

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Kurzfassung

Das manuelle Absuchen eines zeitabhängigen Signals nach Artefakten, kann
sehr zeitaufwendig und umständlich sein. Diese Arbeit versucht diesen Prozess
einfacher zu gestalten. Dieses Ziel soll durch eine Gruppe von kollaborieren-
den Benutzern erreicht werden. Außerdem soll es möglich sein aus dem Wis-
sen anderer Mitarbeiter zu profitieren und daraus zu lernen.
Dazu wurde ein experimentelles Web-Service namens “SignalCloud” imple-
mentiert, welches das gleichzeitige Arbeiten an einer Signal-Datei erlaubt.
Zusätzlich werden den Benutzern verschiedenste Werkzeuge und Visualisierun-
gen zur Verfügung gestellt um den Prozess einfacher zu gestalten.
Derzeit gibt es zwei Einsatzgebiete für das Service, aufgrund der unterstützten
Dateiformate: aufgezeichnete Biosignale und Sensor-Daten aus der Automo-
bilindustrie

Schlüsselwörter: Zusammenarbeit, Visualisierung, Sensor-Daten, manuelles
Erfassen, Signal, Web-Service, SignalCloud, GDF, EEG, MoTeC

1

Abstract

The manual detection of artifacts in time-dependent data is a very timeconsuming
and tedious task. This work tries to simplify this process, by using a collabo-
rative approach. Additionally, it should be possible to benefit from the knowl-
edge of other collaborators and learn from them.
For this reason, an experimental web-service called “SignalCloud” has been
implemented, which allows simultaneous working on a single signal-file. This
web-service provides various tools and visualizations to facilitate the process.
Currently there are two usage-domains of this service due to its supported file
formats: recorded biosignals and sensor-data from the automobile industry

Keywords: Collaboration, Visualization, sensor-data, manual detection, sig-
nal, web-service, SignalCloud, GDF, EEG, MoTeC

2

Acknowledgment

Firstly, I would like to thank my thesis advisors Eduardo E. Veas, Dr.techn.
MSc and Cecilia Sciascio, MSc for their continuous support. The meetings on
a weekly basis allowed this project to constantly face into the right direction.

Additionally, I want to thank my sister Maria Legat-Rath and my brother in law
Klaus Legat for reading this paper and providing me with tips and phrases for
writing an appropriate scientific thesis.

Last but not least, I would like to express my sincere gratitude to my girlfriend
Anna Christian and my family for their ongoing encouragement and support-
ing me up during bad times.

Graz, February 21, 2017 Lukas Rath

3

Contents

1 Introduction 11
1.1 Terminology . 11
1.2 Issues . 12
1.3 Motivation . 13
1.4 Aspects of Collaboration . 14

1.4.1 Synchronous Collaboration 14
1.4.2 Asynchronous Collaboration 14

1.5 Summary . 14

2 Related Work 16
2.1 State-of-the-art Tools . 16

2.1.1 SigViewer . 16
2.1.2 MoTeC i2 . 17

2.2 Client-generated Web-based Visualizations 18
2.3 Visualization of time-dependent data 19
2.4 Specialized Visualization-techniques 29
2.5 Collaborative Awareness . 30
2.6 Summary . 34

3 Approach 35
3.1 A collaborative tool . 35

3.1.1 Requirements . 35
3.1.2 Current Tools and Inspiration 37
3.1.3 Technologies . 38
3.1.4 Target Audience and User Constellation 40

3.2 File formats . 40
3.2.1 GDF . 40
3.2.2 MoTeC CSV . 41

3.3 Workflows . 42
3.3.1 Single User . 42
3.3.2 Collaborative Session . 42
3.3.3 Unbiased Collaborators . 45

4

3.3.4 Rating Performance . 46
3.4 Summary . 47

4 Implementation 48
4.1 Concept Realization . 48

4.1.1 Drawing Mechanics . 48
4.1.2 User-Management . 50
4.1.3 Overlaps . 51

4.2 Frameworks . 54
4.2.1 Express . 54
4.2.2 Socket.IO . 55
4.2.3 Passport . 55
4.2.4 Webpack . 55
4.2.5 Babel and es6 . 55
4.2.6 AngularJS . 55
4.2.7 Pug . 56
4.2.8 SASS/SCSS . 56
4.2.9 CouchDB and nano . 56
4.2.10Gulp . 56

4.3 Prototypes . 57
4.3.1 Web-based SigViewer . 57
4.3.2 Client-only with Sql-lite Database 57
4.3.3 Node.js Server . 58
4.3.4 SignalCloud . 58
4.3.5 SignalCloud with AngularJS 59

4.4 Code Structure . 59
4.4.1 Server . 60
4.4.2 Client . 62
4.4.3 Templates . 66
4.4.4 SCSS . 66

4.5 Datamodel . 67
4.6 Design . 69

4.6.1 Design-Elements . 70
4.7 User Interface . 70

4.7.1 Centered Panel . 70
4.7.2 Main Area with Side-Panels 71

5 SignalCloud 73
5.1 User and File Management . 74

5.1.1 Sign up . 74
5.1.2 Login/-out . 75

5

5.1.3 Account Settings . 75
5.1.4 Files Overview . 76
5.1.5 File-Upload . 76
5.1.6 File-Removal . 77
5.1.7 File-Download . 77

5.2 Signal Visualization . 78
5.2.1 Signal Plot . 78
5.2.2 Channel-Configuration . 79

5.3 Event tagging interfaces . 82
5.3.1 Visual Editing of Tags . 84
5.3.2 Overlap-Detection . 84
5.3.3 Event-Collection-Upload . 86
5.3.4 Enhanced Scrollbar . 87
5.3.5 Summary View . 87

5.4 Collaborative Features . 89
5.4.1 Event-Reception . 89
5.4.2 User-Management . 91
5.4.3 Comments/Chat . 92
5.4.4 Activity/History . 93
5.4.5 Rating of Events . 94
5.4.6 Scroll-Indicators . 95

5.5 Summary . 96

6 Conclusion 97
6.1 Frameworks . 97
6.2 Future Work . 97

6.2.1 Undo/Redo . 98
6.2.2 Summary Modules . 98
6.2.3 Realtime Updates . 98
6.2.4 Linked IDs in Comments . 98

6.3 Summary . 98

List of Abbreviations 100

Bibliography 102

A API 107
A.1 Websocket Protocol . 107
A.2 REST . 113

6

List of Figures

1.1 Examples for EEG-artifacts, recorded at channel Cz, from [Lawh-
ern et al., 2012, p. 183] . 12

2.1 Screenshot of SigViewer - a visualization- and annotation-tool for
biosignals . 17

2.2 Screenshot of MoTeC i2 is a data analysis tool for car-racing ap-
plications . 18

2.3 Importance driven layout of 24 stock price time series with favor-
able aspect ratios, from [Hao et al., 2005, p. 204] 20

2.4 Example of the DOI visualization: CPU Monitoring, from [Hao
et al., 2005, p. 32] . 21

2.5 Frequent patterns (motifs) discovered in data chiller time series,
from [Hao et al., 2012, p. 71] . 22

2.6 A stock price variation chart based on a scatter plot for displaying
stock price and its change in percentage, from [Lei and Zhang,
2010, p. 72] . 28

2.7 Parallel tag cloud revealing the differences in drug prevalence
amongst circuits [Collins et al., 2009, p. 92] 29

2.8 Visual representation of the awareness framework [Gutwin and
Greenberg, 2002, p. 36] . 32

3.1 state chart diagram of the workflow 43

4.1 Drawing mechanics . 49
4.2 Explanation of relevant sizes . 52
4.3 Three new events matched against an existing overlap 52
4.4 State chart of the detection algorithm 54
4.5 Prototype with small SQL-lite-server 58
4.6 Root folder of the project . 60
4.7 Folder-structure of the controller 61
4.8 Folder-structure of the model . 61
4.9 Folder-structure of the client-side code 62
4.10Folder-structure of the signal-bundle 62

7

4.11Folder-structure of the output, after the building process 65
4.12Folder-structure of the views-directory 66
4.13Folder-structure of the model . 67
4.14Datamodel with multiplicities . 67
4.15Centered panel structure . 70
4.16Main structure of the user interface 71

5.1 User-interface of the SignalCloud-client 73
5.2 Sign up form . 74
5.3 User Settings . 75
5.4 Some example files . 76
5.5 Upload Dialog . 77
5.6 Upload Dialog . 78
5.7 Example of two channels . 79
5.8 Buttons for controlling the zoom-level 80
5.9 Sliders for a faster manipulation of the zoom-level 80
5.10Output of three merged channels of an eeg-file 80
5.11Corresponding channel-list-item after the merging-process 81
5.12Example of a hidden channel-item 81
5.13Dialog-window for selecting a channel-color 81
5.14Preview of a new event . 82
5.15Dialog-window for selecting a channel-color 83
5.16Preset-button (channel and type) 83
5.17Preset-button (type-only) . 83
5.18Preset-panel with settings . 83
5.19Overlap list-item . 85
5.20Overlap list-item after its resolution 85
5.21Dialog-window for editing an overlap 85
5.22Corresponding plot-area to the overlap in Figure 5.19 and 5.20 . 86
5.23Enhanced Scrollbar with some event-occurrences 87
5.24Buttons for switching the current view 87
5.25Heatmap with event-type-colors . 88
5.26Five plotted occurrences for a specific event-type and channel . . 89
5.27Two plotted occurrences for a specific event-type and channel . . 89
5.282 plotted occurrences for a specific event-type and channel 89
5.29Event-reception-toggle (On) . 90
5.30Event-reception-toggle (Off) . 90
5.31User without event-reception . 90
5.32Dialog used for invitations . 91
5.33Example for an user-entry . 92
5.34Example for a comment . 92

8

9

5.35Input-field for new comments . 92
5.36Group of consecutive actions of a user 94
5.37Event-occurrence with rating . 94
5.38Indicators from two different users 95

10

“Coming together is a beginning, staying together is progress,
and working together is success.”

–– Henry Ford

Chapter 1

Introduction

Analyzing time-dependent data is a ubiquitous task in science. Sometimes
algorithms are capable of doing the hard work, but in many cases manual
analysis is required. For example, when the existing algorithm is not accurate
enough, or during the development of an algorithm.. Anyway, manual detec-
tion can be a very time-consuming and tedious task. [Lawhern et al., 2012]
There are many scenarios that require analyzing time-dependent data. The
focus of this work lies on manual artifact detection, done by multiple collabo-
rators.
To make one of these artifacts available for further processing or a more pre-
cise analysis, it has to be located first at least coarsely and labeled. Another
common term for the labeling process is classification.

1.1 Terminology

Before we enter the subject, we first have to discuss some important terms to
understand all aspects.
The term electroencephalogram or its abbreviation EEG will be mentioned
several times in the further course of the document. It is defined as “the
graphic record of electrical disturbances arising the brain.” [Gibbs et al.,
1968, p. 59]. This record is similar to the electrocardiogram or ECG, which
is a recording of the electrical activity associated with the contraction of the
heart.
Additionally, there is a variety of terms for annotations of certain artifacts in
various signals in use. In most cases they are referred by the term “events”
due to the terminology of the GDF file format1. A specific instance of a certain
event-type (e.g. an eye blink) is referred to as an “occurrence”.

1 a file format for storing biosignals

11

CHAPTER 1. INTRODUCTION 12

An artifact within an EEG-signal is defined as “a structure or substance not
normally present, but produced by an external agent or action [. . .]” [Amer-
ican Heritage, 2008, p. 45]. Some graphic examples of artifacts in recorded
EEG-signals can be seen in Figure 1.1.

Figure 1.1: Examples for EEG-artifacts, recorded at channel Cz, from [Lawh-
ern et al., 2012, p. 183]

1.2 Issues

As mentioned above, manual detection of artifacts in data is a tedious work.
However there are more issues, which emerge from this task.

• Reliability
Manual Detection is done by individuals, which brings the “human fac-
tor” into the working process. Naturally, this can be an advantage and
a disadvantage at the same time. In any case the quality of the output
will be different with each individual and maybe even with consecutive
attempts of the same individual. An algorithm will always produce an
output with more or less the same quality in contrast to the manual de-
tection.

• Knowledge
One key factor for a reliable output is the knowledge and experience of
the individual. As one can imagine, artifact detection has to be learned
before it can be carried out by a person. Not only is it necessary to know
about artifact detection in general, one must have specific knowledge
about the data, the subject and the wanted artifacts.

• Time-Consumption
Even if the required knowledge is present and the person is an expert,

CHAPTER 1. INTRODUCTION 13

the task remains a complex one. The contestant has to browse through
the whole signal, probably multiple times, to produce a meaningful re-
sult. Furthermore, if the objective is to provide samples for an algorithm,
it is not enough to analyze only one signal file, but rather many of the
same kind.

These are just some examples to illustrate the complexity of the given task.

1.3 Motivation

The main goal of this work is to tackle the above mentioned issues and improve
the quality of manually labeled data through a collaborative approach. By
means of a “groupware” new possibilities arise to make this task a less tedious
one. [Gutwin and Greenberg, 2002]
Let us discuss how issues can be solved, by using a collaborative approach.

• Reliability
The quality of separate outputs of all individuals might be as high as in
the non-collaborative approach, but there are multiple opinions on which
participants can agree upon. This work incorporates consensus features
for groups of experts to discuss and agree upon their input, and thus
create a more reliable output.

• Knowledge
Assuming the presence of at least one expert or individual with a deep
knowledge of the process, other persons can watch this process and
learn by example. This work supports collaborative workflows whereby
newbies can observe the activity of an expert, they can pose questions
and discuss.

• Time-Consumption
Through a collaborative approach this task can be divided in smaller
subtasks. For example, collaborators could divide the signal file evenly
to speed up labeling and add a checking round where they cross-check
their choices. There is a trade-off between faster turn around time and
reliability. The latter implies that each expert needs to check and la-
bel the complete signal and the latter that each expert only observes
a portion of it. The present work takes this trade-off into account and
offers methods choose the desired strategy. However, this argument is
in conflict with the reliability problem, in which case a final round of
assessment might be necessary.

CHAPTER 1. INTRODUCTION 14

These are just a few examples, a collaborative approach could bring more
benefits that we have not thought about so far.

1.4 Aspects of Collaboration

To understand, what collaboration is all about, we have to clarify the two im-
portant aspects or sub-types of collaboration.
On the one hand, there is synchronous collaboration where everything hap-
pens simultaneously. On the other hand, we have asynchronous collabora-
tion, which happens indirectly via tools or the environment itself. [Weyns and
Holvoet, 2003] [Vernon, 2014]

1.4.1 Synchronous Collaboration

Synchronous collaboration resembles a conversation in realtime, a good exam-
ple for this kind of collaboration is a chat. The obvious benefit is the immediate
tackling of problems as they appear. So in many cases synchronous collabora-
tion is much more effective than asynchronous collaboration. However, there
are some obvious disadvantages as well, for example other collaborators may
not have enough time to conceive their actions which could lead to misinter-
pretations. [Vernon, 2014]

1.4.2 Asynchronous Collaboration

If collaborators work in an asynchronous manner, everyone has as much time
as desired to handle a problem or task. Therefore an ubiquitous example is
reading and writing emails. One could say it is happening outside of realtime.
Obviously this might not be the best type of collaboration for urgent issues.
[Vernon, 2014]

1.5 Summary

In theory a collaborative approach could bring many improvements to to the
task of signal labeling and analysis. However, collaboration also brings chal-
lenges previously unexplored in this domain. For example, how should differ-
ent opinions from two or more collaborators on the duration of a particular
event be represented. How should conflicts be addressed? Furthermore, im-
plementation of a collaborative tool brings a number of technical challenges,

CHAPTER 1. INTRODUCTION 15

from the synchronization of events and activities, to the strategy for data ex-
change. This thesis develops a collaborative tool to identify articats in signals
and deals with said challenges.

Chapter 2

Related Work

This work builds upon existing solutions for signal analysis to create a col-
laborative tool. We look first at existing state-of-the-art signal visualization /
analysis tools. Furthermore, we consider the field of visualization, in partic-
ular with respect to time-dependent data. Finally, we review the theories of
collaboration upon which we base the design of our tool.

2.1 State-of-the-art Tools

Many tools which offer a variety of features for adding labels to artifacts of
time-dependent signals. We want to examine two of them more closely, be-
cause of their high significance for this project. From a performance point of
view, those tools are far more advanced than the one developed in this work.
Nevertheless, they lack any type of realtime-synchronization or other collabo-
rative features.

2.1.1 SigViewer

SigViewer is a visualization- and annotation-tool for biosignals which was de-
veloped at the Technical University of Graz. It supports various file formats,
whereas the most important one for this application is the GDF-format. More-
over, the tool is an open-source program licensed under GPL1. It uses the
cross-platform Qt 4 toolkit for its GUI. [Graz University of Technology, n.d.]
Many features of the tool developed in this work are inspired by SigViewer.
For example the different cursor tools or modes which enable the user to
draw events, select them, move the signal area by dragging or setting it up
(although the last one was implemented differently in this work).

1 a popular open-source license which gives much freedom to the public domain, more info
at https://www.gnu.org/licenses/gpl.html

16

https://www.gnu.org/licenses/gpl.html

CHAPTER 2. RELATED WORK 17

Figure 2.1: Screenshot of SigViewer - a visualization- and annotation-tool for
biosignals

Biosignals have in most cases more than one channel. Figure 2.1 shows the
interface of SigViewer after loading a recorded EEG stored in a GDF-file. All
annotations of a file can be seen in the “Events”-tab of the SigViewer. They can
be sorted by position, duration, channel or type. Moreover, the tool provides
a lot of configuration commands in the “Edit Events”-mode, like bringing an
event to all channels, changing its beginning, duration, type and channel as
well as copying it to other channels.
In addition to the annotation-features it is possible to calculate the mean value
or the power spectrum of a specific event-type for selected channels. The
visualization appear as new tabs at the right side of the “Events”-tab.

2.1.2 MoTeC i2

MoTeC i2 is the affiliated data analysis software to the many different logging
devices of the MoTeCcompany. It is already many years in development and is
extremely specialized on its usage domain, the automobile industry. [MoTeC,
n.d.]
The tool supports only the proprietary and binary MoTeC-log data format, with
the file-ending “.ld”.

CHAPTER 2. RELATED WORK 18

Figure 2.2: Screenshot of MoTeC i2 is a data analysis tool for car-racing ap-
plications

At first, a user has to select a workspace, which loads some predefined
visualizations. The chosen preset in Figure 2.2 is the “Circuit” workspace.
Furthermore, other visualizations of the same workspace can be shown by
changing the tab at the top. This makes it for instance possible, to see the
whole racing track, with color-encoded G-force plots or brake-pressure.
The most important feature of MoTeC i2, which is actually needed for this
work, is the “export to CSV” functionality. These exports include either all
recorded or only selected channels.

2.2 Client-generated Web-based Visualizations

Visualization methods based on client-side drawing often struggle with perfor-
mance. Choosing the right approach as well as the correct tools is a difficult
challenge.

CHAPTER 2. RELATED WORK 19

Linked open data in sensor data mashups [Le-Phuoc and Hauswirth,
2009]

This paper describes the joined output of various sensor data sources in a web-
based user interface or an API2. The data originates from different sensors for
example weather stations, traffic sensors, webcams, etc. The data can be
accessed through SPARQL or RESTful web services under the formats JSON,
XML and RDF, after the mashup.
Each sensor has an URL pattern for streaming real-time data and historical
data. This makes it possible to link them into a virtual RDF graph.
The interesting part for this thesis is that it is completely based on a web-
service similar to this project.

Cytoscape Web: an interactive web-based network browser [Lopes et al.,
2010]

This tool is a web-based network visualization tool. It is capable of showing
complex networks and making them interactive. The tool is open source and is
actively developed3. As it is web-based, it is easy to integrate its visualizations
into web pages. Furthermore, it is possible to import data from different file
formats.
The old version used Flex/Actionscript and provided a JavaScript-API, but the
newer version is written in pure JavaScript.

2.3 Visualization of time-dependent data

This thesis is all about visualization of data in the temporal domain. Therefore,
we evaluated some relevant visualization techniques in this domain. Many of
these papers originate in the financial sector, as it is of great significance to
learn from old data in this domain.

Importance-Driven Visualization Layouts for Large Time Series Data
[Hao et al., 2005]

The generation of appropriate visualization layouts for large time series ap-
pears to be a hard task in many cases. By using the “degree of interestingness”
(DOI) the authors of this paper try to tackle this problem. They attempt to
perceive a partially or totally intrinsic importance- or interestingness-relation
among the time series. The most important display properties for supporting

2 a well defined interface for the communication between software-components
3 more info at http://js.cytoscape.org/

http://js.cytoscape.org/

CHAPTER 2. RELATED WORK 20

the perception of importance-relations are according to the authors position
and size.

Figure 2.3: Importance driven layout of 24 stock price time series with favor-
able aspect ratios, from [Hao et al., 2005, p. 204]

Used visualization methods for time series are usually line- or bar-charts,
which are typically accommodated by overlaying them in one common chart or
using tabular (equal-sized) layouts. The authors propose an overlap-free and
space-filling approach. A vital criterion of this approach is regularity, which
consists of aspect ratio and the alignment of partitions of the chart. According
to some experiments the authors argue that a low number of horizontal scales
might be more important than a low number of unique vertical scales.
A conflict with their importance-driven layout could arise if hierarchical rela-
tionships are present among the time series. There are five constraints which
are considered when generating a layout for unstructured sets of time series:
size proportionality, space-filling and non-overlapping, weighted aspect ratio
error, ordering and aspect ratio regularity. In a structured case, two additional
constraints arise: rectangular containment and hierarchical ordering. It is not
possible to generate an optimal layout that satisfies all constraints simultane-
ously.
The choice of a proper importance measure is vital for the generation of a
layout. A set of basic measures are already implemented in the proposed soft-
ware.
The “display masks” are schemes for partitioning subsets of the time series
into a certain number of sub rectangles. These masks are then used by the

CHAPTER 2. RELATED WORK 21

algorithm for the generation of the layout. If the used data set is hierarchically
organized, a rooted tree is used for the ordering.
An example applications of the described algorithm is sale analysis. Dominant
sales patterns can be compared by region or stock analysis, where the algo-
rithm is used to provide an effective overview over sets of categorized stocks.

Multi-Resolution Techniques for Visual Exploration of Large Time-Series
Data [Hao et al., 2007]

The current state of the art technology leads to enormous amounts of real-time
data in many important application domains. An appropriate visualization for
these large time series is needed but rather hard to achieve.
Basically, there are two options to address this problem. The first one is re-
ducing the data size by sampling or aggregation which may lead to a loss in
information. The second option is the improvement of the drawing methods to
be more space efficient, which may lead to visualization metaphors not imme-
diately familiar to the user.
In the cited work, the notion of the degree of interest (DOI) is used to generate
adequate layouts of long time series. The DOI defines the distribution of in-
terest over a dataset by distinguishing between areas of focus (high interest)
and context (low interest). However, according to the authors, it is important
to limit the number of distinct resolution levels, otherwise the perception of
the amount of data density and the relative interest of the data partitions in
context with the whole series could get lost.

Figure 2.4: Example of the DOI visualization: CPU Monitoring, from [Hao
et al., 2005, p. 32]

In their first example, the DOI is directly proportional to the age of data.
An application of this concept is network monitoring where a less current ob-
servation is a less important one. To visualize this kind of monitoring, the
color-coded matrix technique is used. The data density is incremented by
putting increasingly more data into the same amount of display space. An ex-
ample for this visualization can be seen in Figure 2.4.
The authors note that there exists an open problem of the animation of the
visualization, due to the positional discontinuities.

CHAPTER 2. RELATED WORK 22

Instead of deriving the DOI-function from time, it can also be derived from
the data itself. Therefore the time series is partitioned into a number of N
equal-width data bins, which reflect the importance for a certain time interval
(presuming a given importance function). Optionally, the bins can be reduced
by merging adjacent bins if they have similar interestingness scores. The re-
sulting DOI-function can then be used to generate a multi-resolution layout,
e.g. by using the color-coded matrix technique again.
There are two different instances of the described algorithm listed in the pa-
per. In the first one, a certain atomic time slice is assumed which divides
the layouts into intervals (data chunks). The other modes allow variable time
slices which leads to a more compact representation of the interestingness
profile but is more difficult to process visually.

Visualizing Frequent Patterns in Large Multivariate Time Series [Hao
et al., 2012]

Sequences of frequent patterns, called motifs, are used to reveal trends, anoma-
lies, etc. in large time series. They can assist users in hypothesis evaluation
and knowledge discovery. Motifs can for example be visualized by rectan-
gles with a specific length. They have a starting and ending time. Moreover,
shorter motifs can be nested within longer motifs.

Figure 2.5: Frequent patterns (motifs) discovered in data chiller time series,
from [Hao et al., 2012, p. 71]

The analysis and visualization of motifs involves a few challenges:

• The display of many potentially overlapping motifs associated with mul-
tivariate time series.

• The retrieval of the most efficient motifs and the analysis of their context
and the motif itself for its root-cause.

CHAPTER 2. RELATED WORK 23

The cited paper deals with the discovery, distortion and the merging of
motifs. Each of the motifs can be linked to its performance coefficient (COP),
which helps to identify the most efficient motifs.
The pattern finding can be decomposed into the following stages:

1. Event Coding: A k-means-clustering is performed considering time points
as vectors and using the cluster labels as symbols to encode the time se-
ries. After this step, the multivariate series is now encoded as a single
symbol sequence. The resulting sequence is analyzed to detect change
points which transduces the stream into a sequence of events (a transi-
tion in the cluster labels).

2. Motif discovery and mining: A similar procedure to the previous algo-
rithm is performed, which is a candidate generation followed by count-
ing. The frequency is measured by non-overlapped counting (two motifs
share no portion of the time series).

3. Efficiency characterization: It is difficult to determine the efficiency
of two motifs by inspecting them visually. Hence the authors quantify the
efficiency of all motifs.

For the visualization of the motif, a layout algorithm is used. It draws rectan-
gles representing the occurrence of motifs. The color of the rectangle stands
for the numerical importance. The height is used to show the statistical rank
of the average duration.
The visualization task is very complex because of the large number, the nest-
ing and the overlapping of motifs.
An interesting feature implemented by the authors is the motif distortion
slider. By using it, the user is able to enlarge either areas with motifs or
areas without motifs.
The motif merging slider is used to merge multiple occurrences of motifs into
a single rectangle. This reduces data and the visual clutter.
There are many applications of the described systems, for example anomaly
detection, prediction and clustering. The authors state that users get at least
87% time saving by applying motif layout, distortion and merging techniques,
after carrying out an informal user study with 12 users.

Trajectory-Based Visual Analysis of Large Financial Time Series Data
[Schreck et al., 2007]

This paper presents an unsupervised clustering algorithm combined with an
appropriate data-visualization technique to extract useful information and knowl-
edge from large data volumes. A fundamental task in financial analysis is the

CHAPTER 2. RELATED WORK 24

discovery of market trends and the prediction of asset prices. The authors
focused in the cited paper specifically on a system for visual analysis of 2-D
time-dependent financial data sets.
These 2-D trajectories are input to an automatic clustering process, which is
used to find prominent patterns in the data.
Two of the most important financial indicators are asset return and asset risk.
These parameters vary usually over time and can therefore be observed by
displaying trajectories in 2-dimensional indicator space.
For further analysis, the large amounts of data have to be reduced to smaller
numbers of salient patterns which can be achieved by cluster analysis. This
requires an appropriate similarity concept. More specifically, the task of the
clustering algorithm is the reduction of a possible large set of weekly risk-
return sequences to a smaller set of prototype trajectories. Each trajectory
segment is obtained by the concatenation of a sequence of normalized co-
ordinates. The normalization process implies an invariance with respect to
position and scale.
The clustering process relies on the Self-Organizing Map (SOM) algorithm.
An efficient way to visualize a prototype trajectory alongside a few associated
samples is the trajectory bundle visualization. It indicates the spatial distri-
bution of many sample trajectories by changing the color density around the
prototype trajectory.

The system consists of three main views:

• Market View: This view represents the distribution of chart movements
of all assets over time. It is constructed by the visualizations of the tra-
jectory bundles at the location of the prototype trajectories in the SOM
grid.

• Asset View: This view is retrieved by simply restricting the set of sample
trajectories to a selected asset. Based on this view a semi-automatic alert
system could be established to notify analysts about an atypical pattern
in near real time.

• Sequence View: It allows the comparison of assets over time and uses a
row-by-column scheme, where rows refer to specific assets and columns
refer to given weeks. The cells contain the prototype representation of
the chart moment sample. For an easy spotting of prominent patterns a
highlighting scheme is introduced. It assigns color saturation according
to the similarity of the sequence pattern and the prominent pattern.

CHAPTER 2. RELATED WORK 25

Visual Market Sector Analysis for Financial Time Series Data [Ziegler
et al., 2010]

The financial market in all its complexity often lacks a certain transparency
and hence does not allow a risk-free analysis. The authors of this paper try
to tackle this problem by introducing two analysis techniques. Like in many
cases, a good key to better understand the future is learning from the past.
However, it is hard to process the sheer amounts of data updates, which are
acquired just in seconds.
The most frequently used visualization is the line graph, but the main dis-
advantage is the low capacity of simultaneous time series, which can be ob-
served.
A visualization technique which features already a small advantage in contrast
to line graphs is a color coded bar. It displays the relative percentage change
and the volatility coded by color. This visualization needs much less display-
height and features the same information as a line graph. Therefore larger
amounts of time series can be compared at the same time.

The second developed tool described by this paper is a clustering algorithm
for similar time series trajectories and for analyzing their distribution among
different market sectors.
To do so, it is necessary to normalize the time series data for comparison. After
that a reduction of the data is unavoidable. The authors try to reduce the data
to their main characteristics, which they call “Perceptually Important Points”
(PIPs). To compute these points the Douglas-Peucker algorithm is used.

For the actual clustering, the k-means algorithm has been chosen. A few ad-
justments had to be made by the authors to apply the algorithm on the time
series data based on PIPs.
The authors used Java for the implementation. A simple graphical user inter-
face allows the user to easily select the desired market sectors for comparison
and to adjust some other parameters, like for example the amount of clusters.
The last technique, described by the paper is the hierarchical low-resolution
clustering which enables the avoidance of an automatic combination of two
similar clusters. This is done by displaying a tree view, which can be pruned
by the user at any height.

Visual Methods for Analyzing Time-Oriented Data [Aigner et al., 2008]

This paper describes time as a more special and unique dimension. There is al-
ready a wide repertoire for visualizing data with temporal dependencies. This
is due to the fact that the parameter time is ubiquitous in many applications

CHAPTER 2. RELATED WORK 26

(business, medicine, planning, ...). The characteristics of the dataset and how
it is connected to the time-dimension is important. For visualizations a few
terminologies are of importance:

• Linear time versus cyclic time: Whereas linear time assumes a spe-
cific starting- and end-point , many natural processes have a cyclic aspect
(e.g. the cycle of seasons).
An example of a cyclic time visualization is a spiral-graph. However if
the parameters are not set accordingly, periodical patterns may not be
recognized by viewers as requested. This can be avoided by using ana-
lytical methods to detect patterns or let the user choose the parameter
settings.

• Time points versus time intervals: A time point has no duration, but
in case of an interval limited by two points in time, data elements are
defined for a certain duration.
A good visualization technique for showing time points is the “time-
wheel”. However it can not represent intervals accordingly. For showing
them another visualization called “Planning Lines” can be used.

• Ordered time versus branching time versus time with multiple
perspectives: If things happen one after another the situation may be
considered ordered. If there is for example some kind of decision-making
it will lead to multiple possible time-branches. However, a dataset can
contain more than one perspective on the same time-branche.

The theme river is a visualization to show the number of occurrences for par-
ticular news topics on print media. Therefore it can only be used to show
datasets, without time branches. The authors give a short introduction in
a method called temporal data abstraction. This technique is used to analyze
huge volumes of continuously assessed data. This is achieved by deriving qual-
itative values or patterns from the original dataset. They distinguish between
basic temporal abstraction (e.g. state, gradient or rate) and more complex
temporal abstraction. There are three important steps of data abstraction:
eliminating data errors, clarifying the curve and qualifying the curve.
To reduce the number of variables and detect structure in multivariate data
sets, the authors present the Principal Component Analysis (PCA). The PCA
method is another approach to data abstraction which results in a transforma-
tion of the original data into the principal component space. It is preferable
to exclude the variable “time” from the PCA, because otherwise the temporal
context could get lost. As an example of the PCA approach they show climate
research data. PCA is used to detect deviant hot or cold summers over a time

CHAPTER 2. RELATED WORK 27

period. By means of the PCA users can get an abstracted view on the data
very easily.
A widely used technique for data aggregation is clustering. Unlike in the PCA,
time is typically included in the process of clustering. The Cluster Calendar
View is used as an example of data aggregation by clustering. The cluster
affiliation is hereby represented by color coding. It facilitates the comparison
of cluster representatives (overview), exploration of single cluster represen-
tatives (abstract detail), and exploration of interest (specific details). The last
major point of discussion in the paper is the user-centered analysis via events.
However, visualization parameters are not easy to set in many cases. There-
fore, event-based visualization is introduced. The workflow of this type of
visualizations is the following:
At first the user has to specify interests as event types. This can be done by ei-
ther directly typing the event-formula, setting the parameter “threshold” and
“variable” or choosing from predefined event types.
Secondly, the interests have to be detected in the data (event instances). The
last step of the workflow is a consideration of the detected event instances in
the visualizations (event representation).

A Visual Analytics System for Financial Time-Series Data [Lei and Zhang,
2010]

The analysis of time-series data plays an important role for making lucrative
investments. This paper discusses the drawbacks of current visual charts and
gives an overview of new concepts. The main goal of technical analysis is the
identification of market trends. There are many different factors which influ-
ence the stock prices. They can fluctuate for example because of economic
crises, changes in interest rates, seasonal financial reports and many other
unknown effects. The introduced system of this paper is designed from three
different perspectives - knowledge discovery, trading patterns and information
visualization.
One approach for the visualization of stock prices is clustering. The authors
use a scatter plot for displaying stock prices and their change in percentage.
Time is coded within the color shading of each dot.

An important factor used by investors for stock profiling is the volatility
measure of a stock. In technical analysis it is measured by the Average True
Range. It can show the activity level of a stock. To visualize it, another scatter
plot with color shading was used.
In order to show trading patterns, the authors use a candlestick visualization.
Another visualization technique described in this paper is a ring-map showing
market information and stock performances. The ringmap is divided in an in-

CHAPTER 2. RELATED WORK 28

Figure 2.6: A stock price variation chart based on a scatter plot for displaying
stock price and its change in percentage, from [Lei and Zhang, 2010, p. 72]

dex ring and an asset ring. The asset rings show stocks of similar performance,
whereas the index ring shows the performance of the market index. Based on
the above described visualization techniques, the authors implemented a vi-
sual analytics system with a modular architecture.
In the market view, the performance of all stocks is shown. The chosen visu-
alization approach is a ringmap. The software enables the user to filter the
stock data (e.g. date range, stock code range, ...) by setting parameters.
The underperforming stock view of the software shows stocks with lagged
performances. For examining an individual stock, the asset view is used. It
displays historical price volatility and possible resistance/support. In this view,
price clusters of the selected stock are shown by a scatter plot with color shad-
ing.
The pattern view uses a combined line plot for showing specific occurrences
of financial patterns. It enables the user to search for predefined patterns and
fine tune the definition of each pattern.

CHAPTER 2. RELATED WORK 29

2.4 Specialized Visualization-techniques

Another part of the theoretical focus lies on projects with new or original ways
of visualizing data.

Parallel Tag Clouds [Collins et al., 2009]

Figure 2.7: Parallel tag cloud revealing the differences in drug prevalence
amongst circuits [Collins et al., 2009, p. 92]

The purpose of the first paper of this category is the research of a more ef-
ficient way to analyze massive amounts of text corpora. Therefore a visual-
ization technique called “parallel tag clouds” is used to explore texts of court
decisions in the USA. They have a spanning period of 50 years. A simple word
count is already a powerful analysis tool, to show a significant presence or ab-
sence of keywords. This simple analysis leads e.g. to the fact that the Federal
Circuit court is the most different from all other courts.
Other important information can be obtained from the time-domain. Using
it enables the analysis tool to display significant data changes from one time
period to another in color.

CHAPTER 2. RELATED WORK 30

Visual cluster analysis of trajectory data with interactive Kohonen maps
[Schreck et al., 2009]

The Kohonen Feature Map or Self-Organizing Map (SOM) algorithm is one of
the most popular visual clustering techniques. The problem of most imple-
mentations of this algorithm is, that they do not allow the user to monitor
and steer the clustering process. The cited paper describes a system which
extends the automatic (unsupervised) SOM algorithm by means of a visual-
interactive control and analysis framework.
The SOM algorithm uses a neural network to obtain a set of prototype vec-
tors (clusters) and a low-dimensional arrangement (sorting) of the prototypes.
However, it requires first a suitable vector representation of the trajectory
items (feature vector). These feature vectors could for example consist of po-
sition, orientation and direction, curvature, etc. In the proposed algorithm,
the vector representation is obtained by scaling each trajectory into the unit
square. After the scaling is done, uniformly spaced coordinates spanning from
the start to the end of the trajectory are sampled.
Through this procedure some information, like the absolute position and scale
in space, is lost. However, the advantage is, that it can be used as a direct
geometric interpretation and as the basis for the visualization.
The grid of cluster prototypes needs to be initialized before the training pro-
cess. Therefore, an interactive trajectory editor is provided. It allows the user
to draw example trajectories into the grid. Unassigned grid nodes are inter-
polated automatically.
The authors build in features, to pursue the concept of controllability even
during the training of the SOM network. Therefore a continuously updated
display of prototype trajectories is provided. Other useful information like the
current quantization error is shown as well.
A user observing the training process is always capable of changing the pa-
rameters during the process.
The framework supports additional post-processing actions of trajectory maps,
after the training. These actions are: merging, expansion, editing, creation,
deletion or swapping of trajectory prototypes.

2.5 Collaborative Awareness

SignalCloud is a so-called groupware which means there are several collabo-
rators working on the same project. Which factors are important and how to
support awareness among all users, is described in the following paper.

CHAPTER 2. RELATED WORK 31

A Descriptive Framework of Workspace Awareness for Real-Time Group-
ware [Gutwin and Greenberg, 2002]

Staying aware of others is something we take for self-evident in the everyday
world, but maintaining this awareness is difficult in real-time distributed sys-
tems. Groupware designers have only little principled information about how
to support awareness in new systems. They have to reinvent awareness from
their own experience in the task at hand.
The goal of the cited article is a descriptive theory of awareness for the pur-
pose of aiding groupware design. The focus of the research group is rather
the analysis of collaboration-activities like communication, coordination and
assistance, rather than how well the system supports the domain task.
The mentioned descriptive framework consists of three parts.

The first part deals with the question of what information makes up workspace
awareness. There is a basic set of short questions which should be answered
to increase awareness among collaborators. These question are:

• When do we work with others?

• Who are they?

• What are they doing?

• Where are they working?

• When will various events happen?

• How do those events occur?

Awareness involves knowledge about the past as well, but this requires sev-
eral considerations. The authors stated some additional question for support-
ing awareness of the past. These questions can be seen in the following table:

Category Element Specific questions
How Action history How did that operation happen?

Artifact history How did this artifact come to be in this state?
When Event history When did that event happen?
Who Presence history Who was here, and when?
Where Location history Where has a person been?
What Action history What has a person been doing?

It is not necessary for groupwares to provide answers to all of these ques-
tions, but rather combinations of them.

CHAPTER 2. RELATED WORK 32

Figure 2.8: Visual representation of the awareness framework [Gutwin and
Greenberg, 2002, p. 36]

The second part of the framework is a discussion about how to get the in-
formation mentioned in the first part. The authors describe a mechanism
called consequential communication. It is defined as the information trans-
fer, which is generated as a result of a person’s activity within the workspace.
Nonetheless, this information is never created intentionally by an user. An-
other mechanism, called feedthrough, is used to create the needed informa-
tion. It is produced by the manipulation of artifacts (or elements) belonging
to the workspace. The feedback of these actions can be used to inform others
about the manipulation.
The last and probably most ubiquitous information-source is verbal- and non-
verbal communication. In this case, collaborators might explicitly talk about
the domain and pass on awareness information by doing so. Another possibil-
ity is that other persons gather information by listening to a conversation, but
not actively take part in it. Or at last by picking up “verbal shadowing”, the

CHAPTER 2. RELATED WORK 33

comments produced by collaborators, but not spoken to a person in particular.

The third and last part of the framework is about the usage of gathered infor-
mation. They line out five kinds of collaborative concepts, which are possible,
because of a high workspace awareness.

• Management of coupling
People tend to shift from individual work to collaborative activity very
often. It is beneficial for others to be aware of those transitions, however
without disturbing other persons).

• Simplification of communication
This involves using four kinds of communication:

– Deictic References: Can be used to reference objects, persons or
anything else without explicitly using a name or the correct word
(e.g. that, here, this, etc). This requires always an embedding con-
text.

– Demonstrations: Gestures can be used in workspaces to demon-
strate various things. This could be done for instance by tracing a
path in the workspace.

– Manifesting actions: This concept can be utilized to replace verbal
communication in some cases. Instead of saying something, one
uses a manifesting action to communicate a message. An everyday
example from the authors is the placing of groceries on the counter,
which tells the cashier, that I want to buy them.

– Visual evidence: By giving feedback using visual actions, it is possi-
ble to assure other people their utterance has been acknowledged.

• Coordination of actions
Awareness information about what objects are currently in use has to
be available. With this information it is possible to plan and process
collaborative tasks, otherwise users might disturb others, while working
together.

• Anticipation
There are many ways users anticipate others in a workspace. For exam-
ple by providing materials or tools before they need it as well as avoiding
conflicts. This concept needs of course some kind of prediction, but peo-
ple are usually very good at recognizing patterns.

CHAPTER 2. RELATED WORK 34

• Assistance
By being aware of the current state of other collaborators, one is able to
recognize the need of assistance without a prior request.

A visual explanation of the here described framework can be seen in Figure
2.8.

2.6 Summary

To sum it up, time-dependent data are everywhere and relevant for all fields
of science. There are plenty of visualizations to help analyzing those data.
Tools provide presets of those visualizations to simplify a setup of the analysis
process. However, there are not much collaborative approaches in this area,
so this project might bring some new methods to the field.

Chapter 3

Approach

3.1 A collaborative tool

There is a large selection of different collaborative tools on the Web. If a task
is not defined well enough, it is hard to decide which collaboration tool to use.
This brings us to the next step: Defining the task we want to accomplish.
The authors of “Choosing the right tools for your virtual team”[Brown et al.,
2007] state some initial questions and the answers will help to choose the
correct collaborative tool for a specific project. These questions are:

1. “What do you need to accomplish?”

2. “What are your current capabilities?”

3. “Which tool [or technology in this case] is appropriate for each task?”

4. “Who is on your team?”

These questions are actually designed for choosing the correct existing tool.
However, we are going to use them for defining how the tool of this project
needs to work and what functionalities are required.

3.1.1 Requirements

The first question is probably the most difficult to answer. A rather simple
answer would be to tag all artifacts of a signal with a label. Although this is
completely true, it is too inaccurate for our further considerations. There are
multiple tasks which have to be examined.

35

CHAPTER 3. APPROACH 36

All participants have to get access to the same signal visualization.
Before anyone is able to start tagging, they need to see where potential ar-
tifacts are. This sounds rather trivial, but it is crucial for deciding which
technology to use. Moreover, it has to be possible for people to see only parts
of the visualization which are not necessarily the same parts that other people
see at the same time. In collaborative systems this is called relaxed WYSIWIS
(what you see is what I see).[Stefik et al., 1987].

Collaborators annotate a signal.
Any detected artifact has to be labeled. This means that the artifacts have
to be marked in the time domain and a specific type of artifact has to be as-
signed. To sum it up, we have to store at least the starting-position, duration
(or ending-position), and type of an annotation to make it available for others
or further processing. If the artifact is located in a certain channel of the sig-
nal, this information has to be stored too.

If annotations occupy a similar position and duration, a consensus has
to be chosen.
SignalCloud is a collaborative tool, which inevitably means, that there will be
more than one opinion about an artifact. In most occasions, such situations
can be detected automatically as one will see later on in this work. However,
an annotation could be located in different channels or belong to different
types, despite of taking up a similar space in the time domain. This results in
an opinion conflict of two or more collaborators. A consensus of these overlap-
ping annotations has to be reached. Further on, we will refer to these solved
conflicts as “resolved overlaps”.

Keeping track of all ongoing activities.
Especially when two or more individuals agree on dividing the work in parts,
it is necessary to keep track of what is already done and what still needs to
be done. Being able to keep track of all present and past activity of other
collaborators is called workspace-awareness [Gutwin and Greenberg, 2002, p.
10]. We will investigate further below why this functionality is so important
for collaborative systems.

Administrate and advice a group of collaborators.
Like in any big project or system, there needs to be some kind of controlling
entity to support others with their work or to fulfill administrative tasks. This
person needs of course extended permissions over the workspace of files or
specialized tools to reach this goal. Furthermore, it could be desirable for this
person to get some overview of the current annotation status (distributions,

CHAPTER 3. APPROACH 37

summaries, etc.).

The tool supports existing file formats.
The SignalCloud-Server will support two file formats. On the one hand there
is the binary GDF-file format, which is used to store biomedical signals and
on the other hand, CSV-files in the MoTeC-format. The CSV-files have to be
exported with the tool MoTeCi2 Standard.
We will have a closer look on the file formats in the next section.

Get a summary of the current state of the signal.
Another planned concept for this tool are “Summary Modules”.
These modules should be accessible by switching the active “view-mode” on a
signal.
One can see these modules as different representation types of the signal data
points, events, overlaps etc. Currently, there are only three modules planned,
but there is an easy way to add new modules to the tool.

Unbiased Opinion
Expert user or not, sometimes it might be interesting to retrieve the unbiased
opinion of collaborators. This is not possible if each new annotation is syn-
chronized instantly among all users. A feature has to be added to deactivate
the synchronization functionality, at least in one direction. So that a user will
not receive new annotations from other people anymore.

3.1.2 Current Tools and Inspiration

Currently SigViewer is one of the tools used to annotate EEG-files at the Tech-
nical University Graz. SigViewer has a very high drawing performance and is
able to plot millions of data points instantly. For a single user, it is definitely
a good choice. The problem emerges if more than one person wants to use
the same signal file at the same time. Of course it is possible to copy the file,
transfer it to another work-station and start annotating the file. Obviously, this
results in multiple versions of the same file, which have to be merged again.
This is the point, where it usually gets tricky. If it is not necessary, that col-
laboration happens simultaneously, it would be advisable to work on the same
file in a serial manner.
Regarding the synchronization of signal files, we compared some popular
cloud-services on the web with our set of requirements. The two usual ser-
vices Dropbox and Google Drive provide some interesting inspirations for this
tool. It was only logical to use especially Google Drive as a source for some
of the concepts, because it was already in use for documentation-parts of this

CHAPTER 3. APPROACH 38

project.
Especially the online-interfaces of these services are interesting for this project.
It is a fact that online-services like Google Docs provide many advantages, in
contrast to offline-versions of various office-tools. [Slone and Mitchell, 2014]
A concrete and interesting concept or interface that we mimic in this work is
the files overview of Google Drive. It shows not only the current state of an
item; additionally, one is able to see the whole history of an item by selecting
it. This is a key feature for asynchronous collaboration as well. Another inter-
esting functionality of Google Docs is the indicator that shows a cursor with
the current position of other active users and their names. This significantly
improves the awareness of other users in the same workspace.

3.1.3 Technologies

After reviewing existing tools which already support some of the required
functionalities, it is time to decide which technologies and frameworks need
to be used for implementing this tool.
The possibilities and frameworks are numerous, but the only rational choice
is a web-service considering all the stated requirements. This decision makes
even more sense considering the current developments in technology and the
trend towards web-oriented systems.

Server

There are many server-side frameworks available. Some examples with an
additional explanation can be found at [Mills and Willee, n.d.]. Many of the
frameworks are good and feature a performance which is safely sufficient for
this prototype. In this case the decision has fallen on Node.js.
The first reason for that is its growing popularity. Additionally, Node.js makes
it easy to reuse the same pieces of code on server and client-side which can
be a huge advantage in some cases.

Synchronization

Using Node.js for SignalCloud restricts the selection of available synchronization-
frameworks to a smaller set. In former Web-based-implementation this sub-
task probably would have been realized using AJAX and REST methods. For-
tunately, we can use the HTML5-websocket to achieve this goal.
Using a websocket enables a two-way communication between server and
client. It is standardized by the W3C and is supported by most of the major
browsers. After an upgrade-request (HTTP-Code: 101 Switching Protocols)

CHAPTER 3. APPROACH 39

a full-duplex connection gets established by building upon the TCP-protocol.
[Ian Fette, 2011]

Drawing Framework

After determining the server-side technology, it was time to choose an appro-
priate JavaScript drawing-library. For choosing a library, some performance
and usability tests were carried out.

• Cubism.js1

It features nice functionality with great performance. It is a plugin for
D3.js, but it is using canvas2 to draw its line-charts. The main advan-
tage of this framework is the automatic update functionality, which is
not needed for this project. Additionally, its main purpose is rendering
horizon-charts or charts for comparison.

• dygraph3

It comes already with many features to use out-of-the-box. For example
brushing, labels, etc.. However, most of the functionalities are unneces-
sary for the given task and the needed features have to be customized
at a level of detail that is not supported by the framework and so it was
easier to implement the needed features manually.

• D3.js4

It is the most customizable framework listed here which makes it a very
complex one as well. Therefore it can be used for various purposes,
not only for time-series visualization. However, the drawing part is svg-
based which makes it rather easy to implement user interactions. The
disadvantage of a svg-based drawing library is that the svg tags are part
of the DOM. This results in a poor performance if there are millions of
data points, like in our case.

• D3.js plus canvas
The best performance was achieved by using D3.js for some of the cal-
culations as well as drawing the axes. The drawing part itself is made
using a simple canvas. Unfortunately, the maximum width of a canvas is
32,767 pixels in Chrome and Firefox. The Internet Explorer even allows
much fewer width (8,192 pixels). Therefore, the canvas has to be split
in parts. The chosen width of one canvas part depends on the current

1 more info at https://square.github.io/cubism/
2 the canvas element provides objects and properties for rendering 2D- or 3D-objects
3 more info at http://dygraphs.com/
4 more info at https://d3js.org/

https://square.github.io/cubism/
http://dygraphs.com/
https://d3js.org/

CHAPTER 3. APPROACH 40

screen width. The necessity of splitting the canvas is turned into an ad-
vantage by using a loading-on-demand strategy. So if the user wants to
view a given signal file only the first canvas part is drawn. If the user
scrolls in the vicinity of an undrawn canvas part, only then it is drawn.
This technique is described in more detail below.

3.1.4 Target Audience and User Constellation

Considering the area of expertise in which this tool will operate, it is clear
that the audience will consist primarily of expert users. Additionally, one can
assume that the users are already familiar with such kind of tools.
In some cases, mixed constellations with untrained users and experts might
take advantage of the collaborative features. This constellation makes even
more sense for training purposes.

3.2 File formats

After specifying the tool in some more detail, let us take a look on supported
file formats and how they are constructed.

3.2.1 GDF

The General Data Format for biomedical signals unifies the needs of many spe-
cialized file formats for various bio-signals like ECG research, EEG analysis,
sleep research, etc. Furthermore, it is a binary file format and is released
under the general public license (GPL).
A typical GDF-file consists of five sections. [Schlögl, 2006]

1. Fixed Header
Holds general information about the file like patient info or number of
channels. The fields belong to the file itself.

2. Variable Header
Holds information about channels, these fields belong to each corre-
sponding channel. They contain information about how to interpret the
data records as well.

3. Data Records
This section contains the records (data points) itself. The number of data
points per record is defined by the sample rate of a channel.

CHAPTER 3. APPROACH 41

4. Event Header
Defines the mode of the event table, the number of entries and the sam-
ple rate associated with the event-records.

5. Event Records
Contains the actual event entries. Depending on the mode of the table, a
record consists of either channel, position duration and type or position
and type only. If this is the case, the end of an event is coded into another
record and the event is always present in all channels. In addition, it is
possible to save a time stamp, if the corresponding mode is set.

There are already plenty of libraries for various programming languages which
are capable of loading a GDF files. However, Node.js is unfortunately not one
of them.

3.2.2 MoTeC CSV

Another file format which we agreed upon supporting with the SignalCloud-
prototype is CSV in a MoTeC format. The tool MoTeC i2 is capable of exporting
the data of its default file format with the extension .ld into CSV. Because
the format is not binary and has no real annotations, it is much easier to
implement an importing-function. A typical CSV file could look like the listing
below.

1 "Format","MoTeC CSV File",,,"Workbook","Default"
2 "Venue","WSID",,,"Worksheet","General"
3 "Vehicle","v219",,,"Vehicle Desc","Car 01"
4 "Driver","Driver 1",,,"Engine ID","x428i"
5 "Sample Rate","102.400","Hz",,"End Time","196.289","s"
6

7

8 "Time","Engine RPM","Air Temp Inlet","Eng Oil Pres"
9 "s","rpm","F","psi"

10

11

12 "0.000","3084","85.1","153.99"
13 "0.010","3084","85.1","153.97"
14 "0.020","3078","85.1","153.95"
15 ...

The file consists of three sections. First of all, some information about the file
itself is shown. Secondly, the label and unit of all channels is described. At
last, the actual data points of the file are visible.
Each section is separated by two newline-characters.

CHAPTER 3. APPROACH 42

3.3 Workflows

In this section, we will discuss the basic workflow of the tool. Note that the fol-
lowing scenarios could be considered as sample use cases of the tool. Figure
3.1 illustrates a visual overview of all the following scenarios. The workflow
is color-coded, but note that one color does not strictly match one scenario.
Colors are used to illustrate a new branch in the flow which introduces for
example additional steps in a collaborative setup.

3.3.1 Single User

This is the simplest scenario. There is one user only, who wants to label a
single file. The goal is to label artifacts of the file correctly and download it
again. The scenario involves the following steps:

1. If not already done, the user signs up on the server.

2. Now it is possible to upload a recorded signal file to the server, by using
the “Upload file”-button on the /files-page.

3. By double clicking the file or pressing the corresponding button, the file
will open in a new screen.

4. The user is now capable of choosing the “Add Event Tool” and start tag-
ging artifacts in the file.

5. After one has tagged some events, it may be interesting to review them in
the summary view. It can be activated by clicking on the corresponding
button in the menu-panel.

6. After editing, the user is able to download the file by clicking on the
“Download as GDF”-button in the menu panel. If the signal file was hold-
ing events at the time of the upload, it is now possible to include them or
not within the downloaded file.

3.3.2 Collaborative Session

In this case, more than one user contributes to one signal file. The goal of the
scenario is reaching a consensus. Afterwards the file should be downloaded
again.

1. If not already done, each user signs up on the server.

CHAPTER 3. APPROACH 43

Figure 3.1: state chart diagram of the workflow - summarizes all of the follow-
ing scenarios

CHAPTER 3. APPROACH 44

2. The recorded signal-file is uploaded by its owner. This happens via the
/files-page.

3. The owner of the file is now able to open the uploaded file, by double-
clicking it.

4. To start a collaborative session the owner has to invite users to the up-
loaded file first. In order to do so, she or he has to click on “Invite User”
in the left menu panel. The owner has to repeat this operation for each
user she or he wants to invite. By selecting the role of the user, one is
able to distribute certain rights. To be able to tag events, a user has to
be “admin” or “editor”.

5. Users with the above mentioned roles are now capable of tagging events
in the signal file. Therefore they have to select the “Add Event Tool”
(flag symbol) in the toolbar. Afterwards, they can select the required
occurrence by clicking on the line chart and dragging a rectangle in the
corresponding channel.
Additionally, the user is able to choose a preset for new Events. This
regards either the event type or the channel, if activated. Otherwise it
can be done using a confirmation-dialog-window as well.

6. A user is able to signal the owner or any admin of the file that she or he
is finished by writing a comment or simply logging off. The owner is able
to see which individuals are currently online.

7. Depending on the given task the owner or any admin is able to configure
parameters of the overlap detection. This is done by opening the settings
dialog-window by clicking on “Settings” in the menu panel.

8. If there are any overlapping events due to the editing of multiple users,
they will be detected as new overlaps and become visible under the tab
“Overlaps”.

9. The owner or any admin creates a consensus for each overlap by clicking
on the pencil-icon to open it and dragging the left or right end of the
transparent box to the desired position.

10. Depending on the configuration of the overlap detection, someone has to
review the channel or the event type of the overlap as well.

11. If an overlaps is reviewed completely, it is possible to resolve it. This will
add the overlap to the section “Resolved Overlaps” in the same tab

12. Resolved overlaps will appear as new events under the tab “Events”.

CHAPTER 3. APPROACH 45

13. Users are able to rate the resolved overlaps now, by using the stars at
the bottom of each overlap-event.

14. Finally, all users are able to download the file and to select which event-
collection they want to integrate in the file (e.g. only “Resolved Over-
laps”).

3.3.3 Unbiased Collaborators

There is one supervisor and many users. The goal is the same as in the collabo-
rative scenario. However, the supervisor is not contributing to the file himself
in this scenario. Another difference is that the users are supposed to give their
unbiased opinion of where they think significant events are happening in the
signal file.

1. If not already done, each user signs up on the server.

2. The recorded signal-file gets uploaded by its owner. This happens via the
/files-page.

3. The owner of the file is now able to open the uploaded file, by double-
clicking on it or by using the open-button.

4. To start a non-collaborative session, the owner has to invite users to the
uploaded file as well. In order to do so, she or he has to click on “Invite
User” in the left menu panel. The owner has to repeat this operation for
each user she or he wants to invite. By selecting the role of the user, one
is able to distribute certain rights. To be able to tag events, a user has to
be “admin” or “editor”.

5. To get their unbiased opinion, the supervisor has to disable the event-
reception of all the users. Therefore he has to use the context-menu on
all of the users and select the option “Disallow Event-Reception”.

6. Users are now able to start tagging events in the signal-file. In this case
events are synchronized with the database and the supervisor, but users
will not be able to see events from other users.

7. During the tagging process, the supervisor might enable the summary
view to better review the overall process.

8. A user is able to signal the owner or any admin of the file that he is
finished by writing a comment.

CHAPTER 3. APPROACH 46

9. Depending on the given task, the owner or any admin is able to configure
parameters of the overlap-detection.

10. If there are any overlapping events, due to the editing of multiple users,
they will be detected as new overlaps and become visible under the tab
“Overlaps”.

11. The owner or any admin creates a consensus for each overlap.

12. Depending on the configuration of the overlap-detection, someone has to
review the channel or the event-type of the overlap as well.

13. Once an overlap is reviewed completely, it is possible to resolve it. This
will add the overlap to the section “Resolved Overlaps” in the same tab.

14. Resolved overlaps will appear as new events under the tab “Events”.

15. Users are able to rate the resolved overlaps now by using the stars at the
bottom of each overlap-event.

16. The supervisor re-enables the event-reception for all users again, so that
they are able to see the events of all other users.

17. Finally, all users are able to download the file and to select which event-
collection they want to integrate in the file (e.g. only “Resolved Over-
laps”).

3.3.4 Rating Performance

This scenario is different from the others, mainly because of its goal. This
is namely rating the performance of an algorithm. There are simply multiple
users in this scenario, no one sticks out in particular.

1. A file with multiple users exists already.

2. All of them are editors (the owner is absent).

3. One of them uploads an external event-collection by using the intended
upload-form.

4. Others start rating the uploaded event occurrences by using a score from
one to five.

5. All the users are able to review the aggregated score by looking on the
colored number attached to each event occurrence.

CHAPTER 3. APPROACH 47

3.4 Summary

To sum it up, the practical part of this work will be a collaborative web-service,
which features visualizations, mainly line-charts, annotations and realtime-
synchronization among users. There are a few sample workflows but the tool
has probably more potential use-cases than the listed ones. We will have a
more detailed look on the finished version of this tool in the next two chapters.

Chapter 4

Implementation

4.1 Concept Realization

At first, let us take a more detailed look on concrete realizations of certain
previously explained concepts.

4.1.1 Drawing Mechanics

Technically, the drawing process is a non-trivial issue. Although, most of
the plotting is implemented without any external libraries, some functions
of D3.js are used for calculation purposes. By doing so, the native scroll-
functionality of browsers could be used instead of some manual implementa-
tion. Consequently, it is impossible to use SVG for drawing the graph, because
of the many data points which would appear in the DOM as well. Thereby, the
only option left is using HTML5-canvas.
Nevertheless, the performance is not sufficient to draw the whole signal as
soon as it is loaded. There are more reasons why this naive approach is not
the best one. A better and probably obvious attempt is to plot only the visible
parts of the signal. As a result, the plotting performance is superior to the
previous concept. Admittedly, some browsers had problems while scrolling
through the whole plot. After some research about infinite-scroll techniques
[Heleine, n.d.], a way was found to improve the scroll-performance in most
modern browsers. Since the plots are already cut into sections drawn on de-
mand, it was an easy task to set the visibility1 of sections, located outside the
scroll-window, to hidden. A better visual explanation can be seen in Figure
4.1.

1 visibility is a common CSS-attribute

48

CHAPTER 4. IMPLEMENTATION 49

Figure 4.1: Drawing mechanics

Note that the hypothetical user previously visited “Section 1” in the figure,
hence it is already drawn.
The width of these sections depends on the screen width of the viewing de-
vice. In fact, it has to be bigger than the screen width, so that an update of
one section is enough to support the illusion that the whole signal is updated.
This update could be triggered for example by a variation of the zoom-level or
the addition of a new event.
Consequently, there is more than one version of an update. Technically, there
are four different update variants which can be triggered trough various rea-
sons.

• “Full”-Update
Reloads everything, even the data points are split again into parts. Each
data part is reserved to be drawn by a plot section. This is needed, e.g.,
if a new data slice was received by the client through the asynchronous
loading of the signal. Additionally, the scaling factors which define the
transformation between pixel and seconds are updated as well. In most
of the cases this update is needed, because of the recalculation of the
scales.

• “Draw”-Update
Very similar to the “Full”-Update. However there is neither a re-splitting
of the signal nor a scale-recalculation

• “Event”-Update
Smaller update which is executed after changing or adding events of a

CHAPTER 4. IMPLEMENTATION 50

section. It only redraws the section currently visible. Other sections are
marked “undrawn”.

• “Scale”-Update
Smallest update possible. It is executed to redraw the visible scale for
the Y-axises of the signal. Like the previous update, it only affects the
current section and invalidates others.

4.1.2 User-Management

Each file can be shared with other registered users among the server. There-
fore it could be unattractive to the owner of a file to give all permissions to
any user. For solving this issue, some kind of permission-distribution had to
be considered. The preferred solution to this problem is a permission system
using roles. Each user role is assigned a certain amount of privileges. Note
that a user role applies only to one file. The roles are organized hierarchically
which means a higher role has all the permissions from its predecessor and
more. There are four or actually five user roles:

• Owner (Highest)
Has all permissions possible. This user role is not “distributed”, it is
automatically determined through the upload of a file. It is the only role
in a file which has the opportunity to delete it. Furthermore a user with
this role cannot be un-invited.

• Admin
Has nearly all privileges but is not allowed to delete the file. Supposed to
help the owner with any administrative work, for example inviting more
users or resolving overlaps.

• Editor
The most common role, supposed to do the “hard work”, i.e. labeling all
artifacts in the signal. Any editor is not able to invite or un-invite other
users.

• Reader
Lowest distributable role. Only allowed to view the file or download it.
Furthermore this role is authorized to create comments and rate events.

• Uninvited (Lowest)
Actually the lowest reachable role. After an admin or the owner decides
to un-invite one user, she or he will get the role “uninvited”. The reason
why the individual gets not deleted from the user list instantly is func-
tional on the one hand and technical on the other hand. The functional

CHAPTER 4. IMPLEMENTATION 51

reason is that an uninvited user is able to download the file one last time
before it becomes inaccessible for her or him. However, this only works
if the user has currently opened the file.
The technical reason behind the uninvited-role is that the data of the
user has to be kept. For example, if the user has created events, the data
is needed to show others the connections of the events and the uninvited
user.

4.1.3 Overlaps

Let us have a more detailed look on the overlap handling. It can be divided
into two subtasks: Detection and Management.

Detection

The matching of a new event against an existing overlap is straightforward.
There are a few sizes which have to be explained first to understand the
matching-process. At first, there are the outer borders. These are defined by
earliest start tes and the latest end tle of all occurrences on the x axis. More-
over, there are the inner border which is defined by the latest start tls and
the earliest end tee. At last, the detection margin tm is defined by the width
between the outer border multiplied by the detection-tolerance factor d.
By combining these sizes, one can define the detection region R by following
formulas:

tm = (tle − tes) · d
Rs1 = tes − tm

Re1 = tls + tm

Rs2 = tee − tm

Re2 = tle + tm

Mo(R, to) =

{
true if Re1 < tos < Rs1 ∧Rs2 < toe < Re2

false else

where tos is the start and toe is the end of the tested occurrence, respectively;
finally, Mo is the boolean result of the matching process and gives insight if
the occurrence fits the overlap or not. A visual explanation of these sizes can
be found in Figure 4.2.

CHAPTER 4. IMPLEMENTATION 52

Figure 4.2: Explanation of relevant sizes

The explanation from above assumes a hypothetical existing overlap. How-
ever, there are no overlaps at the beginning which means there has to be an
initialization first. This is done by choosing occurrences which do not fit with
any overlap. So this means that each occurrence is attached to an overlap in
the beginning, because if there is no match, the occurrence initializes a new
overlap.
Three sample-outcomes of a matching-process can be seen in Figure 4.3.

Figure 4.3: Three new events matched against an existing overlap

Note that two of the possible user-settings are not considered until now.
The detection can take place either only within channels, among event-types
or both. Nevertheless, this does not change the algorithm itself. This means
if one of the settings is enabled, the detection is executed multiple times on
alternating scopes. One scope could be a certain event-type, channel or both.
For example, if there are three different event-types and three channels and

CHAPTER 4. IMPLEMENTATION 53

additionally both options are enabled, this means there are nine different
scopes, assuming that each type exists in each channel at least once.

Management

The technical management of overlaps itself is a non-trivial task from an im-
plementation point of view because of the volatile nature of each overlap.
The first step of each detection cycle has to be a sorting of event-occurrences
and already existing overlaps by their starting position in the time-domain.
This ensures a higher performance of the algorithm. Because of the sorting, it
is unnecessary to match later occurrences with overlaps from the start.
As mentioned before, these overlaps have a volatile nature. Therefore it is
necessary to have an additional working cache per file in the database. It
is mainly used to store information about resolved overlaps. By reading and
comparing this cache with the actual situation in a detection-cycle, it is possi-
ble to carry two vital tasks out.
At first, it reveals an “unresolve”-action effectuated by an user. This means
the overlap is available for changes again.
Secondly, it allows to detect deleted resolved occurrences2, so their references
can be removed as well.
Both of those actions are necessary to guarantee data-consistency.
A visual representation of the algorithm behind the overlap-detection can be
seen in Figure 4.4

2 occurrences belonging to a resolved overlap

CHAPTER 4. IMPLEMENTATION 54

Figure 4.4: State chart of the detection algorithm

4.2 Frameworks

SignalCloud uses a variety of frameworks for communication, storing, draw-
ing, building, etc. To understand how the assembled code-structure behind
this tool works, we have to a closer look on the most important external frame-
works and libraries.

4.2.1 Express

Express is a popular http-server-implementation for Node.js, which features
many module like extensions. Setting up express with the pug(or jade)-template-
engine is really easy. It can be used to send HTML, JSON or any other answer
on a REST-request.

CHAPTER 4. IMPLEMENTATION 55

4.2.2 Socket.IO

Socket.IOis the most popular framework on Node.js, which simplify the usage
of web-sockets. There is a server-side and a client-side library.

4.2.3 Passport

It integrates seamlessly into express and provides methods and objects, which
enable a simple user- and session-management. It even integrates in Socket.IO
too, which makes this library extremely useful.

4.2.4 Webpack

The main purpose of webpack are all types of bundling tasks. It brings the
module-based system, with the “require”-keyword, from Node.js to client-side
JavaScript. This allows a more structured code and a few new features as well.
For example it is possible to load templates simply by requiring them, if the
corresponding webpack-loader has been installed.
If webpack is configured correctly, it is possible to create bundles for each
specified route. Moreover, webpack allows bundling external libraries or other
common code among all scripts into bundles. An additional loader is even
capable of loading babel, which allows it to convert es6 code into es5-code.

4.2.5 Babel and es6

Babel is used to transform a preset version of ECMAScript into es5 (5th ver-
sion of ECMAScript). It can even be used to compile .jsx-files meant to be
used with React3.
In this tool babel is used to transform es6- into es5-code to support all avail-
able browsers. Although, most of the current browsers are already capable of
interpreting es6-code.

4.2.6 AngularJS

AngularJSenhances static HTML with dynamic components. This allows a two-
way binding of JavaScript-code-components and HTML. It completely changes
the way of coding web-apps. Developer have to define AngularJS-components,
which have a specific structure. These components are for example con-
trollers, directives, services, etc. AngularJSis even more powerful, when it

3 a JavaScript-library for building interactive user-interfaces, similar to AngularJS

CHAPTER 4. IMPLEMENTATION 56

comes to smaller client-side-only projects without additional building tools,
because it is capable of loading only the necessary code.

4.2.7 Pug

Pug is the newer version of jade. It is a template-format, which can be com-
piled into HTML-code, with a syntax similar to HAML4. If a pug-code gets
compiled, a data-object, the “locals”, is needed. This data-object is available
inside the pug-template, which allows if-functions, for-loops or even literal
JavaScript-code.
Moreover, pug features code-reduction functionalities like inheritance, includes
or mixins, which make it possible to reuse various parts of code in many cases.

4.2.8 SASS/SCSS

SASS is a pre-compiler for CSS-files. It adds many features to the CSS-syntax,
which results in big code-reductions and more readability. There are two vari-
ants: SASS and SCSS. They are more or less the same, but SCSS uses more
brackets and is therefore more related to traditional CSS. This project uses
the SCSS-syntax.

4.2.9 CouchDB and nano

CouchDBis a popular no-SQL database, which stores data in the JSON-format.
It is all about versioning. Each update-request has to provide a revision-ID,
to prove that the client is aware of the current version of a certain item. This
allows CouchDBto provide data-access to all clients, the whole time. Older
versions of items are deleted, if a database is compressed. This is a sepa-
rate task, which is executed on demand. Instead of SQL-like JOIN-commands,
CouchDB features so-called views. These are JavaScript-functions, which are
needed to execute a map-reduce-task on a given database.
Nano is a small Node.js-library, which simplifies the access to a running Couch-
DB-instance.

4.2.10 Gulp

Gulp is a task-runner tool, which runs on Node.js. It can be used for almost
everything, like minifying code, running babel, compiling sass to css, running
webpack, copying stuff from one folder to another, etc. It is a extremely pow-
erful tool, which simplifies everyday tasks when building web-apps.

4 another pre-compiler for HTML, where nesting is done by whitespace-characters

CHAPTER 4. IMPLEMENTATION 57

4.3 Prototypes

Many prototypes built different frameworks and technologies were made, af-
ter learning various lessons about web-development and JavaScript. Let us
take a look on the road to SignalCloud.

4.3.1 Web-based SigViewer

The first goal was to make a simple web-based version of SigViewer. This
was already a hard task, because of the absence of an importing framework
for the GDF-fileformat. So the actual first task was the implementation of a
function, capable of importing a GDF-file. This was all done within JavaScript,
more specifically client-side JavaScript. Fortunately, the newer File API5 made
it possible to upload a file locally and process it further. After solving some
issues with the different samplerates of channels, the firs prototype was able
to draw a short part of the signal.

4.3.2 Client-only with Sql-lite Database

The second iteration of the tool featured already a small SQL-lite database.
Altough, it was still client-side only and had no access to an actual server.
JavaScript-objects, which got created after uploading a new GDF-file were sim-
ple converted into a JSON-string and uploaded to a SQL-lite-file using AJAX.
Despite of having some real performance issues and there was no synchro-
nization among collaborators, this prototype had already some interesting fea-
tures.

5 an API specified by the W3C for accessing file objects via JavaScript, additional sub-
features allow an easy handling of binary files as well, more info on https://w3c.github.io/
FileAPI/

https://w3c.github.io/FileAPI/
https://w3c.github.io/FileAPI/

CHAPTER 4. IMPLEMENTATION 58

Figure 4.5: Prototype with small SQL-lite-server

The drawing technique of this prototype was only slightly changed in newer
versions. Additionally, the user-interface was divided in the same way as in the
final version.

4.3.3 Node.js Server

After having a running client, which was already capable of drawing a GDF-
file and allowing someone to make annotations on the signal visualization,
the necessity of an actual server grew. A framework called “express” looked
promising and so it was used as http-server, alongside “jade” as its template
engine. Of course, all the html-code had to be converted to jade-files now, in
order to support all the advantages of jade.
The main purpose of this new established server was actually the realtime
synchronization of all actions among users. Therefore, the popular framework
“Socket.IO” was added as well.

4.3.4 SignalCloud

Subsequently, it was time to leave all the prototyping behind and start to built
up the final framework. This included some client-side compilers and tools as
well as the famous css-precompiler “SASS”. “webpack” was used to generate
bundles of JavaScript-code for different the server-routes, which were added

CHAPTER 4. IMPLEMENTATION 59

with the new server. These routes include a route for registering new users,
logging in, getting a list of all the (personal) files on the server and of course a
route for viewing a signal. Later on an additional site was added, which could
be used to configure some account settings.
Moreover, after some failed experiments with MongoDB, CouchDB was al-
ready used to store all the signal-files. In addition, the library “nano” was
installed for an easier communication with CouchDB.

4.3.5 SignalCloud with AngularJS

The last and final version of this tool is using additionally to all frameworks
AngularJS. This makes updating parts of the user-interface much easier. Many
parts of the logic could be moved into template-files, which results in less code.
Furthermore, AngularJS enforces a certain code-structure, which increases
the readability of all code-files.
Because jade was deprecated at this time, the decision to switch to its newer
version called “Pug” was made.
Moreover, I wanted to use some features of ECMAScript v66 (es6 or es2015).
However, not all browsers support all features of es6 currently. Therefore,
the framework Babel has been set up, which converts es6-code into an earlier
version of ECMAScript.

4.4 Code Structure

There is a certain structure behind each part of the software. Each sub-
structure consists of frameworks, building-tools, configuration-files and design-
pattern.
The root-folder structure can be reviewed in 4.6. This level holds basically
the server-structure, of the tool. All the routing is done in ./controllers.
The pug-templates are located inside the ./views directory. Moreover, all
necessary client-side JavaScript-code is located in ./js-client-libs. The
uncompiled source-scss files can be found in ./scss. In addition to these fold-
ers, there are some important files as well. The file named app.js is start-file
for the whole application. It loads everything and glues the code basically to-
gether. The other files are more or less configuration-files for npm, gulp and
webpack.

6 ECMAScript is a scripting language based on JavaScript and is the current language used
by all major browsers and Node.js

CHAPTER 4. IMPLEMENTATION 60

Figure 4.6: Root folder of the project

4.4.1 Server

The server-side JavaScript-structure is much inspired by some Model-View-
Controller7-examples for express and Node.js. [Tsonev, 2013] [Roberts, 2013]

Controllers

Basically, the components of the design-patterns are stored in the correspond-
ing folders (Figure 4.6). The ./controllers-folder has an additional sub-
folder, which holds all the logic for handling API-requests.
There is a file or folder for each accessible route in the ./controllers-folder.
For example, if someone wants to access the url “DOMAIN:PORT8

/api/signal/metadata”, the responding controller-file will be located in
./controllers/api/signal/metadata.js. The folder-structure of the con-
trollers can be reviewed in 4.7.
A little bit different is the file called “webservice.js”. This file is responsible
for all the websocket-communication, which is powered by Socket.IO. It holds
all necessary code for answering websocket-calls and broadcasts.

7 popular software-design-pattern, which consist of three components: view - controlls
GUI and forwards interactions to controller, model - stores, loads and alters data, controller
- holds all of the necessary controlling logic

8 DOMAIN:PORT is for example replaced by “localhost:3333”, if the server is running locally

CHAPTER 4. IMPLEMENTATION 61

Figure 4.7: Folder-structure of the
controller

Figure 4.8: Folder-structure of the
model

Models

All code-modules for accessing the database can be found in the folder ./models
(Figure 4.8). The file called db_helper.js provides some extremely useful
methods for an easier access to the database. It handles updates, deletion
and creation of items as well as the construction of views and databases on a
running CouchDB-instance.
There is another “specialized” file in this folder called “join.js”. This mod-
ule fetches data by some database-requests and merges the data in a specific
way. For example, there is a method for loading the metadata-entry for a
file and adding the userdata of each user to the userlist. In addition, there a
file, which performs the exact opposite and stores the separated data in the
database again.
Furthermore, the file called “schemas.js” holds a JSON-structure, which de-
fines the allowed format of the data-entries in the database. Objects will be
sanitized using an external library with this schema’s, before they are saved
in the database. This means additional properties of the object will be deleted
and properties with the wrong data-format will be converted, if possible.
At last, there are the generic files to access data-entries in CouchDB, these

CHAPTER 4. IMPLEMENTATION 62

are event.js, signal.js and user.js.
The folder ./models/tasks contains modules for altering data in the database.
All the necessary code for the overlap-detection is located in this folder. More-
over, there is a module for generating events with joined datapoints.

4.4.2 Client

The client-side code is organized in bundles. These bundles are default,
files, user and the most important signal. Each of them is located in the
corresponding folder (Figure 4.9).
Every time a site gets compiled using one of the main views, a script-bundle-
name has to be provided.
Other files in the ./js-client-libs-folder could be considered as shared or
global, because they provide some common code, which is needed by all script-
bundles.

Figure 4.9: Folder-structure of the
client-side code

Figure 4.10: Folder-structure of the
signal-bundle

Signal Bundle

As it is the most important code-collection, let us take a closer look on the
signal-bundle.
It is the one, which is loaded, if any signal-file is opened.

CHAPTER 4. IMPLEMENTATION 63

Everything starts in the file called model.js located in ./js-client-libs-
/signal/service. The initialization method of this module gets called as soon
as the corresponding AngularJS-controller has loaded this service. The initial-
ization is divided into phases. At first the relevant data-entries for the opened
file are fetched by using the websocket. These fetch-requests are of course
executed asynchronously, which caused some race-condition problems at first.
To prevent them from happening, an external library called “async”9 ensures
the correct execution of all callbacks. Additionally, other services and modules
wait until the member-variable “ready” is set to true, so that nothing is done
before all data is ready.

After everything necessary is loaded via the websocket, the so-called “analyzer”-
module located in the same folder starts initializing. This module is more or
less an extension of the model. It is responsible for loading the actual data-
points via AJAX-calls. Moreover, it provides some useful information about the
signal, like length, min- and max-values per channel, etc.
The last step of the initialization is the loading of all the lists located in the
detail-panel. Most of these lists are accessible, via the model, in its hierarchi-
cal format, which gets built up in this process (or is already present), or on
the other hand in its “flat” format. The advantage of these additional lists is
an easier access of data in some cases.
If the analyzer-module sets his ready-flag to true as well, the draw-signal-
directive located in ./js-client-libs/signal/directive is starting to draw
the channels. Due to the fact, that the signal-datapoints is divided into parts,
a redrawing is necessary after each part-update. Furthermore, there is a
small timeout, between each redraw. If a new part gets loaded, before this
timeout ends, the update is postponed. This means, if the connection is fast
enough, the signal is loaded entirely without any drawing-update. However,
many user-interactions demand a redraw of the signal area, for example any
type of zooming, changing the order, color or scaling of channels, etc.
A file, nearly as important as the model, called “view.js”is located in
./js-client-libs/signal/controller. This file is the main AngularJS-
controller of the whole signal-bundle. It provides an angular-scope10, with
functions and variables for many purposes and could be seen as a first respon-
der for many mechanics.
All the needed code for showing any kind of context-menu is located in the

9 async is a library, which features many methods for handling the correct execution order
of asynchronous JavaScript-functions, more info at http://caolan.github.io/async/

10 the JavaScript-angular-scope is accessible from HTML by using certain attributes, ele-
ments, or classes (= directives), or by using the double bracket-notation (e.g. {{var-name}}),
more info at https://docs.angularjs.org/guide/scope

https://docs.angularjs.org/guide/scope
http://caolan.github.io/async/

CHAPTER 4. IMPLEMENTATION 64

service-file called “context_menu.js”. It is meant to be used by an external
library11, which is a plugin for AngularJS.
Finally, the last of the most important file is called “dialogs.js” and it is lo-
cated in the same folder. This file is responsible for displaying and controlling
any type of dialog.

Summary Modules

Part of the signal-bundle are all summary-modules, but they behave a little bit
different than the rest of the code. The reason for this, is its simplified extend-
ability. It is very easy to add a new summary-module to the existing ones.
Each modules consist of an initial configuration, which can be seen further
below, and an AngularJS-directive. This directive has to be named like stated
in the configuration.

1 let config = {
2

3 label: ’Event Type Plots per Channel’,
4 component: ’linechartEventtypes’,
5 main_description: ‘
6 Shows plots for each Event-Type per channel.
7 Depending on your draw options, the average line will be drawn too.

8 X: Time (Scale varies between graphs)

9 Y: Channel-Value

10 ‘,
11 detail_content: ‘
12 X: Time (Scale varies)

13 Y: Channel-Value

14 ‘,
15 parameter: {
16

17 rescale: {
18

19 type: ’switch’,
20 def: true,
21 label: ’Rescale Lines’
22 },
23 draw: {
24

25 type: ’radio’,
26 def: ’both’,
27 label: ’Draw Line’,
28 options: {
29

11 ui.bootstrap.contextMenu a library for showing web-based context-menus, more info at
https://github.com/Templarian/ui.bootstrap.contextMenu

https://github.com/Templarian/ui.bootstrap.contextMenu

CHAPTER 4. IMPLEMENTATION 65

30

31 // Label: Value
32 Average: ’average’,
33 Channels: ’channels’,
34 Both: ’both’
35 }
36 }
37 }
38 };

Listing 4.1: Example configuration of a summary-module

The parameter section of the configuration defines the user-controllable vari-
ables of the module. In the above example are two parameters made control-
lable. One of them is a radio-button, which means there is a predefined set of
options, the other one is a simple on-off-toggle.
Legit types for these parameter are: switch, checkbox, slider, text, radio.
These parameter are available by using the method getSummaryParameter(),
which is provided by the model. The method needs one parameter, which is
the name of the summary-module.

Building Process

The main tool of the client-side building process is webpack. It is executing
babel, loading pug files using a specialized loader, minifying the code etc. To
work the way it does, webpack needs a configuration-file, which is located in
the root-directory. This file defines all the bundles for each route. Note that
most of the less significant routes (e.g. error-, login-, register-sites) use the
default JavaScript-bundle, which provides a simple AngularJS-controller.
Another bundle called vendor.js is generated, which holds code from external
libraries like jQuery, AngularJS, etc.
The structure of the output-folder can be seen in Figure 4.11. This folder is
the only one, which is directly accessible by the web-browser. Therefore, it
holds compiled style-sheets, images and fonts too.

Figure 4.11: Folder-structure of the output, after the building process

CHAPTER 4. IMPLEMENTATION 66

4.4.3 Templates

All the pug-templates are located in the folder ./views. These are accessible
by the server and the client. This is possible due to the pug-loader-plugin for
webpack. The files in this directory could by considered as the main views.
These views include or extend other “minor” pug-files from the three other
folders in this directory.
The ./views/base-folder contains some very basic pug-templates, like the
outer html-tag as well as the head-tag.
All the list-related files (e.g. Events, Channels, Comments, etc.) are located in
the ./views/components-directory.
Other stuff like dialog-templates, buttons, directive-templates, etc. is kept in
the ./views/templates-folder.

Figure 4.12: Folder-structure of the views-directory

4.4.4 SCSS

As mentioned above, the CSS-files are pre-compiled by SCSS. This adds many
features to the syntax.
The design is based on bootstrap, all bootstrap-overwriting is done in the file
_bs_overwrite.scss. Style-overwrites of other external style-sheets are lo-
cated in the file _overwrite.scss. The file _general.scss holds some simple
and small reusable classes, which are the foundation for an atomic design.
Bigger style concepts and more complex classes and components are located
in the files _layout.scss and _site_specific.scss.

CHAPTER 4. IMPLEMENTATION 67

Figure 4.13: Folder-structure of the model

4.5 Datamodel

The data-concept was changed very often, they final model can be seen in
Figure 4.14. Note that this figure does not strictly show the model used in the
database, it rather shows the data-relations used in the client. Furthermore,
there is actually an additional relation between activity and almost all other
data-entries. The reason is due the fact, that the activity stores an ID to the
related entry.

Figure 4.14: Datamodel with multiplicities

Because of some functional reasons, the database stores data slightly dif-

CHAPTER 4. IMPLEMENTATION 68

ferently. There are eight CouchDB-databases, which are used to store the
above datamodel.

signal

The entries of this database represent the actual signal-files. Originally the
datapoints were stored in these entries. Because of the bad performance at
loading the signal, these datapoints got chopped into pieces and stored in the
database signal_parts.
These entries are usually not altered after their creation. They could be con-
sidered the static part of a signal-file. An entry in this database has the follow-
ing format.

signal_metadata

Formerly, this was the only separated part of the signal entries, due the fact,
that this data is altered very often and could be considered the dynamic part
of a signal-file.

signal_parts

As already mentioned the datapoints of the signal are choped into pieces. En-
tries of this database represent one part of those The length of these pieces
is exactly 10 seconds. However, this is a arbitrary number, which could be
changed easily.

events

Each entry in this database either belongs to a user, is generated by the server
or is imported from a GDF-file. Events are stored in hierarchical format. The
highest container is refereed to as “Event-List” or “Event-Collection”. Each
collection has none or many “Event-Types”. These types have in most cases
an unique description, because it is enforced by this tools client. The last,
member of the hierarchical chain are the occurrences. The most important
properties of them are position, duration, channel and user-ratings.

overlaps

The entries of the overlaps-database are actually collections of overlaps. The
reason for this lies in the overlap-detection. Each signal-file has exactly one
overlap-collection, which holds a cache as well. This cache is necessary for the

CHAPTER 4. IMPLEMENTATION 69

detection algorithm. It is used to surveillance overlaps and detect the deletion
of occurrences as well as the changing of overlaps.

users

This database is simply needed to store user information. Each entry repre-
sents one registered user.

joined_event_data

By running the join-events-command using the REST-API, this database gets
filled with entries. Each entry represents one occurrence with datapoints
grabbed from the corresponding signal.

sessions

This database is needed for passport to store sessions of the current logged
on users.

4.6 Design

This project is trying to take advantage of what is called “atomic design”. Al-
though, the concept was not performed in every template.
Atomic design consists of four or actually five stages. At first, there are the
atoms. These are HTML-elements, which cannot be broken down any fur-
ther, examples are a button or an input-field. These atoms are used to build
molecules, which form already useful groups of small UI-elements. This could
be for example a search-field with its submit-button. The next stage are or-
ganisms, which are constructed using molecules. A good example from Sig-
nalCloud is the toolbar at the top of each main-sites, with its specific controls.
The penultimate stage of atomic design are complete templates, which con-
sist of all necessary UI-components. This could be for example the signal-site,
without a signal loaded. The final stage is the complete rendered site with all
its dynamic content. [Frost, 2013]

CHAPTER 4. IMPLEMENTATION 70

4.6.1 Design-Elements

The design itself is completely based on Bootstrap, apart from a few modifica-
tions. All the icons originate from the popular icon-font12 “Font Awesome”.
Most of the shadows simulate the same behavior like the ones from Google’s
material design. However, the elements cannot be considered real “materi-
als”, because they violate some of the constraints in the guidelines. [Google,
n.d.]

4.7 User Interface

A certain structure is the foundation to all visitable pages. These are derived
from two main structures.

4.7.1 Centered Panel

Instances of this design structure are the ./login-page and the ./register-
page. It features already a message system to display simple messages, if for
example the login-credentials are wrong.

Figure 4.15: Centered panel structure

The same structures is used for server errors, like the “404 Not Found”-
message, too.
Moreover, the visible buttons in Figure 4.15 originate directly from bootstrap
and are unchanged.

12 an icon-font is a complete icon-set, which gets loaded into a font-file. The icons can be
used like normal characters, which brings many advantages

CHAPTER 4. IMPLEMENTATION 71

4.7.2 Main Area with Side-Panels

This user interface is structured in four containers. This structure can be
reviewed in Figure 4.16.

Figure 4.16: Main structure of the user interface

These structure has three sub-structures. One with the menu-panel only,
the detail-panel or both of them.

Main Area

This section could be seen as the working space of the current opened context
(e.g. signal). This area adopts to the available, if the side-panels are hidden.

Menu Panel

It shows the current user-identicon and its name all the time. Additionally,
this panel provides always access to all kinds of navigation (e.g. switching
between sites or changing the current view) as well as access to some site-
specific actions like for instance inviting another user.

CHAPTER 4. IMPLEMENTATION 72

Detail Panel

This panel provides detailed information, hence the name, about either the
current selected context. This could be a highlighted file in the files-overview
or the opened signal-file itself.

Toolbar

The toolbar allows closing the side-panels as well as changing the active cursor-
tool or making some ubiquitous settings.

Chapter 5

SignalCloud

Figure 5.1: User-interface of the SignalCloud-client. Section A shows the main
area, where annotations are added. Section B, the detail panel, represents ba-
sically all the metadata of the signal and allows editing them by switching tabs
(see focus point F). Section C, the menu panel, enables the user to navigate
around the server or to make some basic actions and preferences. The toolbar
(focus point D) provides tools and buttons that are often required in the work-
flow. Section E shows the so-called “Enhanced Scrollbar”, which visualizes all
event-occurrences within a file and allows an easier navigation.

73

CHAPTER 5. SIGNALCLOUD 74

This chapter illustrates all implemented features in the SignalCloud-service.
We start with user and file management. Signal visualization used to display
and interact with the signal is introduced thereafter. The last two parts are
event tagging and management interfaces as well as collaborative features.

5.1 User and File Management

There are some functionalities in the SignalCloud-client, which could be con-
sidered ordinary on server-based tools.

5.1.1 Sign up

If the user is completely new to the system, he has to register first. This can
be achieved by using the “Sign Up”-form which is available at the ./register-
route. It can be seen in Figure 5.2.

Figure 5.2: Sign up form

The fields username and password are mandatory. Optionally one is able
to reveal the real first- and lastname as well as the email-address. These
informations will be available in the “Users”-tab, if a signal has been opened
and the user was invited by the owner.

CHAPTER 5. SIGNALCLOUD 75

5.1.2 Login/-out

After a user was registered, it is possible to login using the login form. It is ac-
cessible at the “./login”-route. After a successful login, one will be redirected
to the files-overview.

5.1.3 Account Settings

Quite a default feature of online-based-services is a page for making changes
to the user-account. That is why SignalCloudprovides this functionality as
well. The site can be accessed by clicking on the button called “Account”,
which leads to the route ./user.
Some user-related information like the first- and lastname or the email-address
can be added subsequently by using the forms shown in Figure 5.3. Addition-
ally it is possible to change the current password.

Figure 5.3: User Settings

CHAPTER 5. SIGNALCLOUD 76

5.1.4 Files Overview

After a file has been uploaded, it will be automatically added to the files
overview. This list is filterable through the input-field, located in the tool-
bar. Most of the information is already given by the rows itself (Figure 5.4).
Furthermore, a single click on one of the rows reveals even more information
in the detail-panel of the files overview. A double click or a click on the open-
button, will redirect the user to the chosen file.
The overview is the first page, a user gets redirected after a successful login.
It is available at the ./files-route.

Figure 5.4: Some example files

The ./files-route is the only place for uploading new files to the database.
This is done by clicking on the button “Upload File” in the menu panel.

5.1.5 File-Upload

This is nothing new for a web-based tool. However compared with the SigViewer
this is a huge advantage. There is no need to transfer files with hard-drives,
usb-sticks or other means. The file is simply uploaded to the database and is
available for all persons, who need an access. There is no installation needed
to view the file as well.

CHAPTER 5. SIGNALCLOUD 77

Figure 5.5: Upload Dialog

The used Node.js-framework express features already many functionalities
to handle post- or get-requests. The additional plug-in “multer” makes it really
easy to handle uploaded files. These files are stored in a temporary directory,
which gets created at start of the server. It is located under ./uploads/temp/.
After the file is successfully uploaded, it is parsed by the corresponding parser,
which in this prototype-state could be either the GDF-parser or the MoTeC-
CSV-parser.

5.1.6 File-Removal

A file can always be deleted by its user after it was uploaded. This can be
achieved either by using the context-menu in the files-overview on one of the
rows or directly in the signal-view by clicking on the button called “Delete”.
This will need a moment, because the server is searching for all database-
entries, which belong to the selected file.
Note that this will not delete any joined-events belonging to the deleted file,
which where created using the REST-API.

5.1.7 File-Download

What is uploaded also needs to be downloaded. Therefore a download-feature
had to be implemented into the tool. The need of this functionality is drasti-
cally increased by the current state-of-the-art tagging-work-flow for eeg-files.
Because of the many analysis, which are carried out after the labeling pro-
cess, it is necessary to retrieve the file in its GDF-version. Thereby the labeled
signal-file can be processed by post-processing tools or MATLAB.

CHAPTER 5. SIGNALCLOUD 78

Figure 5.6: Upload Dialog

Technically is this feature basically the inverse operation of the upload-
parser. The signal needs to be packed into one file again and sent to the user.
By directly opening the server-route /download?id=...&format=gdf, the file
can be downloaded as well. Even so it cannot be configured as well as by using
a post-request started by the shown dialog in Figure 5.6.
Note that the http-headers have to be modified to force the browser download-
ing a file. This can be done by setting the header ’Content-Type’ to the value
’application/force-download’. Another header can be used to set the file-
name of the downloaded file. In this case the filename, which was entered at
the file-upload is taken.

5.2 Signal Visualization

There are multiple visualization-techniques used in the SignalCloud-client.

5.2.1 Signal Plot

Probably the most important feature. Therefore this functionality has to be
well considered. The drawing process has to be fast enough, in order to not
annoy the user. Since the drawing has to be done after each event-addition as
well as on each change of the zoom-level.
The visual representation of the signal is based on the SigViewer. Each row
holds one of the channels and the clipping of the signal is configurable by
scrolling left or right. Moreover it is possible to navigate within the signal
by using the “Navigation Tool” located in the toolbar. After its activation it is
possible to move the section by dragging on the line-chart.

CHAPTER 5. SIGNALCLOUD 79

Figure 5.7: Example of two channels

The visualization displays the channel name on the left side. Additionally a
scale for the y-axis is shown on this side as well. The corresponding scale for
the x-axis is shown on top of all channels as it is valid for all of them.
By default the interpolation mode is “step”, which means there is an additional
rise or sink after each data-point. If this behavior is not desired, it can be
turned off, switching the interpolation mode to linear, which can be achieved
in the “Settings”-dialog.

5.2.2 Channel-Configuration

Each channel of a signal is completely customizable to everyones personal
needs. There are various functionalities to support the different requirements
of each user.

Zooming/Rescaling

Obviously needed to view the signal at varying scales. One has to differentiate
between the horizontal and the vertical zoom. The first one changes the px
per second ration, the other one increments or decrements the height of all
channels.
The levels can be changed by clicking on the corresponding button (Figure
5.8), with the magnifier-icon, located in the toolbar. Or by clicking on the
sliders-icon in the center of the zoom-button group, which shows a popup-
panel holding sliders for reaching the desired zoom-level in a faster way (fig-
ure 5.9).

CHAPTER 5. SIGNALCLOUD 80

Figure 5.8: Buttons for controlling the
zoom-level

Figure 5.9: Sliders for a faster manip-
ulation of the zoom-level

Reordering

If the original channel-order from the imported file does not fit the users
needs, it can be changed by dragging the channels in the desired order. There-
fore one has to open the tab “Channels” in the detail panel. After the three
lines at the left site of each channel-item act as a grip or handle for the drag-
ging process.

Merging

In some cases it might be useful to overlay two channels on top of each other.
Therefore this functionality can be activated by using the context-menu on
a channel-item in the detail-panel and selecting the option “Merge”. After
hovering over it, another context-menu will become visible. It will display a
list of all available un-merged channels. A merged channel will appear, after
clicking on one of the options. Figure 5.10 shows a merge of three channels.

Figure 5.10: Output of three merged channels of an eeg-file

The list items, located in the detail panel merge as well, to represent the
newly created line-chart. This can be seen in Figure 5.11.

CHAPTER 5. SIGNALCLOUD 81

Figure 5.11: Corresponding channel-list-item after the merging-process

Visibility

Unnecessary channels can be hidden, by using the context menu to select the
option “Hide”. After that the whole channel will vanish. Additionally the list-
item located in the detail-panel will show an eye-icon to represent the hidden
channel (Figure 5.12). If the user decided to show it again, this is possible by
using the context-menu again and selecting the “Show” option.

Figure 5.12: Example of a hidden channel-item

Color

If a user wants to highlight a specific channel, this can be done by using a
different color for its line. To do so, the user has to open the context-menu of
the desired channel and select the option “Color...”. This will open a dialog-
window, where a color can be chosen using a HSL-based color-picker.

Figure 5.13: Dialog-window for selecting a channel-color

CHAPTER 5. SIGNALCLOUD 82

Scale

Especially needed for merged channels. This functionality lets the user decide,
how the y-axis of the line should be adapted. At first the default option “Best
fit” is selected for each channel. If it is chosen, the domain of the y-axis is
defined by the minimum and maximum value of all datapoints. Moreover,
there is another option called “Zero centered”, which uses the extreme values
from before, chooses the one with the greater absolute value and mirrors it
on the negative side of the axis. Trough theses operations the result will be a
centered line-chart.
The last option is called “Manually...”, this opens a dialog-window with two
input fields for a maximum and a minimum value.
The icon on the left side of a list-item shows, which scaling is currently active.
The example item in Figure 5.12 holds the icon for the “Best fit”-option.

5.3 Event tagging interfaces

The tagging of artifacts is the main-purpose of the client. One is able to start
tagging by clicking on the “Add Event Tool” in the toolbar. After its activation
it is possible to add events by clicking and dragging on a channel in the main
area. If the cursor gets near the end of the main area, it will start to scroll in
this direction.
The color of the brush1 depends on the last selected event-type. The color is
derived from the description-string of the event-type. This means, that each
type has exactly the same color on various signals or even formats. However,
colors are limited, so some of the types might have a similar color.

Figure 5.14: Preview of a new event

After the mouse button has been released, a dialog-window will pop up and
show a summary of the current drawn event. The position or size of the event
can be modified by changing the numbers in the input-boxes. It is possible to
change the channel or event-type as well. An example of the dialog-window
can be seen in Figure 5.15.

1rectangular box, which previews the size and position of the new event

CHAPTER 5. SIGNALCLOUD 83

Figure 5.15: Dialog-window for selecting a channel-color

If there are many artifacts of the same type, it might be useful to define a
preset for the “Add Event Tool”. This can be done by clicking on the button
right next to it, after activating the tool (Figure 5.16 and 5.17).

Figure 5.16: Preset-button (channel
and type)

Figure 5.17: Preset-button (type-only)

Figure 5.18: Preset-panel with settings

A popup-panel will be shown (Figure 5.18) after a user clicks on the preset-
button. This panel allows multiple settings. The “Show Confirmation Dialog”-
switch will prevent the dialog-window from showing up, after each new event
addition. Furthermore, it is possible to choose the channel from the preset-
panel instead of the drawing position. This feature might be interesting, if
someone wants to draw many “All Channel”-events. It could be useful as well,

CHAPTER 5. SIGNALCLOUD 84

if the user wants to select an artifact in one channel, but wants the event to
appear in another. Based on the activated switches, the preset button will
change its appearance and show for example the current selected channel
directly by its name and the type through a color bar at the top.

5.3.1 Visual Editing of Tags

After some events have been drawn, one might want to change them again.
This can be done by simply clicking on a drawn event. Afterwards it will
receive a shadow and the cursor will change to an arrow-cross. Moreover it
is now possible to drag the event to a new position. This involves changing
of the current channel as well, unless the event is an “All Channel”-event.
Additionally the size of the event can be changed by dragging the borders on
a horizontal axis.
As soon as the cursor leaves the main area, the event will go back in its non-
editable mode.

5.3.2 Overlap-Detection

A very interesting feature is the automatic detection of overlapping events.
This is implemented on server-side, therefore users will experience a short
delay (a few seconds) between a new tag and the creation of a new overlap.
It is added to the tab “Overlaps” located in the detail panel. Figure 5.19
shows an overlap thumbnail, it consists of combined information about the
events that overlap in the same position in the signal file. The item shows a
small thumbnail of the overlapping area. If there are more than one channels
involved, the data-points of the first one are selected for drawing the line-
chart-thumbnail. Additionally color-bars, which are stacked from the bottom,
represent each occurrence of an event. Its color is defined by the type of
the event. Moreover, the occurrences are represented as well by the user-
identicons on the left side. It is possible to scroll directly to the event by
clicking on one of them.

CHAPTER 5. SIGNALCLOUD 85

Figure 5.19: Overlap list-item Figure 5.20: Overlap list-item after its
resolution

An overlap can originate in a number of conflicts between events tagged
by different users: type of event, channels, duration, beginning - end. Clicking
on the pencil-icon, a user can edit the overlap (see Figure 5.21). Once the edit
mode is entered, the user can change the type of the overlap. If there is a type
conflict, the title will be "Multiple" otherwise the type is used for the header.
If there are at least two channels in different tags that overlap, the channel
can also be chosen. Finally, it is possible to change start position, end position
and duration by moving the opaque box at the bottom of the dialog. This will
set the position and duration of the consensus of all involved occurrences.

Figure 5.21: Dialog-window for editing an overlap

CHAPTER 5. SIGNALCLOUD 86

If there are neither “channel-conflicts” nor “type-conflicts”, the overlap will
be resolvable, which enables a new button on the left side on the bottom of the
dialog-window called “Save and Resolve”. This button allows the user to add
this overlap to the “Resolved”-section of the list. After the resolution, a new
event will be added to the collection “Resolved Overlaps” in the “Events”-tab.
It can be seen in Figure 5.22. If the user wants to see only the one resolved
occurrence, it is possible to hide all other occurrences by using the context-
menu on the involved overlap and selecting the option “Occurrences → Hide
all”.

Figure 5.22: Corresponding plot-area to the overlap in Figure 5.19 and 5.20

5.3.3 Event-Collection-Upload

It might be useful in some cases to include the output of an algorithm to the
online-version of a signal. The feature is accessed by pressing the button
“Upload Event Collection” in the menu panel. This will open an upload-dialog-
window, where it is possible to select a GDF-file. This feature is for GDF-files
only, because the MoTeCCSV format includes nothing similar to tags or events.
After a file was chosen, one has to type a name for the new collection. The ac-
tion is completed by clicking on the button “Upload”. Note that the collection
name has to contain more than two characters, otherwise the upload-button
is invisible.
The site is reloaded if the button is pressed, because it was technically the
easiest solution to get the events uploaded and show them to the user. If other
users are currently viewing the same file, they will simply get an update.
There are certain issues connected to the upload of additional events. For
example, some of them could belong to a channel, which does not exist in
the current signal. If this is the case the event is simply transformed to an
“All-Channel”-event. Furthermore an event could start outside the temporal
domain of the signal. This problem still exists and is ignored in the current
version of the SignalCloud-server.

CHAPTER 5. SIGNALCLOUD 87

5.3.4 Enhanced Scrollbar

It can be hard to navigate in a really big eeg-file. Therefore we came up with
an idea to help users find certain hot-spots of the signal-file. The enhanced
scrollbar allows users to see, where events of a specific type are concentrated.
By looking either at the color or the row of an occurrence the type can be
determined.
By looking at the opacity of the color, one can see the density of events as well,
but only for one type.
To make it easier to perceive the information shown by the bar, it expands on
mouse over. Each row in the bar stands for one type, this means the bar has
to grow with each new type. However, there has to be a maximum for this
height. Furthermore a minimum-height is needed too, because it replaces the
default bottom scrollbar.

Figure 5.23: Enhanced Scrollbar with some event-occurrences

This interface-component was implemented without the use of any exter-
nal drawing-libraries, except jQuery. It is a simple HTML5-canvas, which gets
newly drawn on every event-update. Its expanded version has to be redrawn
as well every-time the mouse enters. However, the canvas element is very
performance-efficient, so that the many drawing-updates are no problem at
all.

5.3.5 Summary View

There are two possible views of a signal. On one hand there is the “Signal”-
view, which simply shows all channels of the signal in rows. On the other
hand there is the so-called “Summary”-view, which is constructed by summary-
modules. The user is always able to switch between both views by clicking on
the corresponding button in the menu panel (Figure 5.24).

Figure 5.24: Buttons for switching the current view

CHAPTER 5. SIGNALCLOUD 88

Event-Type Heatmap

For some applications it could be useful to see where exactly the highest con-
centration of specific event types lies. The Event-Type Heatmap is a summary
module that does exactly this.
The summary module draws a heatmap of all event-types. There is one row
for each different event-type of a signal. The x-axis is separated into bins. Oc-
currences for each event-type are counted and assigned to each bin. The color
intensity of a bin indicates, how many occurrences are concentrate in this spe-
cific time-unit. The bin-size is adjustable in the detail-panel. Additionally, it is
possible to adjust the color of the event-types to red, for an easier comparison
among types.

Figure 5.25: Heatmap with event-type-colors

Occurrences per Event-Type and Channel

An usecase scenario of this module could be the following: After an EEG file
was successfully reviewed, other people might be interested on how an occur-
rence of a specific type looks like (the “ground truth”). This module is a rather
trivial approach to show this “archetype” of an event. It plots the datapoints
of all occurrences of a specific type per channel.
Optionally the plots can be rescaled to fill the whole width of the linechart.
However, this means each line has a different scale and might be not compa-
rable anymore.
An additional green line shows the average of all involved occurrences.
Moreover, the opacity, used to draw the lines, depends on the amount of oc-
currences. This can be seen by comparing Figure 5.26 and 5.27.

CHAPTER 5. SIGNALCLOUD 89

Figure 5.26: Five plotted occurrences
for a specific event-type and channel

Figure 5.27: Two plotted occurrences
for a specific event-type and channel

Resolved Overlaps

This is a very simple module, it shows linechart-plots of all resolved overlaps
(the consensus).

Figure 5.28: 2 plotted occurrences for a specific event-type and channel

5.4 Collaborative Features

This section concentrates on the features that make SignalCloud collaborative.
These awareness features include: showing other users working in the file, the
positions where users are working and a history of their activities.

5.4.1 Event-Reception

For some use cases it could be desirable to get the unbiased opinion of certain
or even all users. To do so, one is able to use the reception-toggle. Each
user has access to the reception toggle for themselves. By switching it off
it is possible to hide all events from other users, even future ones and work
undisturbed. This will hide their event-collections in the detail-panel as well.
Additionally scroll-indicators at the bottom of the main-area will be hidden too.

CHAPTER 5. SIGNALCLOUD 90

Figure 5.29: Event-reception-toggle
(On)

Figure 5.30: Event-reception-toggle
(Off)

To ease the administrative work of the owner or any admin and to provide
certain initial conditions, it is possible to remote control these buttons. This
is done by using the context-menu on user-items in the “Users”-tab of the
detail panel and selecting the option “Reception → Allow” or “Reception →
Disallow”.

Figure 5.31: User without event-reception

After the reception of a specific user has been “disallowed” by an admin,
the user her- or himself cannot turn it back on. Only the owner or admin is
authorized to turn synchronization back on for that user.

CHAPTER 5. SIGNALCLOUD 91

5.4.2 User-Management

A new user can be invited either by clicking on the button “Invite User” located
in the menu-panel or by using the context-menu in the “Users”-section of the
detail-panel.

Figure 5.32: Dialog used for invitations

The dialog shows a filterable list of all registered users on the server. More-
over, it becomes only visible after typing at least one letter. The list is fetched
from the server as soon as the dialog opens. By opening the select box at the
bottom it is possible to change the role of the user. “Editor” is always the
default option.

Now let us take a look on the technical site of the user-management. At first,
we have to review the database-structure again. The user-list per each file is
located in its metadata-entry in the database signal_cloud_signal_metadata.
Furthermore its a JSON-object, which means there is a key-value storage.
Each key is defined by the user-ID of the entry, but it is available through
the field uid as well. In addition there are fields defining the role and the
event-reception. Other user-related information is added through database-
join-operations, if needed.
The metadata-entry of a signal is one of the first things, which are retrieved
from the database via the websocket. Subsequently the user-list located in the
detail-panel by activating the tab “Users”. An example-entry can be seen in
Figure 5.33.

CHAPTER 5. SIGNALCLOUD 92

Figure 5.33: Example for an user-entry

There are two entries in the structure, which can be changed, in fact these
are the role and the event-reception. Although it is not directly possible to
switch the role of an user. Instead the individual has to be uninvited and
invited again using the desired user-role.

5.4.3 Comments/Chat

It is easier to collaborate, if all concerned persons are in the same room, for
obvious reasons. This proves to be more difficult, if the individuals are sepa-
rated and have to provide the same performance.
To lessen the difficulty of this collaboration, a chat-functionality was added to
the tool. It can be used to broadcast messages to all collaborators of one file.
The messages are stored in the database and assigned to only one signal-file.
Furthermore it is possible to delete a message by using the context-menu.
However this is only achievable by the author of the message.

Figure 5.34: Example for a comment

The comments are located under the corresponding tab in the detail panel.
New comments are added by using the input-field at the bottom of the tab,
which can be seen in Figure 5.35.

Figure 5.35: Input-field for new comments

Figure 5.34 shows already a good example of an use-case of the comment-
functionality. At first I was thinking about some kind of “Done”-button to show
other users that one has finished. However, a chat is anyway an important tool

CHAPTER 5. SIGNALCLOUD 93

for making collaboration easier. Therefore users could simply use to chat to
signal, that they have finished tagging. Thus the need of a “Done”-button was
not given anymore.

By taking a look on the database-structure, one can see that the comments are
stored in the database signal_cloud_signal_metadata. There is an javascript-
object called comments, which is responsible for holding all the comments of
a signal. Keys of this object are uuids, which only have to be unique around
the comments of one file. The value consist of another object holding four
records, which are a copy of the comment-ID, a timestamp of the creation of
the comment, the user-ID of the author and finally the message itself.
The metadata-entry for a specific file gets loaded as soon as the user retrieves
the corresponding signal-file. It is accessible for the client directly after the
initialization. However, there are a couple of data-operations, which have to
be done, before the messages are ready to be presented. At first the times-
tamp has to be converted into a javascript-date-object. After that it has to
be sorted by the newly created date. Finally a grouping is done, to associate
comments with days. The current day and the day are translated as “today”
and “yesterday”. Other days are shown by local defaults.

5.4.4 Activity/History

For an asynchronous collaboration it is necessary to see, what has happened
during the time a user was “offline”. Consequently, some sort of summary is
mandatory to show this information. Therefore the “Activity”-tab was added
to the detail-panel. It keeps track of all things, that happened to the file since
its creation. Moreover it is sorted by a time-stamp and grouped by day. In
addition consecutive actions of the same users are grouped as well. There
are main-icons, which show the category of the action and sub-icons, which
represent the action itself (e.g. add, remove, etc.).

CHAPTER 5. SIGNALCLOUD 94

Figure 5.36: Group of consecutive actions of a user

Clicking on one of the list-items allows the user to traverse to the involved
item. This is obviously only possible, if the item was not removed. If this is the
case, the involved tab will simply open without a transition to the element.
In addition to the “Activity”-tab, one can see immediately changes by looking
at the small red dots on the right top of each tab-button. A dot will every time
appear, if the number of list-items changes, because of an action of another
user.

5.4.5 Rating of Events

In some cases, it might be useful to rate the output of either an algorithm or
another user. This is done by using the star-buttons on the bottom of each
occurrence-item in the “Events”-tab. The rating can be a number from one to
five.

Figure 5.37: Event-occurrence with rating

If there is at least one vote, a score in percent will be displayed. The ratings
of other users are hidden behind the average of all ratings, there is no visual
way to view all individual ratings. However, it is possible to access them by
the API.

CHAPTER 5. SIGNALCLOUD 95

5.4.6 Scroll-Indicators

For a collaborative software or tool it is necessary to be aware, what other
users are doing currently. This is a non-trivial problem, because there is a fine
line between informational and annoying. Not every mouse-move or keyboard-
input has to be shown to others.
The user awareness in this tool is limited to a few, but meaningful, compo-
nents. One of those is the scroll-indicator located at the top of the enhanced
scrollbar (Figure 5.38).

Figure 5.38: Indicators from two different users

These indicators are capable of showing the current x-axis position of an-
other user. The reference to it is given by the enhanced scrollbar, which shows
the whole signal. The indicators moves accordingly, if a user moves horizon-
tally in the file. However, there is no indicator showing the vertical scroll-
position of other users, because this information was considered unnecessary.

The technical basic system needed for this features is in general the web-
socket itself. After each scroll update a callback is executed, which broadcasts
a message holding the current relative scroll-position of the user. Additionally
to the position, this message holds the user-ID as well.
The broadcast itself is done by the server. Actually the word broadcast is mis-
leading, because it is more comparable with a multicast, selecting only certain
participants. Those are selected, who subscribed the same socket-io-channel,
which is by default the signal-ID of the currently opened signal-file.
After another user receives the message, it is parsed by the client. If the
user-ID is somehow not flagged as “online”, then it is taken care of now. The
relative position (between zero and one) of the other user is scaled upon the
width of the main-area.
There is a small timeout between each position update to reduce network traf-
fic. Otherwise the server would be occupied too much with sending position
updates.

CHAPTER 5. SIGNALCLOUD 96

5.5 Summary

This work has concentrated on enabling collaboration in signal analysis. We
started with simple single user features. But, once collaboration was avail-
able, it became necessary to deal with two major challenges that arise when
working in groups:

• Finding a common ground on certain aspect.

• Having possibilities to define the collaboration strategy.

This thesis offers methods to address these issues in collaborative analytics
tools. The overlap detection and resolution interface helps administrators han-
dle situations where users have different opinions on the events. The event
voting features allows participants to express what they think of a particu-
lar label. With regards to the strategy, we have concentrated on enforcing
different modes of collaboration.

Chapter 6

Conclusion

At the end, the resulted software worked as intended The drawing perfor-
mance is fast enough to be not annoying and the planned features work as
intended.
However, there is always much space for improvements on every corner.

6.1 Frameworks

Some of the frameworks make sense for a prototype, but there are better so-
lutions which could improve the performance for an actual production version
of this tool.
For example, the disadvantage with CouchDB is that all the join tasks have to
be run by Node.js. This could be done very easily with a SQL-database and
probably with a better performance as well.
Furthermore, using the native scroll overflow for the signal chart brings cer-
tain advantages. However, it could lead to a better performance to switch to
chart.js or other external libraries, with an emphasis on drawing millions of
datapoints.
Another, rather small, improvement might be possible by switching from An-
gularJSto react.JS, as it features a higher performance in many tests. [Har-
rington, 2015]

6.2 Future Work

Althoug, many features have been implemented in SignalCloud, some of them
never left the concept phase.

97

CHAPTER 6. CONCLUSION 98

6.2.1 Undo/Redo

An ubiquitous improvement example would be an undo-feature. This could
be useful if someone deletes an event accidentally and wants to restore it
again. Actually, the feature would not be that hard to implement because data
is not changed by overwriting, but rather by making distinctive change or
delete requests. If one would record these requests and basically “play then
backwards” upon an undo-request, it could lead to the desired behavior.

6.2.2 Summary Modules

In general, there could be much more summary modules. These could for
example show the frequency domain of the signal or show a better distribution
of the event types.
It should be rather easy to add additional summary modules, using AngularJS-
components.

6.2.3 Realtime Updates

A really interesting feature would be realtime updates of the signal itself. Ap-
plications for this functionality could be all kind of remote diagnosis. It could
be implemented by extending the analyzer-module of the client, as this module
loads the signal anyway asynchronously.

6.2.4 Linked IDs in Comments

The last of the proposed unimplemented features are links in comments. These
links enable a transition to a certain item in the main area or the detail-panel
(e.g. event-occurrence, overlap, user, etc.). The transition could be similar to
the one which gets started by clicking on an activity item.

6.3 Summary

While a single user application may have fixed functionality to a task, the
introduction of collaborative features makes it necessary to manage situations
where participants have different opinions. Much of the added value from
collaboration comes from the sharing of opinions and viewpoints. This thesis
has developed a tool for collaborative signal analysis. The major challenges
were on allowing users to choose the strategy how they wish to work together.
Also sharing knowledge and finding a point of common ground in different
opinions were topics of development. In general collaboration gains a lot of

CHAPTER 6. CONCLUSION 99

attention lately with tools that allow users to communicate, share and improve
their working methods in the interaction with others.

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

COP Coefficient of Performance

CSS Cascading Style Sheets

CSV Comma-separated values

DB Database

DOI Degree of interestingness

DOM Document Object Model

ECG Electrocardiogram

ECMA European Computer Manufacturers Association

EEG Electroencephalogram

GDF General Data Format for biomedical signals

GPL General Public License

GUI Graphical User Interface

HAML HTML abstraction markup language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

NPM Node Package Manager

PCA Principal Component Analysis

100

CHAPTER 6. CONCLUSION 101

PIP Perceptually Important Points

RDF Resource Description Framework

REST Representational State Transfer

SASS Syntactically Awesome Style Sheets

SCSS Sassy Cascading Style Sheets

SOM Self-Organizing Map

SPARQL SPARQL Protocol And RDF Query Language

SQL Structured Query Language

SVG Scalable Vector Graphics

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

URL Uniform Resource Locator

UUID Universally Unique Identifier

W3C World Wide Web Consortium

WYSIWIS What You See Is What I See

XML Extensible Markup Language

Bibliography

Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and
Christian Tominski. Visual methods for analyzing time-oriented data. IEEE
transactions on visualization and computer graphics, 14(1):47–60, 2008.

American Heritage. The American Heritage Medical Dictionary.
American Heritage Dictionary. Houghton Mifflin Company, 2008.
ISBN 9780618947256. URL https://books.google.at/books?id=
kT7ykAhh3fsC.

M. K. Brown, B. Huettner, and C. James-Tanny. Choosing the right tools for
your virtual team: Evaluating wikis, blogs, and other collaborative tools.
In 2007 IEEE International Professional Communication Conference, pages
1–4, Oct 2007. doi: 10.1109/IPCC.2007.4464100.

Christopher Collins, Fernanda B. Viégas, and Martin Wattenberg. Parallel tag
clouds to explore and analyze facted text corpora. In Proc. of the IEEE
Symp. on Visual Analytics Science and Technology (VAST), 2009. doi: 10.
1109/VAST.2009.5333443.

Brad Frost. Atomic design, 2013. URL http://bradfrost.com/blog/post/
atomic-web-design/. (Accessed on 12.12.2016).

F. A. Gibbs, H. Davis, and W. G. Lennox. The electro encephalogram in
epilepsy and in conditions of impaired consciousness. American Jour-
nal of EEG Technology, 8(2):59–73, 1968. doi: 10.1080/00029238.
1968.11080707. URL http://www.tandfonline.com/doi/abs/10.1080/
00029238.1968.11080707.

Google. Material design guidelines, n.d. URL https://material.google.
com/. (Accessed on 07.12.2016).

Graz University of Technology. About sigviewer. SourceForge, n.d. URL http:
//sigviewer.sourceforge.net/. (Accessed on 04.12.2016).

102

http://bradfrost.com/blog/post/atomic-web-design/
http://www.tandfonline.com/doi/abs/10.1080/00029238.1968.11080707
http://sigviewer.sourceforge.net/
https://material.google.com/
https://material.google.com/
http://sigviewer.sourceforge.net/
https://books.google.at/books?id=kT7ykAhh3fsC
http://bradfrost.com/blog/post/atomic-web-design/
http://www.tandfonline.com/doi/abs/10.1080/00029238.1968.11080707
https://books.google.at/books?id=kT7ykAhh3fsC

BIBLIOGRAPHY 103

Carl Gutwin and Saul Greenberg. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Cooperative
Work (CSCW), 11(3):411–446, 2002. ISSN 1573-7551. doi: 10.1023/A:
1021271517844. URL http://dx.doi.org/10.1023/A:1021271517844.

Ming C Hao, Umeshwar Dayal, Daniel A Keim, and Tobias Schreck.
Importance-driven visualization layouts for large time series data. In IEEE
Symposium on Information Visualization, 2005. INFOVIS 2005., pages 203–
210. IEEE, 2005.

Ming C Hao, Umeshwar Dayal, Daniel A Keim, and Tobias Schreck. Multi-
resolution techniques for visual exploration of large time-series data. In
EUROVIS 2007, pages 27–34, 2007.

Ming C. Hao, Manish Marwah, Halldór Janetzko, Umeshwar Dayal, Daniel A.
Keim, Debprakash Patnaik, Naren Ramakrishnan, and Ratnesh K. Sharma.
Visual exploration of frequent patterns in multivariate time series. In-
formation Visualization, 11(1):71–83, January 2012. ISSN 1473-8716.
doi: 10.1177/1473871611430769. URL http://dx.doi.org/10.1177/
1473871611430769.

Chris Harrington. React vs angularjs vs knockoutjs: a performance com-
parison. Codementor, 2015. URL https://www.codementor.io/reactjs/
tutorial/reactjs-vs-angular-js-performance-comparison-knockout.
(Accessed on 13.12.2016).

Jérémy Heleine. 6 jQuery Infinite Scrolling Demos. sitepoint, n.d. URL
https://www.sitepoint.com/jquery-infinite-scrolling-demos/. (Ac-
cessed on 01.12.2016).

Alexey Melnikov Ian Fette. Rfc 6455 - the websocket protocol. RFC, 2011.
URL https://tools.ietf.org/html/rfc6455. (Accessed on 09.12.2016).

Vernon Lawhern, W. David Hairston, Kaleb McDowell, Marissa Westerfield,
and Kay Robbins. Detection and classification of subject-generated artifacts
in {EEG} signals using autoregressive models. Journal of Neuroscience
Methods, 208(2):181 – 189, 2012. ISSN 0165-0270. doi: http://dx.doi.org/
10.1016/j.jneumeth.2012.05.017. URL http://www.sciencedirect.com/
science/article/pii/S0165027012001860.

Danh Le-Phuoc and Manfred Hauswirth. Linked open data in sensor data
mashups. In Proceedings of the 2nd International Conference on Semantic
Sensor Networks-Volume 522, pages 1–16. CEUR-WS. org, 2009.

http://dx.doi.org/10.1023/A:1021271517844
https://tools.ietf.org/html/rfc6455
http://dx.doi.org/10.1177/1473871611430769
http://www.sciencedirect.com/science/article/pii/S0165027012001860
https://www.codementor.io/reactjs/tutorial/reactjs-vs-angular-js-performance-comparison-knockout
https://www.sitepoint.com/jquery-infinite-scrolling-demos/
http://dx.doi.org/10.1177/1473871611430769
https://www.codementor.io/reactjs/tutorial/reactjs-vs-angular-js-performance-comparison-knockout
http://www.sciencedirect.com/science/article/pii/S0165027012001860

BIBLIOGRAPHY 104

Su Te Lei and Kang Zhang. A visual analytics system for financial time-series
data. In Proceedings of the 3rd International Symposium on Visual Informa-
tion Communication, page 20. ACM, 2010.

Christian T Lopes, Max Franz, Farzana Kazi, Sylva L Donaldson, Quaid Mor-
ris, and Gary D Bader. Cytoscape web: an interactive web-based network
browser. BIOINFORMATICS, 26(18):2347–2348, 2010.

Chris Mills and Hamish Willee. Server-side web frameworks -
Learn web development | MDN. Mozilla Developer Network, n.d.
URL https://developer.mozilla.org/en-US/docs/Learn/Server-
side/First_steps/Web_frameworks. (Accessed on 08.12.2016).

MoTeC. i2 data analysis - overview, n.d. URL http://www.motec.com/i2/
i2overview/. (Accessed on 06.12.2016).

Tim Roberts. A simple mvc framework with node and express, 2013.
URL http://timstermatic.github.io/blog/2013/08/17/a-simple-mvc-
framework-with-node-and-express/. (Accessed on 12.12.2016).

Alois Schlögl. GDF - A general dataformat for BIOSIGNALS. CoRR, ab-
s/cs/0608052, 2006. URL http://arxiv.org/abs/cs/0608052.

Tobias Schreck, Tatiana Tekušová, Jörn Kohlhammer, and Dieter Fellner.
Trajectory-based visual analysis of large financial time series data. ACM
SIGKDD Explorations Newsletter, 9(2):30–37, 2007.

Tobias Schreck, Jürgen Bernard, Tatiana Von Landesberger, and Jörn
Kohlhammer. Visual cluster analysis of trajectory data with interactive ko-
honen maps. Information Visualization, 8(1):14–29, 2009.

Norah C Slone and Nathanel G Mitchell. Technology-based adaptation of
think-pair-share utilizing google drive. Journal of Teaching and Learning
with Technology, 3(1):102–104, 2014.

M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. Wysiwis revised:
Early experiences with multiuser interfaces. ACM Trans. Inf. Syst., 5(2):
147–167, April 1987. ISSN 1046-8188. doi: 10.1145/27636.28056. URL
http://doi.acm.org/10.1145/27636.28056.

Krasimir Tsonev. Build a complete mvc website with expressjs. Envato Tuts+,
2013. URL https://code.tutsplus.com/tutorials/build-a-complete-
mvc-website-with-expressjs--net-34168. (Accessed on 12.12.2016).

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks
https://code.tutsplus.com/tutorials/build-a-complete-mvc-website-with-expressjs--net-34168
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks
http://www.motec.com/i2/i2overview/
http://doi.acm.org/10.1145/27636.28056
https://code.tutsplus.com/tutorials/build-a-complete-mvc-website-with-expressjs--net-34168
http://timstermatic.github.io/blog/2013/08/17/a-simple-mvc-framework-with-node-and-express/
http://arxiv.org/abs/cs/0608052
http://www.motec.com/i2/i2overview/
http://timstermatic.github.io/blog/2013/08/17/a-simple-mvc-framework-with-node-and-express/

BIBLIOGRAPHY 105

Todd Vernon. Not all collaboration types are equal. DevOps, 2014. URL https:
//devops.com/collaboration-types/. (Accessed on 09.12.2016).

Danny Weyns and Tom Holvoet. Synchronous versus asynchronous collabo-
ration in situated multi-agent systems. In Proceedings of the second inter-
national joint conference on Autonomous agents and multiagent systems,
pages 1156–1157. ACM, 2003.

Hartmut Ziegler, Marco Jenny, Tino Gruse, and Daniel A Keim. Visual market
sector analysis for financial time series data. In Visual Analytics Science and
Technology (VAST), 2010 IEEE Symposium on, pages 83–90. IEEE, 2010.

https://devops.com/collaboration-types/
https://devops.com/collaboration-types/

Appendix

106

Appendix A

API

There are two ways to retrieve data from the SignalCloud-server. On the one
hand it is possible to use a websocket for all communication purposes. This
enables the client-software to store and sync data as well.
On the other hand one could use the REST-API to retrieve JSON-data too. How-
ever there are no methods to alter data on the server via REST, because there
was simply no necessity at this point. The REST-API exists, because of various
reasons one is for example to provide all the tagged data in a convenient way,
which can be used automatically by other clients.

A.1 Websocket Protocol

The SignalCloud-server uses the Node.js-framework “express”, which features
a REST-API to transfer for example HTML-Pages or JSON-data. However the
collaborative part needs realtime-synchronisation between clients. Therefore
the websocket based framework called “Socket.IO” is used to support this
functionality.
After the client page is loaded, it tries to connect to the Socket.IOwebservice.
This connection is only accepted, if the user is logged in via the login site or
the API.
All the messages consist of JSON-strings. The Socket.IO-framework allows
to define event-handlers for specific message types. The supported message-
types can be divided into categories.

Methods for data-retrieval

This methods behave like simple getters. A message is sent to the server,
which triggers an answer holding the requested data. Note that the answer of
the server is sent on the same message-channel as the request.

107

APPENDIX A. API 108

get-signal-metadata
Parameter: signal id / metadata id (these are the same)
Returns a message holding all the metadata for a specific signal. Note that
the signal itself and the corresponding signal metadata have always the same
uuid.

get-signal
Parameter: signal id
Returns a message holding the signal. This includes no datapoints.

get-metadata-list
Parameter: user id
Returns a message holding all signals associated with the provided user id.

get-signallist
Parameter: user id
Returns a message holding all signal-metadata-entries associated with the pro-
vided user id.

get-userlist
Parameter: none
Returns a message holding all the users registered on the Server.

get-user
Parameter: user id
Returns a message holding the data of a specific user.

get-event-by-sid
Parameter: signal id
Returns a message holding a list of event lists for each user, which has con-
tributed to one signal file.

get-my-user-id
Parameter: none
Returns a message holding the id of the connected user.

get-my-user-data
Parameter: none
Returns a message holding the user-data of the connected user.

APPENDIX A. API 109

get-signal-part
Parameter: signal-part id
Returns a signal-part by id. These parts hold the actual signal points.

get-joined-eventdata-by-sid
Parameter: joined event id
Returns a message holding the requested joined event data. Note that this is
a single occurrence of an event holding the data-points of the signal as well.

get-overlaps
Parameter: signal id / overlaps id (these are the same)
Returns a message holding all the overlaps of a signal.

Methods for overwriting data

set-signal-metadata Parameter: JSON-encoded metadata
Creates or updates the received signal metadata in the database.

set-my-user-data
Parameter: JSON-encoded user-data
Updates the user-data of the current user in the database.

set-my-password
Parameter: JSON-encoded id and password
Updates the password of the current user.

set-joined-eventdata
Parameter: JSON-encoded joined-event-data
Creates or updates the received joined-event-data in the database.

set-event
Parameter: JSON-encoded event
Creates or updates the received event-data in the database.

set-overlaps
Parameter: JSON-encoded overlap
Creates or updates the received overlap-data in the database.

APPENDIX A. API 110

Methods for merging data

To reduce data-inconsistency among users, while getting realtime-synchronisation,
it is necessary to send only data, which has to be changed. This is done by us-
ing the following methods. Note that the JSON-encoded payload has to hold
only the necessary data as it gets merged with an already existing (older) ver-
sion of it.
One might notice that this inhibits the deletion of object-properties. Therefore
there is a delete-method for each assign-method.

assign-overlap
Parameter: JSON-encoded part-dataset
Merges the overlap-part-dataset with the existing cache-version on the server
as well as with each connected client.

assign-event
Parameter: JSON-encoded part-dataset
Merges the event-part-dataset with the existing cache-version on the server
as well as with each connected client.

assign-signal-metadata
Parameter: JSON-encoded part-dataset
Merges the metadata-part-dataset with the existing cache-version on the server
as well as with each connected client.

delete-overlap
Parameter: JSON-encoded array of keys, which lead to the property
Deletes a property of the current cache-version of the overlaps-data on the
server as well as with each connected client.

delete-event
Parameter: JSON-encoded array of keys, which lead to the property
Deletes a property of the current cache-version of the event-data on the server
as well as with each connected client.

delete-metadata
Parameter: JSON-encoded array of keys, which lead to the property
Deletes a property of the current cache-version of the metadata on the server
as well as with each connected client.

APPENDIX A. API 111

Methods for starting Tasks

The server-side data-model provides two different tasks, which can be run
on specific datasets in the database. One can be started by the websocket.
Moreover, there are many timeouts to prevent multiple tasks, if there are many
requests at the same time. run-detect-overlaps
Parameter: none
Starts a task for detecting overlapping events. This is for example started
after an overlap has been edited or a new event has been added.

Listeners

on-file-deleted
Parameter: none
Invoked if a the subscribed file gets deleted. The client will redirect the user
immediately to the files-overview to prevent data-inconsistency.

on-user-invitation
Parameter: none
Invoked if the user has been invited to a new file. Note that this message is
received regardless of the subscribed channel.

on-updated-overlaps
Parameter: none
Invoked if there has been an update by the set-overlaps-method.

on-updated-events
Parameter: none
Invoked if there has been an update regarding all events of a certain file. For
example if a new event-collection has been imported from a file.

on-updated-event-single
Parameter: none
Invoked if there has been an update by the set-event-method.

on-updated-metadata
Parameter: none
Invoked if there has been an update by the set-signal-metadata-method.

on-assign-overlap
Parameter: none
Invoked if there has been a merging-update by the assign-overlaps-method.

APPENDIX A. API 112

on-assign-event
Parameter: none
Invoked if there has been a merging-update by the assign-event-method.

on-assign-signal-metadata
Parameter: none
Invoked if there has been a merging-update by the assign-signal-metadata-
method.

on-delete-overlap
Parameter: none
Invoked if there has been a deletion by the delete-overlaps-method.

on-delete-event
Parameter: none
Invoked if there has been a deletion by the delete-event-method.

on-delete-signal-metadata
Parameter: none
Invoked if there has been a deletion by the delete-signal-metadata-method.

Other methods

subscribe-channel
Parameter: name of the channel
This important message has to be sent directly after a new connection has
been established. By doing so, the client will send and receive messages only
within its subscribed channel-room. In the case of an open signal, the channel-
name would be its id. This ensures that all online users communicate only with
users viewing the same signal.

user-invitation
Parameter: JSON-object holding the user id (uid) of the invited user and file-
name (filename) of the file
Sent if a new user is added to a signal. This triggers an emit of the on-user-invitation-
message only to the user with the id from the parameter.

broadcast
Parameter: JSON-encoded message

APPENDIX A. API 113

Triggers a broadcast among all the connected users, which subscribed to the
same channel.

A.2 REST

The API exists primarily for an automatic retrieval of data for further pro-
cessing and analysis. However, it is used as well by the client to retrieve the
data-parts of the signal, because it features a little performance advantage in
contrast to the websocket.
The primary structure of an answer of the API can be seen in the following
code-listing:

1 {
2 "errors": [], // array of errors
3 "ok": true, // true if the action was successfull
4 "payload": {}, // if there is data
5 "uid": "uuid" // id of the current user (if logged in)
6 }

The requests can be categorized in GET-Requests and POST-Requests. Note
that the domain itself (e.g.: http://localhost:3333/...) is not included in
all URLs.

POST-Requests

URL: ./api/login
Parameter: [username→ registered username] and [password→ related pass-
word]
Makes it possible to login via ajax. The answer will contain the uid, if the lo-
gin was successfull or the error “Authentication Error”, if the credentials are
wrong.

URL: ./api/log
Parameter: [msg→ string to log] and [Optional: level→ logging-level]
Appends a log message in the corresponding logfile on the server or creates
it. The log-messages are located under ./logs. The parameter logging-level
has to have the format of a js-logger1 context-level.

URL: ./api/logout

1js-logger is a client-side JavaScript-library and features some logging tools (https://
github.com/jonnyreeves/js-logger)

https://github.com/jonnyreeves/js-logger
https://github.com/jonnyreeves/js-logger

APPENDIX A. API 114

Parameter: none
Logs out the user by destroying the current session. This method can be exe-
cuted by a GET-Request as well.

GET-Requests

URL: ./api/
Parameter: none
Can be used for checking the current login-state. If the user is logged out, the
message will contain an error called “Not allowed”.

URL: ./api/logout
Parameter: none
Logs out the user by destroying the current session.

URL: ./api/log
Parameter: none
Returns all logs, which got appended to the log-file of the current user by us-
ing the POST-Version of the ./api/log-method.

URL: ./api/signal
Parameter: id→ signal id
Retrieves a signal from the database by using its id.

URL: ./api/signal/part
Parameter: id→ signal-part id
Retrieves one datapoint-part of a signal from the database by using its id.

URL: ./api/signal/metadata
Parameter: id→ signal id / metadata id
Retrieves a signal-metadata-entry from the database by using its id.

URL: ./api/event
Parameter: [id→ event id] or [sid→ signal id]
Retrieves an event-collection from the database by using its id or to retrieve
all event-collections of a specific signal. The result depends on the name of
the parameter (sid or id).

URL: ./api/event/datapoints
Parameter: [id→ event id] or [sid→ signal id]
Retrieves a certain joined-event by id or all joined-events by using a signal

APPENDIX A. API 115

id. Note that the joined-events may not be created for the signal yet, if the
./api/event/run_join was not executed first.

URL: ./api/event/overlap
Parameter: id→ signal id
Retrieves all overlap-data of a signal from the database by using its id.

URL: ./api/event/run_join
Parameter: sid→ signal id
Runs a task which creates joined-events for all event-occurrences in one sig-
nal.

	Introduction
	Terminology
	Issues
	Motivation
	Aspects of Collaboration
	Synchronous Collaboration
	Asynchronous Collaboration

	Summary

	Related Work
	State-of-the-art Tools
	SigViewer
	MoTeC i2

	Client-generated Web-based Visualizations
	Visualization of time-dependent data
	Specialized Visualization-techniques
	Collaborative Awareness
	Summary

	Approach
	A collaborative tool
	Requirements
	Current Tools and Inspiration
	Technologies
	Target Audience and User Constellation

	File formats
	GDF
	MoTeC CSV

	Workflows
	Single User
	Collaborative Session
	Unbiased Collaborators
	Rating Performance

	Summary

	Implementation
	Concept Realization
	Drawing Mechanics
	User-Management
	Overlaps

	Frameworks
	Express
	Socket.IO
	Passport
	Webpack
	Babel and es6
	AngularJS
	Pug
	SASS/SCSS
	CouchDB and nano
	Gulp

	Prototypes
	Web-based SigViewer
	Client-only with Sql-lite Database
	Node.js Server
	SignalCloud
	SignalCloud with AngularJS

	Code Structure
	Server
	Client
	Templates
	SCSS

	Datamodel
	Design
	Design-Elements

	User Interface
	Centered Panel
	Main Area with Side-Panels

	SignalCloud
	User and File Management
	Sign up
	Login/-out
	Account Settings
	Files Overview
	File-Upload
	File-Removal
	File-Download

	Signal Visualization
	Signal Plot
	Channel-Configuration

	Event tagging interfaces
	Visual Editing of Tags
	Overlap-Detection
	Event-Collection-Upload
	Enhanced Scrollbar
	Summary View

	Collaborative Features
	Event-Reception
	User-Management
	Comments/Chat
	Activity/History
	Rating of Events
	Scroll-Indicators

	Summary

	Conclusion
	Frameworks
	Future Work
	Undo/Redo
	Summary Modules
	Realtime Updates
	Linked IDs in Comments

	Summary

	List of Abbreviations
	Bibliography
	API
	Websocket Protocol
	REST

