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Zusammenfassung

In der Kombinatorik treten Gitterprobleme sehr häufig auf. Dabei bezeichnet ein Gitter

die Menge der ganzzahligen Punkte eines Hyperwürfels beliebiger Dimension. Im zwei-

dimensionalen entspricht das den ganzzahligen Punkten in einem Quadrat. Wir werden

darauf spezielle Klassen von Linien betrachten. Schlussendlich wollen wir dann eine Aus-

wahl der Gitterpunkte finden, so dass diese keine Linien einer Klasse enthält und dabei

aber größtmöglich ist. Im ersten Teil der Arbeit werden wir dazu einige allgemeine Re-

sultate, darunter Schranken und optimale Konstruktionen für niedrige Dimensionen geben

und danach diese auf höhere Dimensionen verallgemeinern. Im zweiten Teil verwenden wir

ganzzahlige, lineare Optimierung um damit dieses Extremwertproblem zu lösen.



Abstract

In combinatorics lattice problems occur rather frequently. Here lattice is the name for a

set of integral points of a hypercube in an arbitrary dimension. In the two dimensional

case this corresponds to the integral points of a square. We will look at special classes

of lines in this lattice. Finally we want a sub set of these lattice points such that there

exists no line of one class and that it is as large as possible. In the first part of this thesis

we will give some general results such as bounds and constructions for optimal sets in low

dimensions. Then we generalize them to higher dimensions. In the second part we will use

integer linear programming to solve this extremal problem.
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Chapter 1

Introduction

Some of the readers may know the card game SET® 1. It is played with a special deck of

81 cards. Each card has four attributes and each attribute can take one of three values.

The game is played by shuffling the deck, turning 12 cards face up and finding a SET

which is a special combination of three cards: For each kind of attribute the three cards

must either be all the same or all different in this attribute. After finding a SET the

corresponding cards are taken away and new cards are dealt until there are 12 cards again.

It can sometimes be quite hard to find such SETs and it is also possible that there are no

SETs at all in the 12 cards face up. In this case 3 more cards are dealt. Now the question

may arise: Is there a set of 15 cards within the whole deck such that there exists no SET

in these cards? The answer is yes. In fact it is possible that one can deal up to 20 cards

and there is no SET in it. But after the 21st card there is guaranteed to be a SET. This

has a mathematical connection.

We can express the card game by looking at [n]d with d = 4 (the four attributes) and

n = 3 (the three values which every attribute can take). Here [n] is the integral interval

from 1 to n, so [n] := {1, 2, 3, ..., n} and [n]d := {(n1, . . . , nd)|ni ∈ [n]}. If zero is also

included then we write [n]0. A SET is represented by a so called algebraic line which is a

set of three points where for each coordinate the values of the three points are either all the

same or all different. This is essentially the definition we saw above. In the first chapter

we will see an equivalent definition for arbitrary n and d. Now we are looking for the

largest set of points such that there is no algebraic line in it. This problem has two sister

problems where we look at combinatorial lines or geometric lines instead of algebraic lines.

1©1988, 1991 Cannei, LLC. All rights reserved. SET® and all associated logos and taglines are
registered trademarks of Cannei, LLC. Used with permission from Set Enterprises, Inc.
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For geometric lines the set of three points has to fulfil the following condition: There exists

a sorting of the points such that for each coordinate the values are all the same or are all

different and in ascending order or are all different and in descending order. Combinatorial

lines are slightly more restrictive since for them the last option is not possible.

In this thesis we are looking into these three problems. A lot of work has been done in

the case n = 3 (See [17] and more recently [8]) but we will mainly involve ourselves with

the cases d = 2 and d = 3 and use some results from them for use in higher dimensions.

For further insight in the card game SET and its mathematical connections one may

refer to the paper of Davis and Maclagan [6].
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Chapter 2

Problem Definition

At first we define three classes of lines in [n]d and then look at some examples.

The most crucial definition is the definition of an arithmetic progression.

Definition 1 (Arithmetic Progression). An arithmetic progression of length n is a sequence

of n integral points where the difference between two consecutive members is constant. This

means for the sequence v1, v2, . . . , vn ∈ Zd we have vi+1 − vi = c for c ∈ Zd and for all

i ∈ [n− 1].

An arithmetic progression has essentially the form {v1 + tc|t ∈ [n− 1]0}.
From this we can define three different types of lines. First the geometric lines:

Definition 2 (Geometric Line). In [n]d we call an arithmetic progression of length n a

geometric line.

Note that we do not reduce modulo n here.

In another equivalent definition we can take a starting point v ∈ [n]d which lies on

the boundary ( vi = 1 or vi = n for at least one i ∈ [d]) and a vector r ∈ {−1, 0, 1}d

then the geometric line is the set {v + tr|t ∈ [n − 1]0} if for every i ∈ [d] it holds that if

ri = 1 then vi = 1 and if ri = −1 then vi = n. One may see that the c in the definition

for arithmetic progressions and the r in this definition are the same. For example in [3]5

the sequence {(1, 1, 2, 3, 3), (2, 2, 2, 2, 2), (3, 3, 2, 1, 1)} is a geometric line. Here the starting

point is v = (1, 1, 2, 3, 3) and r = (1, 1, 0,−1,−1).

We define a Moser set A ⊆ [n]d to be a set without geometric lines. With gn,d we will

denote the cardinality of a largest Moser set in [n]d.

If the difference c has only non-negative entries it leads to the following definition.
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Definition 3 (Combinatorial Line). An arithmetic progression of length n in [n]d is called

a combinatorial line if the difference between two consecutive elements lies in Nd.

A second definition can be made analogously to the second definition of the geometric

lines. For a starting vector v ∈ [n]d with vi = 1 for at least one i ∈ [d] and a vector

r ∈ {0, 1}d the combinatorial line is {v + tr|t ∈ [n− 1]} if for every i ∈ [d] it holds that if

ri = 1 then vi = 1.

We will call a set without any combinatorial line line-free and the cardinality of a largest

line-free set in [n]d is denoted by cn,d.

From the geometric line we can also go the other way and look at a more general case.

Definition 4 (Algebraic Line). An algebraic line is an arithmetic progression of length n

in Zdn instead of [n]d.

Throughout this thesis we will always assume that the canonical representatives of

the equivalence classes of Zn are [n − 1]0 but we will frequently use the transformation

((k − 1) mod n) + 1 for k ∈ Z so that we are in [n]. This does not interfere with our

observations and it also yields a more natural connection between our problems. We will

also use the notation v mod n where v is a vector, i.e. that we look at the reduction modulo

n on all components of v.

For n composite we will not consider an arithmetic progression as an algebraic line

where two elements are the same. Given the arithmetic progression v1, . . . , vn ∈ [n]d we

forbid vi = vj for any pair (i, j) ∈ [d]2, i < j. This means vj − vi = tc ≡ (0) mod n

is not allowed for t ∈ [n − 1], c ∈ Zd and (0) ∈ Zd is the vector with all entries being

zero. For all coordinates k ∈ [d], tck ≡ 0 mod n and so gcd(ck, n) 6= 1 is not allowed to

hold simultaneously. (gcd(a, b) is the greatest common divisor of a and b.) Therefor the

arithmetic progression has the form {((v+ tc− (1)) mod n)+(1)|t ∈ [n−1]0} with v ∈ [n]d

and c ∈ [n]d \ {(c1, . . . , cd) ∈ [n]d| gcd(ci, n) 6= 1,∀i ∈ [d]} and (1) ∈ Zd is the vector with

all entries being one. For example in [4]2 we get c ∈ [4]2 \ {(2, 2), (2, 4), (4, 2), (4, 4)}.
Sets without any algebraic lines are called cap sets and the cardinality of a largest cap

set in Zdn is denoted by an,d.

From the definitions we see that every combinatorial line is a geometric line and every

geometric line is an algebraic line but not vice versa. Thus we get that every cap set is

a Moser set and every Moser set is a line-free set and therefore the following inequalities

hold.

an,d ≤ gn,d ≤ cn,d (2.1)
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We can also further generalize the problems if we are not only looking at lines with n

points but less than n points.

Definition 5. For k ∈ [n − 1]0 we will define ckn,d, g
k
n,d and akn,d to be the cardinality of a

largest set without combinatorial, geometric and algebraic lines of length n−k respectively.

Note that for k = 0 we have our original problems.

Now we can look at some examples of line-free, Moser and cap sets and how to represent

them.

In the two-dimensional case we can look at n× n matrices where each entry represents

a point of [n]d. The crosses × (or alternatively write 1) mark points which are in our

considered set and the circles ◦ (alternatively 0) mark the ones which are not a part of

the set. Since the different lines have nice properties one can easily identify them in this

representation. For example geometric lines are either a row , a column or a diagonal of

the n× n matrix. The construction can be expanded to higher dimensions d by looking at

an nd matrix (tensor).

In figure 2.1 there are three sets in the two-dimensional representation.

1 2 3

1 ◦ × ×
2 × × ◦
3 × ◦ ×

1 2 3

1 × × ◦
2 × ◦ ×
3 ◦ × ×

1 2 3

1 × × ◦
2 × × ◦
3 ◦ ◦ ◦

Figure 2.1: Examples in [3]2

The first one of these sets reaches the maximum under all line-free sets through ex-

haustive search and therefore c3,2 = 6. But since {(1, 3), (2, 2), (3, 1)} is a geometric line,

it only shows that g3,2 ≤ 6.

The second one looks quite similar to the first one but it has an additional property:

It is a Moser set and in fact a largest one, so g3,2 = 6. {(1, 2), (2, 1), (3, 3)} is an algebraic

line here and therefore a3,2 ≤ 6.

The last one is a cap set. It is one of the configurations where the maximum is reached

and a3,2 = 4.

For a representation in three dimensions we look at figure 2.2. Here the values in the

corner of each 3× 3 matrix represent the third dimension. This example shows an optimal

configuration for g3,3 which is 16.
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1 1 2 3

1 ◦ × ×
2 × ◦ ×
3 × × ◦

2 1 2 3

1 × ◦ ×
2 ◦ ◦ ◦
3 × ◦ ×

3 1 2 3

1 × × ◦
2 × ◦ ×
3 ◦ × ×

Figure 2.2: Example in [3]3
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Chapter 3

General Observations

We start this chapter by proving an upper and a lower bound for all values of n and d

and then move on to the special cases d = 2 and d = 3. We then use a method from the

three-dimensional case in higher dimensions. The last thing in this chapter will be the case

n = 3.

Theorem 1. For every n, d ∈ N: cn,d ≤ nd − nd−1.

Proof. The proof is by induction on d.

For d = 1 our hypercube is just a line with n points. To get a line-free set we just need

to remove one point, so cn,1 = n− 1.

For the induction step we go from d− 1 to d. So suppose cn,d−1 ≤ nd−1 − nd−2. (∗)
We can divide [n]d into n disjoint slices of dimension d − 1. Now we will look at this

division on the set where we reach cn,d. In every slice we have at most cn,d−1 points. If

there was one with more points then we would have a combinatorial line in this sub-cube

which would lead to a combinatorial line in the original set. So we get:

cn,d ≤ n · cn,d−1
(∗)
≤ n · (nd−1 − nd−2) = nd − nd−1.

From the proof we also get cn,d ≤ n · cn,d−1 and cn,1 = n − 1. Since the argument for

d = 1 also holds for gn,1 and an,1 we have gn,1 = an,1 = n− 1.

Theorem 2. For every n, d ∈ N: an,d ≥ (n− 1)d.
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Proof. We show the following observation: The set A = {(x1, . . . , xd)|xi 6= n ∀i ∈ [d]} does

not contain any algebraic lines. We have already seen that every algebraic line has the

form L = {(v+ tc−(1)) mod n+(1)|t ∈ [n−1]0} with v ∈ [n]d and c ∈ [n]d\{(c1, . . . , cd) ∈
[n]d| gcd(ci, n) 6= 1, ∀i ∈ [d]}. Because of this there exists an index i ∈ [d] where ci 6= n

and therefore the i-th coordinates of the points in L go through every value in [n], i.e.

{li|l ∈ L} = [n]. Thus every line must contain an element where at least one coordinate is

n which is excluded in our set A. And hence we get: |A| = (n− 1)d ≤ an,d.

3.1 Problems in two dimensions

In the two-dimensional case the solution for the problem is fairly easy for cn,2 and gn,2

but needs a little more work for an,2. In all three cases we can only choose n − 1 points

per row and column since otherwise we would have lines. This follows directly from the

one-dimensional problem.

3.1.1 Combinatorial Lines

For the case cn,2 the main diagonal {(k, k)|k ∈ [n]} is the only additional combinatorial

line besides the rows and columns. Now we will construct a set where we reach the upper

bound cn,2 ≤ n2 − n from Theorem 1. We will look at [n]2 and delete points until there is

no more combinatorial line left. At first we will exclude one of the points from the main

diagonal. For the remaining rows we observe one at a time and take a column where an

element was not already deleted. This always works since we have n − 1 columns left for

n− 1 rows.

We can also express this in another way: The function π : [n]→ [n] with π(x) = y for

every (x, y) which was not chosen in the desired set, has to be a permutation. Since the

first element was taken from the main diagonal we have at least one fixed point.

With this construction which does not contain a combinatorial line we get cn,2 ≥ n2−n
and with the upper bound we have:

Theorem 3. cn,2 = n2 − n holds for all n ∈ N \ {0}.

Figure 3.1 shows an optimal set for c4,2 = 12. Note how the diagonal is not a combina-

torial line by not taking (1, 1).
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1 2 3 4

1 ◦ × × ×
2 × × × ◦
3 × ◦ × ×
4 × × ◦ ×

Figure 3.1: Optimal configuration in [4]2

3.1.2 Geometric Lines

For gn,2 we can proceed similarly but now we also have to be careful about the anti-diagonal

{(k, n− k + 1)|k ∈ [n]} which is the only other geometric line besides the combinatorial

lines.

The optimal set is constructed as above by excluding points from the whole set. We

at first choose one element from the main diagonal and then one from the anti-diagonal

which is not in the same row or column as the first one. Then for the rest we continue as

above. This construction works for every value of n except n = 2. Because if we choose an

element from the diagonal we cannot choose an element on the anti-diagonal which is not

in the same row or column. See also figure 3.2. Therefore g2,2 = 1.

1 2

1 ◦ ◦
2 ◦ ×

Figure 3.2: Optimal configuration in [2]2

This yields the following theorem.

Theorem 4. For all n ∈ N \ {0, 2}: gn,2 = n2 − n.

As in the combinatorial case we can express this as a permutation π : [n] → [n] with

π(x) = y for every (x, y) which was not chosen. In addition to the fixed point we need an

anti-fixed point.

Definition 6. Let π be a permutation on n. We call i ∈ [n] an anti-fixed point of π if

π(i) = n− i+ 1.

The anti-fixed point ensures that the anti-diagonal {(k, n− k + 1)|k ∈ [n]} is not a

geometric line in the set. Such permutations with exactly one fixed point and one anti-

fixed point will play a major role in section 3.3.
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3.1.3 Algebraic Lines

As above mentioned for an,2 the problem gets a little more involved. In [13], Jamison

proved that if n is a prime, an,2 = (n − 1)2 by showing a more general result. We will

present a shorter proof by Alon [1]. For all composite values of n nothing is known in

general but we can compute some solutions for small n as seen in chapter 4.

We first note that Zq ∼= Fq where Fq is the finite field with q elements and every

algebraic line is an affine line in Fq, i.e. we can write them with equations of the form

a1x1 + a2x2 = b with (a1, a2) 6= (0, 0) in two dimensions (This can of course also be done

in higher dimensions). We also need the following theorem which we will not prove (For a

proof see [19]).

Theorem (Chevalley - Warning). Let Fq be the finite field with q elements and f(x1, . . . , xn) ∈
Fq[x1, . . . , xn] be of degree smaller than n with f(0, . . . , 0) = 0. Then there exists a

non-trivial zero of the polynomial f , i.e. ∃(α1, . . . , αn) ∈ Fq not all αi are zero and

f(α1, . . . , αn) = 0.

Theorem 5. For every prime n: an,2 = (n− 1)2.

Proof. We have already shown the lower bound in Theorem 2. So all we need to prove is

an,2 ≤ (n− 1)2.

Let A ⊆ Z2
n be a set such that A contains at least one element of every algebraic line. We

can assume that (0, 0) ∈ A by translating the whole set if necessary. Let B = A \ {(0, 0)},
then every element in Z2

n\{(0, 0)} must be on a line intersected by B. Since every algebraic

line is an affine line we have that for every (a1, a2) ∈ Z2
n \ {(0, 0)} there exists (b1, b2) ∈ B

such that a1b1 + a2b2 = 1.

f(x1, x2) =
∏

(b1,b2)∈B

(1− b1x1 − b2x2)

yields f(a1, a2) = 0 for all (a1, a2) ∈ Z2
n \ {(0, 0)} and f(0, 0) = 1.

We then look at the following equation with a polynomial in the 2(n − 1) variables

x11, x
2
1, . . . , x

n−1
1 and x12, x

2
2, . . . , x

n−1
2 :

n−1∑
i=1

f(xi1, x
i
2) = n− 1

We can now use the theorem of Chevalley and Warning since the only solution of the

above equation is xi1 = 0 and xi2 = 0 for all i ∈ [n − 1]. Therefore the theorem states
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that the number of variables is at most as big as the degree of the polynomial on the

left hand side which is |B|. So we get |B| ≤ 2(n − 1) ⇒ |A| ≤ 2(n − 1) + 1 and every

A ⊆ Z2
n intersecting all algebraic lines must have cardinality at least 2(n−1)+1. Therefore

an,2 ≤ n2 − 2(n− 1)− 1 = (n− 1)2.

3.2 Problems in three dimensions

In this section the cases for cn,3 and gn,3 are dealt with. A method is developed with which

optimal sets can be constructed.

3.2.1 Combinatorial Lines

At first we look at cn,3. We show that the upper bound in Theorem 1 is tight. First we

identify all combinatorial lines in three dimensions. A combinatorial line lying in a plane

with some fixed coordinate, is also a combinatorial line in [n]3. Additionally the diagonal

{(k, k, k)|k ∈ [n]} is also a combinatorial line.

For the construction we define a mapping from special Latin squares to configurations

which have no combinatorial lines and reach the desired optimum. In the last step we then

use a result from Latin squares that show that there always exists such configurations. We

recall the definition of a Latin square.

Definition 7. A Latin square of order n is an n× n array filled with the numbers from 1

to n such that in each column and row every number shows up exactly once.

We call a Latin square diagonal if additionally the main diagonal contains every number

once.

We also need the following result:

Theorem 6. For every positive integer n ≥ 3 there exists at least one diagonal Latin

square of order n.

For a proof of this see [14].

Now we can prove:

Theorem 7. For every integer n ≥ 3: cn,3 = n3 − n2.
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Proof. We take a diagonal Latin square of order n (due to Theorem 6 there always exists

at least one) where w.l.o.g. the elements on the diagonal are in ascending order. Now

we define a set of points S ⊆ [n]3: (x, y) has the entry z in the Latin square if and only

if (x, y, z) ∈ S. Our desired set is T := [n]3 \ S. What needs to be shown is that T is

line-free. Since we chose the diagonal in the Latin square in ascending order we have that

the diagonal {(k, k, k)|k ∈ [n]} is a subset of S and is therefore not in T . Next for fixed

z the permutation π formed by π(x) = y with (x, y, z) ∈ S is a permutation with exactly

one fixed point because every number appears exactly once in a column and row in the

Latin square. For fixed x we have the same for every (x, y, z) ∈ S because in every row

every number shows up once. And an analogous argument holds for fixed y. So in every

two-dimensional sub-slice we have a permutation with exactly one fixed point. So we get

cn,3 ≥ n3 − n2. And with equation (2.1) we get the statement.

Figure 3.3 shows a small example how the construction in the proof works.

1 3 2

3 2 1

2 1 3

1 1 2 3

1 ◦ × ×
2 × × ◦
3 × ◦ ×

2 1 2 3

1 × × ◦
2 × ◦ ×
3 ◦ × ×

3 1 2 3

1 × ◦ ×
2 ◦ × ×
3 × × ◦

Figure 3.3: Conversion to Latin square in [3]3

3.2.2 Geometric Lines

In this section we want to apply the construction used in the proof of Theorem 7 to get

a similar result for the geometric lines. We will show that for n prime we can actually do

this.

For the geometric lines in addition to all the combinatorial lines we need to look at all the

diagonals in the two-dimensional sub-slices and the three other three-dimensional diagonals

{(k, k, n− k + 1)|k ∈ [n]}, {(k, n− k + 1, k)|k ∈ [n]} and {(n− k + 1, k, k)|k ∈ [n]}. For

this reason we use special permutations.

Definition 8. We call a permutation π : [n] → [n] circular fixed, if every circular shift

has a fixed point, i.e. for every k ∈ [n] define the k-th circular shift permutation to be

σk(i) = ((i+ k − 1) mod n) + 1 for all i ∈ [n] and π ◦ σk has a fixed point.
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Because σn is the identity π itself must also have a fixed point. This definition yields

that every circular shift must have exactly one fixed point since every element can only

become a fixed point once. For example:

π =

(
1 2 3

1 3 2

)

is a circular fixed permutation since

π ◦ σ1 =

(
1 2 3

3 2 1

)
, π ◦ σ2 =

(
1 2 3

2 1 3

)
, π ◦ σ3 = π =

(
1 2 3

1 3 2

)
all have one fixed point: 2, 3 and 1 respectively.

For our purpose these permutations have the property that if we line up the circular

shifts in a grid properly (what that means will be explained later) we get a Latin square.

If we use the transformation from the combinatorial case we then get a Moser set which

reaches the upper bound of Theorem 1. So we want to find such permutations and for all

odd primes n we can give some explicitly.

Definition 9. Let n be an odd prime, j ∈ [n] and m ∈ {2, . . . , n − 2}. Define πj,m as

follows: πj,m(1) = j and πj,m(i) = ((πj,m(i− 1) +m− 1) mod n) + 1 for all i ∈ {2, . . . , n}.

So the πj,m are functions which start with value j and the next element is the previous

element plus m reduced modulo n.

This construction has very nice properties.

Lemma 1. Let πj,m be a function as above. Then the following holds:

1. πj,m(i) = ((j − 1 + (i− 1)m) mod n) + 1 for all i ∈ [n].

2. πj,m is a circular fixed permutation.

3. ππj,m(n),n−m is the reverse order of the permutation πj,m and is therefore also a circular

fixed permutation.

Proof. 1. Follows directly from the definition by inserting πj,m(i− 1) recursively.

2. We see that m ∈ Z∗n (the set of invertible elements modulo n) because n is prime. In

fact Z∗n contains all elements of Zn except 0 ≡ n. Also Z∗n is cyclic so there exists a

generating element g and Z∗n = {gk|k ∈ [n−2]0}. We have m = gl for some l ∈ [n−2]
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and get mZ∗n = glZ∗n = Z∗n and especially mZn = Zn. Because of property 1 and the

fact that j− 1 is just an offset we get that each element in [n] is visited exactly once

in πj,m. Therefore it is a permutation.

Now we have to show that it is circular fixed. We see that the circular shifts of π1,m

are the πj,m with j ∈ {2, . . . , n}. So if we show that π1,m is circular fixed then the

πj,m are circular fixed. We observe that {(π1,m(i) − i) mod n|i ∈ [n]} = [n]. This

loosely means that the distances between an element i and its image is different for

all i. Therefore every circular shift has only one fixed point.

The observation is true because (π1,m(i) − i) mod n = ((((i − 1)m) mod n) + 1 −
i) mod n = ((i − 1)m − (i − 1)) mod n = (i − 1)(m − 1) mod n. We have m ∈
{2, . . . , n − 2} ⇒ m − 1 ∈ {1, . . . , n − 3} ⊆ Z∗n and as before we can argue that all

distances appear exactly once. So the πj,m are circular fixed.

3. Since πj,m(n) is the last element of πj,m it must be the first element of the reverse

order. Additionally we have πj,m(i) = ((πj,m(i− 1) +m− 1) mod n) + 1 and so if we

add n−m instead of m we get the reverse order.

We excluded the values 1 and n− 1 for m in our definition because for them πj,m does

not have these properties. From property 3 we get that πj,m has exactly one fixed point and

one anti-fixed point due to the fact that the fixed points of the reverse order are exactly

the anti-fixed points of the original order.

If we look at (
ππk,l(j),m(i)

)
i∈[n]
j∈[n]

with fixed k ∈ [n] and l,m ∈ {2, . . . , n − 2} we get a Latin square because for j fixed

πk,l(j) is also fixed and so ππk,l(j),m is a circular fixed permutation. The rest follows from

the following lemma.

Lemma 2. The transpose of
(
ππk,l(j),m(i)

)
i∈[n]
j∈[n]

is
(
ππk,m(j),l(i)

)
i∈[n]
j∈[n]

.
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Proof. We have to show that for every i, j ∈ [n]: ππk,l(i),m(j) = ππk,m(j),l(i).

ππk,l(i),m(j) = π((k−1+(i−1)l) mod n)+1,m(j)

= (((((k − 1 + (i− 1)l) mod n) + 1− 1 + (j − 1)m)) mod n) + 1

= (((k − 1 + (i− 1)l + (j − 1)m)) mod n) + 1

= (((((k − 1 + (j − 1)m) mod n) + 1− 1 + (i− 1)l)) mod n) + 1

= π((k−1+(j−1)m) mod n)+1,l(i) = ππk,m(j),l(i)

If we want to look at the columns of the matrix we can simply transpose it and use the

same argument from the rows to prove that the columns are circular fixed permutations.

So this matrix is a Latin square and in every row and column there exists exactly one fixed

point and one anti-fixed point. The only lines left are the diagonal and anti-diagonal of

the Latin square. Both of them need to have exactly one fixed point and one anti-fixed

point. This makes sure that the three-dimensional diagonals in our transformed set are

not geometric lines. The diagonal has the form ππk,l(1),m+l and the anti-diagonal has the

form ππk,l(n),m+n−l. The following properties have to be met:

1. (m+ l) mod n /∈ {0, 1, n− 1}

2. (m+ n− l) mod n /∈ {0, 1, n− 1} ⇔ m mod n /∈ {l − 1, l, l + 1}

This ensures that ππk,l(1),m+l and ππk,l(n),m+n−l are circular fixed and therefore have one

fixed and one anti-fixed point.

To sum everything up we must find m, l ∈ {2, . . . , n − 2} with the above restrictions.

For n ≥ 9 we can find such numbers. For example we can always take m = 2 and l = 4.

In the cases n = 2, 3, 5, 7 the restrictions cannot be fulfiled. If we use an arbitrary k then

the Latin square (
ai,j

)
i∈[n]
j∈[n]

=
(
ππk,l(j),m(i)

)
i∈[n]
j∈[n]

yields an optimal configuration with the transformation described in Theorem 7: (i, j, q) /∈
T if and only if q = ai,j where T is our desired set.

For fixed q the Latin square property ensures that each row and column in the two-

dimensional sub-slices (i, j, q) with i, j ∈ [n] has exactly one element which is not chosen.

Additionally the diagonals in the Latin square contain every number exactly once and
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therefore the diagonals in these sub-slices cannot form a line. The rows and the columns

of the Latin square are circular-fixed and thus have exactly one fixed and one anti-fixed

point. So for fixed i (and equivalently for fixed j) the two-dimensional sub-slices (i, j, q)

with j, q ∈ [n] do not contain a geometric line.

For n = 7 we can also explicitly state a Latin square which transforms into an optimal

configuration which is depicted in figure 3.4.

1 4 7 3 6 2 5

6 2 5 1 4 7 3

4 7 3 6 2 5 1

2 5 1 4 7 3 6

7 3 6 2 5 1 4

5 1 4 7 3 6 2

3 6 2 5 1 4 7

Figure 3.4: Latin square for n = 7

This proves the following theorem.

Theorem 8. For every prime n ≥ 7: gn,3 = n3 − n2.

The diagonals in the Latin square do not have to be circular-fixed permutations neces-

sarily since there are only one of each kind of diagonal. They just have to contain exactly

one fixed point and one anti-fixed point. So in our case m+ l ≡ 1 mod n. With k = 1 this

yields the identity permutation which fulfils the requirement if n is odd. We can use this

for all n. So we set k = 1 and we need to find m, l ∈ {2, . . . , n− 2} such that:

1. (m+ l) ≡ 1 mod n

2. m 6≡ l mod n.

3.3 Problems in higher dimensions

Latin squares can be generalized to higher dimensions. We take a definition based on [3].

Definition 10. A Latin d-cube of order n is a d-dimensional array of length n filled with

the numbers from 1 to n such that if we fix d− 1 coordinates the one-dimensional sub-slice

contains every number exactly once.
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For simplicity we will use the following notation.

Definition 11. π
(1)
k,l (i) := πk,l(i) and

π
(d)
k,l1,...,ld

(i1, . . . , id) := π
π
(d−1)
k,l1,...,ld−1

(i1,...,id−1),ld
(id) for all d ≥ 2.

The generalization of the construction for Latin d-cubes is done as in section 3.2.2 for

Latin squares. With the above notation this yields:

(
π
(d)
k,l1,...,ld

(i1, . . . , id)
)
i1∈[n]
i2∈[n]

...

id∈[n]

with d ∈ N, k ∈ [n] and l1, . . . , ld ∈ {2, . . . , n− 2}.
But there are more restrictions needed than in 3.2.2. We need that every diagonal is

circular-fixed. Therefore the sums of the li over every set I ⊆ [d], I 6= ∅ must not lie in

{0, 1, n− 1} modulo n, i.e. for every I ⊆ [d](∑
i∈I

li mod n
)
/∈ {0, 1, n− 1}. (3.1)

These restrictions suffice for line-free sets. For Moser sets there are more diagonals.

Every disjoint pair of non-empty sets of indices I, J ⊆ [d], I 6= ∅, J 6= ∅ and I ∩ J = ∅
must fulfil ((∑

i∈I

li −
∑
j∈J

n− lj
)

mod n
)
/∈ {0, 1, n− 1}. (3.2)

This ensures that every diagonal is circular fixed and therefore has a fixed point and an

anti-fixed point.

For every d the number of restrictions is constant. So n can always be made large

enough such that we can find such lis. k can be chosen arbitrarily. The following two

theorems summarize this.

Theorem 9. For every d ∈ N there exists a N1 ∈ N such that for every n ≥ N1 with n

prime: cn,d = nd − nd−1.

Theorem 10. For every d ∈ N there exists a N2 ∈ N such that for every n ≥ N2 with n

prime: gn,d = nd − nd−1.

Proof. Let T ⊆ [n]d be defined as follows:

(i1, . . . , id−1, id) /∈ T ⇔ id = π
(d−1)
k,l1,...,ld−1

(i1, . . . , id−1)
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with k ∈ [n] and l1, . . . , ld−1 ∈ {2, . . . , n− 2} where l1, . . . , ld−1 satisfy the set of equations

in 3.1 for Theorem 9 and they satisfy the set of equations in 3.1 and 3.2 for Theorem 10.

For Theorem 9 if we can find l1, . . . , ld−1 such that

d−1∑
i=1

li ≤ n− 2

then every subset I ⊆ [d− 1] has the property∑
i∈I

li ≤ n− 2

. This satisfies the restrictions in 3.1. Since li ≥ 2,∀i ∈ [d− 1] we can use li = 2 and get:

d−1∑
i=1

2 ≤ n− 2⇔ 2(d− 1) ≤ n− 2⇔ 2d ≤ n.

This shows that if we take N1 = 2d Theorem 9 holds.

For Theorem 10 we choose N2 = 2d and li = 2i, ∀i ∈ [d − 1], the reason being the

following: For the equations in 3.1 we have

d−1∑
i=1

li ≤ n− 2

which is true because
d−1∑
i=1

2i = 2d − 2.

For the restrictions in 3.2 since the lis and n are both even the resulting values of the

reduction modulo n can never take the odd values 1 or 2d − 1. So we only have to show

that we never get 0 which results in the restriction being∑
i∈I

2i 6=
∑
j∈J

2j

where we can omit the reduction modulo 2d because 2d is bigger than any sum of 2i with

i ∈ [d − 1]. And since any natural number has a unique binary representation the above

inequality holds for every pair I, J ⊆ [d− 1], I 6= ∅, J 6= ∅ and I ∩ J = ∅.
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3.4 Problems for n = 3

A lot of research has been done for the case n = 3. Especially for the cases of combinatorial

and geometric lines many results are known ([17]). But recently also a lot of development

has been done in the direction of algebraic lines and cap sets.

In Theorem 6 it was proven that a3,d ≥ 2d which is a trivial lower bound. In [7] the

best known lower bound so far was proven with a3,d = Ω(2.2174d) by Edel, Ferret, Landjev

and Storme. The best known upper bound until May 2016 was a3,d = O( 3n

n1+ε ) by Bateman

and Hawk Katz (See [4]). In May 2016 Ellenberg and Gijswijt independently conducted

and then jointly released (See [8]) a proof for a new upper bound a3,d = o(2.756d). This is

quite an improvement over the previous upper bound. For their approach they used the

polynomial method and in particular the one developed by Croot, Lev, and Pach in [5].

We will not go into the details of this thesis but for further interest in this topic see the

corresponding papers.

3.5 Related Problems

In this section we discuss some related problems. First we will look at the zero sum problem

and then we will discuss the Hales-Jewett theorem.

3.5.1 Zero Sums

Definition 12 (Zero Sum). Let x1, . . . , xn ∈ Zdn be a sequence of n vectors. They are called

a zero sum if
∑n

i=1 xi ≡ (0) mod n.

Now the question arises what the minimal number f(n, d) is such that every set of

f(n, d) not necessarily distinct vectors xi ∈ Zdn contains a subset of cardinality n which is

a zero sum. This problem was first proposed by Harborth [11] and was based on the idea

of generalizing a theorem by Erdös, Ginzburg and Ziv [9] which states that for any given

sequence of 2n − 1 integers one may choose n out of them such that there sum equals 0

modulo n. Harborth proved

(n− 1)2d + 1 ≤ f(n, d) ≤ (n− 1)nd + 1 .

Now the reference to our problem is that every algebraic line l is a zero sum if n is an

odd prime, i.e.
∑

v∈l v ≡ 0 mod n. This follows from the fact that every algebraic line has
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the form {v + tr|t ∈ [n− 1]0} with v ∈ [n]d and r ∈ [n]d \ (n, . . . , n) for odd primes. If we

take the sum of this set we get

n−1∑
t=0

v + tr = nv + r
n−1∑
t=0

t = nv + rn
(n− 1)

2
≡ 0 mod n.

Since n is odd we get that n−1
2
∈ N and so the last equivalence holds.

The reverse that every zero sum of length n is an algebraic line is true for Zd3. In

Z3 the only options to get a zero sum with 3 values are 1 + 1 + 1, 2 + 2 + 2, 3 + 3 + 3

and 1 + 2 + 3. So if we take three distinct vectors in Zd3 which are a zero sum, in every

coordinate one of the above combinations (or any permutation of the last one) must occur.

Since all of these combinations are possible in an algebraic line we are finished. For

larger n the above statement does not hold anymore. For example in Z5 the zero sum

1 + 1 + 1 + 3 + 4 = 10 ≡ 0 mod n is not an algebraic line.

3.5.2 Hales-Jewett theorem

This section is based on [16].

Our problems always dealt with the question for fixed n and d to find a largest possible

set such that there is no line in it. Now we want to ask for fixed n how large we have to

make d such that there always exists at least one line.

The Hales-Jewett theorem gives an upper bound for the dimension d = d(r, n) for

which there exists a monochromatic combinatorial line in [n]d for any given colouring with

r colours. We will provide a proof by Sharon Shelah which was proven in 1988. The

original proof by Hales and Jewett also gives an upper bound but a much worse one than

the one from Shelah. With the Hales-Jewett theorem one can prove many other results

such as the Van der Warden theorem. There also exists a density version which we state

at the end of this section.

We will now look at a different approach to combinatorial lines to make things easier

for us to prove.

Let [n] be an alphabet of n symbols and ∗ /∈ [n] be a new symbol. Words are strings

(or equivalently vectors) over [n] without ∗ and roots are strings with at least one ∗. For

a root t ∈ ([n] ∪ {∗})d and a symbol a ∈ [n] we define t(a) ∈ [n] as the word obtained by

substituting ∗ with a.

Definition 13 (Combinatorial Line, second definition). For t a root we call the set of n
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words {t(i)|i ∈ [n]} a combinatorial line rooted at t.

The root (1, ∗, 2, ∗, 3) ∈ ([3] ∪ {∗})5 becomes the combinatorial line {(1, 1, 2, 1, 3),

(1, 2, 2, 2, 3), (1, 3, 2, 3, 3)} for example.

The next result shows how many combinatorial lines there are.

Theorem 11. The number of combinatorial lines in [n]d is (n+ 1)d − nd.

Proof.

|{combinatorial lines in [n]d}| = |{roots in ([n] ∪ {∗})d}|

= |{strings in ([n] ∪ {∗})d}|

− |{strings in ([n] ∪ {∗})d without ∗}|

= (n+ 1)d − nd

So now we look at the colouring Hales-Jewett theorem.

Definition 14 (r-colouring). Let r ∈ N be a number of colours and n ∈ N. An r-colouring

of [n]d is a mapping χ : [n]d → [r].

Theorem 12 (Hales-Jewett theorem). Let r ∈ N be a number of colours and n ∈ N. There

exists a dimension d := d(r, n) such that every r-colouring of [n]d has a monochromatic

combinatorial line.

Proof. We perform induction on n. r is fixed but arbitrary. For n = 1 we get d(r, 1) = 1

since [1]1 consists of only one point which whatever colour it has yields a monochromatic

combinatorial line of length 1. Now suppose the theorem holds for n−1, i.e. d := d(r, n−1)

exists. Let D1 < . . . < Dd be a sequence of d integers with

D1 = rn
d

,

Di = rn
d+

∑i−1
j=1

Dj

, i ∈ {2, . . . , d}

and set D :=
∑d

i=1Di.

We want to show that for any r-colouring χ of [n]D there exists a monochromatic

combinatorial line.

For this we need the following definitions and auxiliary theorem which we will prove

later.
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Definition 15 (Neighbours). Two words a, b ∈ [n]d are neighbours if they differ in exactly

one coordinate with 1 being the value in a and n being the value in b.

Two neighbours which differ in the i-th coordinate are a = a1 . . . ai−11ai+1 . . . ad and

b = a1 . . . ai−1nai+1 . . . ad for example.

Definition 16 (Concatenation). Suppose t1, . . . , tm are m roots over [n] which need not

be of the same length. Let t := t1 . . . tm denote the concatenation of these roots. Let

a := a1 . . . am ∈ [n]m be a word. t(a) := t1(a1) . . . tm(am) is the word obtained by inserting

ai instead of ∗ in ti for all i ∈ [m].

Theorem 13 (auxiliary). Let χ be an r-colouring of [n]D. Then there exists a root t :=

t1 . . . td with |ti| = Di for all i ∈ [d] and χ(t(a)) = χ(t(b)) for all neighbours a, b ∈ [n]d.

So we take a root t as above and define a new colouring χ′ for [n− 1]d as χ′(a) :=

χ(t(a)). Since we now have n − 1 symbols we get by induction assumption that there

exists a root s = s1 . . . sd ∈ ([n− 1] ∪ {∗})d such that the combinatorial line rooted at s

is monochromatic with respect to χ′. t(s) yields yet another root and we show that the

combinatorial line rooted at t(s) is monochromatic with respect to χ. By the definition of

χ′ we have χ′(s(1)) = . . . = χ′(s(n − 1)) and therefore χ(t(s(1)) = . . . = χ(t(s(n − 1))).

Now we only need to show that χ(t(s(n))) is the same colour.

If t(s) has exactly one ∗ then t(s(n)) is a neighbour of t(s(1)) and therefore has the

same colour.

If t(s) has more than one ∗ then t(s(n)) still has the same colour because we can pass

through a chain of neighbours. For example assume we have three ∗ in the i-th, j-th and

k-th position than we get:

χ(t(s(n))) = χ(. . .

i
↓
n . . .

j

↓
n . . .

k
↓
n . . .)

= χ(. . . n . . . n . . . 1 . . .)

= χ(. . . n . . . 1 . . . 1 . . .)

= χ(. . . 1 . . . 1 . . . 1 . . .) = χ(t(s(1)))

So now the only thing left to do is prove the auxiliary Theorem 13.

Proof. We will provide a backwards induction on i to prove that there exist roots ti with

the desired property. The root td can be trivially constructed through the choice of χ.

Suppose we now have roots ti+1, . . . , td. Now we want to construct ti. We will set Ci−1 :=
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∑i−1
j=1Dj. (This is the length of the roots t1, . . . , ti−1 which have to be constructed.) For

k ∈ {0, . . . , Di} we define

Wk := 1 . . . 1︸ ︷︷ ︸
k

n . . . n︸ ︷︷ ︸
Di−k

.

Let χk be an r-colouring of [n]Ci−1+d−i as follows:

χk(x1 . . . xCi−1
yi+1 . . . yd) := χ(x1 . . . xCi−1

Wkti+1(yi+1) . . . td(yd)) .

The xj have length 1 for j ∈ [Ci−1] whereas the yl have length Dl for l ∈ {i+1, . . . , d}. We

now have Di + 1 colourings. The total number of r-colourings for the words in [n]Ci−1+d−i

is rn
Ci−1+d−i ≤ rn

Ci−1+d

= Di. Therefore by the pigeonhole principle two colourings must

be the same. Suppose χp = χq and p < q. We can now define our desired root:

ti := 1 . . . 1︸ ︷︷ ︸
p

∗ . . . ∗︸ ︷︷ ︸
q−p

n . . . n︸ ︷︷ ︸
Di−q

.

t = t1 . . . td satisfies the length condition so we only have to show the condition for the

neighbours.

For this first observe that ti(1) = Wq and ti(n) = Wp. Now suppose a and b are two

neighbours that differ in the i-th coordinate:

a = a1 . . . ai−11ai+1 . . . ad

b = a1 . . . ai−1nai+1 . . . ad

then

t(a) = t1(a1) . . . ti−1(ai−1)ti(1)ti+1(ai+1) . . . td(ad)

t(b) = t1(a1) . . . ti−1(ai−1)ti(n)ti+1(ai+1) . . . td(ad) .
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With the definition of our colourings we get:

χ(t(a)) = χ(t1(a1) . . . ti−1(ai−1)ti(1)ti+1(ai+1) . . . td(ad))

= χ(t1(a1) . . . ti−1(ai−1)Wqti+1(ai+1) . . . td(ad))

= χq(t1(a1) . . . ti−1(ai−1)ai+1 . . . ad)

= χp(t1(a1) . . . ti−1(ai−1)ai+1 . . . ad)

= χ(t1(a1) . . . ti−1(ai−1)Wpti+1(ai+1) . . . td(ad))

= χ(t1(a1) . . . ti−1(ai−1)ti(n)ti+1(ai+1) . . . td(ad))

= χ(t(b))

There also exists the stronger density version of the Hales-Jewett theorem which we

will not prove here. It was first proven by Furstenberg and Katznelson ([10]) in 1989 and

in 2009 the Polymath project revealed a simpler and more elementary proof ([18]).

Definition 17 (Density). Let A ⊆ [n]d. The density δ of A is defined as δ := |A|
nd

.

Theorem 14 (Density Hales-Jewett theorem). For every n ∈ N and δ ∈ R+ there exists

a dimension d := d(n, δ) such that every subset of [n]d with density at least δ contains a

combinatorial line.
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Chapter 4

Another Approach: Integer

Programming

As we have seen in the previous chapters there are many ways to express the problems

we are looking at. In this chapter we will look at the approach through integer linear

programming following [15].

4.1 Preliminaries

At first we look at integer programming (IP) in general.

A standard integer linear programme has the form:

maximize cx

subject to Ax ≤ b,

x ∈ Nn,

where c ∈ Zn, A ∈ Zm×n and b ∈ Zm. The relaxation of the problem is:

maximize cx

subject to Ax ≤ b,

x ∈ Rn,

x ≥ 0.

Linear programmes without the integer restriction for x are solvable in polynomial time

through interior-point methods. In practice the simplex method of Dantzig is often used
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which is fast in general but can take exponential time for special cases.

Integer linear programming on the other side is NP -hard. This means that the corre-

sponding decision problem is NP -complete which is the question if for a fixed value k ∈ Z
the maximum is smaller than k. So integer linear programming is rather time consuming

but there are some techniques which systematically can solve this problem.

4.2 Optimization concepts

In this section we will explain two large concepts which are often used in integer linear

programming.

4.2.1 Branch-and-Bound

The first and most frequently used concept in integer linear programming is the idea of

Branch-and-Bound.

The idea which can also be used for other problems is the following: If we look at

an optimization problem maxx∈D f(x) where D is the space of feasible solutions then it

is often too time consuming to try every x ∈ D. Therefore we divide D gradually into

several subsets (Branches). With suitable bounds we should identify suboptimal solutions

early and eliminate them to keep the solution space small. In the worst case we have to

enumerate all solutions anyway.

Given a standard integer linear programme:

maximize f = cx

subject to Ax ≤ b,

x ∈ Nn

By omitting the integer restriction we get the continuous relaxation which can be solved

with the simplex method. (Because of the required integrity we cannot use the simplex

method on our original problem.) We will now use Branch-and-Bound. At first we will set

our best objective value so far f̂ to be a large negative value (For example we could use

the smallest obtainable objective value with regards only to the value restrictions for the

variables.) and look at the relaxation. In general the so obtained solution is not integral.

This means not all of x1, x2, . . . , xn are integral. Without loss of generality we assume that

this is true for x1. Now we try to find an integral solution for x1. Let s1 be the largest
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integer smaller than x1. We can formulate two new optimization problems such that the

previous solution is excluded:

maximize f = cx

subject to Ax ≤ b,

x ≥ 0

x1 ≤ s1.

(4.1)

maximize f = cx

subject to Ax ≤ b,

x ≥ 0

x1 ≥ s1 + 1.

(4.2)

This is called the branching step.

Now we can again solve these problems with the simplex method and the following

three cases can occur:

1. The space of feasible solutions becomes empty.

2. An integral optimal solution f is found.

3. x1 becomes integral but another xi is not (it does not matter if it was integral in the

beginning.)

In case 1 the subproblem is not relevant anymore. This applies also to the other cases if

f ≤ f̂ . Otherwise in case 2 we use the computed objective value as our new best objective

value so far and substitute f̂ by f . And in case 3 we have to further split our problem.

Thus the whole solution space is scanned and an optimal solution is found if there exists

one. It is possible there are no suitable solution then the original problem has no feasible

one.

4.2.2 Cutting Planes

The concept of cutting planes is also frequently used.

The idea is to look at the continuous relaxation of our integer programme and by adding

further inequalities to get an integral solution. At first we look at the relaxation. In general

the solution obtained is not integral but it is an upper bound for our problem because every

optimal solution of our original problem is a feasible solution for the relaxation. This can
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be used to measure the quality of a solution of the integral problem. This bound will be

tightened by subsequently adding so called cutting planes. A cutting plane (in general a

hyper plane) is an additional inequality which every solution of the integral programme

fulfils but not the current solution of the relaxation. So if we add this inequality to the

relaxation it will lead to another optimal solution. This procedure is continued until an

integral solution is obtained (which is then an optimal solution for our problem) or no

further inequality can be added.

4.2.3 Branch-and-Cut

The two concepts above can also be combined.

Before we use the Branch-and-Bound method we can add cutting planes and get a

solution for the relaxation faster in most cases. In addition further cutting planes can

be calculated during the branching process which would not have been found without the

restrictions in the sub-problems. These planes can be valid globally, so they are feasible for

the original problem, or just locally, here the inequality is only feasible for the current sub-

tree. Furthermore we can use heuristics in the sub-problems to obtain feasible solutions

faster and then eventually cut off additional sub-trees.

4.3 Integer programming for our problems

We model our problems by taking a d-dimensional tensor x of length n which represents

every point in [n]d. (This corresponds directly to how we represent our sets.) All entries

of x take values in {0, 1} with a zero in entry xv with v ∈ [n]d meaning that we do

not take the vector v and a one that we take it. (We are abusing notation by writing

x(a1,a2,...,an) := xa1,a2,...,an) So what else do we need to specify the problems? We need

special restrictions to handle every line, may it be combinatorial, geometric or algebraic.

So the programme looks like this.

maximize
∑
v∈[n]d

xv

subject to Ax ≤ b,

xv ∈ {0, 1}, v ∈ [n]d .

Here A and b are unspecified. Since x is an nd tensor Ax is a tensor product with

A ∈ {0, 1}m×nd where m ∈ N is the number of possible lines in our set. So in the m-th
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sub-tensor we have a set of n vectors S ⊆ [n]d where Am,v = 1 for all v ∈ S (Here Am,v

means that we concatenate m and v into one vector, i.e Am,(a1,a2,...,an) := Am,a1,a2,...,an). And

b is an m× 1 vector where all entries are n− 1. So we will have the following equations in

the m-th line: ∑
v∈[n]d

Am,vxv ≤ n− 1.

For further insight we look at some examples in [2]2:

maximize
∑
v∈[2]2

xv = x1,1 + x1,2 + x2,1 + x2,2

subject to Ax ≤ b,

x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}.

For line-free sets we get:

maximize x1,1 + x1,2 + x2,1 + x2,2 = c2,2

subject to x1,1 + x1,2 ≤ 1

x2,1 + x2,2 ≤ 1

x1,1 + x2,1 ≤ 1

x1,2 + x2,2 ≤ 1

x1,1 + x2,2 ≤ 1

x1,1 , x1,2 , x2,1 , x2,2 ∈ {0, 1}.

For Moser sets and in this case also cap sets there is an additional restriction:

maximize x1,1 + x1,2 + x2,1 + x2,2 = g2,2 = a2,2

subject to x1,1 + x1,2 ≤ 1

x2,1 + x2,2 ≤ 1

x1,1 + x2,1 ≤ 1

x1,2 + x2,2 ≤ 1

x1,1 + x2,2 ≤ 1

x1,2 + x2,1 ≤ 1

x1,1 , x1,2 , x2,1 , x2,2 ∈ {0, 1}.
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Chapter 5

Computational Values

In this chapter we present the computational values for our problems where we use the soft-

ware IBM® ILOG® CPLEX® Optimization Studio [12] for optimizing and the modelling

language AMPL [2]. All of these values have been computed on a PC with 4 Intel® Core�

i5-6500 @3.20 Ghz processors and 8 GB RAM. At the beginning of each section we will

also show the optimization programme for the corresponding problems. The tables show

the computed values, the time taken and the maximum size of the decision tree used by

the Branch-and-Bound method which is a good indicator for how much space was needed.

In appendix A all configurations are listed which were computed this way. Additionally

we give the statistics for them which provides us with additional information about the

structure.

Definition 18. A g-dimensional statistic in direction(s) D ⊆ [d] with |D| = d − g for a

set A ⊆ [n]d is a n|D|-tuple (ij)j∈[n]|D| with ij = |A ∩ {(k1, . . . , kd) ∈ [n]d|(kl)l∈D = j}|.

For cap sets we also allow affine transformations before making the statistic. We will

mainly list d− 1-dimensional statistics for d ≥ 3. Another statistic for cap sets with n = 4

is to look at the number of points in sub-hypercubes of length 2.

5.1 Computational values for d = 2

5.1.1 Algebraic lines

In the two-dimensional case for cap sets we have to specify every algebraic line in our re-

strictions. At first we take the lines which represent each row and column (one-dimensional
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slices) of the variable matrix. This is the case when either k or m in the restriction below

is equal to n. Then we need to specify the remaining lines. For n prime this is fairly easy

because every line is a permutation. For n composite we already said that we only look at

lines where no coordinate is repeated amongst the points. So we have similar restrictions.

maximize
∑
i,j∈[n]

xi,j

subject to
∑
i∈[n]

x((j+(i−1)k−1) mod n)+1,((l+(i−1)m−1) mod n)+1 ≤ n− 1

∀j, l ∈ [n] and (k,m) ∈ ({i| gcd(i, n) = 1} ∪ {n})2 \ {(n, n)},

xj,k ∈ {0, 1} ∀j, k ∈ [n].

Note how for n prime Table 5.1 shows the values we have proven in Theorem 5.

n an,2 CPU time max. size of decision tree

3 4 < 0.01 sec < 0.01 MB
4 10 < 0.01 sec < 0.01 MB
5 16 0.1875 sec < 0.01 MB
6 28 0.09375 sec < 0.01 MB
7 36 93.9062 sec 9.27 MB
8 52 4.46875 sec < 0.01 MB
9 66 673.781 sec 12.72 MB
10 86 27.2344 sec 0.46 MB
12 130 12.9531 sec 0.4 MB

Table 5.1: Table of computational values for an,2

For n = 11 the program aborted after two hours of computation with an out of memory

error.

The following sets in figure 5.1 are the two solutions computed by our programme for

n = 4 and n = 5:
an,4: {(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (2, 4), (3, 2), (4, 1), (4, 3), (4, 4)}
an,5: {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(4, 1), (4, 2), (4, 3), (4, 4)}
Whilst the solution for the case n = 5 (and especially for every other prime computed)

looks like the solution proven by Jamison [13] and Alon [1], for n = 4 the point set does

not exhibit any particular structure.
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1 2 3 4

1 × × ◦ ×
2 × ◦ × ◦
3 × × ◦ ×
4 ◦ × ◦ ×

1 2 3 4 5

1 × × × × ◦
2 × × × × ◦
3 × × × × ◦
4 × × × × ◦
5 ◦ ◦ ◦ ◦ ◦

Figure 5.1: Configurations for a4,2 and a5,2

5.2 Computational values for d = 3

5.2.1 Combinatorial lines

We have already proven these values but for completeness we have computed them anyway.

To specify the lines we need all one-dimensional slices which are the top three restriction

sets in the second column below. Then we need the main diagonal in every two-dimensional

slice (top three in the first column) and the overall main diagonal (fourth line below). As

we have shown in the proof of Theorem 7 in section 2 we can assume that all elements on

the main diagonal are zero, which speeds up the computation time.

maximize
∑

i,j,k∈[n]

xi,j,k

subject to
∑
i∈[n]

xi,i,j ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xi,j,k ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xi,j,i ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xj,i,k ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xj,i,i ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xj,k,i ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xi,i,i ≤ n− 1 xi,i,i = 0 ∀i ∈ [n],

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

Table 5.2 shows exactly the values provided by Theorem 7.

5.2.2 Geometric lines

For the geometric lines we need all the combinatorial lines which are listed in the first four

rows below. The other three lines represent the diagonals in the two-dimensional slices

32



n cn,3 CPU time max. size of decision tree

3 18 < 0.01 sec < 0.01 MB
4 48 0.03125 sec < 0.01 MB
5 100 0.046875 sec < 0.01 MB
6 180 0.15625 sec < 0.01 MB
7 294 0.65625 sec < 0.01 MB
8 448 0.34375 sec < 0.01 MB
9 648 7.10938 sec 1.70 MB
10 900 5.10938 sec 0.17 MB
11 1210 5.20312 sec 0.14 MB
12 1584 1.96875 sec < 0.01 MB
13 2028 21.5781 sec 1.06 MB
14 2548 8.46875 sec < 0.01 MB
15 3150 5.89062 sec < 0.01 MB
16 3840 8.59375 sec < 0.01 MB
17 4624 260.188 sec 17.26 MB
18 5508 14.3906 sec < 0.01 MB
19 6498 1978.83 sec 76.09 MB
20 7600 761.375 sec 30.10 MB

Table 5.2: Table of computational values for cn,3

(second column) and the other diagonals in the third dimension (first column).
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maximize
∑

i,j,k∈[n]

xi,j,k

subject to
∑
i∈[n]

xi,i,i ≤ n− 1,∑
i∈[n]

xi,i,j ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xi,j,k ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xi,j,i ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xj,i,k ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xj,i,i ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xj,k,i ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xi,i,n−i+1 ≤ n− 1,
∑
i∈[n]

xi,n−i+1,j ≤ n− 1 ∀j ∈ [n],∑
i∈[n]

xi,n−i+1,i ≤ n− 1,
∑
i∈[n]

xn−i+1,j,i ≤ n− 1 ∀j ∈ [n],∑
i∈[n]

xn−i+1,i,i ≤ n− 1,
∑
i∈[n]

xj,i,n−i+1 ≤ n− 1 ∀j ∈ [n],

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

As we can see in Table 5.3 for the prime values larger than 6 we get the values we have

proven in Theorem 8. Also note that the composite values have the form n3 − n2.

5.2.3 Algebraic lines

The three-dimensional case for algebraic lines is very similar to the two-dimensional case.

maximize
∑

i,j,k∈[n]

xi,j,k

subject to
∑
i∈[n]

x((j+(i−1)k−1) mod n)+1,((l+(i−1)m−1) mod n)+1,((p+(i−1)q−1) mod n)+1 ≤ n− 1

∀j, l, p ∈ [n] and (k,m, q) ∈ [n]3 \ {i ∈ [n]| gcd(i, n) 6= 1}3,

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

Table 5.4 shows the values a3,3, a4,3 and a5,3.

For n = 5 the program already took more than two hours before it stopped with an

out of memory error therefore we unfortunately have not many values here.
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n gn,3 CPU time max. size of decision tree

3 16 < 0.01 sec < 0.01 MB
4 45 0.09375 sec < 0.01 MB
5 97 1.89062 sec < 0.01 MB
6 177 35.0625 sec 1.73 MB
7 294 0.21875 sec < 0.01 MB
8 448 246.906 sec 83.4 MB
9 648 293.625 sec 54.1 MB
10 900 1164.19 sec 214.28 MB
11 1210 285.594 sec 84.45 MB
12 1584 486.766 sec 57.73 MB
13 2028 795.875 sec 44.3 MB
14 2548 478.5 sec 36.57 MB
15 3150 2953.58 sec 97.26 MB
16 3840 2606.14 sec 33.06 MB
17 4624 2254.72 sec 31.14 MB
18 5508 890.328 sec 18.86 MB
19 6498 1475.55 sec 18.46 MB
20 7600 1529.52 sec 19.52 MB

Table 5.3: Table of computational values for gn,3

n an,3 CPU time max. size of decision tree

3 9 0.078125 sec < 0.01 MB
4 36 0.40625 sec < 0.01 MB

Table 5.4: Table of computational values for an,3

5.3 Computational values for d = 4

5.4 Combinatorial lines

The four-dimensional case for combinatorial lines is also similar to the three-dimensional

case. We have to take care of all one-dimensional slices and all diagonals in two-dimensional

and three-dimensional slices.
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maximize
∑

i,j,k,l∈[n]

xi,j,k,l

subject to
∑
i∈[n]

xi,i,i,j ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xi,j,k,l ≤ n− 1 ∀j, k, l ∈ [n],∑
i∈[n]

xi,i,j,i ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xj,i,k,l ≤ n− 1 ∀j, k, l ∈ [n],∑
i∈[n]

xi,j,i,i ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xj,k,i,l ≤ n− 1 ∀j, k, l ∈ [n],∑
i∈[n]

xj,i,i,i ≤ n− 1 ∀j ∈ [n],
∑
i∈[n]

xj,k,l,i ≤ n− 1 ∀j, k, l ∈ [n],∑
i∈[n]

xi,i,j,k ≤ n− 1 ∀j, k ∈ [n],
∑
i∈[n]

xi,j,i,k ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xi,j,k,i ≤ n− 1 ∀j, k ∈ [n],
∑
i∈[n]

xj,k,i,i ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xj,i,k,i ≤ n− 1 ∀j, k ∈ [n],
∑
i∈[n]

xj,i,i,k ≤ n− 1 ∀j, k ∈ [n],∑
i∈[n]

xi,i,i,i ≤ n− 1,

xj,k,l,m ∈ {0, 1} ∀j, k, l,m ∈ [n].

In Table 5.5 we have some values for the 4-dimensional case of combinatorial lines.

n cn,4 CPU time max. size of decision tree

3 52 0.046875 < 0.01 MB
4 183 761.656 sec 102.21 MB
5 500 0.984375 sec < 0.01 MB

Table 5.5: Table of computational values for cn,4

For n = 6 and n = 7 there occurred an out of memory error.

5.5 Computational values for d = 3 and n− 1 progres-

sions

5.5.1 Combinatorial lines

Now we remember the definition of c1n,3: It is the largest set without a combinatorial line

of length n − 1 in [n]3. Therefore we have to satisfy that in every combinatorial line of
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length n − 1 at most n − 2 points are chosen. For n = 3 we have additional restrictions

since for example (1, 1, 1) and (3, 3, 3) is also a progression of length 2 in [3]3.

maximize
∑

i,j,k∈[n]

xi,j,k

subject to
∑

i∈[n−1]

xi+j,i+k,i+l ≤ n− 2 ∀j, k, l ∈ {0, 1},∑
i∈[n−1]

xi+k,i+l,j ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xi+k,j,i+l ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xj,i+k,i+l ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xi+l,j,k ≤ n− 2 ∀j, k ∈ [n] and l ∈ {0, 1},∑
i∈[n−1]

xj,i+l,k ≤ n− 2 ∀j, k ∈ [n] and l ∈ {0, 1},∑
i∈[n−1]

xj,k,i+l ≤ n− 2 ∀j, k ∈ [n] and l ∈ {0, 1},

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

Table 5.6 shows computational values for n ≤ 8.

n c1n,3 CPU time max. size of decision tree

3 7 0.015625 sec < 0.01 MB
4 39 0.15625 sec < 0.01 MB
5 90 0.96875 sec < 0.01 MB
6 173 0.109375 sec < 0.01 MB
7 283 242.344 sec 38.63 MB
8 439 1.70312 sec < 0.01 MB

Table 5.6: Table of computational values for c1n,3

5.5.2 Geometric lines

We need all geometric lines of length n− 1. Therefore we can add all restrictions from the

combinatorial lines of length n− 1 and some other which are similar to the restrictions in

the case of geometric lines of length n.
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maximize
∑

i,j,k∈[n]

xi,j,k

subject to
∑

i∈[n−1]

xi+j,i+k,i+l ≤ n− 2 ∀j, k, l ∈ {0, 1},∑
i∈[n−1]

xi+k,i+l,j ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xi+k,j,i+l ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xj,i+k,i+l ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xi+l,j,k ≤ n− 2 ∀j, k ∈ [n] and l ∈ {0, 1},∑
i∈[n−1]

xj,i+l,k ≤ n− 2 ∀j, k ∈ [n] and l ∈ {0, 1},∑
i∈[n−1]

xj,k,i+l ≤ n− 2 ∀j, k ∈ [n] and l ∈ {0, 1},∑
i∈[n−1]

xn−i+1−j,i+k,i+l ≤ n− 2 ∀j, k, l ∈ {0, 1},∑
i∈[n−1]

xi+j,n−i+1−k,i+l ≤ n− 2 ∀j, k, l ∈ {0, 1},∑
i∈[n−1]

xi+j,i+k,n−i+1−l ≤ n− 2 ∀j, k, l ∈ {0, 1},∑
i∈[n−1]

xi+k,n−i+1−l,j ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xn−i+1−l,j,i+k ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},∑
i∈[n−1]

xj,i+k,n−i+1−l ≤ n− 2 ∀j ∈ [n] and k, l ∈ {0, 1},

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

Table 5.7 shows computational values for n ≤ 6.

n g1n,3 CPU time max. size of decision tree

3 4 < 0.01 sec < 0.01 MB
4 32 0.125 sec < 0.01 MB
5 82 257.531 sec 0.88 MB

Table 5.7: Table of computational values for g1n,3
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5.6 Computational values for d = 3 and n− 2 progres-

sions

5.6.1 Combinatorial lines

Here we need all combinatorial lines of length n− 2. The restrictions are nearly identical

to the ones we had in the (n − 1)-length case. We have to be careful for n = 4 and

n = 5 because for both we need additional restrictions. For n = 4 (1, 1, 1) and (4, 4, 4) is

a two-progression and for n = 5 (1, 1, 1), (3, 3, 3) and (5, 5, 5) is a three-progression not

considered by the restrictions below.

maximize
∑

i,j,k∈[n]

xi,j,k

subject to
∑

i∈[n−2]

xi+j,i+k,i+l ≤ n− 3 ∀j, k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+k,i+l,j ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+k,j,i+l ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xj,i+k,i+l ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+l,j,k ≤ n− 3 ∀j, k ∈ [n] and l ∈ {0, 1, 2},∑
i∈[n−2]

xj,i+l,k ≤ n− 3 ∀j, k ∈ [n] and l ∈ {0, 1, 2},∑
i∈[n−2]

xj,k,i+l ≤ n− 3 ∀j, k ∈ [n] and l ∈ {0, 1, 2},

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

Table 5.8 shows computational values for n ≤ 9.

n c2n,3 CPU time max. size of decision tree

4 13 0.046875 sec < 0.01 MB
5 75 0.40625 sec < 0.01 MB
6 152 143.109 sec 43.41 MB
7 276 0.046875 sec < 0.01 MB
8 423 312.562 sec 41.75 MB
9 626 1.73438 sec < 0.01 MB

Table 5.8: Table of computational values for c2n,3
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The programme could not complete with n = 10, due to memory constraints.

5.6.2 Geometric lines

As in the case of length n− 1 for length n− 2 we have similar restrictions and need to be

careful as in the combinatorial case.

maximize
∑

i,j,k∈[n]

xi,j,k

subject to
∑

i∈[n−2]

xi+j,i+k,i+l ≤ n− 3 ∀j, k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+k,i+l,j ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+k,j,i+l ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xj,i+k,i+l ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+l,j,k ≤ n− 3 ∀j, k ∈ [n] and l ∈ {0, 1, 2},∑
i∈[n−2]

xj,i+l,k ≤ n− 3 ∀j, k ∈ [n] and l ∈ {0, 1, 2},∑
i∈[n−2]

xj,k,i+l ≤ n− 3 ∀j, k ∈ [n] and l ∈ {0, 1, 2},∑
i∈[n−2]

xn−i+1−j,i+k,i+l ≤ n− 3 ∀j, k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+j,n−i+1−k,i+l ≤ n− 3 ∀j, k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+j,i+k,n−i+1−l ≤ n− 3 ∀j, k, l ∈ {0, 1, 2},∑
i∈[n−2]

xi+k,n−i+1−l,j ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xn−i+1−l,j,i+k ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},∑
i∈[n−2]

xj,i+k,n−i+1−l ≤ n− 3 ∀j ∈ [n] and k, l ∈ {0, 1, 2},

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

Table 5.9 shows computational values for n = 4 and n = 5.

Here for n = 6 and n = 7 an out of memory error occurred.
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n g2n,3 CPU time max. size of decision tree

4 8 < 0.01 sec < 0.1 MB
5 64 12.4531 sec < 0.1 MB

Table 5.9: Table of computational values for g2n,3

5.7 Computational values for n = 4 and 3 progressions

5.7.1 Algebraic lines

In this section we computed a14,d for different d. We show how the programme looks for

d = 3. For the other values the programmes look similar.

maximize
∑

j,k,l∈[n]

xj,k,l

subject to
∑

i∈{1,2,3}

x((j+(i−1)∗k−1) mod 4)+1,((l+(i−1)∗m−1) mod 4)+1,((n+(i−1)∗o−1) mod 4)+1 <= 2,∑
i∈{2,3,4}

x((j+(i−1)∗k−1) mod 4)+1,((l+(i−1)∗m−1) mod 4)+1,((n+(i−1)∗o−1) mod 4)+1 <= 2,∑
i∈{1,3,4}

x((j+(i−1)∗k−1) mod 4)+1,((l+(i−1)∗m−1) mod 4)+1,((n+(i−1)∗o−1) mod 4)+1 <= 2,∑
i∈{1,2,4}

x((j+(i−1)∗k−1) mod 4)+1,((l+(i−1)∗m−1) mod 4)+1,((n+(i−1)∗o−1) mod 4)+1 <= 2,

∀j, l, n ∈ [4] and (k,m, o) ∈ [4]3 \ {2, 4}3,

xj,k,l ∈ {0, 1} ∀j, k, l ∈ [n].

Table 5.10 shows values for d ≤ 4.

d a14,d CPU time max. size of decision tree

2 6 0.0625 sec < 0.01 MB
3 16 0.546875 sec < 0.01 MB
4 42 1057.81 sec 7.49 MB

Table 5.10: Table of computational values for a14,d
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Chapter 6

Conclusion

In chapter 3 we at first explored the case d = 2. It resulted in the fact that we could

reach the trivial upper bound for almost every value of n in the cases of combinatorial and

geometric lines. For algebraic lines we showed that the trivial lower bound is the actual

value in the case of n prime.

We then moved on to the case d = 3 and developed a construction for combinatorial

lines with diagonal Latin squares to show that we can also reach the upper bound for

almost every n. We then used a similar approach for geometric lines to show the same for

n prime but invested some more time in developing permutations to fit into a Latin square.

We could then use these permutations also in higher dimensions and show that for

every d there exists a threshold such that for every prime n over this threshold we reach

the upper bound. This can be shown in both combinatorial and geometric cases.

After this we used the opportunity to look at similar problems and proved a weaker

version of the Hales-Jewett theorem which is very crucial in Ramsey theory.

For chapter 4 we showed that our problems could also be explained in integer linear

programmes and used this to compute several values which are shown in chapter 5.
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Appendix A

Configurations and Statistics

Note that all configurations and statistics here are just the ones computed by our pro-

gramme. There are possibly other optimal configurations where the statistics differ.

A.1 Configurations for d = 2

A.1.1 Algebraic lines

A.1.1.1 n = 3

1 2 3
1 ×× ◦
2 ×× ◦
3 ◦ ◦ ◦

Figure A.1: Configuration for a3,2 = 4

A.1.1.2 n = 4

1 2 3 4
1 ×× ◦ ×
2 × ◦ × ◦
3 ×× ◦ ×
4 ◦ × ◦ ×

Figure A.2: Configuration for a4,2 = 10
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A.1.1.3 n = 5

1 2 3 4 5
1 ×××× ◦
2 ×××× ◦
3 ×××× ◦
4 ×××× ◦
5 ◦ ◦ ◦ ◦ ◦

Figure A.3: Configuration for a5,2 = 16

A.1.1.4 n = 6

1 2 3 4 5 6
1 ×× ◦ ×××
2 ×× ◦ ×××
3 ×××× ◦ ◦
4 × ◦ ××××
5 ××× ◦ ××
6 ◦ ×××× ◦

Figure A.4: Configuration for a6,2 = 28

A.1.1.5 n = 7

1 2 3 4 5 6 7
1 ×××××× ◦
2 ×××××× ◦
3 ×××××× ◦
4 ×××××× ◦
5 ×××××× ◦
6 ×××××× ◦
7 ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure A.5: Configuration for a7,2 = 36
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A.1.1.6 n = 8

1 2 3 4 5 6 7 8
1 ×× ◦ ××× ◦ ×
2 × ◦ ××××××
3 × ◦ ××× ◦ ××
4 ×× ◦ ×××××
5 ◦ ××× ◦ ×××
6 ××××××× ◦
7 ××× ◦ ××× ◦
8 ×××× ◦ ×××

Figure A.6: Configuration for a8,2 = 52

A.1.1.7 n = 9

1 2 3 4 5 6 7 8 9
1 ×× ◦ ×× ◦ ◦ ◦ ◦
2 ◦ ××××××××
3 ×××××× ◦ ××
4 ×××××× ◦ ◦ ×
5 ×××× ◦ ××××
6 ××××× ◦ ×××
7 ×××××× ◦ ◦ ×
8 × ◦ ×××××××
9 ××× ◦ ×××××

Figure A.7: Configuration for a9,2 = 66
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A.1.1.8 n = 10

1 2 3 4 5 6 7 8 9 10
1 × × × × × × × × ◦ ×
2 × × × × ◦ × × × × ×
3 × ◦ × × × × × × ◦ ×
4 × × × ◦ × × ◦ × × ×
5 × × × × × × × ◦ × ×
6 × × ◦ × × × × × × ×
7 × ◦ × × × × × × ◦ ×
8 ◦ × × × × × × × × ×
9 × × × × × × × × × ◦
10 × × × ◦ × ◦ × × × ×

Figure A.8: Configuration for a10,2 = 86

A.1.1.9 n = 12

1 2 3 4 5 6 7 8 9 10 11 12
1 × × × × × × × ◦ × × × ×
2 × × × ◦ × × × × × × × ×
3 × × × × × × × × × × × ◦
4 × × ◦ × × × × × × × × ×
5 × × × × × ◦ × × ◦ × × ×
6 × ◦ × × × × × × × × × ×
7 × × × × × × × × × ◦ × ×
8 ◦ × × × ◦ × × × × × × ×
9 × × × × × × ◦ × × × × ×
10 × × × ◦ × × × × × × × ×
11 × × × × × × × × × × ◦ ×
12 × × × × × × × × × × × ◦

Figure A.9: Configuration for a12,2 = 130
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A.2 Configurations for d = 3

A.2.1 Combinatorial lines

We will only list the configurations until n = 9 because it would take too much space to list

all larger values. The statistics in this section are all the same in every direction because

of Theorem 7. The optimal values have the form n3 − n2 and so in every two-dimensional

sub-slice the number of points must be n2 − n.

A.2.1.1 n = 3

1 1 2 3
1 ◦ ××
2 ×× ◦
3 × ◦ ×

2 1 2 3
1 ×× ◦
2 × ◦ ×
3 ◦ ××

3 1 2 3
1 × ◦ ×
2 ◦ ××
3 ×× ◦

Figure A.10: Configuration for c3,3 = 18

direction statistic

x (1) (6,6,6)
y (2) (6,6,6)
z (3) (6,6,6)

Table A.1: 2-dimensional statistics for c3,3

A.2.1.2 n = 4

1 1 2 3 4
1 ◦ ×××
2 ××× ◦
3 × ◦ ××
4 ×× ◦ ×

2 1 2 3 4
1 ×× ◦ ×
2 × ◦ ××
3 ××× ◦
4 ◦ ×××

3 1 2 3 4
1 ××× ◦
2 ◦ ×××
3 ×× ◦ ×
4 × ◦ ××

4 1 2 3 4
1 × ◦ ××
2 ×× ◦ ×
3 ◦ ×××
4 ××× ◦

Figure A.11: Configuration for c4,3 = 48

direction statistic

x (1) (12,12,12,12)
y (2) (12,12,12,12)
z (3) (12,12,12,12)

Table A.2: 2-dimensional statistics for c4,3
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A.2.1.3 n = 5

1 1 2 3 4 5
1 ×× ◦ ××
2 × ◦ ×××
3 ◦ ××××
4 ×××× ◦
5 ××× ◦ ×

2 1 2 3 4 5
1 × ◦ ×××
2 ◦ ××××
3 ×××× ◦
4 ××× ◦ ×
5 ×× ◦ ××

3 1 2 3 4 5
1 ◦ ××××
2 ×××× ◦
3 ××× ◦ ×
4 ×× ◦ ××
5 × ◦ ×××

4 1 2 3 4 5
1 ×××× ◦
2 ××× ◦ ×
3 ×× ◦ ××
4 × ◦ ×××
5 ◦ ××××

5 1 2 3 4 5
1 ××× ◦ ×
2 ×× ◦ ××
3 × ◦ ×××
4 ◦ ××××
5 ×××× ◦

Figure A.12: Configuration for c5,3 = 100

direction statistic

x (1) (20,20,20,20,20)
y (2) (20,20,20,20,20)
z (3) (20,20,20,20,20)

Table A.3: 2-dimensional statistics for c5,3

A.2.1.4 n = 6

1 1 2 3 4 5 6
1 ◦ ×××××
2 ×××× ◦ ×
3 ××× ◦ ××
4 × ◦ ××××
5 ××××× ◦
6 ×× ◦ ×××

2 1 2 3 4 5 6
1 ××××× ◦
2 ×× ◦ ×××
3 × ◦ ××××
4 ××× ◦ ××
5 ◦ ×××××
6 ×××× ◦ ×

3 1 2 3 4 5 6
1 × ◦ ××××
2 ××× ◦ ××
3 ×××× ◦ ×
4 ◦ ×××××
5 ×× ◦ ×××
6 ××××× ◦

4 1 2 3 4 5 6
1 ×××× ◦ ×
2 ◦ ×××××
3 ×× ◦ ×××
4 ××××× ◦
5 × ◦ ××××
6 ××× ◦ ××

5 1 2 3 4 5 6
1 ×× ◦ ×××
2 × ◦ ××××
3 ××××× ◦
4 ×××× ◦ ×
5 ××× ◦ ××
6 ◦ ×××××

6 1 2 3 4 5 6
1 ××× ◦ ××
2 ××××× ◦
3 ◦ ×××××
4 ×× ◦ ×××
5 ×××× ◦ ×
6 × ◦ ××××

Figure A.13: Configuration for c6,3 = 180
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direction statistic

x (1) (30,30,30,30,30,30)
y (2) (30,30,30,30,30,30)
z (3) (30,30,30,30,30,30)

Table A.4: 2-dimensional statistics for c6,3

A.2.1.5 n = 7

1 1 2 3 4 5 6 7
1 ◦ ××××××
2 ×××× ◦ ××
3 ××× ◦ ×××
4 ×××××× ◦
5 ××××× ◦ ×
6 ×× ◦ ××××
7 × ◦ ×××××

2 1 2 3 4 5 6 7
1 ×××××× ◦
2 ××××× ◦ ×
3 ×××× ◦ ××
4 ××× ◦ ×××
5 ×× ◦ ××××
6 × ◦ ×××××
7 ◦ ××××××

3 1 2 3 4 5 6 7
1 ××× ◦ ×××
2 ◦ ××××××
3 ×× ◦ ××××
4 ×××× ◦ ××
5 × ◦ ×××××
6 ×××××× ◦
7 ××××× ◦ ×

4 1 2 3 4 5 6 7
1 ×××× ◦ ××
2 ××× ◦ ×××
3 ×××××× ◦
4 × ◦ ×××××
5 ◦ ××××××
6 ××××× ◦ ×
7 ×× ◦ ××××

5 1 2 3 4 5 6 7
1 × ◦ ×××××
2 ×××××× ◦
3 ××××× ◦ ×
4 ×× ◦ ××××
5 ×××× ◦ ××
6 ◦ ××××××
7 ××× ◦ ×××

6 1 2 3 4 5 6 7
1 ×× ◦ ××××
2 × ◦ ×××××
3 ◦ ××××××
4 ××××× ◦ ×
5 ×××××× ◦
6 ××× ◦ ×××
7 ×××× ◦ ××

7 1 2 3 4 5 6 7
1 ××××× ◦ ×
2 ×× ◦ ××××
3 × ◦ ×××××
4 ◦ ××××××
5 ××× ◦ ×××
6 ×××× ◦ ××
7 ×××××× ◦

Figure A.14: Configuration for c7,3 = 294

direction statistic

x (1) (42,42,42,42,42,42,42)
y (2) (42,42,42,42,42,42,42)
z (3) (42,42,42,42,42,42,42)

Table A.5: 2-dimensional statistics for c7,3
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A.2.1.6 n = 8

1 1 2 3 4 5 6 7 8
1 ◦ ×××××××
2 ×××××× ◦ ×
3 ××××××× ◦
4 ××××× ◦ ××
5 × ◦ ××××××
6 ××× ◦ ××××
7 ×××× ◦ ×××
8 ×× ◦ ×××××

2 1 2 3 4 5 6 7 8
1 ×××× ◦ ×××
2 × ◦ ××××××
3 ××××× ◦ ××
4 ××××××× ◦
5 ×××××× ◦ ×
6 ×× ◦ ×××××
7 ××× ◦ ××××
8 ◦ ×××××××

3 1 2 3 4 5 6 7 8
1 ××××××× ◦
2 ××××× ◦ ××
3 ×× ◦ ×××××
4 × ◦ ××××××
5 ××× ◦ ××××
6 ×××××× ◦ ×
7 ◦ ×××××××
8 ×××× ◦ ×××

4 1 2 3 4 5 6 7 8
1 ×××××× ◦ ×
2 ×× ◦ ×××××
3 ◦ ×××××××
4 ××× ◦ ××××
5 ××××××× ◦
6 ×××× ◦ ×××
7 ××××× ◦ ××
8 × ◦ ××××××

5 1 2 3 4 5 6 7 8
1 × ◦ ××××××
2 ◦ ×××××××
3 ××× ◦ ××××
4 ×××××× ◦ ×
5 ×××× ◦ ×××
6 ××××××× ◦
7 ×× ◦ ×××××
8 ××××× ◦ ××

6 1 2 3 4 5 6 7 8
1 ××× ◦ ××××
2 ×××× ◦ ×××
3 × ◦ ××××××
4 ◦ ×××××××
5 ×× ◦ ×××××
6 ××××× ◦ ××
7 ××××××× ◦
8 ×××××× ◦ ×

7 1 2 3 4 5 6 7 8
1 ××××× ◦ ××
2 ××××××× ◦
3 ×××× ◦ ×××
4 ×× ◦ ×××××
5 ◦ ×××××××
6 × ◦ ××××××
7 ×××××× ◦ ×
8 ××× ◦ ××××

8 1 2 3 4 5 6 7 8
1 ×× ◦ ×××××
2 ××× ◦ ××××
3 ×××××× ◦ ×
4 ×××× ◦ ×××
5 ××××× ◦ ××
6 ◦ ×××××××
7 × ◦ ××××××
8 ××××××× ◦

Figure A.15: Configuration for c8,3 = 448

direction statistic

x (1) (56,56,56,56,56,56,56,56)
y (2) (56,56,56,56,56,56,56,56)
z (3) (56,56,56,56,56,56,56,56)

Table A.6: 2-dimensional statistics for c8,3
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A.2.1.7 n = 9

1 1 2 3 4 5 6 7 8 9
1 ×××××××× ◦
2 ××× ◦ ×××××
3 ××××× ◦ ×××
4 ×××× ◦ ××××
5 ◦ ××××××××
6 ×× ◦ ××××××
7 × ◦ ×××××××
8 ××××××× ◦ ×
9 ×××××× ◦ ××

2 1 2 3 4 5 6 7 8 9
1 × ◦ ×××××××
2 ×××× ◦ ××××
3 ××× ◦ ×××××
4 ◦ ××××××××
5 ××××× ◦ ×××
6 ×××××××× ◦
7 ×××××× ◦ ××
8 ×× ◦ ××××××
9 ××××××× ◦ ×

3 1 2 3 4 5 6 7 8 9
1 ×××× ◦ ××××
2 ××××××× ◦ ×
3 × ◦ ×××××××
4 ×××××× ◦ ××
5 ×××××××× ◦
6 ××××× ◦ ×××
7 ×× ◦ ××××××
8 ◦ ××××××××
9 ××× ◦ ×××××

4 1 2 3 4 5 6 7 8 9
1 ××××××× ◦ ×
2 ××××× ◦ ×××
3 ×××××× ◦ ××
4 ××× ◦ ×××××
5 × ◦ ×××××××
6 ×××× ◦ ××××
7 ◦ ××××××××
8 ×××××××× ◦
9 ×× ◦ ××××××

5 1 2 3 4 5 6 7 8 9
1 ××××× ◦ ×××
2 ×××××× ◦ ××
3 ◦ ××××××××
4 × ◦ ×××××××
5 ×× ◦ ××××××
6 ××× ◦ ×××××
7 ××××××× ◦ ×
8 ×××× ◦ ××××
9 ×××××××× ◦

6 1 2 3 4 5 6 7 8 9
1 ×××××× ◦ ××
2 ◦ ××××××××
3 ×××××××× ◦
4 ×× ◦ ××××××
5 ×××× ◦ ××××
6 ××××××× ◦ ×
7 ××× ◦ ×××××
8 × ◦ ×××××××
9 ××××× ◦ ×××

7 1 2 3 4 5 6 7 8 9
1 ◦ ××××××××
2 ×× ◦ ××××××
3 ×××× ◦ ××××
4 ×××××××× ◦
5 ××××××× ◦ ×
6 ×××××× ◦ ××
7 ××××× ◦ ×××
8 ××× ◦ ×××××
9 × ◦ ×××××××

8 1 2 3 4 5 6 7 8 9
1 ×× ◦ ××××××
2 × ◦ ×××××××
3 ××××××× ◦ ×
4 ××××× ◦ ×××
5 ××× ◦ ×××××
6 ◦ ××××××××
7 ×××××××× ◦
8 ×××××× ◦ ××
9 ×××× ◦ ××××

9 1 2 3 4 5 6 7 8 9
1 ××× ◦ ×××××
2 ×××××××× ◦
3 ×× ◦ ××××××
4 ××××××× ◦ ×
5 ×××××× ◦ ××
6 × ◦ ×××××××
7 ×××× ◦ ××××
8 ××××× ◦ ×××
9 ◦ ××××××××

Figure A.16: Configuration for c9,3 = 648

direction statistic

x (1) (72,72,72,72,72,72,72,72,72)
y (2) (72,72,72,72,72,72,72,72,72)
z (3) (72,72,72,72,72,72,72,72,72)

Table A.7: 2-dimensional statistics for c9,3

54



A.2.2 Geometric lines

We will only list the configurations until n = 9 because it would take too much space to list

all larger values. The statistics in this section for n ≥ 7 are all the same in every direction

because the optimal values have the form n3−n2 and so in every two-dimensional sub-slice

the number of points must be n2 − n.

A.2.2.1 n = 3

1 1 2 3
1 ◦ ××
2 × ◦ ×
3 ×× ◦

2 1 2 3
1 × ◦ ×
2 ◦ ◦ ◦
3 × ◦ ×

3 1 2 3
1 ×× ◦
2 × ◦ ×
3 ◦ ××

Figure A.17: Configuration for g3,3 = 16

direction statistic

x (1) (6,4,6)
y (2) (6,4,6)
z (3) (6,4,6)

Table A.8: 2-dimensional statistics for g3,3

A.2.2.2 n = 4

1 1 2 3 4
1 × ◦ ××
2 ××× ◦
3 ×× ◦ ×
4 ◦ ×××

2 1 2 3 4
1 ×× ◦ ×
2 ◦ ◦ ××
3 × ◦ ◦ ×
4 ××× ◦

3 1 2 3 4
1 ◦ ×××
2 ×× ◦ ×
3 ××× ◦
4 × ◦ ××

4 1 2 3 4
1 ××× ◦
2 × ◦ ××
3 ◦ ×××
4 ◦ × ◦ ×

Figure A.18: Configuration for g4,3 = 45

direction statistic

x (1) (12,11,11,11)
y (2) (11,11,11,12)
z (3) (12,10,12,11)

Table A.9: 2-dimensional statistics for g4,3
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A.2.2.3 n = 5

1 1 2 3 4 5
1 ◦ ××××
2 ××× ◦ ×
3 × ◦ ×××
4 ×× ◦ × ◦
5 ××× ◦ ×

2 1 2 3 4 5
1 ××× ◦ ×
2 × ◦ ×××
3 ×××× ◦
4 ◦ ◦ ×××
5 ×× ◦ ××

3 1 2 3 4 5
1 × ◦ ×××
2 ××× ◦ ×
3 ×× ◦ ××
4 ×××× ◦
5 ◦ ××××

4 1 2 3 4 5
1 ×××× ◦
2 ×× ◦ × ◦
3 ◦ ××××
4 ××× ◦ ×
5 × ◦ ×××

5 1 2 3 4 5
1 ×× ◦ ××
2 ◦ ××××
3 ××× ◦ ×
4 × ◦ ×××
5 ×××× ◦

Figure A.19: Configuration for g5,3 = 97

direction statistic

x (1) (20,19,20,18,20)
y (2) (20,19,20,19,19)
z (3) (19,19,20,19,20)

Table A.10: 2-dimensional statistics for g5,3

A.2.2.4 n = 6

1 1 2 3 4 5 6
1 ×××× ◦ ×
2 ◦ ×××××
3 ×× ◦ ×××
4 ××××× ◦
5 × ◦ ××××
6 ××× ◦ ××

2 1 2 3 4 5 6
1 ××× ◦ ××
2 × ◦ ◦ ×××
3 ××××× ◦
4 ◦ ×××××
5 ×××× ◦ ×
6 ◦ ◦ ××××

3 1 2 3 4 5 6
1 ◦ ×××××
2 ××××× ◦
3 ××× ◦ ××
4 × ◦ ××××
5 ×× ◦ ×××
6 ×××× ◦ ×

4 1 2 3 4 5 6
1 × ◦ ××××
2 ×××× ◦ ×
3 ◦ ×××××
4 ××× ◦ ××
5 ××××× ◦
6 ×× ◦ ×××

5 1 2 3 4 5 6
1 × ◦ ××××
2 ××× ◦ ××
3 ×××× ◦ ×
4 ×× ◦ ×××
5 ◦ ×××××
6 ××××× ◦

6 1 2 3 4 5 6
1 ×× ◦ ×× ◦
2 ◦ ×××××
3 × ◦ ××××
4 ×××× ◦ ×
5 ××× ◦ ××
6 ××××× ◦

Figure A.20: Configuration for g6,3 = 177
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direction statistic

x (1) (29,29,30,30,30,29)
y (2) (29,29,30,30,30,29)
z (3) (30,28,30,30,30,29)

Table A.11: 2-dimensional statistics for g6,3

A.2.2.5 n = 7

1 1 2 3 4 5 6 7
1 ××××× ◦ ×
2 ××× ◦ ×××
3 ×× ◦ ××××
4 ×××× ◦ ××
5 × ◦ ×××××
6 ×××××× ◦
7 ◦ ××××××

2 1 2 3 4 5 6 7
1 ×××× ◦ ××
2 ×× ◦ ××××
3 ××××× ◦ ×
4 ◦ ××××××
5 ××× ◦ ×××
6 × ◦ ×××××
7 ×××××× ◦

3 1 2 3 4 5 6 7
1 ◦ ××××××
2 ×××× ◦ ××
3 × ◦ ×××××
4 ×××××× ◦
5 ×× ◦ ××××
6 ××× ◦ ×××
7 ××××× ◦ ×

4 1 2 3 4 5 6 7
1 ×× ◦ ××××
2 ×××××× ◦
3 ◦ ××××××
4 ××× ◦ ×××
5 ××××× ◦ ×
6 ×××× ◦ ××
7 × ◦ ×××××

5 1 2 3 4 5 6 7
1 ××× ◦ ×××
2 ◦ ××××××
3 ×××× ◦ ××
4 × ◦ ×××××
5 ×××××× ◦
6 ××××× ◦ ×
7 ×× ◦ ××××

6 1 2 3 4 5 6 7
1 × ◦ ×××××
2 ××××× ◦ ×
3 ×××××× ◦
4 ×× ◦ ××××
5 ×××× ◦ ××
6 ◦ ××××××
7 ××× ◦ ×××

7 1 2 3 4 5 6 7
1 ×××××× ◦
2 × ◦ ×××××
3 ××× ◦ ×××
4 ××××× ◦ ×
5 ◦ ××××××
6 ×× ◦ ××××
7 ×××× ◦ ××

Figure A.21: Configuration for g7,3 = 294

direction statistic

x (1) (42,42,42,42,42,42,42)
y (2) (42,42,42,42,42,42,42)
z (3) (42,42,42,42,42,42,42)

Table A.12: 2-dimensional statistics for g7,3
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A.2.2.6 n = 8

1 1 2 3 4 5 6 7 8
1 × ◦ ××××××
2 ××××××× ◦
3 ×× ◦ ×××××
4 ×××× ◦ ×××
5 ◦ ×××××××
6 ×××××× ◦ ×
7 ××× ◦ ××××
8 ××××× ◦ ××

2 1 2 3 4 5 6 7 8
1 ××××××× ◦
2 ×× ◦ ×××××
3 ×××× ◦ ×××
4 × ◦ ××××××
5 ××××× ◦ ××
6 ◦ ×××××××
7 ×××××× ◦ ×
8 ××× ◦ ××××

3 1 2 3 4 5 6 7 8
1 ××××× ◦ ××
2 ◦ ×××××××
3 ×××××× ◦ ×
4 ××× ◦ ××××
5 ××××××× ◦
6 ×× ◦ ×××××
7 ×××× ◦ ×××
8 × ◦ ××××××

4 1 2 3 4 5 6 7 8
1 ◦ ×××××××
2 ×××××× ◦ ×
3 ××× ◦ ××××
4 ××××× ◦ ××
5 × ◦ ××××××
6 ××××××× ◦
7 ×× ◦ ×××××
8 ×××× ◦ ×××

5 1 2 3 4 5 6 7 8
1 ×× ◦ ×××××
2 ×××× ◦ ×××
3 × ◦ ××××××
4 ◦ ×××××××
5 ××× ◦ ××××
6 ××××× ◦ ××
7 ××××××× ◦
8 ×××××× ◦ ×

6 1 2 3 4 5 6 7 8
1 ××× ◦ ××××
2 × ◦ ××××××
3 ××××××× ◦
4 ×× ◦ ×××××
5 ×××××× ◦ ×
6 ×××× ◦ ×××
7 ××××× ◦ ××
8 ◦ ×××××××

7 1 2 3 4 5 6 7 8
1 ×××××× ◦ ×
2 ××× ◦ ××××
3 ××××× ◦ ××
4 ××××××× ◦
5 ×××× ◦ ×××
6 × ◦ ××××××
7 ◦ ×××××××
8 ×× ◦ ×××××

8 1 2 3 4 5 6 7 8
1 ×××× ◦ ×××
2 ××××× ◦ ××
3 ◦ ×××××××
4 ×××××× ◦ ×
5 ×× ◦ ×××××
6 ××× ◦ ××××
7 × ◦ ××××××
8 ××××××× ◦

Figure A.22: Configuration for g8,3 = 448

direction statistic

x (1) (56,56,56,56,56,56,56,56)
y (2) (56,56,56,56,56,56,56,56)
z (3) (56,56,56,56,56,56,56,56)

Table A.13: 2-dimensional statistics for g8,3
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A.2.2.7 n = 9

1 1 2 3 4 5 6 7 8 9
1 ×××××× ◦ ××
2 ××××× ◦ ×××
3 ×××× ◦ ××××
4 ×××××××× ◦
5 ◦ ××××××××
6 ××× ◦ ×××××
7 × ◦ ×××××××
8 ××××××× ◦ ×
9 ×× ◦ ××××××

2 1 2 3 4 5 6 7 8 9
1 ◦ ××××××××
2 ×××××××× ◦
3 ××××××× ◦ ×
4 ×××××× ◦ ××
5 ××××× ◦ ×××
6 ×× ◦ ××××××
7 ×××× ◦ ××××
8 × ◦ ×××××××
9 ××× ◦ ×××××

3 1 2 3 4 5 6 7 8 9
1 ××× ◦ ×××××
2 ×× ◦ ××××××
3 × ◦ ×××××××
4 ××××× ◦ ×××
5 ×××××××× ◦
6 ××××××× ◦ ×
7 ×××××× ◦ ××
8 ◦ ××××××××
9 ×××× ◦ ××××

4 1 2 3 4 5 6 7 8 9
1 × ◦ ×××××××
2 ×××××× ◦ ××
3 ◦ ××××××××
4 ×× ◦ ××××××
5 ×××× ◦ ××××
6 ×××××××× ◦
7 ××× ◦ ×××××
8 ××××× ◦ ×××
9 ××××××× ◦ ×

5 1 2 3 4 5 6 7 8 9
1 ×××× ◦ ××××
2 ××××××× ◦ ×
3 ×× ◦ ××××××
4 × ◦ ×××××××
5 ××× ◦ ×××××
6 ◦ ××××××××
7 ×××××××× ◦
8 ×××××× ◦ ××
9 ××××× ◦ ×××

6 1 2 3 4 5 6 7 8 9
1 ×× ◦ ××××××
2 ××× ◦ ×××××
3 ×××××× ◦ ××
4 ×××× ◦ ××××
5 ××××××× ◦ ×
6 ××××× ◦ ×××
7 ◦ ××××××××
8 ×××××××× ◦
9 × ◦ ×××××××

7 1 2 3 4 5 6 7 8 9
1 ×××××××× ◦
2 × ◦ ×××××××
3 ××××× ◦ ×××
4 ◦ ××××××××
5 ×× ◦ ××××××
6 ×××× ◦ ××××
7 ××××××× ◦ ×
8 ××× ◦ ×××××
9 ×××××× ◦ ××

8 1 2 3 4 5 6 7 8 9
1 ××××× ◦ ×××
2 ◦ ××××××××
3 ××× ◦ ×××××
4 ××××××× ◦ ×
5 ×××××× ◦ ××
6 × ◦ ×××××××
7 ×× ◦ ××××××
8 ×××× ◦ ××××
9 ×××××××× ◦

9 1 2 3 4 5 6 7 8 9
1 ××××××× ◦ ×
2 ×××× ◦ ××××
3 ×××××××× ◦
4 ××× ◦ ×××××
5 × ◦ ×××××××
6 ×××××× ◦ ××
7 ××××× ◦ ×××
8 ×× ◦ ××××××
9 ◦ ××××××××

Figure A.23: Configuration for g9,3 = 648

direction statistic

x (1) (72,72,72,72,72,72,72,72,72)
y (2) (72,72,72,72,72,72,72,72,72)
z (3) (72,72,72,72,72,72,72,72,72)

Table A.14: 2-dimensional statistics for g9,3
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A.2.3 Algebraic lines

A.2.3.1 n = 3

1 1 2 3
1 ◦ ◦ ◦
2 ◦ ◦ ◦
3 ◦ × ◦

2 1 2 3
1 ◦ × ◦
2 × ◦ ◦
3 ×× ◦

3 1 2 3
1 ×× ◦
2 × ◦ ×
3 ◦ ◦ ◦

Figure A.24: Configuration for a3,3 = 9

direction statistic

x (1) (3,3,3)
y (2) (4,4,1)
z (3) (1,4,4)

Table A.15: 2-dimensional statistics for a3,3

A.2.3.2 n = 4

1 1 2 3 4
1 ××× ◦
2 × ◦ ××
3 ◦ × ◦ ×
4 ◦ × ◦ ×

2 1 2 3 4
1 ◦ ◦ ◦ ◦
2 × ◦ ××
3 ◦ × ◦ ×
4 × ◦ ××

3 1 2 3 4
1 ××× ◦
2 ××× ◦
3 × ◦ ××
4 ◦ × ◦ ◦

4 1 2 3 4
1 × ◦ ××
2 ◦ ◦ ◦ ×
3 ××× ◦
4 ◦ ◦ ◦ ×

Figure A.25: Configuration for a4,3 = 36

direction statistic

x (1) (9,10,10,7)
y (2) (9,8,9,10)
z (3) (10,8,10,8)

Table A.16: 2-dimensional statistics for a4,3
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A.3 Configurations for d = 4

A.3.1 Combinatorial lines

A.3.1.1 n = 3

1

1 1 2 3
1 ◦ × ◦
2 × ◦ ×
3 ◦ ××

2 1 2 3
1 × ◦ ×
2 ◦ ××
3 ×× ◦

3 1 2 3
1 ◦ ××
2 ×× ◦
3 × ◦ ×

2

1 1 2 3
1 × ◦ ×
2 ◦ ××
3 ×× ◦

2 1 2 3
1 ◦ ××
2 × ◦ ◦
3 × ◦ ×

3 1 2 3
1 ×× ◦
2 × ◦ ×
3 ◦ ××

3

1 1 2 3
1 ◦ ××
2 ×× ◦
3 × ◦ ×

2 1 2 3
1 ×× ◦
2 × ◦ ×
3 ◦ ××

3 1 2 3
1 × ◦ ×
2 ◦ ××
3 ×× ◦

Figure A.26: Configuration for c3,4 = 52

direction statistic

1 (17,17,18)
2 (17,17,18)
3 (17,17,18)
4 (17,17,18)

Table A.17: 3-dimensional statistics for c3,4
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A.3.1.2 n = 4

1

1 1 2 3 4
1 ◦ ×× ◦
2 ◦ ×××
3 × ◦ ××
4 ◦ × ◦ ×

2 1 2 3 4
1 ×× ◦ ×
2 × ◦ ××
3 ◦ ×××
4 ××× ◦

3 1 2 3 4
1 × ◦ ××
2 ××× ◦
3 ×× ◦ ×
4 ◦ ×××

4 1 2 3 4
1 ◦ ×××
2 ×× ◦ ×
3 ××× ◦
4 × ◦ ××

2

1 1 2 3 4
1 ×× ◦ ×
2 × ◦ ××
3 ◦ ×××
4 ××× ◦

2 1 2 3 4
1 × ◦ ××
2 ◦ ◦ ◦ ◦
3 × ◦ ××
4 × ◦ ××

3 1 2 3 4
1 ◦ ×××
2 × ◦ ××
3 ××× ◦
4 ×× ◦ ×

4 1 2 3 4
1 ××× ◦
2 × ◦ ××
3 ×× ◦ ×
4 ◦ ×××

3

1 1 2 3 4
1 × ◦ ××
2 ××× ◦
3 ×× ◦ ×
4 ◦ ×××

2 1 2 3 4
1 ◦ ×××
2 × ◦ ××
3 ××× ◦
4 ×× ◦ ×

3 1 2 3 4
1 ×× ◦ ◦
2 ×× ◦ ×
3 ◦ × ◦ ×
4 × ◦ ××

4 1 2 3 4
1 ×× ◦ ×
2 ◦ ×××
3 × ◦ ××
4 ××× ◦

4

1 1 2 3 4
1 ◦ ×××
2 ×× ◦ ×
3 ××× ◦
4 × ◦ ××

2 1 2 3 4
1 ××× ◦
2 × ◦ ××
3 ×× ◦ ×
4 ◦ ×××

3 1 2 3 4
1 ×× ◦ ×
2 ◦ ×××
3 × ◦ ××
4 ××× ◦

4 1 2 3 4
1 × ◦ ××
2 ××× ◦
3 ◦ ×× ◦
4 ×× ◦ ◦

Figure A.27: Configuration for c4,4 = 183

direction statistic

1 (46,45,46,46)
2 (46,45,46,46)
3 (46,45,46,46)
4 (46,45,46,46)

Table A.18: 3-dimensional statistics for c4,4

62



A.3.1.3 n = 5

1

1 1 2 3 4 5
1 × ◦ ×××
2 ◦ ××××
3 ×× ◦ ××
4 ×××× ◦
5 ××× ◦ ×

2 1 2 3 4 5
1 ◦ ××××
2 ×××× ◦
3 ××× ◦ ×
4 ×× ◦ ××
5 × ◦ ×××

3 1 2 3 4 5
1 ×× ◦ ××
2 ××× ◦ ×
3 ◦ ××××
4 × ◦ ×××
5 ×××× ◦

4 1 2 3 4 5
1 ×××× ◦
2 ×× ◦ ××
3 × ◦ ×××
4 ××× ◦ ×
5 ◦ ××××

5 1 2 3 4 5
1 ××× ◦ ×
2 × ◦ ×××
3 ×××× ◦
4 ◦ ××××
5 ×× ◦ ××

2

1 1 2 3 4 5
1 ◦ ××××
2 ×××× ◦
3 ××× ◦ ×
4 ×× ◦ ××
5 × ◦ ×××

2 1 2 3 4 5
1 ×××× ◦
2 ×× ◦ ××
3 × ◦ ×××
4 ××× ◦ ×
5 ◦ ××××

3 1 2 3 4 5
1 ××× ◦ ×
2 × ◦ ×××
3 ×××× ◦
4 ◦ ××××
5 ×× ◦ ××

4 1 2 3 4 5
1 ×× ◦ ××
2 ××× ◦ ×
3 ◦ ××××
4 × ◦ ×××
5 ×××× ◦

5 1 2 3 4 5
1 × ◦ ×××
2 ◦ ××××
3 ×× ◦ ××
4 ×××× ◦
5 ××× ◦ ×

3

1 1 2 3 4 5
1 ×× ◦ ××
2 ××× ◦ ×
3 ◦ ××××
4 × ◦ ×××
5 ×××× ◦

2 1 2 3 4 5
1 ××× ◦ ×
2 × ◦ ×××
3 ×××× ◦
4 ◦ ××××
5 ×× ◦ ××

3 1 2 3 4 5
1 ◦ ××××
2 ×××× ◦
3 ××× ◦ ×
4 ×× ◦ ××
5 × ◦ ×××

4 1 2 3 4 5
1 × ◦ ×××
2 ◦ ××××
3 ×× ◦ ××
4 ×××× ◦
5 ××× ◦ ×

5 1 2 3 4 5
1 ×××× ◦
2 ×× ◦ ××
3 × ◦ ×××
4 ××× ◦ ×
5 ◦ ××××

4

1 1 2 3 4 5
1 ×××× ◦
2 ×× ◦ ××
3 × ◦ ×××
4 ××× ◦ ×
5 ◦ ××××

2 1 2 3 4 5
1 ×× ◦ ××
2 ××× ◦ ×
3 ◦ ××××
4 × ◦ ×××
5 ×××× ◦

3 1 2 3 4 5
1 × ◦ ×××
2 ◦ ××××
3 ×× ◦ ××
4 ×××× ◦
5 ××× ◦ ×

4 1 2 3 4 5
1 ××× ◦ ×
2 × ◦ ×××
3 ×××× ◦
4 ◦ ××××
5 ×× ◦ ××

5 1 2 3 4 5
1 ◦ ××××
2 ×××× ◦
3 ××× ◦ ×
4 ×× ◦ ××
5 × ◦ ×××

5

1 1 2 3 4 5
1 ××× ◦ ×
2 × ◦ ×××
3 ×××× ◦
4 ◦ ××××
5 ×× ◦ ××

2 1 2 3 4 5
1 × ◦ ×××
2 ◦ ××××
3 ×× ◦ ××
4 ×××× ◦
5 ××× ◦ ×

3 1 2 3 4 5
1 ×××× ◦
2 ×× ◦ ××
3 × ◦ ×××
4 ××× ◦ ×
5 ◦ ××××

4 1 2 3 4 5
1 ◦ ××××
2 ×××× ◦
3 ××× ◦ ×
4 ×× ◦ ××
5 × ◦ ×××

5 1 2 3 4 5
1 ×× ◦ ××
2 ××× ◦ ×
3 ◦ ××××
4 × ◦ ×××
5 ×××× ◦

Figure A.28: Configuration for c5,4 = 500
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direction statistic

1 (100,100,100,100,100)
2 (100,100,100,100,100)
3 (100,100,100,100,100)
4 (100,100,100,100,100)

Table A.19: 3-dimensional statistics for c5,4

The statistics are all the same in every direction because the optimal value has the form

n4 − n3 and so in every two-dimensional sub-slice the number of points must be n3 − n2.
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A.4 Configurations for d = 3 and n− 1 progressions

A.4.1 Combinatorial lines

A.4.1.1 n = 3

1 1 2 3
1 × ◦ ◦
2 ◦ ◦ ×
3 ◦ × ◦

2 1 2 3
1 ◦ ◦ ×
2 ◦ ◦ ◦
3 × ◦ ◦

3 1 2 3
1 ◦ × ◦
2 × ◦ ◦
3 ◦ ◦ ×

Figure A.29: Configuration for c13,3 = 7

direction statistic

x (1) (3,2,3)
y (2) (3,2,3)
z (3) (3,2,3)

Table A.20: 2-dimensional statistics for c13,3

A.4.1.2 n = 4

1 1 2 3 4
1 × ◦ ××
2 ◦ ◦ × ◦
3 ×× ◦ ×
4 × ◦ ××

2 1 2 3 4
1 ◦ ×× ◦
2 ×× ◦ ×
3 × ◦ ××
4 ◦ ×× ◦

3 1 2 3 4
1 ×× ◦ ×
2 × ◦ ◦ ×
3 ◦ ◦ ◦ ◦
4 ×× ◦ ×

4 1 2 3 4
1 × ◦ ××
2 ◦ ×× ◦
3 ×× ◦ ×
4 × ◦ ××

Figure A.30: Configuration for c14,3 = 39

direction statistic

x (1) (11,8,9,11)
y (2) (11,8,9,11)
z (3) (10,10,8,11)

Table A.21: 2-dimensional statistics for c14,3
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A.4.1.3 n = 5

1 1 2 3 4 5
1 ◦ ××× ◦
2 × ◦ ×××
3 ××× ◦ ×
4 ×× ◦ ××
5 ◦ ××× ◦

2 1 2 3 4 5
1 × ◦ ×××
2 ◦ ×× ◦ ×
3 ×× ◦ × ◦
4 × ◦ ×××
5 ×× ◦ ××

3 1 2 3 4 5
1 ××× ◦ ×
2 ×× ◦ × ◦
3 × ◦ ×××
4 ◦ ×× ◦ ×
5 × ◦ ×××

4 1 2 3 4 5
1 ×× ◦ ××
2 × ◦ ×××
3 ◦ ×× ◦ ×
4 ×× ◦ × ◦
5 ××× ◦ ×

5 1 2 3 4 5
1 ◦ ××× ◦
2 ×× ◦ ××
3 × ◦ ×××
4 ××× ◦ ×
5 ◦ ××× ◦

Figure A.31: Configuration for c15,3 = 90

direction statistic

x (1) (18,18,18,18,18)
y (2) (18,18,18,18,18)
z (3) (18,18,18,18,18)

Table A.22: 2-dimensional statistics for c15,3

A.4.1.4 n = 6

1 1 2 3 4 5 6
1 ×××× ◦ ×
2 ××× ◦ ××
3 ×× ◦ ×××
4 × ◦ ××××
5 ◦ ×××× ◦
6 ×××× ◦ ×

2 1 2 3 4 5 6
1 ×× ◦ ×××
2 × ◦ ××××
3 ◦ ×××× ◦
4 ×××× ◦ ×
5 ××× ◦ ××
6 ×× ◦ ×××

3 1 2 3 4 5 6
1 ◦ ×××× ◦
2 ×××× ◦ ×
3 ××× ◦ ××
4 ×× ◦ ×××
5 × ◦ ××××
6 ◦ ×××× ◦

4 1 2 3 4 5 6
1 ××× ◦ ××
2 ×× ◦ ×××
3 × ◦ ××××
4 ◦ ×××× ◦
5 ×××× ◦ ×
6 ××× ◦ ××

5 1 2 3 4 5 6
1 × ◦ ××××
2 ◦ ×××× ◦
3 ×××× ◦ ×
4 ××× ◦ ××
5 ×× ◦ ×××
6 × ◦ ××××

6 1 2 3 4 5 6
1 ×××× ◦ ×
2 ××× ◦ ××
3 ×× ◦ ×××
4 × ◦ ××××
5 ◦ ×××× ◦
6 ×××× ◦ ×

Figure A.32: Configuration for c16,3 = 173
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direction statistic

x (1) (29,29,29,29,28,29)
y (2) (29,29,29,29,28,29)
z (3) (29,29,28,29,29,29)

Table A.23: 2-dimensional statistics for c16,3

A.4.1.5 n = 7

1 1 2 3 4 5 6 7
1 ××××× ◦ ×
2 ×××× ◦ ××
3 ×× ◦ ××××
4 ××× ◦ ×××
5 × ◦ ×××××
6 ◦ ××××× ◦
7 ××××× ◦ ×

2 1 2 3 4 5 6 7
1 × ◦ ×××××
2 ×× ◦ ××××
3 ××××× ◦ ×
4 ××× ◦ ×××
5 ◦ ××××× ◦
6 ×××× ◦ ××
7 × ◦ ×××××

3 1 2 3 4 5 6 7
1 ×××× ◦ ××
2 × ◦ ×××××
3 ◦ ××××× ◦
4 ×× ◦ ××××
5 ××××× ◦ ×
6 ××× ◦ ×××
7 ×××× ◦ ××

4 1 2 3 4 5 6 7
1 ××× ◦ ×××
2 ××× ◦ ×××
3 ××× ◦ ◦ ××
4 ◦ ◦ ×××× ◦
5 ××× ◦ ×××
6 ×× ◦ ×× ◦ ×
7 ××× ◦ ×××

5 1 2 3 4 5 6 7
1 ×× ◦ ××××
2 ◦ ××××× ◦
3 ××× ◦ ×××
4 ××××× ◦ ×
5 ×××× ◦ ××
6 × ◦ ×××××
7 ×× ◦ ××××

6 1 2 3 4 5 6 7
1 ◦ ××××× ◦
2 ××××× ◦ ×
3 × ◦ ×××××
4 ×××× ◦ ××
5 ×× ◦ ××××
6 ××× ◦ ×××
7 ◦ ××××× ◦

7 1 2 3 4 5 6 7
1 ××××× ◦ ×
2 ×××× ◦ ××
3 ×× ◦ ××××
4 ××× ◦ ×××
5 × ◦ ×××××
6 ◦ ××××× ◦
7 ××××× ◦ ×

Figure A.33: Configuration for c17,3 = 283

direction statistic

x (1) (41,41,40,40,41,39,41)
y (2) (41,41,41,38,41,40,41)
z (3) (41,41,41,38,41,40,41)

Table A.24: 2-dimensional statistics for c17,3
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A.4.1.6 n = 8

1 1 2 3 4 5 6 7 8
1 ××× ◦ ××××
2 × ◦ ××××××
3 ×××× ◦ ×××
4 ◦ ×××××× ◦
5 ×× ◦ ×××××
6 ×××××× ◦ ×
7 ××××× ◦ ××
8 ××× ◦ ××××

2 1 2 3 4 5 6 7 8
1 × ◦ ××××××
2 ◦ ×××××× ◦
3 ×× ◦ ×××××
4 ××××× ◦ ××
5 ×××××× ◦ ×
6 ××× ◦ ××××
7 ×××× ◦ ×××
8 × ◦ ××××××

3 1 2 3 4 5 6 7 8
1 ×××× ◦ ×××
2 ×× ◦ ×××××
3 × ◦ ××××××
4 ×××××× ◦ ×
5 ◦ ×××××× ◦
6 ××××× ◦ ××
7 ××× ◦ ××××
8 ×××× ◦ ×××

4 1 2 3 4 5 6 7 8
1 ◦ ×××××× ◦
2 ××××× ◦ ××
3 ×××××× ◦ ×
4 ×××× ◦ ×××
5 ××× ◦ ××××
6 × ◦ ××××××
7 ×× ◦ ×××××
8 ◦ ×××××× ◦

5 1 2 3 4 5 6 7 8
1 ×× ◦ ×××××
2 ×××××× ◦ ×
3 ◦ ×××××× ◦
4 ××× ◦ ××××
5 ××××× ◦ ××
6 ×××× ◦ ×××
7 × ◦ ××××××
8 ×× ◦ ×××××

6 1 2 3 4 5 6 7 8
1 ×××××× ◦ ×
2 ××× ◦ ××××
3 ××××× ◦ ××
4 × ◦ ××××××
5 ×××× ◦ ×××
6 ×× ◦ ×××××
7 ◦ ×××××× ◦
8 ×××××× ◦ ×

7 1 2 3 4 5 6 7 8
1 ××××× ◦ ××
2 ×××× ◦ ×××
3 ××× ◦ ××××
4 ×× ◦ ×××××
5 × ◦ ××××××
6 ◦ ×××××× ◦
7 ×××××× ◦ ×
8 ××××× ◦ ××

8 1 2 3 4 5 6 7 8
1 ××× ◦ ××××
2 × ◦ ××××××
3 ×××× ◦ ×××
4 ◦ ×××××× ◦
5 ×× ◦ ×××××
6 ×××××× ◦ ×
7 ××××× ◦ ××
8 ××× ◦ ××××

Figure A.34: Configuration for c18,3 = 439

direction statistic

x (1) (55,55,55,54,55,55,55,55)
y (2) (55,55,55,54,55,55,55,55)
z (3) (55,55,55,54,55,55,55,55)

Table A.25: 2-dimensional statistics for c18,3
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A.4.2 Geometric lines

A.4.2.1 n = 3

1 1 2 3
1 × ◦ ◦
2 ◦ ◦ ×
3 ◦ ◦ ◦

2 1 2 3
1 ◦ ◦ ◦
2 ◦ ◦ ◦
3 × ◦ ◦

3 1 2 3
1 ◦ × ◦
2 ◦ ◦ ◦
3 ◦ ◦ ◦

Figure A.35: Configuration for g13,3 = 4

direction statistic

x (1) (2,1,1)
y (2) (2,1,1)
z (3) (2,1,1)

Table A.26: 2-dimensional statistics for g13,3

A.4.2.2 n = 4

1 1 2 3 4
1 ◦ × ◦ ×
2 ×× ◦ ◦
3 × ◦ ××
4 ◦ ×× ◦

2 1 2 3 4
1 ×× ◦ ◦
2 ◦ ◦ ◦ ◦
3 × ◦ ◦ ×
4 ×× ◦ ×

3 1 2 3 4
1 × ◦ ××
2 × ◦ ◦ ×
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ××

4 1 2 3 4
1 ◦ ×× ◦
2 ×× ◦ ×
3 ◦ ◦ ××
4 × ◦ × ◦

Figure A.36: Configuration for g14,3 = 32

direction statistic

x (1) (9,7,7,9)
y (2) (9,7,7,9)
z (3) (9,7,7,9)

Table A.27: 2-dimensional statistics for g14,3
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A.4.2.3 n = 5

1 1 2 3 4 5
1 ××× ◦ ×
2 × ◦ ×××
3 ×× ◦ ××
4 ◦ ××× ◦
5 × ◦ × ◦ ×

2 1 2 3 4 5
1 ◦ ◦ ×××
2 ××× ◦ ×
3 × ◦ ◦ × ◦
4 ×× ◦ ××
5 ◦ ××× ◦

3 1 2 3 4 5
1 ×× ◦ ××
2 ×× ◦ ××
3 ◦ ◦ ◦ ◦ ◦
4 ×× ◦ ◦ ×
5 ×× ◦ ××

4 1 2 3 4 5
1 ××× ◦ ◦
2 ◦ × ◦ × ◦
3 ×× ◦ ××
4 × ◦ ×××
5 ◦ ×× ◦ ×

5 1 2 3 4 5
1 × ◦ ×××
2 ◦ ◦ ×××
3 ×× ◦ ××
4 ◦ ×× ◦ ◦
5 × ◦ ×××

Figure A.37: Configuration for g15,3 = 82

direction statistic

x (1) (18,17,14,16,17)
y (2) (17,16,14,17,18)
z (3) (18,16,15,16,17)

Table A.28: 2-dimensional statistics for g15,3
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A.5 Configurations for d = 3 and n− 2 progressions

A.5.1 Combinatorial lines

A.5.1.1 n = 4

1 1 2 3 4
1 × ◦ ◦ ◦
2 ◦ ◦ × ◦
3 ◦ × ◦ ◦
4 ◦ ◦ ◦ ◦

2 1 2 3 4
1 ◦ ◦ × ◦
2 ◦ ◦ ◦ ◦
3 × ◦ ◦ ◦
4 ◦ ◦ ◦ ×

3 1 2 3 4
1 ◦ × ◦ ◦
2 × ◦ ◦ ◦
3 ◦ ◦ ◦ ×
4 ◦ ◦ × ◦

4 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ×
3 ◦ ◦ × ◦
4 ◦ × ◦ ◦

Figure A.38: Configuration for c24,3 = 13

direction statistic

x (1) (3,3,4,3)
y (2) (3,3,4,3)
z (3) (3,3,4,3)

Table A.29: 2-dimensional statistics for c24,3

A.5.1.2 n = 5

1 1 2 3 4 5
1 ◦ ×× ◦ ×
2 ×× ◦ ××
3 × ◦ ×× ◦
4 ◦ ×× ◦ ×
5 ×× ◦ ××

2 1 2 3 4 5
1 ×× ◦ ××
2 ×× ◦ ××
3 ◦ ◦ ◦ ◦ ◦
4 ×× ◦ ××
5 ×× ◦ ××

3 1 2 3 4 5
1 × ◦ ×××
2 ◦ ◦ ◦ ◦ ◦
3 × ◦ ×× ◦
4 × ◦ ×× ◦
5 × ◦ ◦ ◦ ◦

4 1 2 3 4 5
1 ◦ ×× ◦ ×
2 ×× ◦ ××
3 × ◦ ×× ◦
4 ◦ ×× ◦ ×
5 ×× ◦ ××

5 1 2 3 4 5
1 ×× ◦ ××
2 ×× ◦ ××
3 ◦ ◦ ◦ ◦ ◦
4 ×× ◦ ××
5 ×× ◦ ××

Figure A.39: Configuration for c25,3 = 75

direction statistic

x (1) (18,16,11,17,17)
y (2) (18,16,11,17,17)
z (3) (17,16,11,17,16)

Table A.30: 2-dimensional statistics for c25,3
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A.5.1.3 n = 6

1 1 2 3 4 5 6
1 ××× ◦ ××
2 ××× ◦ ××
3 ×× ◦ ×× ◦
4 ◦ ◦ ×× ◦ ×
5 ××× ◦ ××
6 ×× ◦ ×××

2 1 2 3 4 5 6
1 ××× ◦ ××
2 ×× ◦ ×××
3 × ◦ ×× ◦ ◦
4 ◦ ×× ◦ ××
5 ×× ◦ ×××
6 ××× ◦ ××

3 1 2 3 4 5 6
1 ×× ◦ ×× ◦
2 × ◦ ×× ◦ ◦
3 ◦ ×× ◦ ◦ ×
4 ×× ◦ ×××
5 × ◦ ◦ ×××
6 ×× ◦ ×× ◦

4 1 2 3 4 5 6
1 ◦ ◦ ×× ◦ ×
2 ◦ ×× ◦ ××
3 ×× ◦ ×××
4 × ◦ × ◦ × ◦
5 ◦ ××× ◦ ◦
6 ◦ ◦ ×× ◦ ×

5 1 2 3 4 5 6
1 ××× ◦ ××
2 ×× ◦ ×××
3 × ◦ ◦ ×××
4 ◦ ××× ◦ ◦
5 ××× ◦ ××
6 ××× ◦ ××

6 1 2 3 4 5 6
1 ×× ◦ ×××
2 ×× ◦ ×××
3 ◦ ◦ ××× ◦
4 ××× ◦ ◦ ×
5 ××× ◦ ××
6 ×× ◦ ×××

Figure A.40: Configuration for c26,3 = 152

direction statistic

x (1) (27,27,22,22,27,27)
y (2) (27,27,22,22,27,27)
z (3) (27,27,23,21,27,27)

Table A.31: 2-dimensional statistics for c26,3
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A.5.1.4 n = 7

1 1 2 3 4 5 6 7
1 ×××× ◦ ××
2 ××× ◦ ×××
3 ×× ◦ ××××
4 × ◦ ×××× ◦
5 ◦ ×××× ◦ ×
6 ×××× ◦ ××
7 ××× ◦ ×××

2 1 2 3 4 5 6 7
1 ××× ◦ ×××
2 ×× ◦ ××××
3 × ◦ ×××× ◦
4 ◦ ×××× ◦ ×
5 ×××× ◦ ××
6 ××× ◦ ×××
7 ×× ◦ ××××

3 1 2 3 4 5 6 7
1 ×× ◦ ××××
2 × ◦ ×××× ◦
3 ◦ ×××× ◦ ×
4 ×××× ◦ ××
5 ××× ◦ ×××
6 ×× ◦ ××××
7 × ◦ ×××× ◦

4 1 2 3 4 5 6 7
1 × ◦ ×××× ◦
2 ◦ ×××× ◦ ×
3 ×××× ◦ ××
4 ××× ◦ ×××
5 ×× ◦ ××××
6 × ◦ ×××× ◦
7 ◦ ×××× ◦ ×

5 1 2 3 4 5 6 7
1 ◦ ×××× ◦ ×
2 ×××× ◦ ××
3 ××× ◦ ×××
4 ×× ◦ ××××
5 × ◦ ×××× ◦
6 ◦ ×××× ◦ ×
7 ×××× ◦ ××

6 1 2 3 4 5 6 7
1 ×××× ◦ ××
2 ××× ◦ ×××
3 ×× ◦ ××××
4 × ◦ ×××× ◦
5 ◦ ×××× ◦ ×
6 ×××× ◦ ××
7 ××× ◦ ×××

7 1 2 3 4 5 6 7
1 ××× ◦ ×××
2 ×× ◦ ××××
3 × ◦ ×××× ◦
4 ◦ ×××× ◦ ×
5 ×××× ◦ ××
6 ××× ◦ ×××
7 ×× ◦ ××××

Figure A.41: Configuration for c27,3 = 276

direction statistic

x (1) (40,40,39,38,39,40,40)
y (2) (40,40,39,38,39,40,40)
z (3) (40,40,39,38,39,40,40)

Table A.32: 2-dimensional statistics for c27,3
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A.5.1.5 n = 8

1 1 2 3 4 5 6 7 8
1 ◦ ××××× ◦ ×
2 ××××× ◦ ××
3 ××× ◦ ××××
4 ×× ◦ ×××××
5 ×××× ◦ ×××
6 × ◦ ××××× ◦
7 ◦ ××××× ◦ ×
8 ××××× ◦ ××

2 1 2 3 4 5 6 7 8
1 ××××× ◦ ××
2 ××× ◦ ××××
3 ×× ◦ ×××××
4 × ◦ ××××× ◦
5 ×××× ◦ ×××
6 ◦ ××××× ◦ ×
7 ××××× ◦ ××
8 ××× ◦ ××××

3 1 2 3 4 5 6 7 8
1 ××× ◦ ××××
2 ×× ◦ ×××××
3 × ◦ ×× ◦ ×× ◦
4 ◦ ××××× ◦ ×
5 ×× ◦ ×××××
6 ××××× ◦ ××
7 ××× ◦ ××××
8 ×× ◦ ×××××

4 1 2 3 4 5 6 7 8
1 ×× ◦ ×××××
2 × ◦ ××××× ◦
3 ◦ ××××× ◦ ×
4 ×××× ◦ ×××
5 ××× ◦ ××××
6 ××××× ◦ ××
7 ×× ◦ ×××××
8 × ◦ ××××× ◦

5 1 2 3 4 5 6 7 8
1 ×××× ◦ ×××
2 ×××× ◦ ×××
3 ×× ◦ ×××××
4 ××× ◦ ××××
5 ◦ ◦ ××× ◦ ◦ ◦
6 ×××× ◦ ×××
7 ×××× ◦ ×××
8 ×××× ◦ ×××

6 1 2 3 4 5 6 7 8
1 × ◦ ××××× ◦
2 ◦ ××××× ◦ ×
3 ××××× ◦ ××
4 ××××× ◦ ××
5 ×××× ◦ ×××
6 ×× ◦ ◦ ××××
7 × ◦ ××××× ◦
8 ◦ ××××× ◦ ×

7 1 2 3 4 5 6 7 8
1 ◦ ××××× ◦ ×
2 ××××× ◦ ××
3 ××× ◦ ××××
4 ×× ◦ ×××××
5 ×××× ◦ ×××
6 × ◦ ××××× ◦
7 ◦ ××××× ◦ ×
8 ××××× ◦ ××

8 1 2 3 4 5 6 7 8
1 ××××× ◦ ××
2 ××× ◦ ××××
3 ×× ◦ ×××××
4 × ◦ ××××× ◦
5 ×××× ◦ ×××
6 ◦ ××××× ◦ ×
7 ××××× ◦ ××
8 ××× ◦ ××××

Figure A.42: Configuration for c28,3 = 423

direction statistic

x (1) (53,54,53,53,52,51,53,54)
y (2) (53,54,53,53,52,51,53,54)
z (3) (53,54,53,53,52,51,53,54)

Table A.33: 2-dimensional statistics for c28,3
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A.5.1.6 n = 9

1 1 2 3 4 5 6 7 8 9
1 ×××××× ◦ ××
2 ×××× ◦ ××××
3 ×× ◦ ××××××
4 ◦ ×××××× ◦ ×
5 ××××× ◦ ×××
6 ××× ◦ ×××××
7 × ◦ ×××××× ◦
8 ×××××× ◦ ××
9 ×××× ◦ ××××

2 1 2 3 4 5 6 7 8 9
1 ××××× ◦ ×××
2 ××× ◦ ×××××
3 × ◦ ×××××× ◦
4 ×××××× ◦ ××
5 ×××× ◦ ××××
6 ×× ◦ ××××××
7 ◦ ×××××× ◦ ×
8 ××××× ◦ ×××
9 ××× ◦ ×××××

3 1 2 3 4 5 6 7 8 9
1 ×××× ◦ ××××
2 ×× ◦ ××××××
3 ◦ ×××××× ◦ ×
4 ××××× ◦ ×××
5 ××× ◦ ×××××
6 × ◦ ×××××× ◦
7 ×××××× ◦ ××
8 ×××× ◦ ××××
9 ×× ◦ ××××××

4 1 2 3 4 5 6 7 8 9
1 ××× ◦ ×××××
2 × ◦ ×××××× ◦
3 ×××××× ◦ ××
4 ×××× ◦ ××××
5 ×× ◦ ××××××
6 ◦ ×××××× ◦ ×
7 ××××× ◦ ×××
8 ××× ◦ ×××××
9 × ◦ ×××××× ◦

5 1 2 3 4 5 6 7 8 9
1 ×× ◦ ××××××
2 ◦ ×××××× ◦ ×
3 ××××× ◦ ×××
4 ××× ◦ ×××××
5 × ◦ ×××××× ◦
6 ×××××× ◦ ××
7 ×××× ◦ ××××
8 ×× ◦ ××××××
9 ◦ ×××××× ◦ ×

6 1 2 3 4 5 6 7 8 9
1 × ◦ ×××××× ◦
2 ×××××× ◦ ××
3 ×××× ◦ ××××
4 ×× ◦ ××××××
5 ◦ ×××××× ◦ ×
6 ××××× ◦ ×××
7 ××× ◦ ×××××
8 × ◦ ×××××× ◦
9 ×××××× ◦ ××

7 1 2 3 4 5 6 7 8 9
1 ◦ ×××××× ◦ ×
2 ××××× ◦ ×××
3 ××× ◦ ×××××
4 × ◦ ×××××× ◦
5 ×××××× ◦ ××
6 ×××× ◦ ××××
7 ×× ◦ ××××××
8 ◦ ×××××× ◦ ×
9 ××××× ◦ ×××

8 1 2 3 4 5 6 7 8 9
1 ×××××× ◦ ××
2 ×××× ◦ ××××
3 ×× ◦ ××××××
4 ◦ ×××××× ◦ ×
5 ××××× ◦ ×××
6 ××× ◦ ×××××
7 × ◦ ×××××× ◦
8 ×××××× ◦ ××
9 ×××× ◦ ××××

9 1 2 3 4 5 6 7 8 9
1 ××××× ◦ ×××
2 ××× ◦ ×××××
3 × ◦ ×××××× ◦
4 ×××××× ◦ ××
5 ×××× ◦ ××××
6 ×× ◦ ××××××
7 ◦ ×××××× ◦ ×
8 ××××× ◦ ×××
9 ××× ◦ ×××××

Figure A.43: Configuration for c29,3 = 626

direction statistic

x (1) (70,70,69,69,70,70,68,70,70)
y (2) (70,70,70,69,69,69,69,70,70)
z (3) (70,70,70,69,69,69,69,70,70)

Table A.34: 2-dimensional statistics for c29,3
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A.5.2 Geometric lines

A.5.2.1 n = 4

1 1 2 3 4
1 × ◦ ◦ ◦
2 ◦ ◦ × ◦
3 ◦ ◦ ◦ ◦
4 ◦ × ◦ ◦

2 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ×

3 1 2 3 4
1 ◦ × ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ×
4 × ◦ ◦ ◦

4 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ × ◦

Figure A.44: Configuration for g24,3 = 8

direction statistic

x (1) (2,1,1,4)
y (2) (2,2,2,2)
z (3) (3,1,3,1)

Table A.35: 2-dimensional statistics for g24,3

A.5.2.2 n = 5

1 1 2 3 4 5
1 ×× ◦ ××
2 ×× ◦ ××
3 ◦ ◦ ◦ ◦ ◦
4 ×× ◦ ××
5 ×× ◦ ××

2 1 2 3 4 5
1 ×× ◦ ××
2 ×× ◦ ××
3 ◦ ◦ ◦ ◦ ◦
4 ×× ◦ ××
5 ×× ◦ ××

3 1 2 3 4 5
1 ◦ ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦ ◦
5 ◦ ◦ ◦ ◦ ◦

4 1 2 3 4 5
1 ×× ◦ ××
2 ×× ◦ ××
3 ◦ ◦ ◦ ◦ ◦
4 ×× ◦ ××
5 ×× ◦ ××

5 1 2 3 4 5
1 ×× ◦ ××
2 ×× ◦ ××
3 ◦ ◦ ◦ ◦ ◦
4 ×× ◦ ××
5 ×× ◦ ××

Figure A.45: Configuration for g25,3 = 64

direction statistic

x (1) (16,16,0,16,16)
y (2) (16,16,0,16,16)
z (3) (16,16,0,16,16)

Table A.36: 2-dimensional statistics for g25,3
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A.6 Configurations for n = 4 and 3 progressions

A.6.1 Algebraic lines

A.6.1.1 d = 2

1 2 3 4
1 × ◦ ◦ ×
2 ◦ ◦ ◦ ◦
3 ×× ◦ ◦
4 ◦ × ◦ ×

Figure A.46: Configuration for a14,2 = 6

A.6.1.2 d = 3

1 1 2 3 4
1 ◦ ◦ ××
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ××
4 ◦ ◦ ◦ ◦

2 1 2 3 4
1 ◦ × ◦ ×
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ × ◦ ×

3 1 2 3 4
1 ◦ ×× ◦
2 ◦ ◦ ◦ ◦
3 ◦ ×× ◦
4 ◦ ◦ ◦ ◦

4 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ × ◦ ×
4 ◦ × ◦ ×

Figure A.47: Configuration for a14,3 = 16

direction statistic

x (1) (6,0,6,4)
y (2) (0,6,4,6)
z (3) (4,4,4,4)

Table A.37: 2-dimensional statistics for a14,3

For the statistics of sub-cubes we count the points which are contained in every sub-

cube of length two. For this reason we count the occurrences of the number of points in

all possible pairs of two-dimensional sub-slices in the z direction (pages). This means we

fix two z values and look at every sub-cube of length two in there and count the points.
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number of points in sub-cube occurrences

0 2
1 14
2 8
3 8
4 2
5 2

Table A.38: sub-cube statistics for a14,3 where z = 1 and z = 2

number of points in sub-cube occurrences

0 6
1 8
2 10
3 8
4 2
6 2

Table A.39: sub-cube statistics for a14,3 where z = 1 and z = 3

number of points in sub-cube occurrences

0 2
1 14
2 8
3 8
4 2
5 2

Table A.40: sub-cube statistics for a14,3 where z = 1 and z = 4
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number of points in sub-cube occurrences

0 2
1 14
2 8
3 8
4 2
5 2

Table A.41: sub-cube statistics for a14,3 where z = 2 and z = 3

number of points in sub-cube occurrences

0 6
1 8
2 10
3 8
4 2
6 2

Table A.42: sub-cube statistics for a14,3 where z = 2 and z = 4

number of points in sub-cube occurrences

0 2
1 14
2 8
3 8
4 2
5 2

Table A.43: sub-cube statistics for a14,3 where z = 3 and z = 4
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A.6.1.3 d = 4

1

1 1 2 3 4
1 ◦ ◦ ◦ ◦
2 × ◦ ◦ ×
3 ◦ ◦ ◦ ◦
4 ◦ ×× ◦

2 1 2 3 4
1 ◦ × ◦ ×
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦

3 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ××
3 ◦ ◦ ◦ ◦
4 ×× ◦ ◦

4 1 2 3 4
1 ◦ × ◦ ×
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦

2

1 1 2 3 4
1 ◦ ◦ ◦ ×
2 ◦ ◦ ◦ ×
3 × ◦ ◦ ◦
4 × ◦ ◦ ◦

2 1 2 3 4
1 ◦ × ◦ ×
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦

3 1 2 3 4
1 ◦ × ◦ ◦
2 × ◦ ◦ ◦
3 × ◦ ◦ ◦
4 ◦ × ◦ ◦

4 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ×× ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ×

3

1 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦

2 1 2 3 4
1 ◦ ◦ ◦ ◦
2 × ◦ × ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦

3 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦

4 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 × ◦ × ◦

4

1 1 2 3 4
1 ◦ ◦ ◦ ×
2 ◦ ◦ × ◦
3 × ◦ ◦ ◦
4 ◦ × ◦ ◦

2 1 2 3 4
1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦

3 1 2 3 4
1 ◦ × ◦ ◦
2 ◦ ◦ ◦ ×
3 × ◦ ◦ ◦
4 ◦ ◦ × ◦

4 1 2 3 4
1 ◦ × ◦ ×
2 ×× ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ×

Figure A.48: Configuration for a14,4 = 42

direction statistic

1 (12,14,4,12)
2 (11,12,7,12)
3 (12,6,12,12)
4 (12,13,4,13)

Table A.44: 3-dimensional statistics for a14,4
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