

$)),'$9,7

,�GHFODUH�WKDW�,�KDYH�DXWKRUHG�WKLV�WKHVLV�LQGHSHQGHQWO\��WKDW�,�KDYH�QRW�XVHG�RWKHU�

WKDQ� WKH�GHFODUHG�VRXUFHV�UHVRXUFHV��DQG� WKDW� ,�KDYH�H[SOLFLWO\� LQGLFDWHG�DOO�PD�

WHULDO�ZKLFK�KDV�EHHQ�TXRWHG�HLWKHU�OLWHUDOO\�RU�E\�FRQWHQW�IURP�WKH�VRXUFHV�XVHG��

7KH�WH[W�GRFXPHQW�XSORDGHG�WR�78*5$=RQOLQH�LV�LGHQWLFDO�WR�WKH�SUHVHQW�PDVWHUµV�

WKHVLV�

'DWH 6LJQDWXUH

Acknowledgements

I would like to thank God for giving me the opportunity to study in Austria
and for crossing my path with so many wonderful people that have supported
me and encouraged me in one way or another.

3

Contents

1 Introduction. 5
1.1 Graphs. 6
1.2 Random Graphs. 9
1.3 Jigsaw Percolation. 13
1.4 The Multi-Colored Jigsaw Algorithm. 17
1.5 Main Theorem . 20
1.6 Intuition. 21
1.7 Notation and Observations. 22
1.8 Overview. 25
1.9 Main Contributions. 25

2 Proof of the subcritical case. 26

3 Proof of the supercritical case. 29
3.1 Part I . 30
3.2 Part II . 38
3.3 Part III . 43

4 Concluding remarks. 44

4

1 Introduction.

The �eld of discussion of this work is located in the theory of graphs and random
graphs. We will discuss here the theory of graphs in an informal way; a more
formal discussion will take place in subsections 1.1 and 1.2.

Graph Theory is the study of graphs. A paper [10] in the 18th century due
to Leonhard Euler on the solution of the Königsberg bridge problem is often
regarded as the �rst paper in this �eld (see [3]).

A graph can be informally described as a network of nodes and arcs, as
shown in Figure 1.

Figure 1: Example of a graph.

We will see a formal de�nition later. Graphs have proven to be a very
powerful and important mathematical tool in a wide range of subjects such as
sociology, architecture, linguistics, electrical engineering and computer sciences.
We present some examples of applications of graph theory:

• (Optimal routes between two locations) We can model the streets of a
city by replacing street intersections with nodes and then connect two of
those nodes by arcs if and only if there is a street that goes from one
street intersection to the other. In addition we can label the arcs with the
length of the corresponding street. We can use this model to �nd shortest
paths e.g. GPS systems apply special algorithms on this graph to �nd the
shortest path between two locations.

• (Scheduling) We would like to schedule the lectures in a university so that
any two lectures with a common student occur at di�erent times. We can
model this by taking a node for every lecture and an arc between two
nodes if and only if two lectures share a student. If we represent the time
slots by colors, the scheduling problem is the same as coloring the nodes
of this graph so that no two connected nodes have the same color. Our
aim is to use as few colors as possible (i.e. as few time slots as possible).

• (Social networks) We can model the �friendship network� in the world by
taking a node for each person and an arc between two nodes if the people
that they represent are friends. A �conjecture� called the six degrees of
separation by Frigyes Karinthy says that in this network the �distance�
between any two nodes is at most six. The �distance� between the nodes

5

A and B is the minimal number of �jumps� (between connected nodes)
needed to go from A to B (or from B to A).

In 2006 a (scienti�cally non-rigorous) study by Microsoft suggested that
the conjecture may be true. After checking 30 billion messages in an
instant-messaging network that contained half of the global population
they showed that the average distance between any two strangers was 6.6
(see [20]). This suggests that the real distance should be smaller than this
value as the study traced only a small part of the actual social network.

• (Architecture) Suppose we have an m × n grid of steel beams that are
attached at their ends by pin-joints. We want to make this structure
rigid. We are allowed to add steel cross-beams between two pin-joints
to achieve this goal. What is the minimum number of cross-beams that
should be added and where they should be placed?.

We can model the problem with a graph by taking the pin-joints as nodes
and the steel beams as connections between nodes; it can be proved that
rigidity is dependent only on the nodes and their connections. The answer
to the previous question is m+ n− 1 (see [2]).

Figure 2: A 2× 3 grid.

• (Sociology) The concept of power in sociology is a very important concept
for the study of social structures but there is no objective de�nition of
what power is. One way to de�ne power is by means of graph theory: as
in the third example we can take nodes for each person and arcs between
two nodes if the people that they represent are acquainted with each other.
The studies reveal that there is a close relation between the potential power
a person has and the degree of the node that represents this person i.e.
the number of acquaintances that he/she has (see [17]).

1.1 Graphs.

In this subsection we will present some basic concepts of graph theory that will
be used in the thesis.

Let V be a set and let
(
V
2

)
:= {{u, v} : u 6= v, u ∈ V, v ∈ V } i.e. the set of all (V

2

)
unordered pairs of di�erent elements of V . A graph G is an ordered pair G = graph

(V,E) where V(G):= V is the set of vertices (or nodes) and E(G):= E ⊆
(
V
2

)
V(G)

E(G)is the set of edges. We de�ne the order of G as |G|:= |V | i.e. the number of

order

|G|6

vertices in G. We can see an example in Figure 3.
We say that two vertices v, w of G are neighbors i� {v, w} ∈ E. We call v neighbors

and w the end points of the edge {v, w}. To ease notation, we use uv to denote end points

the edge {u, v} (note then uv = vu). The degree of a vertex v is the number degree

of neighbors v has. For example, in the graph G3 (see Figure 3) vertex 5 has
neighbors 3, 4, 6, i.e. degree 3.

1

23

4

5 6

Figure 3: A graph G3 = (V3, E3) on vertex set V3 = {1, 2, 3, 4, 5, 6} and edge set E3 =
{12, 34, 45, 56, 35}. Note that |G| = 6 i.e. G is of order 6.

A subgraph of a graph G = (V,E) is a graph of the form S = (V ′, E′) such subgraph

that V ′ ⊆ V and E′ ⊆ E; we write S ⊆ G to say that S is a subgraph of G. We S ⊆ G

can see an example in Figure 4.

1

3

4

5

Figure 4: A subgraph G4 = (V4, E4) of G3 on vertex set V4 = {1, 3, 4, 5} and edge set
E4 = {34} .

Given a graphG = (V,E) and a subset of verticesW ⊆ V , we de�ne E[W] :=
E∩
(
W
2

)
i.e. the edges ofG whose endpoints lie inW . We callG[W] := (W,E[W])

the induced subgraph by W in G. For example, in Figure 5 we see the induced induced subgraph

subgraph G3[V4] = ({1, 3, 4, 5}, {34, 45, 35}). Note that G4 is not an induced
subgraph of G3.

7

1

3

4

5

Figure 5: Induced subgraph G3[V4].

Let G = (V,E) be a graph. Given an (ordered) sequence v1v2....vk of distinct
vertices of V with vhvh+1 ∈ E for every h ∈ {1, 2, ...k − 1}, we de�ne a path P path

as a subgraph of the form ({v1, ..., vk}, {v1v2, v2v3, ..., vk−1vk}). We call v1 and
vk the endpoints of P and we say that P is a path between v1 and vk, we also endpoints

say that P is of length k− 1. The distance between two vertices v and w is the length

distancelength of a minimal path between them; if no path between them exists we say
that their distance is in�nite. Given an (ordered) sequence v1v2....vk of distinct
vertices of V where vivi+1 ∈ E for every i ∈ [k] and where we set vk+1 = v1, we
de�ne a cycle of G as a subgraph of the form {{v1, ..., vk}, {v1v2, v2v3, ..., vkv1}}. cycle

If a cycle C in G contains all vertices of G, we call C a Hamilton cycle. For Hamilton cycle

convenience of notation we will identify path and cycles with sequences of ver-
tices. However these sequences are not uniquely de�ned: for example v1v2...vkv1
represents the same cycle as v1vk...v2v1 since we do not take into account the
orientation of the cycle. Some examples are shown in Figure 6.

1

23

4

5 6

1

23

4

5 6

Figure 6: The �gure on the left highlights the path 4356 in G3. This is a path between
vertices 4 and 6. The �gure on the right highlights the cycle 345 in G3. This graph does not
contain a Hamilton cycle. The distance between vertices 4 and 6 is 2; the distance between
vertices 1 and 6 is in�nite because there is no path between them.

A graph G = (V,E) is connected i� there is a path between every two connected

distinct vertices of V. A graph that is not connected is called disconnected . disconnected

A connected component of a graph G = (V,E) is an induced subgraph G[W] connected compo-
nentthat is connected and maximal in the sense that there is no connected induced

subgraph of G that properly contains G[W]. For example, G3 is disconnected
with connected components G[{1, 2}], G[{3, 4, 5, 6}].

A tree is a connected graph which contains no cycles. Given a graph G = tree

8

(V,E), we call a subgraph T = (V1, E1) a spanning tree of G i� T is a tree spanning tree

and V1 = V. Connectedness and spanning trees are closely related, as shown
in Proposition 1. This proposition tells us in particular that G3 cannot have a
spanning tree because it is not connected. We can see an example of a spanning
tree in Figure 7.

1

2

3

4

5

Figure 7: Spanning tree T7 = ({1, 2, 3, 4, 5}, {54, 53, 52, 21}) of the graph G7 =
{{1, 2, 3, 4, 5}, {12, 13, 14, 24, 25, 35, 45}}.

Proposition 1 (see e.g. [9]). A graph G is connected i� G contains a spanning
tree.

A graph property P is a family of graphs. For example, the property of being graph property

connected corresponds to the family of all connected graphs. Informally we say
that a graph G has the property P or satis�es the property P if G ∈ P. We
say that a property P is monotone increasing if given two graphs G1 and G2 monotone in-

creasingon the same vertex set, if G1 ⊆ G2 and G1 ∈ P then G2 ∈ P. Equivalently we
can describe it as a property that is not destroyed by adding edges.

1.2 Random Graphs.

In the late 1950s and early 1960s Erd®s and Rényi began to study graphs that
are generated randomly. The focus is not what happens for all graphs but what
typically happens for most graphs.

Random graphs are useful because they have many (though not all) of the
same properties as complex networks, but analyzing the networks themselves
may be challenging: the networks can be too large or the information about
them can be incomplete; examples of complex networks include social networks,
brain networks and computer networks.

Let n ∈ N and 0 ≤ p ≤ 1. Then G(n, p) is the probability space of graphs on G(n, p)

vertex set [n] = {1, 2, ..., n} with probability distribution de�ned by P[([n], E)] =

p|E|(1−p)(
[n]
2)−|E| for any E ⊆

(
[n]
2

)
, i.e. given a graph G = ([n], E), the probabi-

lity that G is �selected� is p|E|(1− p)(
[n]
2)−|E|. An Erd®s-Rényi binomial random

graph is a random element of G(n, p) usually denoted as G(n, p). Alternatively binomial random
graph(and equivalently), we can describe G(n, p) as a graph on vertex set [n] where

each edge is present with probability p independently of each other.

9

G1

P[G1] = (1
3
)1(2

3
)2 = 4

27
.

G2

P[G2] = (1
3
)1(2

3
)2 = 4

27
.

G3

P[G3] = (1
3
)1(2

3
)2 = 4

27
.

G4

P[G4] = (1
3
)2(2

3
)1 = 2

27
.

G5

P[G5] = (1
3
)2(2

3
)1 = 2

27
.

G6

P[G6] = (1
3
)2(2

3
)1 = 2

27
.

G7

P[G7] = (2
3
)3 = 8

27
.

G8

P[G8] = (1
3
)3 = 1

27
.

Figure 8: Graphs on 3 vertices with their respective probabilities in the probability space
G(3, 1/3).

Note that this is not quite the model that Erd®s and Rényi considered; the
original model used by Erd®s and Rényi is known as the uniform model : G(n,m) uniform model

is the probability space of all graph H = (V,E) on vertex set [n] with exactly

0 ≤ m ≤
(
n
2

)
edges, and with probability distribution P[H] = 1/

((n
2)
m

)
i.e. every

graph in the probability space has the same probability of being �selected�,
meaning the probability is uniform. G(n,m) denotes an element chosen at
random in G(n,m).

The binomial model is usually easier to analyse because we have indepen-
dence between edges. However in some cases it is much more convenient to use
the uniform model. For example, when adding edges one by one and determining
a �hitting time� i.e. when the graph �rst satis�es a certain property.

Consider the models G(3, p = 1/3) and G(3,m = 1). In Figure 8 we see that
the only graphs with non-zero probability of being �selected� in G(3,m = 1) are
G1, G2 and G3. On the other hand the probability of �selecting� one of these
three graphs in G(3, p = 1/3) is 12/27 < 1/2. Clearly these spaces are very
di�erent (and no non-trivial choice of p and m will change this fact). However,
when n→∞ (which is what usually interest us) the two models become closely
related (under some reasonable assumptions) in the sense that events that are

10

probable in one model are also probable in the other. We can informally express
this as follows:

• For any graph property P, if for any m such that m ∼
(
n
2

)
p (i.e. the

number of edges is G(n,m) is approximately the same as the expected

number of edges in G(n, p)) it holds that P[G(n,m) ∈ P]
n→∞−−−−→ p0 for

some constant p0, then P[G(n, p) ∈ P]
n→∞−−−−→ p0.

• For a monotone graph property P, if P[G(n, p) ∈ P]
n→∞−−−−→ p0 for every

p ∼ m

(n
2)

then P[G(n,m =
⌊
p
(
n
2

)⌋
) ∈ P)]

n→∞−−−−→ p0.

The exact statements are expressed in Theorem 1.

Theorem 1. (see e.g. [14]) Let 0 ≤ p0 ≤ 1, let p = p(n) and

s(n) = n
√
p(1− p) n→∞−−−−→∞, and let ω(n)

n→∞−−−−→∞. Then,
• If P is any graph property and for all m ∈ N such that |m −

(
n
2

)
p| <

ω(n)s(n) it holds that P[G(n,m) ∈ P]
n→∞−−−−→ p0, then P[G(n, p) ∈ P]

n→∞−−−−→
p0.

• Let p− := p − ω(n)s(n)
n3 and p+ := p + ω(n)s(n)

n3 . If P is a monotone graph
property and:

• P[G(n, p−) ∈ P]
n→∞−−−−→ p0,

• P[G(n, p+) ∈ P]
n→∞−−−−→ p0,

then P[G(n,m =
⌊
p
(
n
2

)⌋
) ∈ P)]

n→∞−−−−→ p0.

This theorem means that the uniform model and the binomial model are
very similar. We will only consider the binomial model in the rest of the thesis.

We will use the following asymptotics throughout the thesis. Given two asymptotics

functions f, g : N → R we write g(n) = O(f(n)) i� |g(n)/f(n)| is bounded O(f(n))

for su�ciently large n, i.e. there exist n0 and C such that for every n ≥ n0,
|g(n)/f(n)| ≤ C, on the other hand we write f(n) =Ω(g(n)) i� g(n) = O(f(n)). Ω(g(n))

Similarly, we write g(n) = o(f(n)) (or g � f) i� g(n)/f(n)
n→∞−−−−→ 0, on the o(f(n))

other hand we say that f(n) = ω(g(n)) i� g(n) = o(f(n)). We write f(n) = ω(g(n))

Θ(g(n)) i� f(n) = O(g(n)) and g(n) = O(f(n)). Θ(g(n))
Given p = p(n) we say that a property P holds with high probability i� with high probabi-

lityP[G(n, p(n)) ∈ P]
n→∞−−−−→ 1. The phrase �with high probability� will be abbrevi-

ated to whp. whp

Erd®s and Rényi proved some remarkable results about random graphs in-
cluding the giant component phase transition (Theorem 6) and the connected-
ness phase transition(Theorem 3). These are examples of a phenomenon called
phase transition; this phenomenon refers to the radical change of �behavior� of phase transition

random graphs given a small change in the probability p (or the number of edges
because this is ∼

(
n
2

)
p).

In general, we want to study random graphs G(n, p) where n→∞ and p(n)
is a function of n. In this case we want to �nd a threshold function t(n) for a threshold func-

tionspeci�c property P. i.e. a function such that:

11

• If p� t, then whp G(n, p(n)) does not have the property P;

• if p� t, then whp G(n, p(n)) has the property P,

or vice versa.
In the case of the phase transition results of Erd®s and Rényi mentioned

above we not only �nd a threshold but a sharp threshold. A function s(n) is a
sharp threshold function for a property P i� for every ε > 0 : sharp threshold

function

• If p(n)/s(n) ≤ 1− ε, then whp G(n, p(n)) does not have the property P;

• if p(n)/s(n) ≥ 1 + ε, then whp G(n, p(n)) has the property P,

or vice versa,
We mentioned that we would like to �nd thresholds but it is not clear why

they should exist. It turns out that if the property we are analyzing is monotone
then there is always a sharp threshold:

Theorem 2. (E. Friedgut, G. Kalai, [13]) Every monotone graph property has
a sharp threshold in G(n, p).

Consider G(n, p) with p = 0.9 and n → ∞, in this case it is very probable
that G(n, p) will be connected (whp all vertices have ∼ 0.9n neighbors so any
two share a common neighbor). Indeed, for any constant 0 < p ≤ 1 whp G(n, p)
is connected. We can argue this by calculating the probability that two �xed
vertices are at distance at least 3 and then multiplying this value by

(
n
2

)
to get

an upper bound on the probability that there exist any two vertices at distance
at least 3 in G(n, p); it is easily veri�able that this upper bound tends to 0 as

n tends to in�nity. If we let p
n→∞−−−−→ 0, how does this a�ect the probability

that G(n, p) is connected? If p tends to 0 very fast (for example by letting
p = 0) it is clear that the probability for connectedness tends to zero very fast
also. The surprising fact is that if we let p tend to zero slowly enough, the
probability for connectedness tends to 1; furthermore there is a threshold for
this. This phenomenon is known as the phase transition for connectedness and
was discovered by Erd®s and Rényi (see [12]).

Theorem 3 (Phase transition for connectedness, [11]). Let a ≥ 0 and G(n, p)
a random element of G(n, p) where p = a log n/n, then:

• If a < 1, then whp G(n, p) is not connected.

• If a > 1, then whp G(n, p) is connected.

Remark 4. Note that as mentioned earlier, Theorem 3 (and later also Theo-
rem 6) is not stated originally in this form by Erd®s and Rényi since they used
the uniform model. However, this new form of the theorem follows easily from
the original statement.

Remark 5. Stronger versions of Theorem 3 are known, see e.g. [12].

12

A giant component is a connected component of a graph G = (V,E) that giant component

contains a constant fraction of V. Note that this is automatically an asymp-
totic condition. The giant component phase transition theorem states that the
threshold for the existence of a giant component is located at p = 1/n. Theo-
rem 6 can be informally stated as saying that whp below this p all connected
components are small and above this p whp there is a unique giant component
and the rest are small.

Theorem 6 (Phase transition for giant component, [11]). Let c > 0, p =
p(n) := c/n and G(n, p) be a random element of G(n, p). Let C1 the largest con-
nected component of G(n, p) and C2 be the second-largest connected component
of G(n, p). Then the following holds:

• If c < 1, then whp |C1| = O(lnn).

• If c = 1, then there is a constant κ > 0 such that for all a > 0,

lim
n→∞

P
[
|C1| ≥ an2/3

]
≤ κ

a2
.

• If c > 1, then whp there is a unique giant component and |C2| = O(lnn).

Remark 7. Stronger versions of Theorem 6 are known, see e.g. [4].

1.3 Jigsaw Percolation.

The study of the interactions between two (or more) objects (of various natures)
under speci�c rules plays a key role in many sciences; in graph theory, interac-
tions between graphs can also be studied. We would like to answer this question:
when are two graphs on the same vertex set �jointly connected�?1 We would
like to �nd a meaningful interaction between two graphs so we can call them
�jointly connected�. One such interaction is provided by the jigsaw percolation
process.

This was introduced by Brummitt, Chatterjee, Dey, and Sivako� in [7] to
model how a social network can solve a puzzle collectively. It studies the inter-
action between the graph of �social interactions� and the graph of �information
exchange�. We will see later that connectedness is a necessary (but not su�cient)
condition for two graphs to complete the jigsaw percolation process successfully.

The study of how social networks solve problems has been of increasing
interest. In a 2012 Scienti�c American article entitled �Social Network Size
Linked to Brain Size� (see [18]) it is actually claimed that our brains are wired
to solve di�cult problems by means of social networks. We quote: �...Our
brains are not as large as they are in order to provide each of us with the
raw computational power to think our way out of a sticky situation, instead
our brain size helps each of us to deal with the large and complex network of
relationships we rely on to thrive...�, the evidence referred to is [19]. Based on

1This term is being used rather informally and it can have a di�erent meaning in some
literature.

13

〈1〉

〈2〉

〈3〉

〈4〉 〈6〉

〈5〉

〈12〉 〈34〉 〈56〉
〈123456〉

Figure 9: Percolating pair of graphs. We begin the process with a graph on vertex set
{1, 2, 3, 4, 5, 6}. Each of these vertices forms a cluster by itself at the beginning. In the next
step we see that the clusters 〈1〉 and 〈2〉 merge into a cluster 〈12〉 because they share edges of
both colors. Similarly clusters 〈34〉 and 〈56〉 are formed from clusters 〈3〉, 〈4〉, 〈5〉 and 〈6〉. In
the �nal step we note that clusters 〈12〉, 〈34〉 and 〈56〉 merge because they form a connected
component in the graph of double edges.

this we believe that many models are yet to come in the study of how social
networks solve problems.

In this thesis we will consider jigsaw percolation, which is a discrete time
process that merges clusters of vertices according to a deterministic rule. Each
of the n people in the social network has a piece of the puzzle, and the pieces of
the puzzle must be combined in a certain way in order to solve it. We can model
the n people by n vertices and within those n vertices we introduce a red-edged
graph and a blue-edged graph. In [7] these graphs are called the people-graph people-graph

and the puzzle-graph respectively. The �rst graph tells us whether two people are puzzle-graph

acquainted and the second whether their respective puzzle pieces are compatible.
If two people v1 and v2 are acquainted and their puzzle pieces are compatible
we merge them into one cluster v12 that inherits all the neighbors that v1 and
v2 had in the red-edged and blue-edged graphs (in the formal de�nition we may
merge connected components of clusters instead of just pairs). We go on as
long as there are clusters that share a red and blue edge. If we get a single
cluster at the end of the process, this means that the puzzle was solved, and
we say that the process percolates or that the graphs percolate. We can see an
example of this process in Figure 9. A formal de�nition of this process is given
in Algorithm 1.

The process cannot percolate if one of the graphs is not connected, as we can
observe in Figure 10. We note that the property that two graphs percolate is
a monotone increasing property i.e. if two graphs percolate, then adding edges
into either one will not change this. This implies that if p1 ≤ p′1 and p2 ≤ p′2
then P [(G(n, p1), G(n, p2)) percolates] ≤ P [(G(n, p′1), G(n, p′2)) percolates] (a
formal proof of this fact is given in Proposition 7).

14

〈3〉

〈2〉〈1〉

〈4〉

〈5〉 〈6〉

〈1〉 〈23〉 〈45〉 〈6〉

Figure 10: Non-percolating 2-fold graph. In the �rst step we have a graph on vertex set
{1, 2, 3, 4, 5, 6}. At the beginning, these vertices form clusters by themselves. In the next step
clusters 〈2〉, 〈3〉 and 〈4〉, 〈5〉 merge to form clusters 〈23〉 and 〈45〉. We then stop because there
are no more clusters that can be merged. We are left with 4 clusters in the end, so the process
does not percolate.

In [7], Brummitt, Chatterjee, Dey and Sivako� studied the jigsaw percolation
process with the people-graph as a binomial random graph and puzzle-graph
being a Hamilton cycle, or some other connected graph of bounded maximum
degree. Their results give upper and lower bounds for the percolation threshold
probabilities.

We will now introduce some notation to state the main results of [7]. For a
connected puzzle-graph and a people-graph given by a binomial random graph
G(n, p), we denote the probability that the puzzle is solved i.e. the two graphs
percolate by Pp[Solve] for 0 ≤ p ≤ 1 (as a function of n). This function is a
polynomial in p with degree at most

(
n
2

)
(as remarked in [7]). Since Pp[Solve]

is continuous and P0[Solve] = 0 and P1[Solve] = 1, by the intermediate value
theorem for each n there is a value pc(n) (which is unique since the function pc(n)

is strictly monotone) such that Ppc [Solve] = 1/2. The value pc(n) is called the
critical value in [7]. critical value

In [7] the following remarks are made:

• There is nothing special about the value 1/2, which could be replaced by
any positive constant c with 0 < c < 1.

• The critical value pc(n) depends on the puzzle-graph but the notation
does not include this dependency.

Theorem 8 (Ring puzzle, [7]). If the people graph is the binomial random graph
and the puzzle graph is the n-cycle, then:

1

27 log n
≤ pc(n) ≤ π2

6 log n
(1 + o(1)).

Moreover, for pn = λ/ log n:

• if λ < 1/27, then Ppn [Solve]
n→∞−−−−→ 0,

• if λ > π2/6, then Ppn [Solve]
n→∞−−−−→ 1.

In [7] the following conditions for percolation of puzzle-graphs with bounded
maximum degree are obtained.

15

Theorem 9 (Connected puzzle of bounded degree, [7]). For a binomial random
people-graph solving a connected puzzle with bounded maximum degree, pc(n) =
O(1/ log n) and pc(n) = ω(1/nb) for any b > 0. In particular, we have:

• If b > 0 and pn = O(1/nb), then Ppn [Solve]→ 0,

• If λ > π2/6 and pn = λ/ log n, then Ppn [Solve]→ 1.

The upper bounds of these theorems are proven in [7] for a general connected
puzzle-graph. Under the upper-bound assumptions it is proved that whp there
exists a su�ciently large vertex-subset such that the subgraphs induced by it
in the people-graph and the puzzle-graph percolate; once this su�ciently large
vertex-subset exists it follows that whp the people-graph and the puzzle-graph
percolate.

The lower bound in the case of the ring-puzzle is proved by showing that whp
the Hamilton cycle can be cut into vertex-subsets that will not merge with the
people-graph. The strategy to prove the lower bound in the case of Theorem 9
is to prove inductively (on the number of steps for the percolation process) that
whp the number of clusters that merge (in the previous step of the percolation
process) decreases and the maximum number of vertices in any cluster is whp
bounded by a constant and is therefore less than n for su�ciently large n.

In [7] it is observed that the critical value pc(n) marks the phase transi-
tion for the people-graph at which it begins to solve the puzzle whp; it is also
observed that even though pc(n)

n→∞−−−−→ 0 the critical average degree of a ver-

tex npc(n)
n→∞−−−−→ ∞ i.e. the average number of interactions per person in the

people-graph must increase. Thus the number of interactions per person in a
social network must increase as the puzzle that must be solved �grows�.

In [6] Bollobás, Riordan, Slivken, and Smith replaced the people-graph and
the puzzle-graph with binomial random graphs G(n, p1), G(n, p2). Their result
is a percolation threshold in terms of the product p1p2.

Theorem 10 (see [6]). There exists a constant c such that the following holds:
for G1 = G(n, p1), G2 = G(n, p2) independent binomial random graphs where
0 ≤ p1 = p1(n), p2 = p2(n) ≤ 1. Then:

(1) if p1p2 ≤ 1
cn logn or min{p1, p2} ≤ logn

cn then whp (G1, G2) does not perco-
late;

(2) if p1p2 ≥ c
n logn and min{p1, p2} ≥ c logn

n , then whp (G1, G2) percolates.

Remark 11. This is not the original form of Theorem 10 (see [6]), but it is easy
to derive this form from the original.

Remark 12. Connectedness is a necessary (but not su�cient, see Figure 12 and
Proposition 4) condition for percolation. Therefore, the condition min{p1, p2} ≥
c logn
n in (2) is needed (at least up to the constant c) to guarantee connectedness

whp (see Theorem 3).

The aim of this thesis is to extend Theorem 10 to an arbitrary but �xed
number of colors. We begin by describing the multi-colored jigsaw process.

16

〈1〉〈2〉

〈3〉

〈4〉

G11 = {{1, 2, 3, 4}, {12, 34}, {13, 23}}

〈2〉

〈3〉

〈4〉

({2, 3, 4},∅, {23}) ⊆ G11

〈2〉

〈3〉

〈4〉

G11 [{2, 3, 4}]

〈1〉〈2〉

〈3〉

〈4〉

G11〈2〉

Figure 11: Example of a 2-fold graph G11 and some other examples (see De�nitions 13
and 14).

1.4 The Multi-Colored Jigsaw Algorithm.

We begin with the following de�nitions:

De�nition 13. An r-fold graph is an (r + 1)-tuple G := (V,E1, ..., Er), where r-fold graph

V is the set of vertices and Ei ⊆
(
V
2

)
for each i ∈ [r]. We will call 1, 2..., r the

colors of G and the graph Gi = (V,Ei) will be said to be of color i for every
i ∈ [r].

De�nition 14. Let G = (V,E1, ..., Er) be an r-fold graph and W ⊆ V any
subset of vertices. Then we de�ne:

• An r-fold subgraph of G is an r-fold graph of the form r-fold subgraph

(W,E′1, ..., E
′
r) where E′i ⊆ Ei[W] for every i ∈ [r]. We write

(W,E′1, ..., E
′
r) ⊆ G to say that (W,E′1, ..., E

′
r) is an r-fold subgraph of

G.

• The r-fold subgraph induced by W in G is the r-fold subgraph G[W]:= r-fold subgraph
induced by W

G[W]

(W,E1[W], ..., Er[W]).

• An i-fold color-induced subgraph of G is any i-fold graph of the form i-fold color-
induced subgraphG〈j1, ..., ji〉:= (V,Ej1 , Ej2 , ..., Eji), where 1 ≤ j1 < j2 < ... < ji ≤ r.
G〈j1, ..., ji〉

We can see some examples in Figure 11.
ulti-colored jigsaw algorithm is a generalization of the two-colored jigsaw

algorithm: we now merge two clusters i� they share edges of all r colors. In

17

〈1〉〈2〉

〈3〉

〈4〉

〈1〉〈2〉

〈3〉

〈4〉

Figure 12: Non-percolating 2 and 3-fold connected 2 and 3-fold graphs. In the case of the
2-fold graph we note that each color graph is connected but there are no clusters sharing at
least two edges of di�erent colors, so they cannot be merged. In the case of the 3-fold graph
we note that each pair of graphs percolate but the 3-fold graph does not percolate. We need
three edges of di�erent colors to merge a pair of clusters, and this condition is clearly not
ful�lled for any pair of clusters, so the 3-fold graph cannot percolate.

more detail: let G = (V,E1, ..., Er) be an r-fold graph and G1, G2, ..., Gr be the
colored graphs of G. At each discrete time t = 0, 1, ... we have a partition of
V into clusters. At time t, let Ht be the graph whose vertices are the clusters,
with two vertices joined by an edge i� the corresponding clusters are joined
by an edge of each of the r colors. The clusters of our jigsaw process at time
t + 1 are the unions of the clusters that belong to the same component of Ht.
We say that the jigsaw process percolates if we eventually arrive at a single
cluster. In particular, for r = 1, percolation is equivalent to connectedness (see
Proposition 2).

The percolation process is formally described in the following algorithm:

Algorithm 1 (The multi-colored jigsaw algorithm). For any integer r ≥ 1. Let
G := (V,E1, ..., Er) be an r-fold graph. Jigsaw percolation with input G evolves
at discrete times t = 0, 1... according to the following algorithm. At time t there
is a partition Ct = {C1

t , C
2
t ,, C

kt
t } of the vertex set V, which we construct

inductively as follows:

1. We take k0 = n and Cj0 := {j} for all j ∈ [n]. This means that we begin
at time 0 with every vertex in a separate set of the partition.

2. At time t ≥ 0, construct a graph Ht on vertex set Ct by joining Cit to C
j
t

if there exist edges es := {vi,s, vj,s} ∈ Ei for all s ∈ [r] such that vi,s ∈ Cit
and vj,s ∈ Cjt .

3. If E(Ht) = ∅, then STOP. Otherwise, construct the partition

Ct+1 = {C1
t+1, ..., C

kt+1

t+1 },

where C1
t+1, ..., C

kt+1

t+1 are the obtained by merging the connected compo-
nents of Ht i.e. if Di

t ⊆ Ct induces a connected component in Ht then
Cit+1 =

⋃
C∈Di

t
C.

18

4. If |Ct+1| = 1 STOP. Otherwise, go to step 2.

We introduce the following de�nitions:

De�nition 15 (r-fold connected). We say that an r-fold graphG = (V,E1, ..., Er)
is r-fold connected i� the graphs (V,Ei) are connected for each i ∈ [r]. r-fold connected

Remark 16. We note that r-fold connectedness does not imply percolation when
r ≥ 2, as we can observe in Figure 12. Futhermore, percolation of all i-fold
proper color-induced subgraphs (i.e. for all 1 ≤ i < r) does not imply percolation
of the the r-fold graph, as we see in the 3-fold graph of Figure 12. On the
other hand, percolation does imply that every i-fold color-induced subgraph
(for i ∈ [r]) percolates (see Propositions 3 and 4).

Percolating r-fold
graphDe�nition 17. • We say that the r-fold graph G = (V,E1, E2, ..., Er) per-

colates if Algorithm 1 applied to G ends with one single cluster. Otherwise
we say that G does not percolate.

Percolating sub-
set• We say that a subset W ⊆ V is a percolating subset (or that it percolates)

in G = (V,E1, E2, ..., Er) if the induced r-fold subgraph G[W] percolates.

Remark 18. The de�nition of a percolating subset corresponds in [6] to the
de�nition of an internally spanned set.

From Algorithm 1 we can prove the following basic properties of percolating
r-fold graphs:

Proposition 2. Percolation for r = 1 is equivalent to connectedness.

Proof. Let G be a 1-fold graph (i.e. a normal graph), then in the �rst step of
Algorithm 1, each connected component of G merges to a cluster, and then the
algorithm stops. Therefore, if G is connected we merge all G to a single cluster
which means that G percolates. On the other hand, if G percolates we end
up with a single cluster that was obtained by merging a connected component,
which means that G is connected.

The following proposition will be used several times in the rest of the thesis:

Proposition 3. Let 1 ≤ i ≤ r. If an r-fold graph G = (V,E1, ..., Er) percolates
then every i-fold color-induced subgraph G〈j1, ..., ji〉 percolates.

Proof: Let G be a percolating r-fold graph on n vertices and Gi be any (but
�xed) i-fold color-induced subgraph of G.

Recall that Algorithm 1 at time t de�nes an auxiliary graph Ht on vertices
Ct, which are the clusters at time t. In the jigsaw process run on G, we call
these Ĥt and Ĉt. On the other hand, the corresponding graph and vertices in the
jigsaw process run on Gi will be called H̃i and C̃i. Let t̂ and t̃ be the stopping
times of the jigsaw processes of G and Gi respectively. Then Ĉt̂ = {[n]} since
G percolates; we aim to prove Gi also percolates.

In order to avoid some tiresome technical details we slightly rede�ne Algo-
rithm 1 by letting Step 4 just be "go to step 2". The result is that rather than

19

stopping once no more clusters can be merged, the algorithm keeps outputting
the same partition into clusters and (empty) auxiliary graph. This means that
the algorithm never terminates, but ensures that Ht and Ct are de�ned for all
t where Ht = Gtend and Ct = Ctend for any t beyond the stopping time tend of
the original algorithm. It is easy to check that an r-fold graph on vertex set V
percolates i� Ct = {V } for some su�ciently large t in the modi�ed version of
Algorithm 1 (certainly t = |V | is large enough).

Note that Ĉt and C̃t are partitions of [n] for every t. We prove that for every
t, the cluster collection Ĉt = {Ĉ1

t , ..., Ĉ
kt
t } is a re�nement of C̃t = {C̃1

t , ..., C̃
lt
t }

i.e. for every Ĉit ∈ Ĉt there exists C̃jit ∈ C̃t such that Cit ⊆ C̃jit . We prove this
by induction on t. For t = 0 we have by de�nition (see step 1 of Algorithm 1)
that Ĉ0 = C̃0 = {{1}, ..., {n}}, this proves the base of induction.

We now prove the inductive step t → t + 1 i.e. we assume that Ĉt is a
re�nement of C̃t and aim to prove that Ĉt+1 is a re�nement of C̃t+1. By de�nition,
Ĉt is the vertex set of the graph Ĥt and Ĉt+1 is constructed by merging the
connected components of Ĥi. Recall that two clusters Cqt , C

s
t are connected in

Ht if they share edges of each of the r colors in the input r-fold graph. Therefore
if Ĉqt ⊆ C̃

jq
t and Ĉst ⊆ C̃jst , then C̃

jq
t , C̃

js
t will be connected in H̃t (if they are

di�erent) since Ĉqt , Ĉ
s
t share edges of each of the i colors in the color-induced

i-fold subgraph Gi and therefore so do C̃
jq
t and C̃jst . This means that if for

some W ⊆ [kt], the induced subgraph Ĥt

[⋃
w∈W {Ĉwt }

]
is connected, then the

induced subgraph H̃t

[⋃
w∈W {C̃jw}

]
where Ĉwt ⊆ C̃

jw
t will also be connected. In

particular, this implies that for every connected connected component D̂i
t of Ĥt

there exists a connected component D̃ji
t of H̃t such that

⋃
Ĉ∈D̂i

t
Ĉ ⊆

⋃
C̃∈D̃ji

t
C̃.

This means that Ĉt+1 is a re�nement of C̃t+1, proving induction step.
Now since Ĉt̂, C̃t̂ are partitions of [n] and Ĉt̂ = {[n]} is a re�nement of C̃t̂,

then C̃t̂ = {[n]}. This means that Gi percolates.

Using Propositions 2 and 3, we can prove that:

Proposition 4. Every r-fold percolating graph is r-fold connected.

Proof. Let G = (V,E1, ..., Er) be a percolating r-fold graph. By Proposition 3
it follows that the 1-fold subgraphs (V,Ei) are percolating for every i ∈ [r].
Furthermore percolation in the case r = 1 is equivalent to connectedness (see
Proposition 2). This means that every (V,Ei) is connected and therefore G is
r-fold connected.

1.5 Main Theorem

The following generalization of Theorem 10 is the main result of this thesis:

Theorem 19. Let r ∈ N. There exists a constant Cr such that the following
holds: suppose that p1, ..., pr are functions of n such that 0 ≤ p1 ≤ p2 ≤ ... ≤
pr ≤ 1 and G = ([n], E1, E2, ..., Er) an r-fold graph where ([n], Ei) = G(n, pi)
are independent Erd®s-Rényi random graphs. For i ∈ [r] let Pi := p1p2...pi. Pi

20

Then:

(i) If Pi ≤ 1
Crn logi−1 n

for some 2 ≤ i ≤ r or P1 ≤ logn
Crn

then whp G does not

percolate.

(ii) If Pi ≥ Cr

n logi−1 n
for every 2 ≤ i ≤ r and P1 ≥ Cr logn

n , then whp G

percolates.

We use the following standard de�nition to di�erentiate cases (i) and (ii) of
Theorem 19:

De�nition 20. If conditions of Theorem 19 (i) are satis�ed, we say that we are
in the subcritical case. Similarly, if conditions of Theorem 19 (ii) are satis�ed, subcritical case

we say that we are in the supercritical case. supercritical case

We name the graphs that are used in the main theorem as follows:

De�nition 21. An r-fold random graph G(p1, ..., pr) is an r-fold graph r-fold random
graph([n], E1, ..., En) where ([n], Ei) = G(n, pi) are independent binomial random

graphs for every i ∈ [r].

Remark 22. We have seen that if the r-fold graph G percolates then Gi :=
(V,Ei) must be connected for every i ∈ [r]. From Theorem 3 we know that
the threshold for connectivity in random graphs is logn

n . We will ensure the

connectivity on each Gi by taking p1 = P1 ≥ Cr logn
n . More generally, for every

2 ≤ i ≤ r the inequalities Pi ≥ Cr

n logi−1 n
together with p1 ≤ p2 ≤ ... ≤ pr ensure

that every i-fold color-induced subgraph percolate whp. This is a necessary
condition for percolation as we saw in Proposition 3.

Remark 23. Since percolation for r = 1 is equivalent to connectedness (see
Proposition 2), it is clear that Theorem 19 for the case r = 1 follows directly
from the connectivity threshold (see Theorem 3) by taking any constant c > 1.
The proofs we are going to present in Sections 2 and 3 are for r ≥ 2, but could
be rewritten to work also in the case r = 1. However the proof is far from
optimal and the result already very well-known, therefore we will not include it
in this thesis.

1.6 Intuition.

We now take a closer look at the jigsaw process for r = 2. Suppose that we have a
2-fold random graphG(n, p1, p2), where p1p2 = c

n logn and c logn
n ≤ p1 ≤ p2 ≤ 1.

At the beginning of the jigsaw process, the clusters consist of single vertices and
in order to merge two clusters we need a double edge between them but the
average number of double edges incident to a vertex is small ∼ np1p2 = c

logn �
1. This tells us that at the beginning of the jigsaw process, merging clusters can
be di�cult. However, the crucial point here is that in order to merge clusters,
we need double edges between clusters and not between single vertices.

21

Slightly more precisely, given two clusters C1, C2 of sizes k1 and k2 respec-
tively, the probability that there are vertices v1 ∈ C1 and v2 ∈ C2 such that
there is a double edge between v1 and v2 is approximately:

k1k2p1p2.

On the other hand, the probability of having a double edge between the clusters
(not between two speci�c vertices of them) is:(

1− (1− p1)k1k2
) (

1− (1− p2)k1k2
)
∼ (k1k2p1)(k1k2p2) = k21k

2
2p1p2,

where for the estimate we use the equality:

1− (1− p)k = 1−

(
1− kp+

k∑
i=2

(
k

i

)
(−p)k

)
= kp(1 + o(1))

valid for kp = o(1). This shows that a big cluster merges is more likely to merge
with other clusters than a small cluster. Thus the process may �snowball� in the
sense that once two clusters C1, C2 merge to form C1 ∪C2, this new cluster can
merge with other clusters that C1 and C2 would not have merge individually
and so on.

Let us consider the number of clusters |Ct| that we have at time t in the
jigsaw process run in the r-fold graph G(n, p1, p2). At time t = 0 we have a
large number of clusters |Ct| = n, therefore even though the probability of a
double edge any two is small, the large number of clusters compensates this
fact and allows some clusters to merge. In the subsequent steps the number of
clusters that merge decreases. On the other hand, the sizes of the largest clusters
increase and we saw that bigger clusters have a better chance of merging. The
process can still die out, but beyond a critical size the chances of success i.e. of
the cluster eventually merging with all others, giving percolation, are high. In
Sections 3.2 and 3.3 we show that if just one cluster gets past a certain size,
then the jigsaw process has a high chance of succeeding i.e. the r-fold graph
percolates. This phenomenon is known as the �bottleneck for percolation�. bottleneck for

percolation

1.7 Notation and Observations.

We will ignore �oors and ceilings throughout the thesis whenever they do not
signi�cantly a�ect the arguments (this is usually the case since we consider
graphs on n vertices, where n→∞).

The following proposition will be used throughout the thesis for the super-
critical case:

Proposition 5. Let r, Cr, p1, p2, ..., pr satisfy the conditions of Theorem 19 (ii).
Then for n large enough there exist real numbers 0 ≤ p′1 ≤ p′2 ≤ ... ≤ p′r ≤ 1
that also satisfy conditions of Theorem 19 (ii) and such that:

• p′i ≤ pi for every i,

22

• p′1p′2...p′r = Cr

n logr−1 n
.

Proof. Let Kj = Cr

n logj−1 n
for 2 ≤ i ≤ r and K1 = Cr logn

n . Consider the

following set:

F = {(p′1, ..., p′r) ∈ Rr : K1 ≤ p′1 ≤ p′2 ≤ ... ≤ p′r ≤ 1,

P ′j = p′1p
′
2...p

′
j ≥ Kj for every j ∈ [r],

p′j ≤ pj for every j ∈ [r]},

we note that F is closed because all the inequalities we use to de�ne it are non-
strict and it is non-empty because (p1, ..., pr) ∈ F . It is also bounded because
it is a subset of [K1, 1]r, therefore F is a non-empty compact set. Thus there is
~p ′ := (p′1, p

′
2, ..., p

′
r) ∈ F such that P ′r = p′1p

′
2...p

′
r ≥ Kr is minimal (because P ′r

is a continuous funtion of p′1, p
′
2, ..., p

′
r).

If P ′r = Kr, we are done, therefore we will assume that P ′r > Kr and aim
to prove a contradiction. If p′r > p′r−1 we could �nd p′r−1 ≤ p′′r < p′r such that
Kr ≤ p′1p

′
2...p

′
r−1p

′′
r < p′1p

′
2...p

′
r and thus (p′1, p

′
2, ..., p

′
r−1, p

′′
r) ∈ F (note that no

other P ′j is a�ected). This contradicts the choice of ~p ′, and therefore we must
have p′r = p′r−1.

Let 1 ≤ i < r be the smallest index such that p′r = p′r−1 = ... = p′i.
If P ′j = p′1p

′
2...p

′
j > Kj for every i ≤ j ≤ r we can �nd δ > 0 such that

(p′1, p
′
2, ..., p

′
i−1, p

′
i − δ, p′i+1, ..., p

′
r) ∈ F . This is again contradicts the choice of

~p ′, therefore an equality P ′j = Kj must hold for some index i ≤ j < r. Let j be
such an index. We note that j ≥ 2, otherwise p′1 = p′2 = ... = p′r = K1. This is
not possible since in this case we would have:

P ′r = (K1)r =

(
Cr log n

n

)r
<

Cr

n logr−1 n
= Kr

for r ≥ 2 and n large enough. Thus j ≥ 2.
We recall that P ′r > Kr and P

′
j = Kj , therefore:

P ′r
P ′j

>
Kr

Kj
=

1

logr−j n
.

On the other hand
P ′r
P ′j

= p′j+1p
′
j+2...p

′
r, therefore p

′
j = p′j+1 = ... = p′r >(

1
logr−j n

) 1
r−j

= 1
logn . Making a case distinction we get:

Kj−1 ≤ P ′j−1 =
P ′j
p′j

<
Cr

n logj−1 n
log n =

{
Kj−1 if j ≥ 3
K1

logn < K1 if j = 2

In either case we get a contradiction. We conclude that P ′r = Kr.

We now prove two very useful propositions that will be used throughout the
thesis:

23

Proposition 6. Let P be a monotone increasing property of graphs. If
G(n, p1), G(n, p2) are two independent binomial random graphs and p1 ≤ p2
then:

P [G(n, p1) ∈ P] ≤ P [G(n, p2) ∈ P] .

Proof. The proposition is clearly true if p1 = 1, therefore we assume p1 < 1.
Given two independent binomial random graphs G(n, γ1), G(n, γ2), we note that
G([n], γ1) ∪ G(n, γ2) ∼ G(n, γ) where γ = γ1 + γ2 − γ1γ2. This is because
the edges of the union are independent of each other and an edge exists in
G(n, γ1) ∪G(n, γ2) i� exists in at least one G(n, γj) for j ∈ [2]. From this and
the inclusion-exclusion principle we deduce that the union G(n, γ1)∪G(n, γ2) is
a random binomial graph G(n, γ) where γ = γ1 +γ2−γ1γ2. Thus, if we take an
independent binomial random graphG(n, p∗) where p∗ is de�ned by the equation
p2 = p1 + p∗ − p1p∗ (i.e. p∗ = p2−p1

1−p1), we get G(n, p2) ∼ G(n, p1) ∪ G(n, p∗).
Therefore:

P [G(n, p2) ∈ P] = P [G(n, p1) ∪G(n, p∗) ∈ P] ≥ P [G(n, p1) ∈ P] ,

where the inequality is valid because P is monotone increasing property.

De�nition 24. (Union of r-fold graphs) Let G1 = ([n], E1, E2, ..., Er),G2 =
([n], E′1, E

′
2, ..., E

′
r) be r-fold graphs. Then G1∪G2 is de�ned as the r-fold graph G1 ∪G2

([n], E1 ∪ E′1, E2 ∪ E′2, ..., Er ∪ E′r)

Proposition 7. Let P be a monotone increasing property of r-fold graphs. If
0 ≤ p′i ≤ pi ≤ 1 for i ∈ [r], then:

P [G(n, p′1, ..., p
′
r) ∈ P] ≤ P [G(n, p1, ..., pr) ∈ P] .

Proof. Using the same argument as in Proposition 6 we deduce that for every
i ∈ [r] there is a 0 ≤ p∗i ≤ 1 such that G([n], pi) ∼ G([n], p′i) ∪ G([n], p∗i).
Therefore G(n, p1, ..., pr) ∼ G(n, p′1, p

′
2, ..., p

′
r) ∪G(n, p∗1, p

∗
2, ..., p

∗
r). Thus:

P [G(n, p1, ..., pr) ∈ P]

= P [G(n, p′1, p
′
2, ..., p

′
r) ∪G(n, p∗1, p

∗
2, ..., p

∗
r) ∈ P]

≥ P [G(n, p′1, p
′
2, ..., p

′
r) ∈ P] ,

where the inequality is valid because P is a monotone increasing property. This
completes the proof of Proposition 7.

Observation 1.

Since percolation is a monotone property, it follows by Proposition 7 that if we
prove Theorem 19 for p′1, p

′
2, ..., p

′
r such that p′i ≤ pi ≤ 1 for every i ∈ [r] then

it will also be valid for p1, p2, ..., pr. Therefore by Proposition 6, in the proof of
Theorem 19 (ii) we may assume that Pr = p1...pr = Cr

n logr−1 n
.

Observation 2.

We can deduce from Observation 1 that p2 ≤
(
p1p2p3...pr

p1

)1/(r−1)
≤
(

1
logn

) r
r−1

.

24

1.8 Overview.

The proof of Theorem 19 is laid out as follows. In Section 2 we prove the
subcritical case (part (i)) of Theorem 19 with a simple generalization of the
argument used in [6]. This will be a short proof.

In Section 3 we prove the supercritical case (part (ii)) of Theorem 19, which
is the main body of the thesis. We will use a similar proof scheme to the one
used in [6]. This proof scheme is based on the use of algorithms that construct
percolating subsets of increasing size, and is divided into three parts.

In Part I (Section 3.1) we introduce Algorithm 2 which is an algorithm that
attempts to construct a percolating subset of size (log n)1+εr and prove that whp
the algorithm succeeds. Part I is the longest and empirically most important
in the proof of the supercritical case since we are crossing the bottleneck for
percolation (see Section 1.6).

In Part II (Section 3.2) we introduce Algorithm 3 which begins with a per-
colating subset of size (log n)1+εr (given by the Part I) and from there attempts
to construct a percolating subset of size Θ(n). Our task is to prove that whp
Algorithm 3 succeeds.

In Part III (Section 3.3) of the proof we use the percolating subset of size
Θ(n) given by the second part and the condition p1 ≥ Cr logn

n to prove that whp
the whole set of vertices V percolates.

In Section 4 we will discuss some open problems.

1.9 Main Contributions.

We now summarize the main di�erences between the two-color case and the
multi-colored case:

1. Upper bounds for pi. In the two-color case it is easy to get the bound
p2 ≤ (1/ log n)2 while in general we can only get p2 ≤ (1/ log n)r/(r−1) (see
Observation 2). More generally for 3 ≤ i ≤ r the best possible general
upper bound is pi ≤ 1/ log n. If we had pi ≤ (1/ log n)1+δ for every i
and for some constant δ > 0, then the calculations would be signi�cantly
easier (this is related again to the bottleneck for percolation), but we do
not have this in general. Therefore we introduce the parameter it (see
De�nition 32) to cope with this problem. Informally, this new parameter
keeps track of the pi's that are �small�, which allows us to make the proofs
more compact and clear.

2. Getting past bottleneck. The other important di�erence between the
two-color case and the multicolored case is that in Part I of the two-colored
case in [6], the size of the percolating subset that the algorithm tries to
construct is (log n)3/2. However, the exponent 3/2 will not work for larger
r. We will in fact need an exponent of 1 + εr, where εr → 0 as r →∞.

There will be more minor di�erences between the two-color case and the
multi-colored case which will be noted as they appear in the text.

25

2 Proof of the subcritical case.

In this section we prove part (i) of Theorem 19. We �rst handle the case when
p1 ≤ logn

Crn
. In this case we know from Theorem 3 that the graph (V,E1) is going

to be disconnected whp (taking Cr > 1) and from Proposition 4 we know that
r-fold connectedness is a necessary condition for percolation. This means that
whp the r- fold graph will not percolate, as claimed.

In the case when Pi ≤ 1
Cr logi−1 n

for some 2 ≥ i ≤ r, by Proposition 3 we

just need to prove that whp the i-fold graph (V,E1, ..., Ei) does not percolate.
To simplify the notation we will replace i by r in the rest of the proof of the
subcritical case (since r is arbitrary).

Let Pr ≤ 1
Crn logr−1 n

. We can informally summarize the proof of this section

as follows. Given the following events:

A : The r-fold graph G = (V,E1, E2, ..., Er) percolates,

W : There is a subset W ⊆ V of size log n ≤ |W | ≤ 2 log n, such that G[W] is
r-fold connected (see De�nitions 15, 17),

we �rst prove that A ⊆ W. The second part of the argument is to prove that
P[W] = o(1) given that Pr = p1p2...pr is small. Since P[A] ≤ P[W] we can
conclude that the event A is unlikely.

We begin by proving that the event W contains the event A.

Claim 25. For every natural number k ≤ n/2 and every percolating r-fold graph
G = (V,E1, E2, ..., Er) there is a subset W of V of size at least k but not larger
than 2k such that G[W] is r-fold connected.

Proof. We can split the percolation process de�ned in Algorithm 1 into smaller
steps, in each of which two clusters (i.e. elements of the current partition Ct)
merge. Speci�cally, we can modify step (3) in Algorithm 1 so that instead
of merging entire connected components of sets Cit (connected in Gt), we only
merge an arbitrary pair of sets Cit which are joined by an edge of each of the r
colors.

At the beginning of the percolation process, each vertex of V is a cluster by
itself and since the r-fold graph percolates, the process ends with a cluster of
size n ≥ k. We therefore begin to merge pairs of clusters and consider the �rst
time that a cluster W of size at least k appears. This cluster cannot be of size
larger than 2k since it is the union of two clusters of size less than k.

Furthermore, since G[W] is percolating we know by Proposition 4 that it is
r-fold connected. This completes the proof of Claim 25.

Let Wk be the event that there exists a subset W of V such that |W | = k
and G[W] is r-fold connected.

Let W :=
2 logn⋃
k=logn

Wk, then by Claim 25 and the union bound:

26

P[A] ≤ P[W] ≤
2 logn∑
k=logn

P[Wk]. (1)

We de�ne the random variable Tk to be the number of r-fold subgraphs
(W,E′1, E

′
2, ..., E

′
r) where W ⊆ V and E′i ⊆ Ei and the graphs (W,E′i) are trees

with exactly k vertices. We can deduce using Markov's inequality (which states
that αP[X ≥ α] ≤ E[X] for a non-negative random variable, see e.g. [1]) on Tk
that:

P[Wk] = P[Tk ≥ 1] ≤ E[Tk]. (2)

We now want to estimate E[Tk]. We begin by calculating the number T of
possible (r + 1)-tuples (W,D1, D2, ..., Dr) where W ⊆ V is a subset of vertices,
Di ⊆

(
W
2

)
is any subset of edges and the graphs (W,Di) form trees with exactly

k vertices. We recall that there are kk−2 labeled spanning trees in a complete
graph with k vertices. Therefore, for a given W there are kk−2 possible choices
for each Di. This holds for each possible subset W with exactly k vertices
of V , of which there are

(
n
k

)
, therefore T =

(
n
k

)∏r
i=1 k

k−2. Recalling that the
graphs (V,Ei) are independent of each other and each of these (r + 1)-tuples
(W,D1, ..., Dr) have k − 1 edges for each color, we deduce that the probability
that these subgraphs exist in G is

∏r
i=1 p

k−1
i . Thus E[Tk] =

(
n
k

)∏r
i=1 k

k−2pk−1i .
Using the previous estimate for E[Tk] and the well-known bound (see e.g.

[8])
(
n
k

)
≤ (en/k)k we conclude that:

P[A]
(1)

≤
2 logn∑
k=logn

P[Wk]
(2)

≤
2 logn∑
k=logn

E[Tk]

=

2 logn∑
k=logn

(
n

k

) r∏
i=1

kk−2pk−1i

≤ 1

Pr

2 logn∑
k=logn

(en
k

)k
kr(k−2)P kr

≤ 1

Pr

2 logn∑
k=logn

(enkr−1Pr)
k

≤ 1

Pr

2 logn∑
k=logn

(2r−1en(log n)r−1Pr)
k

= 2r−1en(log n)r−1
2 logn∑
k=logn

(2r−1en(log n)r−1Pr)
k−1.

27

We recall that Pr ≤ 1/(Crn logr−1 n). Assuming that Cr ≥ 2r−1e3 we get
2r−1en(log n)r−1Pr ≤ 1/e2. We deduce that:

P[A] ≤ 2r−1en(log n)r−1
2 logn∑
k=logn

(
1

e2

)k−1
≤ n3/2

∞∑
k=logn

(
1

e2

)k−1

= n3/2
(

1

e2

)logn−1
1

1− 1
e2

≤ e4n3/2

n2(e2 − 1)

= o(1).

This completes the proof of the subcritical case. �

Remark 26. It is worth noting that we for the proof we exploit the bottleneck for
percolation by disproving the existence of a percolating subset of size ∼ log n.
The choice of log n was sensible precisely because this is where the bottleneck
occurs.

28

3 Proof of the supercritical case.

In this section we will prove part (ii) of Theorem 19.
The main idea for the proof is to construct an increasing sequence of perco-

lating subsets V1 ⊆ V2 ⊆ V3 = V , where V1 and V2 are themselves constructed
by increasing sequences of percolating subsets. Therefore we will divide the
proof into three parts:

Part I: We show that whp there is a percolating subset V1 ⊆ V of size at
least t1:= (log n)1+εr for some �xed εr > 0, dependent only on the number t1

of colors which will be de�ned later.

Part II: In this part we show that conditioned on the existence of a per-
colating subset V1 ⊆ V of size at least t1, whp there exists a percolating
subset V2 ⊃ V1 of size at least n/2r+2.

Part III: Finally we show that conditioned on the existence of a percolating
subset V2 of size at least n/2r+2, whp the whole set V percolates.

We prove Parts I and II by de�ning exploration algorithms that will expose
the edges of the r-fold graph in a special order that depends on what has been
observed so far in the process. The independence between the three parts of the
proof is guaranteed by independent rounds of exposure.

Let G = G(n, p1, ..., pr) an r-fold graph that satis�es the conditions of The-
orem 19. From Proposition 5, we may assume Pr = p1 · p2 · ... · pr = Cr

n logr−1 n
.

For i = 1, 2, ..., r and j = 1, 2, 3 let:

• Gji be a binomial random graph G(n, p∗i) where p∗i := pi
3 (independently

for each i, j),

• Gi := G1
i ∪G2

i ∪G3
i ,

• G(j) := ([n], E
(j)
1 , E

(j)
2 , ..., E

(j)
r) where E

(j)
i := E(G

(j)
i).

In Part j of the proof we will work with the round of exposureG(j). Therefore
all three parts of the proof will be independent.

By proving that whp all three parts of the proof hold for their respective
round of exposureG(j), we are proving that the r-fold graphG∗ = G(1)∪G(2)∪
G(3) percolates whp. Using a similar argument as in Proposition 6, we note that
Gi ∼ G(n, p′i) where p

′
i := 3p∗i − 3(p∗i)

2 + (p∗i)
3 = p∗i (3− 3p∗i + (p∗i)

2), therefore:

• G∗ ∼ G′ := G(n, p′1, p
′
2, ..., p

′
r),

• p′i ≤ 3p∗i = pi for every i ∈ [r].

From this and Proposition 7, it follows that:

P [G∗ percolates] = P
[
G′ percolates

]
≤ P [G percolates] ,

thus if G∗ percolates whp, then G will also percolate whp.

29

Observation 3 (Notation). Renaming the constant Cr := 3rcr−1r , we note that:

• P ∗j = p∗1p
∗
2...p

∗
j =

p1p2...pj
3j ≥ cr−1

r

n logj−1 n
,

• P ∗1 = p∗1 = p1
3 ≥

cr−1
r logn

n ,

• P ∗r = p∗jp
∗
j ...p

∗
r = p1p2...pr

3r =
cr−1
r

n logj−1 n
,

which means that p∗1, p
∗
2, ..., p

∗
r satisfy the conditions of Theorem 19 with the

constant cr−1r and also the equality P ∗r =
cr−1
r

n logr−1 n
. Throughout the rest of the

thesis we will work with p∗1, p
∗
2, ..., p

∗
r and the constant cr−1r , but in order to

simplify of notation we will use pi to denote p∗i and Cr to denote

cr−1r .

Note: this is abuse of notation as pi and Cr already have a di�erent de�ni-
tion. However, since we only aim to prove the existence of a constant Cr, and
do not aim to determine its value, multiplication by some other constant does
not change things in any fundamental way. We can recover the original values
with the equalities pi = 3p∗i and Cr = 3rcr−1r .

Remark 27. • In terms of length of the proofs, Part I is the longest and
empirically most important of them all. This is because in Part I we
pass the bottleneck for percolation, i.e. we ensure the existence whp of
a percolating subset of size slightly larger than log n. Once we pass the
bottleneck, Parts II and III will be relatively short and easy, with Part III
being the shortest and easiest to prove.

3.1 Part I

We will construct a large percolating subset V1 by �trial and error�. Algorithm 2
will start form a single vertex and add one vertex at a time to attempt to
construct V1. If we only try once, this process has a low probability of success
but since we try many times, it has a good chance of succeeding i.e. succeeds
whp. We divide the proof into two stages:

• First, we will bound from below the probability that the algorithm con-
structs a percolating subset of size at least t0 := logn

cr
(in one trial, see

Lemma 36).

• Second, conditioned on the algorithm constructing a percolating subset
of size at least t0, we will bound from below the probability that the
algorithm constructs a percolating subset of size at least t1 = (log n)1+εr

(in one trial, see Lemma 37).

The probability that Algorithm 2 reaches t1 in one trial is bounded from
below by the product of the probabilities of the previous stages. This product
turns out to be small but the crucial point here is that Algorithm 2 makes
many attempts to reach t1. The probability that at least one of these attempts

30

succeeds will tend to 1 as n → ∞, proving that whp Algorithm 2 constructs a
percolating subset of size t1 (see Lemma 39).

We now describe, in an informal way, how Algorithm 2 works. In round k we
add one vertex at a time to the trial set (Xt

k), which will always be a percolating
set. If the algorithm �nds a suitable vertex to add to the trial set (Step 4 below)
we proceed to the next t-step. If not, we discard all the vertices of the trial set
and begin a new round.

Here is the formal description of the algorithm we are going to use for the
rest of Part I.

Algorithm 2 (The 1-by-1 algorithm). The algorithm is divided into rounds,
indexed by k, and each round is divided into steps, indexed by t. At the start of
the k-th round there is a set A0

k ⊆ [n] of active vertices and a set Dk ⊆ [n] of
discarded vertices. We begin with A0

1 = [n] and D1 = ∅. The procedure of the
k-th round is as follows:

(1) At the start of the t-th step of the k-th round there are sets:

• Xt
k = {x1k, x2k, ..., xtk} ⊆ Ak a set of trial vertices.

• U tk ⊆ A0
k a set of dormant vertices.

Where A0
k = Xt

k tAtk t U tk.

(2) For t = 0, we move an arbitrary active vertex to the trial set:

• X1
k := {x1k}.

• U1
k := ∅.

• A1
k := A0

k\x1k, where x1k ∈ A0
k is arbitrary.

• R0
k := ∅.

(3) For t ≥ 1, we reveal all edges of G(1) between Atk and Xt
k and let:

• Rtk := {x ∈ Atk : xxtk ∈ E
(1)
1 }.

• Btk := {x ∈ Rtk : for every i ∈ {2, 3, ..., r} there exists si ≤ t such that xxsik ∈
E

(1)
i }.

(4) If Btk 6= ∅, then let xt+1
k be an arbitrary element of Btk. Then set:

• Xt+1
k := Xt

k ∪ {x
t+1
k }

• At+1
k := Atk\Rtk.

• U t+1
k := U tk ∪

(
Rtk\{x

t+1
k }

)
.

If t ≥ t1 = (log n)1+εr then STOP, otherwise set t = t+ 1 and go to step
(3).

(5) If Btk = ∅, then set

31

• Ak+1 := Ak\Xk

• Dk+1 := Dk ∪Xt
k

If

k ≥ n

2(log n)1+εr

then STOP, otherwise set k := k + 1 and t := 1, and go to step (1).

It is important to note that since every tested edge has at least one of
its endponts in the trial set, we guarantee independence between rounds by
dismissing the trial set at the end of each round. We also have independence
within each round, because no edge is tested twice within a round. This is
because we �rst construct the set Rtk by testing the edges of the �rst color that
exists between the last added vertex of the trial set and the active vertices Atk.
We then proceed to reveal all the edges of the other colors between the trial
set and Rtk. The crucial point is that if Btk 6= ∅, we discard the set Rtk from
the active vertices by storing them in a set of �dormant vertices� U tk. This
will guarantee that no edge is tested more than once within a round, but the
�dormant vertices� will be active again in the next round (if there is one). We
note that all the tested edges within this t-step had at least one endpoint in Rtk
and therefore they will be no longer tested in the next t-step. This guarantees
independence within a round.

Remark 28. Since we consider at most n/(2(log n)1+εr) rounds, and stop each
with a trial set of size at most (log n)1+εr vertices, we start each new round
with at least n/2 vertices:

|Ak| := |A0
k| ≥

n

2
.

We will need the following de�nitions:

De�nition 29. • Let X tk be the event that Xt
k is de�ned (i.e. we reach step

t in round k).

• Let Stk := {|Rsk| ≤ n
4t1

for s = 0, 1, 2, ..., t}.

• Let Ytk := X tk ∩ Stk.

• Let rtk := P
[
Ytk
∣∣Yt−1k

]
for k ≤ n/(2(log n)1+εr) and t ≥ 1.

Remark 30. • The event X tk means that we found a percolating subset of
size t formed with only edges of the �rst round of exposure. Conditioned
on getting to round k the event X 1

k always holds. For t ≥ 2 the event X tk
is equivalent to the event that Bt−1k is non-empty.

32

• The event Stk guarantees that within a round k, we do not discard too
many vertices by step t. More speci�cally, if the event Yt−1k holds we
have:

|Atk| ≥ |A0
k| − (t− 1)n/4t1 ≥

n

2
− t

t1

n

4
≥ n

4
.

We note that if we get to round k the event S0k always holds.

We will use the following technical claim to approximate some expressions:

Claim 31. For t ≥ 0, p ≤ 1 we have:

a) If 1− pt ≥ 0 then 1− (1− p)t ≥ pt(1− pt).

b) If 1− pt ≤ 1
2 then 1− (1− p)t ≥ 1

5 .

Proof. a) 1− (1− p)t ≥ 1− e−pt

= 1−
(

1− pt+
(pt)2

2!
− (pt)3

3!
+

(pt)4

4!
− ...

)

= 1−

1− pt+
(pt)2

2!
−
∑
i≥1

(pt)2i+1

(2i+ 1)!

(
1− pt

2i+ 2

)
≥ pt− (pt)2

2
≥ pt(1− pt),

where we use (1− p)t ≤ e−pt for the �rst inequality, which is valid since t ≥ 0.

For the second inequality we note that the terms
(

1− pt
2i+2

)
are non-negative

since pt ≤ 1.

b) If 1− pt ≤ 1
2 then e−pt ≤ e− 1

2 and therefore:

1− (1− p)t ≥ 1− e−pt ≥ 1− e−1/2 > 1/5

Where for the �rst inequality we used (1 − p)t ≤ e−pt, which is valid since
t ≥ 0.

We will use the following observation:

Observation 4. Let εr := 1
r < 1

r−1 . Using the bound p2 ≤
(

1
logn

) r
r−1

of

Observation 2, for t ≤ t1 we can deduce that:

p2t ≤ p2t1 ≤
(log n)1+εr

(log n)
r

r−1
= (log n)εr−

1
r−1 = o(1).

The following parameter will be very useful in what is still left to prove:

33

De�nition 32. Let it := max{i ∈ [2, r] : 1− pit ≥ 1
2}.

Remark 33. From Observation 4 we have that p2t1 = o(1). This means that it
is well de�ned for t ≤ t1 and n large enough.

We now want to calculate a lower bound on the probability of �one-step
success� i.e. the probability of being able to add a vertex to the percolating set
that is under construction in the t-th step of the k-th round of Algorithm 2. We
calculate this lower bound by �rst calculating a lower bound on the probability
that an active vertex is in Btk.

Lemma 34. For n large enough and 1 ≤ t ≤ t1 = (log n)1+εr we have that
independently for each x ∈ Atk it holds the following:

P[x ∈ Btk] ≥
(

1

5

)r−1
Pitt

it−1,

where Pit = p1p2...pit (already de�ned in Theorem 19).

Proof. We begin by observing the following identity:

P[x ∈ Btk] = p1

r∏
j=2

(1− (1− pj)t).

Using the de�nition of it and Claim 31 a) and b) on the elements of the

products
∏it
j=2(1− (1− pj)t) and

∏r
j=it+1(1− (1− pj)t) respectively we get:

P[x ∈ Btk] ≥ p1
(

1

5

)r−it it∏
j=2

pjt(1− pjt)

≥
(

1

2

)it−1(1

5

)r−it
Pitt

it−1

≥
(

1

5

)r−1
Pitt

it−1.

We now make use of independence and the lower bound of Lemma 34.

Lemma 35. For 1 ≤ t ≤ t1 = (log n)1+εr and n large enough the following
holds:

(a) P
[
Ytk
∣∣Yt−1k

]
≥ 1− exp

{
−
(
1
6

)r (crt
logn

)it−1}
.

(b) If
(
1
6

)r (crt
logn

)it−1
≤ 1 we have:

P
[
Ytk
∣∣Yt−1k

]
≥
(

1

12

)r (
crt

log n

)it−1
.

34

Proof. Since case (b) follows from case (a) and the inequality 1− x
2 ≥ exp(−x),

valid for x ∈ [0, 1], we only need to prove case (a).

We recall that Ytk = X tk ∩ Stk, thus:

P
[
Ytk
∣∣Yt−1k

]
≥ 1− P

[
X tk
∣∣Yt−1k

]
− P

[
Stk
∣∣Yt−1k

]
.

We now need to estimate from above the probability terms on the right side of
the inequality.
First estimate: Let Ztk be the random variable that represents the number of
sets Z of size n

4t1
such that Z ⊆ Rtk. We deduce using Markov's inequality that:

P
[
Stk
∣∣Yt−1k

]
= P

[
|Rtk| >

n

4t1

∣∣∣Yt−1k

]
≤ P

[
Ztk ≥ 1

∣∣∣Yt−1k

]
≤ E

[
Ztk
∣∣∣Yt−1k

]
≤
(

n

n/(4t1)

)
p
n/(4t1)
1

≤ (4et1)
n/(4t1) p

n/(4t1)
1 ≤ (12p1t1)

n/(4t1) ≤ e−
√
n,

where for the second inequality, we use the bound
(
n
k

)
≤ (en/k)

k
. For the last

inequality we use that n/(4t1) ≥
√
n and p1t1 = o(1) ≤ 1

e for n large enough
(see Observation 4). Note that these approximations are rather crude, but will

be su�cient since the term with X tk will be the more critical one.
Second estimate: Using Lemma 34 and the observation that |At−1k | ≥ n/4
made in Remark 28 we get:

P
[
X tk
∣∣Yt−1k

]
=

∏
x∈At−1

k

P[x /∈ Bt−1k]

≤

(
1−

(
1

5

)r−1
Pitt

it−1

)n
4

≤ exp

{
−1

4

(
1

5

)r−1
nPitt

it−1

}
.

From the assumptions of Theorem 19 and Observation 3, we have that Pit ≥
Cr/(n logit−1 n) ≥ cit−1r /(n logit−1 n). Thus we get:

P
[
X tk
∣∣Yt−1k

]
≤ exp

{
−
(

1

5

)r (
crt

log n

)it−1}
.

35

Combining both estimates we get:

P
[
Ytk
∣∣Yt−1k

]
≥ 1− exp

{
−
(

1

5

)r (
crt

log n

)it−1}
− exp{−

√
n}.

To complete the proof we recall that t ≤ t1, 2 ≤ it ≤ r and observe that:(
t

log n

)it−1
≤
(

t1
log n

)it−1
≤
(

t1
log n

)r−1
= (log n)εr(r−1) = o(

√
n),

from here we conclude that:

P
[
Ytk
∣∣Yt−1k

]
≥ 1− exp

{
−
(

1

6

)r (
crt

log n

)it−1}
.

This completes the proof of Lemma 35.

Recall that t0 = logn
cr

. In order to calculate a lower bound on the probability
of �proceeding to step t1� we calculate lower bounds for the events �proceeding
to step t0� and �proceeding to step t1 given that we already proceeded to step
t0�. We formally express this in Lemmas 36 and 37. The proof of these lemmas
is by means of independence and the lower bounds of Lemma 35.

Lemma 36. P
[
Yt0k
∣∣X 0
k

]
≥ n−6(r−1)/cr .

Proof. We begin by observing the following equalities:

P
[
Yt0k
∣∣X 0
k

]
= P

[
Yt0k
∣∣Y0
k

]
=

t0∏
t=1

P
[
Ytk
∣∣Yt−1k

]
.

We note that crt
logn ≤ 1 for 1 ≤ t ≤ t0. Therefore we can use Lemma 35 (b):

P
[
Yt0k
∣∣X 0
k

]
≥

t0∏
t=1

(
1

12

)r (
crt

log n

)it−1
≥

t0∏
t=1

(
1

122

)r−1(
crt

log n

)r−1
≥
(

cr
144 log n

)(r−1)t0
(t0!)r−1.

Using the well known inequality t! ≥ (t/e)t valid for all n ∈ N, we get:

P
[
Yt0k
∣∣X 0
k

]
≥
(

1

144e

)(r−1) log n
cr

≥ n−
6(r−1)

cr ,

since 1
144e ≥

1
e6 . This completes the proof of Lemma 36.

36

Lemma 37. P
[
X t1k

∣∣Yt0k] ≥ n−O(1)/cr .

Proof. We begin by applying Lemma 35 a):

P
[
X t1k

∣∣Yt0k] =

t1∏
t=t0+1

P
[
Ytk
∣∣Yt−1k

]
≥

t1∏
t=t0

(
1− exp

{
−
(

1

6

)r (
crt

log n

)it−1})
.

Suppose f(r) ≥ 1. We use the inequality 1 − x ≥ e−f(r)x, valid (at least)
for 0 ≤ x ≤ 1 − 1

f(r) (we will show this at the end of the proof). Setting

x = exp

{
−
(
1
6

)r (crt
logn

)it−1}
and noting that crt

logn ≥
crt0
logn = 1 for t ≥ t0 we

deduce that x ≤ exp
{
−
(
1
6

)r}
, therefore we can set f(r) = 1

1−exp{−(1
6)

r} > 1.

Thus:

P
[
X t1k

∣∣Yt0k] ≥ exp

(
−f(r)

t1∑
t=t0

exp

{
−
(

1

6

)r (
crt

log n

)it−1})

≥ exp

(
−f(r)

t1∑
t=t0

exp

{
−
(

1

6

)r (
crt

log n

)})

≥ exp

− f(r) exp
{
−
(
1
6

)r}
1− exp

{
−
(
1
6

)r cr
logn

}
 ,

where in the last inequality, we use the formula for the (in�nite) sum of a
geometric series.

We now simplify the denominator by using the inequality e−x ≤ 1 − x/2
valid for x ≤ 1 :

P
[
X t1k

∣∣Yt0k] ≥ exp

− f(r) exp
{
−
(
1
6

)r}
1−

(
1− 1

2

(
1
6

)r cr
logn

)

= exp

(
−

2r+13rf(r) exp
(
−
(
1
6

)r)
log n

cr

)
= n−O(1)/cr ,

where the O(1) term is a constant that depends on r but not on cr. To complete
the proof of Lemma 37 it is only left to prove that given a ≥ 1 the inequality
1−x ≥ e−ax is valid (at least) for 0 ≤ x ≤ 1− 1

a . Indeed, let g(x) := 1−x−e−ax,
then g′′(x) = −a2e−ax < 0 which means that g is concave. This means that:

g

(1− γ) · 0︸ ︷︷ ︸
= 0

+γ ·
(

1− 1

a

) ≥ (1− γ) · g(0)︸ ︷︷ ︸
= 0

+γ · g
(

1− 1

a

)
,

37

for 0 ≤ γ ≤ 1. Since g(0) = 0, it is su�cient to verify that g
(
1− 1

a

)
≥ 0 to

complete the proof:

g

(
1− 1

a

)
= 1−

(
1− 1

a

)
− e−a(1−

1
a)

≥ e1−a
(
ea−1

a
− 1

)
≥ e1−a

(
1 + (a− 1)

a
− 1

)
= 0,

where in the last step we use the inequality ex ≥ 1 + x valid for x ≥ 0. This
completes the proof of Lemma 37.

Remark 38. In the jigsaw percolation process for r = 2 colors (see [6]), the
inequality 1 − x ≥ e−ax is only needed for 0 ≤ x ≤ 0.9. In this case it is
su�cient to choose the constant a = 3. In the general case, if r large (but
constant) we have that x is very close to 1 from below, this means that we must
take a large.

Using independence and the lower bounds of Lemmas 36 and 37, we can
prove the main Lemma of Part I:

Lemma 39. G(1) contains a percolating subset of size (log n)1+εr with proba-
bility at least 1− e−

√
n.

Proof. Let k ≤ n/(2(log n)1+εr). Applying Lemmas 36 and 37, the probability
that in round k we �nd a percolating subset of size (log n)1+εr is at least:

n−O(1)/cr · n−O(1)/cr = n−O(1)/cr .

We conclude that the probability of not �nding a percolating subset of size
t1 = (log n)1+εr in each of the n/

(
2(log n)1+εr

)
rounds is at most:(

1− n−O(1)/cr
) n

2(log n)1+εr ≤ exp

{
− n1−O(1)/cr

2(log n)1+εr

}
≤ exp(−

√
n),

where for the �rst inequality we use the inequality (1 − x)t ≤ e−tx, valid for
t ≥ 0 and x ≤ 1. These inequalities hold provided cr is large enough and n is
large enough compared to cr. This completes the proof of Lemma 39.

3.2 Part II

In this subsection we aim to prove that conditioned on the existence of a per-
colating set of size t1 in G

(1), whp there is a percolating set of size at least n
2r+2

in G(1) ∪G(2).
We will attempt to construct a percolating set of linear size with the following

algorithm:

38

Algorithm 3 (The doubling algorithm). This algorithm will proceed in a num-
ber of steps. The inputs of the algorithm are the r-fold graph G(2) and a perco-
lating subset X0 with respect to G(1) of size (log n)1+εr (see Lemma 39).

Suppose at the start of the t-step there is a percolating subset Xt with respect
to G(1) ∪G(2).

• Let At := V \Xt be the set of active vertices.

(1) At step t ≥ 0 we reveal all edges of G(2) between At and Xt \Xt−1, where
X−1 := ∅. We de�ne:

• Bt := {v ∈ At : ∀ i ∈ [r] there is a vi ∈ Xt \Xt−1 such that vvi ∈ E(2)
i }.

In other words, Bt is the set of active vertices joined to Xt \Xt−1 by an
edge of each colour from the second round of exposure.

(2) If |Bt| < |Xt| we STOP. Otherwise, we set:

• Xt+1 := Xt ∪Bt,
• At+1 := At \Bt.

If |Xt+1| ≥ n/2r+2 then STOP, otherwise go to (1) for step t+ 1.

De�nition 40. We set bt := |Bt| and xt := |Xt| for all t.

Remark 41. (i) If we reach step t + 1 in Algorithm 3 then bi ≥ xi for every
i ∈ [t], therefore:

xi = xi−1 + bi−1 ≥ 2xi−1 for every i ∈ [t+ 1].

Thus bt ≥ xt ≥ 2xt−1 ≥ 22xt−2 ≥ ... ≥ 2tx0 = 2tt1.

(ii) If we reach step t+ 1, then xt+1 = bt + xt ≤ 2bt.

(iii) For the �nal stopping condition we could have used αn for any α ∈ (0, 12)
instead of n/2r+2, but this last expression simpli�es the calculations in the
subsequent auxiliary lemmas, in particular Lemma 47 Case 1.

(iv) The name of Algorithm 3 comes from [6] where the size of Xt is only
doubled in each step. By adding all of Bt rather than some subset of size
|X0| we may more than double the size of Xt in each step, but we consider
this a more natural choice for the algorithm. A minor inconvenience is
that we no longer know exactly how large Xi is, but a lower bound will be
su�cient.

De�nition 42. Let t2:= max
{
t ∈ N ∪ {0} : xt <

n
2r+2

}
. t2

Observation 5. If Algorithm 3 constructs a percolating set Xt of size ≥ n
2r+2 ,

then it will stop at time t = t2 + 1, otherwise it will stop at time t2.

39

Observation 6. By Remark 41.(i), we know that 2t2 ≤ bt2
t1
. It is clear that

bt ≤ n for all t, therefore log2 n ≥ log2

(
bt2
t1

)
≥ t2 i.e t2 = O(logn).

Given an r-fold graph G, we denote the event that V contains a percolating
subset of size at least m by P(G,m). Now we are ready to formally state the P(G,m)

main lemma of this subsection:

Lemma 43. Conditioned on G(1) containing a percolating subset of size at least
t1 = (log n)1+εr , the probability that G(1) ∪ G(2) contains a percolating subset
of size at least n/2r+2 is at least 1− exp{−t1/5} for n large enough. Formally
written:

P
[
P
(
G(1) ∪G(2), n/2r+2

) ∣∣∣P (G(1), (log n)1+εr
)]
≥ 1− exp{−t1/5},

for n large enough.

The main idea to prove Lemma 43 will be to prove a lower bound on the
conditional probability that Algorithm 3 proceeds to step t+ 1 conditioned on
it getting to step t. We then multiply these conditional probabilities to obtain a
lower bound on the event of �nding a percolating subset of size at least n/2r+2.
We summarize this in the following auxiliary Lemma:

Lemma 44. Let t ≤ t2. Conditioned on the doubling algorithm reaching the t-th
step (i.e. Xt is de�ned and therefore non-empty), the probability that the event
{bt ≥ xt} is at least 1− exp{−t1/4}. Formally written:

P [bt ≥ xt|Xt 6= ∅] ≥ 1− exp{−t1/4}.

During the proof of Lemmas 43 and 44, we will use some auxiliary claims that
will be stated inside the proofs of the lemmas. The proofs of these claims will
be left to the end of the section to avoid interrupting the �ow of the argument.
We will also use the following (one-sided) Cherno� bound (see e.g. [16]):

Lemma 45 (Cherno� Bound). Let q ∈ [0, 1] and m ∈ N and Z =
∑m
i=1 Zi

where the Zi's are all independent Bernoulli random variables that take value 1
with probability q and value 0 with probability 1− q. Let µ = E(Z) = mq. Then:

• Lower Tail: P[Z ≤ (1− δ)µ] ≤ exp{−µδ
2

2 } for all 0 < δ < 1.

Remark 46. We will not need the corresponding bound on the upper tail pro-
bability.

Proof of Lemma 44 . For t ≤ t2, the trial set Xt is of size at most n/2r+2

(see De�nition 42) This means that there are at least n−n/2r+2 ≥ n/2 vertices
in the set of active vertices At.

We note that the events that individual vertices are in Bt are independent.
We de�ne Zt to be a random variable with binomial distribution Bi(|At|, qt,1qt,2...qt,r),

40

where qt,i is the probability that a vertex v ∈ At is joined to Bt−1 = Xt \Xt−1

by at least one edge of G
(2)
i . Then Zt represents bt. We state the following

auxiliary claims:

Claim 47. We have:

qt,i ≥

 pixt/4 if pixt < 2,

1/2 otherwise.

Claim 48. Let t ≤ t2. Then:

E[Zt] ≥ 2xt.

From Claim 48 we deduce that:

P [bt ≥ xt|Xt 6= ∅] ≥ P[Zt ≥ xt] ≥ P
[
Zt >

E[Zt]

2

]
.

Using Lemma 45 (Cherno� Bound) for δ = 1/2 and Claim 48, we get:

P [bt ≥ xt|Xt 6= ∅] ≥ 1− exp{−E[Zt]/8} ≥ 1− exp{−xt/4} ≥ 1− exp{−x0/4}.

We recall that x0 = t1. This completes the proof of Lemma 44.

We apply Lemma 44 multiple times to obtain Lemma 43.

Proof of Lemma 43. We want to prove that:

P
[
P
(
G(1) ∪G(2), n/2r+2

) ∣∣∣P (G(1), t1

)]
≥ 1− exp{−t1/5}.

From Observation 6 we have t2 = O(log n).We deduce from Lemma 44 that:

P
[
P
(
G(1) ∪G(2), n/2r+2

) ∣∣∣P (G(1), (log n)1+εr
)]
≥

t2∏
t=0

P
[
bt ≥ xt

∣∣Xt 6= ∅
]

≥ (1− exp{−t1/4})O(logn)
.

Let us note that (1 − x)t ≥ 1 − tx for x ∈ [0, 1] and t ≥ 1. To prove this,
we consider the functions f(x) = (1 − x)t and g(x) = 1 − tx. We note that
f ′(x) = −t(1 − x)t−1 ≥ g′(x) = −t, for x ∈ [0, 1] and t ≥ 1. Since f(0) = g(0)
and f ′(x) ≥ g′(x), we conclude that f(x) ≥ g(x) in the interval [0, 1].

Recalling that t1 = (log n)1+εr , we can use the previous inequality and the
fact that n large enough to conclude that:

P
[
P
(
G(1) ∪G(2), n/2r+2

) ∣∣∣P (G(1), t1

)]
≥ 1−O(log n) exp{−t1/4}

≥ 1− exp{log(O(log n))− t1/4}
≥ 1− exp{−t1/5},

where the last inequality is valid since t1 = Ω(log n). This completes the proof
of Lemma 43.

41

Thus, we have proved everything we want for Part II except for the Claims
47 and 48.

Proof of Claim 47. Recall that qt,i is the probability that a vertex v ∈ At is
joined to Bt−1 = Xt \Xt−1 by at least one edge of the second round of exposure

G
(2)
i . From Remark 41.(ii) we know bt−1 ≥ xt/2 for 0 ≤ t ≤ t2 where b−1 := x0,

we get:

qt,i = 1− (1− pi)bt−1 ≥ 1− (1− pi)xt/2 ≥ 1− exp{−pixt/2}. (1)

We now have have two cases:
Case 1: pixt < 2.We apply to the right hand side of equation 1 the inequal-

ity 1− e−x ≥ x/2 (valid for 0 ≤ x ≤ 1) to get the lower bound qt,i ≥ pixt/4.
Case 2: pixt ≥ 2. In this case we just need to use the right hand side of

equation 1 and observe that 1− exp{−pixt/2} ≥ 1− exp{−1} ≥ 1/2 to get the
required lower bound qt,i ≥ 1/2.

Proof of Claim 48. Let jt = max{j ∈ [r] ∪ {0} : pjxt < 2} ≥ 0, where
p0 := 0. Recalling that At ≥ n/2 for t ≤ t2, we get:

E[Z] = |At|

 r∏
j=1

qt,j

 ≥ n

2

 jt∏
j=1

qt,j

 r∏
j=jt+1

qt,j

 .

We divide the proof into cases and apply Claim 47:
Case 1: jt = 0. Then by de�nition of jt we have 2 ≤ pjxt for all i ∈ [j].

Using Claim 47 we get:

E[Z] ≥ n

2

(
1

2

)r
= 2

(n

2r+2

)
≥ 2xt.

Case 2: jt ≥ 1. Using Claim 47 and noting that p1xt ≤ p2xt ≤ ... ≤ pjtxt <
2, we get:

E[Z] ≥ n

2

 jt∏
j=1

pjxt
4

(1

2

)r−jt
= nxjtt Pjt

(
1

2

)r+jt+1

.

Making another case distintion we get:

Case 2.1: jt = 1. We recall that P1 = p1 ≥ cr−1
r logn

n , thus for n large
enough we have:

E[Z] ≥
(
cr−1r log n

2r+2

)
xt ≥ 2xt.

Case 2.2: jt ≥ 2. We recall that Pi = p1...pi ≥ cr−1r /(n logi−1 n) for all
2 ≤ i ∈ [r] and xt ≥ 2tt1 for all 0 ≤ t ≤ t2 (see Remark 41 .(i)). Thus:

E[Z] ≥ n

2r+jt+1
(2tt1)jt−1xt

(
cr−1

n logjt−1 n

)
= cr−1r 2t(jt−1)−r−jt−1

(
t1

log n

)jt−1
xt

≥ cr−1r 2−2r−1xt ≥ 2xt,

42

where the last inequality is valid for cr large enough.

3.3 Part III

In this last part we are going to prove that G∗ := G(1) ∪G(2) ∪G(3) percolates
whp. In more detail:

Lemma 49. Conditioned on G(1) ∪ G(2) containing a percolating subset X of
size at least n/2r+2, G∗ percolates whp.

Indeed, we will prove that whp every vertex in V \X is connected to X by
edges of every color by using the �nal round of exposure G(3).

Proof of Lemma 49. We begin by de�ning K, the event that there is at least
one vertex x ∈ V \X such that at least one color is not contained in the set of

edges of G(3) between X and x (i.e. |{i ∈ [r] : there is e ∈ E(G
(3)
i) such that x ∈

e}| < r). Thus:

P[K] ≤
∑
i∈[r]

 ∑
v∈V \X

(1− pi)|X|
 ≤ rn(1− p1)n/2

r+2

≤ rne−p1
n

2r+2 .

We now use the hypothesis that p1 ≥ (cr−1r log n)/n. We get:

P[K] ≤ rne−
cr−1
r

2r+2 logn =
rn

nc
r−1
r /2r+2

≤ r

n
= o(1),

where the last inequality holds provided that cr−1r ≥ 2r+3. This completes the
proof of Lemma 49.

43

4 Concluding remarks.

In this section we present some open problems related to jigsaw percolation:
• Does the jigsaw percolation process on �nitely many random graphs have

a sharp threshold? We know that every monotone graph property has a sharp
threshold in G(n, p) (see Theorem 2) but we do not know any similar result on
r-fold graphs.

In the case of r = 1, percolation of the jigsaw process is equivalent to con-
nectivity (as pointed out in Section 1.6). In the case of connectivity, if one edge
is added we can only merge at most a pair of components. This is not true for
r ≥ 2 as can be seen in the example below:

〈1〉〈2〉

〈3〉

〈4〉

〈1〉〈2〉

〈3〉

〈4〉

Figure 13: A pair of 2-fold graphs di�ering in only one edge.

The 2-fold graph on the left hand side does not percolate. Even more, its
�nal form after the jigsaw process is the graph itself because no two clusters
merge. This is because no two clusters share a blue and red edge. On the
other hand, the r-fold graph on the right hand side does percolate even though
it di�ers in only one edge from the previous r-fold graph. We note that the
clusters 〈1〉 and 〈3〉 merge to form the cluster 〈1, 3〉 because they now share a
red and blue edge, then in the next step the cluster 〈2〉 merges with the cluster
〈1, 3〉 to form the cluster 〈1, 2, 3〉. In the �nal step of the jigsaw process, the
clusters 〈4〉 and 〈1, 2, 3〉 merge to form the cluster 〈1, 2, 3, 4〉 concluding the
jigsaw process. Therefore, adding one edge can cause the jigsaw process to
�snowball� in the sense that merging two clusters (due to the newly added edge)
can cause additional clusters to merge in the course of several steps of the jigsaw
algorithm. This is not true for connectivity (i.e. the r = 1 percolation process).

This suggests that the jigsaw percolation process (for r ≥ 2) can �explode�
even faster than the connectivity process, and since the connectivity process
does have a sharp threshold, this suggests that the jigsaw percolation process
also has a sharp threshold for r ≥ 2.
• If there is a sharp threshold, what is its exact location? If there is a sharp

threshold, we can deduce from Theorem 19 that it should lie between T (n)
Cr

and

CrT (n), where T (n) := 1
n logr−1 n

but we would like to determine the exact
constant.
• Let G be an r-fold graph satisfying the conditions of Theorem 19 (ii) (so

percolation whp). We always considered r constant but can we let r(n)
n→∞−−−−→∞

44

(i.e the number of colors tending to in�nity), while preserving the property

P[G percolates]
n→∞−−−−→ 1 and if so, how fast?

If we go through the proof of Theorem 19 and analyse the conditions on cr
and r, we conclude that it will still hold if we let r → ∞ with the following
requirements:

r = o(
√

log log n),

Cr ≥ 32r
2+r−222r(r−1).

We would like to remark that there are several requirements that arise dur-
ing the proof of Theorem 19 but these two requirements are the strongest i.e.
they imply all other requirements. In particular, the �rst requirement is a su�-
cient condition to guarantee p2t1 = o(1) (See Observation 2), while the second
requirement arises from Lemma 39. It is also worth noting that these require-
ments arise from Theorem 19 (ii) since Theorem 19 (i) would be valid provided
that the weaker condition Cr ≥ 2r−1e3 holds.

These conditions are rough estimates and we do not know the optimal con-
ditions on r and Cr.
• Another open question is the following: in the case where an r-fold random

graph G(n, p1, ..., pr) satis�es the conditions of Theorem 19 (ii) with Pr =
Cr

n logr−1 n
, how many steps does it take (asymptotically) for the jigsaw process

(see Algorithm 1) to �nish? One trivial upper bound is n−1. However, analyzing
the proof (see below) we can also argue that the number of steps is of order
O((log n)1+εr) and by optimizing the proof, we could choose εr to be arbitrarily
small. However, we do not know if O(log n) is an upper bound and in the case
it is an upper bound we do not know if it is optimal. We now justify the upper
bound O((log n)1+εr):

LetG be an r-fold random graph that satis�es conditions of Theorem 19 (ii)
with Pr = Cr

n logr−1 n
. Let Sproof = t1 + t2 + 1, where t1 = (log n)1+εr and

t2 = O(log n). Let Sjigsaw be the number of steps that the jigsaw process run
in G takes to �nish. We can prove that Sjigsaw ≤ Sproof as follows:

∗ From Part I of the proof (see Section 3.1) we know that whp Algorithm 2
constructs a percolating set of size t1 = (log n)1+εr by starting with a
single well-chosen vertex and adding one vertex at a time. This means
that whp the jigsaw process constructs a percolating set of size t1 in at

most t1 steps, where εr is any constant in the interval
(

0, r
r−1

)
.

∗ From Part II (see Section 3.2) we know that given the percolating set
of size t1 of Part I, then whp Algorithm 3 constructs a percolating set
of linear size n

2r+2 by doubling the number of vertices that the previous
percolating set had. This means that given a percolating set of size t1
whp the jigsaw process constructs a percolating set of linear size n

2r+2 in
at most t2 steps, where t2 = O(log n) due to Observation 6.

∗ By Part III (see Section 3.3), we know that given the percolating set of
size Θ(n) of Part II, whp the rest of the vertices will share edges of each

45

color with this percolating set i.e. we can add them all in one step to the
percolating set.

It is clear that the sum of the number of steps that each part of proof takes,
is an upper bound for the total number of steps of the jigsaw process run
in G. Therefore we conclude that:

Sjigsaw ≤ Sproof ≤ (log n)1+εr +O(log n) + 1 = O
(
(log n)1+εr

)
,

i.e. whp Sjigsaw = O
(
(log n)1+εr

)
for every εr ∈

(
0, r

r−1

)
.

• Let Copt = inf{C ∈ R+ : G(n, p1, p2, ..., pr) percolates whp, satis�es the
conditions of Theorem 19 (ii) with the constant C and Pr = C

n logr−1 n
}. We

believe that Copt is much smaller than the Cr that we �nd in the proof, since
we did not make any e�ort to optimize Cr. Let ε > 0 and G1(n, p1, ..., pr)
be an r-fold random graph that satis�es conditions of Theorem 19 (ii) with

Pr =
Copt+ε

n logr−1 n
. It is true even for this Pr that Sjigsaw,G1

= O(log n) (with the

multiplicative constant potentially depending on ε)?

46

References

[1] N. Alon, J. H. Spencer, The probabilistic method (Second Edition), John
Wiley & Sons, (2000).

[2] J. A. Baglivo, J. E. Graver, Incidence and Symmetry in Design and Archi-
tecture, Cambridge University Press, (1983).

[3] N. Biggs, E. Lloyd, R. Wilson, Graph Theory 1736-1936, Oxford University
Press, (1986).

[4] B. Bollobás, The evolution of random graphs, Transactions of the American
Mathematical Society, Vol. 286, Num. 1 (1984).

[5] B. Bollobás, O. Cooley, M. Kang and C. Koch, Jigsaw percolation on ran-
dom hypergraphs, arxiv:1603.07883.

[6] B. Bollobás, O. Riordan, E. Slivken, P. Smith, The threshold for jigsaw
percolation on random graphs., arxiv:1503.05186v2.

[7] C. D. Brummitt, S. Chatterjee, P. S. Dey, and D.Sivako�, Jigsaw percola-
tion: What social networks can collaboratively solve a puzzle?, The Annals
of Applied Probability, Vol. 25, Num. 4 (2015), pp. 2013-2038.

[8] S. Das, A brief note on estimates of binomial coe�cients, online notes of
the Freie Universität Berlin, (2015).

[9] R. Diestel (2000), Graph Theory, Springer Verlag New York, (2000).

[10] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii
academiae scientiarum imperialis Petropolitanae, (1736).

[11] P. Erd®s, A. Rényi, On random graphs, Publicationes Mathematicae De-
brecen, Vol. 6 (1959), pp. 290-297.

[12] P. Erd®s, A. Rényi, On the evolution of random graphs, Publ. Math. Inst.
Hungar. Acad. Sci. 5 (1960), pp. 17-61.

[13] E. Friedgut, G. Kalai, Every monotone graph property has a sharp thresh-
old, Proceedings of the American Mathematical Society, Vol. 124, Num. 10
(1996).

[14] A. Frieze, M. Karónski, Introduction to random graphs, Cambridge Univer-
sity Press, (2000).

[15] E. N. Gilbert, Random graphs, Annals of Mathematical Statistic, Vol. 30,
Num. 4 (1959), pp. 1141-1144.

[16] M. Molloy, B. Reed, Graph Colouring and the Probabilistic Method,
Springer, (2002).

47

[17] R. Hanneman, M. Riddle, Introduction to social networks methods, free
introductory text book on social network analysis, (2005).

[18] M. Harré, Social Network Size Linked to Brain Size,
https://www.scienti�camerican.com/article/social-network-size-linked-
brain-size/ , (2012).

[19] J. L. Powell, P. A. Lewis, R. I. M. Dunbar, M. García-Fiñana, N. Roberts,
Orbital prefrontal cortex volume correlates with social cognitive competence,
Procedings of the Royal Society B, Vol. 48, Issue 12 (2010), pp. 3554�3562.

[20] D. Smith, Proof! Just six degrees of separation between us, The Guardian,
Sunday 7 August (2008).

48

