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Abstract 

The Geological Strength Index (GSI) provides a method for estimating the rock mass 

properties by field observations. It was introduced to obtain reliable, but also easily 

determinable parameters to describe rock mass properties for e.g. the design of tunnels. 

With the GSI it is also possible to calculate a block volume dependant Young’s modulus for 

the rock mass, by using a closed form solution. However, the GSI relies strongly on 

subjective assumptions and therefore requires a reasonable work experience. When the GSI 

is calculated even small changes in the input values can have a significant effect on the 

results, for example the Young’s modulus for rock masses (ERM). 

For a better estimation of the Young’s modulus for rock mass (ERM) a numerical model using 

a 3-dimensonal distinct element code (3DEC) was applied to simulate jointed rock mass. 

The model is generated by applying rock material parameters to a block and splitting it with 

joints. It simulates a uniaxial compression test to obtain a stress-strain curve, which allows 

the determination of ERM.  

The model is split by one to three joint sets and variations in the spacing, persistence and 

the orientation of the joint sets are examined. For each of this variations the numerical and 

the empirical ERM is compared. The results of the comparisons are analysed and interpreted.  

 



 

 

Kurzfassung 

Der Geological Strength Index (GSI) ist eine Methode zur Einschätzung der 

Gebirgseigenschaften durch Feldbeobachtungen. Er wurde eingeführt, um zuverlässige und 

dennoch einfach bestimmbare Parameter für Gebirgseigenschaften zu erhalten, welche für 

numerische Analysen weiterverwendet werden können (z.B. Tunneldesign). Mit dem GSI ist 

es auch möglich, einen blockvolumenabhängigen Steifigkeitsmodul für ein Gebirge mittels 

geschlossener Lösung zu berechnen. Die Verwendung des GSI ist jedoch sehr subjektiv 

und erfordert einige Berufserfahrung um korrekt angewandt zu werden. Wenn der GSI 

rechnerisch ermittelt wird, haben selbst kleine Änderungen bei den Eingangswerten einen 

erheblichen Einfluss auf die Ergebnisse wie z.B. bei der Berechnung des E-Moduls des 

Gebirges (ERM).  

Um den E-Modul des Gebirges (ERM) besser abschätzen zu können, wurde mittels eines 3-

dimensonalen distinct element Codes (3DEC) ein numerisches Modell eines klüftigen 

Gebirges erstellt. Mit dem Modell wird ein einaxialer Druckversuch simuliert, um eine 

Spannungs-Dehnungskurve zu erhalten, welche die Bestimmung des ERM ermöglicht. 

Das Modell wird von bis zu drei Trennflächenscharen zerteilt und es werden verschiedene 

Variationen der Orientierung, der Persistenz sowie des Abstands dieser 

Trennflächenscharen untersucht. Für jede dieser Variationen wird der numerische und der 

analytische ERM miteinander verglichen. Die Ergebnisse dieser Vergleiche werden weiters 

analysiert und interpretiert. 
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1 Introduction 

The Geological Strength Index (GSI) is a method for assessing the reduction in rock mass 

strength by field observations and the geological conditions of the rock mass. It was 

developed by Hoek and Brown [1] as an advancement of the parameters of the Hoek-Brown 

failure criterion. Therefore, it is part of the method used to estimate the rock mass strength. 

The GSI is also used to estimate the Young’s Modulus for Rock Masses (ERM), which makes 

it an important and widely used parameter in rock mechanics. The advantage of the GSI is 

the easy determination of relatively reliable descriptive parameters for rock mass properties, 

which can be used for example for numerical and analytical analyses for the designing of 

tunnels.  

Usually, the GSI is determined by the use of a chart [1]. This chart is based on the structure 

of the rock mass in question and the surface quality of the discontinuities. These parameters 

are obtained by the responsible geologist or geotechnical engineer and are therefore 

subjective and heavily depending on the experience of the engineer as well as the 

accessibility of the rock mass. Another considerable disadvantage of the current handling 

of the GSI is its application of Vb to determine ERM [2]. However, the orientation of the 

intersecting joints to the main direction of loading and the resulting block shape is not 

considered. This can lead to the situation of different blocks with the same volume, but with 

different shapes, generating the same GSI but may show totally different deformations 

under loading conditions. Furthermore, all provided approaches so far only consider the 

rock mass as a two dimensional model and neglect the interferences of blocks along the 

third dimension. The values determined with the use of the GSI are also based on the 

experience from years of rock engineering, yet they are seldom validated by actual results. 

For this master thesis, a three-dimensional numerical model was created in 3DEC to 

calculate the Young’s modulus of the rock mass (ERM,3DEC) and compared to the Young’s 

modulus determined with the GSI (ERM,GSI). The model consists of a block subdivided by 

joints and hence simulates a blocky rock mass. The program used for the model is 3D 

Distinct Element Code (3DEC) by Itasca Consulting Group Inc. This program is able to vary 

the joints in their orientation, strength, spacing, persistence, normal stiffness and shear 

stiffness. The goal of this master thesis is to compare the analytical determination of the 

GSI and its correlating ERM with the here presented numerically method. With this an 

evaluation of the parameters is possible.   
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2 Objectives 

According to the mentioned problem of the unclear influence of the block shape, the block 

volume and the actual deformation behaviour of a blocky rock mass, the elaboration of this 

thesis is oriented along the following questions: 

 Is it possible to simulate a uniaxial compression test by the use of 3DEC and is the 

resulting ERM similar to the ERM that is empirically calculated by the use of the GSI? 

 How is the numerical ERM influenced by the block size, block volume, material 

parameters, jks, jkn and the joint persistence? 

 What are the limitations of the numerical model in the sense of the model size, 

proportion of the spacing and the persistence of the joints?  
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3 State of the art 

3.1 Hoek-Brown failure criterion 

The Generalized Hoek-Brown failure criterion was first introduced in 1980 [3] to obtain input 

data for design analyses for underground excavations in hard rock. The criterion started 

with the properties of intact rock and was subsequently expanded with options to reduce 

the intact rock properties on the basis of the characteristics of joints in a rock mass [1]. The 

goal was the combination of available rock mass classification schemes with geological 

observations, like the Rock Mass Rating (RMR) system [4]. 

Nowadays, the criterion is widely used and well established, largely due to the fact that 

there are few alternatives. [5]. 

The generalized form of the criterion is as follows: 

𝜎1 =  𝜎3 + 𝜎𝑐𝑖(𝑚𝑏 ∗
𝜎3

𝜎𝑐𝑖
+ 𝑠)𝑎     eq.1 

In addition to that, the parameters mb, a and s are material constants which are defined as 

following: 

𝑚𝑏 = 𝑚𝑖 ∗ 𝑒𝑥𝑝 (
𝐺𝑆𝐼−100

28−14𝐷
)     eq. 2 

𝑠 = 𝑒𝑥𝑝 (
𝐺𝑆𝐼−100

9−3𝐷
)      eq. 3 

𝑎 =
1

2
+

1

6
∗ (𝑒−

𝐺𝑆𝐼

5 − 𝑒−
20

3 )    eq. 4 

As seen by these formulas, the original stress dependency is based on three parameters, 

the material constant for intact rock mi, the disturbance factor D and the GSI. However, in 

the following years, the GSI experienced many adaptions and improvements, which are 

described in the following sections. 

 

3.1.1 Petrographic constant / Material constant mi 

The material constant for intact rock (mi) can be determined by using laboratory testing or 

estimating it with published data. The preferred method of determination should, if possible, 

always be by statistical analysis of the results of a set of triaxial tests on carefully prepared 



State of the art 4 

 

core samples [1]. If such tests are not possible, the tables can be used for preliminary design 

purposes (e.g. Table 1). The material constant mi is significantly different if failure occurs 

along a weakness plane. 

The table for the determination of the mi (Table 1) is divided into a number of sub-groups. 

At first the table is separated into rock types (igneous, metamorphic and sedimentary rocks), 

then into rock classes (clastic, non-clastic…), and finally into texture. The texture is divided 

into coarse, medium, fine and very fine.  

Table 1 Constant mi for intact rock, by rock group [6]  
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3.1.2 Disturbance Factor D 

The disturbance factor D was introduced to include the subjects of blast damage and stress 

relaxation. With it, the effects of heavy blast damage as well as stress relief due to 

excavation, which results in a disturbance of the rock mass, are included into the GSI in 

2002 [7]. It ranges from 0, which represents undisturbed in situ rock masses to 1, which 

represents very disturbed rock masses [5]. 

It was introduced due to the fact that in the design of slopes in very large open pit mines 

the Hoek-Brown criterion for undisturbed in situ rock masses (D = 0) results in rock mass 

properties that are too optimistic. [5,8]  

A number of slope failures in Turkish open pit coal mines have been back-analysed to 

assign disturbance factors to each rock mass based upon their assessment of the rock 

mass properties predicted by the Hoek-Brown criterion [9].  

Based on these back-analyses, a set of guidelines [5] has been developed, which can be 

used to estimate D (Figure 2). However, these guidelines have to be used with caution as 

the influence of the disturbance factor can be quite large. This can be seen very well in 

Figure 1  

 

Figure 1 Influence of the blast damage factor D on the rock mass strength (assuming mi = 20) (left) and 

Influence of the blast damage factor D on the rock mass deformation modulus (right) [10]  

The main issues for applying D are choosing an appropriate value for the blast damage 

factor and the definition of the damaged zone. Figure 2, describes the main guidelines for 

the selection of D. [10]. 
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Figure 2 Guidelines for estimating disturbance factor D [10]  
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3.1.3 Mohr-Coulomb failure criterion 

The Hoek-Brown criterion is unlike the Mohr-Coulomb criterion not linear(Figure 3), 

therefore a conversion formula for an equivalent friction angle and cohesion had to be 

developed. This was achieved by fitting an average linear relationship to the curve 

generated by solving 𝜎1 =  𝜎3 + 𝜎𝑐𝑖(𝑚𝑏 ∗
𝜎3

𝜎𝑐𝑖
+ 𝑠)𝑎     eq.1 for a range 

of minor principal stress values defined by 𝜎𝑡 < 𝜎3 < 𝜎3𝑚𝑎𝑥
′ , this is shown in Figure 4.[5]. 

With this method the resulting equivalent friction angle is: 

𝜑′ = sin−1 [
6𝑎𝑚𝑏(𝑠+𝑚𝑏𝜎3𝑛

′ )
𝑎−1

2(1+𝑎)(2+𝑎)+6𝑎𝑚𝑏(𝑠+𝑚𝑏𝜎3𝑛
′ )

𝑎−1]   eq. 5 

The resulting equivalent cohesion is: 

𝑐′ =
𝜎𝑐𝑖∗[(1+2𝑎)𝑠+(1−𝑎)𝑚𝑏𝜎3𝑛

′ ]∗(𝑠+𝑚𝑏𝜎3𝑛
′ )

𝑎−1

(1+𝑎)(2+𝑎)√1+
6𝑎𝑚𝑏(𝑠+𝑚𝑏𝜎3𝑛

′ )
𝑎−1

(1+𝑎)(2+𝑎)

   eq. 6 

With 𝜎3𝑛 =
𝜎3𝑚𝑎𝑥

′

𝜎𝑐𝑖
 and 

𝜎3𝑚𝑎𝑥
′

𝜎𝑐𝑚
′ = 0.47 ∗ (

𝜎𝑐𝑚
′

𝛾𝐻
)

−0.94

 

H is the depth below surface of a tunnel and γ is the unit weight of the rock mass. The rock 

mass strength 𝜎𝑐𝑚
′  is defined as 

𝜎𝑐𝑚
′ =  𝜎𝑐𝑖

(𝑚𝑏+4𝑠−𝑎(𝑚𝑏−8𝑠))(
𝑚𝑏
4+𝑠

)
𝑎−1

2(1+𝑎)(2+𝑎)
   eq. 7 

This conversion is necessary because the Mohr-Coulomb failure criterion is still widely used 

in geotechnical software, so this method was needed to make the Hoek-Brown criterion 

applicable to such software. 



State of the art 8 

 

 

Figure 3 Failure envelope of the Hoek-Brown criterion 

The comparison of the two criteria portrayed very good in Figure 4Error! Reference 
source not found.. 

 

Figure 4: Relationship between major and minor principal stresses for Hoek-Brown and equivalent Mohr-

Coulomb criterion [5] 
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3.2 Hoek Chart 

The GSI was initially derived from the Rock Mass Rating (RMR) by Bieniawski [4] and the 

Q-System by Barton [11] to take the fundamental properties of a rock mass into account. 

Later, a method of direct determination was created based on a chart (Figure 5) . This chart 

summarized the qualitative assessment of the characteristics of the structure and the 

fracturing of the rock masses and their relative discontinuity characteristics. [1,12]  

 

Figure 5 Original chart of the geological strength index 

As an additional development, another diagram was created especially for obtaining a GSI 

for heterogeneous rock masses, e.g. flysch (Figure 6).  
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Figure 6 GSI for heterogeneous rock masses like flysch [13] 
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3.3 Quantified chart by Cai et al. 

In 2004, Cai et al. developed a new chart, in which the GSI is estimated based on the block 

size and the joint surface condition (Figure 7). For this, the chart was quantified by the Joint 

Condition Factor (JC) and by the Block Volume (Vb) [2], values which are measurable and 

quantitative. This leads to a reduced dependency of the determination of the GSI on 

experience while maintaining its relative simplicity. The original chart was also extended by 

two more structure categories. A row for massive, very interlocked and undisturbed rock 

mass blocks was added, as well as a row for foliated, laminated or sheared rock mass 

blocks. 

 

Figure 7 GSI chart quantified by Vb and JC [14] 
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3.3.1 Block Volume Vb 

Vb results from the spacing (s), intersection angles (), persistence (p) and the number of 

joint sets. It indicates the quality of rock masses and is a volumetric expression of joint 

density [15] .The lateral extent of joints is often limited, which is defined as the joint 

persistence. This persistence is important for the rock mass strength, for example if there 

are rock bridges and the joints are not persistent. This results in a higher rock mass strength 

and an improved global rock mass stability. To consider this effect, a concept of equivalent 

block volume was introduced which includes the persistence The equivalent block volume 

is obtained by the following formula [2]: 

𝑉𝑏 =  
𝑠1𝑠2𝑠3

√𝑝1𝑝2𝑝3
3 𝑠𝑖𝑛 𝛾1 𝑠𝑖𝑛 𝛾2 𝑠𝑖𝑛 𝛾3

     eq. 8 

Where 𝛾𝑖 is the angle between joint sets and 𝑠𝑖 is the joint spacing. The joint persistence 𝑝𝑖 

is defined as follows 

𝑝𝑖 =  {
𝑙�̅�

𝐿
 𝑙�̅� < 𝐿

1 𝑙�̅� ≥ 𝐿
}      eq. 9 

Where 𝑙�̅� is the accumulated joint length of set I in the sampling plane and L is the 

characteristic length of the rock mass under consideration. [2]. This is can be seen quite 

clear in Figure 8. 

 

Figure 8 Block delimited by three joint sets 
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3.3.2 Joint Condition Factor JC 

In the GSI system, the joint surface condition is defined by the roughness, weathering and 

infilling conditions. The combination of these factors defines the strength of a joint or block 

surface. The roughness is represented by the small-scale smoothness factor JS, the 

weathering by the joint large-scale waviness factor JW and the infill by the alteration factor 

JA. The joint condition factor JC is composed of these other factors and they are connected 

by the following formula: 

𝐽𝐶 =
𝐽𝑊∗𝐽𝑆

𝐽𝐴
       eq. 10 

The ratings are derived from the verbal descriptions of the Q-System and the RMi and are 

listed in the following tables [2]. 

 

Table 2 Terms to describe large-scale waviness  

 

Table 3 Terms to describe small-scale smoothness 
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Table 4 Rating for the joint alteration factor JA 

 

 

According to equation 10 and Table 4, JA is the factor with the most impact and has therefore 

to be the one chosen with the most precaution. 

 

3.3.1 Estimation of the GSI with Vb and JC 

With a quantitative chart and surface fitting systems, a formula was created to show the 

relationship between the parameters of the new chart, JC and Vb, and the GSI [14] . 

𝐺𝑆𝐼(𝑉𝑏, 𝐽𝐶) =
26.5+8.79∗𝑙𝑛𝐽𝐶+0.9∗𝑙𝑛𝑉𝑏

1+0.0151∗𝑙𝑛𝐽𝐶−0.0253∗𝑙𝑛𝑉𝑏
    eq. 11 

Where JC has no dimension and Vb is expressed in cm3 [16]. 

With this method, it was possible to produce a two-dimensional visualization in a log-log 

plot[16] (Figure 9). The GSI here is a function of two parameters f=f(x1, x2) with x1 being the 

Vb in cm³ and x2 being the JC. According to this visualization, the GSI calculated with this 

method is limited by Vb and, at a very small volume (e.g. 0.1 cm³), the GSI cannot become 

higher than 40 even at the best JC. 
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Figure 9 Two-dimensional GSI system visualization [16] 
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3.4 Chart with the latest quantification and application 

guidelines by Hoek 

After several years of using the GSI, an evaluation by Hoek took place to improve it [17]. 

One improvement was the redrawing of the lines in the chart. In this evaluated chart they 

are parallel to each other and have a constant distance between each other, unlike the lines 

in the original chart, which were hand-draw (Figure 10). Also a quantification has been 

added, similar to the one at the block volume depended chart. This chart uses the Rock 

Quality Designation (RQD) and the Joint Condition rating (JCond89) by Bieniawski [17]. In 

addition, the number of rows describing the structure was reduced to four by dropping the 

row for intact and massive rock and the row for laminated/sheared rock from the original 

chart. 

 

Figure 10 GSI chart quantified with RQD and modified lines [17] 

Those two rows were removed due to the confusion they created when using the chart, as 
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they represented block structures for which the GSI is not suitable. The GSI chart as input 

parameters for the Hoek-Brown criterion should not be used for intact massive or very 

sparsely jointed rock, as shown in Figure 11. The reason for that is that there are insufficient 

pre-existing joints to satisfy the conditions of homogeneity and isotropy.  

The Hoek-Brown criterion assumes that the peak strength and the deformation is governed 

by sliding and rotations of intact rock blocks defined by intersecting joint sets. This joint sets 

have to be sufficiently closely spaced, relative to the size of the structure under 

consideration, that the rock mass can be considered homogeneous and isotropic. This 

concept is illustrated in Figure 11. [17] 

 

Figure 11 Scale dependant limitation of the application of the GSI [17]  
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3.5 Estimation of the Young’s modulus 

The Young’s modulus for a rock mass (ERM) is a very important parameter in numerical 

analyses. The determination of ERM by field test is sometimes connected to quite high costs. 

Therefore, Bieniawski [18] developed a method to approximate ERM, by using the RMR: This 

approximation is as following: 

𝐸𝑚 = 2 ∙ 𝑅𝑀𝑅 − 100   𝑓𝑜𝑟 𝑅𝑀𝑅 > 50   eq. 12 

For cases when the RMR is less than 50 Serafim and Pereirea [19] developed a different 

method: 

𝐸𝑚 = 10
𝑅𝑀𝑅−10

40       𝑓𝑜𝑟 𝑅𝑀𝑅 < 50   eq. 13 

With those established relationships Hoek [20] tried to connect the GSI with the 

determination for the ERM, by assuming the RMR to be equal to the GSI for values larger 

than 25 (GSI > 25).  

𝐸𝑚 = 2 ∙ 𝐺𝑆𝐼 − 100  [𝐺𝑃𝑎]     eq. 14 

𝐸𝑚 = 10
𝐺𝑆𝐼−10

40   [𝐺𝑃𝑎]      eq. 15 

With the help of these formulas, the applicability of the GSI for weak and sheared rock 

masses was evaluated by back analysing a set of samples from the Athens Schist 

Formation. The experiences lead to the addition of the disturbance factor D into the formula 

and to the extension of the Hoek chart with a row for foliated/laminated/shear-structures. 

[1]. The new extended formula was: 

𝐸𝑚 = (1 −
𝐷

2
) ∗ 10

𝐺𝑆𝐼−10

40   [𝐺𝑃𝑎]    eq. 16 

Later, this formula was extended for cases when σci > 100 MPa. [5] This extension lead to 

this equation: 

𝐸𝑚 = (1 −
𝐷

2
) ∗ √

𝜎𝑐𝑖

100
∗ 10

𝐺𝑆𝐼−10

40   [𝐺𝑃𝑎]   eq. 17 

The relationship between the GSI and the deformation modulus that is created by this 

formula is illustrated in Figure 12. 
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Figure 12 Relationship between GSI, intact rock strength (σi) and in situ modulus of deformation ERM for 

σi=100 [1] 

Due to the fact that in certain cases, when using this formula, it is possible that the resulting 

rock mass modulus is higher than the one for the intact rock, a new method had to be 

developed. For that an analysis of a large numbers of in-situ measurements from China and 

Taiwan was carried out (Figure 13). The data of insitu measurements was provided by Dr 

J.C. Chern of Taiwan. [21] 
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Figure 13 Measured rock mass modulus of deformation against GSI for Chinese and Taiwanese data [21]  

To cap the increase of ERM and therefore prevent an unrealistically high rock mass modulus, 

a sigmoidal function was used. In its general form, this S-shaped function is as following: 

𝑦 = 𝑐 +
𝑎

1+𝑒
−

𝑥−𝑥0
𝑏

      eq. 18 

The parameters y, a, b and c are variables for this generalized form of the equation. 

 

Figure 14 Plot of Simplified Hoek and Diederichs equation for Chinese and Taiwanese data [21] 

By the use of a commercial curve fitting software this equation was fitted to the in situ data 

(Figure 13). This resulted in the following best-fit equation to determine the ERM: 
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𝐸𝑟𝑚 = 𝐸𝑖 (0.02 +
1−

𝐷

2

1+𝑒
60+15𝐷−𝐺𝑆𝐼

11

)    eq. 19 

The resulting equation was plotted against the field data to show its accuracy. To summarize 

it better the average normalized field data were used (Figure 15). 

When the Ei is not known, it can be estimated with the modulus ratio MR [22]. This ratio is: 

𝐸𝑖 = 𝑀𝑅𝜎𝑐𝑖
      eq. 20 

 

Figure 15 Plot of normalized in situ rock mass deformation modulus from China and Taiwan against Hoek and 

Diederichs equation.  
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4 Methodology 

4.1 Numerical Simulation – 3DEC 

3DEC is a three-dimensional numerical modelling code by the Itasca Consulting Group. It 

is used for advanced geotechnical analysis of soil, rock, ground water, structural support, 

and masonry. It is able to simulate the response of discontinuous media when static or 

dynamic loading is applied to them. The method is the distinct element method (DEM) for 

discontinuous modelling. (Itasca Consulting Group) 

With this method the rock mass is described as an assemblage of discrete blocks, which 

are separated by discontinuities, in this master thesis defined as joints. With the DEM it is 

also possible to have large displacements along discontinuities, as well as the rotation of 

blocks. Based on the chosen constitutive and joint model the individual blocks can behave 

as either deformable or rigid material. It is also possible to generated continuous and 

discontinuous joint patterns, this is then based on statistics. (Itasca Consulting Group) 

Similar to other Itasca products, like UDEC, 3DEC has the built-in scripting language FISH 

encoded. (Itasca Consulting Group) 

4.1.1 General settings 

For the model dimensions, a cubic block with an edge length of 10 meters was chosen, 

therefore the coordinates of the origin are (0,0,0), which is the lower left front-corner of the 

model. To this block joint sets are applied in order to simulate a discontinuous/blocky rock 

mass. The number, length of the spacing and persistence of these joints have been altered 

and varied as part of this master thesis. Due to the fact that 3DEC is a code based program, 

several data files have been created to easily work with the program. In general, a 

displacement controlled uniaxial compression test with loading on the top and bottom of the 

discontinuous block is modelled. The complete code can be found in the appendix (A).  

In the “main”-file, all the variables and input parameters are defined with FISH variables. 

The code is structured in such a way, that for changing the model the variables have to be 

changed only in this “main”-file. All other commands, for example the “poly brick”-command, 

which creates the block, just use the newly defined variables. This ensures an efficient way 

to alter or modify the code. These parameters are the input values for the modelling, the 

loading, the material and the joints. 

http://www.itascacg.com/software/3dec-52/fish-in-3dec
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In the “load”-file the implementation of the predefined displacements is defined, since the 

model is path-controlled. For the investigations, an array with 17 load-steps is created. Due 

to the fact that 3DEC always adds new boundary conditions to the existing ones, it was 

necessary to redefine the predefined displacements within the code. Therefore, a side-

calculation within 3DEC was generated that every subsequent displacement had to be the 

difference of the predefined displacement and the previous applied one. These newly 

defined displacements are then added iteratively. To simulate a uniaxial compression test, 

the load steps are applied on both the top and the bottom of the block, this is comparable 

to a load plate lowering by a predefined distance. The results are listed in Table 5 and 

chosen according to the rock mass strength and shall not exceed the linear elastic/ideal 

plastic material behaviour, unless it is explicitly desired. 

By using a predefined intrinsic function of FISH, every grid point of the jointed block is 

associated with an index number and its reaction forces can be exported to an Excel sheet. 

By using another predefined intrinsic function, every block that is generated by jointing the 

model can be assigned an index number and the volumes of these blocks can be read out. 

These output data have been copied into MS Excel for further analysis. 

Every single load step is cycled 1000 times which correlates with an approximated limit 

equilibrium within reasonable computation time. The number is derived empirically and 

preserves the stable state. If this approximation would not have been used the computation 

time for each model would have been increased significantly. When this number is 

increased or decreased reasonably, the ERM is not effected.  

 

Figure 16 Velocity applied to the model 
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The input values of the displacements, which are applied on the boundaries of the model, 

are simulating a uniaxial compressive strength test. Similar to a real test, the deformation 

is applied on the upper and lower surface of the test sample. As can be seen in Table 5 

there are 3 unloading steps, on the 4th, the 7th and the 10th load-step as well as a final 

unloading after the 12th load-step. 

Table 5 Applied Velocity 

Load-Steps Applied Velocity Load-Steps Applied Velocity 

1 -0.000144 10 -0.025954 

2 -0.007603 11 -0.0336 

3 -0.015292 12 -0.04185 

4 -0.009251 13 -0.03353 

5 -0.015513 14 -0.02572 

6 -0.022904 15 -0.01837 

7 -0.016812 16 -0.01041 

8 -0.023295 17 -0.00099 

9 -0.033592   

 

 

4.1.2 Investigated cases  

The joint sets are defined by the dip angle, the dip direction, the number of joints per joint 

set, the spacing between the joints and the persistence of the joint.  

4.1.2.1 Influence of Vb and the block shape  

The spacing is the normal distance between the joints of each set, measured in meter. The 

number of joints is the quantity of joints that make up one set, this correlates with the 

spacing. The joints are produced symmetrically about the joint set origin. If the number 

multiplied with the spacing exceeds the model size, the joints that are unnecessary are not 

considered in the model. The spacing parameters also define the block volume and the 

shape of the blocks that are generated by splitting the model. The joint spacing in x-direction 

is named sp1, y-direction sp2 and z-direction sp3. It has to be noted that the displacements 

are applied in the z-axis. To determine the impact of the shape five types are defined.  

For this definition, the spacing perpendicular to the load is defined as 𝑧, and the two in load 
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direction as 𝑥 and 𝑦, but with the condition that 𝑥 ≤ 𝑦. This special labelling is because 

during the calculations of the models neither sp1 nor sp2 were defined as the smaller or 

larger one. With those boundary conditions the definitions for each shape are listed in Table 

6. As those shapes all have corners with square angles 

Table 6 Definition of the shapes for orthogonal joint sets , with x ≤ y 

Shape  𝐱
𝒛⁄  𝐲

𝒛⁄  
𝒙

𝒚⁄  

Cube = 1 = 1 = 1 

Column < 1 < 1 ≤ 1 

Plate < 1 > 1 < 1 

Slab > 1 > 1 ≤ 1 

Beam ≤ 1 > 1 < 1 

 

Exemplary sketches are illustrated in Figure 17. As can be seen the main differences 

between a column and a beam is the direction of the loading, otherwise a beam would just 

be a rotated column. The same applies to the difference between a plate and a slab.  

 

Figure 17 Sketch for a) cube b) column c) plate d) beam e) slab  

 

The block shapes follow the classification of [23], however, this classification had to be 

adjusted according to the orientation of the load applied on the block.  
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4.1.2.2 Influence of the persistence 

Joint bridges are created on a probabilistic basis. This implies that each new model with the 

same persistence can have different average block volumes. For evaluating the ERM,GSI the 

median block volume was chosen. 

4.1.2.3 Influence of other parameters 

The influence of the joint normal stiffness (jkn) was studied by altering the jkn for a number 

of models. The default model for this cases was a model with three joint sets orthogonal to 

each other. 

To analyse the impact that the inclination has on the ERM, the dip angle of the joint set 

perpendicular to the x-y plane was increased from 0° to 90° in steps of 2° to 5°. This is 

based on the assumption that as long as only one dip angle is modified, the effects on the 

model are the same as if the one perpendicular to the y-axis would be changed. 

4.1.3 Material and joint parameters 

The parameters set to define the material, for a massive rock (e.g. granite) are given in 

Table 7.  

Table 7 Material Parameters  

Material Parameters  Input value 

Density 0.0027 

Poisson's ratio [-] 0.25 

Young’s' modulus [MPa] 50’000 

Cohesion [MPa] 15 

dilatation angle [°] 0 

friction angle [°] 30 

tensile strength [MPa] 0.7 

bulk modulus [MPa]  33’333.3 

shear modulus [MPa] 20’000 

 

For the joint parameters, a relatively high joint normal stiffness (jkn) and a relatively low joint 

shear stiffness (jks) have been chosen. The parameters are listed in  

Table 8.  
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Table 8 Default parameters for the joint properties  

Joint Parameters  Input value 

Joint Normal Stiffness [MPa] 500’000 

Joint Shear Stiffness [MPa] 5’000 

Joint Friction Angle [°] 27 

Joint Cohesion [MPa] 0 

 

The constitutive model was set to be elastic/plastic with Mohr-Coulomb failure. 
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4.2 Evaluation of ERM 

4.2.1 GSI calculation 

ERM,GSI is calculated according to eq. 19. The formula requires the determination of the block 

volume dependant GSI according to 11. However, the block volume (Vb) is not calculated 

with eq. 8 proposed by Cai et al. [2], but the exact Vb, internally calculated by 3DEC, using 

the median block volume of the jointed rock mass. This step increased the accuracy 

especially in models with no orthogonal discontinuity set. 

For the joint condition factor (JC), the joint waviness (JW), the small scale roughness (JS) 

and the joint alteration (JA), three cases were considered, a so-called “best case”, a “worst 

case” and an “average case”. This had to be done because the JC has a high impact on the 

GSI, but is very depended on the conditions of the joints of the actual rock mass, so these 

three cases were chosen to gain a fair representation for the many different possible joint 

conditions of each theoretical joint. The  parameters chosen for the calculations are shown 

in Table 9. The input values are derived from the tables in chapter 3.3.2 and resemble the 

chosen material/joint properties of the calculations in 3DEC. 

Table 9 Joint Condition Values for the empirical calculation of ERM,GSI 

Case best case worst case average 

Joint waviness (JW) 2.55 1.75 2.15 

Small Scale Roughness (JS) 1 0.8 0.9 

Joint Alteration (JA) 1.5 8 4.75 

Joint Condition (JC) 1.7 0.175 0.407 

 

According to the definitions from the Table 2, Table 3 and Table 4, the best case represents 

a joint that is interlocking to stepping/smooth and has a slightly weathered contact to the 

rock wall. The worst case represents a joint with a moderate undulation, it is polished to 

smooth and has joints filled with soft clay materials. The average case represents a joint 

which has a large undulation, is polished to smooth and has joints filled with a filling of 

frictional material without clay.  

The chosen Young’s modulus for intact rock Ei is set at 50 GPa. The disturbance factor D 

was set to 0. For all three cases from Table 9 a separate ERM is calculated to compare it 

with the ERM,3DEC.  
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4.2.2 Sandwich Modell 

To have an additional comparison, models with only one joint set were also analysed with 

the following method for the empirical calculation of the Young’s modulus for rock masses.  

In this simplified model [24], a linear-elastic behaviour is assumed. For calculating the 

Young’s modulus, the applied stress is divided by the total deformation. The thickness of 

the joints in proportion of the model length L is assumed to be insignificant. The deformation  

consists of two components, the deformation of intact rock ∆𝑢𝑖 and the deformation of the 

joints ∆𝑢𝑇. These are defined as ∆𝑢𝑖 =  
𝜎𝐿

𝐸
 and  ∆𝑢𝑇 =  

𝜎

𝐸𝑇
.  

 

Figure 18 Calculation of the deformation modulus of a jointed model [24] 

ET is defined as the Young’s modulus of joints per meter of the rock mass. The number of 

joints in the rock mass N is defined by a joint frequency 𝜆. This frequency is the number of 

joints times the model length 𝜆 =
𝑁

𝐿
.  

The deformation of the sum of those joints is defined as ∆𝑢𝑇
′ =  

𝜎𝜆𝐿

𝐸𝑇
. Therefore the total 

deformation is Δ𝑢𝐺 =  
𝜎𝐿

𝐸
+

𝜆𝜎𝐿

𝐸𝑇
 and the total strain is calculated with: 

𝜀 =  
𝛥𝑢𝐺

𝐿
=  

𝜎

𝐸
+ 

𝜆𝜎

𝐸𝑇
.      eq. 21 

As a result, the Young’s modulus of the rock mass EG is: 

𝐸𝐺 =  
𝜎

𝜀
=  

1
1

𝐸
+

𝜆

𝐸𝑇

       eq. 22 
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4.3 Evaluation 

The output file for further calculations consists of five columns. The first column lists the 

indexes of each grid-point associated with the matching boundary corner. The second 

column contains the displacements applied in z-direction at the boundary (bottom/top 

region). These displacements reflect the predefined input values. The third column lists the 

reaction forces in z-direction at the boundaries that are generated by applying the 

displacements. The next column consists of the dislocations of each grid point, that are 

generated as result of the applied displacements. These dislocations are not always the 

same as the applied displacements, because the model simulates a load plate lowering 

down on the top and the bottom, therefore the grid points closer to the centre do not 

dislocate exactly as the predefines displacements. 

With that information, a total displacement of the loaded block can be calculated (Figure 

20). The fifth column returns the reaction force in z-direction for a grid point that has been 

assigned a zero-velocity boundary condition. This step was just for control purpose as it 

results on zero, because the grid point is fixed. With the reaction forces in the z-direction, 

the total force for each load step can be calculated (Figure 19). From this, the stresses can 

be determined by dividing it with the surface area of the model (100 m²). All the output files 

for each model will be on a data storage device added to the thesis. 

 

Figure 19 Total force applied to the model 
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The strains (ε) are calculated by summing up the displacements on the top and the bottom 

(l) and divided by the original height of the model (L)  

 𝜀 =
Δ𝑙

𝐿
 eq. 23 

 

Figure 20 Exemplary displacements of the model 

With the parameters for the stresses and strains, a diagram is plotted (Figure 21). Because 

of the relaxation steps (4, 7 and 10, relieve of strain), a loop is created in the diagram after 

every relaxation. The Young’s Modulus (ERM,3DEC) is then calculated with the slope of this 

loop and the two subsequent loops. The final ERM is the average of those three (n = 3). 

 𝐸𝑟𝑚,3𝐷𝐸𝐶 =
1

𝑛
(∑

∆𝜎𝑛

∆𝜀𝑛

𝑛
𝑖=1 ) eq. 24 
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Figure 21 Exemplary stress-strain diagram 
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5 Results  

5.1 Influence of Vb and the block shape 

In the following sections, different cases are presented in order to validate the numerical 

results with the chosen input parameters and empirical solutions. The models are restricted 

to no (chap. 5.1.1), one (chap. 5.1.2 and 5.1.3) two (chap. 5.1.4 and 5.1.5) and finally three 

discontinuity sets (chap.5.1.6). 

5.1.1 Whole Block 

The first model created is a block without any joints, therefore titled “Whole Block”. The 

purpose of this is to verify that the parameters produced by the model are realistic. As this 

model has no joints the calculated ERM has to be the same as the pre-set Young’s Modulus. 

The numerical solution and the “best” case empirical solution have both 50 GPa as a result, 

therefore in those two cases the ERM is equal to the Ei. For this case no comparison between 

the three cases was needed. 

  

Figure 22 "Whole Block" model a) blocks  b)Contour of Displacement   
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5.1.2 Sandwich 

This model is layered horizontally with one joint set which is perpendicular to the z-axis and 

has a spacing of 1 m; thus its name is “Sandwich” model. For a model with the joint sets 

defined as such, a different empirical method is available, the “Sandwich Model” (chap. 

4.2.2). The ERM calculated with this method, the EG, is very similar to the result of the 

numerical analysis, and both are slightly lower than the “best” case when using the block 

volume GSI evaluation. 

 

Figure 23 “Sandwich" model a) blocks b) Contour of Displacement 

 

Table 10 Comparison of the resulting rock parameters for “Sandwich” 

 GSI 3DEC Sandwich 

Case best worst average - - 

Vb [cm³] 1.00E+08 1.00E+08 1.00E+08 1.00E+08 1.00E+08 

GSI(Vb,Jc) 88.1 54.7 67.6 - - 

ERM 47.4 20.1 34.3 45.97 45.87 
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5.1.3 Vertical Sandwich 

The next model is also layered and has only one joint set, in this case perpendicular to the 

x-axis, thus it is called “Vertical Sandwich”. The resulting ERM of the numerical solution is 

similar to the “Whole Block” model, therefore the ERM,3DEC is the same as Ei. The results of 

the empirical solution are lower than the numerical one and exactly the same as the results 

of the layered block with the joint set perpendicular to the z-axis.  

 

Figure 24 “Vertical Sandwich" model a) blocks b) Contour of Displacement 

 

Table 11 Comparison of the resulting rock parameters for “Vertical Sandwich” 

 GSI 3DEC 

Case best worst average - 

Vb [cm³] 1.00E+08 1.00E+08 1.00E+08 1.00E+08 

GSI(Vb,Jc) 88.1 54.7 67.6 - 

ERM 47.4 20.1 34.3 50.3 
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5.1.4 Column 

This model has two joint sets, both perpendicular to the x-axis and the y-axis, therefore 

creating columns, hence the “Column” model. The numerical solution for the ERM is very 

similar to the Ei, while on the other hand the empirical values are considerably lower. 

 

Figure 25 "Column" model a) blocks b) Contour of Displacement 

Table 12 Comparison of the resulting rock parameters for “Column” 

 GSI 3DEC 

Case best worst average - 

Vb [cm³] 1.00E+07 1.00E+07 1.00E+07 1.00E+07 

GSI(Vb,Jc) 76.1 45.4 57.2 - 

ERM 41.6 11.5 22.9 50.57 
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5.1.5 Beam 

In this model two joint sets are applied, one perpendicular to the x-axis and one 

perpendicular to the z-axis. While the empirical solution produces the same as the “Column” 

model, because the block volume and the joint condition factor are the same, the numerical 

solution is closer to the result from chapter 5.1.2.  

 

Figure 26 "Beam" model a) blocks b) Contour of Displacement 

 

Table 13 Comparison of the resulting rock parameters for “Beam” 

 GSI 3DEC 

Case best worst average - 

Vb [cm³] 1.00E+07 1.00E+07 1.00E+07 1.00E+07 

GSI(Vb,Jc) 76.1 45.4 57.2 - 

ERM 41.6 11.5 22.9 45.17 
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5.1.6 Three joint sets (3JS) 

In the last validation model, three joint sets are introduced with a joint normal spacing of 

1 m. The results show that the difference between the empirical solution for the ERM and the 

numerical one is increasing.  

 

Figure 27 "3JS" model a) blocks b) Contour of Displacement 

 

Table 14 Comparison of the resulting rock parameters for “3JS” 

 GSI 3DEC 

Case best worst average - 

Vb [cm³] 1.00E+06 1.00E+06 1.00E+06 1.00E+06 

GSI(Vb,Jc) 66.2 37.8 48.7 - 

ERM 32.9 6.9 14.2 44.53 

 

To further investigate the impact of Vb, the “3JS” model was taken as basis. From this model 

the spacing of the joints was varied in order to reduce or increase the resulting Vb. It is 

important to note that the orientation of the joint sets is still orthogonal to each other. The 

blocks created from the modified joint sets vary mainly in form and size, from cubic-shaped 

to plates and from very large volumes to the smallest computable blocks, this is illustrated 

in Figure 28. For better illustration of the various results, especially in the case of smaller 

block volumes, a logarithmic scale is used in Figure 29.  
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Figure 28 Block Volume and correlation of the ERM 

 

Figure 29 Block Volume and correlation of the ERM in logarithmic scale 
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5.2 Influence of the persistence 

The persistence describes the continuity of joints and can rank from 0.0 to 1.0. Naturally 

with lower persistence, block volumes will be larger. This can be seen easily when 

comparing Figure 30, where a model with a persistence of a) 0.3 and b) 0.8 is pictured. 

According to the aim of this thesis, the persistence of all three joint sets was varied to 

investigate the sensitivity of the model on the persistence. The sensitivity analysis was 

applied on an orthogonal joint network with three joint sets.  

 

Figure 30 Block with a persistence of a) 0.3 and b) 0.8 

The impact of the persistence on the Vb is illustrated in Figure 31 with the axis for Vb in 

logarithmic scale.  

 

Figure 31 Vb according to the persistence of the joint sets in logarithmic scale 

The impact of the persistence on the ERM,3DEC is illustrated in Figure 32. 
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Figure 32 ERM in relation to the persistence 
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5.3 Influence of other parameters 

The following parameters have no impact on the empirical values, as they don’t include any 

of them, therefore only their impact on the ERM,3DEC is described in this chapter. 

5.3.1 Joint normal stiffness  

The joint normal stiffness (jkn) for the joints of the models was predefined to be 500 GPa. 

This value was chosen according to a sensitivity analysis with a series of models with a 

different value for the jkn. The results are plotted in Figure 33. The chosen values range 

from 300 to 800 GPa. The ERM,3dec for a “3JS” model ranges between 42 GPa and 46 GPa 

Figure 33. . 

 

Figure 33 Impact of the joint normal stiffness jkn on the ERM,3DEC 

To verify the model also unrealistic joint normal stiffness were tested, for example 

5,000 GPa which lead to an extremely high ERM,3DEC. Additionally, a low jkn of 50 GPa, was 

tested, resulting in a very low ERM,3DEC of 26 GPa. 

5.3.2 Influence of inclined of joints 

When investigating the impact of the joint set inclination, it became clear that a shear failure 

is occurring (Figure 34). To prevent shearing in future analyses it is recommended to 

simulate a triaxial compression test to investigate the impact of the joint orientation. 

34

36

38

40

42

44

46

48

50

200 300 400 500 600 700 800 900

E R
M

,3
D

EC
[G

P
a]

joint normal stiffness JKN [GPa]



Results 43 

 

 

Figure 34 Dip angle polar diagram 
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6 Interpretation and Discussion 

6.1 Influence of Vb 

Analysing the results, one can see that the influence of the block size on the stiffness of the 

rock mass to a great extent is influenced by the loading direction in relation to the joint 

orientation. As an example the column model shall serve: adding additional joints parallel 

to the loading direction decreases the block volume, practically no influence on the E-

modulus can be observed. On the other hand, when using the empirical relationship of Cai 

et al [14], the block volume has a significant influence on the rock mass stiffness. 

It can be clearly seen that the empirical relationships just refer to two-dimensional problems, 

and even here do not consider the influence of different loading directions in relation to the 

discontinuity orientation. 

6.1.1 Block shapes 

To show the influence of the block shape, the different models are plotted separately 

according to the shape classes, defined in chapter 4.1.2.1. To better present the various 

models the plots are all with logarithmic scale for Vb Since some shapes have a large range 

of possible combinations of the spacing it is possible that some models have the same block 

volume, but a different ERM, because the dimensions are slightly different. All calculations 

are based on an orthogonal joint network. 

 

6.1.1.1 Cubic shaped 

Cubic blocks are generated with an equal joint normal spacing for all three discontinuity 

sets and intersection angles of 90°. ERM,3DEC only decreases slightly, even at very small 

values for the spacing and the resulting block volume. The significant impact of the reduced 

Vb on ERM,GSI and its minor influence on ERM,3DEC is quite obvious (Figure 35).  
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Figure 35 Comparison of the ERM,3DEC [GPa] with the ERM,GSI [GPa] for cubes 

 

6.1.1.2 Columnar shaped 

In general, the ERM,3DEC is very high and almost equals Ei in columnar shaped blocks. (Figure 

36). The columnar shaped blocks show the highest values for the Young’s modulus of the 

modelled rock mass. The independence of ERM,3DEC from Vb is even more obvious than for 

cubic shaped blocks. In some cases, the 3DEC produces results with the Young’s moduli 

even exceeding Ei. In the following this is referred to as “plate problem” (chap.6.1.1). 

Obvious case with unrealistic results are excluded from Figure 36. 

 

Figure 36 Comparison of the ERM,3DEC [GPa] with the ERM,GSI [GPa] for columns 
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6.1.1.3 Plate shaped 

The ERM,3DEC of the plate shaped blocks tend to be higher than the average ERM for a “3JS” 

model which is around 45 GPa, in some cases almost like Ei, and is therefore comparable 

to the column models. Again, the models with the “plate problem” (chapter 6.1.1) are 

excluded from the data of Figure 37.  

 

Figure 37 Comparison of the ERM,3DEC [GPa] with the ERM,GSI [GPa] for plates 

 

6.1.1.4 Beam shaped 

The results of ERM,3DEC for the beam shaped blocks are usually higher than the best case, 

but do not tend to be higher than the “3JS"-model from chapter 5.1.6, as can be seen in 

Figure 38 . 
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Figure 38 Comparison of the ERM,3DEC [GPa] with the ERM,GSI [GPa] for beams 

6.1.1.5 Slab shaped 

The slab shaped models are quite interesting as they are the only ones that are in some 

cases lower than the anticipated best case of ERM,GSI (Figure 36). They are generally below 

average and can be considered the shape that generates the lowest ERM with similar Vb.  

 

Figure 39 Comparison of the ERM,3DEC [GPa] with the ERM,GSI [GPa] for slabs 
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6.1.2 Influence of the block shape 

It is difficult to directly compare the resulting ERM for the different block shapes, because of 

the range of possible Vb that each shape class create. Therefore 17 models with a constant 

Vb of 2.5 ∙ 106 cm³ are compared to show the influence of the block shape on the ERM,3DEC. 

In Figure 40 a box whisker plot of the different shape classes is illustrated The cube shape 

is illustrated as a line because only one cubic model is possible for a predefined Vb. 

 

Figure 40 ERM,3DEC for Vb 2,5*106 [cm³] by shape in a box whisker plot 

The diagram indicates that the slab and beam shaped blocks generally express a lower 

ERM,3DEC than the plate and column shaped blocks.  

This leads to the conclusion, that shapes with a with a closely spaced joint perpendicular to 

the load direction generally show a lower ERM than in models with a joint set striking parallel 

to the load orientation. 
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6.1.3 Impact of the joint spacing 

It is obvious that the ERM,3DEC for slab and beam shaped blocks is generally lower, therefore 

one can assume that the spacing perpendicular to the loading has major impact on the 

results. To show the impact of the spacing perpendicular to the loading, models with the 

same block volume are compared. The block volume chosen for this was 2,5 ∙ 106 cm³. This 

block volume allowed many possible combinations for the spacing, and therefore covering 

all possible block shape classes.  

The results are listed in Table 15 and illustrated in Figure 41. The empirical values are 

added to the graph to show that with a constant volume, the ERM,GSI stays constant as well. 

It is quite obvious that a closely spaced joint perpendicular to the load direction the smallest 

ERM generates. Once this spacing is kept constant, the shape significant parameter for the 

ERM,3DEC is the block shape.  

 

Figure 41 ERM for Vb 2,5*106 [cm³] 
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Table 15 ERM,3DEC for Vb = 2,5*106 [cm³] 

ERM,3DEC sp1[cm] sp2[cm] sp3[cm] Shape 

33.2 500 500 10 Slab 

37.47 250 1000 10 Slab 

38.83 500 200 25 Slab 

40.13 125 500 40 Beam 

41.93 250 250 40 Slab 

41.9 1000 50 50 Beam 

44.5 125 200 100 Slab 

44.9 250 100 100 Beam 

45.6 50 500 100 Plate 

46.67 40 500 125 Plate 

48.07 100 100 250 Column 

48.77 40 250 250 Plate 

50.53 40 125 500 Column 

50.37 50 50 1000 Column 
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6.1.4 “Plate Problem” 

During the evaluation of the results, the so called “plate problem” occurred. This problem 

refers to several exceptions, where ERM,3DEC was higher than Ei, which obviously is not 

possible, since the Young’s Modulus of a jointed rock mass cannot be higher than that of 

an intact rock. The “plate problem” occurs when a joint set, striking parallel to the loading 

direction is narrowly spaced (0.1 m to 0.15 m), and the second spacing of a joint set 

striking parallel to the loading direction is considerably wider (0.5 m to 10 m). 

 

Figure 42 Exemplary a) model  and b) contour of the z-displacement for the "plate problem" 

The height of the block has to be at least 0.5 m. This configuration generates a plate, 

comparable to the “Vertical Sandwich” model. Due to the definition of shapes some of those 

models are by definition columns, even though they could be considered to be a plates and 

fit into the boundary conditions for this problem.  

The models with this problem as well as the values for the joint spacing are listed in Table 

16. The table shows that the most decisive parameter is the spacing for the sp1 or x. When 

x equals 15 cm, ERM,3DEC is already considerably higher than the Ei, when this spacing is 

reduced even further (10 cm), ERM is more than 25 % higher than the Ei.  

The reason for this problem is yet not fully understood and needs further investigations. 

However, it only appears in cases with a special set of boundary conditions. It is possible 

to conclude that models not subject to such a boundary condition can still be considered 

providing realistic results. 

 

 



Interpretation and Discussion 52 

 

Table 16 List of ERM [GPa] for "Plate" Problems with the corresponding spacing of the joint sets in [cm] 

ERM,3DEC sp1 [cm] sp2[cm] sp3[cm] 

52.67 15 500 500 

53.47 15 1000 1000 

54.7 10 1000 1000 

54.97 15 250 250 

57.77 10 100 1000 

61.3 10 250 100 

62.37 10 250 50 

62.77 10 500 50 

63.2 10 1000 50 

64.4 10 100 100 
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6.2 Influence of the persistence 

The influence of the persistence is analysed on the basis of the “3JS” model. The 

persistence can only increase the possible ERM, therefore it can only be between the ERM of 

the “3JS” model and the “Whole Block” model. This two models represent the boundaries 

of the analysis, because the “3JS” model has a persistence of 1.0 and the “Whole Block” 

represents a model with the persistence of 0.0. 

The impact of the persistence on the Vb is illustrated in Figure 31 with the axis for the block 

volume in logarithmic scale. It should be noted that when the persistence ranges between 

0.45 to 0.55, the results are varying in such a degree, that a direct correlation is not 

recognisable. The reason for this is presumably the fact that the splitting of the blocks is 

happening in accordance to a probability, hence it is possible that the median average of 

the Vb of the model that is split at a probability of 0.48 is very similar to the one split with a 

persistence of 0.52.  

In Figure 32 ERM,GSI is compared with the ERM,3DEC in regard of the persistence and again, 

the disconnection of Vb with ERM,3DEC is apparent. In the empirical solution there is no steady 

increase of ERM,GSI between the values 0.45 and 0.55, this is due to the irregular correlation 

between the Vb and the persistence in this range. In contrast, ERM,3DEC increases steadily 

with the decrease of the persistence.  

Because the persistence creates a number of very different blocks for each new model it is 

not possible to directly show the impact of the spacing and the block shape on the ERM. 

Therefore, a “reference spacing” or spref had to be used. This spref is based on the median 

Vb and its cube root. This is a vast simplification, but still a clear trend can be identified. The 

ERM,3DEC is not reduced constantly, with a decreasing spref, as shown in Figure 43. This is 

due to the fact that the blocks are split by probability. In Table 17 the persistence is listed 

with the ERM,3DEC and the spref. It can be seen that the inconstancy occurs again in the range 

from 0.45 to 0.55. In Figure 43 the trend line is plotted as a dotted line. This trend line shows 

that there is still a clear trend of the ERM, decreasing with spref. 

One has to be careful not to conclude that the persistence is an evidence for a correlation 

between the block volume and ERM,3DEC. Generally spoken a lower persistence means an 

increase in the probability of larger blocks, which increase the probability of having a large 

number of blocks with an increased spacing perpendicular to the load. This on the other 

hand leads to an increase in the ERM. 
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Figure 43 ERM,3DEC for the "median average spacing", the dashed lines indicate the fitted trend lines 

Table 17 List of the persistence with correlating ERM,3DEC and the reference spacing (spref) 

Persistence [-] ERM,3DEC [GPa] spref [cm] 

0.2 49.43 288 

0.25 48.93 271 

0.3 48.77 252 

0.35 48.6 200 

0.4 48 182 

0.45 47.9 159 

0.48 47.6 144 

0.5 48 159 

0.52 47.8 159 

0.55 46.93 126 

0.6 46.7 126 

0.65 46.3 126 

0.7 45.83 126 

0.75 45.57 126 

0.8 45.33 100 

0.85 45.3 100 

0.9 44.87 100 
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7 Conclusion and Outlook 

With the investigations conducted in the course of this thesis it could be shown that current 

empirical rock mass characterization methods are oversimplified and may lead to 

misleading results. The main deficiency of those methods is that they do not consider the 

spatial discontinuity distribution, but are extrapolating two-dimensional evaluations into the 

volume. This may not significantly influence the results in case the degree of fracturing is 

approximately similar in all directions, but has a big influence in case of anisotropic rock 

masses with arbitrary block shapes and joint set spacing. 

The case studies showed that the rock mass stiffness prominently is influenced by the 

relative orientation between load orientation and dominant joint orientations, respectively 

the block shape.  

Future works in this field might include simulations with a three-dimensional stress field, 

enabling also to model non-perpendicular joint sets. 

The reasons for unrealistic results of the numerical model for certain joint set configurations 

requires clarification as well. 
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10 Appendix A 

Main File  

new ;!!!!!! 

;------------------ 

;------Header------ 

;------------------ 

 

set cust1 'Name Surname' 

set cust2 'Graz University of Technology' 

 

def sys 

 md = 'C:\\...\\...\\  ; Folder location 

end 

@sys 

set directory @md 

 

;------------------ 

;-------Units------ 

;------------------ 

 

;length = [m] 

;stress = [MPa] 

;force  = [MN] 

 

;------------------ 

;--ModelParameter-- 

;------------------ 

 

 

;--Model Boundaries--  [m] 

def geometry ;definition for the Model geometry 

x1 = 0 

x = 10 

x2 = x1 + x 

y1 = x1 

y2 = x2  

z1 = x1 
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z2 = x2  

 

base = x2*0.05 ;thickness 

top = x2*0.05 

 

;---Loading Parameters--- 

cy = 1000 ;Number of cyles each step runs 

pp = 0.1 ; for increasing or decreasing the Load by a factor 

edge = 1 ;For the meshing of the model 

steps = 17 ;Number of steps for the Load 

name = "name" ;Name for the particular model 

 

;-----Side Calcs----- 

x3 = x1 - base 

x4 = x2 + top 

 

y3 = y1 - base 

y4 = y2 + top 

 

z3 = z1 - base   

z4 = z2 + top 

 

z5 = z2*(1-1e-3) ; Region where the displacements are applied 

z6 = z2*(1+1e-3) 

z7 = z2*(-1e-3) 

z8 = z2*(1e-3) 

 

;--------Dip----------[°] ;Inclination for the shear planes 

dip1 = 90 

dip2 = 90 

dip3 = 0 

 

;----Dip Direction----[°] 

dd1 = 0 

dd2 = 90 

dd3 = 0 

 

;----Joint Spacing---- [m] ;Spacing between each shear plane 

sp1 = 1 

sp2 = 1 

sp3 = 1 

 

;---Number of Joints---[-]  
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num1 = 20 

num2 = 20 

num3 = 20 

 

;-----Persistance-----[-] 

per1 = 1 

per2 = 1 

per3 = 1 

 

end 

@geometry 

 

 

def inputMaterial 

 

;----Joint Properties---- 

conj = 2 ; constitutibe model (2=Mohr.Coulomb failure) 

jkn   = 5e5    ; joint normal stiffness [MPa] 

jks   = 5e3   ; joint shear stiffness [MPa] 

phi   = 27      ; joint friction angle [°] 

coh   = 15  ; cohesion [MPa] 

 

;--Material Properties-- 

conm = 2  ;constitutibe model (2=Mohr.Coulomb failure)   

rho = 2700*1e-6 ; density [kg/m³] 

pratio = 0.25 ; Poisson's ratio [-] 

you   = 5e4     ; Youngs' modulus [MPa] 

bc = 15 ; Block Cohesion [MPa] 

bdi = 0  ;dilatation angle [°] 

bfri = 30     ;friction angle [°] 

btension  = 0.7 ;tensile strength [MPa] 

 

bulk  = you/(3*(1-2*pratio))  ; block bulk modulus 

shear = you/(2*(1+pratio))  ; shear modulus 

 

;--LOAD--- [MN] 

Load1= -0.00144; 

Load2 = -0.07603; 

Load3 = -0.15292 

;unloading 

Load4 = -0.09251 

Load5 = -0.15513 

Load6 = -0.22904 
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;unloading 

Load7 = -0.16812 

Load8 = -0.23295 

Load9 = -0.33592 

;unloading 

Load10 = -0.25954 

Load11 = -0.33600 

Load12 = -0.4185 

Load13 = -0.3353 

Load14 = -0.2572 

Load15 = -0.1837 

Load16 = -0.1041 

Load17 = -0.0099 

 

 

end 

@inputMaterial 

 

;------------------ 

;----Call Files---- 

;------------------ 

 

call model.3ddat  

call material.3ddat 

call load5.3ddat 

  



Appendix A  V 

 

 

Model File  

 

;---------------- 

;-----Model------ 

;---------------- 

 

;-----Block------ 

 

poly brick @x1 @x2 @y1 @y2 @z1 @z2 

 

;-----Joints----- 

jset dd @dd1 dip @dip1 or @x1 @y1 @z1 n @num1 p @per1 s @sp1 id 1 

jset dd @dd2 dip @dip2 or @x1 @y1 @z1 n @num2 p @per2 s @sp2 id 2    

jset dd @dd3 dip @dip3 or @x1 @y1 @z1 n @num3 p @per3 s @sp3 id 3    

 

 

;----Grouping---- 

group block 'cube' range z @z1 @z2 

 

;---Range Name---  

range name 'cube' z @z1 @z2  

 

 

;------Mesh------ 

gen edge @edge 
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Material File 

;----------------------- 

;--Material Properties-- 

;----------------------- 

 

 

change cons 2 range group 'cube' 

 

prop mat 1 bc @bc bdil @bdi bfr @bfri bt @btension bu @bulk de @rho sh 
@shear  

prop jmat 1 jkn @jkn jks @jks jfri @phi jcoh @coh  

 

change mat 1 range group 'cube' 

change jmat 1 jcons @conj range group 'cube' 

 

def matlist 

 file = 'MatList.txt' 

 status = open(file,1,1) 

 

 Material = get_array(27) ; Array to read out material parameters 

 

  Material(1)= conj  ; Joint Model 

  Material(2)= jkn   ; joint normal stiffness [MPa] 

  Material(3)= jks  ; joint shear stiffness [MPa] 

  Material(4)= phi   ; joint friction angle [°] 

  Material(5)= coh   ; joint cohesion [MPa] 

  Material(6)= conm  ; Block Model 

  Material(7)= rho   ; density  

  Material(8)= pratio ; Poisson's ratio [-] 

  Material(9)= you  ; Youngs' modulus [MPa] 

  Material(10)= bdi  ; dilatation angle [°] 

  Material(11)= bfri  ; friction angle [°] 

  Material(12)= btension ; tensile strength [MPa] 

  Material(13)= bulk  ; bulk modulus [MPa] 

  Material(14)= shear  ; shear modulus [MPa] 

  Material(15)= bc ; block cohesion [MPa] 

  Material(16)= sp1*100  ; Spacing in x-direction [cm] 

  Material(17)= sp2*100 ; Spacing in y-direction [cm] 

  Material(18)= sp3*100  ; Spacing in z-direction[cm] 

  Material(19)= dip1  ; Dip Angle [°] 

  Material(20)= dip2  ; Dip Angle [°]  
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  Material(21)= dip3  ; Dip Angle [°] 

  Material(22)= dd1  ; Dip Direction 

  Material(23)= dd2  ; Dip Direction 

  Material(24)= dd3  ; Dip Direction 

  Material(25)= per1 ; Persistence [-] 

  Material(26)= per2 ; Persistence [-] 

  Material(27)= per3 ; Persistence [-] 

 

 status = write(Material,27) 

    status = close 

 end 

 @matlist 
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Load File 

;------------------------------------ 

;--------------LOADING--------------- 

;------------------------------------ 

 

def sys 

 md = 'C:\\...\\...\\  ; Folder location 

end 

@sys 

 

set directory @md 

 

define loading 

  

 array temp(1) 

 array Load(steps) 

 

;------------------Loading--------------------- 

;Redefinition of the applied displacements du to 3DEC adding them for 
each step 

 

  Load(1) = Load1   

  Load(2) = Load2-Load1  

  Load(3) = Load3-Load2 

  Load(4) = Load4-Load3 

  Load(5) = Load5-Load4 

  Load(6) = Load6-Load5 

  Load(7) = Load7-Load6 

  Load(8) = Load8-Load7 

  Load(9) = Load9-Load8 

  Load(10) =Load10-Load9 

  Load(11) =Load11-Load10 

  Load(12) =Load12-Load11 

  Load(13) =Load13-Load12 

  Load(14) =Load14-Load13 

  Load(15) =Load15-Load14 

  Load(16) =Load16-Load15 

  Load(17) =Load17-Load16 

 

 

 loop p(1,steps) 



Appendix A  IX 

 

 

 

  v = Load(p)*pp 

  w = -1*v 

  fname="loadsteps-"+string(p)+"-"+string(name)+".3dsav" 

   command   

    set directory @md   

    bou zvel @v range z @z5 @z6 

    bou zvel @w range z @z7 @z8 

     

    step @cy 

    ;solve ratio 1e-2 

    ;solve r_type l 

         

   endcommand 

 

    file = 'output.txt' 

    status = open(file,1,1) 

 

    boi = bou_head 

   

 

    loop while boi # 0 

     boi_gp = bou_gp(boi)   

;index of gridpoint associated with the boundary corner 

     boi_zvel = bou_zvel(boi)  

;y-applied velocity at boundary (just for control purpose) 

     boi_zforce = bou_zforce(boi)  

;y-applied or reaction force at boundary 

     gpo_zdis = gp_zdis(boi_gp)  

;y-displacement of gridpoint 

     bvol = gp_zreaction(boi_gp)  

;returns y-reaction force for a gridpoint that has been assigned a zero-
;velocity boundary condition (just for control purpose) 

 

temp(1) = string(boi_gp) + ' ' + 
string(boi_zvel) + ' ' + string(boi_zforce) 

temp(1) = temp(1) + ' ' + string(gpo_zdis) 
+ ' ' + string(bvol) 

     status = write(temp,1) 

 

     boi = bou_next(boi) 

    endloop 
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   command 

    save @fname 

   endcommand 

 end_loop 

 status = close 

end 

@loading 

 

def volume 

file = 'volume.txt' ;never ever use underscores in variable names  
       ;used for input-output functions!!! 

 status = open(file,1,1) 

 temp(1) = 'Number'+' '+'BlockIndex'+' '+'BlockID'+' 
'+'BlockVolume' 

 status = write(temp,1) 

  

 bi = block_head 

 ii = 1 

   

 loop while bi # 0 

  bvi = b_vol(bi) 

  bid = b_id(bi) 

  temp(1) = string(ii)+' '+string(bi)+' '+string(bid)+' 
'+string(bvi) 

  status = write(temp,1) 

  bi = b_next(bi) 

  ii = ii + 1 

 endloop  

 status = close 

end 

@volume 

 

def loadlist 

 file = 'LoadList.txt'  ;File wenn sich die Lasten ändern 

 status = open(file,1,1) 

 status = write(Load,steps) 

 status = close 

end 

@loadlist 
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