.
Dieses Ergebnis wurde höchstwahrscheinlich durch die Verwendung personenspezi-
fischer Stimulationsfrequenzen erreicht. Zusätzlich konnte durch eine Fusionierung
von SSSEP und tERP ein signifikant höheres Klassifikationsergebnis erzielt werden
als durch die unterschiedlichen Modalitäten alleine. Des Weiteren erreichten Teil-
nehmer, welche bereits in der Screening-Messung eine höhere relative Bandleistung
bei taktiler Stimulation aufzeigten, auch ein signifikant höheres Klassifikationsergeb-
nis. Schlussendlich wurde entdeckt, dass sich SSSEP besser zu Erkennung eines
Ruhezustandes eignet und tERP die bessere Wahl darstellt, um unterschiedliche BCI-
Kommandos, wie beispielsweise eine fokussierte Aufmerksamkeit auf eine Stimulation
der linken oder rechten Hand, zu erkennen.

v



Acknowledgments

At this point I would like to thank everybody who played a role in the completion of
this thesis.

Foremost, I would like to thank Gernot, who supervised me, acted as a mentor
and who provided support and advice in many aspects of this thesis.
I also would like to thank Christa Neuper and Gert Pfurtscheller, who gave me the
possibility to start my work at the former Institute of Knowledge Discovery and also
provided proficient advice.

My special thanks goes to all my former colleagues at the BCI Lab, to Christoph, Alex,
Martin, Günther, Vera, Theo, Patrick, Clemens, Reini, Robert, and all the others for
lots of fruitful discussions, funny moments, and a really great place to work. I also
would like to thank all the colleagues and teams from the TOBI project for the great
collaboration. To name only a few: Febo, Martijn, Michele, Francesco, Luigi, Rüdiger,
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1. Introduction

Getting up in the morning, walking into the bathroom, brushing your teeth, saying
hello to somebody, etc. are common things everybody does; but rarely do we think
about the functions which are necessary to perform such basics tasks, as getting out of
bed alone or simply saying hello to someone. And hardly anyone thinks about what
happens when these things become problematic or outright impossible to accomplish.
All the aforementioned tasks have one thing in common; they rely on voluntary control
of the motor abilities. When these motor abilities degrade or are lost, the consequences
are disability and, in the worst cases, even becoming completely locked in the own
body. Various reasons can lead to such disorders. A baby can already be born with
them, but accidents like car crashes can also result in damages such as spinal cord
injury (SCI), which can in turn lead to disorders as mentioned above. People affected
by a spinal cord injury might lose the capability of moving their feet (paraplegic), but
are still able to move the upper body and their arms. Other people affected by an SCI,
e.g., in the cervical spine, can partly or completely lose all motor functions of their
arms as well. They might even need artificial respiration, depending on the location of
the lesion. All the mentioned impairments originate from a loss of voluntary motor
control.
Diseases can also leave behind irreparable damage to the body. For example, the
peripheral nervous systems can suffer damage, as is the case in Amyotrophic Lateral
Sclerosis (ALS) or the central nervous system (CNS) can come to harm by conditions
such as stroke, cerebral palsy, etc.
The results are largely the same; people can lose their motor skills up to losing any com-
munication capabilities that would allow them to stay in touch with their environment.

Humans have been thinking about the curiosities of the brain since time immemorial.
Nearly everybody has at least once thought about how great it would be to read some-
one’s mind or to control devices purely by willpower and thought. These ideas were
frequently picked up in science-fiction films or prominent series such as “Star Trek”.
For example, the episode ”The Menagerie” from 1966 shows captain Christopher Pike
in a mind controlled wheelchair. This is just one example of what people would call
“mind control”.
These days, the system Christopher Pike used has become known as brain-computer
interface; usually just referred to as BCI [1, 2, 3, 4, 5, 6, 7, 8, 9].

1.1. Brain-Computer Interfaces (BCI)

Brain-computer interfaces were introduced the very first time in literature by Jacques
J. Vidal in 1973 [10]. A brain-computer interface (BCI) is a system which offers
an additional communication or control channel without involving any voluntary
muscular control. A definition from Wolpaw et al. [1] describes a BCI as a system

1



1. Introduction

where the user wants to achieve a certain goal. The BCI only utilizes and processes
directly measured brain activity in real-time and provides feedback to the user. Such
a BCI is designed to replace, restore, enhance, or improve the output of the CNS by
measuring and processing CNS signals.
Typical BCI systems consist of the following six characteristics:

• Type of brain signal
• Signal recording
• Experimental strategy

• Mode of operation
• Signal processing
• Type of feedback

Signal Processing

Pre-Processing
Feature

Extraction Classification

Data
Acquisition

Application
Interface

Feedback

Application

• Wheelchair

• Spelling device

• Neuroprosthesis

• Computer game

• etc.

Closed
Loop

Figure 1.1.: This illustration shows the common closed loop operating principle of BCI systems. Brain
signals like an EEG are acquired from the human brain. This data is subsequently processed
in the pre-processing, the feature extraction, and the classification modules. The classification
results are sent to an application like a neuroprosthesis [11, 12], a speller [13], etc. through an
application interface. The reaction of the application, like the movement of a neuroprosthesis,
is observed by the BCI user, who thus gets feedback in this manner. All within this closed
loop is done in real-time.

Moreover, BCIs can also operate in a passive manner by detecting different mental
states like fatigue or drowsiness or can be used to identify wrong commands delivered
by a BCI using error-potentials [14]. These kinds of BCIs can be described as “passive”
BCIs [15, 16, 17, 14] and neither require active feedback nor do they have to be
goal-oriented as mentioned above.

1.1.1. Types of Brain Signals and Signal Recording

Different types of brain signals which measure the brain activity can be utilized for BCI
purposes. For example, brain activity can be directly measured by recording electrical
activity. The electrical signals are thought to be primarily generated by postsynaptic

2



1. Introduction

Figure 1.2.: This drawing illustrates the six characteristics of a BCI.

potentials [18]. Excitatory postsynaptic potentials (EPSPs) trigger neuronal action
potentials, whereas inhibitory postsynaptic potentials (IPSPs) inhibit the propagation
of action potentials. This electric activity can be measured with systems like the elec-
troencephalogram (EEG) [19], which is a non-invasive and low cost method to directly
measure electric brain activity. It provides excellent time resolution but only limited
spatial resolution. The limitation in spatial resolution occurs because a single EEG
electrode records the brain activity of a large population of neurons. EEG furthermore
only provides a poor signal to noise ratio (SNR) because electrodes are directly placed
on the skin. The electrical signal is thus attenuated and influenced by the skull, by
cerebrospinal fluid, and by tissue between the cortex and the electrodes.
Invasive methods, which require surgical intervention, like recording an electrocor-
ticogram (ECoG), local field potentials (LFPs) or the recording of single neuron spiking
activity, provide a better spatial resolution and a higher SNR. In case of ECoG, an
electrode grid is placed on the surface of the cortex [20, 21, 22, 23]. LFP and single
or multi neuron measurements are accomplished by planting micro-arrays directly
into the cortex, resulting in excellent SNR and spatial resolution [24, 25, 26]. However,
these methods carry the risk of an infection because of the surgical procedure. Such
invasive methods are thus less frequently used in BCI research compared to EEG
based measurements. They are often used in experiments with primates [27, 28, 29] or
sometimes in BCI experiments that involve participants who are epilepsy patients in
need of surgical intervention [30, 31, 32].

3



1. Introduction

Figure 1.3.: This illustration shows the layers of the human brain and the related data acquisition methods.
EEG electrodes are placed directly at the scalp and thus non-invasive. ECoG is measured on
the dura or directly on the arachnoidal matter and is thus an invasive method. Single neuron
or local field potential measurements are performed directly on or in the cortex and are thus
highly invasive.
Modified from: http://www.schalklab.org/research/brain-computer-interfacing (visited on July 16 2017)

Electrical activity implicitly generates magnetic fields as well. This magnetic activity
can be measured utilizing magnetoencephalography (MEG) [33, 34, 35]. MEG provides
a better spatial resolution, because magnetic fields are less influenced by the skull
and tissue around the brain. However, MEG systems are sensitive to environmental
influences and are much more expensive than EEG amplifiers. Moreover, the brains
magnetic fields are in the order of 0.1 µT (compared to the earth’s magnetic field:
25-65 µT), making extensive shielding against external influences necessary.
The aforementioned systems all rely on electrical activity or its effects. But neural
activity also consumes energy, resulting in different blood oxygenation levels. The
location and the level of oxygenation change depends on brain activation as well as
the activated cortical region and is thus an indirect way to measure brain activity.
The blood oxygenation level can be measured with near-infrared spectroscopy (NIRS)
[36, 37, 38, 39, 40] or functional magnetic resonance imaging (fMRI) [41, 42]. NIRS
utilizes the effects of a different light absorption level for different wave lengths,
which depends on the oxygenation level of the blood. By contrast, fMRI measures
the hemodynamic response between oxygenated and deoxygenated hemoglobin, also
known as the blood-oxygen-level dependent (BOLD) signal [43]. Both methods achieve
good spatial resolution, but they only achieve low time resolution in the range of
seconds.
Various kinds of BCIs have already been realized using NIRS, magnetic resonance
imaging (MRI), ECoG, highly invasive methods, etc. However, EEG is currently the
most frequently used data acquisition method in the BCI field. This is the case because
of very good time resolution, acceptable spatial resolution, but mainly because of
low hardware costs and minimal environmental requirements. The placement of EEG
electrodes is rather simple and an extensive environmental shielding is only necessary
in case of high frequency EEG measurements [44, 45].
All measurements conducted in this thesis were based on EEG.

4
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1. Introduction

1.1.2. Experimental Strategy

Different kinds of mental strategies can be used for BCI operation. Prominent examples
for strategies which are used in BCIs would be mental imagination with the prominent
example of motor imagery (MI) [46, 47, 48], focused attention on an external stimulus
[49, 50], or neurofeedback [51, 52].
In case of an MI BCI, a user imagines the movement of his feet, his hand, or of
other body parts, which in turn activates similar regions of the brain as the real
movement execution [53, 12]. Areas in the sensory and the motor cortex are acti-
vated. The band power (BPwr) changes in the related cortical area during such a
movement imagination. These changes in BPwr are described by the event-related
desynchronization/synchronization (ERD/S) effect [54, 48, 55, 56]. The BPwr initially
decreases (desynchronization) compared to a prior reference period. This effect, which
most frequently occurs between 8 Hz and 12 Hz (µ frequency band) and between
13 Hz and 30 Hz (β frequency band), is called event-related desynchronization (ERD)
[55, 56]. This decrease is followed by a BPwr increase (mainly in the β frequency
band) subsequent to the completion of the imagined movement. This effect is called
event-related synchronization (ERS) [57, 58, 59, 60, 61] or β -rebound (post movement
β synchronization). Both effects occurring together form the ERD/S effect. This kind
of BPwr inhibition and increase can be detected by BCI systems and has evolved into
a standard BCI strategy. Moreover, such a movement imagination is just one way of
using a mental task to control a BCI. Doing mental arithmetic would be another exam-
ple, where people perform a cognitive task to control a BCI [62]. Neurofeedback and
the modulation of slow cortical potentials (SCP) [51, 13, 63, 64], frequently used in the
early days of BCI, are another option to control a BCI [65, 52]. However, modulating
SCPs often requires a vast amount of user training [66].

Another well-established strategy in BCI research is utilizing the effects of event-
related potentials (ERPs) [67, 68]. An ERP describes the brain response to an internal
or external event. For example, an auditory evoked potential (AEP) [69, 70] is evoked
by an auditory, a visually evoked potential (VEP) [71, 72] by a visual stimulus, a
movement-related cortical potential (MRCP) [73, 74] is evoked by a movement in-
tention, and a somatosensory evoked potential (SEP) [75] is triggered by a tactile
stimulation. The aforementioned MRCP describes an ERP which is based on an in-
ternal event, whereas AEPs, VEPs, or SEPs are based on an external stimulus. These
evoked potentials (EPs) [76, 77, 78, 79] form a subset of ERPs because they require
an external stimulus to be present. The P300 potential [80] is a prominent example
for an EP which has been used in BCIs for a long time. P300 has mainly been used
in vision based BCIs [50, 81, 82] as well as auditory [83, 84], or tactile BCIs [85]. The
P300 potential occurs in case of appearance and recognition of a target event in a
sequence of non-targets. The experimental paradigm leading to P300 effects is called
an “Oddball” paradigm. The P300 depicts a positive EEG amplitude increase which
occurs around 300 ms after the occurrence of the target event [86, 87, 88] – an acoustic,
a visual, or a tactile stimulus. It can be difficult for a BCI to detect a single trial P300.
Multiple P300 potentials which belong to the same target event are thus frequently
averaged to increase SNR. Such an averaging is possible because the P300 is time- as
well as phase-locked.
When stimuli are applied in a steady-state manner, the brain reacts with a stable
oscillation at the same frequency as the external stimulus. Such an oscillation is called
steady-state evoked potential (SSEP) [89]. To operate a BCI which relies on SSEPs, the
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user shifts his attention to a target stimulation within a multitude of other stimuli
with a different frequency. A frequently used experimental design relies on multiple
flashing lights where every light flashes with a different frequency. Such flashing or
flickering lights induce steady-state visual evoked potentials. If the user shifts his
attention to such a flickering light, the amplitude of the related steady-state visually
evoked potential (SSVEP) [90, 91, 49, 92] component increases in contrast to the other
SSVEP components. SSEPs have already been successfully used for visual, auditory
[69] and tactile BCIs.

Steady-State Somatosensory Evoked Potentials: Applying steady-state tactile stim-
ulation elicits so-called steady-state somatosensory evoked potential (SSSEP) [93, 94,
95]. Only a limited number of studies which utilize SSSEP for BCIs purposes have
been accomplished so far. Tactile stimulation was mostly applied at the fingertips, as
carried out by Giabbiconi et al. [96] or Severens at al. [97] or at the palm, as performed
done by Tobimatsu et al. [94]. Other stimulation locations like the abdomen, the wrist,
or the feet are less frequent. Exploring SSSEPs for BCI usage is a major topic in this
thesis. This type of BCIs could combine the advantages of EP-based BCIs (like a high
classification rate and a short amount of training) and do not require a functional
visual system, which is needed for visual P300 BCIs.

1.1.3. Mode of Operation and Type of Feedback

As stated in section 1.1, the data processing in BCIs has to be done in real-time and the
user also receives feedback. However, the BCI can operate in different manners; in a
synchronous or an asynchronous way. In case of synchronous operation, the BCI itself
defines the sequence. The user has to follow the instructions of the BCI like performing
an MI. In this case, only data from a defined time window is processed. The advantage
of such a BCI-type is the well-known sequence of the experiment. The time windows
which contain a BCI “action” (like MI or focused attention) are known. These kinds of
BCIs are computer driven and thus frequently used to train BCI classifiers or to test
new strategies. However, synchronous BCIs are not practical in real-world situations.
Users are only able to operate the BCI in certain time windows, which reduces the
freedom of operation. The user is thus unable to deliver a command at a voluntary
point of time and thus has to wait for the next time slot. This results in an unnatural
way of interaction and a reduced user experience.
In contrast, asynchronous BCIs provide the possibility for a user to deliver a command
at a voluntary point of time. The BCI is active the whole time and tries to detect BCI
actions. From a user’s point of view, this is the perfect kind of operation. To achieve
such an asynchronous mode of operation, the BCI has to constantly analyze incoming
data in real-time and has to locate user commands in the data stream. However, as
discussed in the previous section, the SNR of a target signal like a P300 potential or an
ERD/S pattern can be low. As a consequence, it may happen, that user commands are
not or wrongly detected. Especially the detection of non-control (or idle) phases where
the user does not deliver any commands can become hard to recognize. Methods to
increase the SNR like data averaging are hardly possible, because triggers describing
a command onset are not available. To sum up, asynchronous BCIs would provide
a natural way of interaction for the user. However, it is a major challenge to detect
user commands on a single trial basis in a continuous data stream with satisfying

6



1. Introduction

classification accuracy.

The mode of operation (synchronous or asynchronous) is also tightly coupled with
the type of feedback, presented to the BCI user. The feedback can be realized in a
multitude of variations. It can be presented in an abstract manner like manipulating a
bar on a computer screen or very realistically like animating a hand movement in a
virtual environment. The feedback can also be provided in a discrete manner like a
circle which just toggles its color or in a continuous way like a bar which continuously
moves depending on classification results. Moreover, the feedback can be implicitly
provided by the app itself. Examples would be the letters selected in a P300 speller, the
direction a BCI controlled wheelchair moves, or a BCI operated neuroprosthesis. The
user thus gets informed by the feedback if the BCI was able to decode the command
correctly, for example, if the correct letter in a P300 speller was detected. Such feedback
is an important component in a BCI; it can influence the classification rate, can be
beneficial in terms of motivation, and can also help users to adapt and fine tune
their “internal” strategy (like the thought of a movement imagination) to reach better
results.

1.1.4. Signal Processing

Data acquisition is the first step in a BCI where brain-signals are acquired from
hardware devices like EEG amplifiers, fMRI scanners, etc. This data is subsequently
processed in the BCI processing chain. The signal-processing chain in BCI systems
generally consists of the following parts: (i) signal pre-processing, (ii) feature extrac-
tion, and (iii) classification.
The pre-processing step is frequently used to increase the SNR of a “target” signal and
to remove interfering signal components or spatial effects from the raw data. Common
pre-processing methods are low-, high-, notch-, or bandpass filtering, applied to the
raw data. To a certain extent, this kind of filtering can already be done directly in
the acquisition hardware. Examples would be the removal of local power supply
interference at 50 or 60 Hz, or a broadband bandpass filtering, e.g., from 0.5–500 Hz.
Such a bandpass filter is applied for two reasons: to remove biological artifacts like
the effects of sweating, which could result in a low frequency electrode potential drift,
and to filter frequency ranges which are not of interest for the experiment.
Spatial filters can be applied in the pre-processing step to amplify or damp effects
which are spatially distributed. Examples for generalized spatial filters are: (i) bipolar
filters encompassing an electrode-pair, (ii) Laplacian filters [98] encompassing an
array of electrodes [99], or (iii) common average reference (CAR) encompassing all
electrodes [100, 101]. Spatial filtering can also be done in a subject specific manner,
creating individual filter arrangements. One example for such a filtering method
would be common spatial patterns (CSPs) [102, 103, 104, 105]. Moreover, common
signal processing methods like principal component analysis (PCA) or independent
component analysis (ICA) can also be used as a spatial filtering method.
The output of the pre-processing step thus results in a signal which is still equivalent
to the raw data (e.g., an EEG signal in µV), where interfering signals are attenuated
and the SNR of the “target” signal is increased.

The output from pre-processing is further processed in the feature extraction step
[106]. Different kind of features used in EEG based BCI systems comprise (logarithmic)
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BPwr [46, 107, 108], autoregressive parameters [109, 110, 111, 112], brain connectivity
[113, 114, 115], the output of lock-in amplifiers system (LAS) [116, 117], features in
the frequency domain as Fourier transformation results [117, 118], or features in the
time domain like like amplitudes of EPs at given latencies or from a spectral band
[119]. The individual type of feature used in a BCI is usually tightly coupled with
the experimental strategy. Band power features are often used in MI based BCIs.
In contrast, features in the frequency domain or LAS are frequently used in BCIs
which rely on SSEP. To obtain meaningful feature values, a feature selection has to get
carried out. For example, in case of BPwr features, optimal frequency bands have to
be selected. The feature selection can be done in a manual way, like visually inspecting
ERD/S plots to identify frequency ranges for band power feature. The feature selection
process can also be automated to automatically select or even update features without
the need for manual interaction.

The resulting features are subsequently classified by a certain classifier. A binary
classifier can be realized by a threshold detector, which classifies a single feature. If
the feature value is below a threshold, the classifier detects class one. If it exceeds the
threshold, class two is detected. However, current BCIs usually utilize more than just
one feature. More advanced classifiers are thus used in current BCI systems.
Supervised learning methods are common in BCI research because the SNR can still
be low even after pre-processing and feature extraction. The available data is therefore
split into dedicated training and test sets. A common classification method used in
BCI research is the linear discriminant analysis (LDA). The LDA is based on a linear
transformation, maximizing the separability between classes utilizing a linear hyper-
plane [120, 121]. This separation is achieved by maximizing the ratio of between-class
variance to the within-class variances. Different kinds of extension to the original
LDA, which was introduced by Ronal Fisher in 1936 [122], have been developed so far.
Examples are a step-wise LDA or a shrinkage LDA, which try to increase classification
results compared to the original LDA. This is done by calculating classifier weights in
a step-wise manner or by applying shrinkage and the regularization of variances for
example.
Other classification methods (linear or non-linear) which are often applied in BCI
research comprise support vector machines (SVMs) [121, 123, 124], artificial neuronal
networks (ANNs) [125, 126], restricted Boltzmann machines [127], decision trees [128],
hidden Markov models [129], and many more [130]. Classification results are subse-
quently mapped to distinct class labels.
As mentioned above, supervised learning is frequently used in BCI research. Because
early feedback to the user can increase motivation, which in turn can influence the
overall performance [131, 132, 133], the first classifier in a BCI experiment is often
trained at an early stage with a reduced number of training trials. Moreover, users
can modify their “internal” mental strategy (as already mentioned before) during
an experiment or between sessions, which can lead to different brain activation pat-
terns. Additionally, effects like operant conditioning or the creation of some kind of
somatosensory memory [134] can also lead to different activation patterns. Classifiers
are thus usually updated, for example, when more trials are available or from session
to session. This update procedure can be done in a manual or automated manner.
Automatic classifier update strategies can even encompass automatic feature selection
with subsequent classifier recalculation. This kind of automated processing is a key
component in adaptive BCIs [135, 136, 137, 138, 139].
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1.2. Tactile Brain-Computer Interfaces and the
Somatosensory System

Tactile BCIs usually rely on an attention modulation paradigm. Tactile stimulation
can be applied in a steady-state manner to elicit SSSEPs as shown by Müller-Putz
et al. [116] or by single pulses to induce transient event-related potentials (tERPs), as
performed by Brouwer and Erp [85].

1.2.1. Physiological Background of the Somatosensory System

In case of SSSEPs, a vibratory stimulus is applied to the skin to stimulate the available
mechanoreceptors. The human skin contains different types of such mechanoreceptors
which respond to mechanical pressure or distortion [140]. These four receptors are:
(i) Meissner corpuscles, (ii), Pacinian corpuscles, (iii) Merkel disks, and (iV) Ruffini
endings.
Meissner corpuscles (sometimes simply called “tactile” corpuscles), are mostly found
in the fingertips or the eyelids and are less frequent in the palm. The Meissner corpus-
cles respond to touch and pressure as well as low frequency vibration (3–40 Hz) and
have a small receptive field. These receptors further respond when moving the skin
across a surface or when rubbing an object against the skin.
Pacinian corpuscles are also able to detect pressure changes and vibratory stimula-
tion. Their optimal sensitivity for vibratory stimulation at the fingertips is around
250–300 Hz and thus higher than the optimal frequency for Meissner corpuscles.
These corpuscles, which have a large receptive field, are best suited to detect rapidly
changing stimulation.
Merkel disks are slowly adapting receptors which respond to light touch. These
receptors have small receptive fields with well-defined borders and allow the exact
determination of a stimulus location.
Ruffini endings, also known as bulbous corpuscles, are slowly adapting mechanore-
ceptors too and are able to detect stretching of the skin or deformation in a joint. These
receptors thus provide viable information when moving the body or when gripping
objects.

Considering the mentioned mechanoreceptors, the Pacinian and the Meissner cor-
puscles are most interesting for a usage in an SSSEP BCIs. Both react to vibratory
stimulation and are rapidly adapting. Afferent sensory information is “filtered” within
each relay nucleus to sharpen the contrast of incoming signals. The sensory informa-
tion is subsequently “routed” through the Thalamus and forwarded to the primary
somatosensory cortex (for more detailed information see Kandel et al. [140]). A focused
attention on tactile stimulation, the key component of a tactile BCI based on attention
modulation, is mediated in the primary somatosensory cortex [141]. If the tactile
information is of certain interest or the person focuses their attention on the stimulus,
an activation of certain areas in the secondary somatosensory cortex becomes visible
as well [142].

9



1. Introduction

Figure 1.4.: This figure shows the individual mechanoreceptors of the human skin as well as their location
and their shape.
Modified from: http://wiki.bethanycrane.com/somaticsenses (visited on July 16 2017)

1.2.2. BCIs Based on Tactile Stimulation

As mentioned above, tactile BCIs usually rely on an attention modulation paradigm.
To be precise, the amplitude of harmonics of the stimulation frequency within the EEG
are modulated when switching the attention to an individual stimulus, e.g. a vibratory
stimulation of the index finger. The amplification or attenuation of the harmonics
in a certain brain area is then detected by the BCI. Such an SSSEP based BCI thus
shares certain similarities with SSVEP based BCIs which rely on a steady-state visual
stimulus.
Moreover, a transient tactile stimulation can elicit a P300 potential [143, 144]. The
processing methods of a BCI based on such tactile transient evoked potentials [85, 145,
146] are similar to the ones used in a visual P300 BCI (e.g., using a P300 speller).
SSVEP and visual P300 based BCIs have already been investigated in great detail and
lots of studies have been conducted [147, 81, 82, 148, 149, 150, 151, 152]. Different kinds
of modifications to improve performance were introduced, like optimized flashing
patterns, utilizing colors or pictures, etc. [153, 154, 155, 156]. However, these kinds of
BCIs require a functional visual system as well as the remaining ability of voluntary
eye control. Unfortunately, such functionality can become impaired, e.g., as a result of
a disease or an accident. In case of ALS, motor skills are lost and people might not
be able to even move their eyes or eyelids in later stages of the disease. The sensory
system however remains functional in contrast to the loss of motor skills. BCIs using
the somatosensory system are thus reasonable alternatives to vision based BCIs.
However, tactile BCIs are still rather unexplored. This might be related to a more
complex measurement setup like the need for a tactile stimulation controller or the
availability of appropriate tactile stimulators. Different kinds of stimulators have been
used in the available literature so far. The most common ones are: (i) motor driven
mechanical stimulators [157], (ii) stimulators operated by magnetic fields, similar to a
loudspeaker [116], or (iii) braille stimulators [158].
To achieve maximum stimulation efficiency, an appropriate stimulator has to be chosen
which has to reproduce the stimulation pattern with minimal interfering or damping
effects. Selecting an appropriate stimulation pattern is crucial as well. In case of SSSEP
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based BCIs, a carrier frequency around 250 Hz is usually used to stimulate Pacinian
corpuscles. This carrier frequency is further modulated with frequencies between
15 and 35 Hz. A rectangular modulation pattern achieved the best results, beating
triangular and sinusoidal frequency modulation [159]. Such a combined stimulation
pattern stimulates a maximum amount of the rapidly adapting mechanoreceptors,
namely the Meissner and Pacinian corpuscles. In case of tactile tERP based BCIs,
short stimulation pulses are used, which are usually also modulated with a carrier
frequency around 250 Hz.
The first step towards tactile BCIs which rely SSSEP has been done by Tobimatsu et al.
[94] and Snyder [93]. These research groups showed that the somatosensory cortex
reacts to tactile stimulation in a similar manner as the visual cortex when observing
a flickering light. The EEG amplitude of the harmonics from a steady-state tactile
stimulation increases or decreases when shifting the attention to or away from a certain
target stimulus. Moreover, people show a different brain response when applying
tactile stimulation [94], resulting in so-called resonance-like frequencies [160]. This
amplitude modulation was first used by Müller-Putz et al. [116] to create a BCI which
was solely relying on SSSEP. The participants achieved a classification performance
of up to 80 % with this kind of BCI. The following years, other BCI systems based
on tactile stimulation evolved as well. Severens et al. [97] presented a study using
braille stimulators and discovered an interaction effect when stimulating two fingers
of one hand. Adler et al. [157] showed that enhanced complexity of the stimulation
pattern, which makes transient events harder to recognize, increases the response EEG
amplitude. Furthermore, Spitzer et al. [134] discovered an interesting phenomenon.
When switching the attention to tactile stimulation and trying to keep this stimulation
in memory, a prefrontal activity in the EEG beta-range (20-25 Hz) was observed. The
effect described by Spitzer et al. has already been turned into a BCI application by Yao
et al. [161]. Moreover, it was shown by Yao et al. [162], that a user can even control a
BCI by somatosensory attentional orientation (SAO) without the need for any tactile
stimulation.
However, compared to sensorimotor rhythm (SMR) or SSVEP based BCIs, tactile BCIs,
and especially those relying on SSSEP, are rather unexplored [163].

1.3. Hybrid Brain-Computer Interfaces (hBCI)

As discussed above, different kinds of experimental strategies can be used to operate
a BCI. In case of tactile BCIs, the SSSEP and tERP based BCIs have already been
discussed in more detail. Common performance measures for BCIs are usually the
classification rate or the information transfer rate (ITR). Unfortunately these rates vary
between individuals. An individual could achieve a reasonable performance with one
experimental strategy. However, another person might just reach the chance-level with
the same BCI. In former days it was usual to investigate a single strategy only and use
it within a BCI. This approach frequently lead to poor results for a couple of subjects.
A new approach, called hybrid brain-computer interface (hBCI), involves the integra-
tion of multiple input signals into common BCIs to enhance overall performance. A
definition by Pfurtscheller [164] depicts the characteristics of an hBCI to be similar to
a common BCI. Thus, an hBCI also has to: (i) rely on signals being directly recorded
from the brain; (ii) comprise at least one brain signal which the user is able to modulate
to achieve a certain goal; (iii) be based on real-time signal processing; and (iv) provide
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feedback to the user. However, this hBCI definition does not permit the inclusion
of external signals to enhance overall system performance. An extended definition
for hBCI systems that also includes external information is provided by Müller-Putz
et al. [165]. It evolved as part of the large scale EU project Tools for Brain-Computer
Interaction (TOBI).
The definition from Pfurtscheller et al. supports BCI systems which are created and
run under laboratory conditions to study brain signals, the interaction of different
experimental strategies, etc., but are not designed to support a BCI user in a maximum
way. A BCI is intended to replace, restore, enhance, supplement, or improve the output
of the CNS and to provide an additional or maybe even a last communication channel
for severely disabled people. However, it is often a long process until a user, like an
ALS patient, has to completely rely on a BCI because all remaining communication
channels have been lost [4]. Such users could still have some remaining muscular func-
tionality and the capability of intentional movement control. Ignoring this functionality
would only hamper an already disabled person. Involving any additional information
source to maximize the ITR or the performance in general is thus a reasonable step.
The already mentioned EU project TOBI defined an hBCI as a system where the BCI
itself is an existing, but optional control channel [165, 166]. The user can decide freely
whether to utilize the BCI channel or other input channels like a shoulder joystick, a
mouth-mouse, etc. The combination of different input signals to a final output signal
was called “fusion”. The term “switching” was introduced for cases when one signal
is directly forwarded to the output. A switch between signals can occur if, e.g., the
quality of one signal falls below a certain quality measure [167] or due to altered
environmental conditions, like a wheelchair driving towards stairs. Such context or
location aware computing is becoming more prominent day by day [165]. This can also
be integrated in hBCI systems. For example, a small robot with context and location
awareness can assist a BCI user. Moreover, a navigation and steering system which
is integrated in a BCI operated wheelchair can help a person to get from point A to
point B with a minimum of BCI commands. A new term called “shared control” was
introduced into the BCI field, describing the integration of external intelligence into
BCI systems. Shared control operates in a target oriented manner which assists the user
to reach a desired goal. It can further inhibit potentially dangerous BCI commands,
like moving a wheelchair too close to stairs. A general architectural illustration of an
hBCI is presented in Figure 1.5.

Different kinds of hBCI systems have already been successfully investigated. The
combination of an EEG based MI BCI with electromyogram (EMG) from residual
muscular activity significantly increased overall performance [168, 169]. A combined
classification of EEG and EMG together within a data fusion outperformed the classifi-
cation rates of EEG and even of EMG. The effect of fusing both kinds of input signals
was investigated by continuously adapting weights for the individual signal types
within fusion. A mixture of both signal types achieved best results. Other examples for
successful hBCI setups include: (i) the combination of EEG and NIRS [170], linking two
different brain signal types, (ii) the combination of MI and SSVEP [171], combining
two different kinds of experimental strategies, (iii) the combination of MI with external
input, e.g., from a joystick, merging a BCI and an assistive device [167], or (iv) the
combination of a BCI with inputs from a wheelchair or a robotic device to increase
user presence and awareness [172, 173].
This list provides only a short excerpt of introduced hBCI systems. They are pre-
sented in more detail by Müller-Putz et al. [166]. Despite the differences between the
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Figure 1.5.: This figure illustrates the architecture of an hBCI system which utilizes three processing
streams. These processing streams are fused to a final result in the fusion module. Shared
control incorporates information from external devices like sensors or robots. The output
from shared control, which integrates information from the user as well as information from
the environment, is finally sent to the application.

aforementioned BCI systems, they all have one thing in common. The hBCI approach
usually outperforms the “old fashioned” BCI when compared to a common single
modality based BCI. Because common BCIs frequently achieve low classification accu-
racies, applying hBCI mechanisms makes perfect sense. Furthermore, fusing different
kinds of experimental strategies can increase the applicability of BCI systems across
different end users. It could also happen that a BCI user achieves good results with
one experimental strategy like SSVEP, but achieves a poor classification with an MI
based BCI. Fusing different kinds of experimental strategies within an hBCI can thus
also increase the overall performance across users because a fusion logic can inhibit
the poor channel.

1.4. The Architecture of BCI Systems

Various BCI systems have been developed since the beginning of BCI research. All
these BCI systems had to fulfill the requirements regarding real-time processing and
user feedback. However, former BCI systems usually processed a single type of data,
for example, multiple EEG channels. Moreover, an experiment typically dealt with
one experimental strategy, such as MI, at a time. The introduction of hBCIs thus
brought with it various additional requirements for BCI systems and their underlying
architecture.

1.4.1. An Overview of BCI Systems

BCI research, pioneered by Jacques Vidal, was only done by very few laboratories in
the 1990s. This number has vastly grown since the times when Farwell and Donchin
created the first P300 speller in 1988 [50] or since the groups around Pfurtscheller,
Birbaumer, and Wolpow started their research on brain-computer interfaces [8, 13, 1].
Together with a growing number of research groups performing BCI research, the
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number of BCI systems began to grow too. Lots of laboratories developed their very
own BCI system, such as the Graz BCI [174], the EPFL BCI, the Berlin BCI, xBCI
[175], Fieldtrip [176], and many more. In parallel to the evolvement of these custom
BCIs, different publicly available BCIs were developed too. Prominent ones include
BCI2000

1, initiated by Gerwin Schalk and colleagues [177, 178], OpenViBE2, developed
by the group around Anatole Lécuyer [179] at the French Institute for Research
in Computer Science and Automation (INRIA), or the Body Language Framework
(BF++)3, created by Luigi Bianchi [180]. Moreover, the emerging open-source project
OpenBCI4, which specializes on low-cost sensory hardware and open-source software
for BCIs, is becoming more and more popular. OpenBCI, founded by a Kickstarter
campaign5, intends to make BCI systems affordable for everybody from scientists
to high school students, take BCIs into classrooms, and thus expand the overall BCI
community.
Furthermore, various companies, like g.tec (Austria), ANT neuro (The Netherlands),
Brain Products (Germany), or EMOTIV (USA) also offer or develop proprietary BCI
systems or components for BCIs. A recent trend further includes the output of BCI
(or BCI like) systems for gaming and thus for a broader audience [181, 182]. Different
low cost EEG or biosignal amplifiers have been developed by various companies.
NeuroSky used BCI input to control their game “NeuroBoy”, or Mattel, which used
the system from Neurosky, utilized a BCI-like input for their game “MindFlex”. Even
the flash drive manufacturer OCZ developed their “Neural Impulse Actuator” which
was intended to provide joystick-like control.
This is just a small excerpt of available systems. Because many laboratories build
custom BCI systems, it is hard to estimate the number of different BCI systems and
frameworks being used right now.

1.4.2. Capabilities and Limitations of BCI Current Systems

BCI systems need to fulfill the basic requirements like online data processing of
brain signals and have to be able to provide real-time feedback to the user. However,
these systems differ in various manners like the supported operating systems, the
available methods for pre-processing, feature extraction or classification, or the support
for different experimental strategies like MI, P300, etc. Some BCI systems, such as
OpenViBE, BCI2000 or NPX, are completely custom built and based on programming
languages like C, C++, Java, Python, etc. Other systems like the Graz BCI, the Berlin
BCI or the EPFL BCI utilize existing platforms like Matlab as an underlying framework.
Usually, BCI systems also include the possibility to save data in different file formats
like the European data format (edf) [183], NPX [184], the general data format for
biomedical signals (gdf) [185], XDF6, or individual system specific formats. Moreover,
BCI systems provide support for various data acquisition devices, real-time data
monitoring, different pre-processing, feature extraction and classification algorithms,
as well as pre-existing feedback systems like P300 spellers, bar based feedbacks, up to
complete 3D feedback mechanisms [179]. Tools like BCI2000 or OpenViBE enable a
quick step into BCI research and a fast ramp up. The availability of the aforementioned

1BCI2000 (visited on July 16 2017)
2OpenViBE (visited on July 16 2017)
3Body Language Framework (BF++) (visited on July 16 2017)
4OpenBCI (visited on July 16 2017)
5OpenBCI Kickstarter Campaign (visited on July 16 2017)
6XDF specifications (visited on July 16 2017)

14

https://www.bci2000.org
http://openvibe.inria.fr
http://www.brainterface.com
http://openbci.com
https://www.kickstarter.com/projects/openbci/openbci-biosensing-for-everybody
https://github.com/sccn/xdf/wiki/Specifications


1. Introduction

tools might also have influenced a fast growth of the BCI community during the last
years.
However, the diversity in individual BCI frameworks has introduced a problem to the
field of BCI research. The aforementioned systems have become partly or completely
incompatible with each other up to a certain extend. Loading existing data files
in a standard format as gdf or edf mostly works. However, a real-time interaction
between different BCI systems is mostly impossible or at least hard to realize. These
incompatibilities create significant issues, especially when laboratories and research
groups need to collaborate. Furthermore, common BCI systems are usually designed
to process a single data stream of a certain type (e.g., EEG, NIRS. . . ) at a time. But
at the time of starting to write this thesis, these system were unable to acquire and
process different data streams of a different type (e.g., EEG, electrooculogram (EOG),
Joysticks. . . ) at the same time or were incapable of acquiring data from external sensors
or intelligent devices like robots. For the new hBCI trend, the support of different
kinds of signal types, biological as well as non-biological, is a crucial requirement.

1.4.3. Common Implementation Platform

To establish compatibility and exchangeability of modules between laboratories and
research groups, some kind of common ground for online data exchange is necessary.
A lack of standardization has already been mentioned by P. Brunner et al. [186] when
investigating issues in BCI development. Considering the architecture and the data
processing chain of BCI systems, they are all built according to the structure presented
by Mason and Birch [187]. All BCI systems need a data acquisition system, a data
processing chain, which usually consists of pre-processing, feature extraction, and
classification, and an application interface. Thus, BCIs follow the structural definitions
presented in Figure 1.1. These components process data and subsequently provide
the processed data to the next module in the BCI chain. Thus, the data connections
between the individual modules are key components to establish a common ground
for real-time data exchange. By providing well known or standardized interfaces and
communication protocols, it would become possible to replace or even share modules.
The Lab Streaming Layer (LSL)7 developed at the Swartz Center for Computational
Neuroscience, UCSD, or the common implementation platform presented in this thesis
are working towards the goal of a standardized communication within or between
BCI systems.

1.5. Aim of this Thesis

BCIs which rely on the somatosensory system are rare compared to the amount
of studies which have been done on BCIs based on MI, visual P300 paradigms, or
SSVEP. However, BCIs which rely on MI often need intense training or do not reach a
sufficient classification accuracy. Visual P300 paradigms or SSVEP based BCIs seem
to be a better alternative, as they often provide higher ITRs and can be rapidly set
up even without or with a low amount of training. However, these BCIs require a
functional visual system, which can be impaired in potential end users. BCIs which
rely on the somatosensory system are a reasonable option in this case because the

7LSL Repository (visited on July 16 2017)
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neuronal pathways for somatosensation remain functional, event in the case of ALS,
which affects the motor functions. It could further be used for patients which are in a
vegetative state, where a vision-based BCI is not an option either [188].
However, many topics related to somatosensory BCIs had been unexplored. For
example, influences on the BCI performance of different stimulation devices or of
person-dependent stimulation frequencies have not been investigated. Moreover, the
stability of an SSSEP tuning curve or the possibility to assign a focused attention
target to a single finger in an SSSEP based BCI (while the other fingers on the same
hand are potential targets too) and then detect a focused attention on it, have not been
investigated. BCIs which rely on the tactile system unfortunately come with increased
hardware effort because a tactile stimulation device and a stimulation controller are
necessary. This increased effort is a drawback compared to MI based BCIs or BCIs
which rely on the visual system (like SSVEP or a visual P300), where just a computer
screen or flickering lights (e.g., an LED) are necessary in addition to a common BCI
environment. As mentioned above, the knowledge regarding somatosensory BCIs is
rare and it is an open question if the increased effort that comes with a tactile BCI
came with enough advantages to be a reasonable option to other BCI types. One aim
of this thesis was therefore to shed more light on some questions around tactile BCIs.
As mentioned before, the hardware effort of tactile BCIs is higher than for common
BCIs, such as those based on MI. The increased hardware effort is accompanied
by increased software complexity because the tactile stimulation requires external
commands. Moreover, the stimulation device itself also produces valuable information
which needs to be stored for later offline analysis. Additionally, hBCIs are becoming
more and more popular, but they are also increasing complexity. Another goal of this
thesis is to provide a common implementation framework to facilitate the compatibility
and exchangeability within BCI systems. Introducing hBCI principles in tactile BCIs
would thus further increase their complexity and could render the applicability
too complex from a general point of view. The common implementation platform
introduced in this thesis was meant to reduce this complexity and also make the
increased hardware effort for tactile BCIs a negligible issue. For example, one goal
was to make it possible to control a stimulation device like any other comparable
component in the BCI processing chain.
This goal was finally validated with a hybrid tactile BCI which relies on easily
exchangeable and replaceable components. Sending commands to components such
as a tactile stimulation device should not be more complex than sending a message
to a screen showing instructions to a participant. Moreover, the applicability of hBCI
methods, like fusing classification results was explored in this thesis and if such a
tactile hBCI can further reach a sufficient classification accuracy [51].
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1.6. Structure and Organization of this Thesis

Chapter 1 covers the main topics addressed in this thesis. This chapter provides a
general overview of BCIs in conjunction with an overview of basic topics related to
BCIs. Somatosensory BCIs, hybrid BCIs, and BCI platforms are addressed in more
detail as these fields of research are most relevant for this thesis. Moreover, the aim of
this thesis is outlined.
Chapter 2 introduces the main publications which are relevant for this thesis and
provides a short summary for the individual publications.
Chapter 3 summarizes and discusses the outcomes of the publications presented in
chapter two. This chapter further analyzes the impact of the individual publications
on this thesis and provides a discussion of the scientific contributions to the BCI
community.
Finally, a conclusion is provided in Chapter 4 together with an outlook in Chapter 5
on future directions of somatosensory BCIs and the current trend on BCI platforms.
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2.1. Establishing a Common Implementation Platform

2.1.1. Introducing a Concept to Standardize Raw Biosignal Transmission

C. Breitwieser, C. Neuper, and G. R. Müller-Putz. “A concept to standardize raw
biosignal transmission for brain-computer interfaces.” In: Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
2011, pp. 6377–6380. doi: 10.1109/IEMBS.2011.6091574 [189]

As presented in the introduction, BCI systems are usually divided into the seg-
ments: (i) data acquisition, (ii) signal processing, (iii) an application interface, and
(iv) the application itself. Mason and Birch [187] introduced a general BCI scheme
(shown in figure 2.1) that also follows the aforementioned segmentation. An open
source interface for raw data exchange, called TOBI interface A (TiA), is introduced
in this paper, which aims to facilitate a common methodology to exchange raw data
between acquisition devices and BCI systems.
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Extractor
Feature

Translator
Control
Interface

Device
Controller

Device

Control
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Control Display State

Device State

Electrodes

User

User-reported Error Operating Environment

Figure 2.1.: Functional model for BCI systems introduced by Mason and Birch.

Contribution to this Thesis:
This publication describes a concept to standardize the raw data transmission between
data acquisition devices and subsequent processing modules and is the first step
towards the common implementation platform. Keeping the requirements of hBCI
in mind, it is necessary to support different kinds of signal types (biological and
non-biological ones) in the same manner. An interface is presented in this paper
that is designed to provide data transmission of the acquired signals over a network
to multiple clients. An initial prototype implementing this interface, called TiA, is
introduced in this paper together with first benchmarking results. All developed
components like TiA finally form a common implementation platform and are open
source available at github1. The development was supported by the large scale EU
project “TOBI”. The naming of the individual interface thus refers to the TOBI project
(e.g., TiA . . . TOBI interface A).

1https://github.com/tools4BCI (visited on July 16 2017)
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2.1.2. Introducing a Common Protocol for Raw Biosignal Transmission in
BCI Systems

C. Breitwieser, I. Daly, C. Neuper, and G. R. Müller-Putz. “Proposing a standardized
protocol for raw biosignal transmission.” In: IEEE Transactions on Biomedical Engineering
59.3 [2012], pp. 852–859. doi: 10.1109/TBME.2011.2174637 [190]

Introducing a common interface for raw data exchange within BCI systems is an
essential part of this thesis. This publication presents a full blown implementation
of the TiA interface as well as a data acquisition software called “SignalServer”.
A cross-platform TiA library was implemented in C++ and embedded in the Sig-
nalServer, which was also realized in C++. Moreover, TiA clients for different systems
and programming languages were implemented to facilitate the usage of the newly
designed system. Figure 2.2 shows the client-server architecture of the overall system.
The communication is split into two different streams, inspired by the design of File
Transfer Protocol (FTP). A control connection (realized with the Transmission Control
Protocol (TCP)) is used to exchange Hypertext Transfer Protocol (HTTP) oriented
control commands using Extended Markup Language (XML) for command encoding.
A second data connection can be realized with either TCP or Universal Datagram
Protocol (UDP). The desired data connection protocol is chosen by the client with
commands sent over the control connection. TCP guarantees data delivery at the cost
of an additional protocol communication overhead. UDP has a reduced overhead and
the possibility to broadcast data to multiple clients at the cost of non-guaranteed data
delivery. Figure 2.3 shows an illustration of a TiA data packet containing an EEG as
well an EMG signal with different block sizes.
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Figure 2.2.: Client–server architecture showing two clients (signal scope and Matlab [The MathWorks
Inc., Natick, USA]) using TiA. A server acquires data from different devices at the same time.
The communication is split into a control- and a data connection. The control connection is
used to exchange messages and commands between client and server; the data connection
is used to stream data from the server to a connected client. The clients between a data
connection use TCP or UDP.

19

https://doi.org/10.1109/TBME.2011.2174637


2. Methods and Results
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Figure 2.3.: Illustration of content from a TiA packet, showing the header and data section from an
exemplary packet. EEG and EMG are presented as exemplary data. EEG ch 1 (s 1) depicts
the “EEG” signal type from channel one with a block size of one. An EMG data content is
shown with a block size of four.

TiA and the SignalServer were designed to meet the requirements of hBCI systems.
Both thus support a broad range of biological signal types like EEG, EOG, NIRS, etc.,
as well as non-biological ones like signals from joysticks, buttons, trigger lines, etc.
Furthermore, TiA provides the possibility for multiple clients to receive individual
data streams. The clients can select the desired signal types, individual channels and
can also request a downsampled data stream to save bandwidth. The TiA library as
well as the SignalServer are open-source; TiA is licensed under the GNU Lesser Gen-
eral Public License (LGPL) and the SignalServer is licensed under the GNU General
Public License (GPL).

Contribution to this Thesis:
This publication describes the protocol, the communication steps, the data packet
structure and other specifications in detail. It is another step towards the common
implementation platform by providing the first open-source available components. It
further shows benchmarking results which indicate the low resource requirements
and minimal processing time of the SignalServer and the TiA library. The memory
consumption of the SignalServer is less than 2 MB and the data processing time of
a data packet within the server is around 20 µs. The client needs around 10-15 MB
memory, mainly depending on the buffer settings. The CPU utilization is very low;
250 channels acquired with a packet rate of 2 kHz merely consumed a maximum
of 13 % of the CPU at the server and 11 % at the client on an old Intel Core2Duo
6300@1.86 GHz from 2006

2. The transmission time from the TiA server to a connected
client was around 0.2 ms on a 100 MBit Ethernet network.

2Specifications Intel Core2 Duo Processor E6300 (visited on July 16 2017)
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2.1.3. Introducing a Bus-Oriented Event-Delivery System which Fulfills the
Needs of Today’s BCI Systems

C. Breitwieser, M. Tavella, M. Schreuder, F. Cincotti, R. Leeb, and G. R. Müller-Putz.
“TiD – Introducing and Benchmarking an Event-Delivery System for Brain-Computer
Interfaces.” In: IEEE Transactions on Neural Systems and Rehabilitation Engineering ac-
cepted [2017]. doi: 10.1109/TNSRE.2017.2728199 [191]

Reliable and flexible event delivery is a crucial requirement for BCI systems. Former
BCIs usually dealt with a single data stream, like EEG channels with a fixed sampling
rate. The data was processed in a common processing pipeline as described by Mason
and Birch [187] (see Figure 2.1). Events were frequently related to a specific sample in
the raw data and also transmitted together with the raw data, for example as done by
the “DataRiver” from ERICA [192].
This makes sense in common BCIs, but can introduce problems in BCIs with multiple
data streams, like an hBCI which processes different signal types. Binding an event
to the raw data might lead to an event duplication across the individual streams. A
different processing delay of the individual processing lines would further increase
the complexity to handle events. Duplicated events might arrive at different times at
the location where the data streams are fused to a final result. Moreover, an event
source beyond the processing line would be hard to realize.

Contribution to this Thesis:
This publication introduces a new event distribution mechanism called TOBI interface
D (TiD). TiD acts in a bus-oriented manner, as illustrated in Figure 2.4. It is another
viable component of the common implementation platform because it provides a
system for message exchange within and even beyond the borders of a BCI system.

TiD bus

DAQ system

TiD
msg

TiD server

TiD
msg

TiD
msg

TiD
msg

Classification
PP

FE

Internal
device or
application

External
device or
application

BCI system

Figure 2.4.: Illustration of the TiD operating principle. A TiD message can be created by different clients
like the classification module or another “internal” application within the BCI processing
chain, but also from “external” applications outside the chain. A TiD message is sent to the
TiD server, which dispatches the message to the clients. The TiD architecture thus operates
in a bus oriented manner, where clients can subscribe freely to receive events.

Multiple clients can connect to a single TiD server. This server dispatches incoming
messages to the connected clients. Shared memory and socket based transmission
methods are provided by TiD. The TiD messages are based on XML to keep them
extensible and human readable (e.g. for debugging purposes). The bus-oriented princi-
ple thus allows an event delivery which is detached from the common BCI processing
pipe. Detailed specifications regarding the TiD architecture, and the TiD message
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format are available in this publication and at arXiv.org. The TiD library is open
source3 and licensed under the LGPL.
The TiD library was extensively tested for stability and performance. Detailed bench-
marking results are available in this publication. It further contains guidance values
regarding damping effects which can occur when raw data is aligned on events dis-
torted by a trigger jitter. Such a time jitter can occur and depends on the selected
delivery method like a delivery over Ethernet. An attenuation of 3 dB becomes visible
at frequencies around 1–3 kHz for network delivery or higher than 10 kHz for shared
memory, but also depends on the chosen operating system (OS). Figure 2.5 shows a
latency distribution together with a damping curve. The 3 dB attenuation in this case
becomes visible at 1071 Hz, so it will not influence a common BCI system at all which
relies on a standard MI or on a visual P300 paradigm, for example.

Figure 2.5.: The upper plot presents the latency distribution for 10
6 messages of a Linux

server/arrangement with five connected clients. The lower plots shows the damping curve
caused by the TiD latency jitter which takes place when averaging data aligned by the TiD
events. A 3 dB attenuation occurs at 1071 Hz as indicated by the black dashed lines.

3https://github.com/tools4BCI/core (visited on July 16 2017)
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2.2. Towards a Tactile Hybrid BCI which Utilizes the
Introduced Common Implementation Platform

2.2.1. Investigating the Stability and Distribution of SSSEPs

C. Breitwieser, V. Kaiser, C. Neuper, and G. R. Müller-Putz. “Stability and distribution
of steady-state somatosensory evoked potentials elicited by vibro-tactile stimulation.”
In: Medical and Biological Engineering and Computing 50.4 [2012], pp. 347–357. doi:
10.1007/s11517-012-0877-9 [193]

This paper analyzes the stability of SSSEPs over time across multiple persons. Tobi-
matsu et al. and Snyder et al. described a characteristic EEG response when applying
steady-state tactile stimulation. Moreover, Müller et al. [160] showed the emergence of
so-called resonance-like frequencies and a tactile BCI which utilizes focused attention
on a vibratory stimulus to elicit SSSEPs was successfully realized by Müller-Putz et al.
[116]. However, at the time this thesis was started, additional information regarding
SSSEP being used in BCIs was rare. For example, it was uncertain if these resonance-
like frequencies are different across the individual fingers, or across different people,
or if they are even stable over time. The existence of this kind of stability is a relevant
piece of information when conducting multiple BCI sessions over an extended time
window. Moreover, a different response of the single fingers might make it necessary
to run individual screenings to identify an optimal stimulation frequency.
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Figure 2.6.: Illustration of the paradigm used to determine the stability and the distribution of the SSSEPs.
Every trial consists of a short period to wait for EPs, a reference period, and ten blocks lasting
two seconds each where vibratory stimulation was applied with different frequencies. Each
trial was followed by a short break. A visual distraction paradigm was presented during the
trials where people had to count red-colored characters. The same paradigm was used for
both sessions.

Nine subjects participated in this study (eight male, one female). The subjects' fingers
of the right hand were stimulated with different stimulation frequencies from 19–31 Hz.
The subjects were distracted using a counting task to avoid focusing on a specific
finger during the tactile stimulation. An illustration of the paradigm sequence is
available in Figure 2.6. All subjects participated in two sessions with at least two weeks
between the sessions. The relative BPwr increase based on SSSEPs was individually
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analyzed for every single subject. It was shown that the SSSEP response was stable
over time for all subjects. The tuning curves for relative BPwr increase were similar for
both sessions. Furthermore, the tuning curves had a similar shape across the different
fingers. Figure 2.7 shows the relative BPwr increase of all fingers for one subject from
both sessions. Moreover, an analysis of variance (ANOVA) for repeated measures
confirmed that the resonance-like frequencies with the highest amplitude increases
were significantly different across the individual subjects.

Thumb Index Finger Middle Finger Ring Finger Little Finger

Figure 2.7.: This figure shows the relative BP increase tuning curves for one subject for different stimula-
tion frequencies of all five fingers. The blue-colored bars show the BP increase of the first
session and the red-colored bars from the second session.

Contribution to this Thesis:
This paper provides important information for running tactile BCI systems which
rely on SSSEP, because it investigates the stability of the SSSEP tuning curves over
time and their distribution. It answers the question, if person-dependent screening is
necessary and if this screening should be repeated regularly.
Based on the results of this paper, it is recommended to perform a screening session
for SSSEPs' resonance-like frequencies because the relative BPwr tuning curves are
person-dependent. The screening session needs to be done only once because the
tuning curves are stable over time; at least over a time period of two to four weeks. It
is hypothesized that the response is also stable over a longer period of time, but this
was not validated within this paper. If no screening is done for whatever reason, it is
suggested that stimulation frequencies between 19 Hz and 29 Hz be used because this
range showed the highest BPwr increase values across the subjects.
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2.2.2. Is it Possible to Realize an SSSEP based BCI Utilizing Focused
Attention on Two Fingers on the Same Hand?

C. Breitwieser, C. Pokorny, C. Neuper, and G. R. Müller-Putz. “Somatosensory evoked
potentials elicited by stimulating two fingers from one hand - Usable for BCI?” In:
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. 2011, pp. 6373–6376. doi: 10.1109/IEMBS.2011.6091573 [194]

Considering tactile BCIs where the stimulation is applied to the fingertips, a the-
oretical number of ten classes would be possible. However, is has to be investigated
first if it is possible to realize an SSSEP based BCI where only two fingers on the
same hand are stimulated. This study investigates the feasibility of such a BCI. Subject
specific stimulation frequencies were determined in a screening prior to the actual
measurement. The stimulation with two different frequencies was applied to the
thumb and the middle finger of the right hand with a custom built tactile stimulation
generator [195] using C2 tactors (Engineering Acoustics, Inc., Casselberry, FL, USA).
Fourteen healthy subjects participated in this study (50 % male, 50 % female). The
subjects had to focus their attention on a specific finger according to instructions
presented on a screen. The paradigm sequence is illustrated in Figure 2.8. The subjects
received no feedback during this study and the recorded data was analyzed after the
measurements.

Figure 2.8.: Graphical illustration of the measurement paradigm used to determine if a stimulation of
two fingers on the same hand is a feasible setup for a BCI. Every trial was introduced with
an acoustic beep, followed by a short waiting period for potential EPs, a reference period, a
period where the subject had to perform a focused attention task, and a short break before
the start of the next trial. The thumb and the middle finger of the right hand were stimulated
during whole trial with two different frequencies, that were determined in a prior screening.

Contribution to this Thesis:
This publication provides insights into the possibility of using multiple fingers on one
hand as individual targets in a focused-attention based BCI. The participants were
unfortunately hardly able to focus their attention on the stimulation of an individual
finger.
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All subjects except one achieved a classification above the chance level for at least one
class (thumb or middle finger) against the reference period. The subjects were thus
able to focus their attention actively on the stimulation. However, only two subjects
barely reached the chance level when classifying the focused attention on the thumb
vs. the middle finger. All other subjects stayed below chance, mostly around 55 %.
Figure 2.9 shows the classification accuracy averaged over trials for one participant.
The classification accuracies against the reference period clearly cross the chance level
border at 61 %, but the classification of one finger against the other stays below chance.
The experiment in this study was based on the existent components from the tools4BCI
project at this time. The SignalServer was used for data acquisition of 48 EEG where a
high sampling rate of 1.2 kHz was chosen as an implicit stress- and performance test.
TiA was used for data transmission and a first version of the signal scope was utilized
for real-time signal monitoring.
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Figure 2.9.: This figure shows the classification accuracies averaged over trials of the reference period
against a focused attention on one finger as well as the accuracy of focused attention on
one finger against the other. The blue line shows the accuracy of thumb vs. reference, the
green line middle finger vs. reference, and the magenta colored line shows thumb vs middle
finger. The dashed horizontal line highlights the chance level at 61 % (significance level of
5 %, 79 trials per class [196]). The dashed vertical line indicates the start of the trial where the
subjects were instructed to focus their attention on a target finger.
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2.2.3. Introducing A Hybrid Three-Class BCI which is Based on SSSEPs
and tERPs

C. Breitwieser, C. Pokorny, and G. R. Müller-Putz. “A hybrid three-class brain–computer
interface system utilizing SSSEPs and transient ERPs.” In: Journal of Neural Engineering
13.6 [2016]. doi: 10.1088/1741-2560/13/6/066015 [197]

This article relies on insights gained in the former studies performed in this the-
sis and on the components developed for the common implementation platform. It
concludes the attempts to create an hBCI based on the somatosensory system utilizing
components available in the tools4BCI project. Former studies, such as that by Severens
et al. [158] indicated that tactile ERP based BCIs might outperform BCI systems which
purely rely on SSSEP. Severens et al. [158] conducted a study combining SSSEP and
tactile tERP within an hBCI arrangement. Classifying tERP achieved higher accuracies
than classifying SSSEP. However, the same “standard” stimulation frequencies were
used for all subjects who participated in the study. Fourteen healthy subjects partici-
pated in this study (50 % male, 50 % female). The experiment consisted of two main
parts.
In the first part, all subjects performed a screening paradigm to determine optimal
tactile stimulation frequencies for the second part of the experiment. Screening was
applied in the same manner as in our prior studies [194, 193]. The only difference was
that the index fingers of both hands were stimulated. The fingers were stimulated with
random frequencies from 17 to 35 Hz in 2-Hz steps. Every frequency was stimulated
40 times to achieve an adequate SNR for later tuning curve calculations. In the second
part, the index fingers of the left and the right hand were stimulated with the two
frequencies which achieved highest relative BPwr increase values during the screening.
The paradigm sequence is similar to our prior study [193]. The main differences were
that a third “idle” class, which represents a non-control state, was introduced and
that the subjects received online feedback. Short pseudo-random twitches [160] were
inserted into the steady-state stimulation paradigm to induce tERPs.
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Figure 2.10.: This figure shows the tERP response of one subject averaged over trials for a target and a
non-target class of channel Pz. The response to left hand target twitches is shown in the left
image and the response for right target twitches in the right image. The standard error is
depicted by the shaded area.
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Figure 2.11.: This figure presents an averaged time/frequency map over all trials from one subject. The
left part of the image shows the channel FC3-CP3 and the right one FC4-CP4. The averaged
time domain signal is shown in blue at the very top. ERPs are clearly visible (due to trial
start/stop or the cue).
The stimulation frequencies are shown as green and blue dashed lines. The emergence of
SSSEP patterns at 25 Hz and 29 Hz are clearly visible.

Subjects had to focus their attention either on a target finger or remain in a “rest”
state without focusing on any finger. In case of a focused attention task, the subjects
were instructed to count the twitches on the respective target finger. Both components
(SSSEP and tERP) were classified in parallel during runtime and in succession fused
to a final result utilizing a threshold-based fusion. The successful emergence of a tERP,
induced by the twitches, as well as the formation of a stable SSSEP pattern can be seen
in the Figures 2.10 and 2.11. The recorded data was also analyzed offline. Another
fusion strategy was tested in the offline analysis. This combined fusion combines SSSEP
and tERP into one feature vector, which was in succession classified by a shrinkage
LDA classifier. Moreover, because the initial number of features was different between
SSSEP and tERP, a feature balancing was accomplished by introducing additional
features for SSSEP.

The final results for the online paradigm and also for a later offline analysis, consid-
ering all recorded data, are shown in Figure 2.12. As visible, fusion achieved better
results in most cases than classifying a single modality. Additionally, fusing the data
with a combined classifier achieved highest results. Statistical analysis, done with
two ANOVAs for repeated measures, revealed that a combined classification achieved
significantly higher accuracies than the classification of a single modality. However, for
individual subjects (like s03 or s12 – see Figure 2.12b), classifying tERP alone resulted
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in a higher accuracy than any fusion. Most likely because SSSEP only reached accura-
cies just above chance and thus had a negative effect on the final fusion. Moreover, it
became visible that different modalities might be better suited for certain class-types.
The SSSEP classifier reached significantly higher classification results for the idle class
than the tERP classifier (p<0.00001).
By contrast, the classes related to a focused attention were detected with a higher accu-
racy by the tERP classifier. Furthermore, it became apparent that subjects with a higher
relative BPwr increase in the screening session also achieved higher classification in
the online experiment.

(a) Online classification accuracies for tERP, SSSEP and threshold based fusion.

*

(b) Offline classification accuracies with feature balancing for tERP, SSSEP, threshold
based fusion, and combined fusion.

Figure 2.12.: These figures show the classification accuracies for all subjects from the online experiment
and for a later offline analysis with feature balancing. The rightmost bars represent the
accuracies averaged over all participants, except s10. The red dotted line indicates the 5 %
chance level, the black dotted line the 1 % chance level and the theoretical chance level of
33.3 % is indicated by the black dotted line.
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Figure 2.13.: This figure illustrates the measurement system showing all connected components. Raw
data was acquired by the SignalServer and forwarded to the subsequent processing modules
(tERP and SSSEP) using TiA. An online scope was used for raw data inspection during
the measurement. The processed data from the tERP and SSSEP modules was fused to a
final result by the “Fusion” module. This final result was distributed via the TiD bus. A
paradigm controller was in charge of the measurement sequence. Events to control the
measurement (e.g., visual cue, acoustic beep. . . ) were sent at appropriate points in time.
Modules connected to the TiD bus reacted on events, like the “Feedback and Instructions”
module which showed the respective cues upon an event arrival. An “Operator Feedback”
was displayed to the measurement operator to observe the measurement sequence. The
SignalServer saved incoming events together with the acquired raw data in a data file for
later analysis.

Contribution to this Thesis:
The experiment utilized all existing components from the common implementation
framework and brought together the findings from the other studies introduced in
this thesis. With this experiment, the final goal of a tactile hBCI system which uses the
common implementation framework and which was built on exchangeable compo-
nents was reached.
The individual components and how they were connected are shown in Figure 2.13.
With this article, the successful setup of a tactile hBCI system was presented. Further-
more, it was demonstrated that classifying SSSEP can achieve comparable results to
classifying tERP. Additionally, this experiment can be seen as a reference setup for the
common implementation platform as it utilized all existing components available in
the tools4BCI project.
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2.3. Additional Publications

2.3.1. Tools for Brain-Computer Interaction: A General Concept for a
Hybrid BCI

G. R. Müller-Putz, C. Breitwieser, F. Cincotti, R. Leeb, M. Schreuder, F. Leotta, M.
Tavella, L. Bianchi, A. Kreilinger, A. Ramsay, M. Rohm, M. Sagebaum, L. Tonin, C.
Neuper, and J. d. R. Millán. “Tools for Brain-Computer Interaction: A General Concept
for a Hybrid BCI.” In: Frontiers in Neuroinformatics 5.November [2011], p. 30. doi:
10.3389/fninf.2011.00030 [165]

This paper introduces a concept for hBCI systems. The presented concept relies
on the interfaces and the structure of the common implementation platform presented
in this thesis. This publication presents a prototype system, showing the individual
components of the hBCI interacting with each other. Data fusion and shared-control
concepts are also introduced in this paper to pave the way for new BCI systems. These
new types of BCIs can deal with multiple signal streams and are also able to integrate
external information provided by smart sensors or intelligent devices such as robots
for example.

2.3.2. BCI Software Platforms

C. Brunner, G. Andreoni, L. Bianchi, B. Blankertz, C. Breitwieser, S. Kanoh, C. A. Kothe,
A. Lécuyer, S. Makeig, J. Mellinger, P. Perego, Y. Renard, G. Schalk, I. P. Susila, B.
Venthur, G. R. Müller-Putz, C. A. Kothe, A. Lécuyer, S. Makeig, J. Mellinger, P. Perego,
Y. Renard, G. Schalk, I. P. Susila, B. Venthur, and G. R. Müller-Putz. “BCI Software
Platforms.” In: Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research
to Real-World Applications. Ed. by B. Z. Allison, S. Dunne, R. Leeb, J. Del R. Millán, and
A. Nijholt. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Chap. BCI Softwa,
pp. 303–331. doi: 10.1007/978-3-642-29746-5_16 [198]

This book chapter provides an insight into existing BCI software platforms. A brief
overview of the individual systems is provided and the strengths and limitations of
the individual platforms are discussed.
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3. Discussion

3.1. Overview

The overall goal of this thesis was the creation of a multimodal tactile hBCI system
which utilizes different signal modalities, namely tERP and SSSEP, processes them
in parallel at runtime, and fuses them together into a final result. Common BCI
systems, the Graz BCI included, were not capable of fulfilling the needs of hBCI
operations necessary to achieve the desired goal. For this reason, a general framework
to interconnect individual BCI components was developed. These components were
required to be easily exchangeable and also follow a common concept to establish a
common ground for generalized BCI data exchange. To realize this goal, a common
implementation platform was developed, which is now freely available under the
tools4BCI project. In parallel to the development of components for tools4BCI, studies
to extend the knowledge around tactile BCIs were conducted. This work was then
merged together in a final hBCI study, realizing a tactile hBCI system with multimodal
fusion.
The contributions of this thesis can thus be summarized as follows:

• Design of an architecture for modular BCI data exchange
• Creation of the common implementation platform
• New insights on the stability of SSSEP over time and on the meaningfulness of a

screening for resonance-like frequencies in SSSEP
• Strategies how to fuse SSSEP and tERP in a tactile hBCI
• New general insights on SSSEP and tERP as features in tactile BCIs

3.2. Common BCI Communication and Interaction

As mentioned in the introduction, the first BCI was developed in the 1970s by Vidal
[10]. However, for a long time hardly any further BCI research was conducted, until
the subject saw a rise in popularity in the 90s. Leading researchers at the time included,
among others, the groups around Wolpaw et al., Pfurtscheller et al., or Birbaumer
et al. Since this time, BCI research has evolved and new fields have been discovered.
However, also environmental conditions have changed as well. In the early days,
computers were rare and expensive; data being stored on punch cards was daily
business. Later on, analog data recordings were used and it was possible to store some
hundred bytes, maybe some kilobytes of data. Nowadays, storing terabytes is not a
problem at all; this is an increase of 10

9! Also the way we use computers has changed
drastically. In former days, multiple people usually shared one computer; nowadays
it has become common for one person to own more than one PC. Even our mobile
phones are more powerful than the computers used to control the first space rockets.
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All these changes also affected BCI research, BCI systems, and their architecture.
At the time this thesis was started, two “major” BCI systems were publicly available:
BCI2000 [177] and OpenViBE [179]. Moreover, other BCI systems or frameworks like
xBCI [175], rtsBCI [174], or FieldTrip [176] existed as well. These systems and frame-
works were mostly developed by a single laboratory and less widespread than BCI2000

or OpenViBE. Generally speaking, the majority of BCI systems and frameworks at that
time were built in a monolithic manner. Features to exchange data or to interact with
other systems were mostly unavailable. However, the trend in information technology
(IT) has been shifting more and more towards small interconnected systems which are
easily deployable and scalable. This trend is reflected in systems like docker [199] and
the ongoing emergence of software as a service (SaaS) systems. Generally speaking,
software tasks which were formerly performed on a single computer and in a single
application are becoming increasingly distributed. These trends also influence BCI
research and the development of BCI systems. Research cooperation has become part
of daily business, as in the large scale EU project TOBI for instance. Many differ-
ent laboratories worked together on one project, but individual labs had a different
research focus. This research focus led to different BCI systems which were partly
incompatible with each other. The common implementation platform developed in
this thesis shows and provides approaches to realize an integration between different
systems. It provides mechanisms to connect different BCI systems or their components.
The core idea in the common implementation platform was to establish well defined
interfaces between individual components rather than specifying or replacing the
“modules” (like data acquisition or classification) themselves. This approach carries the
advantage that existing systems can still be used, but would gain compatibility to other
systems which also fulfill the interface definitions. It also has the benefit being reusable
by other people; the burden to “reinvent” the wheel would disappear. In times of agile
software development, reusability is crucial to speeding up development.
The interfaces designed in this thesis were required to introduce a common data
exchange at the following steps in the BCI processing chain: (i) between data ac-
quisition and pre-processing, (ii) between classification and subsequent application
modules, and (iii) between all modules to exchange meta information on an event
basis. These interfaces and their general intention are further discussed in more detail
by Müller-Putz et al. [165]

The following interfaces were developed as a result:

• TiA: For raw data transmission [190]
• TiC: To transmit classification results (this interface was designed in this thesis, but

developed together with Michele Tavella from École Polytechnique Fédérale de Lausanne
(EPFL))

• TiD: For event delivery between modules [191]

Different tools [165], important for operating a BCI, were developed as well:

• SignalServer: The SignalServer provides a cross-platform data acquisition sys-
tem which is able to acquire data from multiple devices at the same time. It
supports data transfer via TiA and also includes a TiD server for event dispatch-
ing. Acquired data can be saved to gdf files using libgdf 1. Events are aligned to
the acquired data and can be stored together with the acquired data in a gdf file.

1https://github.com/mbillingr/libgdf (visited on July 16 2017)
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• TiA Scope: The TiA scope provides a monitoring tool for real-time data vi-
sualization [200]. It is able to receive data via TiA and visualize this data for
real-time inspection. The TiA scope is built upon the Qt framework 2 and is thus
cross-platform compatible. Many thanks go to Christoph Eibel for implementing
the scope and to Reinmar Kobler for feature extension.

• Python and Matlab bindings: Different language bindings for the individual
libraries are also available. The TiA library provides a wrapper for Matlab and
Matlab Simulink. Furthermore, Python, Matlab, and Matlab Simulink wrappers
are provided within the tools4BCI core library package. Many thanks go to
Martin Billinger, Max Sagebaum and Michele Tavella for their assistance.

The aforementioned libraries provide the methods to interconnect different BCIs or
individual modules. Due to the real-time requirements of BCI systems, the processing
as well as the data transmission have to be done in a minimal amount of time to
avoid violations of real-time constraints. The TiA as well as the TiD library were tested
in great detail to obtain an estimate of their resource requirements and their timing
behavior. In the case of TiA, which is designed for raw data transmission, an efficient
data model with a binary packet structure was chosen to reduce the data overhead.
The packet header of a TiA packet is just 33 bytes long. Assuming a maximum trans-
mission unit (MTU) of 1500 bytes for Ethernet and 40 bytes overhead for TCP/Internet
Protocol (IP), 1427 bytes remain for dynamic signal data, with a minimal overhead
of just 4 bytes per signal type. A single TCP packet, transferred in a single Ethernet
frame, can thus transmit data from 355 channels (single precision), resulting in a high
transmission efficiency. Furthermore, the transmission delay of a TiA packet amounts
to approximately 150 µs. Considering these values, a data packet from a BCI setup
with 256 channels, 6 kHz sampling rate, and a block size of one, would still contain all
channels and will arrive at the client before the next sample is acquired. Additionally,
the resource footprint of the TiA server as well as the client is minimal (less than 15 MB
– mainly dependent on buffer size settings). This facilitates operation on devices with
limited resources such as Raspberry Pis or other embedded systems.
Considering TiD and event processing, minimum transmission delay and minimum
delay jitter are important requirements. Transmission efficiency is a negligible re-
quirement because events mostly occur at a lower rate than the raw data is acquired.
However, events have to deliver flexible data content to a multitude of clients. More-
over, these clients might not be connected to the common BCI processing pipeline.
The TiD interface, which is responsible for event delivery, was thus designed in a
bus-like manner. Clients can subscribe to the event bus freely. XML was used as an
event delivery format due to a vast amount of libraries which are able to parse XML.
Furthermore, it is possible to extend XML messages without violating backwards
compatibility. In depth tests of the TiD framework showed an approximate transmis-
sion delay of around 400-800 µs (client to client via the TiD server). The 3 dB signal
attenuation when averaging trials aligned by TiD events becomes visible at different
frequencies. These frequencies are mostly dependent on the underlying transmission
method and the operating system. For example, the 3 dB edge frequency is located at
1 kHz for a GBit connection and homogeneous Linux or Windows environments. It is
even beyond 10 kHz when running the server on Linux and the clients on Windows.
In case of shared memory (SHM) operations, the transmission delay is reduced to
around 50-80 µs with a 3 dB edge frequency at 4–10 kHz, mainly dependent on the
number of clients attached to the SHM.

2https://www.qt.io (visited on July 16 2017)
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These results show the applicability of the implemented interfaces for BCI systems
and ensure that the data or event transmission does not violate real-time requirements
of common BCI systems. Adding these interfaces to the respective components of
an existing BCI system would make them compatible and exchangeable with other
systems using the same interface.
One intention of this thesis was thus to establish a common ground to interconnect
components from different BCI systems with each other. To provide certainty that
the interfaces do not hamper existing BCI operations, the created framework was
tested intensively. Furthermore, the whole framework is open-source available 3. The
SignalServer is licensed under the GPL; all libraries are licensed under the LGPL. The
framework can thus be used and extended freely.

3.3. Usability of Somatosensory Evoked Potentials for
Brain-Computer Interfaces

Investigating tactile BCIs, mainly based on SSSEP, was another main topic of this
thesis. At the time this thesis was started, knowledge regarding tactile BCIs, and
especially regarding SSSEP based BCIs was still rare. Snyder [93], G. Müller et al. [160],
the groups around Tobimatsu et al. [94, 95], or around Adler or Giabbiconi et al. [157,
96, 141] had already gained valuable knowledge regarding the involved brain areas
or tuning curves. This knowledge was finally brought together by Müller-Putz et al.
[116] in a study showing the feasibility of SSSEP for BCI systems where one subject
even reached a classification rate of 84 %.
However, compared to the vast number of studies in the fields of MI, P300, or SSVEP
based BCIs, there were few works on tactile BCI systems, especially those based
on SSSEP. Certain similarities exist between the latter and the well-established field
of SSVEP related BCI research, like the possibility to modulate the EEG amplitude
through focused attention on a certain stimulus. However, the underlying physical
system and the neural pathways or the involved brain regions are completely different
and certain characteristics remained unexplored.
For example, at the time this thesis was begun, it was unknown if the tuning curves
introduced by G. Müller et al. [159] are stable over time – an essential factor for
operating a BCI system. It was also uncertain if the remaining fingers would show
a similar tuning curve or not. An individual screening for every finger might thus
be necessary. In the worst case, if the response changes over time, it could become
necessary to perform a screening in regular intervals to keep pace with the changes.
The first paper investigates the stability and the distribution of SSSEP tuning curves
and resonance-like frequencies. It was confirmed that the tuning curves are stable
over time; at least for a time window of several weeks. We further showed that these
curves are similar over all fingers and different across individuals. We also confirmed
the findings by Snyder [93] that the resonance-like frequency is around 25 Hz. Results
from the last study in this thesis showed that subjects who had a higher relative
BPwr increase also achieved better classification results. It is thus hypothesized that
screening for optimal stimulation frequencies is a necessary step to operate an SSSEP
based BCI with optimal parameters. Stimulating with a non-optimal frequency might
lead to deteriorated classification results because of the relation between the relative
BPwr increase and the classification rate.

3https://github.com/tools4BCI (visited on July 16 2017)
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An important characteristic value of BCIs is the ITR, which is also influenced by
the number of classes being used. Increasing the number of classes which a BCI is
able to recognize can boost the ITR. Utilizing focused attention on individual fingers
could significantly increase the ITR. In theory, a two classes BCI could become a ten
classes BCI. The second tactile BCI related study (see section 2.2.2) investigated a first
step towards this goal in more detail. Subjects performed a focused attention task,
switching their attention to either the thumb or the middle finger on the same hand.
The attempt using different fingers on one hand unfortunately did not turn out to
be a fruitful methodology. The classifier was able to detect if the participant focused
his/her attention on any finger or if he/she did not. However, it was hardly possible to
identify the individual target finger. A potential reason might be related to the recep-
tive fields of the somatosensory receptors. Participants reported in the related study
that it was hard to shift the attention on the stimulation of a specific finger. This could
be related with the fact that especially Pacinian corpuscles have large receptive fields,
which are stimulated by the 200 Hz carrier. It is hypothesized that such a carrier might
even hamper such a paradigm where multiple fingers from one hand are stimulated.
Moreover, Severens et al. [97] showed a significantly larger interaction ratio (IR) when
stimulating adjacent fingers compared to stimulating distant fingers. This indicates
that stimulating multiple fingers on one hand causes a certain sensory interaction.
However, the IR was not analyzed in the study accomplished in this thesis. The fingers
(thumb and middle finger) might have been too close together and a stimulation of,
e.g., the index finger and the little finger might have brought different results. This
remains an open question. A single EEG electrode further records the activity of a large
population of neurons. The spatial resolution of the applied electrode setup might
not have been sufficient. The SNR of an amplitude increase due to focused attention
could thus have been too low for a classifier. The bipolar channel FC3–CP3 was used
for classification in the present study to obtain comparable results with the work from
Müller-Putz et al. [116], who also used such a combination. The influence of a different
channel setup is therefore still an open question. More advanced spatial filters like
CSP [102, 103] can improve the class separability and increase the classification rate
[201] and would thus be a reasonable future step.

Various other parameters which could influence the performance of tactile BCIs
also remain rather unexplored.

Stimulator position and stimulation locations: The stimulator position and the
number of parallel stimulation locations might influence the results. The stimulators
are placed on the fingertips in most studies. However, a placement on other body
parts (as done by Brouwer and Erp [85] or Herweg et al. [202]) was rarely mentioned
in literature. Moreover, multiple (maybe close) body locations (e.g., fingers) could be
stimulated in parallel with the same pattern. This could increase the classification
accuracy, because a larger brain area would be involved, increasing the SNR in
succession. Even the body posture can have an influence on the tactile discrimination
[203] and, in turn, on the classification rate. Investigating such influences in more
detail might thus be a reasonable endeavor for future studies.

Stimulation amplitude and stimulation pattern: The stimulation amplitude could
also have an impact on the classification rate. The individual mechanoreceptor types
react to different stimulation frequencies, as discussed by Kandel et al. [140], and thus
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influence the emergence of SSSEP tuning curves. However, an effect of the stimulation
amplitude on the classification accuracy, especially in case of steady-state stimulation,
has not been explored so far.
Moreover, the stimulation pattern itself can have an influence on the classification rate
too. Adler et al. [157] showed in their studies that the SSSEP amplitude significantly
increases under conditions of high perceptual load, as in the case of a target stimulus
which is difficult to perceive. Furthermore, G. Müller et al. [159] investigated the
influence of different stimulation characters (sinusoidal, rectangular, and triangular)
on SSSEP and showed a maximum SSSEP amplitude for rectangular stimulation
patterns. However, the influences on the classification rate of different stimulation
patterns (hard or simple to perceive), their characteristics (rectangular, sinusoidal, the
duty-cycle of a rectangular pattern, etc.), or the stimulation amplitude, as discussed
above, are unknown. Sutter [204, 205] presented a very interesting approach of a
stimulation pattern called “m-sequence”. The concept behind SSSEP is similar to
frequency division multiple access (FDMA) and tERP to time division multiple access
(TDMA). In contrast to the two other systems, the m-sequences rely on a code division
multiple access (CDMA) approach [206]. Such an m-sequence based BCI has already
been successfully tested in the visual domain [207, 208, 209] and outperformed
common SSVEP based BCIs. Utilizing an m-sequence based tactile stimulation pattern
might be a reasonable next step.

Stimulation device: The stimulation device can further influence the BCI perfor-
mance. Different kinds of stimulators were used in the available literature. These
stimulators range from magnetic ones (like the “C2” tactors used in this thesis [194,
197]), over Braille stimulators (as used by Severens et al. [97, 158]), to mechanical
stimulators (as used by Giabbiconi et al. [141, 96]). Even pneumatic stimulators exist,
which are designed to meet the requirements for MRI studies [210]. All these stimula-
tors have different characteristics (applied force, linearity, harmonics, . . . ) and could
therefore also elicit a different cortical response. It is still an open question if a specific
stimulator type is an optimal choice to elicit SSSEP or tERP or if it is irrelevant which
type of stimulator is used.

Training: BCI training can have an effect on brain activation patterns [211] in case
of MI based BCIs [212] and increase classification accuracy [9]. This also applies to
auditory BCIs [213, 214], or to tactile ERP based BCIs [202, 215]. Training might thus
also increase the classification accuracy of the tERP component of the BCI. However,
it is unknown if BCI training also significantly increases classification of the SSSEP
component, but it seems to be very likely. Preuschhof et al. [216] could show that the
neural activation was significantly higher in conditions where subjects already had
tactile memory compared to naive ones.

Involved brain areas: As shown by Giabbiconi et al. [141], sustained spatial attention
to vibratory stimulation is mediated in the primary somatosensory cortex. In contrast,
the secondary somatosensory cortex seems to be involved as well when performing
a tactile attention task [217, 142]. In this thesis, merely bipolar channels have been
used. As already discussed, CSP might increase the classification accuracy. Using
more advanced spatial filtering techniques as beamforming [218] or source localization
methods [219] might be meaningful in this case, because the involved regions are
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located deeper in the brain and thus won’t have a SNR as high as from signals
which originate directly from the primary somatosensory cortex. Because different
brain areas are involved when processing a tactile stimulation, the connectivity [115]
between these brain areas could be used as an additional feature. Such connectivity
measures were already successfully applied in case of MI [113, 114] or SSVEP [16]
based BCIs.

Twitches: The twitches applied in the studies in this thesis were introduced to assist
the subjects in the attention modulation task when focusing on a specific stimulation.
However, these twitches might have had negative effects as well. Briefly summarized,
a so-called twitch [116] is a short amplification or attenuation of the steady-state
tactile stimulation. Such twitches can further be used as a second input channel. It
might even be possible to detect so-called “blocking features” [220] and use them as
features in a BCI. However, these twitches interrupt the steady-state stimulation for a
short time and could thus hamper the emergence of a stable SSSEP pattern [146]. The
twitches could thus be beneficial to boosting BCI performance, but they could also
reduce the classification rate. Influencing factors like an optimal shape or pattern of
a twitch, an optimal length or duty cycle, a meaningful time between twitches, or a
parallel stimulation with two stimulators, where one applies a vibratory stimulus and
the other one creates the twitches, are open questions.

Habituation to somatosensory input: Another issue that might hamper tactile BCIs
could be related to an inhibition of afferent tactile pathways. An example would
be putting on ones socks. At the beginning, the person still feels the socks, but
after a while, the signals are inhibited. Such sensory gating and inhibition inhibits
the response to irrelevant external stimuli, which is an essential part of the overall
cognitive system [221]. The pulvinar nuclei in the thalamus seems to play a major
role, deciding which signals reach the somatosensory areas of the brain and which
are inhibited [222]. A tactile stimulation over a prolonged time might therefore be
inhibited or at least attenuated.

Person specific influences: Another important aspect which might influence overall
BCI performance are individual differences. It is already known that people show
different tuning curves when applying vibratory tactile stimulation [194]. However,
the involved persons were randomly picked. Herweg et al. [202] investigated an
interesting aspect where participants with normal vision and blind people performed
the same tactile BCI experiment. It turned out that the blind subject group achieved
better results than the other. These findings are also in line with the findings from
Burton et al. [223, 224]. They determined an additional activation even in parts of the
occipital cortex in the blind subjects group when performing sensory tasks. It would
be interesting to know if an increased mental activity or a higher EEG amplitude
response would also occur in people who need higher tactile and sensory skills – like
piano players, for example.
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3.4. Hybrid Brain-Computer Interfaces based on Tactile
Stimulation

The last major part of this thesis was the setup of an hBCI system which involves tactile
stimulation and combines multiple processing streams to a final result. This hBCI was
further required to utilize the components developed in the common implementation
platform. An hBCI can use different strategies to merge processing streams to a final
result. One attempt is to switch between individual input channels, e.g., if the signal
quality of one channel becomes worse [167]. In another attempt, the results of the
individual input streams can be fused together to a final result. Various strategies are
already presented in literature how the results from hBCI processing streams can be
fused. These examples encompass fusing different tactile modalities [158, 225], fusing
the input from an EEG based BCI with EMG [169], fusing MI with electrocardiogram
(ECG) [226] or with P300 [227], or combining SSVEP with P300 [228, 229]. Moreover,
Fazli et al. [230] presents and reviews different data fusion techniques for SMR based
BCIs.
The hBCI developed in this thesis followed the second approach, fusing SSSEP with
a tactile tERP. In contrast to the findings of Severens et al. [158], it was possible to
classify SSSEP above chance in this thesis. As discussed above and also mentioned by
Severens et al., a potential major influence might have been the selection of person
dependent stimulation frequencies. Nevertheless, Severens et al. [158] showed that an
SSSEP component which is classified at the chance level hardly affected the final hBCI
performance. This is in line with the findings in this thesis or with the findings from,
e.g., Allison et al. [171].
In case of the hBCI in this thesis, the mental workload for the subject is the same
compared to a standard SSSEP or tactile tERP BCI based on attention modulation
and uses only one modality. Combining different experimental strategies to hybrid
systems is thus a reasonable step. An hBCI can increase classification accuracy or can
also ensure the BCI functionality if an input stream deteriorates.
Moreover, different fusion strategies can significantly increase the classification results,
as shown in this thesis [197]. Comparing the “combined fusion” with the “threshold
based fusion”, the combined approach outperformed the other. Considering the second
approach in more detail, it became visible that the threshold based fusion approach
using a probabilistic generative model [121] had a preference for one class; in this case
for the tERP class. This happened due to a different number of features being used by
the two classifiers. When applying fusion principles, the fusion approach thus has to
be picked with care to avoid effects such as the mentioned one.
Generally speaking, tactile BCIs can have advantages compared to other BCI strategies.
In most BCIs which use the visual system, the user needs to focus his view on a certain
stimulus, which requires muscular activity. However, some approaches exist which
do not require muscular activity. Nevertheless, in the vast majority of vision BCIs,
muscular control is mandatory. No muscular activity is needed in tactile BCIs in every
variant. Nevertheless, subjects reported it is hard to focus on a single stimulation and
it is even harder to focus on individual fingers. Current tactile BCI approaches are
thus limited in the maximum number of classes they can identify and thus also have a
low ITR compared, e.g., visual P300 BCIs.
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3.5. Relations to the State of the Art

Nowadays, most tactile BCIs rely on tERP features and an oddball paradigm. BCIs
which utilize steady-state signals are rare and seem to cause troubles. As described
by Severens et al. [158], classifying ERP resulted in a higher accuracy than classifying
SSSEP, which was hardly above chance for multiple subjects. Also in the BCI system
introduced by Müller-Putz et al. [116] only one subject reached excellent results. The
others were close to the chance-level as well. In contrast, successful tactile tERP based
BCI setups were demonstrated by Brouwer and Erp [85] or Herweg et al. [202], for
example. This thesis contributes to the current state of the art by showing a successful
BCI setup where the SSSEP modality also performs above chance. One of the main
differences to other studies was the screening for person dependent resonance-like
frequencies. Screening measurements were conducted for all subjects who participated
in experiments in this thesis. The assumption in this thesis is that the selection of
stimulation frequencies needs to be done for every person individually. The very first
study showed individual tuning curves and also person dependent resonance-like
frequencies [194]. Moreover, subjects who showed higher relative BPwr increase values
also achieved higher classification results in a BCI experiment [197]. However, first
results from another study accomplished in this thesis did not show any significant
correlation between the BPwr and the classification accuracy [231]. Nevertheless, these
results might stem from an insufficient number of subjects..
In any case, it is currently unknown if selecting an optimal stimulation frequency is
necessary to reach classification results significantly better than when using standard
frequencies like 23 and 26 Hz. Many things point to a relationship between the relative
BPwr increase and the classification rate of SSSEP features. As already mentioned,
Severens et al. [158] could not reach classification rates above chance for their SSSEP
component with standard frequencies. In their discussion, they also hypothesized that
this might be related to the fact that standard frequencies were used. In contrast, a
classification above chance was reached in this thesis for the SSSEP component too
[197]. It is thus strongly suggested to screen subjects for an optimal tactile stimulation
frequency to achieve reasonable classification accuracies.
At the current state of the art, the functionality of tactile BCIs for patients is un-
fortunately not fully proven. Severens et al. [232] compared a spelling task using a
Hex-O-Spell paradigm [233] with a tactile speller. The ALS patients achieved results
around 77 % with the Hex-O-Spell paradigm, which is above the suggested level of
70 % by Kübler et al. [51]. However, only a 66 % classification accuracy was reached
with the tactile speller. The results are thus lower than the ones which were achieved
with a visual speller for ALS patients with minor disabilities (92 % accuracy [234]), or
with major disabilities (79 % accuracy [235]). Mak et al. [236] showed that ALS patients
can even achieve a 100 % accuracy using a visual P300 speller. Kaufmann et al. [237]
compared the visual, the tactile, and the auditory modality with each other in a case
study with a locked-in patient. In contrast to the findings of Severens et al., Kaufmann
et al. showed the feasibility of a tactile BCI for a patient who did not profit from a
visual BCI. The usability of tactile BCIs for potential end-users looks promising, as
demonstrated by Kaufmann et al. [237], but is thus still a rather unexplored field.
Spitzer et al. [134] showed a very interesting phenomenon in their paper: an oscillation
which emerges after a tactile stimulation, but which occurs in a different frequency
range than the tactile stimulation itself. Yao et al. [161] turned this approach into
a tactile BCI utilizing the aforementioned oscillation. They finally created an hBCI
system by combining an MI task with the approach mentioned before. Furthermore,
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3. Discussion

Yao et al. [162] showed a successful BCI setup based on SAO (Somatosensory Atten-
tional Orientation), which does not require any tactile stimulation anymore. These are
different strategies for potential hBCI setups utilizing the somatosensory system.
However, there is still a multitude of other possible combinations. For example, up
to now, the blocking feature has only been investigated by Xu et al. [220] for BCIs
based on the visual domain and further by Pokorny et al. [146] for tactile BCIs. An
hBCI system, combining this blocking effect with other modalities would thus be
a reasonable next step. Investigating if the blocking affect still occurs in case of a
parallel stimulation, applying vibratory stimulation and the twitches separately, could
be another future direction. Moreover, bringing hybrid tactile BCIs and MI BCIs to-
gether, for example, as an MI, tERP and SSSEP based hBCI, would be another possible
combination which even uses three modalities. However, at this point it is unknown if
the workload for the subject would be still bearable. Nevertheless, Adler et al. [157]
demonstrated that the EEG amplitude increases in case of high perceptual load. A
high workload might thus even contribute to an increased classification rate, but this
is just hypothesized.

Considering the common implementation platform introduced in this thesis, it is
one step towards a common communication protocol. P. Brunner et al. [186] have
already criticized the lack of standardization among BCI systems. The interfaces
provided by the tools4BCI platform could introduce compatibility within different BCI
tools and thus facilitate and speed up research. LSL [238] provides another approach
to interconnect distributed BCI components with one interface. The underlying princi-
ple resides on multiple data sinks and sources, called “inlets” and “outlets”, which
synchronize the timing between the individual connected clients and continuously
trace the network delay. The whole LSL project is publicly available on GitHub4

and licensed under the MIT license. It can thus be used and extended without any
restrictions. Moreover, the project is still highly active with regular commits. However,
a brief latency benchmarking of LSL and TiD carried out recently revealed that events,
delivered by TiD, reach the even sinks earlier than packets, delivered by LSL under
the same conditions. It is thus upon the BCI developer to choose the right protocol
and to decide how crucial fast event delivery is.
Another approach, the so-called “DataRiver”, presented in “ERICA” [192], utilizes a
centralized data flow, which is more similar to the common BCI processing pipeline.
This implicitly removes synchronization issues, because data and events are trans-
mitted in one stream. However, this makes an interaction with external event sinks
which are not connected the data stream more difficult. Another popular framework
used in MRI and BCI research is “FieldTrip”. This framework [176] utilizes a cen-
tralized server approach, called the FieldTrip buffer5,6. However, FieldTrip mainly
addresses Matlab users. The communication protocol is open-source and publicly
available, but it is not the intention of the FieldTrip project to provide or standard-
ize a communication system between clients. This is an extract from the FieldTrip
website6: “We do not aim to provide or specify: (i) any kind of remote procedure calls, or
direct communication between clients, . . . , merging data from different acquisition systems”.
BCI2000 [177, 178] or OpenViBE [179] are also open-source and thus publicly available.

4LSL Repository (visited on July 16 2017)
5FieldTrip Overview (visited on July 16 2017)
6FieldTrip Protocol (visited on July 16 2017)
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3. Discussion

However, both BCI2000 and OpenViBE use custom message formats7,8,9, which also
fulfill application-specific needs. These message formats are thus hardly able to be
used as a common data or event delivery protocol. OpenBCI defines different data
formats (Cython and Ganglion)10,11, which could be used for data exchange, but these
formats are hardware specific and are not designed as a common protocol for different
BCI systems. OpenBCI follows the strategy to integrate their protocols in the data
acquisition component of OpenViBE or to act as a data source for LSL, for example.

3.6. Limitations

This sections summarizes the limitations of the individual studies and experiments as
well as the limitations of the common implementation platform. Some compromises
had to be made to realize the individual studies or implementations.

Subjects who participated in studies in this thesis were not all naive ones. Some
of them had already taken part in other BCI experiments and a few had even attended
a tactile BCI study. The overall results are thus a mixture of naive subjects and ones
with BCI experience. However, the experienced subjects did not attend a tactile BCI
experiment for at least several months before participating in an experiment in this
thesis. This fact reduces the limitation of a mixed subject pool.
Moreover, a tactile BCI would be most beneficial for patients who have lost their motor
skills, but who still have a working sensory system, like ALS patients. However, no
study was carried out in this thesis which involves patients. First screening results
from people in a vegetative state, discovered by Pokorny et al. [188], did not show
very promising results [188]. The decision to exclude patients was made due to limited
access to these people. Including experiments with potential end-users who would
benefit from such a BCI would definitely have been an enrichment for this thesis.
Another limitation was related to the mounting and positioning of the tactile stim-
ulators. An initial design with tactors being placed in a fixed shape of a hand was
redesigned to a flexible “clip-on” system, as presented by Pokorny et al. [146]. These
clips have the advantage of flexible and rapid mounting and can be placed individually.
However, with these clips, it is impossible to control the pressure which is applied
to the fingertips. This might have influenced the overall classification results. Due to
this limitation, the experiments were done in a single session and the subjects were
asked to wear the tactors during the whole measurement if possible to avoid any
repositioning.
Potentially existent higher harmonics of the stimulation frequency in the EEG were
not considered as well. This was done due to an already high number of unknown
parameters which could have influenced the BCI. The overall classification accuracy
might thus improve when using higher harmonics.

The common implementation platform is also limited at several points. Initially,
the framework was intended be used for realizing an hBCI within TOBI, which had
rather little requirements like supporting only one EEG amplifier with 16 channels.

7BCI2000 Signal Format (visited on July 16 2017)
8OpenViBE Architecture (visited on July 16 2017)
9OpenViBE Stream Structures (visited on July 16 2017)

10OpenBCI Cython data format (visited on July 16 2017)
11OpenBCI Ganglion data format (visited on July 16 2017)
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3. Discussion

The final tools4BCI project emerged out of these initial requirements and still carries
a couple of these initial limitations with it. A major limitation is based on the initial
design decision of a single and central TiA server which is attached to the data acqui-
sition and distributes the data to the connected clients. In contrast, LSL operates on
distributed data sources among a network and takes care of the synchronization.
In the SignalServer, the synchronization has to be done on a hardware layer. The
SignalServer and TiA do not carry out a synchronization of raw data based on times-
tamps. It is assumed that the acquired data is already synchronized. This is a big
limitation compared to LSL, for example, which at least provides a packet synchro-
nization that is necessary in case of distributed data sinks and sources. However, such
a synchronization can only synchronize packets to compensate a varying network
transmission delay. Even this kind of synchronization cannot cope with clock-drifts or
different data-acquisition delays within amplifiers.
In the common implementation platform an individual interface needs to be selected
for a specific stage in the BCI processing chain. At the moment, there is no abstraction
layer available which automatically detects the optimal interface type. Additionally,
TiA only provides one timestamp per packet. Sticking single samples within a packet
to individual timestamps is not possible yet. In case of block-based transmission, the
individual samples are assumed to be equally time-shifted according to the sampling
rate for the respective signal type.
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4. Summary and Conclusion

This thesis comprises online as well as offline BCI studies using the somatosensory
system and includes the development of a common implementation platform to realize
BCI and hBCI studies.

At the very beginning of writing this thesis, an hBCI was a new concept to set
up BCI system and improve the overall classification accuracy and user experience.
The BCI frameworks which were available at that time were mostly unable to fulfill
the new needs of hBCIs. The tools4BCI project, which is the result of the common
implementation platform, is now publicly available on GitHub and provides tools
which help to fulfill the new requirements. The definition of the introduced interfaces
might be the very fist step towards some standardization in BCI, and in future maybe
even in neuroscience data exchange. Tools like the framework developed in this thesis
or LSL could help connect formerly incompatible systems with each other.

The components developed for the common implementation platform were thor-
oughly tested and utilized in the BCI experiments to achieve the overall goal of this
thesis: the creation of a tactile hBCI system. Creating the components needed for
such an hBCI was one part. Different studies were also conducted to gain additional
knowledge in the rather unexplored field of tactile BCIs [163]. During the initial phase
of this thesis, merely one functional tactile BCI system utilizing SSSEP, developed by
Müller-Putz et al. [116], was described in literature. Thus, many things like stability
of patterns induced by tactile stimulation or the possibility to classify stimulation on
different fingers on one hand was unknown. With this thesis, additional knowledge
was gained from utilizing the somatosensory system for BCIs. Moreover, the gained
knowledge and the developed components of the common implementation platform
were finally assembled together to an hBCI experiment, demonstrating a successful
fusion of SSSEP and tactile tERP. It was also demonstrated that fusing different BCI
modalities can significantly increase the classification accuracy, and that single modal-
ities might be better suited for different classes, like a non-control state. Finally, the
results initially demonstrated by Müller-Putz et al. [116] were reproduced, in contrast
to the findings of Severens et al. [158], who achieved a random classification with the
SSSEP modality.
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5. Outlook

As mentioned multiple times, a lot of questions are still open when dealing with
tactile BCIs. Moreover, hBCIs are becoming more common, but are still a new concept
compared to the “classic” BCI. Additionally, computer science, or the development
in IT in general, is progressing rapidly. Considering the common implementation
platform, which stores the acquired data in files like .gdf [185], a new alternative might
appear with databases like influxdb1, which are designed to store time series. The
acquired data might even be stored in cloud environments, as already commercially
offered by Qusp2. Moreover, new programming languages, featuring highly paral-
lelized processing, like “Go”3 or “Rust” 4, could simplify the development of systems
with real-time capabilities. These languages offer an efficient and simple binding to
the C-interface, making the creation of different language bindings straightforward.
These trends might influence the overall communication within BCI systems and
might also influence the development of BCI systems in general. A potential future
step for the common implementation platform would be extending the functionality
of the SignalServer to store acquired data directly in such a time series database. Time
will show if a standardization will take place in BCI or neuroscience research.

One possible step concerning tactile BCIs would be to investigate the necessity of a
screening for optimal SSSEP stimulation frequencies in more detail. It was discovered
in this thesis that subjects who showed a high relative BPwr increase also achieved
higher classification results. However, it is unknown if these subjects would have
achieved comparable results with standard stimulation frequencies or if a screening
of both hands is necessary at all. Moreover, an influence of the stimulation position
or the stimulator itself on the classification performance was also not investigated.
Furthermore, testing the applicability of m-sequences for tactile BCI usage would be
another option. Generally speaking, principles which have already been investigated,
such as for SSVEP or visual P300 based BCIs, could be transferred and investigated in
the somatosensory domain.
Furthermore, hBCIs are still a very young field of research. Papers, describing dif-
ferent fusion strategies have started to become available the recent years. However,
many things like fusing tactile modalities are still unexplored. Pokorny et al. [146]
provided an insight into the effects of twitches during a tactile stimulation. However,
a blocking-feature effect of such twitches has not intentionally been used as a feature
for tactile BCIs yet. Moreover, it was shown in this thesis that SSSEP might be better
suited for detecting non-control states. Implementing a dedicated fusion approach
which considers such a class-preference of SSSEP might further increase the overall
performance.

1https://docs.influxdata.com/influxdb (visited on July 16 2017)
2https://qusp.io (visited on July 16 2017)
3https://golang.org/ (visited on July 16 2017)
4https://www.rust-lang.org (visited on July 16 2017)
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5. Outlook

In the opinion of the author, somatosensory hBCIs could be a reasonable alternative,
especially for BCIs which require a functional visual system and for potential end-
users who have no voluntary muscle control anymore. But it is uncertain if tactile BCIs
will reach performance values at the level of ITR or classification accuracy already
possible with visual P300 BCIs, for example. Moreover, the functionality of tactile BCIs
still needs to be fully shown for these user groups, but some findings, such as those in
Kaufmann et al. [237], already look promising.
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Müller, and D. Mattia. “Combining brain-computer interfaces and assistive
technologies: State-of-the-art and challenges.” In: Frontiers in Neuroscience 4

(2010), p. 161. doi: 10.3389/fnins.2010.00161 (cit. on pp. 1, 12).

[5] L. F. Nicolas-Alonso and J. Gomez-Gil. “Brain computer interfaces, a review.”
In: Sensors 12.2 (2012), pp. 1211–1279. doi: 10.3390/s120201211 (cit. on p. 1).

[6] A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, and N. Birbaumer. “Brain-
computer communication: unlocking the locked in.” In: Psychological bulletin
127.3 (2001), pp. 358–75 (cit. on p. 1).

[7] M. A. Lebedev and M. A. Nicolelis. “Brain–machine interfaces: past, present
and future.” In: Trends in Neurosciences 29.9 (2006), pp. 536–546. doi: 10.1016/
j.tins.2006.07.004 (cit. on p. 1).

[8] G. Pfurtscheller, D. Flotzinger, and J. Kalcher. “Brain-Computer Interface—a
new communication device for handicapped persons.” In: Journal of Micro-
computer Applications 16.3 (1993), pp. 293–299. doi: 10.1006/jmca.1993.1030
(cit. on pp. 1, 13).

[9] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlögl,
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A Concept to Standardize Raw Biosignal Transmission for
Brain-Computer Interfaces

Christian Breitwieser, Christa Neuper, Gernot R. Müller-Putz

Abstract— With this concept we introduced the attempt of a
standardized interface called TiA to transmit raw biosignals.
TiA is able to deal with multirate and block-oriented data trans-
mission. Data is distinguished by different signal types (e.g.,
EEG, EOG, NIRS,. . . ), whereby those signals can be acquired
at the same time from different acquisition devices. TiA is built
as a client-server model. Multiple clients can connect to one
server. Information is exchanged via a control- and a separated
data connection. Control commands and meta information are
transmitted over the control connection. Raw biosignal data is
delivered using the data connection in a unidirectional way. For
this purpose a standardized handshaking protocol and raw data
packet have been developed. Thus, an abstraction layer between
hardware devices and data processing was evolved facilitating
standardization.

I. INTRODUCTION

Various brain-computer interface (BCI) systems have been
built since 1973 when the idea of a BCI was mentioned the
first time by Vidal [1]. All those BCIs have the similarity
to deal with brain signals, a small subset of biosignals.
To compare and summarize commonalities in BCI systems,
Mason and Birch presented a common BCI structure in
2003 [2], shown in Fig. 1. The BCI was divided into distinct
modules, each one with a specific responsibility inside the
BCI processing chain. Those modules are connected with
different interfaces, which can be seen as the key principle
for standardization processes for BCI systems.
Tackling the first interface between “Amplifier” and “Feature
Extractor”, as shown in Fig. 1, commonalities like acquisition
of various channels or a defined sampling rate can be found
in different BCI system like OpenVibe [3], BCI2000 [4], rts-
BCI [5], or xBCI [6]. Every one of those systems acquire data
and transmit it for further processing. But as no standardized
interface definition between acquisition and the first process-
ing module is available, partly incompatible systems are the
result. BCI systems dealing with other signal types than just
brain signals like EEG (electroencephalogram) or NIRS (near
infrared spectroscopy) are also mentioned in literature [7]–
[11]. Such systems, called hybrid BCIs (hBCI), deal with
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Fig. 1. Functional model from Mason and Birch (modified from [2]).

different types of user inputs to form a more flexible BCI by
also including assistive technology (joysticks, buttons,. . . ).
To deal with different kinds of signals in a standardized
way, some kind of abstraction is needed. Additionally the
type or manufacturer of a respective data acquisition source
should be completely irrelevant for the following processing
chain. Such a standardized abstraction layer would enhance
flexibility and autonomy concerning used hardware.
Therefore an attempt of a standardized interface for raw
biosignal transmission, especially for BCIs, called TiA (Tools
for BCI – Interface A) was developed. With this interface
it is possible to deal with different kinds of biosignals in a
common way. It is a first step to decouple the data acquisition
system from the BCI processing chain and provide ensured
exchangeability.

II. REQUIREMENT ANALYSIS AND DESIGN

Different BCI systems have already been built using pure
brain control as well as hybrid combinations. EEG [12], mag-
netoencephalogram (MEG) [13], the NIRS signal [14], or
the blood oxygen level dependent (BOLD) signal [15] have
already been utilized to control a BCI just using mentioned
brain signals. Developing hybrid BCI systems, the number of
potential kinds of possible signals further increases. Signals
like the electromyogram (EMG) [10] and the electrocardio-
gram (ECG) [16] have already been successfully combined
with EEG to control a hybrid BCI. But also other signals like
electrooculogram (EOG) or information delivered by various
assistive devices (e.g. buttons or joysticks) or sensors could
be used in combination with an arbitrary brain signal to form
an hBCI system.
TiA evolves an abstraction layer between data acquisition
and data processing. Therefore, a standardized possibility to
distinguish between different kinds of signals beyond this
abstraction is an important issue. For that purpose so-called
“Signal Types” were introduced, allocating every different
kind of signal a unique identifier.
When analyzing different kinds of signals transmitted be-
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tween data acquisition and data processing, various com-
monalities can be found. Signals are, or can be, divided into
channels with related channel names and a defined scaling.
Those channels can have a position or location and are
acquired with a defined sampling rate. Single samples can
be grouped together, forming blocks of samples.
Mason and Birch [2] showed a unidirectional transmission
(see Fig. 1) from data acquisition (amplifier) to the first
processing module (feature extraction). Using a client–server
architecture is one possibility to address such a principle.
In this case the data acquisition plays the server role and
processing modules are the respective clients. Applying the
client–server principle in this case easily facilitates the usage
of multiple and potentially distributed processing chains
(Mason and Birch merely show one processing chain in their
models).

A. Design Principles

Information transmitted via TiA can be distinguished into
two categories: (i) mutable and (ii) immutable information.
Therefore, the data distribution is also split into two parts,
initial meta information transmission to transmit immutable
information and a continuous data stream to transmit mu-
table data to the client. Control messages using a defined
handshaking protocol are used to transmit meta information.
Mutable data (e.g., recorded voltage from an EEG channel) is
delivered using a unidirectional binary data stream from the
server to the client. Using the client–server principle similar
or individual data streams can be established to multiple
clients, only depending on the transmitted meta information.
It is possible for an arbitrary number of clients to attach to
the server at runtime. The client–server principle used for
TiA is illustrated in more detail in Fig. 2.
A whitepaper concerning design and implementation of TiA
(e.g., signal type flags) is available for download at arXiv.org
[17].

EEG-HW

UDP

TCP

UDP

TCP
UDP Client

Server

(e.g. scope)

Data Connection
Sockets

EEG Hardware
Communication

Data Connection

Control Connection

TCP

Control Connection

Sockets

TCP

TCP Client

Data Connection

Control Connection

EMG-HWEMG Hardware
Communication

TiA

(e.g. Matlab)

TCP

TCP

TCP

TCP

incoming

outgoing

out

in

out

in

Datapackets

Control Messages

Control Msg. Reply

Fig. 2. TiA principle showing one server and two clients. An arbitrary
number of clients can connect to the server choosing TCP or UDP for raw
data transmission.

B. Software Design
A single data acquisition system, implementing the TiA

interface, acquires data from different hardware devices. To
set up a connection, HTTP-like (hyper text transfer protocol
[18]) control messages are sent using two TCP (transmission
control protocol [19]) connections. Messages sent over those
connections are used for handshaking between client and
server. Meta information can be optionally appended to this
control messages. For mutable raw data transmission, a
TCP or UDP (user datagram protocol [20]) connection can
be chosen during the handshaking process.
The handshaking process is handled with two separated
connections, whereby one connection is client–server
oriented and the other one has a server–client orientation.
The client–server connection is a mandatory requirement
in TiA, supporting the server–client connection is optional.
Incoming messages are always answered using the same
connection on which the message was received.

TiA Server TiA ClientTiA

incomming TCP connection outgoing TCP connection

1 2
load config, server start client start

3 request meta information from server

4send meta information

5 use TCP or UDP data transmission

6transmit server port

7
TCP: connect to assigned server port
UDP: listen to assigned port

8 start data transmission

9RAW data stream

10 stop data transmission

close connection to
respective client

close connection
to TiA server11 12

Fig. 3. TiA – client–server handshake. Steps 3–8 and 10 are done using the
client–server control connection. During step 9 information is transmitted
over the data connection; it represents the raw data stream from the server
to the client.

1) Handshaking Process: Fig. 3 illustrates the steps
between client–server communication. Information exchange
is represented using arrows. Every message is transmitted
in a standardized way using defined control messages and
data packets. During steps 1 and 2 the client and server
are started. In case of an error the startup is interrupted. In
step 3 the client requests meta information from the server,
the server responds with the meta information in step 4.
For raw data transmission the client can choose whether
to receive data via TCP or UDP. The desired raw data
transmission protocol is sent to the server during step 5.
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The server responds in step 6 with the respective port the
client has to connect to (in case of TCP) or to listen to (in
case of UDP). Subsequently in step 7 the client establishes
a connection to (TCP) or starts listening (UDP) for data
packets on the assigned port. To start data transmission, the
client sends a message to the server during step 8. Starting
in step 9, the server starts transmitting data packets to the
client (the data packet is the same for TCP and UDP). In
case of UDP, packets are broadcasted. The first connected
client requesting UDP starts the broadcast and the last client
disconnecting from the server stops the broadcast. If the
client does not want to receive any more messages, a stop
command is sent to the server during step 10. In case of
TCP no more packets are delivered using the respective data
connection. In case of UDP the broadcast is only stopped
if the respective client was the last one requesting UDP.
Otherwise UDP packets are further broadcasted. During
step 11 the respective client is removed from the servers
list of connected clients. Subsequently, in step 12, the client
closes both the data and control connections to the server.
This handshaking procedure is mandatory to establish a
connection. In case of an error during this handshaking
procedure no connection is created.

2) Data Transmission: Mutable raw data is transmitted
via TiA data packets using a binary data stream. Acquired
data is encapsulated within those data packets. An exemplary
data packet is visible in Fig. 4.

IP Header

UDP or TCP Header

EEG ch 1 (s 1) EEG ch 2 (s 1) EEG ch 3 (s 1)

EEG ch 4 (s 1)

EMG ch 1 (s 1) EMG ch 1 (s 2)

TiA Data packet header

TiA Data packet header:

EEG ch 5 (s 1)

EMG ch 1 (s 3)

EMG ch 1 (s 4) EMG ch 2 (s 1) EMG ch 2 (s 2)

EMG ch 2 (s 3) EMG ch 2 (s 4)

EEG

EMG

EOG, ECG,...

(blocksize = 1,
several channels)

(blocksize = 4,
2 channels)

uint8 Version

uint32 Size uint32 Flags uint64 PacketNr

uint64 ConnectionPacketNr

uint64 Timestamp

data data

uint16 []
SamplesPerChannel

uint16 []
NrChannels

fixed header

variable header

data

Fig. 4. Graphical representation of a TiA data packet. EEG and EMG
content is shown as an example. EEG ch 1 (s 1) is an abbreviation for the
signal type EEG, the first channel and the first sample. The block size for
EEG is also one. For EMG an exemplary block size of four is used.

a) TiA Data Packet: The TiA data packet consists of
three parts: (i) a fixed header; (ii) a variable header; and
(iii) the raw data. By interpreting information stored in the
fixed and variable header it is possible to correctly parse
and read the whole data packet. The packet is equipped with
a timestamp, a packet number, and a unique identifier per
connection to facilitate proper timing and detect lost packets
using UDP data transmission. Every signal type inside the
data packet is identified with a unique flag. The number of

channels and the block size can vary from packet to packet,
but within TiA, a constant number of channels over time
is assumed. Within the data packet raw data is stored as a
32 bit binary single precision floating point number (IEEE
754-2008 [21]). As a distinction between different signal
types is possible within the data packet, data acquisition
of multiple signal types at the same time and transmission
within one data packet is possible. Different signal types
can have different sampling rates and different block sizes,
but within on signal type the sampling rate and the block
size must be the same. Furthermore a single hardware
device can acquire just one or also multiple signal types, as
far as prior requirements are fulfilled. Detailed information
concerning the data packet is available at arXiv.org [17].

b) Data Stream: A client has to perform the TiA hand-
shaking process before receiving any data packets and has to
choose either TCP or UDP for data transmission. Potential
lost packets in case of UDP are not re-sent. If guaranteed
data transmission is required, TCP has to be chosen. Using
TCP for data transmission, a separate TCP connection from
the client to the server is established and data packets are
sent via this connection. The TiA data transmission is also
restricted in some sense: for a single signal type only one
block size and one sampling rate is allowed. But different
signal types may have different sampling rates and block
sizes.

III. IMPLEMENTATION AND TESTING

A. Implementation

A library and a first prototype called “signal server”
using this TiA library, both written in C++, have
been implemented and are available for download
(http://bci.tugraz.at/downloads.html). The implementation is
cross platform (Windows and Linux). During implementation
a main focus was performance and stability. Up to now
various hardware devices like generic joysticks and
amplifiers from g.tec [Guger Technologies OG, Graz,
Austria] and Brain Products [Brain Products GmbH,
Gilching, Germany)] are supported by the signal server.
To use those devices for BCIs, different clients using
TiA have been written for Matlab [The MathWorks Inc.,
Natick, USA], Matlab Simulink, and BCI2000 [4]. Thus it
is possible to stream data into these systems using TiA.

B. Testing

Testing measurements were accomplished using common
personal computers (HP dc7700 workstation, Intel Core2Duo
6300@1.86 GHz, 4 GB Ram, Nvidia GeForce 9500 GT,
Western Digital WD1002FAEX) using Windows Xp 32 bit
and Debian unstable 64 bit.

1) Stability and Memory Consumption: The signal server
was tested with a TiA client, both running on the same
machine or on two different PCs connected via Ethernet.
Long-term tests, lasting at least 10 hours, were performed
under Linux (Debian unstable) and Windows XP to check
for stability problems. In Linux additional memory leak tests
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using valgrind [22] were conducted. The tested version of
the signal server and the TiA client showed no increasing
memory consumption in ten tests on both operating systems.
The required memory was constant also after a continuous
operation longer than ten hours. This was achieved in both
operating systems. No memory leak was detected by valgrind
under Linux when closing the server or the client. The
memory consumption of the server was always below 1ṀB,
the client required less than 15 MB. The higher memory
consumption of the client is caused by its receive buffer
for incoming data packets. This value has been increased in
comparison with the server to prevent the client from loosing
data packets in case of reading delays.

2) Processing Time: A low processing time during data
acquisition is essential. Acquired data has to be delivered
as fast as possible to the clients. The processing time was
measured from creation of a data packet (nearly the moment
when data is read out from the respective data acquisi-
tion driver) until it’s handover to the operating systems
networking library functions. The timestamp stored inside
the data packet was utilized to measure the delay. Packets
were created with 10 kHz and 128 channels to simulate a
high workload and sent using TCP over the loopback device
(a virtual local network interface). Statistical values were
computed over five minutes (resulting in 3 · 106 packets),
the computer was idle except the signal server and client
processes. According to the results, shown in Tab. I, the
maximum packet rate for the signal server would be roughly
40 kHz (with a mean processing time of 25 µs per data
packet). Using a higher sampling rate, new data would be
available before older one was completely processed.

TABLE I
PROCESSING TIME OF A SINGLE TIA DATA PACKET.

mean std median min max
Debian 19 µs ±3 µs 16 µs 7 µs 2817 µs
Windows 23 µs ±18 µs 18 µs 9 µs 3741 µs

IV. DISCUSSION

We have shown that it is possible to introduce an attempt
of a standardized layer between the data acquisition module
(Amplifier) and the first data processing module (Feature
Extractor) into the functional model described by Mason and
Birch [2]. A library and a data acquisition software have been
written for this purpose and have been successfully integrated
into different programs used for BCI purposes nowadays
(BCI2000, Matlab). Performance and stability of the current
implementation has been analyzed. Furthermore, using TiA,
it is a simple process to add additional signal types.
By using TiA it becomes possible to decouple a BCI system
from the used data acquisition hardware and make one step
towards Masons standardized BCI model.
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Proposing a Standardized Protocol for Raw
Biosignal Transmission

Christian Breitwieser, Ian Daly, Christa Neuper, and Gernot R. Müller-Putz∗

Abstract—In this paper, we propose a standardized interface
called TiA (TOBI interface A) to transmit raw biosignals, support-
ing multirate and block-oriented transmission of different kinds
of signals from various acquisition devices (e.g., EEG, electroocu-
logram, near-infrared spectroscopy signals, etc.) at the same time.
To facilitate a distinction between those kinds of signals, so-called
signal types are introduced. TiA is a single-server, multiple-client
system, whereby clients can connect to the server at runtime. Infor-
mation transfer between client and server is divided into control
and data connections. The control connections use transmission
control protocol (TCP) and transmit extensible-markup-language
(XML)-encoded meta information. The data transmission utilizes
a user datagram protocol (UDP) or TCP with a binary data stream.
A standardized handshaking procedure for the connection setup
and a standardized binary data packet has been defined. Thus, a
standardized layer, abstracting used hardware devices and facil-
itating distributed raw data transmission in a standardized way,
has been evolved. A cross-platform library, implemented in C++,
is available for download.

Index Terms—Biosignal, brain–computer interface, ECG, EEG,
electromyogram (EMG), electrooculogram (EOG), multirate,
NIRS, standard, transmission.

I. INTRODUCTION

BRAIN–COMPUTER interfaces (BCIs) facilitate user in-
teraction with a computer by processing different kinds of

brain signals [1]. Different BCI systems [2] have been devel-
oped since a BCI was first mentioned in the literature by Vidal
in 1973 [3]. Some of those systems are publicly available, for
example, BCI2000 [4], OpenViBE [5], rtsBCI [6], xBCI [7], or
FieldTrip [8], and some others are just internally used within
individual groups, for example, Reading BCI [9] or Strathclyde
BCI [10]. Each of these systems solves the working principle of
a BCI system in its own way.

In [11], Mason and Birch introduced a common structure for
BCI systems. Here, the common BCI “processing pipeline”—
originally divided into the sections: 1) data acquisition,
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Fig. 1. Functional model from Mason and Birch (modified from [11]).

2) preprocessing, 3) feature extraction, 4) classification, and
5) application—was modified and extended with a control in-
terface, a device controller, and a device (see Fig. 1). Taking a
closer look at the mentioned BCI systems, they can all be de-
scribed with Mason and Birch’s model. However, as a result of
this diversity in BCI systems, it is becoming increasingly diffi-
cult for groups to collaborate with one another. This is despite
the different systems fitting into the functional model shown in
Fig. 1. In practice, this means that one of the groups has to switch
to another system or partly reimplement/adapt their system to
establish compatibility. As an example, adding new data acqui-
sition (DAQ) hardware can be a huge effort for small systems
with limited manpower behind their development. Furthermore,
it is difficult for new hardware manufacturers to ensure com-
patibility with different BCI systems, as the support for their
hardware has to be implemented first.

Mason and Birch showed in their work that BCI systems can
be divided into individual modules, connected by individual
interfaces (see Fig. 1). Furthermore, a number of the aforemen-
tioned popular BCI systems are all built in a modular way. For
example, BCI2000 is constructed from three modules: signal
acquisition, processing, and feedback; OpenViBE has modules
devoted to acquisition, preprocessing, processing, and visual-
ization of biosignals.

In this study, we tackled the first interface shown in
Mason and Birch’s model between “amplifier” and “feature ex-
tractor.” Therefore, we attempted to introduce a standardized
open-source protocol to transmit raw biosignal data. Such an
interface would make BCI systems or, in general, systems pro-
cessing biosignals independent of the specific amplifier used and
introduce an abstraction layer. People would benefit from this
standardization in various ways, shown in different exemplary
scenarios.

Scenario 1: A new company wants to establish themselves
in the market with a new product. Currently, they have to wait
until their hardware is supported by the respective software
systems, i.e., they have to wait for the developers of BCI2000 or
OpenViBE to do the implementation. Using TiA, they merely

0018-9294/$26.00 © 2011 IEEE
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have to wrap their hardware driver with the TiA library and
they are then automatically supported by every software system
which is able to operate with TiA.

Scenario 2: A BCI researcher wants to try out some new
hardware device with a customized system he or she has written.
Without TiA, a lot of implementation to support the new device
would be necessary, and the researcher would have to write his
or her own module to interface with the new hardware device.
However, if the researcher has already implemented a module in
his or her system for supporting the TiA interface, then, so long
as the new hardware device also supports TiA, a new device
may be added to the system with minimal effort.

Scenario 3: A BCI developer wants to use components from
two different BCI toolboxes, e.g., a preprocessing toolbox from
BCI2000 in conjunction with a DAQ module from the Open-
ViBE toolbox. In this case, both the respective modules would
have to be adapted to support one another. As TiA is an open
source, the existing library can be integrated in BCI2000 act-
ing as a client and in OpenViBE acting as a server. Thus, the
OpenViBE data acquisition would also be usable with BCI2000.

However, there are already different protocols available to dis-
tribute raw data over the network. Proprietary examples would
be, e.g., the brain products RDA protocol (Brain Products,
Gilching, Germany); the Electrical Geodesic Amp Server (Elec-
trical Geodesics, Inc., Eugene, OR); the Neuroscan amplifier
communication protocol (Compumedics Neuroscan, Charlotte,
NC); or the BioSemi ActiView + National Instruments Lab-
View (BioSemi B.V., Amsterdam, The Netherlands+National
Instruments Corp., Austin, TX). Usually a single proprietary
protocol together with its acquisition software is bound and
limited to hardware from the respective manufacturer and does
not support devices from other manufacturers. Open-source al-
ternatives would be the communication used within BCI2000
or OpenViBE, but they are extremely bound to the respective
software framework (e.g., the internal BCI2000 states are use-
less for other BCI systems). As TiA is a flexible open-source
approach, it would enhance compatibility between BCI toolbox
modules and amplifiers, allowing users more freedom to mix
and match modules.

Furthermore, according to the work of Brunner et al. [12],
standardization is still an open issue within basic and clinical
BCI research. TiA, as already briefly introduced in [13] would,
therefore, be a first step toward such standardization, enhancing
flexibility, and compatibility as shown in the aforementioned
scenarios. TiA would save a lot of time and manpower allowing
researchers to focus more on their actual work and less on
writing code to support new hardware devices.

II. METHODS

BCI systems can be built using various brain signals. In-
cluding hybrid systems [2], [14], the number of potential signal
sources further increases the number of different kinds of signals
that may be used for BCI purposes. Various brain signals have
been used up to now for BCI purposes such as the EEG [1], mag-
netoencephalography signals [15], near-infrared spectroscopy
signals [16], or the blood oxygen level-dependent signal [16].

Fig. 2. Client–server principle for two exemplary clients (scope and MATLAB
[The MathWorks Inc., Natick, MA]) using TiA. Multiple clients can connect to
one server using a user datagram protocol (UDP) or transfer control protocol
(TCP) data connection. The server is able to acquire data from various hardware
devices at the same time. Both control connections for incoming and outgoing
messages and the data connections are shown for both clients (see legend).

Furthermore, also hybrid BCIs have already been created us-
ing biosignals such as the electromyogram (EMG) [18] or the
ECG [19]. Additional potential candidates might be the elec-
trooculogram, input from different sensors, or signals from var-
ious assistive devices like buttons or joysticks.

To establish an interface that facilitates an abstraction for all
these different types of biosignals, commonalities have to be
analyzed. A distinction beyond this abstraction layer must still
be possible, so all transmitted signals have to be divided into
so-called signal types. Information concerning a specific signal
type must not get lost during the abstraction process.

A. Requirements Analysis

Different signal types exhibit common and different attributes
(e.g., impedance, channel position, etc.). Comparing different
signal types used for BCI purposes, similarities concerning their
usage and acquisition have been found. These similarities are a
separation into distinct channels, individual channel names and
channel positions, and a defined data or sampling rate with a
defined scaling. Data might also be grouped together forming
blocks of samples.

As seen in Mason’s model [11] (see Fig. 1), the connection
from data acquisition (amplifier) to the first processing mod-
ule (feature extraction) is unidirectional. A meaningful way to
establish such a communication principle is a client–server ar-
chitecture, whereby the data acquisition can be seen as a server
and connected processing modules as clients, shown in Fig. 2.
Mason’s model shows only a single processing chain. Using
a client–server system, multiple processing streams can easily
be built. This interface between the data acquisition and the
following processing modules is called TiA. It is an interface
to transmit raw biosignals from different sources with different
signal types at the same time.
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B. Design Principles

TiA is built as a single-server, multiple-client system. Thus,
one server acquires data from all hardware devices and is, there-
fore, responsible for synchronization. A multiserver approach
(multiple servers acquiring data from a single device) would
allow more flexibility, as servers can be distributed over dif-
ferent computers and/or operating systems. The drawbacks are
an increased and complex configuration and connection proce-
dure as well as difficult synchronization issues. Due to this, a
single-server system was chosen as a DAQ principle.

Analyzing information exchange between server and
client(s), two types of information can be found: 1) mutable
and 2) immutable. It is sufficient to transmit immutable infor-
mation (e.g., channel names) during the connection setup and
mutable information (e.g., channel values) as a data stream.
Therefore, mutable raw data are distinguished from immutable
meta information and transmitted in different ways. Meta infor-
mation is encapsulated inside control messages with a defined
handshaking protocol; raw data are transmitted via a binary data
stream. The single-server system is able to deal with an arbi-
trary number of clients at runtime. In the case of multiple data
sources, running potentially with different sampling rates, TiA
is not in charge of data synchronization. This has to be done
within the data acquisition part, passing already synchronized
data to TiA. A schematic representation can be seen in Fig. 2.

The latest documentation for TiA (e.g., signal type flags) can
be found at arXiv.org [19] and http://www.bcistandards.org.

C. Software Design

Data acquisition is done using a single server acquiring data
from all needed devices, while clients can attach to the server at
runtime. The communication is divided into a hypertext trans-
fer protocol (HTTP) [20] oriented control communication (us-
ing two TCP sockets) with optional meta information encoded
in extensible markup language (XML) [21] (sending control
messages) and raw data transmission. To facilitate distributed
processing, the whole communication is handled using network
sockets. Using TCP, it is ensured that no control message gets
lost. Two TCP sockets are used, whereby one socket processes
incoming messages from the client and the second can be used
to send messages to the client. Every message is answered with a
reply message, sent over the same socket at which the incoming
message was received on. Using the server outgoing message
socket, it is possible to inform connected clients about errors
that occurred or important notifications. Using the server’s out-
going socket from the client side is voluntary; a connection to
the server’s incoming socket is a mandatory requirement. Con-
cerning the data connection, every client is free to choose either
TCP or UDP [22], [23]. TCP can, therefore, be chosen, if reli-
able data transmission is mandatory (e.g., BCI data processing)
and UDP if a potential packet loss is an acceptable issue (e.g., a
scope application for monitoring the biosignal data stream).

1) Handshaking Process: Fig. 3 shows the handshaking pro-
cedure between a server’s incoming TCP connection and a single
client. Every arrow between the client and the server represents
networking activity; the communication is done via defined con-

Fig. 3. TiA: Client–server handshake for the servers incoming TCP connec-
tion. Step 9 can be repeated indefinitely.

trol messages. Messages from the outgoing server connection
are permitted at any time.

The client and server are started during steps 1 and 2 (startup
is interrupted if an error occurs). In step 3, the client sends
a meta information request to the server. In step 4, requested
meta information is delivered by the server. The client is free
to choose either TCP or UDP for data transmission. In step 5,
this information is transmitted to the server. In step 6, the server
responds with the respective port. During step 7, in the case of
TCP, the client connects to this port or in the case of UDP, it
starts listening on this port. In step 8, data transmission is started.
Following this message, the server starts streaming raw data to
the client during step 9 (UDP data packets are broadcasted into a
given subnet). In the case of UDP, data broadcast is established
by the first client. In step 10, data transmission is stopped. UDP
broadcast is stopped if the last client sends the stop message.
In the case of TCP, no more packets are transmitted over the
respective connection. Steps 11 and 12 are used for server- and
client-specific shutdown procedures (close connections, remove
client from list, etc.).

A successful handshaking is a mandatory requirement to es-
tablish a connection; otherwise, the procedure is aborted. In the
case of dropped connections, the data transmission is stopped
to the respective client and its connection is shut down.

2) Data Transmission: During step 9 (see Fig. 3), raw sam-
ples are transmitted via a binary data stream. Sampled data are
encapsulated in data packets (see Fig. 4).
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Fig. 4. Data packet structure. Exemplary content with EEG and EMG are
shown in this figure. EEG ch 1 (s 1) represents a signal from type EEG, channel 1,
first sample; block size is 1. For the signal type EMG, blocked samples are shown
with a block size of 4. Borders between fixed and variable headers and data are
highlighted with bold lines.

a) Data packet: The data packet is divided into three
parts: 1) a fixed header, 2) a variable header, and 3) the raw
data. The whole data transmission is using little-endian byte or-
der [24]. All variables inside the fixed and the variable headers
are unsigned integers (uint) with a different number of bits (e.g.,
uint16, i.e., unsigned integer using 16 bits).

The first variable inside the fixed header is the version num-
ber (uint8 Version) of the data packet. This variable is used to
prevent an older client from reading a newer packet. The sec-
ond variable (uint32 size) contains the size of the data packet
in bytes. Thus, it is possible to determine whether a packet has
already been completely received. The third variable (uint32
Flags) is used to indicate which signal types are stored inside
the data packet. Every bit inside this integer represents a defined
signal type. The packet number is stored in the fourth variable
(uint64 PacketNr) and is a running ascending number, which is
increased when a new data packet is produced. A data packet
can be identified in the whole BCI system by its packet num-
ber. In the case of downsampling, the packet number is always
increased by the downsampling factor. By this, also a down-
sampled data stream can still be aligned with the original data
packets. The fifth variable (uint64 ConnectionPacketNr) is a
unique number per client–server connection. Thus, it is possible
to identify lost packets. This is useful when using UDP because
here no guaranteed transmission is given. The sixth and last vari-
able (uint64 Timestamp) inside the fixed header is a timestamp
storing elapsed microseconds since the data acquisition starts.
This ensures accurate timing information within a potentially
distributed BCI system.

The variable header consists of two arrays storing uint16 vari-
ables. The number of uint16 values is the same as the number of
signal types stored in the data packet. Both arrays always have
the same length. The first variable array (uint16[] NrChannels)
holds the number of channels for every signal type stored in the
data packet. The second variable array (uint16[] SamplesPer-

Channel) stores the block size for every signal type stored in the
respective data packet.

The length of both arrays can be determined by counting the
amount of flags set in the fixed header. Combining the informa-
tion from the fixed and variable headers, it is possible to parse
the raw data section.

Following the variable header, the raw data are stored in
samples in the data packet. Every sample is stored as a
32-bit binary single precision floating point number as defined
in IEEE 754-2008 [25]. Signal types are stored in ascending
order by means of their flags. If block-oriented transmission is
used, samples are grouped into blocks from the same channel
(e.g., block size = 2: ch1s1 ch1s2, ch2s1 ch2s2, etc.). Channels
are sorted in ascending order by means of their channel number.
Only one block size and one sampling rate are allowed per sig-
nal type. The number of channels from a signal type must not
change during data acquisition.

The data packet is designed to be flexible in its use. Different
signal types can have different sampling rates or different block
sizes. Using a binary representation for the data packet reduces
the needed bandwidth in case of a network transmission and
facilitates higher sampling rates or a high number of acquired
channels. By distinction between different signal types, data
acquisition and transmission from different sources at the same
time are easily possible.

b) Data stream: The data packets are delivered to attached
clients in a unidirectional stream-oriented way. A client sub-
scribes to the server for TCP or UDP data transmission. In the
case of UDP, the data are broadcasted into a defined subnet with
a defined port. The client itself has to take care to be inside this
subnet. If the last UDP client unsubscribes from the server, UDP
broadcasting is stopped. Lost packets are not resent into the sub-
net. For guaranteed data transmission, TCP has to be used. UDP
data transmission is mainly provided for applications without
the need to receive all data packets (e.g., scope application).
In the case of TCP transmission, a single TCP connection is
established between the server and every TCP client. A unique
TCP port is assigned to every client and automatically transmit-
ted during the initial handshake. A client-specific signal type,
channel, and/or sampling rate selection is possible because of
individual connections.

TCP packets are sent without Nagle’s algorithm (conges-
tion control) [26]. This ensures a data packet to be transmitted
(nearly) immediately. Unfortunately, TCP traffic is not opti-
mized by deactivating this algorithm.

TiA is used for testing and demonstration purposes in DAQ
software called “SignalServer.” The SignalServer is imple-
mented in C++, is cross-platform, and supports multirate data
acquisition from different sources at the same time.

D. Implementation—The SignalServer

The SignalServer, a cross-platform DAQ system, was im-
plemented in C++ using the TiA library. It was designed to
support multirate acquisition from different hardware devices at
the same time with the focus on performance and stability.
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E. Testing

To ensure the functionality of TiA and the SignalServer, var-
ious tests have been accomplished.

1) Performance and Network Delay: Performance measure-
ments were done using a modern state-of-the-art PC (HP dc7700
workstation, Intel Core2Duo 6300@1.86 GHz, 4 GB RAM,
Nvidia GeForce 9500 GT, Western Digital WD1002FAEX)
using Windows Xp 32 bit and Debian unstable 64 bit. The
CPU load and memory consumption were logged running the
SignalServer under both operating systems. Tests were done in
all possible combinations (Debian/Debian, Debian/Win, etc.).

Delivering acquired signals over a network connection, espe-
cially its latency has to be investigated in this case. Network la-
tency was analyzed using a 1-Gbit Ethernet connection between
two PCs (cable length 2 m), one running the SignalServer and
the other one a simple client. In case of a packet transmission or
a packet reception, the server and the client inverted a single pin
on a parallel port. Thus, packet delay over the network could be
measured by detecting rising and falling edges on the parallel
port. Signals from respective pins from both parallel ports were
recorded with a sampling rate of 25 kHz. Packets containing
data from 250 artificial channels were sent with a packet rate of
100 Hz (this rate was chosen due to hardware limitations of the
parallel port and its steepness of rising and falling edges).

To investigate the effects of additional network load, internet
control message protocol (ICMP) packets [27] were sent with a
fixed size and packet rate to generate a consistent load of 1 Mb/s
(congestion control is deactivated by default in TiA to achieve
near-real-time packet delivery).

For testing purposes, a C++ TiA client was implemented
for just acquiring data packets over a network connection. CPU
load, memory consumption, and network load were logged. An
additional test was carried out with a packet rate of 2 kHz and
250 artificial channels to determine changes in CPU and memory
usage compared to a packet rate of 100 Hz (parallel port signal
was not recorded).

2) Processing Time: A short processing time (far below the
data packet rate) inside the SignalServer and TiA is essential.
Acquired data have to be delivered as fast as possible to the
clients. The processing time was measured from creation of
a data packet (which is the moment when data are read out
from the respective DAQ driver) until it is handed over to the
networking library functions. The timestamp stored inside the
data packet was utilized to measure the delay. Packets were cre-
ated with the rate of 10 kHz and 128 channels and sent using
TCP over the loopback device. Statistical values were com-
puted over 5 min (resulting in 3 × 106 packets); the computer
was idle except the SignalServer and client processes (Debian
unstable 64 bit and Windows XP 32 bit, Pentium Core2Duo
6300, 1.86 GHz). Within Windows, threads were set to real-time
priority.

3) Stability: TiA was tested over a prolonged period of time
using the SignalServer and a TiA client. Both systems running
on a single machine or on two PCs connected via Ethernet. The
tests lasted at least 10 h. Used operating systems were Linux
(Debian unstable) and Windows XP.

TABLE I
CPU LOAD AND MEMORY CONSUMPTION FROM THE SIGNALSERVER FOR

DIFFERENT OPERATING SYSTEMS (OS)

TABLE II
PROCESSING TIME INSIDE THE SIGNALSERVER FOR DIFFERENT OPERATING

SYSTEMS (OS)

Memory consumption was logged and memory leaks were
analyzed using valgrind [28] under Linux. Fourteen tests have
been carried out: five running the client and the server in
Windows and five running both in Debian unstable; four
“mixed” tests were also performed, running either the server
under Windows and the client in Debian or vice versa.

III. RESULTS

A. Testing

1) Performance and Network Delay: CPU load and mem-
ory consumption were logged during measurements with 250
channels under different operating systems and two packet rates
of 100 Hz and 2 kHz. Results are shown in Table I.

Table III shows averaged packet delays according to vari-
ous additional artificial network loads and different number of
channels.

Memory consumption was constant during all the measure-
ments; the client requires more memory than the server because
of a bigger buffer size for incoming data.

2) Processing Time: Table II shows the processing time in-
side the SignalServer for a packet rate of 10 kHz and 128 ac-
quired channels.

3) Stability: The tested version of the SignalServer and the
TiA client showed no increasing memory consumption. The
required memory was the same also after a continuous operation
longer than 10 h. This was achieved in Windows and likewise in
Linux. No memory leak was detected by valgrind under Linux
when closing the server or the client.

B. Implementation—The SignalServer

Key goals of the SignalServer are performance, stability,
and simplicity. To achieve those goals, only well-tested li-
braries, mainly from the boost library collection, are used
(http://www.boost.org).

The SignalServer is designed to support data acquisition from
various hardware devices at the same time. A list of devices
already supported or planned for implementation in the near
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TABLE III
MEASURED NETWORK DELAYS AND NETWORK LOAD USING A 1-GB ETHERNET CONNECTION

TABLE IV
LIST OF DEVICES SUPPORTED BY THE SIGNALSERVER

future can be found in Table IV. Configuration is done via a
local XML file.

C. Distribution of Software

The SignalServer and a TiA client and server library are
already available as Debian packages for Debian unstable and
Ubuntu 10.10 as 64- and 32-bit versions. A Windows installer
for 32-bit systems is also available, tested under Windows XP
and Windows 7.

Packages, tools, and an installer can be downloaded at
http://bci.tugraz.at/downloads.html or
https://sourceforge.net/p/tools4bci

D. Current Usage

1) SignalServer: The SignalServer is already in use for mea-
surements at Graz University of Technology, Berlin Institute
of Technology, Ecole Polytechnique Fédérale de Lausanne,
Fondazione Santa Lucia, and Heidelberg University. Various
measurements, mainly using g.tecs g.USBamp, or g.Mobilab,
have been carried out.

2) MATLAB/Simulink: A client for MATLAB/Simulink has
been built and tested using MATLAB R2010a and R2010b. The
Simulink client is implemented as a C++ MATLAB S-Function
using TiA. It supports multirate data acquisition and is able to
deal with multiple signal types, creating individual block output
ports for every signal type when initializing the model.

3) TiAScope: TiA has been integrated into an online re-
mote scope to view acquired data in real time. This scope
application is implemented in C++ using the Qt framework
(http://qt.nokia.com/products) as a graphical user interface.

4) BCiScope: TiA has also been ported to Apple’s iPod
Touch [Apple, Cupertino, CA (http://www.apple.com)]. A

portable scope application is currently in development, facil-
itating online signal monitoring, especially for measurements
outside any laboratory.

5) Embedded Linux Platform: TiA has been successfully
integrated into an embedded BCI system acquiring data from
the g.tec g.Mobilab+ using bluetooth. The whole acquisition
is done on a Linux embedded board [FOX Board G20—ARM
400 MHz CPU, 64 MB RAM (http://www.acmesystems.it)].

6) BCI2000 TiA Client: A TiA compliant source module has
been developed for BCI2000 v2. The developed module sup-
ports only a subset of the features offered by the interface spec-
ification, in order to adapt to the BCI2000 elaboration model.
At the moment, the TiA module for BCI2000 supports multiple
signal acquisition but imposes a fixed sampling rate and buffer
size (taken from the master device).

IV. DISCUSSION

With TiA, we were able to introduce a standardization layer
between DAQ hardware devices and BCI software as described
in Mason’s model [11] to make a first step toward the recom-
mendations proposed in [12]. A platform-independent library
and DAQ software have been implemented, tested, and are avail-
able for download. This library has been successfully integrated
into, e.g., BCI2000 and MATLAB, two programs used for BCI
purposes nowadays. TiA and the SignalServer have success-
fully passed through various tests and have already proven their
potential for portability and very low resource requirements.

A. Performance and Timing Issues

Signal transmission over a 1-Gbit Ethernet connection can
be seen as stable and predictable over time, as every test was
performed consistently. Using the maximum mean packet delay
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(0.21 ms), a theoretical limit to receive a packet before the
next one is created would be 4.7 kHz, based on the results
shown in Table III. This value was similar to half of the round
trip time of a packet sent to the second computer used in the
measurements [29]. Introducing an additional load simulates
concurrent network traffic caused by external programs like a
web browser. As can be seen, the transmission delay was not
affected by minor additional traffic.

Considering the processing time of a data packet, the theo-
retical limit based on the maximum mean value of 23 μs (see
Table II) would be 43 kHz for processing data packets with a
block size of one sample. This value is obviously dependent on
the available processing power.

B. Portability

Both TiA and the SignalServer are cross-platform. This is
a result of using portable libraries like boost or TinyXML for
C++ [a.k.a. ticpp (code.google.com/p/ticpp)], and not relying
on operating system-dependent inclusion of files. Porting the
SignalServer and TiA to embedded systems or an iPod illustrates
the low resource requirements of those approaches. Thus, using
TiA and the SignalServer is also a step forward in building
portable or even embedded BCI systems. Distributing TiA and
the SignalServer directly to Mac OS X and also the iPad and
the iPhone is planned as a next step. A major constraint at this
point is a limited availability of operating system-independent
hardware drivers.

C. Extendability

Extendability was and is an important focus during devel-
opment of TiA and also the SignalServer. Using HTTP related
message style for control messages simplifies parsing. Trans-
mitting meta information by XML encoding ensures that it is
simple to add new tags to the message. As TiA is based on
an open-source approach, additional features can be added by
everybody willing to contribute to the system.

Extending the SignalServer with new hardware support is
a simple process. The respective hardware class derives itself
from a base class, implements abstract methods, and registers
itself at a factory. Once these steps are done, the respective
hardware module is automatically ready to be used. To extend
the SignalServer with new hardware a combination of the factory
and the builder pattern [30] is used.

D. Flexibility

Applying TiA for raw data transmission can enhance flex-
ibility of a system in multiple ways. Within a BCI, the raw
data could be directly fed into, e.g., the preprocessing mod-
ule or alternatively into the commonly used DAQ module of
the respective system. Therefore, TiA would result in minimal
changes to the original software platform. However, TiA does
not prevent the user from building loops, e.g., a module is acting
as server and a client at the same time.

E. Data Security

Currently TiA provides no encryption algorithm for data
transmission. As personal data in terms of biosignals are trans-
mitted, a violation in data privacy is a potential risk. Usage of
secure sockets layer [31] secured connections is currently under
discussion. Currently, TiA should only be used if it is running
on the loopback interface or behind a firewall in a secure sub-
net. Otherwise, unauthorized access cannot be excluded. On
the other hand, using encryption, especially for high-bandwidth
data streams, could heavily increase actual resource require-
ments. This might affect portability, especially to embedded
systems with limited hardware.

F. Outlook

Some optional handshaking commands for TiA are currently
under development. The first extension is the possibility for
the client to send a configuration for the DAQ system using
TiA. Thus, the data acquisition can be remotely configured. Be-
cause every DAQ system being equipped with TiA might be
configured in a different way, TiA will give no restrictions in
this case. A binary representation of the configuration will be
handed over to the data acquisition part and a potential error
or incompatibility will be reported to the client trying to con-
figure the system. A second extension will be the possibility
for clients to select individual channels, signal types, and also a
lower sampling rate. This could be useful for clients with lim-
ited processing power or network bandwidth (e.g., embedded
devices). The third extension will be to keep alive messages to
determine broken connections, especially for clients using UDP.
Thus, it is possible to detect crashed clients or a crashed server.
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Introducing a flexible protocol for event delivery in
neuroscience research

Christian Breitwieser, Michele Tavella, Martijn Schreuder, Febo Cincotti, Robert Leeb, Gernot R. Müller-Putz

Abstract—In this paper we introduce a flexible extended
markup language (XML) based protocol for event distribution
in neuroscience research. Events are commonly used to mark
and describe incidents during an experiment, and are therefore
critical for later data analysis or immediate real-time processing.
However, different systems transmit events in varying ways,
leading to incompatibilities and data misinterpretation. The new
protocol, called TiD (Tools for brain-computer interaction -
interface D) introduces a new standardized layer for flexible
event distribution. TiD is a network based protocol, delivering
messages in XML via a bus-like system using transmission control
protocol (TCP) connections. A dedicated server dispatches TiD
messages to potentially distributed clients. The TiD message is
designed to be flexible and contains time stamps for proper
event synchronization. TiD was tested extensively and its stability
and low latency is demonstrated. The effect of an occurring
event jitter is analyzed, whereas a 3 dB signal attenuation when
averaging events is starting to become visible between 6–8 kHz.
Mean event distribution times across operating systems are
ranging from 0.27 ms to 0.43 ms over a network connection for
106 events. So the applicability of TiD for event delivery over
network with distributed clients could be shown. Cross-platform
libraries, implemented in C++ are available for download.

Index Terms—standard, protocol, transmission, event, marker,
jitter, Brain-Computer Interface, open source, C++

I. INTRODUCTION

NEUROSCIENCE and the curiosity for the brain’s
anatomy/functionality or its respond to external events

(e.g., an acoustic stimuli) are old fields of interest. Events
could be an instruction to move an arm, an electrical stim-
ulus, a flashing light on a computer screen, being used to
store information relative to an instruction, etc. Brain activa-
tion and brain responses can get quantitatively recorded, for
example, using EEG (Electroencephalography), NIRS (Near
Infrared Spectroscopy) MEG (Magnetoencephalography), or
fMRI (functional Magnetic Resonance Imaging); also together
with external events. Potential applications for these tech-
niques to measure brain activity are diagnostic systems [1],
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[2], systems to investigate brain functionality [3], or brain-
computer interfaces (BCIs) to establish a non-muscular com-
munication channel [4].
Events are an essential tool to mark and describe environ-
mental occurrences in neuroscience research. They have been
used, recorded and stored in many different ways for decades.
Examples would be marking an event on paper in an analogue
recording during the 1970s and storing an event in a biosignal
data file on a personal computer (PC) nowadays [5], [6]. In
analogous paper recordings, events could have been registered
manually by use of a pen or also in an automated way. Nowa-
days, events are mainly stored in data files, potentially using
an electrical connection or getting directly inserted by the
acquisition hardware, which is connected to the event source.
However, recorded data without events or without any event
description could make the data worthless, as it might become
impossible to determine exactly what happened during the
recording. Events such as timing and descriptive information,
are just as important as the recorded biosignal data itself.
To support an upcoming necessity of event storage, e.g., the
European Data Format (EDF) file format was extended to
EDF+ to support events and annotations [5].
Unfortunately, events are stored and transmitted in various
ways in different programs, tools, laboratories and institutions
around the world. This could lead to miss-interpretations
and needless waste of manpower to eliminate these issues.
Furthermore, due to the cost reductions of common PCs,
multiple computers, connected in different ways, are often
used for measurements. For example one computer creates
events and provides visual stimulation and another one records
and stores the biosignal data. Accurate timing is a crucial issue
in this case, which is often solved with the parallel port (often
called LPT port) of a PC [7].
However, using a digital line (conducted with the LPT port)
has two big issues. First, LPT ports are rare in today’s
computers, especially in notebooks. Alternatives like data
acquisition cards with digital output capabilities would be
suitable, but are usually an expensive replacement for the
LPT port functionality. USB based LPT adapter systems
seem to be an adequate replacement. However, insufficient
real-time capabilities of USB drivers limit the usability of
USB based LPT adapters. Second, the transmitted signal is
a high or low signal without any additional meta-information.
However, when loosing a descriptive trigger channel infor-
mation, potentially stored elsewhere (e.g., in a text or .pdf
file), might render the file uninterpretable. It would not be
possible It would hardly becomes possible to distinguish the
meaning of the individual lines. Thus, event transmission and
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storage is not a trivial process. Accurate timing and descriptive
meta-information are requirements for proper event delivery.
Considering today’s PC hardware, nearly all computers are
equipped with at least 100 MBit, or 1 Gbit Ethernet networking
cards. So using a network connection for event-transmission is
an alternative to the LPT port. Furthermore, Ethernet coupled
with transmission protocols like TCP/IP provide guaranteed
data delivery.
In this paper, we propose an open source standardization
attempt for a common event transmission protocol called TiD
(TOBI interface D; TOBI. . . Tools for Brain Computer Interac-
tion). It provides a dedicated efficient and flexible transmission
protocol to ensure proper and reliable event delivery. TiD is
designed to fit the needs of BCI research, which can be seen as
an extended set of requirements to events used in neuroscience
measurements with and without feedback. TiD is intended to
be used for inter-process communication on localhost or over
network but not within a single application, where a direct
function call for event delivery is still the best choice. TiD
should reduce the burdens of inter-process communication.
This paper should also give an estimate of occurring effects
(like delay and jitter). These estimates might also be interesting
for people using tools, relying on event and data delivery over
network. The effects of a timing jitter in event delivery can get
carried over to other protocols as well. So one could use the
testing part of the TiD framework to analyze his own network
environment conditions get an idea of the occurring effects.
Considering BCIs, their functionality is based on real-time
processing of biosignal data. Mason and Birch provided a
functional BCI model, showing a common closed-loop struc-
ture for BCI systems [8] (see Fig. 1). Similar to neurofeed-
back paradigms in neuroscience, user-feedback is a crucial
component in BCI systems. Data is acquired, processed, then
sent to a device or application. Next, the user gets feedback
based on the device’s or application’s actions. This concept
is generalized in [9], presenting multiple processing streams
and distinct logic like fusion and shared-control principles.
Events are important for BCIs, as various modules might
create, receive, and process events [9]. TiD is intended to
embed event transmission in the standardization process, as
introduced in [9]–[11] and requested in [12].
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Control
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Device
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Device
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Device State
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User-reported Error Operating Environment

Figure 1. Mason and Birchs functional model (modified from [11]).

II. METHODS

The term “event” is sometimes used in a vague and confus-
ing manor. Too often, an event is treated the same way as a
marker. To avoid ambiguities, events and markers are defined
as follows in the context of this paper:

Marker: A marker marks some (potentially environmen-
tal) incident without any meta-information; it only pro-
vides time information. An example is a rising edge on
a trigger channel. The meaning of a rising edge can
change from recording to recording. It is not stored
directly with the respective marker. So the information
is provided elsewhere as in a text or .pdf file, describing
the experiment and the meaning of hte trigger channels.

Event: An event, similar to a marker, provides timing as
well as meta-information to distinguish events. Examples
like the biosig project [6] or the “Hierarchical Event
Descriptor” (HED) [13] are using event codes or an
structured event description.

A. Requirements Analysis

Events and markers are both used to mark some incident
during a measurement. As previously mentioned, timing ac-
curacy is an important requirement. However, accuracy is a
relative term. For example, with near-infrared spectroscopy
(NIRS) measurements of slow haemodynamic responses, sam-
pling rates below 50 Hz (or even 10 Hz) are sufficient. But
when considering event-related potential (ERP) measurements
[3], high resolution timing is a critical requirement. An
occurring constant and stable delay over time during event
transmission can be measured prior to or after a measurement.
To correct the recorded data afterward, the delay just has to
be subtracted from the event times. However, a trigger jitter
[14] during the event transmission is a much bigger problem.
ERPs are often averaged to increase signal-to-noise ratio.
Any jitter influences the ERP calculation and distorts their
recognition [14]. By measuring brainstem auditory evoked
potentials (BAEPs), the first wave occurs at about 1.6 ms in
adults [3]. Thus, millisecond response time and minimal jitter
are important in this case.
Considering different kinds of analysis, it is possible to
roughly distinguish between data processing during the record-
ing in real-time or just after recording the data. Within this
paper, performing data analysis during the recording is called
“online analysis” while later on is called “offline analysis”.

1) Offline Analysis: Measurements done for later offline
data analysis are often based on a pre-defined paradigm with
pre-defined event sequences. Within such a measurement, no
data is processed during recording;. It only gets stored, so
event processing time is a non-critical requirement. Such
experiments can be set-up with a single event source and
multiple clients, waiting for and processing incoming events.

2) Online Analysis: In measurements with online analysis,
data is processed in (firm) real-time. 1 Considering e.g.,
BCI experiments, events can occur due to feature extraction,
classification or feedback. These events are not pre-defined
and usually have to be processed immediately, not breaking
with potential real-time requirements. Furthermore, multiple
event sources and multiple event sinks are possible [9].

1Within this paper, the term “real-time” can get interpreted as a firm real-
time and is not related to any real-time operating system. A rare violation of
the firm real-time condition is assumed not to have a harming effect.



3

B. Design Principles

To sum up the aforementioned requirements, accurate tim-
ing, fast event processing, flexible event delivery, and flexible
events themselves are needed for proper event transmission.
As flexibility is a major requirement, XML [15] messages
are suitable for event encoding. In addition, various platform
independent libraries are available for XML processing. A
network-based approach with network sockets offers a flexible
and platform independent way of event delivery ans also
fulfills the requirements of distributed event processing [9].

C. Software Design

Event distribution via TiD is realized based on XML mes-
sages distributed over TCP networking sockets [16], ensuring
guaranteed data transmission.

1) The XML Message:

<tid version="0.3.0.1"
absolute="1330691458,821096"
relative="34687,761248" >
<description> beep </description>
<block> 1732 </block>
<family> biosig </family>
<event> 785 </event>
<value> 13,2 </value>
<source> P300 detector </source>

</tid>

This exemplary TiD message contains one outer tag named
tid which is holding two attributes with timing information.
Additional elements are stored within nested tags. Following
attributes are defined in a TiD root node:
• version – identifies the TiD message version to ensure

compatibility by using distributed clients
• absolute – provides a timing reference in seconds,

based on the local machine’s system clock
• relative – holds a relative time value also in seconds

(e.g., relative to the start of data acquisition; can be used
for tracing purposes)

Following nested tags are defined TiD:
• description – holds event description
• block – specifies the data block the event belongs to
• family – indicates the respective family the event

belongs to (e.g., BCI2000, biosig,. . . )
• event – holds a unique event code
• value – optional: value for the corresponding event

(numeric or string)
• source – optional: holds the event source (like P300

detector)
Utilizing XML tags, the TiD message is able to deal with a

flexible data content and allows event notations like defined in
HED [13]. The content of all tags (e.g., family, event) can get
defined freely. It is recommended to orient oneself at available
event definitions as suggested by HED [13] or GDF [6].
More detailed information regarding the individual attributes is
available in the TiD Documentation [17]. The XML message
contains a block number, providing a way to link an event

with recorded data. A block (also called a frame) describes a
block of individual samples [11]. Due to hardware limitations,
data might get delivered in a block oriented manner, as done
by some EEG amplifiers. This delivery rate is lower as the
actual sampling rate, because the amplifier waits until a filled
block of samples becomes available. Without additional timing
information for an event (like a timestamp or a related digital
trigger line), an event can only get aligned to the start or
the end of a block. Aligning events only to data blocks
introduces an additional uniform distributed jitter based on
the block size, independent of the applied event transmission
or synchronization protocol. So timestamps or trigger lines are
important to achieve a proper alignment, which could then be
even better than the actual cycle duration.

2) Client/Server Architecture: TiD is built as a bus system
like shown in Fig. 2. This achieves a flexible system where
individual modules can act as an event sink and/or source
[9], as done in a bus. Furthermore, this also fulfills the
requirements for system with a single event source (server)
and multiple event sinks (clients).

TiD bus

DAQ system

TiD
msg

TiD server

TiD
msg

TiD
msg

TiD
msg

Classification
PP

FE

Internal
device or
application

External
device or
application

BCI system

Figure 2. TiD bus operating principle shown in a BCI context with a single
processing stream (PP. . . pre-processing, FE. . . feature extraction).

The architecture is divided into individual TiD clients and a
single TiD server. Clients are just connected to the TiD server.
This server dispatches an incoming messages from a client to
the other connected clients. These clients are free to process
or ignore received TiD messages. For proper synchronization
with the raw data, the TiD message server has to be connected
to the data acquisition system as shown in Fig.2.

3) Message Dispatching: Modules, which are connected
to the raw data stream (like the classification module shown
in Fig. 2) have to mark an outgoing event with the actual
block number. The TiD server further distributes the event
without any modification. An external module, like an external
application, is not aware of the current block number. So the
block number of an outgoing event is set to “-1”, marking it
invalid. The TiD server will then set the actual block number
accordingly. Utilizing the TiD timestamps, the event can be
aligned more precisely. This alignment needs proper clock
synchronization using e.g., the precision time protocol (PTP)
[18] which can achieve a clock accuracy in a microsecond
range when being operated in a local area network. PTP
operates in a hierarchical master/slave architecture, where
clients get synced with a so-called “grandmaster”. Further
details regarding PTP can be found here: [18].

4) Timing Information: A TiD message contains an abso-
lute and a relative timestamp with microseconds resolution.
The timestamps are created from the local machines POSIX
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high resolution clock. So the clocks of the server and the
clients need to get synchronized, e.g., using NTP (Network
Time Protocol) or preferably PTP, which was mentioned
above. This timing information is required for proper syn-
chronization of the events, especially for block-oriented data
transmission, so events can get aligned to samples within a
data block. Transmitting data, for example, via TOBI interface
A (TiA) [11], every TiA data packet is equipped with the
reference timestamp, which is relative to the data acquisition
start. Incoming events can also be aligned with a sub-block
size accuracy, reducing jitter effects. Furthermore, utilizing
relative timestamps and a proper clock synchronization, it
becomes possible to trace the processing pipe latency. The TiD
documentation [17] provides additional information, especially
towards implementation, performance tuning, the used tags
and attributes.

D. Implementation
The TiD implementation is separated into two distinct

libraries to provide flexibility, with respect to network opera-
tions. Both libraries are written in cross-platform C++ and are
shipped within a combined library package called TobiCore
(http://tools4bci.sourceforge.net/tobicore.html). All TobiCore
libraries are licensed under the LGPL V3 (lesser GNU public
license version 3).

1) Tobiid: The tobiid library is responsible for TiD message
parsing. It is capable of serializing and de-serializing TiD
XML messages from and back to TiD message objects. Its
current implementation is based on rapidxml (http://rapidxml.
sourceforge.net).

2) Libtid: The cross-platform libtid library incorporates the
tobiid library and provides network based TiD client, as well as
a TiD server implementations. It utilizes various sub-libraries
from the boost library collection (http://www.boost.org –
used version: 1.55.0). To provide low latency on localhost,
libtid also offers a shared memory based message dispatching
utilizing message queues from boost::interprocess.

A complete TiD system has been integrated into the Sig-
nalServer data acquisition system [9]. Briefly summarized,
the SignalServer supports multirate data acquisition from
multiple hardware devices simultaneously (devices need to get
synchronized on a hardware level), whereby the TiD server
is connected to the data acquisition system. A TiA packet is
equipped with a timestamp and a packet number, so aligning
TiD messages is simple. Additional information can be found
here: http://tools4bci.sourceforge.net/signalserver.html.
To support proper data and event saving, acquired data and
received events are saved together in a .gdf file [6]. This is
realized via the libgdf library (http://tools4bci.sourceforge.net/
libgdf.html). For block-oriented data acquisition, events are
re-aligned by interpolating timestamps for every sample in a
block and then matching the event to the appropriate sample.
To ease the event acquisition from embedded systems like an
Arduino (http://www.arduino.cc/), which just provide digital
trigger lines, a dedicated LPT TiD client is available too. This
LPT TiD client simply reads data from the LPT port and
converts it into TiD messages.

E. Testing
To ensure proper functionality of the libraries, black

and white box tests have been conducted. Unit tests were
done with the UnitTest++ framework (http://unittest-cpp.
sourceforge.net). Single computer tests were performed on a
common PC (for specifications, please see Appendix). For
timing tests, boost::chrono (http://www.boost.org/doc/html/
chrono.html) was used. All tests were carried out for 106

messages; mean, median, standard deviation, minimum and
maximum values were computed. A sliding window of 5000
samples was further applied to the data with aforementioned
calculations to provide some kind of visual down-sampling for
later plotting.

1) Processing Time: TiD message processing needs to fast
so, in addition to the data processing time, the additional
TiD processing time does not then violate a (firm) real
time condition. Tobiid and libtid have been tested regarding
their processing times. As a TiD message may vary in its
length, probably affecting processing time, the timing tests
have been carried out for description lengths of 10, 50, and
100 characters. A random event number was assigned to the
message and the block number was increased by one for every
message.

a) Parsing tests: Within the tobiid library the TiD mes-
sage serialization and de-serialization processing times were
recorded. For the serialization test, 106 message objects were
created and serialized to obtain a TiD message string. For the
de-serialization test, TiD message strings were de-serialized to
obtain the original object.

b) Dispatching tests: Within the libtid library, the times
to send and receive a message within a TiD client and the
dispatching time within the TiD server were measured. When
sending a message via the client, the recorded values represent
the processing time. This begun when a message was handed
over to the libtid client methods until it was forwarded to
the underlying networking or shared memory library. Through
the receiving test, the latency of a message received by the
network socket until it was handed over to the test routine
was determined. The dispatching time represents the time from
when a message arrived at the servers socket until it was
forwarded to the sockets that the clients are connected to. The
dispatching timing tests were performed for 3, 5, and 10 clients
connected to the server, with one client operating as message
source and all others as message sinks. The tested description
length was 100 characters.

2) Message Transmission Delay and Jitter: TiD message
delivery is based on an underlying network or SHM system.
Unfortunately, every network or SHM system is characterized
by a certain latency. This latency is affected by multiple factors
like the performance of the TCP stack from the respective
operating system or hardware based factors like the utilized
networking card. To obtain some guidance levels, libtid was
tested in regard to its transmission latency using SHM, the
operating systems loopback device, a GBit, and a 100 MBit
Ethernet connection between two PCs with a GBit or 100 Mbit
switch in between. Those tests were carried out on Linux,
as well as, Windows, with combinations of both operating
systems on 3, 5, and 10 clients connected to the server, similar
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to the libtid processing time test. To estimate the GBit network
latency, the server was running on the second PC, whereas the
sending client, as well as the receiving clients, were running
on the first PC. Tested description length was 100 characters.
The time between sent TiD messages was 2 ms, far below
the average event occurrence rate of 75 ms at a P300 speller
[19]. The testing framework is also part of the TiD library.
So one can use this framework and testing methods to get an
estimate of his own environmental conditions and the effects
to a measurement.

3) Stability: To ensure functionality over a prolonged time,
tobiid and libtid were tested in multiple tests, lasting at least
10 h. During this time, memory consumption was logged using
valgrind [20] under Linux. During this long term test, a TiD
message was sent every 500 ms. Additional stress tests were
carried out with one server and 50 connected clients. During
these tests, every client acted as a sender as well as a receiver,
sending a TiD message every 10-20 ms. This test was carried
out to test the proper functionality of the TiD dispatcher.

4) Trigger Jitter Attenuation: A trigger jitter behaves like
a low-pass filter for averaging across trials [21]. An averaged
signal affected by a time shift is calculated the following way:
S is the original signal, Xm the signal for averaging, and Θm

the shift against the original signal:

x̄[k] =
1

M

M∑

m=1

xm[k] =
1

M

M∑

m=1

S[k + Θm] (1)

Applying a Fourier transform and estimating the expectancy
value, E{X̄(f)} yields to the transfer function H(f) based
on the respective probability density function (PDF) p(Θ).

E{X̄(f)} = E{S(f) · ej2πfΘm} = S(f) ·E{ej2πfΘm} (2)

H(f) = E{ej2πfΘm} =

∫ ∞

−∞
p(Θ) · ej2πfΘ dΘ (3)

For a normal distribution, the respective 3 dB cutoff frequency
would be equal to: fc = 0.132

σ (σ in seconds). For a non-
parametric PDF, the transfer function can be calculated based
on the available discrete latency values:

H(f) =

Θ=Θmax∑

Θ=Θmin

p(Θ) · ej2πfΘ (4)

No outliers were removed from the data set.

III. RESULTS

A. Testing

1) Processing Time:
a) Parsing tests: The tobiid library has been tested for its

serialization and de-serialization performance. The processing
time for all description lengths was within the low microsec-
onds range (around 3 µs) with a low standard deviation (STD)
of max. 0.3 µs. So this affects the TiD processing time in a
minor way. Due to this limited effect to the overall latency, it
is not presented in Table I.

b) Dispatching tests: The libtid library has been tested
for its latency to send and receive a TiD message on the
client side and to dispatch a message in the server. Those
test results include the processing time to process a message
with tobiid. Statistical values for selected tests are presented in
Table I. Considering the dispatching latency in the TiD server,
this value was primarily dependent on the number of clients
attached to the server. The most important results are the
latencies occurring during network transmission.

2) Message Transmission Delay and Jitter: As client(s) and
server might be running on the same machine, as well as being
distributed over a network, both latencies have been tested.
Tests have been carried out running the server or clients on
Linux, Windows and the combination. Fig. 3 shows the client–
server latencies for 3, 5, and 10 clients with a description
length of 100 characters for SHM, remote, and localhost
transmission. Time values are presented in Table I. Extensive
plots for different client/server combinations are available in
the supplementary material.

Table I
PROCESSING TIMES AND LATENCIES FOR TOBIID AND LIBTID ON

DIFFERENT OPERATING SYSTEMS (OS) FOR 106 MESSAGES. THE GIVEN
VALUES RESULTED FROM THE TESTS WITH A DESCRIPTION LENGTH OF
100 CHARACTERS AND IN CASE OF NETWORKING ACTIVITY, WITH FIVE

CLIENTS ATTACHED TO THE SERVER IN CASE OF GBIT OR 100MBIT. THE
WIFI TEST WAS DONE WITH THREE CLIENTS CONNECTED.

Linux mean std median min max

cl snd 15.0 µs 8.39 µs 12.80 µs 7.08 µs 203.9 µs
cl recv 20.2 µs 3.27 µs 19.99 µs 5.21 µs 171.0 µs
srv disp 49.5 µs 6.88 µs 57.77 µs 14.2 µs 236.5 µs

local lat 188.7 µs 55.8 µs 157.7 µs 74.2 µs 402.2 µs
SHM lat 56.2 µs 18.3 µs 50.5 µs 26.4 µs 308.0 µs
rem lat 336.2 µs 74.6 µs 303.2 µs 176.2 µs 658.4 µs
rem lat100M 496.7 µs 36.9 µs 494.6 µs 391.6 µs 705.3 µs
rem latWifi 1386 µs 1022 µs 1271 µs 809.9 µs 210 ms

Windows

cl snd 21.0 µs 3.44 µs 21.1 µs 13.0 µs 220.4 µs
cl recv 17.1 µs 1.76 µs 16.8 µs 4.38 µs 215.7 µs
srv disp 46.3 µs 3.79 µs 46.7 µs 19.0 µs 132.8 µs

local lat 137.7 µs 4.2 µs 137.6 µs 122.6 µs 350.3 µs
SHM lat 81.3 µs 24.8 µs 77.4 µs 33.57 µs 287.2 µs
rem lat 512.2 µs 68.5 µs 548.4 µs 238.3 µs 1751 µs
rem lat100M 799.7 µs 7.7 µs 801.7 µs 486.8 µs 4997 µs
rem latWifi 1415 µs 2108 µs 1245 µs 907 µs 1108 ms

Remote latency – server/client

Win/Lin 439.5 µs 34.7 µs 448.8 µs 260.4 µs 3812 µs
Lin/Win 434.8 µs 7.6 µs 432.8 µs 248.9 µs 650.6 µs

Win/Lin100M 543.9 µs 27.2 µs 541.2 µs 391.7 µs 1257 µs
Lin/Win100M 496.2 µs 134.2 µs 480.6 µs 406.5 µs 2023 µs

Win/LinWifi 1452 µs 860 µs 1392 µs 808 µs 314 ms
Lin/WinWifi 1645 µs 3041 µs 1461 µs 956 µs 674 ms

3) Stability: No memory leaks have been detected in the
prolonged tests in either the server or the client. Furthermore,
running the automated test routine provided in libtid with
its default values took roughly 31 hours to finish. All those
tests succeeded without any error or message loss, indicating
the stability of tobiid and libtid. Additionally, events were
successfully sent using a high event rate with an event every
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Figure 3. Server – client latency – sending a TiD message from a client via the TiD server to another client. The TiD server was running on a second
computer with remote delivery (left column) or on the same machine for localhost delivery (right column). The upper figures represent the latency running
both client and server on Linux, the lower one on Windows 7. The figures show the latencies for 3, 5, and 10 TiD clients with a description length of 100
characters. STD (purple region) and min/max values (grey region) are only shown for 5 clients. The red line shows the mean values, the blue line shows the
windowed mean, and the black line shows the windows median (window size: both 5000 samples).

2 ms, compared to events occurring roughly every 75 ms using
a P300 speller [19].

4) Trigger Jitter Attenuation: The upper image in Fig. 4
shows the jitter distribution for the remote latency test with
a description length of 100 characters, running the server and
five clients on two Linux systems. Statistical testing using a
Lilliefors test [22] revealed that the trigger jitter is not normal
distributed. The lower image in Fig. 4 depicts the attenuation
caused by the jitter introduced with TiD. Thus, a 3 dB attenua-
tion is reached at 1071 Hz, equal to a cycle duration of 0.9 ms.
The cut off frequency fc was for other equal server/client
combinations as follows: Windows/Windows – 1.1 kHz, Win-
dows/Linux – 2.4 kHz, Linux/Windows – >10 kHz. Additional
histogram and attenuation plots are provided in the supple-
mentary material.

B. TiD as a User Interaction Event Delivery System

To illustrate the potential of TiD, a simple command line
TiD client was coupled with an established test automation
tool named Ranorex (Ranorex GmbH, Graz, Austria). This tool
is intended to perform a user simulation for test automation
purposes. Its operating principle was modified, listening for
incoming TiD events. These TiD events were utilized to carry
out user interaction commands within a browser for demon-
stration purposes. A short video illustrating this principle
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Figure 4. The upper plot shows the latency histogram of the remote TiD test
(Linux, five clients, 100 characters description length). The lower plot depicts
the amplitude attenuation in case of averaging caused by the TiD based trigger
jitter. fc,3 dB at 7815 Hz in highlighted with black dashed lines.

is available in the supplementary material. Commands are
entered using the command line TiD client (this client could
also be replaced with, e.g., a P300 speller) and then send
to Ranorex. Information gathered by Ranorex, like available
links on a website, is then transmitted back to the client using
TiD messages. This gives the possibly to interact with every
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standard program in the world for experiments.

IV. DISCUSSION

With TiD we could successfully introduce a powerful and
flexible way for event distribution for BCI research, which is
potentially of interest for the wider neuroscience community.
The TiD design provides an extendable alternative to common
event distribution methods like the LPT port. It includes event
descriptions, event codes and timestamps for proper event
interpretation. It eliminates issues like trigger lines without any
further meta-information as well as the limitation of different
hardware based approaches, where e.g., just eight trigger
lines (similar to eight different events) are available. Two
dedicated libraries have been developed, one for processing
TiD messages, called tobiid and a second library, called libtid,
providing a network layer for TiD message transmission. Both
libraries have been tested in detail to prove stability as well
as fast message processing and delivery. The TiD libraries
are freely available including pre-compiled versions for Linux,
Windows, and client implementations for different languages
or systems (e.g., Python, Matlab). C++ demo code for TiD
client and server examples is available in the supplementary
material. It shows the simplicity, running either a TiD client
or a server. In [10], different studies utilizing the TOBI frame-
work, which also includes TiD, are presented. The utilization
of the mentioned interfaces, including TiD, facilitated the
accomplishment of these studies, which consisted of modules
from different laboratories.

A. Compatibility with the Common BCI Processing Pipeline

At first glance, the TiD bus seems unnatural, compared to
the common BCI processing stream, which consists of data
acquisition, pre-processing, feature extraction, classification
and application. A pipe implementation would look more
natural at first appearance. However, in the TiD architecture,
events are not strictly bound to the raw data. The bus oriented
event delivery system comes up with many additional features,
like the possibility to use modules outside the BCI processing
pipeline; that later modules in the processing chain can interact
with earlier modules (e.g. reset outputs); or that modules can
subscribe to the event bus freely. Despite these features, this
also introduces some minor issues: Potential problems are that
events could “overtake” the raw data or that events arrive later
than the raw data. This can be eliminated by synchronizing
with the available timestamps. Considering the latency mea-
surements, the problem of events arriving too late is also a
minor one, as the event delivery time is in the microsecond
range. The TiD architecture is a proper way to decouple
events from the raw data and merge them back if needed and
wanted. With regards to multiple processing streams, events
are not duplicated; so events do not have to be forwarded by
individual processing modules. This removes the forwarding
burden for the respective module and eliminates the issue of
duplicated events in multiple processing streams, which then
might arrive at different times, introducing processing errors.
No “duplicate event filter” or similar is needed. Additionally,
TiD is not bound to a specific raw data transmission format.

It can be used with TiA [11], as well as any other raw data
delivery methods; so the raw data protocol does not have to
be modified.

B. Comparison to other Data Distribution Systems

Another approach, delivering data with the so-called “lab
streaming layer” (LSL), is presented in [23]. It is mentioned by
LSL to be “a system for the unified collection of measurement
time series in research experiments that handles both the
networking, time-synchronization, (near-) real-time access, as
well as optionally the centralized collection, viewing and disk
recording of the data” [24]. LSL is designed to take away the
synchronization burden from the user. Another strategy, using
the “DataRiver” in “ERICA”, as presented in [25], shares the
idea of a centralized data flow principle, eliminating synchro-
nization issues as well. TiD is not designed to resolve synchro-
nization issues, as demonstrated by the presented examples.
The goal of TiD is to provide a lightweight and common
approach, delivering event information as fast as possible and
offering timing information for a potential synchronization.
TiD can easily get added to existing systems, without the
need to redesign the data flow. The user is free to choose
if a synchronization is necessary. As TiD is completely XML
based, an incorporation with, e.g., LSL should not be an issue,
as LSL streams can be equipped with XML metadata as well.

C. Performance and Timing Issues

Latencies are mostly within the millisecond or even mi-
crosecond range, as visible in Table I. As can be seen, a
GBit connection should be the first choice due to the lowest
latency. A 100 MBit connection also provides low latency
and jitter values. In contrast, WiFi should be avoided in any
case, as visible in the table. The maximum delay was more
than a second! This might have occurred, as WiFi can easily
get disturbed by other wireless networks or devices and is
just a best effort network. Furthermore, it becomes nearly
impossible to protect oneself from environment influences to
a wireless network. So WiFi could get used, for example, as
event monitor in an online scope for visual signal inspection;
but not for any time critical calculations. In case of GBit or
100 MBit, low-pass effect caused by TiD is unnoticeable until
frequencies in the low kHz range (shown in the supplementary
material in more detail). A high CPU load is also causing no
substantial effect to the jitter or delay. As the maximum delay,
even over Ethernet network is below 5 ms, it can safely be
used for event transmission. However, it is recommended to
measure the individual timing influence of ones network. So
one can get an estimate of the actual environmental conditions
(being dependent of many influence factors like networking
card, CPU, router/switch, . . . ) using the testing framework
provided by TiD. It might even be interesting if TiD is not
used at all, as a major influence to trigger jitter comes from
the network. In case of very low latency requirements, the
best way to deliver information is and will always be a direct
function call within a single application. However, if this
is not possible, utilizing shared memory provides very low
latency with low jitter, as shown in Table I and in more detail
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in the supplementary material. In comparison, a trigger jitter
occurring due to trigger alignment to blocks of data introduces
a much higher low-pass filtering effect. In this case, the trigger
jitter is uniformly distributed, based on the block size, and fc
equals to: fc = 0.127

σ (σ in seconds). Assuming a sampling rate
of 512 Hz and a block size of 16 samples, STD σ = 9ms and
therefore fg = 14.1 Hz. Using TiD timestamps, event alignment
within a data block is possible, eliminating this issue.

D. Portability, Extendability and Flexibility

Both, tobiid and libtid only use portable libraries. It is
a simple process to port them to other operating systems
like OS X, iOS or even embedded systems. Both libraries
developed towards low resource requirements. Because TiD
is entirely based on XML messages, it is simple to extend
the TiD messages, introduce e.g., additional event families,
add new tags, or extend existing ones. As TiD is storing
the main information in tags, it allows more characters than
simply using attributes to facilitate a grammar, as presented
in [13]. Individual extensions are therefore not affecting a
common TiD client. TiD can also be used to control systems,
performing a user simulation, as shown within the video,
available in the supplementary material. TiD is based on XML
and provides cross-platform libraries, so an integration into
other systems, such as Ranorex, is a simple step. In that way,
interacting with different programs, running on other operat-
ing systems or being implemented in another programming
language becomes possible.
TiD proved to match its low latency requirements and its
potential for proper event distribution. However, those capabil-
ities might not be enough. For example, BAEPs, can occur at
1.6 ms [3]. For these cases, the jitter introduced by TiD might
be too high. The available LPT TiD client which converts a
digital signal into TiD messages provides a way getting around
this issue. So TiD messages together with trigger lines can also
get used if lowest latency requirements need to be met.

ACKNOWLEDGMENT

This work was supported by the European ICT Programme
Project FP7-224631. This paper only reflects the authors’
views and funding agencies are not liable for any use that may
be made of the information contained herein. Special thanks
to Jim Trentadue for final editing.

REFERENCES

[1] G. Cruccu, M. Aminoff, G. Curio, J. Guerit, R. Kakigi, F. Mauguiere,
P. Rossini, R.-D. Treede, and L. Garcia-Larrea, “Recommendations for
the clinical use of somatosensory-evoked potentials,” Clin. Neurophys-
iol., vol. 119, no. 8, pp. 1705–1719, 2008.

[2] Y. Hu, K. D. K. Luk, W. W. Lu, and J. C. Y. Leong, “Application of time-
frequency analysis to somatosensory evoked potential for intraoperative
spinal cord monitoring,” J Neurol Neurosurg Psychiatry, vol. 74, no. 1,
pp. 82–87, 2003.

[3] D. Regan, Human Brain Electrophysiology: Evoked Potentials and
Evoked Magnetic Fields in Science and Medicine. Elsevier, 1989.

[4] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain-computer interfaces for communication and control.”
Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, 2002.

[5] B. Kemp and J. Olivan, “European data format ’plus’ (EDF+), an EDF
alike standard format for the exchange of physiological data,” Clin.
Neurophysiol., vol. 114, no. 9, pp. 1755–1761, 2003.

[6] A. Schlögl, “GDF - A general dataformat for biosignals,” eprint
arXiv:cs/0608052, 2006.

[7] N. Stewart, “A PC parallel port button box provides millisecond response
time accuracy under linux,” Behav. Res. Methods., vol. 38, pp. 170–173,
2006, 10.3758/BF03192764.

[8] S. G. Mason and G. E. Birch, “A general framework for brain-computer
interface design.” IEEE Trans Neural Syst Rehabil Eng, vol. 11, no. 1,
pp. 70–85, 2003.

[9] G. R. Müller-Putz, C. Breitwieser, F. Cincotti, R. Leeb, M. Schreuder,
F. Leotta, M. Tavella, L. Bianchi, A. Kreilinger, A. Ramsay, M. Rohm,
M. Sagebaum, L. Tonin, C. Neuper, and J. d. R. Millán, “Tools for Brain-
Computer Interaction: A General Concept for a Hybrid BCI.” Front.
Neuroinform., vol. 5, 2011.

[10] G. Müller-Putz, R. Leeb, M. Tangermann, J. Höhne, A. Kubler, F. Cin-
cotti, D. Mattia, R. Rupp, K. Müller, and J. Millán, “Towards nonin-
vasive hybrid brain-computer interfaces: Framework, practice, clinical
application, and beyond,” Proc. IEEE, vol. 103, no. 6, pp. 926–943,
June 2015.

[11] C. Breitwieser, I. Daly, C. Neuper, and G. R. Müller-Putz, “Proposing
a standardized protocol for raw biosignal transmission,” IEEE. Trans.
Biomed. Eng., vol. 59, no. 3, pp. 852–859, 2012.

[12] P. Brunner, L. Bianchi, C. Guger, F. Cincotti, and G. Schalk, “Current
trends in hardware and software for brain–computer interfaces (BCIs),”
J. Neural Eng., vol. 8, no. 2, pp. 1–7, 2011.

[13] N. Bigdely-Shamlo, K. Kreutz-Delgado, K. Robbins, M. Miyakoshi,
M. Westerfield, T. Bel-Bahar, C. Kothe, J. Hsi, and S. Makeig, “Hier-
archical event descriptor (HED) tags for analysis of event-related EEG
studies,” in Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, Dec 2013, pp. 1–4.

[14] A. Mouraux and G. Iannetti, “Across-trial averaging of event-related
eeg responses and beyond,” Magn. Reson. Imaging., vol. 26, no. 7, pp.
1041–1054, 2008.

[15] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0 (fifth edition),” World Wide
Web Consortium, Recommendation REC-xml-20081126, 2008.

[16] V. Cerf and R. Kahn, “A protocol for packet network intercommunica-
tion,” IEEE J COM, vol. 22, no. 5, pp. 637–648, 1974.

[17] C. Breitwieser, “TiD – Documentation of TOBI Interface D,” ArXiv
e-prints, 2015.

[18] “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. c1 –269, 24 2008.

[19] D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J.
McFarland, T. M. Vaughan, and J. R. Wolpaw, “A comparison of
classification techniques for the P300 speller,” J. Neural Eng., vol. 3,
no. 4, pp. 299–305, 2006.

[20] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, pp. 89–100,
2007.

[21] W. Craelius, M. Restivo, M. A. Assadi, and N. El-Sherif, “Criteria for
optimal averaging of cardiac signals,” IEEE Trans Biomed Eng, vol.
BME-33, no. 10, pp. 957–966, oct. 1986.

[22] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for the exponential
distribution with mean unknown,” J. Amer. Statist. Assoc., vol. 64, no.
325, pp. 387–389, 1969.

[23] C. Kothe and S. Makeig, “BCILAB: a platform for brain-computer
interface development,” J. Neural Eng., vol. 10, no. 5, p. 056014, 2013.

[24] labstreaminglayer. (2014, 09) Lab streaming layer - distributed signal
transport, time synchronization and data collection system for research
use. [Online]. Available: https://code.google.com/p/labstreaminglayer/

[25] A. Delorme, T. Mullen, C. Kothe, Z. A. Acar, N. Bigdely-Shamlo,
A. Vankov, and S. Makeig, “EEGLAB, SIFT, NFT, BCILAB, and
ERICA: New tools for advanced EEG processing,” Intell. Neuroscience,
vol. 2011, pp. 10:10–10:10, Jan. 2011.

APPENDIX

Test systems: PC 1 – Intel Core i5@2.66 GHz, 8 GB RAM,
Nvidia GeForce GT 9500, Realtek 8112L Gbit – Debian unsta-
ble 64 bit (g++ 4.8.5) and Windows 7 32 bit (msvc2012). PC
2 – Intel Core2Quad Q9450@2.66 GHz, 8 GB RAM, Nvidia
GeForce GT 9500, Realtek 8110SC Gbit – Debian unstable
64 bit and Windows 7 32 bit; Linksys WRT320N Gbit Router
(DD-WRT – v24-sp2); no other PCs attached
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Abstract Steady-state somatosensory evoked potentials

(SSSEPs) have been elicited applying vibro-tactile stimula-

tion to all fingertips of the right hand. Nine healthy subjects

participated in two sessions within this study. All fingers

were stimulated 40 times with a 200-Hz carrier frequency

modulated with a rectangular signal. The frequencies of the

rectangular signal ranged between 17 and 35 Hz in 2 Hz

steps. Relative band power tuning curves were calculated,

introducing two different methods. Person-specific reso-

nance-like frequencies were selected based on the data from

the first session. The selected resonance-like frequencies

were compared with the second session using an ANOVA for

repeated measures to investigate the stability of SSSEPs over

time. To determine, if SSSEPs can be classified with a

classifier based on unseen data, an LDA classifier was trained

with data from the first and applied to data from the second

session. Person-specific resonance-like frequencies within a

range from 19 to 29 Hz were found. The relative band power

of the resonance-like frequencies did not differ significantly

between the two sessions. Significant differences were found

for the two methods and the used channels. SSSEPs were

classified with a hit rate from 51 to 96 %.

Keywords Steady-state somatosensory evoked potentials

(SSSEP) � Stimulation � Vibration � Tactile � EEG

1 Introduction

A brain–computer interface (BCI) is a system facilitating

communication and control without the need of any mus-

cular activity [31]. For patients, e.g., who suffer from some

sort of locked-in syndrome or amyotrophic lateral sclerosis

(ALS), a BCI could be their last chance to stay in touch

with their environment [16]. Different strategies can be

used for BCI control-like sensory motor rhythms (SMR)

[23] or evoked potentials (EPs) [6]. EPs can occur after

different kinds of external stimulation (e.g., visual, audi-

tory, tactile, etc.) [24]. A common way to gain control

through a BCI using EPs utilizes the oddball paradigm to

evoke P300 EPs [6]. Applying external stimulation in a

repetitive manner with a certain frequency elicits so-called

steady-state evoked potentials (SSEPs) [24] in the brain.

Those SSEPs are related to the applied stimulation fre-

quency. Affected brain regions depend on the kind of this

stimulation. Visual stimulation (e.g., flickering lights)

produces steady-state visual evoked potentials (SSVEP).

SSVEPs can be recorded in the occipital regions of the

brain whereas repetitive tactile stimulation (e.g., vibratory

stimulation) elicits steady-state somatosensory evoked

potentials (SSSEP) in the somatosensory cortex [26].

As already mentioned, a BCI might be the last remain-

ing communication channel for completely paralyzed per-

sons. SSVEPs as well as SSSEPs have already been

successfully used for BCI control [19, 20]. A major

drawback of BCIs utilizing a person’s visual system is the

requirement that this system is still functional. As an

example, patients who suffer from ALS can lose control

over their eyelids [11] or they do not have full control over

their eye muscles any more. As exemplarily shown in [7]

and [10] the somatosensory system of ALS patients is still

functional (with potential abnormalities regarding to the
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form of evoked potentials). Based on these findings, using

a somatosensory BCI, e.g., based on SSSEP, might be

suitable for patients suffering from some kind of locked-in

syndrome because they are completely independent of a

muscular component. Patients could gain control shifting

their attention to a certain target stimulus, as presented in

[19] with healthy subjects.

Tobimatsu et al. [28] and Müller et al. [17] investigated

the emergence of tuning curves based on vibro-tactile

stimulation. Tobimatsu et al. reported a narrow tuning

curve with a person independent maximum at 21 Hz by

stimulating the whole palm. Findings from Müller et al.

[17] show a broad person-dependent tuning curve with

person-specific resonance-like frequencies stimulating only

the index finger. However, none of both studies analyzed

the stability of those tuning curves over time, regardless of

being broad or narrow. For BCI usage, a stable response on

external stimulation is very useful to avoid unnecessary

screening sessions to determine an optimal stimulation

frequency. A proper tool to investigate potential resonance-

like frequencies and their stability are tuning curves based

on relative band power (BP) changes [17]. Other ways to

show cortical activity elicited by repetitive stimulation

would exemplarily be FFT (fast fourier transform) spectra

as, e.g., shown in [25] or time/frequency maps as shown in

[27]. However, the big advantage of relative BP tuning

curves is a compact representation showing the relation

between a reference period without stimulation and a

stimulation period. Furthermore, an emergence of a

potential tuning curve is very well visible. Such an emer-

gence becomes hard to recognize using, e.g., FFT spectra.

Within this work we analyzed the stability and the dis-

tribution of SSSEPs evoked by vibro-tactile stimulation of

all five fingers from the right hand using relative BP values.

As the density of mechanoreceptors (especially Meissner

and Pacinian corpuscles) is different on every finger, all

five fingers were stimulated [14]. Thus, SSSEP resonance-

like frequencies based on tactile stimulation being poten-

tially finger-dependent were also analyzed within this

work. Due to the long measurement duration, this was done

in two different ways. The first one is similar to [17], the

second one is taking cortical changes over time into

account. Phase locking effects were not investigated as,

e.g., done in [8].

2 Methods

2.1 Measurement setup

Vibro-tactile stimulation was generated by five audio

transducers (12 mm KSQG706BP Magnetic Transducer,

Kingstate Electronics Corp., Taiwan), similar to [19]. This

stimulation was applied to the fingertips of all five fingers

of the right hand through a round 50 mm2 metal plate

(£ 8 mm, height 1 mm) mounted on the audio transducers

surface. A carrier frequency of 200 Hz modulated with a

rectangular signal was used for stimulation [18]. The

rectangular modulation ranged between 17 and 35 Hz in

2 Hz steps and a duty cycle of 50 %. Figure 1 shows an

example of the applied stimulation signal. This signal was

created with 2 kHz, whereby a first-order hardware low-

pass filter with an edge frequency at 300 Hz was used to

smooth the 200-Hz sine. The system used for the mea-

surement was driven by a Matlab realtime Simulink model

(The MathWorks Inc., Realtime Windows Target, Natick,

USA).

Nine subjects participated in the study, eight male and

one female, one participant was left handed. The mean age

was 26.9 years (SD = 1.7). All subjects participated in two

sessions with at least 2 weeks in between (mean 28 days,

SD ±17.5, min. 13, max. 64).

A model of the shape of the right hand was produced for

mounting the audio transducers. Those were placed at the

fingertips of the hand form to cover regions with the

highest density of Pacinian and Meissner corpuscles [14].

Participants were seated in a comfortable armchair during

the measurement, the form mounted under the participants

right hand. All participants listened to white noise over two

in-ear headphones to avoid auditory influences from the

stimulation device. They were introduced to the measure-

ment and stimulation procedure and gave their informed

consent in participating to the measurement. Three bipolar

EEG channels over C3, Cz, and C4 (international 10-20

system) were recorded using a bipolar EEG amplifier

(Guger Technologies OEG, Graz, Austria). Those electrode

positions were chosen, as various studies show activation

in different cortical regions [2, 3, 9, 21, 25, 27], also
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Fig. 1 Signal used for tactile stimulation. A 200-Hz sine modulated

with a 25-Hz rectangular signal (duty cycle 50 %) is shown as an

example
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including the primary somatosensory cortex. Furthermore,

according to Giabbiconi et al. [9]: ‘‘Sustained spatial

attention to vibration is mediated in primary somatosensory

cortex’’ and attention modulation is the operating principle

of an SSSEP-based BCI. However, due to hardware limi-

tations a trade-off had to be made and more electrodes also

covering frontal or parietal regions could unfortunately not

be recorded.

Ag/AgCl electrodes were used, positioned 2.5 cm

anterior and 2.5 cm posterior to C3, Cz, and C4. The

ground electrode was placed at position Fpz. All imped-

ances were kept below 5 kX: A hardware high-pass filter at

0.5 Hz, a low-pass filter at 100 Hz, and a notch filter at

50 Hz were applied. The same Matlab system was used for

EEG-recording and stimulation signal generation, thus the

sampling rate was also 2 kHz. The whole measurement

was done in a shielded room. Validation measurements

were conducted prior to the measurement series. The

measurements were accomplished running the stimulation

unit with and without the participants touching the stimu-

lator and with the stimulator running and no subject par-

ticipating. This was done to verify that the measured

signals are not contaminated by any stimulator artifacts.

2.2 Stimulation paradigm

Figure 2 shows an illustration of the measurement para-

digm. Before the start of the first trial, a 5 s break was

inserted. A beep signalized the beginning of the trial. The

first 0.5 s were not used for any calculations as being

potentially influenced by EPs caused by the auditory event

(marked as EP waiting, see Fig. 2). The next 2.5 s were

used as reference period without applying any stimulation.

Subsequently, randomly selected fingers from the partici-

pant were stimulated within randomly selected frequencies

ten times for 2 s within one trial. Every single stimulation

interval was therefore completely based on a random pro-

cess. Thus, the stimulation order of different trials was

(theoretically) never the same to avoid any adoption

effects. No finger was stimulated two times consecutively,

but the stimulation of two different fingers with the same

frequency in a row was possible. Following the stimulation

block, a 3 s break was inserted. After this break the trial

started anew. Each frequency was applied 40 times to

every finger, thus altogether 2,000 stimulations were done,

distributed over 200 trials. A session was divided into 20

runs with about 6 min duration each, consisting ten trials.

During all trials, participants were visually distracted, by

counting highlighted characters (letters, numbers, and

symbols highlighted in red color) on a computer monitor in

front. This was done to avoid that the participants shift

their attention to the stimulated finger. About 20 % of all

characters were red colored with a mean display time of

0.7 s per character, resulting in about 70 characters to

count in 6 min. Participants were asked for the number of

highlighted characters after every run.

2.3 Data analysis

Before analysis, all data were visually inspected for EMG

(electromyogram) artifacts. Time segments (reference or

stimulation) containing EMG artifacts were discarded for

further calculations. All data were downsampled to 512 Hz,

applying an FIR filter to avoid aliasing. To reduce the effect

of evoked potentials caused by the stimulation onset, the

first 0.5 s of every stimulation period were not used.

Furthermore, FFT spectra were calculated for every

finger, channel and session. Those spectra were averaged

over the respective reference and stimulation intervals.

This was done to ensure that the obtained relative BP

increase was caused by the stimulation and not accidentally

by event-related synchronization or desynchronization

Fig. 2 Graphical illustration of the measurement paradigm. The

reference period without stimulation is green colored, stimulation

intervals are blue colored. A visual distraction was given during the

whole trial starting with a beep and ending after one reference and ten

stimulation periods. The visual distraction is illustrated within the

black bar
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processes (ERD/S). As shown in [27], tactile stimulus

processing is accompanied by frequency-dependent

responses and might therefore influence further calcula-

tions. FFT spectra for subject s2 are presented in the online

supplementary material.

2.3.1 Determination of resonance-like frequencies

BP tuning curves were computed to determine the partic-

ipants resonance-like frequencies as described in [17].

Therefore the recorded channels were bandpass-filtered ten

times with the stimulation frequencies as center frequency

and a bandwidth of 2 Hz to obtain ten frequency bands. A

fifth-order butterworth filter was applied for this purpose.

The mean BP of the last 1.5 s of every stimulation block

and the last 2.5 s of the reference intervals were computed.

BP ¼ 1

N
�
XN

n¼1

x½n�2 ð1Þ

BP values [see (1); x, filtered samples from one channel; N,

number of samples in the time interval] were calculated for

every stimulation frequency at one finger and also for its

related reference intervals. Afterwards mean, standard

deviation and 95 % confidence intervals (computed using

bootstrapping [5]) for the mean were determined.

Because of the long duration of the measurements, two

different methods to compute the relative BP increase were

used. The first method, named ‘‘common weighting’’,

similar to [17], does not take the measurement duration

into account. A second method, named as ‘‘trial based

weighting’’, considers EEG changes over time.

2.3.1.1 Common weighting BP values during stimula-

tion for one frequency and one finger are summed up and

averaged. The same step is also done to obtain reference

BP values per finger and frequency. A certain reference

period is used to calculate a BP value, if the respective

finger was stimulated with the respective frequency in the

trial related to the reference period. Thus, a common mean

stimulation BP per frequency and finger and a common

reference BP related to the respective finger and frequency

are calculated. The mean BP during stimulation is related

to the respective BP during reference and scaled to zero to

get a common relative bandpower (crBP) increase or

decrease.

crBPFi; Freq ¼
PN

n¼1 BPn;Fi; FreqPN
n¼1 BPn; Fi;Ref freq

� 1

 !
� 100 % ð2Þ

The variables within the equation have following meaning:

BP, bandpower based on (1); N, repetitions of one fre-

quency at one finger; Fi, the respective finger; Freq, the

applied stimulation frequency; Ref_freq, the respective

reference period when the finger ‘Fi’ was stimulated with

the frequency ‘Freq’.

2.3.1.2 Trial-based weighting Within this method, the

BP during stimulation is related to the reference period of

the respective trial. Thus trial based BP values are

obtained, considering EEG changes over time this way.

The BP values per trial are again summed up and averaged

to get an overall BP alternation value named trial-based

relative bandpower (tbrBP).

tbrBPFi;Freq ¼
1

N
�
XN

n¼1

BPn; Fi; Freq

BPn; Fi;Ref freq

� 1

� �
� 100 % ð3Þ

The evaluation of the existence of individual tuning curves

was performed in two steps. In a first step, a t-test for single

samples was performed to check if the BP values differ

significantly from zero. In a second step, the appearance of

the tuning curves was evaluated by a 2 9 5 9 10 ANOVA

for repeated measures, conducted for every single partici-

pant. The independent variables were ‘‘SESSION’’ (session

1 vs. session 2), ‘‘FINGER’’ (finger 1–finger 5) and

‘‘FREQUENCY’’ (frequency 1–10) and the dependent

variable was the BP value of C3.

For statistical testing over all participants, a 2 9 2 9

5 9 3 ANOVA for repeated measures was applied to the (1)

obtained BP values of the resonance-like frequency

between the sessions, (2) the common and trial-based

weighting method, (3) the different fingers and (4) the three

electrode positions. The independet variables were

‘‘METHOD’’ (common vs. trial-based), ‘‘SESSION’’ (ses-

sion 1 vs. session 2), ‘‘FINGER’’ (finger 1 to finger 5) and

‘‘CHANNEL’’ (C3, Cz, and C4). The dependent variable

was the BP value of the resonance-like frequency. This

frequency was obtained, calculating a score by dividing the

respective trial-based relative BP by it’s confidence inter-

val. The frequency with the highest similar score on all five

fingers was used for statistics. The resonance-like frequency

was selected individually for every participant and was

validated by the results of the individual statistical analysis

of the tuning curves (see Table 1). In case of significant

effects Newman–Keuls post-tests were used. Furthermore

the trial-based relative band power values from the first

session for all channels and fingers were correlated with

the second session using the Pearson product-moment

correlation coefficient (PPMCC). Statistical analysis was

performed with the data analysis software system STAT-

ISTICA 7.0 (StatSoft. Inc., Tulsa, USA).

2.3.2 Classification of SSSEP

A classifier was trained with data from the first session.

This classifier was afterwards applied to the data from the
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second session. Thus it was investigated if a classification

of the recorded SSSEPs with a classifier trained with data

from another session is possible. Fisher’s LDA (linear

discriminant analysis) was chosen as a classifier. Features

were selected using the same method as for selecting the

resonance-like frequency used for statistical analysis. Five

frequencies with a high and also possibly equal score on

all fingers were selected as target frequencies for the five

fingers. The same score was used here as the one to select

frequencies for statistical testing. One frequency was

manually assigned to each finger. For this purpose five

different classifiers were calculated. Initially, the raw EEG

of the first session was bandpass filtered with five fifth-

order butterworth filters with their center frequencies

according to the five selected frequencies to obtain five

frequency bands. The width of the bandpass was set to

2 Hz, the filtered signals were smoothed using a moving

average filter with a duration of 1 s. For training the

classifiers, one frequency out of the five available fre-

quencies, was selected as target for one classifier, the

others as non-target. All classifiers were 10 x 10 cross

validated. Data from the second session was also prepro-

cessed as mentioned before. The classifiers trained with

data from the first session were applied to the prepro-

cessed data from the second session. The hit rate of the

classifier during stimulation with the respective target

frequency was analyzed.

3 Results

3.1 Determination of resonance-like frequencies

In Fig. 3, the emergence of a tuning curve (participant s2)

is visible with its maximum of relative BP increase at

29 Hz for channel C3. Similarities between common and

trial-based method are visible. For participant s2, the time

between first and second session amounted to 14 days.

Channel Cz showed a similar trend as channel C3, but with

an additional attenuation, channel C4 showed no increase.

No BP increase was visible during the validation mea-

surements, where participants were not touching the stim-

ulator or running the stimulation without any person

attached to the EEG amplifier. Furthermore, as visible

within the online supplementary material, an amplitude

increase during stimulation compared to the reference is

visible as a peak in the FFT spectra, mainly at channel C3.

An overview on the distribution and the overall stability

of the SSSEPs for all participants can be seen in Fig. 4. All

participants responded to the stimulation in a different but

stable way. Four participants (s1, s5, s8, and s9) showed

only a small BP increase (lower than 100 %) with a con-

fidence interval encompassing a large region and values

below 0.

The statistical analysis of the BP values of the reso-

nance-like frequencies (see Table 1) resulted in significant

main effects for ‘‘METHOD’’ [F(1,8) = 86.29; p \ 0.001]

and ‘‘CHANNEL’’ [F(2,16) = 10.26; p \ 0.01]. The trial-

based method (tbrBP) (M = 0.67; SD = 0.49) was sig-

nificantly higher than the common method (crBP)

(M = 0.22; SD = 0.37). The difference between the three

channels showed that the BP of the resonance-like fre-

quency was significantly higher at C3 (M = 0.89;

SD = 0.82) compared to Cz (M = 0.39; SD = 0.98) and

C4 (M = 0.05; SD = 0.15).

These resonance-like frequencies were also statistically

validated individually for every participant. As also visible

in Fig. 4, the participants s2, and s6 showed a significant

resonance peak [s2: F(9,351) = 100.86; p \ 0.0001, s6:

F(9,351) = 92.20; p \ 0.0001], whereas s3, s4, and s7

showed a resonance ‘plateau’ with at least two frequencies

[s3: F(9,351) = 9.47; p \ 0.0001, s4: F(9,351) = 36.06;

p \ 0.0001, s7: F(9,351) = 4.10; p \ 0.0001]. The partici-

pants s1, s5, and s8 did not show significant relative BP

increases from zero in both sessions for a single stimulation

frequency on all fingers. Participant s9 showed a significant

rel. BP increase from zero, but no resonance frequency or

plateau could be identified.

Considering the stability of SSSEP responses, five par-

ticipants showed no significant differences between the two

Table 1 Selected resonance-like frequencies for all participants used for statistical group analysis and frequencies used for classification

Participants s1 s2 s3 s4 s5 s6 s7 s8 s9

Frequencies [Hz] used for statistics:

27 29 31 27 25 19 27 25 17

Frequencies [Hz] used for classification:

Thumb 23 29 25 23 25 19 25 25 31

Index finger 25 27 31 27 33 17 19 29 17

Middle finger 33 31 27 31 21 21 27 17 19

Ring finger 27 35 17 29 23 25 33 33 27

Little finger 29 25 23 25 17 27 21 35 29

Med Biol Eng Comput (2012) 50:347–357 351

123



sessions as a main effect. The participants s6 and s9

showed a lower rel. BP increases during the first session

[s6: F(1,39) = 50.61; p \ 0.0001, s9: F(1,39) = 9.49;

p \ 0.001]. However, considering the interaction between

session and finger, again no significant difference was

found. The participants s7 and s8 also showed a lower rel.

BP increase during the first session. However, this effect

was only observable for finger four at s7 and fingers three

and five for s8 [s7: F(4,156) = 4.32; p \ 0.01, s8:

F(4,156) = 3.53; p \ 0.01].

Only s8 showed no significant difference for the finger

as a main effect. Taking the interaction of frequency and

finger into account, all participants with a rel. BP increase

above zero showed no significant differences between the

respective resonance frequencies and the individual fingers.

The resonance frequencies always showed the highest rel.

BP increase compared to other frequencies. The statistical

analysis across all participants showed that the relative BP

increase did not change significantly during session one

and session two [F(1,8) = 0.001; n.s.] or the stimulated

fingers [F(4,32) = 1.59; n.s.]. The PPMCC showed signifi-

cant results for all five fingers and channel C3 (p \ .05,

min. r = 0.76, max. r = 0.93), four significant results for

channel Cz (p \ .05, min. r = 0.64, n.s.; max. r = 0.91) and

no significant results for channel C4.

3.2 Classification of SSSEP

The classification results (hit rate) for all participants for

every finger, classifying the second session with a classifier

trained with data from the first session are presented in

Table 2. Figure 5 shows the hit rate curves from five

selected participants, marked bold in Table 2. An increase

of the common classification result (bold black dashed line)
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Fig. 3 Relative BP increase of participant s2 from channel C3. The

left column shows the results using the common method, the right
column the results using the trial based method. Every row represents

one finger. The respective stimulation frequency is plotted on the

x axis, the y axis represents the relative BP increase in [%] (different

scaling between left and right column). For every stimulation

frequency a bar for the first and the second session are shown.

Rectangles indicate the particular 95% confidence intervals for every

frequency and session
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Fig. 4 Comparison over all

participants of all five fingers

with trial-based weighting for

session 1 and session 2 with

95% confidence intervals

(indicated with rectangles)
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is visible after about 1 s. The delay is caused by the

moving average filter. After the stimulation the classifica-

tion result drops again, delayed by the moving average

effect.

4 Discussion

In this study the effects of vibro-tactile stimulation of all

five fingers of the right hand were investigated. The

emergence of a person-dependent tuning curve with per-

son-specific maxima in a range between 19 and 29 Hz was

shown.

These findings are similar to the results presented in [17]

where participants also showed narrow tuning curves with

maxima between 17 and 31 Hz. The results from [28] with

a person-independent resonance peak at 21 Hz could not be

reproduced. A possible explanation for this differences

could be the different setup used in [28], where the palm

was stimulated with a 128-Hz sine carrier frequency,

modulated with a sinusoidal signal within a range from 5 to

30 Hz.

As described in [14], the firing rate of neurons is also

related to the size and the shape of a surface touching the

skin, mainly encoded by populations of Merkel cells. In

addition the density of mechanoreceptors is different

between the palm and the individual fingers. This might be

a possible explanation for the different findings in [17] and

[28]. Furthermore, this is a potential explanation why the

statistical analysis showed differences for some partici-

pants with the finger as a main effect. Comparing results

from [17] and our findings, also slight differences are

observable like different relative BP increase values. This

could be caused by the fact that Müller et al. used a

stimulation surface of 3 mm2, whereas 50 mm2 was used

in the actual study. According to [14], the shape of a sur-

face is mainly perceived by Merkel corpuscles. But also

Meissner corpuscles are involved in surface perception,

although they have a bigger perceptive field. However,

Merkel corpuscles are most sensitive for vibratory stimu-

lation in a range between 5 and 15 Hz and Meissner cor-

puscles between 20 and 50 Hz [14]. The frequency of

tactile stimulation applied within this work and also in [17]

and [28] was mainly stimulating Meissner and Pacinian

corpuscles. But Merkel corpuscles might also be influenced

as well, as their frequency perception does not end at

15 Hz. Because of this, the size and shape of the stimula-

tion surface might be influencing the distribution of SSSEP

resonance-like frequencies. Furthermore, Merkel corpus-

cles can evoke neuron firing rates in the range of SSSEP

resonance-like frequencies, if very small stimulation sur-

faces are used [14]. However, this firing rates decrease

continuously after the first skin contact, but might also

influence the distribution of SSSEP tuning curves. There-

fore, effects related to the size of the stimulation surface

and SSSEP, especially during stimulation onset and also in

combination with focused attention should be investigated

in more detail.

An interesting effect was the emergence of similar

tuning curves on all fingers. This finding suggests that the

neuronal networks involved in processing vibratory tactile

stimulation are similar for all fingers, despite being spa-

tially separable. However, as mentioned in [13], Pacinian

corpuscles have a very big receptive field: ‘‘The receptive

field of a PC receptor may include the entire hand’’. This

could be another explanation, why the BP tuning curves

had similar shapes, also for different fingers.

As visible in Fig. 4, all participants showed different

tuning curve distributions but they were similar over both

measurements. Considering the results of the ANOVA and

the PPMCC, a stability of SSSEP over time is given.

However, only nine subjects participated within this study,

which is a low number to calculate the PPMCC.

Not all participants responded in a similar way to the

tactile stimulation. Five actually showed a relative BP

increase lower than 100 %. As presented in [1–3, 8, 14],

Table 2 Hit rate [%] for all

participants

Those who showed a relative

BP increase with the mean

bigger than 60 % and the

standard deviation smaller than

10 % in the first session are

printed bold

Thumb Index fi. Middle fi. Ring fi. Little fi. Mean ±SD

s1 61.5 92.5 82.5 65.0 80.0 76.3 11.5

s2 85.0 65.0 85.0 75.0 82.5 78.5 8.6

s3 75.0 75.0 70.0 67.5 62.5 70.0 5.3

s4 100 97.5 95.0 100 90.0 96.5 4.2

s5 82.5 47.5 45.0 52.5 60.0 57.5 13.5

s6 85.0 65.0 70.0 67.5 60.0 69.5 9.4

s7 69.4 65.7 62.9 68.6 75.0 68.3 4.5

s8 20.0 94.9 25.0 32.5 95.0 53.4 34.1

s9 69.2 47.4 47.4 46.2 47.4 51.5 8.9

Mean 72.0 72.3 64.8 63.9 72.5 69.1

±SD 22.6 19.2 22.3 19.1 15.9 14.1
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cortical response can be modulated based on attention

shifting. This effect has been shown in fMRI as well as in

EEG-based studies. To eliminate influences based on

attention shifting, participants were distracted with the

presented counting task. In addition, the applied force of

vibratory stimulation affects cortical responses as shown in

[28]. As reported by all participants, the tactile stimulation

was near the perception boarder. Thus, the effect of neural

inhibition and the gating functionality of the thalamus [14]

together with a stimulation at the perception limit could

potentially completely inhibit ascending signals caused by

the tactile stimulation. This could be a reason why some

participants showed a much higher relative BP increase

with the emergence of a tuning curve, whereas others did

not respond to the stimulation at all. Therefore, the possi-

bility for a participant to have control over the pressure

applied to the stimulation unit should be avoided, as this

might further influence the results. Otherwise, stimulators

still providing a sufficient and constant displacement by

varying finger pressure should be used.

Considering the two different analysis methods, the trial-

based method showed higher values with a only slightly

increased standard deviation compared to the common

method. Considering the work presented in, e.g., [15, 25, 27,

30], methods similar to the common weighting are used.

Roughly speaking, all trials and reference periods are

equally treated, averaged and analyzed in an ongoing pro-

cess. Such methods are commonly used within the neuro-

science community and are well established. However,

during longtime and more demanding measurements, in the

case of the presented study:[2 h with a mathematical task,

the EEG signal might change, e.g., as a result of tiredness.

Furthermore, the EEG signal is known to be highly non-

stationary [29]. Therefore, treating time epochs recorded

over a longer time period the same way does not take such

effects into account. Using a trial-based method as shown in

this paper is a potential way to cope with such issues, where

every trial is related to the respective reference period.

However, a slightly more complex analysis structure is

required, as every trial has to be considered together with the

respective reference period. Having, e.g., artifacts within the

reference would also affect calculations on the data within

the trial, because the trial is related to exactly this one ref-

erence. Therefore, an increased number of trials is required.

The electrode positions C3, Cz, and C4 showed signif-

icant differences. However, cortical activity elicited with

vibratory stimulation also affects regions beyond the pri-

mary cortex, which is mainly covered with the bipolar
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electrode placement used in this study. E.g., in Severens

et al. [25] a fronto-central and central-parietal activation is

visible. Other studies also showed activity in other regions

beyond the primary somatosensory cortex [2, 3, 21]. Thus,

the activity picked up with the bipolar electrode placement

is also affected by cortical processes in other regions, e.g.,

from the secondary somatosensory cortex. Regrading fur-

ther studies, an electrode placement also covering parietal

regions on both hemispheres [2, 3] and fronto-central

regions [25, 27], is suggested. However, mainly for BCI

usage, a low number of channels is still a desired goal.

Unfortunately the chosen electrode placement might

also be a reason why some participants did not show a

significant relative BP increase.

Regarding the classification results, it could be shown

that tactile stimulation can also be automatically detected

with rates up to more than 90 %. Classifiers were trained

and applied automatically without further manual modifi-

cations (e.g., bias). Considering the classification results of

s1 and s8 in more detail, heavily biased classifiers to two or

three classes could be observed, resulting in high results for

the respective classes. As presented in [4], SEPs (somato-

sensory evoked potentials) are already applied in clinical

practice. SEPs are as an example used to detect spinal cord

damages as already mentioned in [22] or used as a tool to

monitor potential injuries during spinal cord surgery [12].

However, SEP methods are mainly based on signal aver-

aging and take therefore a longer recording time (1–2 min)

to reach a sufficient signal-to-noise ratio (SNR) as claimed

in [22]. SSSEPs might be an alternative concerning this

issue, as mentioned in [22]. Applying a classification

method as done within this studies could be a potential

alternative to the SEP-based methods.

In terms of BCI research, applying SSSEPs elicited in

different fingers for BCI control, the tuning curve simi-

larities between different fingers might reduce screening

procedures, as determining the tuning curve of one finger is

enough to imply the tuning curves of the other fingers. Up

to now a direct relation between BCI performance and an

optimal stimulation frequency selection has not been

investigated. But it is indicated that using a frequency

below or above the frequency range, covered by the per-

sons tuning curve might not be suitable to gain control

through a BCI. Therefore, it is suggested to use stimulation

frequencies between 19 and 29 Hz for SSSEP BCI pur-

poses, if the fingertips are stimulated and no screening

session is conducted and to prefer frequencies closer to 25

than 21 Hz as also used, e.g., in [30]. However, a mental

strategy to control a BCI via SSSEP, as shown in [19] is

needed what has not been done within this study.

Summarizing the results obtained within this study, a

different response to tactile stimulation for different per-

sons could be shown. Furthermore, this response seems to

be stable over time and all fingers seem to respond in a

similar way. However, it is unclear if this similar response

is caused by cortical processes or the stimulus perception

directly at the mechanoreceptors.
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16. Kübler A, Birbaumer N (2008) Brain–computer interfaces and

communication in paralysis: extinction of goal directed thinking in

completely paralysed patients?. Clin Neurophysiol 119:2658–2666

17. Müller GR, Neuper C, Pfurtscheller G (2001) Resonance-like

frequencies of sensorimotor areas evoked by repetitive tactile

stimulation. Biomed Tech (Berl) 46:186–190

356 Med Biol Eng Comput (2012) 50:347–357

123



18. Müller-Putz GR, Neuper C, Pfurtscheller G (2002) Do various

stimulation characters cause different steady-state evoked

potentials in man? In: Hutten H, Krösl P (eds) Proceedings of 2nd
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Somatosensory Evoked Potentials Elicited by Stimulating Two Fingers
from One Hand - Usable for BCI?

Christian Breitwieser, Christoph Pokorny, Christa Neuper, Gernot R. Müller-Putz

Abstract— Steady-state somatosensory evoked potentials
(SSSEPs) have been elicited using vibro-tactile stimulation
on two fingers of the right hand. Fourteen healthy subjects
participated in this study. A screening session, stimulating each
participant’s thumb, was conducted to determine individual
optimal resonance-like frequencies. After this screening session,
two stimulation frequencies per subject were selected. Stim-
ulation was then applied simultaneously on the participant’s
thumbs and middle finger. It was investigated whether it is
possible to classify SSSEP changes based on an attention
modulation task to determine possible BCI applications. A cue
indicated the participants to shift their attention to either the
thumb or the middle finger. Offline classification with a lock-
in analyzer system (LAS) and a linear discriminant analysis
(LDA) classifier was performed. One bipolar channel and no
further optimization methods were used. All participants except
one reached classification results above chance level classifying
a reference period without focused attention against focused
attention either to the thumb or the middle finger. Only two
subjects reached accuracies above chance, classifying focused
attention to the thumb vs. attention to the middle finger.

I. INTRODUCTION

Different strategies are used nowadays for Brain-
Computer Interfaces (BCIs). Prominent examples are BCIs
controlled via sensorimotor rhythms [1] or evoked potentials
(EPs) [2]. Visual evoked potentials (VEPs) can occur after
row and column flashes from a P300 speller [3]. In [3],
the occurrence and usability of, for example, the P300
component [4] was analyzed. EPs can also be utilized for
BCI control using amplitude modulation of steady-state
EPs (SSEPs) through shifting attention [5], [6]. A major
drawback of VEP-based BCI systems is the requirement of a
functional visual system. Patients suffering from a locked-in
syndrome or amyotrophic lateral sclerosis (ALS) can lose
control over their eyes and the ability to lift their eyelids [7],
but their somatosensory system seems to remain functional.
As an alternative, SSEPs could also be elicited using tactile
stimulation, producing steady-state somatosensory evoked
potentials (SSSEPs) [8]. These potentials have already been
successfully applied for BCI control, stimulating the index
fingers of both hands [9]. Control was gained by shifting
attention to a target finger. Person dependent stimulation
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are not liable for any use that may be made of the information contained
herein.
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frequencies were obtained via a simple screening process.
Classificaion accuracies of up to 80 % could be reached
by classifying focused attention on the left or the right
index finger during tactile stimulation. Applying vibratory
stimulation also produces cortical activity beyond the
primary somatosensory system, especially when focusing
on a target stimulus [10]–[12]. Therefore channels not just
covering the primary somatosensory cortex could lead to an
increased BCI performance.

The goal of this work was to investigate whether users could
gain control through a BCI based on attention modulation
by just stimulating fingers of one hand using a person
specific stimulation frequency selection. If it is possible to
distinguish attention modulation within one hand, it could
become feasible to build a BCI with more than two classes
by stimulating multiple fingers on both hands.

II. METHODS

A. Measurment Setup and Participants

Tactile stimulation was applied to the finger tips of the
thumb and the middle finger of the right hand using C2
tactors [Engineering Acoustics, Inc., Casselberry, FL, USA].
The stimulation signal was produced via a custom-built
signal generator generating a 200 Hz sine, modulated with
a rectangular signal for stimulation as suggested by Müller-
Putz et al. [9]. The resulting stimulation signals were short
200 Hz pulses with a given frequency. The measurement was
divided into the parts: (i) screening and (ii) focused attention.
Electrode coordinates were gathered using ELPOS from
zebris [zebris Medical GmbH, Isny, Germany]. Fourteen paid
subjects participated in the studies (50 % male, 50 % female,
mean age: 25.64 ± 2.6 years).

B. EEG Recording

Forty-eight Ag/AgCl electrodes were used for EEG
recording with linked references as shown in Fig 1. Three
g.USBamps [Guger Technologies OG, Graz, Austria] were
used for EEG recording with a sampling rate of 2.4 kHz.
Impedances were kept below 5 kΩ. All EEG measurements
were done in a shielded room.

C. Measurement Procedure

1) Screening: According to [13], every person reacts in
a different way to tactile stimulation with an individual
resonance-like frequency. To determine person specific tun-
ing curves, a screening measurement was conducted by stim-
ulating the participant’s thumb with stimulation frequencies
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Fig. 1. International 10–20 system electrode setup used for measurement.
Recorded electrode positions are highlighted in gray, reference electrodes
were placed at left and right mastoids, and a ground electrode was mounted
on the participant’s nose.

from 13 Hz to 35 Hz, in 2 Hz steps. Only the thumb was
stimulated as the tuning curve is assumed to be similar on
all fingers [14]. Every frequency was stimulated randomly
60 times for 2 s. Reference periods without tactile stimula-
tion were placed in the screening paradigm. The screening
was divided into 6 runs, every run lasting about 8 min.
Participants were distracted to avoid concentrating on the
stimulated finger. They had to perform a mathematical task
during the screening: add or subtract randomly appearing
numbers on a screen. After the screening, FFT difference
maps (fast fourier transform) were calculated based on the
screening data to show power changes during stimulation.
An example is presented in Fig. 2(a). This maps outline the
difference between the FFT spectra during reference and
during stimulation. FFT spectra from the bipolar channel
FC3-CP3 from time-intervals during stimulation were plotted
as shown in Fig. 2(b). Two frequencies with the highest
amplitudes during stimulation were selected as stimulation
frequencies for the following paradigm.

2) Focused Attention: This paradigm was divided into
single trials. Every trial consisted of a 3 – 3,5 s reference
followed by a 4 – 4,5 s focused attention period. During
the reference period, participants were instructed to merely
look at the blank screen. Tactile stimulation was applied
during both periods with the frequencies selected from the
screening. Randomly appearing amplitude changes, called
“twitch” [9], were mixed into the stimulation to facilitate
focusing on a finger by counting the twitches. A fading
text indicated the respective target finger. Every class (target
finger to focus on) was repeated 80 times.
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(a) FFT difference maps used to determine stimulation frequencies with
the highest SSSEP response. Every plot belongs to the time window of one
stimulation frequency, the x-axis shows the frequency, and the y-axis shows
seven bipolar channels over the primary sensory and motor regions. Blue
colored regions indicate a low amplitude, while red and yellow colored
sections show an increased amplitude. Applied stimulation frequencies are
highlighted with white dashed lines.
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(b) FFT spectrum of bipolar channel FC3–CP3 during stimulation with
23 Hz used for manual inspection. The red lines represent the mean
frequency response and its standard deviation during stimulation, and blue
lines during reference period. The range of the stimulation frequency and
its 2nd harmonic are highlighted with green dashed lines.

Fig. 2. FFT maps and FFT spectra used to determine optimal stimulation
frequencies for further measurements from participant s1.

D. Analysis

All data were visually inspected before analysis. EOG
(electrooculogram) and EMG (electromyogram) artifacts
were manually marked; trials containing EMG artifacts were
discarded from further calculations.

1) Band Power Tuning Curves: Tuning curves, based on
relative band power (BP) increase [13], were calculated for
comparison with the FFT maps. To obtain relative BP values,
the BP during stimulation with a single frequency was related
to the respective reference interval. For all relative BP values,
95 % confidence intervals using a bootstrap algorithm [15]
provided by Matlab [The MathWorks Inc., Natick, USA]
were computed with 1000 bootstrap samples and the mean
as the bootstrapping function.
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2) Classification: The amplitude output of a lock-in an-
alyzer system (LAS) [9] and an LDA (linear discriminant
analysis) classifier (Fishers LDA) were utilized for classifica-
tion. As a first attempt, the bipolar channel FC3–CP3, which
showed the highest amplitudes in the stimulation frequency
range inside the FFT maps, was used for classification.
This channel selection was also used to obtain comparable
results with [9]. The LAS output was smoothed using a
moving average filter (length 1 s) before classification. A
classifier was trained using 10 x 10 cross validation. The
classes attention on thumb or middle finger were classified
against the reference period and against each other.

III. RESULTS

All figures presented were obtained from participant s1,
who was randomly selected.

A. Band Power Tuning Curves

Fig. 3 shows relative BP values for different bipolar chan-
nels of one participant. An emergence of a tuning curve is
visible at bipolar channels over the left hemisphere. Channels
covering the right hemisphere show merely a slight or no
increase. A maximum relative BP increase can be seen at
FC3–CP3 around 23 and 25 Hz.

Fig. 3. Relative BP increase tuning curves during stimulation for seven
bipolar channels over the primary sensory and motor cortex for participant
s1. The respective stimulation frequency is shown on the x-axis, channels
are displayed on the y-axis and the relative BP increase is shown on the
z-axis. Every channel is plotted using the same color. Vertical lines show
the 95 % confidence interval (computed using bootstrapping [15]).

B. Classification

Classification results for participant s1 can be seen in
Fig. 4. The results shown in this figure were 10x10 cross
validated with 79 trials per class. Maximum accuracies
of 74 % and 73 % for the respective classes vs. reference
and 56.7 % for thumb vs. middle finger were reached by
this participant. In both cases, classifying against reference,
the classification accuracy was above chance level [16].

Tab. I shows the classification accuracies, their resonance-like
frequency and the selected frequencies for stimulation for
all participants. Thirteen of them reached accuracies above
chance for at least one class against reference. However, only
two participants reached a classification accuracy slightly
above chance, classifying attention on the thumb vs. attention
on the middle finger. The mean accuracy for all participants
was 66.8 % (± 5,7) for thumb vs. reference, 66.6 % (± 5.1)
for middle finger vs. reference and 58.6 % (± 2.0) for thumb
vs. middle finger.
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Fig. 4. Classification accuracies for attention on thumb or middle finger
against the reference period and thumb vs. middle finger for participant
s1. The blue line represents switching attention to the thumb classified
against reference and the green line the attention to the middle finger against
reference. The magenta colored line shows the classification accuracy of
thumb vs. middle finger. The horizontal dashed line indicates the chance
level at 61 % for a significance level of 5 % with 79 trials per class [16].
A vertical dashed line indicates the trial start, when the participants started
shifting their attention to a single finger.

IV. DISCUSSION

This study assessed the possibility of successfully classi-
fying steady-state somatosensory evoked potentials on two
fingers from the same hand using attention modulation. FFT
calculations and relative BP tuning curves were utilized to
determine optimal stimulation frequencies.

A. Band Power Tuning Curves

Similar effects as in Müller et al. [13] could be observed.
Participants showed an individual emergence of a broad
tuning curve with maxima in a range from 21 to 35 Hz,
as visible in Table I. This is contrary to the findings by
Tobimatsu et al. [17], who reported a narrow tuning curve
with a person independent maximum at 21 Hz. The reasons
for these different findings are still an open question, as
Tobimatsu et al. used a different stimulator placement and a
different tactile stimulation paradigm (stimulation applied to
the palm, a bigger stimulation surface, and a sine modulated
128 Hz sinusoidal stimulation signal).
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TABLE I
RESONANCE LIKE FREQUENCIES (Fres , STIMULATION FREQUENCIES AND MAXIMUM CLASSIFICATION ACCURACIES IN [%] FOR ALL PARTICIPANTS.

THE STIMULATION FREQUENCY FOR THE THUMB IS F1 , THE FREQUENCY FOR THE MIDDLE FINGER F2 . THUMB AND MID. FI. (MIDDLE FINGER)
REPRESENT THE ACCURACIES OF THE REFERENCE AGAINST THE RESPECTIVE CLASS. THE LAST ROW SHOWS THE ACCURACIES CLASSIFYING

ATTENTION ON THE THUMB VS. ATTENTION ON THE MIDDLE FINGER (* INDICATES A VALUE ABOVE CHANCE LEVEL).

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 mean± std

fres 23 31 27 25 29 23 31 23 21 35 21 23 29 21
f1 / f2 23/29 19/29 25/29 21/27 23/27 23/29 19/23 23/27 19/25 19/35 21/31 19/27 19/23 21/27
thumb 74* 72* 64 76* 69* 70* 59 73* 64* 67* 63* 61* 65* 58 66.8± 5,7
mid fi 73* 64* 65* 78* 64* 69* 66* 72* 65* 66* 58 68* 64* 61 66.6± 5.1
th/mf 57 56 57 59 58 62* 62 * 60 61 60 58 56 60 59 58.6± 2.0

B. Classification
All participants except one performed above chance

chance in at least one class vs. reference. However only
two participants slightly exceeded the chance level, clas-
sifying focused attention on thumb vs. focused attention
on the middle finger. This was achieved using merely a
single bipolar channel over the primary sensor and motor
regions of the cortex. No further optimizations like indi-
vidual channel selection and channel combinations have
been performed. According to [10], [11] and [12], other
cortical regions are also involved in processing vibro-tactile
stimulation. Therefore, different channel combinations might
further increase classification accuracy, especially classifying
thumb vs. middle finger. Measured electrode positions have
also not been taken into account yet and could be used
for source localization and electrode placement. Participants
reported problems switching their attention to a specific
finger. The twitches should help the participants focus on
a specific finger. The importance of such twitches has to
be investigated in more detail, to clarify whether twitches
are useful or not. In addition, using higher harmonics for
classification already significantly increased classification
accuracy in SSVEP BCIs [18]. This principle could also be
applied to a BCI based on SSSEP.
To sum up, the results indicate that focusing attention to
some tactile stimulation on one hand can be modulated quite
well, but shifting attention to a specific finger during parallel
stimulation is a much more demanding task.

C. Future Works
To further increase classification accuracy, investigations

regarding optimal channel selection, perhaps person specific,
will be done. Including higher harmonics into the classifica-
tion procedure will also be investigated, as well as the effect
of twitches or modifications in the stimulation signal (e.g.
amplitude).
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Abstract
Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials
(SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the
left and right-hand fingertips, in a three-class EEG based hybrid brain–computer interface. It was
hypothesized, that fusing the input signals leads to higher classification rates than classifying
tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies,
consisting of a screening paradigm to determine person dependent resonance-like frequencies
and a subsequent online paradigm. The whole setup of the BCI system was based on open
interfaces, following suggestions for a common implementation platform. During the online
experiment, subjects were instructed to focus their attention on the stimulated fingertips as
indicated by a visual cue. The recorded data were classified during runtime using a multi-class
shrinkage LDA classifier and the outputs were fused together applying a posterior probability
based fusion. Data were further analyzed offline, involving a combined classification of SSSEP
and tERP features as a second fusion principle. The final results were tested for statistical
significance applying a repeated measures ANOVA. Main results. A significant classification
increase was achieved when fusing the results with a combined classification compared to
performing an individual classification. Furthermore, the SSSEP classifier was significantly
better in detecting a non-control state, whereas the tERP classifier was significantly better in
detecting control states. Subjects who had a higher relative band power increase during the
screening session also achieved significantly higher classification results than subjects with lower
relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for
hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying
control- and non-control states with the same level of accuracy.

S Online supplementary data available from stacks.iop.org/jne/13/066015/mmedia

Keywords: brain–computer interface, BCI, steady-state somatosensory evoked potential, SSSEP,
P300, tERP, hybrid

(Some figures may appear in colour only in the online journal)

1. Introduction

A traumatic brain injury, a severe neurological disease or
something similar can happen to anyone. Such an incident,

like the neurodegenerative disease amyotrophic lateral
sclerosis, is a serious impediment for a person and can also
inhibit all voluntary motor functions. Those people affected
may no longer be capable of interacting with their environ-
ment and become locked in their own bodies, ending up in
whats is known as a ‘locked-in’ state.
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Utilizing brain–computer interfaces (BCIs) [1], a new
communication channel has become available. A BCI pro-
vides the possibility to directly communicate by measuring
the brain activity and translating this activity into an output
signal, with the result that muscular activity will no longer be
essential for communication. During the last few years, dif-
ferent forms of BCIs have been developed, which can control
spelling devices, neuroprosthesis, robotic devices and much
more. Different mental strategies are utilized to setup such
BCI systems. Prominent examples for such strategies make
use of dynamic motor rhythms like the ERD/S effect [2],
transient event related potentials (tERPs) such as P300, or
steady-state evoked potentials (SSEPs) [3].

The selection of the respective BCI system and its
strategy for a potential person also depends on the nature of
the impairment. BCIs relying on a functional visual system
(like a visual P300 speller) are not applicable for persons
without a functional visual system, which provides voluntary
eye control to focus the view. In such cases other strategies
are often used. A popular and thoroughly investigated strat-
egy relies in the already mentioned ERD/S effect. To induce
ERD/S, strategies such as motor movement imagination [2]
or other mental tasks are used. Another approach, which was
rarely investigated in the past, utilizes the tactile system,
which often stays fully functional in case of a neural
impairment. Therefore, tactile BCIs are a reasonable alter-
native to e.g., steady-state visual evoked potentials (SSVEPs),
P300, or motor imagery based systems.

Such tactile BCI systems rely on either steady-state
somatosensory evoked potentials (SSSEPs) [4, 5] or tERPs
[6] (for example P300 [7]). SSSEPs are induced by con-
tinuous and periodic sensory stimulation, reflecting a persis-
tent cortical response while tERPs are triggered by a concise
stimulus and reflect a phasic cortical response to this stimulus.
SSSEP based BCIs [8] as well as P300 based BCIs [7] have
already been investigated and reasonable results have been
achieved. To evoke such potentials, tactile stimulation is
applied to the body. Due to the variety in human nature,
different people respond in different ways to a stimulation of
this kind. For example, vibratory stimulation evokes different
‘resonance-like’ frequencies [9], which differ from person to
person [10]. Moreover, when tactile stimulation is applied in
parallel to different fingers, certain interaction effect types
become visible [6]. Thus different factors, whether person
dependent or otherwise, have an influence on the setup of a
BCI. For example, in the studies performed by Müller-Putz
et al [8], classification results of up to 80% could be reached
for one subject, while other subjects hardly reached 60% and
stayed below the chance level. Due to a cause that is still
unknown, the tactile BCI only worked in an excellent manner
in the case of one single subject. The precise reasons why the
others have not been able to equal this optimum performance
have not yet been established.

In order to combine the advantages of different BCI
strategies, hybrid BCI (hBCI) systems were introduced [11].
Such hBCIs are capable of combining different kinds of brain
signals as well as external signals to enhance the performance
of common BCIs [11, 12]. As shown e.g., by Allison et al

[13], an hBCI utilizing SSVEP and motor imagery delivers
better classification results than those achieved by classifying
the individual strategy alone. The combining of different BCI
approaches in a hybrid system is thus a reasonable step; for
example, combining tERPs and SSEPs, e.g. in the visual [14]
or the tactile [15] field.

As stated above the classification results for tactile BCIs
can vary from below to significantly above chance [8]. Taking
into consideration the hBCI approach as presented by Seve-
rens et al [15], the SSSEP component performance was
inferior to that of the tERP component. On the other hand, as
mentioned above, Müller-Putz et al [8] were able to achieve
classification results up to 80%. Furthermore, Giabbiconi et al
[16, 17] demonstrated the possibility for modifying the
SSSEP amplitudes using focused attention. The possibility of
performing an amplitude modulation of this kind is the
underlying principle of many SSSEP related BCIs [8, 18]. As
stated by Severens et al [15] in their discussion, the usage of
standard stimulation frequencies instead of individual ones,
might have had an influence on their SSSEP classification
results. Additionally, as shown by Pinegger et al [19], tran-
sient signals might be a more suitable option for control
states, while steady-state signals might be better for detecting
a non-control state.

This paper introduces an hBCI utilizing tactile stimula-
tion to evoke SSSEPs and tERPs together. Person dependent
stimulation frequencies, determined in an initial screening
session as discussed by Severens et al [15], are used for
evoking SSSEPs. Three classes are introduced with two
control states and one dedicated non-control state. The setup
follows the insights of Pinegger et al [19], because investi-
gating non-control states more deeply is a crucial step towards
asynchronous BCIs [20]. The subjects performed a tactile
focused attention task, either focusing on the target classes or
residing in the non-control state. The BCI described in this
paper is set up using a common implementation platform and
fusion strategies as suggested by Müller-Putz et al [11]. The
open interfaces TiA [21] and TiD [25] are utilized for inter-
process and inter-machine communication to facilitate mod-
ule exchangeability and follow the suggestions made by
Müller-Putz et al [11]. The question of whether fusing the
output of SSSEP and tERP classification might extend
beyond the individual classification results is investigated
here. Different fusion strategies, e.g. inspired by Leeb et al
[22] are utilized to combine the individual input signals. It is
hypothesized that fusing tERP and SSSEP classification also
increases the overall classification rate [22].

2. Methods

2.1. Measurement setup

2.1.1. Subjects, EEG recording and tactile stimulation.
Fourteen paid subjects participated in the studies. All the
subjects were healthy; none of them was ever diagnosed with
any neurological disease. The resulting fourteen subjects were
50% male/female and had a mean age of 26.3 (SD: 6.2)

2

J. Neural Eng. 13 (2016) 066015 C Breitwieser et al



years. The experiment was conducted in accordance with
local ethics regulations and the Declaration of Helsinki. All
the subjects gave their written informed consent prior to the
experiment. Two EEG amplifiers (g.tec medical engineering
GmbH, Graz, Austria) with a sampling rate of 600 Hz using
active electrodes were used for data recording. Twenty-nine
electroencephalogram (EEG) channels and three EOG
channels were recorded; channel positions are shown in
figure 1. The reference electrode was placed at position Fpz to
avoid an uneven amplitude distribution across the skull. The
ground electrode was placed at the right mastoid. The
amplifiers’ notch filter was applied at 50 Hz; high-pass/low-
pass filtering was applied at 0.5 Hz/200 Hz. The EEG signal
was visually inspected before starting any recording. All
measurements were done in an electrically shielded room.
The subjects were seated in comfortable armchairs.

Tactile stimulation was applied to the fingertips of the
index fingers of both hands using C2 tactors (Engineering
Acoustics Inc., Casselberry, FL, USA). The stimulation signal
was created by a custom-made tactile stimulation device [23],
creating a 237 Hz sinusoidal carrier signal. This carrier signal
was amplitude modulated with a rectangular signal with the
respective stimulation signal (duty cycle close to 50%,
matching integer multiples of the carrier cycles) [9].

2.2. Paradigm

The measurement was divided into three dedicated parts: (i)
eye artifact recording, (ii) screening to obtain subject-depen-
dent resonance-like frequencies and (iii) cue-based focused
attention with real-time signal classification and feedback.

2.2.1. Eye artifact recording. An automated correction
method for EOG, as described in [24], was used to
automatically remove EOG artifacts from the recorded data.
To estimate the regression coefficients, two minutes of EOG
artifacts were recorded. The subjects were instructed to blink
for one minute and then to roll the eyes for another minute.

2.2.2. Screening paradigm. As shown previously [10], the
response to tactile stimulation is person dependent; meaning
that everyone reacts with different resonance-like frequencies
[9, 10]. To determine these resonance-like frequencies, a
screening measurement was conducted. The fingertips of both
index fingers were randomly stimulated with frequencies
from 17 to 35 Hz in 2 Hz steps. The tuning curve over all
fingers on one hand can be assumed to be similar in the case
of one single subject [10]. It is not known, however, if this
assumption also applies to both hands. Therefore, both hands
were stimulated during the screening to obtain dedicated
tuning-curves.

A graphical illustration of the screening paradigm is
available in figure 2. Every finger was stimulated with each
frequency 40 times. Subsequent stimulation of one finger with
the same frequency was avoided. One single finger could be
stimulated subsequently, however, using two different
frequencies. Reference periods without stimulation were
placed at the beginning of the trial and short stimulation
pauses were inserted between the stimulation. The screening
was divided into eight runs; every run took about 8 min. Short
breaks were made between the runs according to the subjects’
wishes. Participants performed a mathematical task during the
stimulation period, adding and subtracting randomly appear-
ing numbers on a monitor. This was done to avoid shifting
their attention to one finger and as a result influencing the
tuning curve. Subjects were asked for the calculation result
after each trial.

Band power tuning curves were used to determine the
maximum frequency response per finger [21]. Two

Figure 1. Electrode setup according to the international 10–20
system (29 EEG + 3 EOG channels—green colored). 10 monopolar
channels (red dashed circles) are used for tERP classification, 13
bipolar channels (solid arrows) for SSSEP classification.

Figure 2. Screening paradigm to obtain person-dependent resonance-
like frequencies. The measurement started with a 5 s preparation
phase. Every trial started with an acoustic beep beep and ended with
a double beep. The trial consisted of a 3–3.5 s reference period with
0.5 s waiting time for evoked potentials. The fingers were stimulated
ten times with random frequencies for 2.3 s (only last 2 s were used
for analysis). A 0.2 s period for a stimulator reset without stimulation
was inserted for every stimulation. A visual calculation paradigm
was running during the entire trial. The subjects were asked for the
calculation result after the trial. A break of 2–3.5 s was inserted
between trials.
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stimulation frequencies with the highest responses were
selected for the following paradigm. The selected frequencies
had to be separated by at least one stimulation frequency. If
both fingers showed the maximum response for close
frequencies, the second-highest frequency was selected.

2.2.3. Cue-based BCI paradigm. To investigate the
classification of SSSEP as well as tactile tERP, the
fingertips of both index fingers were stimulated with the
two selected frequencies. To induce tERP (mainly P300)
patterns, seven semi-random twitches occurred while
stimulating each finger. A twitch [8] is a short change in
the stimulation signal. During a twitch, the stimulation
amplitude was decreased to zero. One of three twitch
patterns with defined time intervals between the twitches
was randomly used in each trial. These patterns were
generated in such a manner that twitches did not occur
simultaneously on both fingers or were too close together. A
twitch lasted exactly one cycle of the stimulation frequency.

The entire paradigm was split into eight runs (short
breaks between runs) with thirty trials each. A graphical
illustration of the paradigm and its explanation is presented in
figure 3. The subjects had to focus their attention on the given
target finger. In the event of the absence of a target cue, the
subjects were instructed to avoid focusing on their fingers and
look at the red cross until the end of the trial. The resulting
classes are thus: ‘Left/Right/Idle’ (L/R/I). Stimulation was
applied during the entire trial. Twitches were only applied
during the focused attention period. Every run consisted of
ten trials per class.

After two runs, an SSSEP and a tERP classifier were
trained with all data from the first two runs. The subjects
received feedback in succession according to the classifica-
tion: correct/wrong/no decision made. The classification
result was shown by a green, a red, or a yellow circle on the
screen at the end of each trial. After four runs, the classifiers
were updated with all recorded data. The resulting classifier
was used for the remaining four runs. Performing data

analysis during the recording is designated as ‘online
analysis’ while data analysis after the measurement is
designated as ‘offline analysis’.

2.2.4. Measurement architecture. The setup of the individual
software components is visible in figure 4. The design of this
experiment followed the suggestions proposed in [11] using
open interfaces such as TiA [21] and TiD [25]. The same
back-end structure was used for the screening paradigm and
the cue-based BCI paradigm. The only changes were a
different feedback algorithm and a different controller
sequence used during screening while the processing
modules were disabled.

2.2.5. Artifact treatment. In order to eliminate EOG artifacts,
autoregressive parameters were calculated based on the data
obtained from the eye artifact run [24]. This autoregressive
parameter based removal was applied during the online and
the offline analysis.

To reject trials with severe artifacts, mainly based on
EMG activity, a threshold-based detection was applied to the
EOG corrected data, achieving reasonable results especially
for muscular activity [26]. The thresholds were set to 90 μV
for monopolar channels and to 60 μV for bipolar channels.

2.3. Online analysis—feature extraction and classification

2.3.1. Classification of SSSEP. A lock-in amplifier system
(LAS) was used to classify SSSEP activity [8, 18]. An LAS is
a system able to extract signals with a known carrier
frequency from noisy environments. The filter bandwidth
was set to±1 Hz around the stimulation frequencies with a

Figure 3. Cue-based BCI paradigm with focused attention. The
measurement started with 5 s of preparation. An acoustic beep/
double beep indicated the start/end of a trial together with the
appearance of a red cross. The trial began with a 0.5 s waiting period
for evoked potentials followed by a 1–1.5 s reference period. A cue
in form of a left/right arrow on the screen indicated the target finger.
The subjects had to either focus their attention on this finger for
9.5–10 s or simply look at the red cross. A break of 3–4 s was
inserted between trials.

Figure 4. Architecture of the hBCI system. TiA channels are
displayed in orange; the TiD bus and the connections to it are
displayed in green. The black arrows indicate proprietary connec-
tions (driver specific outgoing from the amplifier; Matlab/Simulink
specific as input for fusion). Three different computers were used for
this setup. A Windows machine was running the SignalServer for
data acquisition and for saving acquired data and incoming events.
Another machine was running a scope for real-time signal
visualization and inspection. The third machine was running
Matlab/Simulink for calculations and dedicated user feedback
software. EEG and EOG data were acquired by an amplifier and
forwarded with TiA using the SignalServer. This data was
subsequently processed by the SSSEP and tERP modules. The
results obtained were fused and sent as a final result using TiD. The
measurement procedure and timing was controlled by the paradigm
controller. The user’s feedback as well as monitoring information
was display to the operator through the ʻoperator feedback’.
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5th order butterworth bandpass filter. The moving average
window was set to 1 s. LAS features were calculated and
logarithmized for the bipolar channels, shown in figure 1.
LAS features were averaged within the time window from 1 s
to 8.5 s after cue onset in order to obtain a stable estimate of
the mean SSSEP over a whole trial. The resulting 26 features
(13 bipolar channels × 2 stimulation frequencies) were
classified with a shrinkage LDA classifier from BCILAB
https://sccn.ucsd.edu/wiki/BCILAB. To classify the L/R/I
classes, three classifiers were trained using the one-versus-rest
strategy. These classifiers returned the predicted class label
together with the respective linear scores (which can be
interpreted as distance values to the classifiers hyperplane).

2.3.2. Classification of tERP. The tERP activity, evoked by
seven twitches, was classified using an averaged time domain
signal. First, time domain signals were low-pass filtered at 10
Hz with a 3rd order butterworth filter. The time segments of
0.8 s starting with the individual twitch onsets were then
extracted, linearly detrended, averaged, and downsampled by
a factor of ten. The utilized channels for classification are
shown in figure 1. The resulting 960 features (10 bipolar
channels × 0.8 s × 600 Hz

10 downsampling factor( ) × 2 classes) were

classified using another multi-class shrinkage LDA classifier,
as described in the SSSEP classification section.

2.3.3. Threshold-based fusion (thFusion). At the end of each
trial, the SSSEP as well as the tERP classifier returned class
decisions and related linear scores for the classes, which were
then fused together to a final result. Each classifier can be
described by a probabilistic generative model [27]. Using
Bayes’ theorem, the posterior probability for the class Ck, that
is the probability of class Ck given some evidence x, can be
written as

å
=p C x
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p x C p C
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where p x Ck( ∣ ) are the class-conditional densities
(likelihoods), and p Ck( ) the class priors. This posterior
probability can be rewritten as
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with =a p x C p Clnk k k( ∣ ) ( ), which is the multi-class
generalization of the logistic sigmoid function (softmax
function).

Using K linear discriminant functions +w x wk
T

k0 for
K=3 classes with weight vectors wk and biases wk0, and
under the assumptions that the class-conditional densities
(likelihoods) are Gaussian and that all classes share the same
covariance matrix, the term ak(x) can be computed as

= +a x w x w , 3k k
T

k0( ) ( )
which is referred to as linear score and corresponds to a
measure of perpendicular distance of a data point x from the
decision surface. Class decisions of the SSSEP and tERP
classifiers respectively are independently made by each of

them, returning the class with the highest posterior prob-
ability, i.e.

= =p C x iclass arg max , 1 for SSSEP classifier
2 for tERP classifier.
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As the final result, the classifier with the highest class
probability was chosen as fusion output. A minimum
probability of 0.5 was set as the threshold Θ. If no classifier
reached this threshold, the result was interpreted as ‘non-
conclusive’. Therefore, this thFusion can be written as:
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A green circle was presented to the subject if the chosen
classifier’s result was correct. A red circle was presented if it
was wrong and a yellow circle was shown if no classifier
reached the threshold. The assumption was that the best and
correct classifier returns the highest class probability.

2.4. Offline analysis—threshold analysis and combined fusion

After the measurements, further data analysis was conducted
on the recorded data. All calculations were again performed
with the aforementioned EOG correction and threshold-based
trial rejection.

In later analysis, a classifier based on all data from runs
1–8 was trained with 10×10 cross-validation to get an
overall performance estimate of the whole measurement. The
classification parameters were kept the same as during the
online analysis to obtain comparable results. For 80 trials per
class (offline analysis) the 5% chance level was 38.6% and
the 1% chance level was 40.6% [28].

2.4.1. Influence of fusion threshold. Simulations with
different threshold values were carried out to investigate the
influence of the fusion threshold, which was set to 0.5 during
the online measurement. The threshold was increased from 0
to 1 with a step size of 1/1000. This threshold increase
simulation was done, as an abstention was interpreted as a
better decision than a false classification of the trial. The
intention was to visualize the relationship between the
abstention rate, the false classification rate and the correct
classification rate. As there is no standard procedure for
visualizing multi-class classification results [29], the results
were presented graphically in figure 8. The average accuracy,
the mean error rate, and the mean rejection rate were thus
calculated and plotted against the respective fusion threshold
value. This was done for the SSSEP and the tERP classifier as
also for the fused result. To fuse the values, the class with the
highest probability value was chosen if the probability was
above the threshold. Otherwise fusion rejected the results.

2.4.2. Combined fusion and feature balancing. As shown in
[22], the combined classification of different input signals (in
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this case, EEG and muscular activity) increased the
classification results. For this reason combining SSSEP and
tERP is a reasonable step. The combined features were
classified in the same manner using a shrinkage LDA
classifier, as mentioned above, with a 10×10 cross-
validation.

Based on the parameter set from the online analysis for
the SSSEP and the tERP classifiers, the number of features
were different (SSSEP: 26; tERP: 960). This occurred
because a different number of channels were used for feature
extraction and the SSSEP features were not split into time
segments. This leads to different probability mappings,
affecting especially the thFusion, because a higher dimen-
sional feature space leads to larger distances from the
classification hyperplane. These differences were not handled
during the real-time classification and therefore, a non-
optimal thFusion was performed. Thus, in the offline analysis
the number of features were balanced. The time span of the
SSSEP features was sliced, and the resulting features were
treated as additional features. By this means the classifier
could also select a dedicated timeframe which was better
separable than the SSSEP timeframe as a whole. As shown in
our prior work [18] the maximum classification accuracy
might not be reached at the end of the trial. Thus, a
classification of sub time windows is a reasonable step. This
increases the number of SSSEP features with the result that
the probability values will become equal to the tERP
probability values.

2.4.3. Statistical analysis. Two repeated measures ANOVAs
were made to identify potential effects of thFusion, combined
fusion or feature balancing on the classification accuracies or
if a certain classifiers has a predominance for a specific class
label. As an initial step, a t-test for single samples was
performed to check if the obtained classification accuracies
significantly differ from zero. To identify whether a combined
classification increases the classification accuracy and
whether feature balancing causes an effect on the
classification results, a 4 × 3 ANOVA for repeated
measures was used. The independent variables were
‘METHOD’ (tERP, SSSEP, thFfusion, and combined
fusion) and ‘TYPE’ (online, offline, and offline with feature
balancing); the dependent variable was the classification
accuracy. As no combined fusion was calculated during the
online measurement and in order to compute the ANOVA for
repeated measures, this kind of classification was also
performed offline, applying the same settings and conditions
as during the online run (e.g., updating the classifier and using
a dedicated training set). Another 3 × 2 × 3 ANOVA for
repeated measures with the independent variables TYPE (see
above), METHOD (SSSEP, tERP) and CLASS (left, right,
idle) was conducted to investigate whether a certain classifier
or measurement type caused an effect. The classification
accuracy was again the dependent variable. In case of
significant effects, Tukey HSD tests were carried out.

To identify whether higher band power values are also
leading to higher classification results, the Pearson product-

moment correlation coefficient between the band power
increases and the individual classification results was
investigated. All Statistical analyses were carried out using
Statistica 12 (Dell Inc, Round Rock, TX, USA).

3. Results

The subjects reacted with different resonance-like frequencies
and different relative band power increases as shown in
table 1. The results from different analysis methods (online,
offline), classification, and fusion types (SSSEP, tERP,
thFusion, and combined fusion) including the trial rejection
rate for SSSEP due to artifacts are available in table 1. In
order to obtain unified estimates for the chance level, rejected
trials due to artifacts or a classifier/fusion abstention, were
treated as false classifications. As a result, for 60 trials per
class (online analysis), the 5% chance level was 39.8% and
the 1% chance level was 41.8%. The chance level was
computed according to Billinger et al [28] The tERP trial
rejection rate is not shown as it was 0.0% for all subjects.
Individual tERP time segments were rejected on occurrence
of artifacts. The averaged overall remaining number of tERP
time segments for all subjects was 6.997 (SD=0.07). Thus,
merely a few single tERP segments were rejected. As can be
seen in the table the classification results varied greatly.
Fusion sometimes increased the classification result, but not
in all cases. After a more detailed inspection of the raw data
from subject s10, high alpha wave EEG activity could be
observed. This led to the rejection of more than two thirds of
all trials and effected the further classification. For this reason
subject s10 was excluded from statistical analysis together
with the overall mean shown in the figures and table 1.

Figure 5 shows an averaged time domain signal of
channel Pz after a twitch of subject s05. An event-related
response very similar to a P300 potential is visible. This
response is also in line with the findings present by van der
Waal et al [30]. In case of a left twitch, when the target was
also left, an amplitude increase is visible at around 400 ms
after the twitch. A similar effect also occurred for right-hand
twitches in case of a right-cue. In case of the Idle class, no
increase is visible either for right or left-hand twitches.

A time/frequency map (similar to an ERD/S map [2])
for bipolar channels FC3-PC4 and FC4-PC4 from subject s05
is presented in figure 6. The stimulation frequencies, as also
listed in table 1, were 25 Hz (left) and 29 Hz (right). A
synchronization (blue colored) is clearly visible at the
respective frequencies. This indicates that the stimulation was
perceived by the subject.

3.1. Influence of fusion threshold

Figure 8 shows the grand averaged influence of the thFusion
when adjusting the threshold from 0 to 1. As visible, the
threshold affects the error rate in a stronger manner than the
precision (precision=tp /(tp + fp); tp/fp ...true/false posi-
tives [29]). Thus, more false decisions are rejected than true
decisions. Additionally, the threshold affects SSSEP earlier

6

J. Neural Eng. 13 (2016) 066015 C Breitwieser et al



than tERP. This occurred because of different probability
values due to a different number of features compared to
tERP. However this led to a biased fusion, as the same
threshold level was applied for both classifiers.

3.2. Hybrid classification and feature balancing

Figure 9(a) shows the classification results of the offline
analysis using the same parameters as in the online analysis.
Results were obtained within a 10×10 cross-validation.
Comparing figures 7 and 9(a), an accuracy increase for var-
ious subjects is visible. The overall classification accuracy

increased from around 40%–50%. This effect could have
occurred due to some kind of training effect where the sub-
jects learned to focus their attention better during the mea-
surement. Otherwise, the fact, that more trials were available
to the classifier might also have caused an effect.

Considering figure 9(b), a classification accuracy
increase is again visible. Thus, feature balancing also gen-
erally caused a positive effect. Taking a look at the overall
results, the accuracies from thFusion and combined fusion
were close to each other, although a sub-optimal thFusion was
used due to unbalanced probability values. Taking the indi-
vidual classification results into consideration, fusion seemed

Table 1. The selected frequencies of left and right index fingers for each subject are listed in columns two and three.

Frequ (Hz) rel. BP incr. (%) Rej-R. (%) Online accuracy (%)

Subj L R L R SSSEP tERP SSSEP thF

s01 25 21 536.2 474.9 14.2 37.2 43.9 39.4
s02 23 27 356.5 481.5 1.7 45.6 50.0 51.7
s03 33 27 113.8 133.3 0.4 50.0 43.9 52.8
s04 31 35 290.5 287.6 2.1 36.1 39.4 40.6
s05 25 29 190.5 200.5 2.9 37.8 41.7 41.7
s06 27 23 291.2 314.9 4.6 36.1 36.7 40.0
s07 23 27 161.2 418.5 13.3 37.2 35.0 43.3
s08 33 27 376.0 291.0 5.0 30.0 46.7 32.8
s09 25 29 154.7 164.6 31.7 37.2 26.1 40.0
s10 29 25 52.7 100.7 67.1 35.0 5.6 34.4
s11 23 27 234.3 294.1 7.1 48.9 38.9 54.4
s12 23 27 120.2 123.2 1.6 47.2 47.2 50.0
s13 27 21 310.5 307.9 1.3 46.7 60.0 52.2
s14 21 25 101.3 164.6 5.0 34.4 37.2 39.4
M. 26.1 26.5 249.0 289.0 7.0 40.3 42.1 44.5
Sig-M. 47.7 48.6 50.7

Offline accuracy (%) Offline balanced accuracy (%)

Subj tERP SSSEP thF CF tERP SSSEP thF CF

s01 47.9 55.3 50.4 49.6 46.2 49.0 49.8 55.5
s02 52.4 57.5 54.5 54.0 52.1 56.4 58.3 58.4
s03 58.3 46.2 58.8 60.5 65.4 39.9 61.3 61.6
s04 42.4 40.1 42.0 43.4 46.3 38.5 42.9 44.8
s05 46.4 36.8 46.0 47.1 49.7 34.4 42.8 48.2
s06 44.5 45.7 46.2 48.7 46.6 44.8 47.1 52.6
s07 42.4 54.6 44.1 44.2 48.5 51.7 51.4 57.1
s08 39.2 48.4 41.4 43.7 46.1 55.0 55.9 55.9
s09 42.0 45.3 42.9 44.2 49.5 42.3 47.0 47.7
s10 35.5 25.5 34.5 41.3 37.3 28.4 24.5 38.8
s11 62.8 44.4 62.9 62.2 66.5 47.1 63.9 63.8
s12 64.4 49.0 65.2 70.1 73.9 46.3 70.8 72.2
s13 56.8 62.2 62.9 69.5 61.7 63.3 67.1 66.7
s14 47.6 41.4 47.7 51.4 46.7 42.8 42.1 43.9
M. 49.8 48.2 51.2 53.0 53.8 47.0 53.9 56.0
Sig-M. 50.7 50.0 51.2 53.0 53.8 49.9 53.9 56.0

Note. Columns four and five show the relative band power increase over channels FC4–CP4 for the left-hand, and FC3–CP3 for the right-hand. The trial
rejection rate for SSSEP is listed in column six. The multi-column ‘online accuracy’ shows the 3-class classification accuracies for tERP and SSSEP
classification and the result of the thFusion (thF ...thFusion). The multi-column ‘offline accuracy’ shows the classification accuracies for offline analysis (CF ...
combined fusion); the multi-column ‘offline balanced accuracy’ the ones for the offline analysis with feature balancing. Fusion results which were higher than
the related classification results are marked in bold. The mean for each column (s10* was excluded) is shown in the second to the last row. The mean
considering significant results only is shown in the last row. The 5% chance level was 38.6% and the 1% chance level was 40.6% [28] (see above).
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to mostly make sense when both classifiers delivered com-
parable results. However, fusion did not always result in a
better classification, especially when one classifier out-
performed the other one (e.g. visible in figure 9(b) for sub-
ject s03).

3.3. Statistical interpretation

The statistical analysis of classification accuracies for the
offline measurement with and without feature balancing
resulted in a significant main effect for ‘METHOD’
(F3,48=4.79; p<0.001). The classification results using a

combined classifier (M=56.4; SD=7.5) were significantly
higher than the ones obtained by the SSSEP classifier
(M=45.8; SD=8.12) and the tERP classifier (M=48.0;
SD=9.84).

Statistical tests comparing the online versus the two
offline analysis methods revealed a highly significant main
effect for ‘TYPE’ (F2,96=30.8; p<0.00001). Tests
revealed that the offline classification accuracy (M=50.5;
SD=8.5) and the offline balanced accuracy (M=52.7;
SD=9.4) were higher than the online accuracy (M=46.8;
SD=10.4).

Figure 5. The ERP response (for the time period −0.1 – 0.8 s after a twitch of channel Pz) to a target class and a non-target class for subject
s05 averaged over trials. The left image shows the response for left-hand twitches, the right image for right-hand twitches. The shaded areas
indicate the respective standard error.

Figure 6. Averaged time/frequency map over all trials of channels FC3–CP3 (left) and FC4–CP4 (right) from subject s05. The blue signal at
the top represents the averaged time domain signal. Event-related potentials, due to the trial start, the cue, and the trial end, are clearly visible.
The green and blue dashed lines indicate the stimulation frequencies.
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The analysis, taking a closer look at the classification of
individual classes within the second ANOVA, clearly showed
the same effect for ‘TYPE’ as described above. Furthermore,
two other significant effects were identified. The first one
was significant for the interaction ‘TYPE*METHOD’
(F2,216=3.23; p<0.05). Post-hoc tests showed that online
tERP classification (M=40.3; SD=9.8) was lower than
offline tERP (M=49.8; SD=9.9), offline SSSEP

(M=48.2; SD=9.6) and offline balanced tERP (M=53.8;
SD=11.8). Another highly significant effect could be found
for the interaction ‘METHOD*CLASS’ (F2,216=12.3;
p<0.00001). The classification accuracy for tERP ‘Idle’
(M=41.8; SD=9.6) was significantly lower than the
accuracies for tERP ‘Left’ (M=50.0; SD=11.7), tERP
‘Right’ (M=52.2; SD=11.8), and SSSEP ‘Idle’
(M=48.6; SD=14.0). Additionally, the SSSEP ‘Right’

Figure 7. Mean classification accuracies of all subjects and across all subjects (except s10) for the online analysis. The red dotted lines
represent the 5% chance level for three classes, the back dotted line the 1% chance level and the purple dotted line the theoretical 33.3%
chance border.

Figure 8. Grand average threshold influence for the threshold being applied to the SSSEP classifier, tERP classifier and the final fusion. The
green colored region shows the correct classified trials against an increased threshold; the red colored region false classified trials and the
light-blue region the rejected ones. The black dotted line indicates the threshold of 0.5, applied during the online experiment. The blue/
yellow/green dashed lines show the respective classification accuracies for the Right/Left/Idle classes. The black solid line at the bottom
shows the difference between the correct and the wrong classifications, dependent on the threshold. As visible, the threshold appliance was
most effective at the SSSEP classifier.
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(M=42.7; SD=9.4) classification accuracy was sig-
nificantly lower than tERP ‘Left’ and tERP ‘Right’ (both
values see above).

Moreover, significant correlations between left BP
increase with offline SSSEP ( = <r p0.572, 0.05) and with
balanced SSSEP ( = <r p0.567, 0.05); between right BP
increase with offline SSSEP ( = <r p0.672, 0.01) and with
balanced SSSEP ( = <r p0.637, 0.05); and between left BP
and right BP increase ( = <r p0.8, 0.001).

4. Discussion

In this paper the successful setup of a tactile stimulation based
hBCI for three-classes with two target classes and one non-
control class could be shown. The system architecture of this
BCI followed the suggestions towards a common imple-
mentation platform [11, 12]. This approach, setting up a BCI
system with open and well-known interfaces, has the advan-
tage that individual parts within the system become easily

Figure 9. Cross-validated mean classification accuracy of all subjects across all runs. Subject s10 was excluded from the overall mean. The
red dotted lines represent the 5% chance level for three classes, the back dotted line the 1% chance level and the purple dotted line the
theoretical 33.3% chance border. (a) Same configuration as in online analysis. (b) With feature balancing. tERP 100 features; SSSEP 96
features.
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replace-, interchange-, or expandable. Another benefit was a
rapid prototype system creation, as the individual components
could be added and tested one by one. Following the stan-
dardization approaches [11, 12, 21], the individual compo-
nents can also be shared with other institutions. The usage of
this approach can be seen as another step towards a stan-
dardization in the BCI field.

Analyzing the online experiment, only six subjects per-
formed above chance, even using a fusion approach. When
considering all recorded trials within the cross-validated off-
line analysis and considering the feature balancing approach
too, all subjects (except the excluded one) have reached the
1% chance level for at least one classification method, which
was at 40.6% for 80 trials per class (three classes). Thus, the
combination of SSSEP and ERP features is a reasonable
approach to set up a hBCI. Subjects responded with person-
dependent resonance-like frequencies, which is in line with
our prior findings [10]. In contrast to the findings from
Severens et al [15], subjects were also able to perform above
chance for SSSEP classification alone; only the subjects s03,
s04, and s05 stayed below 40.6%. As already discussed by
Severens et al [31], the usage of subject-dependent stimula-
tion frequencies might be a potential explanation for this
difference. As revealed by the statistics, subjects who
responded with a high band power increase also achieved
higher classification results. It is currently not known if such
results could also have been achieved with standard stimu-
lation frequencies. In order to investigate this influence, a
direct comparison between the classification of standard sti-
mulation frequencies and person-dependent ones would be
needed. However, it is hypothesized that using person-
dependent frequencies might have had a positive influence on
the classification accuracy.

Another effect on classification accuracies might be
related to the tactors used. In case of Severens et al [31],
braille stimulators have been used, or Giabbiconi et al [17]
used a ‘V101’ mechanical stimulator, compared with the C2
tactors in this study. Furthermore, only one finger per hand
was stimulated in this study, whereby three fingers were sti-
mulated in case of the work from Severens et al Thus,
investigating a potential tactor type/positioning influence or
the number of fingers being stimulated (maybe causing some
lateral inhibition) would be another reasonable follow-up
step, as the body posture can also effect tactile discrimina-
tion [32].

Adler et al [33] provided an interesting insight, related to
the complexity of a given target stimulus. They could show
that the SSSEP amplitude significantly increases under con-
ditions of high perceptual load, e.g., by providing a target
stimulus which is perceived more difficultly. This might be
another option to improve the classification of both, SSSEP
and tERP based features.

As revealed by the statistical analysis, classification
accuracies became significantly better within the offline
analysis and after applying a feature balancing. Two factors
might have had an influence on this effect. Firstly, subjects
may have learned to focus their attention in a better way or
detect target twitches more accurately. However, the classifier

used in the online experiment was not updated anymore after
the fourth run. Secondly, the number of trials for training the
classifier might have been too low in the online experiment to
properly distinguish between the three classes. Another
interesting finding was that the ‘idle’ class (equivalent to the
non-control state) was detected more accurately by the SSSEP
classifier and that the tERP classifier detected either the ‘right’
or ‘left’ class better than the ‘idle’ class. Thus, SSSEP would
appear to be the better alternative to provide the important
non-control state [20]. Similar findings were also achieved in
the visual domain, where frequency domain signals were used
to detect non-control states and time domain signals were
used to detect control states [19]. Subjects reported that it was
difficult for them to ignore twitches during the non-control
state. This might explain the class preference for the two
feature types. Additionally, the attenuation of the twitches
was 100% for a short period of time, making the twitches very
prominent and hard to blank out.

Considering the different results from the thFusion and
the combined fusion (as also visible in figure 9(a)), it can be
seen that fusion generally increases classification accuracy.
As revealed by the statistical analysis, the usage of the
combined fusion reached significantly higher accuracies than
either SSSEP or tERP classification alone. Fusion of different
kinds of input signals can significantly increase classification
accuracy, as presented by Leeb et al, fusing muscular and
EEG signals [22]. As the thFusion in the online experiment
was based on sub-optimal numbers of features, no significant
increase in classification accuracy could be achieved. How-
ever, the usage of a combined classification achieved sig-
nificantly better results, which contrasts the findings of
Severens et al [15], where no classification improvement was
achieved when combining features. However, the usage of a
combined fusion did not increase the classification accuracy
for every subject; especially if either the SSSEP classification
or the tERP classification has already reached a much higher
accuracy than the other classifier.

Twitches were once introduced by Müller et al [9] with
the intention of assisting subjects to focus their attention on a
specific finger. Unfortunately each twitch interrupts the
repetitive stimulation which induces the SSSEP pattern. Thus,
twitches might have negative effects on the evolvement of
SSSEP. The highest classification of SSSEP is possible later
in the trial [18]. Due to a potential ‘interfering’ effect of the
twitches, it is possible that the evolvement of a ‘stable’
SSSEP oscillation could have never happened for some
subjects. Twitches might have even had a negative effect in
terms of SSSEP classification [34]. This potential effect could
have had an influence on the SSSEP classification results,
presented by Severens et al [15], explaining the fact that a
classification above chance was scarcely achieved at all for
SSSEP. The introduction of more specific and complex twitch
patterns may be an option as a means of reducing this
eventual effect. Using specific target and no-target stimuli, the
number of necessary twitches can get further reduced, espe-
cially when applying more complex twitches, which increase
the workload for the subject [33]. However, utilizing twitches
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could also have other effects to SSSEP classification or might
even decrease the classification rate [34].

Xu et al [35] presents a very interesting phenomenon,
showing the effect when target stimuli (to evoke e.g., a P300)
are added to an SSVEP paradigm. This effect was called
‘blocking feature’ and can be interpreted as SSVEP amplitude
attenuation during and after the target stimulus. These
blocking features might hamper the creation of a stable
SSSEP oscillation and reduce the classification of SSSEP
features [34]. However, classifying such blocking effects as
additional features might again bring an increased classifica-
tion performance, especially within a hBCI approach.

As stated by Erp et al [36], the field of tactile BCI sys-
tems still remains relatively unexplored and there are many
open questions and possibilities to improve tactile BCIs. An
interesting approach for hybridization based on tactile sti-
mulation was shown by Yao et al [37], using and classifying
ERD-like patterns, which evolve during tactile stimulation.
Such a phenomenon was also presented by Spitzer et al [38]
in the context of tactile working memory. Within the present
work, only a narrow frequency band around the stimulation
frequency was used for classification. Utilizing the afore-
mentioned effect should thus further improve classification
accuracy.

All the aforementioned systems were either based on
techniques similar to time division multiple access or fre-
quency division multiple acces. However, some kind of code
division multiple access approach has not yet been used for
tactile BCI systems. It could already be shown that applying
an m-sequence technique to the visual domain achieved rea-
sonable classification results [39]. These techniques were
already used in BCIs and compared with a common SSVEP
based BCI [40, 41], outreaching this BCI in terms of classi-
fication performance. Thus, considering such a code modu-
lated stimulation approach for the tactile modality might be
another reasonable step towards an improved classification
performance.

4.1. Conclusion

The results presented in this paper show the successful fusion
of SSSEP as also tactile tERP. Fusing both kinds of input
signals can improve the overall classification rate. Addition-
ally, the SSSEP component produced better results than the
tERP component for non-control states. Thus, fusion could
also be treated in a different manner, as described in the
presented work. Here, tERP and SSSEP were treated the same
way for all target classes. However, utilizing, e.g., the tERP
component in particular for control states and the SSSEP
component for non-control states already during an online
experiment might further boost the classification performance.

Furthermore, as the classification of the SSSEP also
achieved results above chance, the usage of subject specific
stimulation frequencies is suggested. This suggestion is con-
firmed by the result, that subjects with higher relative band
power increase upon tactile stimulation also achieved higher
classification results.
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Appendix

To guarantee error free calculations, synthetic data were
created for system integrity and regression testing. To validate
the SSSEP calculations functionality, sinusoidal signals with
defined frequency and amplitude were added to random noise
data. Events and triggers as produced by the real-time system
were added to the data. Test data files with different signal to
noise ratio (SNR) values were created and classified. The
classification results implicitly validated the offline as well as
the online analysis, as the same back end code was used in
both cases.

The ERP calculations code was validated by a repre-
sentative P300 curve which was extracted from real data.
Events and triggers were inserted as described before and the
tERP curve was added at the respective positions after a
twitch. The SNR ratio was increased for different files and a
classification of this artificial data was carried out similar to
the SSSEP system validation.

The system validation checks showed a classification rate
of 100% for SSSEP and tERP when classifying artificially
generated data with a SNR higher than 0 dB. In contrast,
reducing the SNR below –30 dB resulted in random classi-
fication at chance level. Classifying random noise also
resulted in a classification accuracy at chance level. The same
code was used for all online as well as offline analysis. The
functionality of both systems was thus proved. Feature seg-
mentation and visualization tests also proved proper func-
tionality. Detailed plots showing the system validation results
are available below.
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