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1 Introduction

Schrodinger equations and the corresponding Schrodinger operators are essential objects in
quantum mechanics and have consequently attracted an enormous mathematical interest.
In the thesis at hand we are concerned with the special class of Schrodinger operators
with so called d-interactions. Such operators are used, for example, to model photonic
crystals or systems with short range interactions. We will realize these operators as singular
perturbations of the free Laplacian.

A Schrodinger operator with a d-interaction of strength é, a € R\ {0}, supported on a
discrete set or on a manifold ¥ C R? is an operator associated with the formal differential
expression —A — ééz, where 0y, denotes the d-distribution on ». The formal action of this
operator is given by

ur— —Au — lu|262. (1.1)
o

Such an operator can be used as an idealized model of a Schrodinger operator with a
potential which has relatively high values or even a singularity on > and which vanishes
away from Y. For example, already in [KP31], Kronig and Penney considered periodic
rectangular potentials which become in the limit a sequence of equally distributed J-point
interactions in R. A systematical mathematical treatment of d-interactions which yields a
justification for the replacement of classical potentials by d-interactions can be found for
example in the monograph [AGHHO05] and the papers [BEHL16], [EI0T) [EK03] [Pop95], [Shi92].

Within the study of d-interactions it turns out that the codimension of the interaction
support ¥ is more important than the dimension of the Euclidian space R? in which X is
embedded. For example the way how to define a é-interaction on a curve in R? is more
similar to the way how to define a d-interaction on a surface in R® than on a curve in
R3. In particular the task of giving a proper definition of a Schrodinger operator with
a d-interaction becomes progressively more difficult with increasing codimension of the
interaction support.

We will tackle this problem from a more abstract point of view and consider first singular

perturbations of a selfadjoint operator A in a Hilbert space H® which can be formally
written as

Ay = A —GoGr. (1.2)
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Here G is a continuous injective operator from another Hilbert space G into H =%\ H*T1u
{0}, where H =¥ is an element in the chain of rigged Hilbert spaces

L DOHFD L DHTI'DOH DOH' D ... DHF D . (1.3)

generated by A with #2 := dom A. The operator A : H° — H~2 is an extension of A
and the parameter ¢ is an invertible operator in G. For technical reasons we will assume
A>1.

Such singular perturbations were considered for example in [Sho88, [Kur(3|] for the case
that G is a rank one map and in [DHS03] for the case that G is a finite rank operator. The
approach used in this thesis is an extended version of the one in [DHS03] and allows also
maps G with infinite rank, which is necessary to apply it to d-interactions supported on
manifolds. If the map G has finite rank our approach reduces to the one in [DHS03]. The
same idea was also used in [Sho92]. For another concept to handle infinite dimensional
perturbations see for example [DHMST2].

It turns out that the index k has a major impact on the way how to interpret the formal
expression Ay in . If £ = 1 one can define in a very intuitive way selfadjoint operators
associated with Ay. If £k = 2 such an approach will just lead to operators which are
restrictions of A. Hence it is not possible to define selfadjoint perturbations of A in this
way. This problem can be solved by slightly modifying the expression Ay in to

Ay =A—Go 'GP, (1.4)

where P is a suitable projection. If k£ > 2 also such a modification will not lead to selfadjoint
operators in H°. Roughly speaking this is caused by the fact that the difference between
a nontrivial element in the range of G and a nontrivial element in the range of A never
belongs to H°. In other words the perturbation is too singular. We will call this case the
supersingular case. To handle this situation we have to extend the space H" to a larger
Krein space K. In this space we are able to define selfadjoint operators (with respect to
the inner product of K) whose action can be seen as a shifted version of the one resulting
from Ay.

For any k£ our approach leads to a generalized boundary triple which enables us to parame-
terize the operators Ay corresponding to the expression Ay (or /Lg). Boundary triples and
their generalizations have turned out to be a helpful tool in extension theory of symmetric
operators. In particular we get a Krein type resolvent formula

(A= N7 = (A=) =3[ = MO 9, Aep(d)np(d). (L)

which establishes a connection between the operator Ay and the parameter 9 via a holo-
morphic function M. This function M, the so called Weyl function, is the analog of the
classical Titchmarsh-Weyl m-function from Sturm-Liouville theory. Together with Krein’s
resolvent formula the Weyl function allows in many cases a detailed analysis of the operator
Ay and its spectrum.



We will use the same strategy for Schrodinger operators with d-interactions on a manifold
¥ in R?. Therefore we have to identify the objects from the abstract approach described
above in our situation. The operator A is given by —Agee + 1, where —Age is the free
Laplacian in L?(R?) with domain H?(R¢). The rigged Hilbert spaces in generated
by A become the Sobolev spaces H*(R?), s € Z, and the Hilbert space G is L*(X). The
d-distribution on X with weight function h € L*(X) is defined by

(hds)p = / h-¢ls do, ¢ € H*(RY),
s

and belongs to a Sobolev space H*(R?) of a certain negative order —k, depending on the
codimension of . Hence the operator

G: LX) = H*RY), he hoy,

fits into our scheme. Note that G* : H*(RY) — L?(X) is given by G*u = u|s. On a purely
formal level we have now for ¥ = a € R\ {0}

Agu= (A — GV 'G)u= (—A+ 1)u — a ulsdy,

which coincides (up to the constant +1) with the mapping given in . The rigorous def-
inition of the corresponding operator Ay is done with the help of the generalized boundary
triple resulting from the abstract approach. If the codimension of ¥ is 1 this generalized
boundary triple coincides with the one which was used in [BLLI13al] to define Schrédinger
operators with d-interactions on boundaries of bounded C'*®-domains in R%. Hence these
Schrédinger operators coincide with the operators Ay (up to the constant +1). It was shown
in [BLLI3a] (see also Remark 4.1 in [BEKS94]) that their definition of a Schrédinger op-
erator with d-interaction coincides with the usual definition as the representing operator
of the semi-bounded sesquilinear form

t[U,U] = <VU, V'U>L2(Rd7(cd) — <’19_1U,|2, U|E>L2(E)7 domt = Hl(Rd)

This definition is used for example in [Tet90, [EI0T] [EY 01l [EK03) [ KV07, [KK13| as well as in
the recent publication [DEKP16], see also the more general approach via Radon measures
in [BEKS94], which contains the situation above as a special case. If the codimension is
4 or larger we are in the supersingular case k£ > 2 and the whole situation becomes more
complicated because we have to extend the space L?(R?) to a larger Krein space. We leave
it for future works to check how the operators obtained in this way are connected with
operators introduced by other authors to handle such problems, e.g. in [CDET12].

The main focus of our application is on the situation that ¥ is a manifold of codimension
2, which corresponds (as well as the situation of codimension 3) to the case k = 2. The
abstract approach yields a generalized boundary triple which enables us to parametrize
operators Ay corresponding to the expression Ay in . The challenging question which
appears now is how we have to chose the parameters ¢ such that the resulting operators
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coincide with those operators, which are known in the literature as Schrodinger operators
with d-interactions.

Schrodinger operators with d-interactions on curves in R* were already considered in [BL77]
for the special case of a straight line and in [Kur78, [Kur83] for smooth infinite or closed
curves. Other works which deal with such operators are for example [EK02, BDEO3,
EF07, Konl2l [EK16]. The definition of these operators is inspired by the case of a §-point-
interaction in R? and uses a “boundary” condition at the curve. An alternative way to
define these operators was given in [Tet90] via a quadratic form in L?(X).

Our approach is a special case of [Pos01] and strongly inspired by the one used in [Sho95] to
define d-interactions on curves in R?. We will generalize it (after a small modification such
that it fits better into our theoretical scheme) to d-interactions on manifolds of codimension
2 in R? for arbitrary d. The essential part of this approach is an operator which we will
call “the generalized trace operator”. With this generalized trace we are able to construct
operators ¥ in L?(X) which parametrize Schrodinger operators with d-interactions of an
arbitrary given strength on X, cf. Definition Furthermore, the generalized boundary
triple which is used for this parametrization provides a Krein type resolvent formula as in
(1.5). For an optimal utilization of this formula a deep understanding of the generalized
trace is needed. As the properties of this operator depend on the space dimension and
on the geometry of 3 we will concentrate for the spectral analysis again on the case of a
closed curve in R?. We will show in Theorem that the singular values of the resolvent
difference

(_AEpz - )\)_1 - (_Afree - )\)—1’ >\ S p(_AE,a) N p(_Afree)7

counted with multiplicities satisfy

1
j2In g

sj(A):O< > as j — 00.

In particular, this implies that the resolvent difference belongs to the trace class, which
was already shown in [BT92] (see also Remark 4.1 in [EF07] for a similar result in the
case of a d-interaction of periodic strength on a straight line in R?). Moreover, by using
a Birman-Schwinger principle, we obtain in Theorem [4.25| estimates for the number of
negative eigenvalues of —Ay , similar to those in [Konl2] (see also [BT92]). A more
explicit estimate is given in Corollary that leads to an asymptotic estimate similar
to the one in Theorem 3.3 in [EK04]. In Theorem we show that the lower bound of
—Ay , is maximized if the curve X is a circle (by fixed length and strength). The proof is
analog to the proof of the two-dimensional equivalent in [Exn05, [EHLO0G].

At the end of this introduction we will give a brief overview on the structure of this
thesis. In Chapter [2| we provide some definitions and basic properties of boundary triples,
Friedrichs extensions, Sobolev spaces and other concepts, which will be used in this work.
Chapter [3|is devoted to the abstract approach. Starting with a selfadjoint operator A > 1
in a Hilbert space H® we will construct in the first section of Chapter [3| the chain of

10



Hilbert spaces from and extend the operator A onto spaces H® with negative index.
Furthermore we construct a generalized boundary triple (G, Ty, ") which depends on the
index k. In Section [3.2] we discuss how we can parametrize the operators corresponding
to the formal expression Ay in (1.2)) with this triple if £ = 1 and apply it to Schrodinger
operators with d-interactions supported on boundaries of C'*°-domains. In Section |3.3| we
give a brief discussion of the case kK = 2, but without applications. This will be done in
the following chapter. In Section [3.4] we analyze the supersingular case k > 2. For this we
extend the Hilbert space H° to a larger Krein space and construct an ordinary boundary
triple (G, Lo, fl) Also in this case an application to J-interactions is given. Chapter 4| is
devoted to Schrodinger operators with d-interactions on manifolds of codimension 2 and
uses the abstract approach from Chapter [3] in particular from Section [3.3] In Section [£.1
we investigate the generalized boundary triple in this case and the corresponding v-field
and Weyl function. In Section [4.2| we present some first spectral results for the operators Ay
corresponding to the formal expression Ay in . The generalized trace is constructed in
Section [4.3]and is used afterwards to identify the correct parameter ¢ such that the operator
Ay coincides (up to a constant) with the Schrodinger operators with d-interactions on the
manifold. In Section 4.4] we consider the special case that the manifold is a closed curve in
R3 and provide a detailed spectral analysis.

Note that large parts of Chapter [4 and in particular of Section [£.4 where already published
by the author in [BEK™16].

11






2 Preliminaries

This chapter contains definitions and basic properties of boundary triples, Friedrichs ex-
tensions, Sobolev spaces and other concepts, which we will need in this thesis.

2.1 Notation and basic properties

By R and C we will denote the real and complex numbers, respectively. The natural
numbers are denoted by N, whereas Ny denotes the set of nonnegative integers. The set of
integers is denoted by Z.

All Hilbert and Krein spaces in this thesis are supposed to be separable.

All sesquilinear forms like scalar products or Krein products are linear in the first entry
and antilinear in the second one.

A linear relation in a Hilbert or Krein space H is a linear subspace of H x H.
We write elements in H x H as {u,u'} or L?j,] with u,u’ € H.
If A is a linear relation in ‘H then we denote by
(i) dom A :={u € H : Fu' € H with {u,u'} € A} the domian of A,

(i) ran A := {u’ € H : Ju € H with {u,u'} € A} the range of A,

(ili) ker A :={u € H : {u,0} € A} the kernel of A and by

(iv) mul A := {u' € H : {0,u'} € A} the multivalued part of A.
All operators in this thesis are linear operators. If A is a linear operator in ‘H then the
graph of A is a linear relation in H. As usual we will not distinguish between an operator
and its graph.
If H and K are Hilbert or Krein spaces we denote by L(H, K) the set of all bounded linear
operator from H to K whose domain is the whole space H. Note that all these operators
are closed. As usual we define L(H) := L(H, H).
We define the resolvent set p(A) and the spectrum o(A) of a linear relation A by

p(A):={AeC:(A-N"1eL(H)} and o(A):=C\ p(A).

13



2 Preliminaries

Special subsets of o(A) are the point spectrum o,(A), the continuous spectrum o.(A), the
discrete spectrum o4(A) and the essential spectrum oess(A), which are defined by
o

»(A) :={X € C:ker(A—\) #{0}},

0o(A) == {\ € o(A) : ker(A — \) = {0}, ran(A — \) = H},

oa(A) :=={X € 0,(A) : dimker(A — \) < co and T & > 0 with B.(A\) No(A) = 0},
Oess(A) 1= 0(A) \ 0a(A),

respectively. Note that p(A) = 0 if A is not closed.

If A is a linear relation in the Hilbert space H with scalar product (-, )y then we define
its adjoint by

A = {{v,v'} e H x H: (v,u)y = (v, u)y for all {u,u'} € A}.

A is called symmetric if A C A* and A is called selfadjoint if A = A*. If A is a densely
defined operator these definitions coincide with the usual definitions of the adjoint opera-
tors.

Analogously, the Krein space adjoint of a linear relation A in the Hilbert space K with
inner product [-, -Jx is define by

At ={{v, v} e Kx K [o,u]x = [V, 1] for all {u,u'} € A}.
A is called symmetric (selfadjoint) with respect to [-, ], if A C AT (A= AT).

Let H be a Hilbert space, H' C H a subspace which is a Hilbert space by itself and denote
by H* and (H')* the corresponding dual spaces. Then the inclusion (H!)* D H* holds.
According to the Riesz representation theorem we can identify H* with H and get the
inclusion

H'CHC(HY".

In this case the (sesquilinear) dual pairing (@, u)#1 1)+ coincides with the scalar product
(p,u)y for all p € H' and u € H. If G is another Hilbert space with a sub Hilbert
space G! C G and G : H! — G' an operator the adjoint operator G* : (G1)* — (H!)*
is defined by (G, u)gr g1y = (¢, G*u)zn 1)+ for ¢ € G' and w € (G')*. Analogously if
G:H—G,G: (HY) — G ete. Tt will be clear from the context which Hilbert spaces
will be identified with their dual spaces. In particular if G : H — G and both spaces are
identified with their dual spaces this definition of the adjoint operator coincides with the
one given above.

The following Lemma provides a helpful decomposition of domains of linear operators.

Lemma 2.1. Let A and T be operators in the Hilbert space H such that A = A* C T
holds. Then the decomposition

domT = dom A + ker(T — \)
holds for all X € p(A), where + is the direct sum in the Hilbert space H.

14



2.1 Notation and basic properties

Proof. Let uw € domT be arbitrary. As A € p(A) we know (A — \)™' € L(H). Hence
= (A —=N)"YT — Nu € dom A is well defined and satisfies (A — \)v = (T — Nu. As T
is an extension of A we get also (T'— \)v = (T — N)u, i.e. w:=u—v € ker(T — ). Hence

u=v+w € domA+ker(T — \)

and therefore dom 7" C dom A-+ker(7T'—\). The other inclusion is trivial as 7" is an extension
of A. It remains to show, that the sum is direct. For this let u € dom A Nker(T — \). As
T is an extension of A we have T'u = Au. Hence

(A= XNu=(T—Xu=0.
Due to A € p(A) it follows u = 0. Hence dom A Nker(7T — A\) = {0}. O

Furthermore we will need the following special case of the well-known min-max-principle.
For the sake of completeness we will give a proof although similar proofs can be found in
the literature, see for example the proof of Theorem 12.1 in [LLO1].

Lemma 2.2. Let A be a selfadjoint operator in the Hilbert space H which is bounded from
above and whose essential spectrum is absence, i.e. o(A) just consists of isolated eigenvalues
with finite multiplicities. Denote these eigenvalues in nonincreasing order and counted with
multiplicity by v, k € N. Then

B . (Au,u)y

Vp= max min -——o_—.
UCdom A ueU\{0} ||u||H
dim U=k

Of course it is assumed above that U in the maximum is a linear subspace of H.

Proof. As A is selfadjoint with o(A) = 0,(A) there exists an orthonormal basis (u,)nen of
eigenvectors, i.e.

Au, = vpu,, (Un, U ) = Opm and span{u, : n € N} = H.
For k € N define Uy, := span{uy, ..., ux}. Let u = Zle a;uj € Ug. Then

kook
<Au,u>H:ZZaal Auju)y :ZZaaﬂ/] Uj, W)y
——

=1 =1 =1 1=1 Ne
k k
= laylPu(uug)a = vie Y logl*(ug, wy)a = villull3,
j=1 Jj=1

and hence min,ep,\ {0y { ”u”2>“ > 1. On the other hand we have

(Aug, up)p Vit Ur)n "

[oraE [Jur |3,

15



2 Preliminaries

and hence min,ep,\ (0} % = vg. Let U # Uy be an arbitrary subspace of H with
H

dimension k. Hence U Nspan{u, : n > k} # {0}. Let

u= iajuj € (U N span{u, : n > k:}) N{0}.
j=k

Hence
o0 o0
(Au,wyy =Y logPvslug,ugda < vy Lo > (ug, ug)a = vellull3-
=k =k

Hence min, e oy % < 1. As this is true for every subspace U # U, with dimU = k
(Au,u)y

and minyep,\ {0} Tzt = W we get
max = min - = 4.
UCdom A ueU\{0} |lul|3,
dim U=k
Note that all minima and maxima are attained. ]

2.2 Ordinary and generalized boundary triples

In this section we will introduce the abstract concept of ordinary boundary triples. This
concept goes back to [Koc75] and [Bru76] (see also [Vish2] for a special cases of an ordinary
boundary triples) and is used to describe extensions of a given symmetric operator. We will
also define so called generalized boundary triples, cf. [DM95]. Another generalization of

ordinary boundary triples (which contain generalized boundary triples) are quasi boundary
triples, cf. [BLOT].

We start with the definitions of ordinary and generalized boundary triples.

Definition 2.3. Let S be a closed symmetric linear relation in the Hilbert space H. Let G
be another Hilbert space and let Iy, I'y : S* — G be linear mappings. The triple (G, Ty, ')
is called an ordinary boundary triple for S* if

i) T':= (E(l’) : §* — G x @G is surjective and
(ii) the abstract Green’s identity
<U,/, U>’H - <U, U,>H = <F1fb, F(ﬂf)>g - <F0ﬂ, F1@>g
holds for all & = {u,u'} and © = {v,v'} € S*.

Analogously we define an ordinary boundary triple for the case that S is a symmetric linear
relation in the Krein space K (with (-, -)y replaced by [-, -]k and S* replaced by ST).

16



2.2 Ordinary and generalized boundary triples

Also in the next definition the Hilbert space can be replaced by a Krein space (see for
example Definition 2.1 in [Beh10]), but in the following we will just need it for Hilbert
spaces.

Definition 2.4. Let S be a closed symmetric linear relation in the Hilbert space H and T
be a linear relation in H with 7" = S*. Let G be another Hilbert space and let I'y, I’y : T"— G
be linear mappings. The triple (G, g, I'y) is called a generalized boundary triple for S* if

(i) Ty is surjective,
(ii)) A :=kerDy is selfadjoint and
(iii) the abstract Green’s identity
(W'Y — (u,v")gy = (T4, Tod)g — (Tot, '10)g
holds for all & = {u, v} and 0 = {v,v'} € T.

Remark 2.5. In the following we will call the maps I'g and I'y boundary maps and the
Hilbert space G boundary space. If T is an operator it is more convenient to define the
boundary maps I'g and I'; just on dom 7" instead of on 7. One can show that if (G, T'o,T'1)
is an ordinary boundary triple A := kerI'y is always selfadjoint, cf. for example Proposi-
tion 2.1 in [Der99]. Hence every ordinary boundary triple is also a generalized boundary
triple. Note also that it was shown in [DM95], Lemma 6.1] that if (G, o, I';) is a generalized
boundary triple the range of I' := (?f) is dense in G x G and it’s kernel coincides with S,
ie. kerI'=kerI'yNkerI'y = S.

Two important functions corresponding to a generalized boundary triple are the ~-field
and the Weyl function. The following two Lemmas collect some well known and important
properties of these objects, cf. Lemma 6.2, Definition 6.2 and Equation (6.7) in [DM95].

Lemma 2.6. Let S be a closed symmetric linear relation in the Hilbert H and let (G, T, I'1)
be a generalized boundary triple for T = S*. Let A := ker Iy, define for A € p(A) the linear
relation

Ny = {{u, M} - u € ker(T — \)}
and consider the projection w1 : H X H — H, {u,u'} — u. Then the ~-field defined by
vip(A) = LG H), Ay =m(To [N
1s a holomorphic operator valued function which satisfies
T = () = (A = ) (A =Xy ()
for all X\, € p(A). Moreover, the adjoint y(A)* € L(H,G) of v(A) for A € p(A) satisfies
YA *u = T1{(A—N)"tu,u+ MA— X))t}

for allu € H. If T is an operator the definition of ¥(\) reads as y(\) := (T | ker(T'—=\)) ™~
and the identity for the adjoints can be simplified to y(\)* = T1(A — \)~L

17



2 Preliminaries

Lemma 2.7. Let S be a closed symmetric linear relation in the Hilbert H and let (G,To,T)
be a generalized boundary triple for T = S*. Let A :=kerT'y and define for A € p(A) the
linear relation

N = {{u, \u} - u € ker(T — \)}.
Then the Weyl function defined by
M:p(A) > £(G), A MO\ =Ty (To [ N3)7,
is a holomorphic operator valued function which satisfies
M(A) = M(p)* = (A =)y (1) "y (A)
for all \, i € p(A). In particular M(X\) = M(X)* for all X € p(A). If T is an operator the
definition of M(X) reads as M(X) :=T1y(N).

Analog results of Lemma[2.6 and Lemma[2.7) can be shown if the space H is a Krein space,
cf. for example Section 2 in [Der99] or Section 2 in [Behl10].
If (G,Ty,I'y) is an ordinary boundary triple for S* it is well-known that the mapping

O — Ag == {{u,u'} € S* : T{u,u'} € O}

establishes a bijection between all selfadjoint linear relations © in G and all selfadjoint
extensions of S. In the case that (G,T'g,I"1) is just a generalized boundary triple this is no
longer true. However, if we assume some additional assumptions we can still guarantee self-
adjointness of Ag. The following theorem specifies a possible choice of these assumptions.
The proof can be deduced for example easily from Theorem 2.8 in [BLO7]. Nevertheless
we will prove this theorem here because it will be essential for our further approach.

Theorem 2.8. Let S be a closed symmetric linear relation in the Hilbert H and let
(G,T,T'1) be a generalized boundary triple for T = S*. Let A := kerT'y and let © be
a closed linear relation in G. Define the linear relation

Ao = {{u,v'} € T: T{u,u'} € ©}.

If X € p(A) is chosen such that [© — M ()]~ is an operator and ran~(\)* is contained in
ran[© — M (X)] then A € p(Ae) and the identity

(Ao = N)7' = (A= N+ (N[0 - M)V (2.1)
holds. If we assume additionaly that © is symmetric and A € R and then Ag is selfadjoint
mn H.

Remark 2.9. As already mentioned above in the case of an ordinary boundary triple
stronger statements hold. But of course Theorem is also true for an ordinary boundary
triple, even in the case that S is a linear relation in a Krein space, cf. Theorem 2.1 in [Der99].
We will use Theorem mainly in the case that A is chosen such that 0 € p(© — M(\)).
Note that this implies that [© — M (\)]™! is an operator and ran[®© — M (\)] = G.
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2.2 Ordinary and generalized boundary triples

Proof. At first we show that (Ag — A)~! is an operator. Let v € ker(4g — ), i.e.
{v,0} € Ao — A = {{u, v/ — Mu} : {u,u'} € Ao }.

Hence {v, \v} € Ag, i.e. I'{v, Ao} € ©. Moreover v € ker(T'—\). This implies {v, \v} € N,
and hence T'1{v, \v} =T'1(To | Ny) "1 (To [ Ny){v, A} = M(N)To{v, \v}. Therefore

[FO{UO, Av}] = {Fl{v, A“}Fi{ﬂ?ﬁro{v, /\v}] €0 — M(\).

As (© — M(\))~! is an operator we conclude T'g{v, A\v} = 0 and therefore {v, \v} € A. As
A € p(A) this implies v = 0 and hence ker(Ag — \) = {0}, i.e. (Ag — A)~! is an operator.
Next we show the identity (2.1)). For this let u € H be arbitrary. Due to A € p(A) we have

MA_MIZ]EM—A)lzi{(A_Mlz}eM—A)
— ﬁ_ )Ele(A—M+AgA:kam.

Moreover Lemma implies

Hence
(A=N"tu | 0
F[u+MA—Arm]—{<m } (22)
As ran ()" is contained in ran[® — M(A)] = dom[® — M(A)]™" and [© — M(X)] ™" is an
operator [© — M (\)] 7' y(A)*u is well defined. Moreover y(\) := 71 (T | Ny)~" implies
m(To T N5) ([0 = MOy (0)*u) = 7(N)[6 = M) ™9(N) u € ker(T = A)
and hence

(o 1 X3) 7 (10 = MO~ (3) ) & K.

I
| — |
=
>
@

|

==
>
1>

Therefore

and
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Hence

| YO - M(/\)]‘lv(é)* VUl e ). (23)

Combining (2.2), (2.3) and (2.4) we observe

r { (A=N"u + 4O - MOV u }
utMA=N"Tu + MN[0 — M) y(N)u
= [© = M)~ y(N)*u B
B [ YO u+ MO — M)~y (V) u ] €O -MQA)+MQA) CO
Therefore
(A=N"1u + N[O -MN] V) ] A
utAMA=N"Tu + MN[0 — M) (V) u ©
and hence
(AT 00— MOIA ] ¢ 4y

Keeping in mind that (Ae — A)~! is an operator this implies
(Ao = N)7lu= (A= XN)"u+ (N[O = M) (N) u.

As u € H was arbitrary this shows Krein’s resolvent formula .

Next we show A € p(Ag). For this let ({vn,v),})neny € © — M(A) be a sequence which
converges to some {v,v'} € G x G. For every n € N there exists {u,,u,} € © such that
{vn, v} = {un, ul, — M(N)u,}. In particular u,, = v, — v if n — co. Hence

ul, = v+ M(Nu, =0 + M(\w

because M(\) € L£(G), cf. Lemma 2.7 As © is closed we get {v,v' + M(\)v} € ©. Hence
{v,v'} = {v, v + M(AN)v — M(N)v} € © — M(X). Therefore © — M(A) is closed and
hence [© — M (\)]~! is a closed operator. As y(\)* € £(H,G) and rany(\)* is included in
ran[© — M ()\)] = dom[© — M ()]~ also [© — M (\)]"'y(N)* is closed. Moreover it is defined
on the whole space and hence bounded. Also the operator (A — A)~! is bounded because
A € p(A). Hence Krein’s resolvent formula implies that (Ag — X\)~! is bounded and
therefore (Ag — A\)™t € L(H). Hence A € p(Ag).

Next we show that the symmetry of © implies the symmetry of Ag. For this let u =
{u,u'}, o = {v,0'} € Ae. Set f = {f,f'} :=Ta = {Tya,I1a} and § = {g,¢'} := 0 =
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2.2 Ordinary and generalized boundary triples

{Ty9,T19}. Note that due to the definition of Ag we have f,§ € ©. As O is symmetric we
get together with the abstract green’s identity

0= <f/7g>7-1, - <f7 g/>H = <F11:L, F0ﬁ>g - <F01l, F1@>g = <ulv U)"H - <u7 U/>’H'

As this is true for all v = {v,v'} € Ag we get & = {u,u'} € Ag. Hence Ag C A§.

To show selfadjointness of Ag we can proceed for example analogously as in the proof of
Theorem 4.2 (iii) in [EE87, Chapter III]. Let {u,u'} € Ay, i.e. {u, v’ —Au} € (A5 —N). As
ran(Aeg — \) = dom(Ag —\)~! = H there exists v € H such that {v,u — A u} € (Ae —\) C
(A — A). Hence {u —v,0} € (Ag — A), i.e.

u—v € ker(A§ — ) = (ran(4e — )\))L = (dom(Ae — /\)*1)L =H*+ = {0}.

Hence u = v and {v,u' — A} = {v,v' — A} € (Ag — ) or {u,v'} = {v,u'} € Ag. This
shows A§ C Ag and with the symmetry of Ag we know that Ag is selfadjoint. O

The following Lemma is a helpful tool to decide if a triple is a boundary triple. We omit
the proof and refer to Theorem 2.3 and Remark 2.9 in [BLI0].

Lemma 2.10. Let K be a Krein space with inner product [-,-]x. Let T be a linear relation
i I and let T' = (lril)) T — G x G be a linear mapping, which satisfies the following
conditions:

(i) T is surjective;
(i1) there exist A € R and a symmetric relation © in G such that ran(Ae — \) = H,;

(7i) the abstract Green’s identity
[f'.9)c = 1f.9'lx = [T+ f.Togle — [Tof.T1dls

holds for all f = {f, f'} and §={g,g'} € T.

Then S := kerT' is a closed symmetric linear relation in K and ST = T. Moreover
(G,Ty,T'1) is a boundary triple for ST.

The following lemma is of the same flavor as the previous one and is a direct consequence
of Theorem 2.3 in [BLOT].

Lemma 2.11. Let H be a Hilbert space space with scalar product (-,-)3. Let T' be a linear
relation in H and let T' = (??) T — G x G be a linear mapping, which satisfies the
following conditions:

(i) Ty is surjective and ran T is dense;

(i) A:=kerTy is a selfadjoint linear relation in H;
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(7i) the abstract Green’s identity
(' 9)m — (f, 9y = (T1f.Tod)g — (Tof.T1d)g

holds for all f = {f,f'} and §={g, g} € T.

Then S := kerD' is a closed symmetric linear relation in H and T = S*. Moreover
(G,To,T1) is a generalized boundary triple for S*.

2.3 The Friedrichs extension

In this section we summarize some well-known facts about sesquilinear forms and the
Friedrichs extension. For more details and proofs we refer to Chapter VI in [Kat76].
Throughout this section H is a Hilbert space. For a symmetric sesquilinear form s in H
we define s[u] := s[u, u] for u € doms.

Definition 2.12. Let s be a densely defined symmetric sesquilinear form in H.
(i) s is called bounded from below by v € R if s[u, u] > 7||lul|?, holds for all u € dom s.

(ii) A sequence (u,), C doms is called s-convergent to u € H if

n—00 n,Mm—00

|un —ullg ——= 0 and  s[u, — U, Uy — Uy 0.

. . 5
In this case we write u,, — u.
n—oo

(iii) s is called closed if u,, — u implies u € dom s and s[u, — u, u, — u] = 0.

(iv) s is called closable if there exists a closed symmetric sesquilinear form t with doms C
dom t and s[u, v] = t[u,v] for all u,v € doms.

(v) If s is closable we define the closure s of s by
doms := {u € H : 3(u,), C doms with u, > u},
§u,v] == lim s[u,, v,] for any sequences (uy)n, (vn)n C doms with u, — u, v, — v.
n—oo
In this case § is the smallest (in the sense of intersections) closed extension of s.

(vi) Let s be closed. A subspace U C doms is called a core of s if the closure of the
restriction of s to U x U equals s.

The following Theorem is a special case of Theorem VI.2.1 in [Kat76].

Theorem 2.13. Let s be a densely defined, closed symmetric sesquilinear form in H which
1s bounded from below by v € R. Then there exists a unique selfadjoint operator A > ~ in
‘H which satisfies the following items.
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2.3 The Friedrichs extension

(i) dom A C doms and (Au,v)y = s[u,v] for allu € dom A and v € doms.
(ii) dom A is a core of s.

(11i) Let uw € doms, w € H and sju,v] = (w,v)y for allv in a core of 5. Then u € dom A
and Au = w.

The operator A is called the operator associated with s.
A proof for the following Lemma can be found in [Tri72, Satz 17.11].

Lemma 2.14. Let S be a densely defined, closed symmetric operator in H which is bounded
from below by v € R. Then the symmetric sesquilinear form s defined by

s[u,v] := (Su,v)y, doms :=domS, (2.5)

s bounded from below by v and closable. The operator associated with s will be denoted
by F(S) and is called the Friedrichs extension of S. Its domain satisfies dom F'(S) =
doms N dom S*.

An immediate consequence is the following corollary, cf. [Kat76, Theorem VI.2.11].

Corollary 2.15. Let S be a densely defined closed symmetric operator in H which is
bounded from below by v € R and let s be the corresponding sesquilinear form defined as

in (2.5)). Then the Friedrichs extension F(S) of S is the only selfadjoint extension of S
whose domain is contained in doms.

Proof. Let A be a selfadjoint extension of S with dom A C doms. In particular
dom A C doms N dom S* = dom F(S5),

cf. Lemma [2.14] As A and F(S) are both restrictions of S* it follows A C F(S). Hence
A = F(S) because both operators are selfadjoint. O

In the last lemma of this section we investigate how the Friedrichs extension is influenced
by bounded perturbations.

Lemma 2.16. Let S be a densely defined closed symmetric operator in H, bounded from
below by v € R and let B = B* € L(H). Denote by F(S) and F(S + B) the Friedrichs
extensions of S and S + B, respectively. Then F(S)+ B = F(S + B).

Proof. Note that S+ B is bounded from below by v — || B||, hence the Friedrichs extension
F(S + B) exists and is bounded from below by v — || B]].

Denote by s and sg, g the closable sesquilinear forms defined by S and S+ B, respectively.
Note that

domsg = dom S = dom(S + B) = domsgp

23



2 Preliminaries

because B € L(H). Let now (uy,), C domsg with u, =% u € H, i.e.

n—oo n,Mm—0o0

|y —ullg —— 0 and  sglu, — u,] — 0.
This implies
|55 5[tn :‘ S+B un—um) U, —umm‘
S! un—um\+l|Bll ||un um||2 S0

and therefore wu,, 2B w e H. Analogously we observe that wu, B e H implies

Up 22 u € H. Hence domsg = dom S5+ p and therefore
dom (F(S) + B) = dom F(S) C domsg = domsg, 5.

Hence F(S)+ B is a selfadjoint operator whose domain is contained in dom 551 5. Moreover
F(S)+ B is an extension of S+ B. According to Corollary this means that F'(S)+ B
is the Friedrichs extension of S + B. O

2.4 Sobolev spaces

In this section we provide the definitions of Sobolev spaces on R% and on manifolds in R¢.
Furthermore we define the trace operators and show some properties of Sobolev functions
and their traces.

As usual we denote by .7 (R%) the Schwartz space and by .#”(R?) its dual space, the space
of tempered distributions. By .# we denote the Fourier transform. For more details on
the Schwartz space and the Fourier transform see for example Chapter V.3 in [RS80] and
Chapter IX in [RS75].

Definition 2.17. The Sobolev space of order s € R is defined by
HYRY) = {u e . (RY) : (1+]-})2Fu e LARY)}.

Equipped with the scalar product (-, -) gs(r4) defined by

(U, V) proray = [ FuFo(l+]|-|*)° dx
Rd

H?*(R?) becomes a Hilbert space. Note that H~*(R?) is the dual space of H*(R¢) with the
dual pairing (-, -) gs(rd) g-sray defined by

<'Ll,, ,U>H5(Rd),H*S(]Rd) = / 9u% dz.

Rd
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2.4 Sobolev spaces

We will also make use of the dual pairings (-, -) grs(ray, g-+ra) defined by
<U, U>HS(Rd),H_S(Rd) = / fuﬁv dl'
R4

which is bilinear instead of sesquilinear.
It is well-known that (—=A — \)~! provides for A < 0 a bounded operator in L*(R¢). The
following lemma contains this observation as a special case.

Lemma 2.18. Let s € R, s <r < s+2 and A < 0. Then for all u € H*(R?) holds

min{ [\, 1} 2
N [FG=)/2 [l e ety

(=2 = X) " ull gr@ay <

Here the derivatives of A have to be understood in a distributional sense.

Proof. Due to
A2 4]\ .
o = Al _ [a2 4 Al [ PR = AL i —1<A<0

o 1 2Pl T e g if A< 1.

— min{|A|, 1}

we have

(P41 ol L)1\
Qe ~ WP r=x) \ep=a

< (|lz]*+ 1) (m)’“—s <|%|)2+s—r

) L (|f? + 1)
(=4 = N ullf oy = [+ |22 F[(=A = )7 || gy = /R (e el e

and hence

min{|A[, 1} ) U min{|A[, 1}
< Wéd(m + 1)%[Ful” dx = TP [ ul

where we have used that differentiation becomes multiplication (up to a complex constant
of absolute value 1) under Fourier transformation, cf. for example Satz VIII.5.12 in [Wer(7].
The result follows by taking the square roots. ]

2
Hs(R4)

Following Definition 4.4 in [WIo82] we define next Sobolev spaces on manifolds in R

Definition 2.19. Let k¥ € N and ¥ C R? be a compact C*-manifold of codimension x, i.e.
there exists an index m € N, bounded open sets ; C R4*, relatively open sets ¥; C X
and bijective functions o; : Q; — X; for i € {1,...,m}, such that (J*, ¥; = ¥ and

U~_1 S S Ck(le(El N Ej),Ui(Ei N E]))

)
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2 Preliminaries

for all i,7 € {1,...,m}. Moreover let ¢;, i € {1,...,m}, be a partition of unity subject to
the cover ¥;, i € {1,...,m}. For 0 < s < k we define the Sobolev space H*(X) via

HX) :={f: 2 = C:(f pj)o0; € H(R")}.
Here the function (f - ¢;) o 0;, which has compact support in €;, is understood as its

extension by zero to the whole R?™*. A possible norm on H*(X) is given by

m

1 sy = D ICF - 03) © 05 e gra—ry-

j=1

In particular we have || f| gy < || f|lasx) for all w € H*(X) and » < s. Note that these
norms depend on the choice of the parametrizations ¢; and the partition of unity. However
each possible choice leads to an equivalent norm. For our further proceeding we mainly
need the norm of L*(X) := H°(X). Instead of the norms from above we will use the norm
given by

1220y = / (@) do(z),

where o is the ”"surface” measure given by

[ 1@ dote) =3 [ (7 0 0y(s) VATDAETDAGID ds.

This definition has the advantage that it is independent from the choice of the parametriza-
tions o; and the partition of unity. In the following we will assume without loss of generality
that the maps o; are chosen such that || f||2(x)y < || f||#sx) holds for all s with 0 < s < k
and all v € H*(X).

If ¥ is a manifold without boundary we can define H*(X) as the dual space of H*(X).
With the usual identification L?(X) becomes a subspace of H*(X) and

(u, 90>H—s(2),Hs(2) = (u, 90>L2(2)

holds for all u € L?(X) and ¢ € H*(X). Analogously as for the Sobolev spaces H?*(R%) we
will also make use of the corresponding bilinear pairings (-, ) g—s(x),m=()-

In the next lemma we define the trace operators. For a proof see for example Theorem 24.3
in [BIN79] or Theorem 1 in [JW84, Chapter VII].

Lemma 2.20. Let ¥ C R? be a compact C*-manifold of codimension r as in Defini-
tion[2.19 and § < s < k. Then we can extend the map

Co(RY) 2 0= olx

uniquely to a continuous mapping trs, : H*(RY) — H*~2(X), which we will call the trace
operator and trs, u the trace of u. The operator trs, is surjective.
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2.4 Sobolev spaces

With the trace operator we can define now the distribution hdy for h € L*(X), ie. a
d-interaction on X with strength h. This will be one of the central objects of this thesis.

Lemma 2.21. Let ¥ C R? be a compact C*-manifold of codimension r as in Defini-
tion and let s := § +¢ < k for some e > 0. Define for h € L*(X) the distribution hdx,
Via

(h(52) (p) = (h, o3 ) 123, © € H*(RY).

Then hés, € H*(R?) and ||hs || g-sray < || 05| - (|2l 22(s). Moreover hds, € H=*/?(R?) if
and only if h = 0. In particular hos, = 0 if and only if h = 0.

Proof. With Lemma we obtain

|(hds) ()] = [(h, 1% @) 12| < |10l 2y - | 0% ol r2(s)
< |[Alleze) - I tr5 @llmes) < [[hllzes) - [t ] - el

Hs(R4)

and hence hdy € H*(RY) with ||hds|g-s@e) < || trg || - [|Allr2(s). Furthermore we get
hés, = 0 if and only if h L rantry = H*(X), i.e. h = 0.

Next let h € L?(X) with hdy € H~*/?(R9). It is known, that for 1 < p < oo and a > 0
the capacity of a manifold of codimension « is 0, if and only if ap < &, cf. Corollary 3.3.4.

and Corollary 5.1.15 in [AH96]. For p = 2 and a = § this condition is satisfied and hence

0 = Cap(%, H 1 (RY)) = inf{||u\|im/2(Rd) cue . Z(RY,u=1on ADY,Aopen}.

Hence there exists a sequence (y,), C ' (R?) with ||@p || gre/2 (ra 272 0and @, =1 on X,

n—oo

Note that for ¢ € Cg°(R?) also [|¢)¢n || gr/2@ey —— 0. Hence, as hdy, € H"/*(R?), we get

(hos) () = (R tr5 ) 120y = (b b5 Ypn) 2y = (hds) (¥ipn) == 0.
As ¢ € C°(RY) was arbitrary we conclude hdy = 0 and therefore h = 0. O

Remark 2.22. A definition for the capacity can be found in [AH96, Def.2.7.1.], see also
e.g. [AH96, Ch.2.2], [EEST, Ch.VIIL.6] and [Mazll, Ch.10.4.1] for definitions of slightly
different concepts of capacity. The last part of the proof above mimics the proof of [EEST,

Thm.VIIL.6.3] and one can show without any additionally effort that ¥ is (m, p)-polar for
m =% and p=2, ie {u€ H 2R :suppu C T} = {0}.

For the next lemma recall that a compact operator K : H — G belongs to the Schatten-
von Neumann class of order p > 0 if the singular values s;(K) of K (counted with multi-
plicities) satisfy

S s ()P < oo,
j=1

In this case we write K € &,(H,G) or, it H=G, K € G,(H).
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Lemma 2.23. Assume that ¥ C R? is a compact C®-manifold with codimension r and
B € L(L*(RY), H™(X)) with ran B C H*(X), s > r > 0. Then B € &,(L*(RY), H" (X)) for

p> =5 and the singular values of B satisfy s;(B) = O(~5) for j - .

For the special case that ¥ is the boundary of a compact C'*°-domain this lemma coincides
with Lemma 3.4 in [BLL710] and also the corresponding proof can be adopted.

Proof. Consider the operator

s—r

A::<I_AEB) 2

where AZy denotes the Laplace-Beltrami operator on X. The operator A provides an iso-
morphism between H*(X) and H"(X), cf. Corollary 5.3.2 in [Agr94]. Hence A~! : H"(X) —
H*(¥) is continuous, too. Furthermore B : L?*(R?) — H"(¥) is continuous and hence
closed. As ran B C H*(X) the operator

B:L*RY — H*(Y),  uw~— Bu,
is well-defined. Next let (u,), C L*(R%) with u, ~—= u in L?*(R%) and Bu, ~— v in

H(X) for a certain u € L*(R?) and a certain v € H*(R?). Hence

n—oo

Hs(%) — 0.

1Bt = vllrcs) < | B — o]

As B is closed it follows Bu = Bu = v. Hence B is closed too and therefore B €
L(L*(R%), H*(X)). Hence we can write the operator B as

B =A"'AB,

where all operators on the right hand side are bounded. Denote by A; the j-the eigenvalue of
(I — AZ)? in nondecreasing order and counted with multiplicities. As X is a C'°°-manifold
we have

1
)‘j ~ ij
for a certain constant ¢ > 0, cf. (5.39) and the text below in [Agr94]. Hence the eigenvalues

p; of A7 satisfy p; ~ Cj~a= for another constant C' > 0. Keeping in mind that A is
selfadjoint we get s;(A) ~ Cj =« and therefore

si(B) = s;(A""AB) < s;(A"Y)||AB|| ~ C||AB||j~ .
Hence B € &,(L*(R?), H"(X)) for p > &=, 0

Remark 2.24. Note that in the proof of Lemma the assumption that X is a compact
C*°-manifold was just used to specify the asymptotic decay of the eigenvalues of the oper-
ator (I — A%B)%. But the behavior of these eigenvalues is also known for other geometries,
e.g. for a closed C2-curve. Therefore we get analogously as above the following variant of
Lemma :

Let ¥ be a compact C%curve in R® and B € L(L*(R?), H"(X)) with ran B C H*(%),
2>s>r>0. Then B € 6,(L*(R?*), H (X)) for p > -= and the singular values of B

satisfy s;(B) = O(j7¢™) for j — oo.
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In the last lemma of this chapter we will use the symbol for the trace operator in a
slightly different way than in Lemma For a bounded C*°-domain € C R? we denote
by trag : HY(R?) — HY2(0Q) and trhg. : H'(RY) — HY2(9Q°) the unique continuous
extensions of the maps

C>®(Q) 3 ¢ = ¢lan and C>(Q°) 3 v = Y|aqe,

respectively. For more details see for example Theorem 3.37 in [McL00]. Note that the
boundaries 02 and 92 coincide.

Lemma 2.25. Let Q C R? be a bounded C*°-domain. Let u € HY(Q) and v € H' ()
such that triqu = trpg. v. Then u @ v € HY(R?).

Proof. As Q is a C*-domian there exists a function @ € H'(R?) such that a(z) = u(x)
holds for almost every x € Q, cf. Theorem 5.24 in [AF03]. Analogously there exists
v € HY(RY) with 9(x) = v(z) for almost every z € Q°. Define w := @ — v € H'(R?) and
denote by w the restriction of w to Q. Due to trj,u = trjg. v we have trpqw = 0 and
hence w € H} (). Let 1 be the zero extension of w to R%. According to Theorem 5.29 in
[AF03] w belongs to H'(R?) and hence also w + v € H'(R?). But for almost all z €  we
have

w(z) +0(x) =w(z) +0(x) = w(z) + 0(x) = a(x) — o(x) + 0(z) = U(x) = u(z)
and for almost all x € Q¢ we have

w(x) 4+ 0(z) =0+ 0(x) = v(z).

Hence u ® v = w + 0 € H(R?). O
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3 Selfadjoint operators with singular
perturbations

In this chapter we provide an approach for a rigorous definition of selfadjoint operators with
singular perturbations which can be written formally as Ay = A — GY~'G*. Depending on
the codomain of G we have to distinguish between different cases.

In the first section we will fixed the setting and introduce all relevant objects. The following
sections are devoted to the different cases mentioned above.

Note that for the special case that GG is a finite rank operator the following approach
coincides with the one in [DHS03].

3.1 A chain of Hilbert spaces

Let A > 1 be a selfadjoint operator in a Hilbert space H°. For s € N set H* := dom A%/,
where the operator A%/? is defined via functional calculus. Together with the inner product

(-, Vgps - HE X H® — C, (u, v)ps = (A0, A%?0) 0,

H* becomes a Hilbert space. Set H™° := (H*)". We will show in Lemma that these
spaces are contained into each other such that we obtain the following chain of Hilbert
spaces:

L DHEIDOHI'DOH DOHIDHED ...

For s € N, s > 2, define the operator A, : H* — H*2 via A,u = Au for u € H®. The
operator A; : H! — H ™! is defined by

(A, ) g0 = (AY2u, AYV20) 00, v € HY
Furthermore define for s € Ny the operators A_; : H=% — H "2 by
(A_su, V) p—s—2 gsv2 = (U, Agy2U)p—s 3.
Lemma 3.1. Let s,t € Z with s <t. Then the following assertions hold.

(i) The space H' is dense in H* and ||u]

s < ||ullpe holds for all u € H!.

(i) The operator A; satisfies Ayu = Agu for all u € H.
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3 Selfadjoint operators with singular perturbations

(iii) A : H® — H*™2 is an isometric isomorphism.

Proof. (i)

Consider first the case 0 < s < t. The operators A% and A'? defined via functional
calculus are selfadjoint. In particular their domains are dense in H°. The inclusion H* =
dom A%/? O dom AY? = H! follows with the spectral theorem. Moreover

|\u\|;s:<Asu,u>Ho:/l - d<Eu,u>g/ 2t d(Bu,u) = (At uhwo = [[ulla

1

and hence |[ull3s < |lullze for all u € HE.

Let u € H*® be arbitrary, hence v := A%?u € H. As Al=9)/2 is selfadjoint its domain is
dense in H°. Let (v,), € dom A®~%)/2 = =% be a sequence which converges in H° to v.
Define u,, := A=%/?v,, € dom A¥? = H! for each n € N. Hence

Hs = HAS/2(UH - u)HHO = an - UHHO 50

Hun — ul

and therefore H! is dense in H®.

Next we show that H ™% is dense in H~! for 0 < s < t. Denote by ¢ the continuous
embedding u — u from H' to H*. Then /' : H™° — H ™', 1) — 1|3 is continuous too. As
H! is dense in H*® we get with Theorem 4.12 from [Rud91] (L denotes the annihilator in
H)

H*Dkert = (rant), = (H") L ={p € H®: (Y, 0)y-s 3 = 0 Vv € H'} = {0},

i.e. ¢/ is injective. Hence ¢/ is a continuous embedding from H ™ to H ' and we can
interpret H™° as a subset of H~'. To see that H~* is even dense in H ' recall that
both spaces are reflexive (because they are dual spaces of Hilbert spaces). Hence (with a
suitable identification) ¢ = ¢ and in particular ker /" = kert = {0}. With Theorem 4.7
and Theorem 4.12 from [Rud91] we get now

7" —randt = L((rand) ) = L (kert") = {0}
={Yp eH": (Y, v)y-13p =0forallve {0} =H,

i.e. H™* is dense in H~t. Furthermore we have

|||t = sup (¥, v)y—t 3¢ = SUP (¥, V)gy-s 3= < SUP (W, V)y—s 3= = |[9]| -+,
vEBt veB? vEBS

for each v € H %, where the sets B and B* are defined by

Bii={veH :0<|v]|p <1} C{veH :0<|v

Hs S ]_} =: BS.

Next we show that H! is dense in H~* for arbitrary s,t > 0. Let u € H~* be arbitrary. As
H" is dense in H~* there exists a sequence (uy), C H® with [lu — |4+ < 5= for every
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3.1 A chain of Hilbert spaces

n € N. As H" is dense in H° there exists a sequence (v,), € H' with |Ju, — v, [l30 < 5= for
every n € N. Hence

1 n—oo

1
| — vnllg—s <lu—unllg-s + |[tn — vy < om + ||t — vp|lyo = = 0.
n n

Moreover we have [[u|z-s < ||ullzgo < |Jul|ze for all u € HE.

(i)
Next we show that A,u = Asu holds for all © € H!. For 2 < s < t this is obvious because
by definition the action of both operators A; and A, is given by the action of A.

For u € H? we have Asu € H® C H~! and hence
<A2u7 U>H*1,H1 = <A2U,’U>’HO = <AU,U>HO = <A1/2U,A1/QU>HO = <A1U,U>7.{;17H1

for all v € H'. Hence A;u = Asu.
For w € H' we have Aju € H~' C H~? and hence
(A, V)2 32 = (Aru, v)g-1 30 = (AY?u, AY?0) 50
= (u, Av)g0 = (u, Agv)g0 = (Agu, V)g—2 3.2

for all v € H%. Hence Ayu = Au.
For u € H™*, s >0, we have A_,u € H*"2 C H*73 and hence

<A_Su7 /U>H75737Hs+3 — <A—Su’ U>H7572’Hs+2 — <u, A8+2U>H751H5

= (u, As+3U>H—S,HS = <U,As+3U>H—s—1’H5+1 = <A—S—1U7U>H8737H5+3

for all v € H*™3. Hence A_,_ju = A_,u. The remaining cases follow by transitivity.

(i)
It remains to show, that A, : H® — H* 2 is an isometric isomorphism. Consider at first
the case s > 2. Then we have for all © € H?

s—2

[Asullge— = [|A™

Al = [|A2ull0 = [lulls,
i.e. Ay : H® — H*2 is an isometry. Due to
ran Ay = AH* = Adom A% = dom A3~ = H*2

the operator A, : H® — H*~2 is even surjective and hence an isometric isomorphism.
Consider next the case s = 1. At first note that o(A'Y?) C [1, 00|, where the selfadjoint
operator A2 in H° is defined via functional calculus. Hence ran A2 = H°. Therefore

|Awully-1r = sup (Aju,v)y190 = sup  (AY2u, AY0)p0
veH! vEdom A/2
[vll2=1 | AL/ 20| ,,0=1

= sup (A, w)e = [|Aulg0 = |Jull
weHO
lwll30=1

33



3 Selfadjoint operators with singular perturbations

for all u € H'. To show surjectivity let ©» € H~! be arbitrary. According to Riesz
representation theorem there exists v € H' such that

<¢aU>H*1,H1 = <U,U>H1 = (Al/QU,Al/QWHO = <A1UaU>H*1,H1

holds for all v € H!, ie. Aju = 1. Hence A, is surjective and therefore an isometric
isomorphism.

It remains to consider A_, with —s < 0. For this let ©» € H™° be arbitrary. We have
already seen that A, o : H¥2 — H?* is surjective and isometric. Hence we get

HA,S'QDHH—S—Q = sup <A,Sw,/v>H—s—2,’}{s+2

UGH5+2
H’IJHH3+2:1
= sup (Y, AspoV)p—sps = Sup (U, w)qy-s s = ¢35
vEHST? weEH?®
[0llygs+2=1 lwllps=1

To show surjectivity let 1 € H~°"2 be arbitrary. According to Riesz representation theorem
there exists u € H*? such that

(W, V) p-s-2 gys2 = (U, V)gysv2 = <AS/2+1U,AS/2+1U>HO = (Aspou, As120) 3.
holds for all v € H¥™2. Let ¢ € H~* the Riesz representation of (Ag ou,-)ys. Hence
<¢,U>H7572’H5+2 = <AS+2U,A5+2’U>H5 = <QD,AS+2U>H737HS = <A_SQO,U>7_[—S—2;H5+2

for all v € H™2, ie. A_yp = 9. Hence A_, is surjective and therefore an isometric
isomorphism. O

Remark 3.2. For each u € H® =ran A, » and all j € N we have
—j -1 -1 —1 g-1 —1 4-1 s+2j
As_i2u = AS+2 “e . A8+2u - AS+2]AS+2(j—1) e AS+4AS+2/U/ E H + J.
In particular elements in H* with s < 0 can be “lifted up” to H° by a repeated application
of AL,

Example 3.3. An example for such a chain of Hilbert spaces are the Sobolev spaces
Hs(Rd), s € Z, with the operator A := —Agee+ 1. Here —Age is the free Laplace operator
in L?(R?) with domain H?(R?). The Norm || ||+ generated by A is equivalent to the usual
Sobolev norm || - |

Hs (]Rd) .

Let k € N, G be another Hilbert space and G : G — H~* an operator satisfying

GeL(GH™), keeG=1{0}), and ranGNH " ={0}. (3.1)
Define the index j by
k—1 L if k is odd,
= = 3.2
J { 2 J {% if k is even. (3.2)
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3.1 A chain of Hilbert spaces

Hence k — 25 =1 if k is odd and k — 2j = 2 if k is even. Furthermore we define

H-! if kis odd,
H2 if k is even.

Gy := A:iHG G — HITF = {

Note that Gy as well as Gy : H¥=% — G are both continuous.

Lemma 3.4. The operator S := A | (H* Nker G}) is a closed symmetric operator in H°
whose adjoint (linear relation) S* contains the operator

Tu := Agu — Gyh, domT := {u € H° : 3Ih € G with Agu — Goh € H°}. (3.3)

If k is odd then domT C H'. Furthermore the map I'y : domT — G, u — h with h as in
(3.3)), is surjective and ker 'y = H?2.

Proof. Let (uy), be a sequence in dom S with w,, 2% wand Su, 2% v in HO. Because
A is closed and Su,, = Au,, we get u € dom A and Au = v. Hence

n—0o0

[un = wllger-2i < Jlun = ullaz = [|Aun — Aullyo = [|Sun = vljg0 —= 0.

As G : HF% — G is continuous ker G}, is closed in H¥~% and therefore u € ker G. Hence
u € dom S with Su = v, i.e. S is closed. The fact that S is symmetric follows directly from
the selfadjointness of A.

Next we show that T is a well defined operator. For this we have to show that the
element h appearing in is unique: Let hi, he € G with Agu — Gohy = v, € H° and
Agu — Gohy = v5 € HO. Tt follows

HQj_k—H D) HO SV — Uy = AQU — G0h1 — (AOU - GOhZ) = GO(hQ - hl) € ran GO'

As ranG N H 1 = {0} we get due to Lemma ran Go N H%~F1 = {0} and hence
Go(hy — h1) = v1 — vy = 0. Due to ker Gy = ker A7) ,G = {0} this implies hy = hy.
Moreover T' C S* because for all u € dom T and all v € dom S = H? N ker G}, holds

<TU, U>H0 = <A0u - G0h7 v>7—l*2,7-[2
= <AOU7U>H_2,H2 — <G0h, U>7-[_2,'H2 = <U,, A2U>'HO’HO — <h, GS'U)Q = <U, SU>'HO.

If w € H? then Tu = Au € H° with h = 0. Hence H? C kerI'y. On the other hand, if
u € kerI'y we have h = 0 and therefore Agu € H°. Hence u € H?.

If k is odd then ran Gy € H~'. Let v € dom T and v := Tw. Hence Agu = v — Goh € H™!
and therefore u € H!, see Lemma [3.1]

It remains to show that Iy is surjective. Let h € G. Then we have Goh € H¥ %, As
Agi kyo @ HP7F2 — H27F i surjective, see Lemma , there exists u € HY++2 C HO
with Ay;_giou = Goh and hence Agu — Goh = 0 € H°. This means u € dom7T with
IF'ou = h. O]
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3 Selfadjoint operators with singular perturbations

For the following recall that dom 7 can be written as dom T = H? 4 ker T', cf. Lemma
This means that every u € domT can be written uniquely as u = u, + u, with u, € H?
and u, € kerT'. Moreover note that

- if k is odd, then dom G, = H' O dom T, see Lemma .

- if k is even, then dom G§ = H? > u...
This implies that the map I'y in the following theorem is well defined.
Theorem 3.5. The triple (G,To,T'1) with the boundary maps

I'y:domT — G, u—h with u as in (3.3)),
Giu  if k is odd,

I'y :domT — G, u T
Giue if k is even,

is a generalized boundary triple for T = S*.

Proof. At first we show that I' = (?1)) has dense range. For this define the space
G" = ran(Ty| ker Ty) = ran(Gj] H?) = ran(G* A, 7| H?) = ran(G*| H¥T?).

It was shown in [DM95, Lemma 6.1] (for an arbitrary generalized boundary triple) that
Gt is dense in G. Indeed, H%*? is dense in H* (if k is even these spaces even coincide)
and therefore

(Gt ={heG:(hgg=0VgeG}={heG: (h,Gu)g =0V ucH??}
={h€G: (Ghu)yryn =0YueHY"*} = {heG:Gh=0} =kerG = {0}.

Next let (h,k) € G x G be arbitrary. As [y is surjective, see Lemma , there exists
u € domT with I'gu = h. Moreover there exists a sequence {u,},eny C kerI'g such that
{T'1up }nen converges to k — I'yu because ran(T'y [ kerT'g) = GT is dense. It follows

(To(u+um)| Lou n—s00 h _|h
L(u+un) = [Fl(u + un)} o [Flu + Flun] [Flu +k— I‘lu} - [k]

and hence ran I is dense in G x G. Keeping in mind that A = T | ker Iy is selfadjoint it
remains to show that the abstract Green’s identity holds, cf. Lemma [2.11]
We will first consider the case that k is odd. Let u,v € dom T be arbitrary. Hence

(T, v)g0 — (u, Tv)go = (Agu — Goh, v)y-1 30 — (u, Agv — Gok) g1 31
= <A0U,U>H—17H1 - <G0h, U>’H*1,H1 - (u, A0U>H17H—1 + <U, G()k’)q.[l’f;_[—l
= —(h,G)g + (Giu, k)g = (Tyu, Tov)g — (Tou, T'1v)g.
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3.1 A chain of Hilbert spaces

Consider now the case that k is even. Let u,v € dom T be arbitrary. Recall that u can
be written as v = u, + us with u, € H? = kerI'y and u, € ker T, cf. Lemma . Hence
LFou = Lous,
Aous = Aous — Gorous + Gorou = TUS + Gorou = Gorou,
Tu = Tu.+ Tu, = Agu. + Gol'gu. = Au,,

and analogous results hold for v. Therefore

(Tu, v)yo — (u, TVYp0 = (A, Ve + Vs) o — (Ue + Ug, AVe) 30

= (A, Vs) o — (Us, Ave) 30

= (Uc, A0U3>H2,H—2 - <A0u57vc>H—2,’H2

= <U,C, G0F0U>'H27'H—2 — <GOFOU, UC>’H*2,H2
= (

Gyue, Tov)g — (Dou, Gve)g = (TN, Lov)g — (Tou, I'iv)g. O
Our next aim is to characterize S*. For this we will use again the space
G" = ran(T,| ker Ty) = ran(Gj] H?) = ran(G* A, 7| H?) = ran(G*| H¥T?).

We have already seen in the proof of Theorem that G* is dense in G. Hence there
exists a norm || - ||g+ such that (G*, || - ||g+) becomes a Hilbert space which is continuously
embedded into G, see Proposition 2.9 and 2.10 in [BM14]. Consider the Gelfand triple
Gt C G C G, where G~ denotes the dual space of GT. Let

t— : G~ — G be an isometric isomorphism and

Ly =06t =G (3:4)

Then ¢, is an isometric isomorphism too and for all u € G* and v € G~ holds

1,00+ g = (171 v)gr g = (12 u,_0)g = (10, 0_0)g.

We are now able to prove the following lemma, which gives a representation of S* and
is a special case of Theorem 2.12 in [BM14]. For this we have to extend the operator
G : G — H % to G, which is done with the operator (G*¥)* appearing in the next theorem.

Theorem 3.6. Consider the operator G® : H¥ 72 — GT = ran(G*] H¥*?), u — G*u and
assume that ran(G®)* N H - L = {0} holds. Then S is densely defined and S* satisfies

S*u = Agu — AZ};(G®)*h, dom S* = {u € H°:3h € G~ with Agu — AL,(G*)*h € H°}.

In particular S* is an operator. An ordinary boundary triple for S* is given by (g, Ty, fl),
where the mappings [y, Iy : dom S* — G are given by

Dou = t_h, D= G®A2_]7'+2uc, U= up + us € H* + ker S* = dom S*.
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3 Selfadjoint operators with singular perturbations

Proof. We define the operator S by
Su= Aju— AZ5(G®)*h, dom S = {ue N :3he G with Aju— A,(G®)*h € H},

and show S = S*. The fact, that S is an operator, can be seen analogously as for the
operator T Let hy, hy € G~ with Agu— AT}, (G*)*hy = vy € H° and Agu— AT};(G¥)*hy =
vy € HO. Tt follows

HZj_k—H 2 HO DV — Uy = A:]Q](G®)*(h2 - hl)

Due to Lemma [3.1] it follows (G®)*(hy — hy) € HFF. As ran(G®)* N H~*1 = {0} by
assumption this implies hy = hy. )
For v € dom S = dom A Nker G and v € dom S we get

A

<SU, U>’H0 = <A0U — A:;J(G@B)*h, U>’H*2,’H2 = <A0u, ’U>'H—27'H2 — <(G®)*h, AQ_‘jU>7_‘—2j—27H2j+2

= (u, Av)po — (h, G¥ATI0) g g+ = (u, Sv)po — (b, G* A7 0)g- g+ = (u, Sv)pp.
Hence S C S*. For the other inclusion let ¢ and ty asin (3.4). Recall that every u € dom S
can be written as u = u, + us with u, € H? and u, € ker S, cf. Lemma . Define now
[o:domS — G, u—L_h,

I'y :dom S — G, U L+G®A2_jj+2uc.

We will show next that (g , fo, fl) is an ordinary boundary triple for S*. At first note that
S [ ker fo = A because

ker Ty = {u € H*: Agu € H°} = H? = dom A.

Hence ran(S | kerIy) = ran A = H because A > 1. The kernel of T := (?1)) is given by

kerD'= {u e ker Ty : Tyu = 0} = {u e H*: G@‘)A;j@u:O} ={ueH®: Giu=0}

and hence S I ker [' =S, cf. the definition of S in Lemma .

Note that G® is surjective, cf. the definition of the space G*. Moreover A;jo is an iso-
morphism between H? and H**2, cf. Lemma [3.1] and ¢ is an isomorphism between G*
and G. Hence fl is surjective too.

Let h, k € G be arbitrary. Hence there exists u € H° such that Agu = A~}(G®)*1"'h € H~2
and therefore Agu — A~3(G®)*1='h = 0 € H°. This means u € dom S and Tyu = 1_1 " h =
h. AsT is surjective there exists v € dom S with I'yv = k—T'yu. Without loss of generality

we can assume v € H? because for the action of I just the H2-part of v is important.
Hence it follows due to H? C ker Iy

o] = [t v = [ o] = ]

38



3.1 A chain of Hilbert spaces

je. I = (11:?) - dom S — G x G is surjective. It remains to show the abstract Green’s
identity, cf. Lemma . For u,v € dom S we have

(S, 0)p0 = (S(te + ts), Ve 4 V)0 = (Atie, V)0 + (Atig, U5)30  and

A ~

(u, Sv)30 = (Ue + s, S(Ve + V) )30 = (Ue, AvYg0 + (g, Ave)3p0.

Note that 0 = Su, = Agu, — A} (G®)*h,, implies Agus = AL(G®)*h,. Analogously we

get Agvs = AZ)(G®)*h,. Hence

~

(S, V)30 — (1, S0) 0 = (Atte, Us)p0 — (Ue, AV 30 = (Ue, AgUs) g2 -2 — (Aolis, Ve)p—2 702

= (e, ATH(G®) gz 302 — (ATH(G) huy Vo) 32 3¢2

= <G®A2_j]+2ucv hv>g+,9* - <huv G®A2_jj+zvc>g:g+

= (L4 GTAY gt  thy)g — (1P, 1. GTAY pue)g = (T, Dov)g — (Tou, T'1v)g.
Hence (g, fo, fl) is an ordinary boundary triple for S* and S* = 5’, cf. Lemma 2.10] In

particular S* is an operator and S is densely defined. ]

As (Q,fo,fl) is an ordinary boundary triple for S* the operator S* | ker I is always
selfadjoint. For a generalized boundary triple this is no longer the case, as we can see in
the following lemma.

Lemma 3.7. Assume that k is even, domT # dom S* and ran(G®)* N H~*! = {0}
with G¥ defined as in Theorem . Then the operator Ar, := T | kerl'y is essentially
selfadjoint, but not selfadjoint.

Proof. Due to Lemma [2.1] we get
H*+kerT = domT C dom S* = H*+ ker S*

and hence kerT" C ker S*. Let (g,fo,fl) be the ordinary boundary triple for S* from
Theorem [3.6| and define the operator B := S* | dom B with

dom B := ker f‘l D kerI'y = dom Ar,.

As (G,T,I) is an ordinary boundary triple B is a selfadjoint extension of Ar,. Further-
more we have ker T C kerI';, because dom 7' = H?+ ker T' and hence

ueker?’ = u.=0 = I'u=Giu. =0 = u € kerly,

cf. the definition of I'; in Theorem for the case that k is even. Using kerT" C ker I'y we
get

dom Ap, = domT NkerI'y = (H*+kerT) NkerI'y = H* NkerI'1+ker T = dom S+ ker T.
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3 Selfadjoint operators with singular perturbations

Analogously as above we get ker S* C ker I'; and hence dom B = dom S+ ker S* . Together
with ker T C ker S* this implies

dom Ar, = dom S+ker T C dom S+ ker S* = dom B

and therefore Ap, C B. It remains to show Ap, O B. For this recall that if M and N are
two closed subspaces of a Hilbert space, then the following are equivalent:

e M + N is closed and M NN = {0}.

e There exists p > 0 such that p\/[| ||+ ||g]|> < || f + g|| for all f € M and g € N.
With dom S* = H?+4 ker S* and A = S* | H? we get in H x H the decomposition

S* = {{u,S*u} : u € dom S*}
— {{uc + g, S*(ue + us)} : ue € H? ug € kerS*}
— {{uc, S*uc} + {ug, S*u} : u. € H?, ug € ker S*}
= {{ue, Auc} + {u,, 0} : u. € dom A, u, € ker S*} = AFN(SY),

where the subspace N(S*) is defined byNy(S*) = {{us,0} : u, € ker S*}. Note that also
the sum above is a direct sum (in H x H) because the sum in the decomposition of dom S*
is also a direct sum (in H). Analogously we can decompose T" into T' = A—i—./%(T). As
S* = AFNy(S*) is a closed subspace of # x H. there exists p > 0 such that

PV I+ 11312 < 11 + 4l (3.5)

for all f € A and § € No(S*), cf. the statement mentioned above. As Ny(T) is a subset
of the closed set Np(S*) the estimate (B.5) holds also for all § € Ny(T). It follows that

~

A+ No(T) is closed. Hence we have

AFNYT) CAFNYT) = A+ Ny(T) C A+ Ny(T).

Using this we get

A+ No(ST) =8 =T = A+ No(T) C A+ No(T) € A+ No(5).

In particular Ny(S*) = No(T) and therefore ker S* = kerT. Let now u € dom B =

dom S+ ker S*. Hence u = u, + us with u, € dom S and u, € ker S*. Choose a sequence
n—0o0

(ug"))n C ker T with u{™ 222 y,. Then

dom Ap, = dom S+kerT > u. + ug”) 2% e + us = u,
Ar, (ue + ugn)) = Su, +0 = Su. + S*u; = Bu.

Hence u € dom Ar, with Ap,u = Bu. Therefore B C Ar,. Together with Ar, C B this
implies Ar, # Ar, = B = B*. ]
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3.2 Singular perturbation with k = 1

3.2 Singular perturbation with £k =1
In this section we consider singular perturbations of the selfadjoint operator A of the form
Ay = Ag+ GU'G*

for the case that G maps into H~!, i.e. & = 1. The mathematical rigorous definition of
this operator is done with the generalized boundary triple from Theorem [3.5 Note that
Gy = G because k = 1 implies j = 0, cf. on page[34 Hence the operator T from (3.3))
in Lemma [3.4] is given by

Tu := Apu — Gh, dom T := {u € H": 3h € G with Agu — Gh € H°},
and the boundary maps of the generalized boundary triple (G, Ty, I';) are given by

['yv:domT — G, u > h,
'y :domT — G, u— G*u.

For a symmetric linear relation ¥ in G with, e.g., 0 € p(¢}) the operator Ay is defined by
Agu = Tu, dom Ay :={u € domT :Tu € ¥} ={uecdomT : {h,G'u} € 9}.

As 971 is an operator the “abstract boundary condition” {h, G*u} € ¥ in the definition of
dom Ay can also be written as h = 9~'G*u. Hence the action of Ay is given by

Apu = Tu = Agu — Gh = Ayu — GO 1G*u,

which is exactly the desired action. The advantage of defining Ay with the help of (G, T'o,T'1)
is that one is now able to apply the whole machinery of generalized boundary triples to
analyze the operator Ay.

In the following example we will define Schrodinger operators with d-interactions on the
boundary of a C"*°-domain as singular perturbations of the Laplace operator. In order to
get the same setting as in [BLL13a] we assume that the boundary is C*°-smooth, although
much weaker assumptions are possible.

Example 3.8. Let Q C R? be a bounded C*-domain with boundary . Define in L2(Rd)
the selfadjoint operator

Au = (—A+ 1)u, dom A = H*(R%).

As already mentioned in Example the chain of Hilbert spaces induced by A coincides
with the Sobolev spaces H*(RY), s € Z. For h € L*(X) and ¢ € H'(R?) define

(hos)p = (h, trg @) r2(s).-
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3 Selfadjoint operators with singular perturbations

As ¥ is a manifold of codimension 1 we get with Lemma (for e = 1) héy € H'(RY).
Moreover the operator

G:L*%) = H*RY,  hr hiy,

is continuous with ||G|| < || trl ||, injective and satisfies ran G N L*(RY) = {0}. Hence G
satisfies all required conditions in (3.1)) on pagefor G = L?(X) and k = 1. The operators
S and T and the boundary maps from Lemma [3.4] and Theorem [3.5 are given by
Su=(—A+1)u, dom S = {u € H*(R?) : tr¥ u = 0},
Tu=(-A+1)u—hég, domT = {uec L*(R?) :3he L*(%)
with (—=A 4+ 1)u — hdy € L*(R%)},

and

[o:domT — L*(X), w— h,

3.6
[y domT — L*(X),  uw tryu. (3:6)

Note that I'; is well defined because domT' C H'(R?), cf. Lemma , and that

<Gh, U)H—I(Rd)’Hl(Rd) = <h(52,u>H—1(Rd)7H1(Rd) = / h - trlxu ds = <h,tr§ u>L2(E)
b

holds for all u € H'(R?) and h € L*(X), i.e. G*u = trku. Hence if we assume that the
parameter 9 is in R\ {0} (it is also possible to allow a function ¥ on ¥ with 9= € L>°(%))
the operator Ay is given by
Agu=Tu= (—A+1Du—hdy = (A + u— 9 "trgu - Js,
dom Ay = {u € domT : VTyu = I'u} = {u € domT : 9h = try u}.
In particular the action of Ay coincides (up to the constant +1) for ¢ = « with the one

given in (|1.1)) on page , which was our first formal definition of a Schrédinger operator
with d-interaction of strength é on ..

A consequence of the next Lemma is that the operators Ay constructed above in Exam-
ple|3.8| coincide with those which are known in the literature as Schrodinger operators with
d-interactions on manifolds of codimension 1.

Lemma 3.9. The generalized boundary triple (L*(X), Ty, 1) with the boundary maps Tg
and Ty from (3.6) coincides with the one given in Proposition 3.2 in [BLL13d)].

Proof. Note that every u € domT can be written as u = wu; ® u, with u; € L*(Q2) and
ue € L?(Q°). Next consider the operator

Tu=(—A+1Du; @ (—A + 1uy,
domT = {u=u; ®u. € Hz/Q(Q) & H2/2(QC) Ctrhe Ui = trpge Ue )
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3.2 Singular perturbation with k = 1

with tr), and tr)q. as defined in the text before Lemma and

H?(Q) := {u; € H¥*(Q) : Au; € L*(Q)}  and
HY?(Q°) == {u, € HY*(Q°) : Au, € L}(Q°)}.
Note that trigu; = trjg. ue implies u € H'(R?), cf. Lemma [2.25| We define now the
boundary maps g, 'y : dom T — L*(X) by
Tou := Oy Ue|s + O),us]s  and
Dyu = tre u,
where 0,, and 0,, denote the normal derivatives with the normal vector v, and v; pointing
outwards the domalns Q¢ and Q, respectively (i.e. they point in opposite directions). Ac-
cording to Proposition 3.2 in [BLLlBa] the triple (L(X), Ty, T}) is a generalized boundary

triple for the closure of T. Hence we get with Greens identity for every ¢ € H?(R?) C ker T
and u € dom T’

(=2 + D, @) 2@y 2@y = (U, (A + 1)@) pamay = (0, T) 2y
<T ,Q0>L2 (R4) — <F1U PO¢>L2(E) + <FOU F1<P>L2(E)
= (Tu, )12 (Rd) T (Tou, trk, w)r2(x)
= (Tu

L P2 (Rd) T <(F0u)52a >H—1(Rd),H1(Rd)'

Therefore we get
<(—A + 1)u - (fou)ég, §0>H—2(]Rd),H2(]Rd) = <TU, @)H—Q(Rd)7H2(Rd).

As this identity holds for all ¢ € H?*(RY) we get (—A + 1)u — (Tou)dy = Tu € L*(R?)
and u € domT. Hence T cT, fo C Iy and f‘l C I'y. In particular we get ker T C kerT.
As Ty maps ker T isomorphically to L3(%), Ty is a restriction of Ty and Ty maps ker T'
isomorphically to L?*(3) both kernels coincide. Hence

domT = H*(RY) + ker T = H*(R?) 4 ker T = dom T.

Therefore T = T and the triples (L?*(X),Ty,I1) and (L*(X),T,T) coincide, i.e. our
approach for d-interactions on hypersurfaces coincides with the approach presented in
[BLLI13al. O]

Recall that the Schrodinger operators constructed in [BLL13a] with a generalized boundary
triple can be constructed alternatively with a semi-bounded sesquilinear form, cf. Propo-
sition 3.7 in [BLL13a] for more details.

At the end of this section we will provide an explicit representation of the operator S*
which will be used later on in Section 4.2l
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3 Selfadjoint operators with singular perturbations

Theorem 3.10. The adjoint operator of S from Ezample[3.§ is given by
S*u= (—A+ 1)u — hos,
dom S* = {u € L*(R?) : 3h € H™3/*(X) with (—A + 1)u — héx, € L*(RY)}
where the distribution hés, € H=2(RY) for h € H3/2(X) is given by

(h52)(80) = (h,tl“Qz CP)H—3/2(2),H3/2(2)- (3.7)

Proof. As k =1 we have j = 0. Hence the space G defined in the proof of Theorem
and it’s dual space G~ are given by

Gt =ran (G* | H2(RY)) = ran (trh | H2RY) = BY*(X)  and G~ = H (%),

cf. Lemma[2.20] As G*u = tri u for all u € H'(R?) the operator G® defined in Theorem
is given by G® = tr : H?(R%) — H3?(¥) and due to

((G¥) D, ) rr-2(ra), 2(rey = (hy GT0) fr-s/2(5) mo/2(s)
= <h, tl"% @)H*3/2(E),H3/2(E) == <h(52, Q0>H—2(Rd),H2(Rd)

for all h € H=3/2(X) and p € H?(R?) the operator (G®)* : H3/2(X) — H~%(R?) satisfies
(G®)*h = hés, with hdx, defined as in (3.7)). The facts that hdy belongs to H2(R?) and
that ran(G®)* N L2(RY) = {0} holds can be seen analogously as in Lemma

With Lemma we obtain for h € H=%/2(%)

‘(h52)(90)| = |(hatr22 SO)H—3/2(2),H3/2(2)|
< hllg-srasy - 105 @llmsres) < Mol - 1051 ellm2em)

and hence hdy € H *(R?) with [|hdg| g2y < ||t ] - |Allg-s/2(s). Furthermore there
exists a sequence (@), C & (RY) with |||l z2re) < [l@nll /e ga 7% 0 and ¢, = 1 on
Y. Hence we get for every ¢ € C5°(R?) and every hdy, € ran(G®)* N L*(RY)

(héz) (w) = (h7 tr% w>H*3/2(E),H3/2(2)
= (hy tr5 ¥0n) p-s/2(m) 32y = (hds) (Wpn) = (hds, Yipn) 2 ey = 0,

i.e. hdy, = 0 and therefore h = 0. The representation of S* follows now with Theorem
O

3.3 Singular perturbation with k = 2
If G maps into H 2 it is not possible to define a selfadjoint operator associated to

Ay = Ay — GU'G*
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3.3 Singular perturbation with k = 2

except for the case that the perturbation GU~'G* is absent. The reason is that the domain

of Ay would be to small for selfadjointness. To see this note that k = 2 implies j = 0,

cf. (3.2). Hence Gy = G and the operator T from (3.3 in Lemma is again given by
Tu := Apu — Gh, domT := {u € H": 3h € G with Agu — Gh € H"}.

Obviously a realization Ay of Ay in H° has to be a restriction of 7' with h = 9~!G*u. On
the other hand dom G* = H* = H? and hence

dom Ay C H>NdomT C H2.
But u € H? implies Agu € H° and hence (due to the uniqueness of h)
Agu + GO 1G*u = Ayu = Tu = Agu = Au.
So Ay is either A itself or a restriction of A. In the second case Ay is only symmetric
because A is already selfadjoint.
A way to get nevertheless selfadjoint perturbations of A which are at least quite similar to
our original aim is to use a regularization trick. Recall that we can decompose dom 7" into
domT = H?+ker T, cf. Lemma . With the (nonorthogonal) projection P defined by
P:domT — H?, U= Ue + Ug > U,
we modify the expression Ay slightly to
Ay = Ay + GIT'G"P.
The boundary maps of the generalized boundary triple are given in the case k = 2 by

['y:domT — @G, u > h,
't :domT — G, u— G u,.

For a symmetric linear relation ¢ in G with 0 € p(J) the operator Ay is now defined by
Apu = Tu, dom Ay :={u € domT :Tu € ¥} = {u € domT : {h,G*u.} € V}.
Hence the action of Ay coincides with the action of the expression Ay:
Agu = Tu = Agu — Gh = Agu — GY ' G*u...
An example for singular perturbations of selfadjoint operators with k = 2 are again

Schrodinger operators with d-interactions, but now supported on manifolds of codimen-
sion 2 or 3. We will investigate this example in detail in Chapter [4
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3 Selfadjoint operators with singular perturbations

3.4 The supersingular case k > 2

If k > 2 the task to give a meaning to the expression Ay = Ag—GUY~'G* is more challenging.
The reason is that it is not possible to give any meaningful sense to the expression Ay as
an operator in the Hilbert space H® except for the case that it is a restriction of A. Indeed,
if v 1= Ayu = Agu — G¥~1G*u would belong to H° for some u € H° this would imply

ranG 3 GU'G*u = Agu — v € H™? C HFFL.

But G is assumed to be injective with ran G NH %! = {0}. This means ¥~ 'G*u = 0 and
hence Agu € H° or, equivalently, u € H2 Therefore every realization of A4y must be a
restriction of A if we are limited to the space H°.

Hence if one wants to construct a selfadjoint realization Ay of the expression Ay it is
necessary to extend the space, i.e. we consider a space which contains H°. Of course one
could consider the space H %, but this space is much larger than necessary. Therefore we
will consider a smaller space, just large enough for our purpose. In order to do spectral
analysis this space should be chosen in such a way that ran(A4y — \)~! is contained for all
suitable A. Inspired by the formal calculation

(Ap = N7 = (A= N7 A7 = A+ 66| (4 - 0

— (A= N [1 +GOTIGH(Ay — )\)’1}
= (A= N1+ A-NTGIGH (A — N7

a possible choice might be H° + (A — A\)~!ran G, but this space is A-dependent. Using

I—NA7T =T =X AT+ +. 4 N4
—(A=XN (A" 2472+ NV 1AY)

we can write the resolvent (A — \)~! as
(A=N)7 = (A= N7 [(A=2) (A A2+ 4N TAT) AT
= (AT HAMTH A NTAT) L V(AN AT
Hence
(Ag =N T =(A= N+ (A + .+ N TTAT L V(A - N)TAN)GY G (Ag — N)
Keeping in mind that ran(A — \)"'A~7G C H 242 C HO we get
ran(Ay —A\) T CH + Al ranG + ...+ A ran G.

In particular the right hand side is independent of A. For technical reasons it is better

to consider the space K := H® + 327, A~ ran G, which we will call in the following the
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3.4 The supersingular case k > 2

extension space. Note that A~!G provides an isomorphism between G and A~! ran G. Hence
the space H°+ 377 A~'ran G is isomorphic to the space K := H° x G/ x G7, which we will
call in the following the model space. In the next subsection we will equip K with an inner
product such that it becomes a Krein space and construct a boundary triple which allows
us to define a certain linear relation Hg. Afterwards, in Subsection [3.4.2] we motivate
by an example how this linear relation Hg can be seen as a selfadjoint realization of the
formal expression Ay.

3.4.1 A boundary triple in the model space

Consider the spaces h := G/ x G and K := H’ x h = H° x G¥ x G/. We write the elements
of h and K as

u
[ffll and f
f/

with f, f/ € G7 and u € H°, respectively. Sometimes it is more convenient to write these
elements as row vectors, e.g. as

(us f5 1) = (wi fro oo fii Sl o0 f))

withuw € H® and f, f € GZ or f1,...,f;, f1,- .. , f; € G. Here a comma is used to separate
the different entries from G, whereas a semicolon is used to distinguish the entries from H°
and G/. We equip the space ) with the inner product [-, -], defined by

H[}C’] ’ {gg’HL : i (<fl’9§'—z+1>g + <fz'>9jfl+1>g>

=1

Ig

N T poe
f 9 Gixgl
Ig

where Ig denotes the identity in G. Furthermore, we equip the space I with the inner

product [, -]k defined by
u v
I = [
f/ / g b

911k

In this way (b, [-,-]s) and (IC, [+, -Jx) become Krein spaces.
Recall the definition of the operator T' in equation (3.3) in Lemma and the boundary
maps [y and T'; from Theorem [3.5] With the help of these objects we define the linear
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3 Selfadjoint operators with singular perturbations

relation 7' in K (i.e. a linear subspace of I x K) by

7o ; 7}? - u € domT, fl =
' B RY

g g

fl+1 fl I'u
<
GG g=gn TISI<O g, =Tou

Note that there are no restrictions concerning the element f;. Hence f; € G is arbitrary
and therefore mul T’ = span{(0;0, .. .,0, f:0,...,0) : fi € G} # {0}. Due to its important
role and to distinguish it from the other components we will denote the component f; in
the following by .

Define now the boundary mappings I'y: T — G and T'y : T — G by

f‘0 (u;rlu7f2a"'7fj;gl7"'7gj)7(Tu;f%'"7fj7()0;927"'7gj7F0u)} =91,

fl{(ua F1u7f27 s 7fj;gl7 s 7gj)7 (T’LL, f27 cee 7fj7<10;927 s 7gj7F0u)} = @.
As usual we define I" := (r . T — Gx@. For the next theorem we need the y-field () and
the Weyl function M ()) of the generalized boundary triple (G, T, ;) from Theorem B.5

Theorem 3.11. S :=ker [ is a closed symmetric relation in K with Sf =T and (G,Ty,Ty)
is an ordinary boundary triple for ST. The linear relation Hy := ker Ty is selfadjoint in IC,
p(Ho) = p(A), 0,(Ho) = 0,(A) and 0.(Hy) = 0.(A). Moreover the matriz representation

T (A-N)"1 0 000~ [N o 1] ]
0 0,0
1 :0

TN e M(N)A,
(Ho— N = il 0
0 -~ 00
0 0
|
: I 0
L 0 _

holds for all X € p(Hy) with the matrices Jy € GU=V*U=1 and A\ € G7*I defined by

-1

1 1 )V nt NS} 1
X\ . N A2

Jy = A . ' = )\ . . and Ay = )
oy Voo A2 LN Nl

Proof. At first we will show that S := ker T is a closed symmetric relation in I with St=T
and that (G, Lo, Fl) is an ordinary boundary triple for S*. According to Lemma it
suffices to prove the following items:
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3.4 The supersingular case k > 2

(i) ranl =G x G.

(ii) There exists A € R such that ran(Hy — A) = K, i.e. for every V' € K there exist
UU € Kwith {U,U'} €T, To{U,U'} =0and U' — \U = V.

(iii) For all {U,U’'},{V,V'} € T holds

[V, V] — [U. V] = T {U. UL, To{V, Vg — (T{U. U}, To{V,V'})g.

Let A € p(A). Let V = (v; h; k) € K = H° x G7 x G7 be arbitrary. Set g; := 0 and
-1
g2 kl 1 kl
= J)\ = —A
g; l{j_l -2 1 k,’j_l
In particular we have g; = S>7_! M=""1k.. Moreover define

J

wi= (A= N0+ 7Nk + Agy) = (A= N0 +9(0) YNk, € dom T,

r=1
J J
fi=Tu=T1A4-XN""v+T1y()) Z Nk, = y(A)*v + M () Z N7k,
r=1 r=1
-1
f h M 1 i A
: : 0 -\ . : 0
=) . L - . . . +
fi hj-1 0 ! hi_y 0

and ¢ := h; + Af;. Hence if we set U := (u; f; ¢) and

U =019 = Tu; fay ..o, f5,0592, -+, 95, Tow)

we obtain
{UJU/} = {<u7f177fjagl779))7(Tu7f277fj7§079277.g]7F0u)} € T

according to the definition of the linear relation 7. Moreover we get fO{U, U}=g=0
and

== (T—Nu= (T —N(A=XN)"0+ (T - NvN)(kj + \gj) =v
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3 Selfadjoint operators with singular perturbations
because rany(\) C ker(T'— X). Due to ¢ = h; + \f; we obtain further

f2 _Afl f2 — )\fl

f/ . )\f — + : — .
fj : fi—Afia
@ ~\f; h;
As
fa—Afi _—)\fl fo ]
: 0 fs = Afe
. - : + :
fj — )\fj,1 L 0 fj - >‘fj—1_
=i 2l [-Af h A I
0 )\ : 0 : 0 :
= - = - - =
0 L —A 1] Lfjl 0 hj—1 0 hj1

we conclude f'— \f = h. Moreover we get with Dou = Io(A — X)"to + Loy () (k; + Ag;) =
kj + Ag;

92 9 g2 — Ag1
9 : 9i — Agj—1
Fou 9; k’j
Due to g = 0 and
92 — A1 G 1 G ki
: I Y7 R O gs| |
9 — Mgj1 g; — Agj—1 —A 1] |9 ki1

we conclude ¢ — A\g = k. Together with «' — Au = v and f' — A\f = h it follows
U =AU = (u =M f' = Afi g — Ag) = (v; by k) = V.
Hence we have shown that for A € p(A) and V' € K there exists U, U’ € K with {U, U’} € T,

To{U,U'} =0and U' — AU = V. As A is a selfadjoint operator semi-bounded from below
the intersection p(A) N R is nonempty. Hence item (ii) is satisfied.
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3.4 The supersingular case k > 2

In particular we have shown {U,V} = {U,U" — AU} € Hy — A, ie. {V,U} € (Hy— \)~".
We will show later p(A) = p(Hy). Hence (Hy — )" is an operator and (Hy — A\)~'V =U
holds. Note that

(A= N0+ 9N S Nk,
] Yo+ M) S, )\J "k,
S i Af
ij I +
U=\li|= hial L0 . (3.8)
g1 0
92 ki
L9; ] 2 :
i kj—1] |
Due to
M [ 1 A
0 0 _
N o B (0o + M ZAJ%)
0 _)\j'—2 . | )\' 1] 10
- -
| e My A
R k]
— Tk ) ) _kl
A y(A)*o D D S :
= : +MQA) | P j
R Y(A)*v DU A RN VAR VEs o I B
LK)
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3 Selfadjoint operators with singular perturbations

equation ({3.8) can also be written as

(A-=N"" 10 010Ny L-yN) | T v 7]
1-7({\)* 0 0,0 hy
AN 0 ha

U= | N7ty 0 hi | . (3.9)

0 0 -~ 0'0 Ky
0 :O k?g
: T 0 :

I 0 0 ] L kj |

Together with (Hy — X\)™'V = U equation (3.9) shows the matrix representation of the
resolvent.
To show item (i) it suffices to note that for arbitrary g; € G and ¢ € G the element

{(0;0,...,o;gl,o...,0),(0;0,...,o,¢;0...,0)}

belongs to T and that

To show item (iii) let {U,U’},{V,V'} € T be arbitrary. Then
[[U,7 V]]/C = [[(Tu f2) .- f]7 Y92y - 7gj7F0u)7 (Ua F11}7 h27 SR h]7 kla SR k])]]IC

= (Tu,v)no + (f2, kj)g + ... + (fi ko)g + (¥, ki)g
+ (92, hj)g + - -+ (g5, ha)g + (Dou, '1v)g
= (Tu,v)30 + (Lou, Fﬂf)g + (% ki)g
<f2, kidg + ...+ {fj, k2)g + (92, hj)g + ... + (gj, ha)g

and analogously

U, V'x = [[(u Ty, fo, .., fir o, - - ,gj) (T’U' ho, ... hj, W5 ke, ... k;, FOU)HK
= (u, Tv)yo + (T'ru, Lov)g + (fa, kj)g + ... + (f, k2)g
+(91,¥)g + (92, hy)g + - .. (gg, ha)g
= (u, Tv)yo + (T'1u, Tov)g + (91,¥)g
+ (foskj)g + .+ ([, ka)g + (92, hj)g + ... + {gj, ha)g.
Using Green’s identity for the triple (G, g, I'1) and the definition of Ty and T we get
[V, V] = [U, V']
= (T'u, v)3o + (Lou, T'v)g + (@, k1)g — (u, Tv)yo — (F1w, Tov)g — (g1, ¥)g
= (p, k1)g — (g1, ¥)g = (T {U, U}, To{V, V'h)g — (Do{U, U}, T1{V, V'})g.
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3.4 The supersingular case k > 2

As (i), (i) and (iii) are satisfied we know due to Lemma [2.10| that S := ker T is a closed
symmetric relation in K with St =T and that (G, FO, Fl) is an ordinary boundary triple
for S*. Hence it follows immediately that Hy := ker Iy is a selfadjoint linear relation in K,
cf. for example Proposition 2.1 in [Der99] (see also the text before Theorem [2.8)).

Next we compare the spectra of A and Hy. At first let A € 0,(A) and let u be a corre-
sponding eigenvector. In particular v € dom A = ker I'y. According to the definition of T
and T we get

{(u; Dyu, ALy, .., N w0, ..., 0), (Tu; ATy, ..., M0, ..., 0, Fou)} € kerT'y = Hy.

Due to u € dom A = ker 'y and Au = \u we get

[ Tu [ Au [ ou ]
A u A-Thu 'u
)\jflflu A )\j*QFlu /\jfzflu
MOw | = [ AN D] =X [V T,
0 0 0
0 0 0
| Tou | L 0 i . 0 ]

e 0# (u;Du, A\l'u, ..., M7 0,...,0) € ker(Hy — \) and therefore A € o,(Hp). On
the other hand, if A\ € 0,(Hy) there exists (u; f;g) € K\ {0} with (u; f; g) € ker(Hy — ).
Therefore © € domT', g; = 0 and

MK M w ]
fa I'u
: f2
g 5
| =A fj
g2 0
: 92
9; :

| Dou L 9j |

Hence Tou = A\g; = A%gj_1 = N "1go =N -0=0, i.e. u € dom A and therefore Au =Tu =
Au, i.e. u € ker(A — \). Note that v = 0 would imply fo = AI'yu = 0, hence f3 = Afo =0
etc. such that we would finaly get (u; f;¢g) = 0, which is a contradiction. Hence u is an
eigenvector of A, i.e. A € g,(A). Therefore

o,(A) = o, (Hy). (3.10)
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3 Selfadjoint operators with singular perturbations

In item (i) we have shown that ran(Hy — A) = K holds for all A € p(A). Moreover for
all A € p(A) holds ker(Hy — X) = {0}, cf. (3.10). Hence (Hy — A)~' is a closed operator
defined on the whole space K and the closed graph theorem implies (Hy — \)™' € L(K),
i.e. A € p(Hp). As this is true for all A € p(A) we conclude

p(A) C p(Ho).

If A\ € p(Hy) then (Hy — \)~' € L(K) and ran(Hy — A\) = K. Hence for a given v € H’
exists {U, U’} € Hy such that U'— AU = (v;0;0), i.e. there exist fo,..., fj,¢,92,...,9; €G
and u € domT" with

T M u ] K
fo Fu 0
: fo 0
i : :
e | =A| fi|=|0
g2 0 0
: g2 0
9 : :

[ Dou L 9j | 0]

Hence Tou = A\g; = Ng;—1 = N"'ga =X -0=0, i.e. u € dom A and therefore (A — \)u =
(T—N)u =v. Asv € H® was arbitrary we get ran(A—\) = H°. Moreover ker(A—\) = {0},
cf. (3.10), and (A — X)~! is closed. Hence (A —\)~' € £(K) and therefore A € p(A). As
this is true for all A € p(Hy) we conclude p(Hy) C p(A) and hence

p(A) = p(Ho). (3.11)

If A € 0.(A) we conclude from (3.11)) and (3.10) that A € o(Hy) \ 0,(Hp). Furthermore
we know A € R because A is selfadjoint in the Hilbertspace H®. If A € o,.(H,) then
ran(Hy — \) # K and hence (ran(Hy — A\))* # {0}, where | denotes the orthogonal

complement with respect to the Hilbert space structure of . Moreover, we have
{0} = ker(Hy — \) = ker(HS — \) = ker(Hy — \)*
— ker (T (Ho — A)*J) = ker(Hy — A)* = (ran(Hy — \))™ # {0},

where (Hy—\)* denotes the Hilbert space adjoint of Hy—\ and J a fundamental symmetry
of IC. Obviously, this is a contradiction and hence A ¢ 0,.(Hy). Therefore A € o.(Hy) and
hence 0.(A) C 0.(Hp). As C = p(A) Uo,(A) Uo.(A) we conclude with (3.11]) and (3.10)

o.(A) = o.(Hyp). O

In the next theorem we investigate the connection between the v-fields and Weyl functions
of (g, Fo, Fl) and (g, Fo, F1>
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3.4 The supersingular case k > 2

Theorem 3.12. The vy-field of the ordinary boundary triple (G, Ty, f‘l) for St is given by

[ )‘j7(>‘)91 i
)‘jM()‘)gl
5 p(Hy) — L£(G,K), o
) with FNgi = | X IMNg |, g €Q.
A= F(A), g1
| N~g J

For each \ € p(Hy) the Krein space adjoint (A" € L(K,G) of ¥(\) satisfies

N (s hi k) = X9 (N) 0 + (i lehz) + N MO (i X“kl)

=1

for all (v; hy k) € K. Moreover the corresponding Weyl function M : p(Hy) — L(G) satisfies
M) = M (N) for all X € p(Hy).

Proof. Recall §(\) = m(To [ Ny) ™! with Ny = HU MU} U € ker(S+—\)} for A € p(Hy).
Note that U € ker(S™ — \) implies {U,\U} € ST =T and hence

()\U7 )\Flu, )\fg, ..

,)\f],)\gl,,)\g]):)\U:U/:(TU,fQ,

afja(p;g%"'agj?l—‘ﬂu)'

In particular we have A\g;1 = g2, ..., A\gj—1 = ¢j,A\g; = Tou and hence Tou = MNg;.
Moreover we have A\I'yu = fy, ..., A\f;o1 = f;. Furthermore u € ker(T' — ) and hence
Tiu = M(N)Tou=NM()N)g:. Due to To{U,\U} = g; we get therefore

U U U
Flu Flu )\]M<)\)gl
fa Al u /\jHM()‘)%
NG =m{U N} =U=| f; | = | N'Tw | = | W Mg
g1 g1 g1
: A1 Ag1
gj—1 _ : _ :
Lol L N'gqe 1l L Nlgoo ]

Due to M(X) =T'1(Ty | Na)~! we observe analogously

M\ gy =TH{U N} = o= Af; =X X M(N)g = AT M(M\)gy

for all g; € G.
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3 Selfadjoint operators with singular perturbations

To show the representation of 4(A\)* let g1 € G and (v; h; k) € K be arbitrary. Hence

M MiNa T o]
NM(N) g1 hy
[g1, AN T (03 B k)6 = [F(N) g1, (vs hy k)] = AITMNgr | | By
a1 ky

L Nl 1 Leid D,

= (Vy(\)g1, v)ae0 + VM Ngr, Ej)g + -+ (AT TIM(N)gr, kg
+ (g1, hj)g+ ...+ <>\j_1g1, hi)g

= (g1, X7\ 0)g + (g1, N M) ky)g + ...+ (g1, X7 M(N) kg
+ (g1, hj)g + ...+ <91,Xj71h1>g

_ <gl,%(x)*v + <i§j‘lhl) + N MO (zj:?‘lkl»
=1 =1 G

As g1 € G and (v; h; k) € K are arbitrary the desired representation of 4(\)* follows. [
As in Lemma [3.7] we define for the following theorem the operator Ap, :=T [ kerI';.

Theorem 3.13. Let © be a closed linear relation in G x G, A € p(A) = p(Hp) such that
0 € p[® — M(\)] and let Ho == {{U,U'} € ST : {To{U,U'},T1{U,U'}} € O}. Then
A€ p(He) and

(Ho —AN)'=(Ho— A" +3(N) [0 - M(N)]

0T, (3.12)
Furthermore, if we define the operators
Pyo : K —=H,  (u;f;9)—u and Eyo - H = K, v (v;0;0),

we get the formula
Pyo(Ho — N) " Epo = (A= N7+ Ay (0) [0 = A¥ M) 'y (3.13)
In particular PHoH(;lEHo = AL, Moreover the identity PyoHeEyo = Ar, holds.

Proof. From Theorem [2.§ and Remark [2.9 we observe \ € p(Hg) and the formula (3.12).
From the matrix representation in Theorem we know Pyo(Hg —A) "' Eyo = (A—X)"1
Furtermore we observe from the representations in Theorem the identities Py o¥y(A) =
My(A) and (X)) T Eyo = My(A)* as well as M (\) = A¥ M ()). Hence implies

i 1
Pyo(He — \) ™ Eyo = Pyo(Ho — X) ™' Eyo + Pyo(N) [@ - M()\)} FA) T Eyo

= (A= X"+ My [@ — N M (A)] 71%7@)*,
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3.4 The supersingular case k > 2

which yields (3.13)). For the special case A = 0 we get PyoHg'Eo = A~L. To show the
last statement note that the linear relation Hg is given by

Ho = {{U,U'} € ST : {T{U, U}, T\{U,U'}} € ©}

= { |: (T(Zj>f21u> ?f2'7fj g;fg}; 917 gj? %zu) :| U € dOHlT, {gl,gé?} < @} (314)

Written as a linear relation the operator Fy0 has the representation
Eyo = {(v, (v;0;0)) : v e H}. (3.15)
According to the definition of multiplication of linear relations ) and (3.15)) imply

H@EHO = {{U,, (T'U/, fg, Ce 7fj,g0;g2,. .. ,gj,FOu)} :
(U,0,0) = (U;F1u7f27”'7fj;gla"'7gj)7u € dOI’IlT, {ghgp} € @

= {{u,(Tu;O,...,O,@;O,...,O,Fou)} cu € dom T, Thu = 0,{0,p} E@}.

Note that v € domT" and I'yu = 0 implies © € dom Ar,. Hence we get
PyoHeFEyo = {{u,Tu} :u € domT,Iyu =0} =T | kerI'; = Ar,. O

As a corollary of the previous theorem we get the following observation about Schatten-von
Neumann classes.

Corollary 3.14. Let © be a closed linear relation in G x G, A € p(A) = p(Hy) such that
0 € p[©@—M(N\)] and let Ho := {{U,U'} € ST : {To{U,U'}, T\ {U,U’}} € ©}. Furthermore
assume that G* : H* — G is a compact operator in &,(H* G) for some p > 0. Then

Ppo(Ho — A) "' Epo — (A= A" € Gp(H).
Proof. With equation (3.13)) from Theorem we observe
Pyo(Ho — N) 'Eyo = (A= N+ M9V [© = XYM (V)]

-1

yoV
Note that ran(A — \)~! = H? because A € p(A). Hence we get with Lemma
) = Ta(A =N = G(A =X = G AT (A= N

As A7y (A=) HO — H2H2 C HE is continuous and G* € &,(H*,G) we get v(X)* €
Sy(H’,G), cf. Corollary 2.2 in Chapter II of [GK69]. This implies Y(\) € Sp(G,H"). As

[0 NMW] " =[0-MN)] " € L)
because 0 € p[© — M(\)] we observe again with Corollary 2.2 in Chapter II of [GK69]
NN [0 = XM (V)] (V) € S5 (H).

From this the claimed result follows. O
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3 Selfadjoint operators with singular perturbations

3.4.2 Connection of the model space /C with the extension space

We have already motivated at the beginning of Section that K = HO + Z?i A 'ran G
would be a suitable space for an operator associated to the formal expression Ay. In this
subsection we motivate how an inner product on this space should be defined and how
the linear relation Hg corresponds to Ay. In order to avoid extensive calculations we just
consider here the case k = 3, the other cases are similar, but more technical.

At first we note that & = 3 implies j = 1, hence the extension space K is given by

K=H+A"ranG + A %ranG.
Let u+ A7'Gf + A7*Gg and v + A7'Gh + A7*Gk two elements in K. Assume that [-, ]z

is an inner product on I which is compatible with the scalar product (-, )30 and the dual
pairings (-, -)y-121 and (-, -)-222. Then
[u+ AT'Gf + AGg,v + A7'Gh + AT°GE]
= [u,v] ¢ + [u, A7 Gh] ¢ + [u, A2Gk] ¢
+[AT'Gf 0] + [AT'Gf, AT'\Gh] e + [AT'Gf, AT GE] ¢
+ [A72Gg,v]¢ + [A Gy, A'Gh]g + [A*Gg, A2 GEk] ¢
= (u, V)30 + (u, A'GR) g -1 + (u, A72GE) g0
+ (AT'Gf vy 90 + [ATIGF, AT Gh] g + (AT'G, AT2GE) y-1 90
+ (A72Gg, V)0 + (A2Gg, AT Gh)gp 1 + (A?Gyg, A GE) 3.
Note that there is no chance to give a meaning to [A~'G f, A='Gh] ¢ such that it is compat-
ible with (-, )0 and the corresponding dual pairings because A~'G f and A=*Gh belong
both to H=1\ H° for f,h # 0. Hence we get with the adjoint G* : H?> — G of G
[u+ AT'Gf + AGg,v + A7'Gh + AT°GE] ¢
= (u, V)0 + (G*A u, h)g + (G*A2u, k)g
+ (f,G*A ™ )g + 0+ (G*AGf, k)g
+ (g, G*A™?v)g + (g, G*A3Gh)g + (A2Gg, A 2GE) .
Regrouping the equation above we get
[u+ AT'Gf + AGg,v + A7'Gh + AT°GE]
= (u, V)50 + (G*A  u, h)g +(f,G*A ) (3.16)
+(G* A2, k)g +{g, G*A™%v)g
+(G*ATGf kg +(g, G*APGh)g + (A*Gg, A"2Gk)yyp,

which we will use as our definition for [-, ]¢.
We observe

Aﬂ(u + ATIGf + A*ZGg) =(A— GﬁflG*)(u + ATIGf + A*ZGg)
= Au+Gf+A'Gg— G 'G'u— G 'G* (A’le + A’ng)
= Au+ A7 'Gg + G(f — 9 'G*u) — GYIG” (A”Gf + A*ZGg) )
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3.4 The supersingular case k > 2

Note that due to dom G* = H3 it is not possible to give a reasonable meaning to the last
summand GUY'G*(A7'Gf + A72Gg). Therefore we will ignore it in this consideration.
Due to ranG C H ™3 and ran G N'H 2 = {0} the expression G(f — 97'G*u) just belongs
to K if f =9~ G*u. Hence

{fu+AT'Gf+ A2Gge K : f =97 'G*u} C dom Ay
and
Ag(u+ A'Gf + A2Gg) = Au+ A7 Gy,

Lemma 3.15. The operator V : K — K defined by

u+ A72Gy u+ A72Gg
u+ AT'Gf+ AT2Gg — |GFA U+ GFAT3Gg | = |Gi(u+ A72Gy)
f f

is isometric._Moreover, if ¥ is a closed operator in G with 0 € p(J) and Hy-1 is defined as
in Theorem then V"'Hy-1Vx = Ayx holds for all z € K N dom Ay.

Proof. Let . = u+ A 'Gf + A2Gg and y = v + A"'Gh + A~2Gk be two elements in K.

u+ A2Gyg v+ A72Gk
Va,Vyle = || |Gi(u+ A72Gg) | , | Gi(v + A~2Gk)
f h .

—(ut A2Gg, 0+ A2Ck) 0 + HGS(U +fA—2Gg)] , [Gé(v +f:4_20k>m
b

. —9 _9 f GS(U + A_QGIC)
-t a7+ g ][5 )

Using G = G*A™! and the definition of [, -]z in we get

[Va, Vylke = (u,v)3o + (u, A_Qka>HO + (A_ZGg, V)go + <A_2Gg, A_sz)Ho
+(f,G*Av)g + (f,G*A*Gk)g + (G* A7 u, h)g + (G*A>Gg, h)g = [z, y]k.

This shows that V : K — K is an isometric operator. To show the second statement let
r:=u+ A'Gf + A2Gg € K with f = 97'G*u. Note that u + A2Gg € H! and

AO(U + A_QGg) - Gog = Aou + A_ng - A_ng = Aou S HO.

This means v + A™2Gg € dom T, T'(u + A~2Gg) = Apu and Ty(u + A~2Gg) = g. Hence

u+ A2Gy u+ A2Gy
V= |Gi(u+ A2Gq)| = |T1(u+ A2Gg)| € dom Hy-
f I 1G*u
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3 Selfadjoint operators with singular perturbations

and therefore

u+ A72Gyg T(u+ A™2Gg) Agu
Hy-Va = Hy1 |T1(u+ A2Ggq)| = G*u = |G*u
I G Lo(u + A72Gy) g
Hence
Aou AOU + AiQGO
VIHy Ve =V |Gu| =V |G*A T Agu + A3G0
g g

— Agu+ A7IGf + A72G0 = Agu + ATLGf = Az,

3.4.3 An example for supersingular perturbations

Let ¥ C R? be a C*-manifold of codimension 4. As in Example define in L*(R?) the
selfadjoint operator

Au = (—A + 1)u, dom A = H?*(R?).
For h € L*(X) define hiy, via
(hds) () := (h, trs @) 12(x), ¢ € H*RY).
According to Lemma (with € = 1) the distribution hds, belongs to H3(R¢) and
G:L*(Y) = H3RY, hw hig,

is a bounded, injective operator which satisfies ran G N H~2(R%) = {0}. In particular G
satisfies all conditions required in (3.1)) on page [34|for £ = 3. Hence the index j from ({3.2)
is given by j =1 and

Go = A71G = (-A +1)"'G

is a continuous operator from L*(X) to H~*(R?). Note that the operator G}, : H'(R?) —
L*(X) is given by Giu = tr¥(—A + 1)~ 'u because

<h, GSU>L2(Z) = <G0h, u>H_1(Rd),H1(Rd) = <<—A + 1)71Gh, u>H_1(Rd),H1(Rd)
— <Gh, (—A ‘I— 1)_1U>H_3(Rd),H3(Rd) = <h, tr%(—A + 1)_1U>L2(2)

holds for all w € H'(R?) and all h € L*(X). Hence the operators S and T' defined in
Lemma |3.4] are given by

Su = (—A+ 1)u, dom S = {u € H*(RY) : tr¥,(—=A +1)"'u = 0}
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3.4 The supersingular case k > 2

and
Tu=(—A+1)u— (A + 1) his
domT = {u € L*(RY) : 3h € L*(X) with (—A + Du — (=A + 1) 'hés, € L*(RY)}
The corresponding generalized boundary triple from Theorem is (L*(X),Tg,Ty) with

[y:domT — L*(%), u > h,

3.17
[ :domT — L*(%), w5 (—A 4+ 1) (3.17)

The model space K is hence given by K := L%(RY) x L?*(3) x L*(X) and equipped with the
inner product

u v

fl.19 = (u, ) 2rey + (f, 9" 2y + (', 9) r2x)-
/ /

f 911k

The linear relation 7 in K is given by

U Tu

7 € domT
T = Hul, ! .Y :
ANERI YA
[ u (A +1u—(—A+1)"thix
= (A + 1) u|, @
! g h

u € L*(R?) : 3h € L*(X) with
(—A+1Du—(—A+1)"'hés € L*(R?),

.9 € L*(X)
and the boundary maps I := (E‘;) are given by
) u (A +1Du— (—A+ 1) hig
L [trd(—A+1) ul, ® = [91 :
g h 4

According to Theorem the linear relation

) u (A +1Du—(—A+ 1) hig
Hy=kerl'y = try(—A 4+ 1)t ®
g h

u € L*(RY) : 3h € LA(X) with
(—A+1Du— (—A + 1) théy € L*(RY),
.9 € L*(%)
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3 Selfadjoint operators with singular perturbations

is selfadjoint and its spectrum is given by o(Hy) = o.(Hp) = [1,00[. Moreover, with the
y-field v and the Weyl function M of the generalized boundary triple (L*(X),T,T;) in
(3.17)) the resolvent of Hy can be written as
(A=XN"1 0 |(N
(Ho—NT=| 20y | 0 M|, AeC\[Lo
0 0 0

The Weyl function M of (L*(X), [y, T'y) satisfies M(X\) = A2M(\) for all A € C\ [1, oo and
the ~-field 4 is given by

M (A)g
FN)g=| \M(Ng |, geL2(2), AeC\ 1,00
g

Its adjoint is given by
AN (v; hy k) = My(N) v + b+ AM(N\)*k
for (v;hyk) € K = L*(R?Y) x L3(X) x L*(X) and A € C\ [1, 00].

Analogously as in Corollary we can also obtain a Schatten-von Neumann estimate:
Let © be a closed linear relation in L*(X) and A € C\ [1, oo[ with 0 € p[© — M())]. With
Lemma [2.6{ we obtain v(\)* € £(L?(R%), L*(¥)) and

YA =T (A= N =td(-A+ 1) (-A+1 -1

In particular rany(A\)* C rantr}, = H'(X), cf. Lemma _ As we have assumed that
3 is a compact C*-manifold of codimension 4 it follows y(\)* € &,(L*(RY), L*(X)) for
q > d — 4, cf. Lemma [2.23] Hence it follows with Corollary 2.2 in Chapter II of [GKG9]
and with equation (3.13)) from Theorem [3.13]

Pyo(Ho — N) ' Epo — (A= N1 = My(N) [0 = XMW (V)" € 6,(L*RY))

forp::%>%.
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4 Schrodinger operators with
O-interactions on manifolds of
codimension 2

The aim of this chapter is to apply the approaches from Chapter [3| to describe and in-
vestigate Schrodinger operators with d-interactions supported on compact C?-manifolds of
codimension 2 without boundary. Therefore we construct in the first section a general-
ized boundary triple which is a special case of the one from Theorem [3.5] Moreover we
show some properties of the corresponding v-field and Weyl function. In Section we
investigate the operators Ag which are parametrized with the generalized boundary triple
from Section by linear relations in L?(3). Moreover we show that these operators can
also be understood as Schrodinger operators with d-interactions of singular strength on a
manifold of codimension 1.

A natural question which appears here is how the parameter © has to be chosen such
that the operator Ag coincides with a Schrodinger operator with d-interaction of a given
strength. For this we have to introduce the concept of the generalized trace which allows
us to define trgu also for functions u € L?(R?) which are not smooth enough to define
their trace in the classical sense. This is done in Section 1.3l Moreover we define in this
section the Schrodinger operator —Ay, , with d-interaction of strength é supported on X
and provide a Schatten—von Neumann property for the resolvent difference with the free
Laplacian. In Section we consider the special case of a closed curve in R3. A deeper
analysis of the objects from Section for this case allows us to improve the Schatten—von
Neumann property. Moreover we provide estimates on the number of negative eigenvalues
of —Ay, and an isoperimetric inequality for the principal eigenvalues.

Throughout the whole chapter ¥ is a compact C?-manifolds of codimension 2 without
boundary (in particular H—*(X) is the dual space of H*(X)). If necessary, further restric-
tions on Y are made before the corresponding statements or sections. Recall that the trace
operator t1% : H2(R?) — H'(X) is continuous and bijective, cf. Lemma [2.20}

4.1 The generalized boundary triple

In this section we construct a generalized boundary triple which is a special case of the
one in Theorem [3.5] For this we have to chose at first suitable candidats for the objects
H°, A, G and G appearing in Section [3.1] As in Example we set H° := L?(R?) and
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

consider the selfadjoint operator A in L?(R?) given by by
Au = (A +1)u, dom A := H*(RY).

Obviously A > 1 and the chain of Hilbert spaces induced by A coincides with the Sobolev
spaces H*(RY), s € Z, cf. Example . Moreover, if we interpret A as distributional
derivatives, we have

(A + D, v) g-s—2(may o2 may = (U, (A + 1)0) s (may 11 (me)

for all s € Z, u € H*(R?) and v € H***(RY). Hence the operators A_, for s € Ny are
given by

Ay H*RY —» H2RY),  ur— (=A+1)u.
Furthermore, we set G := L*(X) and define for h € H~(32) the distribution hdy, via
(hds, ©) 2@y, m2@e) = (B, tr5,9) 1)1 (%), v € H*(R?).
In particular for h € L*(2) we get
(hds, @) 2@y 2wy = (bt @) 1wy me) = (htry 9) 2y, ¢ € HA(RY),
Lemma 4.1. The operator
G: LX) = H*RY, hw~ hiy,

is a bounded, injective operator and satisfies ran G\ H~Y(R?) = {0}. The adjoint operator
G* : H*(RY) — L%(X) is given by G*u = tr2 u and ran(G*| H*(R?Y)) = HY(X). If we
denote by G® the operator

G®: H*RY — H'(®), u — G*u,
then the adjoint of G® is given by
(G®) : HY(X) = H%RY, hs his,
and satisfies ran(G®)* N H(RY) = {0}. In particular Gh = (G®)*h for all h € L*(%).

Proof. The fact that G is a bounded, injective operator from L*(X) to H2(R%) with
ran G N H~Y(R?Y) = {0} follows from Lemma with ¢ = 1. Furtermore, we get for
arbitrary h € L?(X) and u € H?(R?)

<h, G*U>L2(Z) == <Gh, u)H*Q(Rd),HQ(]Rd) = <h, tI'QE u>L2(E)7

from which we conclude G*u = tr% u. Hence we observe for the space G defined in the
proof of Theorem [3.5

Gt :=ran(G*| H*(RY)) = tr3 H*(RY) = HY(X).
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4.1 The generalized boundary triple

Moreover we have for all h € H~1(X) and all u € H*(R?)

(G®)"h, u) g-2(ray p2(ray = (R, G¥u) 1), 11 ()
= (h, G'u) g1z, (z)
= <h,tr§3 u)H71(2)7H1(E) = <h52au>H—2(Rd),H2(Rd)
and hence (G®)*h = hdx. To prove ran(G®)* N H-Y(R?) = {0} let h € H (X)) with

(G®)*h € HY(RY) and ¢ € C(RY). Let (pn)n C Y(Rdi be again a sequence with
2.21

lenll 1 (ra) 27 0 and ¢, = 1 on ¥, cf. the proof of Lemma . Hence [[1on || g1 way Lt
0 and

(G®)h, )11 = ((G®)*h, ) —o2 = (h, G¥YY g1y, 11 (x) = (B, G*Y) g-1(3), 113
= (h 3 )1y = (b 3 (0n)) -1y () = (G, pn) 10 == 0.

As ¢ € C°(R?) was arbitrary we get (G®)*h = 0. Hence ran(G®)* N H~}(R%) = 0. O

Due to Lemma the operator G satisfies all conditions in (3.1]) on page|34]for £ = 2 and
j = 0. Analogously as in Lemma 3.4 we define in L?(R?) the operator

Tu = (=A+ 1)u — hoy,
domT = {u € L*(R?) : 3h € L*(X) with (=A + 1)u — hés € L*(RY)}.
According to Lemma [2.1| we have dom T' = dom A+ker T' = H?(R?)+ker T'. Hence every
u € dom T can be written as u = u, + us with u. € H*(R?) and u, € H*(R?). Using this

decomposition we define the mappings

[o:domT — L*(X), u— h,
[ :domT — LA(X),  uws trdu,,

cf. Theorem [3.5] Note that the space G* := ran(G*| H2(R%)) = H'(X) is dense in L?(3)

and G~ := (GT)* = H™'(X). Hence a direct consequence of Lemma [4.1, Lemma

Theorem [3.5] and Theorem [3.6] is the following corollary.

Corollary 4.2. The triple (L*(X),T,T1) is a generalized boundary triple for T = S* with
Su=(—A+1)u, dom S = {u € H*(R?) : tri{u = 0} = ker [y Nker [';.

The operator S* is given by

S*u= (—A+1)u — hox,
dom S* = {u € L*(R?) : 3h € HY(X) with (—A + 1)u — hdy, € L*(R%)}.
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

For A < 0 denote by G, the integral kernel of the resolvent of the free Laplacian, i.e.
(=A =Nty = Gy xu for all u € L2(R?). According to [Tes09, Chapter 7.4] we have

a/2-1
)= o (V) KV, R\ o)

(2m)42 \ ||

where K, denotes the v-th modified Bessel function of the second kind. Using (7.44) in
[Tes09, Chapter 7.4] we get

(27r1)d/2 (\/|x_?>d/21 (F(%Q— 1) (\/__2)\|x|>d/2+1 _|_O<(\/—_/\|x|>_d/2+3>>

¢ —1 _
ERACER N S )
27Td/2|l.|d72 (27T)d/2 ’x|d74

for x € RY\ {0}, d > 3, and A — 0. Hence, for d > 3 the function Gy defined by

GA(:L‘) =

G@)-—l@@@)—w z e R\ {0}
O3S0 AN T ggd2|g|d-2 ’

is the fundamental solution of the Laplace operator. Moreover we can define (by analytic
continuation, cf. [Tes09, Chapter 7.4]) G for all A € C\ [0, oo sucht that (—A — \)~u =
G * u remains true for all v € L?(R?) and G, = G5 holds.

The next lemma gives an explicit representation of the y-field and an estimate for its norms.

Lemma 4.3. Let A € C\ [1,00[ and h € L*(X). Then

GO = [ 16 —y) doty) (11)
b
holds for almost all x € RY. Moreover we have for A < 1 and ¢ € ]0,1] the estimate

_lie
min{|\ — 1|, 1} 2

YA < — trite ||

[eleVl| PRI [t |l

In particular Alim Iv(N)|| = 0. If we assume additionally that 3 is a compact C*°-manifold
——00

then y(\) € &,(L*(X), L*(R?)) for allp >d —2 and A € C\ [1,0].

Proof. Using ran(A —\)~' = H2(RY), A—X=—-A— (A —1)and y(A\)* =T (A —-\)"", cf.
Lemma [2.6] we get for all h € L*(X) and u € L*(R?)

(YN, w) 2@y = (hy Y (N W) 20y = (b Ti(A = N) ') 2y = (b 015(Gxoy * w)) 12(x).
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4.1 The generalized boundary triple

With Fubini’s theorem it follows

YA\ ) ety = / B(s) (G + u)() do(y)

In particular

GO L) = [ [ IH@IGase =) dotw) do = [| [ 1w)Goosta = ) doty)| do

for every compact set K C R% Hence z — [, h(y)Gr_1(z — y) do(y) is a function in
L .(R?) which coincides with v(\)h in the dlstrlbutlonal sense. Hence they coincide also

loc

in L?(RY) and equation (4.1)) follows.
For A <1 and ¢ € |0, 1] we have

Y lecre ), r2may = 1Y) lere@ay, 2wy < VA M ere@ay,mes)):
Using again y(A\)* = tr(A — \) 7! = tr3(A — \)~! we get with Lemma
VMl 22y r2@ayy < s (A=) e, Hs(z))
< NS | o @ay meep l(—A = (A = 1) 7| £(r2(ray, o1 ma)

e
min{|\ — 1|, 1} 2
A =17

< NS e gray = (s
Choosing for example € = % we get

423/ | Beas2®ayH1/2(5) As—oo
1Y M Bz2(2),02RY) < A1)/ > 0.

According to Lemmathe operator y(\)* belongs to £(L?(R?), L*(X)) for all A € p(A) =
C\ [1,00[ and rany(A\)* € H'(X). If we assume additionally that ¥ is a compact C°°-
manifold then Lemma implies (A + 1)* € &,(L*(R%), L*(X)) for all p > d — 2. As
the singular values of «(A)* and v(\) coincide also the last statement is proven. O

The next lemma provides some properties of the Weyl function.

Lemma 4.4. Let A € p(A) = C\ [1,00[. Then the operator M(\) can be written as

M(X) = M (0)*y(A) = 1% (v(X) —~(0))
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

and satisfies
(M) ) = [ ) (Groalle =) = Gl = o)) doty) (12)

for all h € L*(X) and almost all x € R. In particular M(0) = 0. If X\ # 0 then M(\)™!
is an unbounded operator in L*(X). Furthermore we have for all X < 1 and ¢ € ]0,1] the
estimate

(min{[A—1),1})
A —1]%

1+4€

IMN]] < [A]- [ try

“%(Hl'*'E(Rd),Hg(E))'

If we assume additionally that 3 is a compact C*-manifold then M(X\) € &,(L*(X)) for
allp>2—1 and X € p(A).

Proof. Let h € L*(X) be arbitrary. As Iy is surjective there exists u € dom T such that
h = Tou = T'gu,, where we have used the decomposition u = u. + u, € dom A + ker T" and
dom A = ker I'y. Hence we get with the definition of y()) in Lemma

M(0)h = T19(0)Tous = T'1(To | ker T) 'Tous = Tyus = tra(us)e = try, 0 = 0.
As h € L*(X) was arbitrary it follows M (0) = 0. Using Lemma [2.7| we obtain now

M) = M(A) = M(0)" = (A= 0)7(0)"y(A) = Ay(0)"y(A)

for all A € p(A) = C\ [1,00[. Furthermore we get with Lemma [2.6] (by interchanging A
and f1)

¥(0) = ¥(A) = (0= A)(A = 0) 1y (A) = =AATy(N).
Using 7(0)* = tr4(A — 0)~! we get hence
M(X) = Xy(0)"y(A) = tr5 A~y (A) = trg, (v(A) — 7(0)).

Together with equation (4.1) from Lemma we get now (4.2)). Furthermore we get with
Lemma [4.3| for A € p(A) NR an estimate for the norm of M(\):

[ M) = [[Ay0) (I < AT (O - [y = AL (v O)[] - v (M)
min{[0 — 1],1)" min{[A — 1,1} %

< M| - || trkte — || trate —
< I e PR — e R
mln 1.1
min{|\ — 1,
S eyt (i1 M
PO
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4.1 The generalized boundary triple

Next we show that M(A)~! is an unbounded operator if A € p(A) \ {0}. For this let
f e L3(X)\ {0}. At first we consider the case A € R. Using the continuity of the y-field
on p(A), of. Lemma [2.6] we get for u € p(A) NR

<M()\)f,f>L2(z) (M (p )f>f>L2(E . ((M(A) = M(p)]f, >L2(E)

A— L A—
(A =1)[y( v( N f e
) —

=wovnwvnwnﬂiuw»m§@

Hence -L(M(N)f, f)rzs) = IIv(A )fH%Q sy > 0 because y(}) is injective, i.e. the function
R > X — (MNF, > LQ(E) is strictly monotone increasing. As M(0) = 0 this means
(MN, ey # 0if A # 0. In particular M(A)f # 0 for all f # 0 and therefore
ker M(\) = {0 } If A € C\ R we get with Lemma 2.7 for f # 0

1

(MW e = 2 (EOF Hrxs = (£ M)
1 k
= 5 (M) = MOY) L D e
1
= LU= D90 AN, £) gy = I ) # 0

Hence also in this case M (\)f # 0 and therefore ker M (\) = {0}. This means that M (\)~*
is an operator. Furthermore we have

(dom M(A)™")" = (ran M(X))" = ker M(A)* = ker M(X) = {0},
i.e. dom M(\)~! is dense in L*(X). On the other hand we have
dom M(\)™' =ran M(\) CranT; C H'(X) # L*(2).

Hence dom M (\)~" is not closed. As M(\)~" is closed (because M (\) = M()\)* is closed)
it follows that M (A)~! is not continous.

It remains to show that M (X) belongs to &,(L*(X)) for all p > 4 —1if ¥ is a compact C*°-
manifold. For this recall that y(\) € &,(L*(X), L2(RY)) and v(\)* € &,(L*(R?), L*(X))
for all ¢ > d — 2, cf. Lemma Hence we get with Corollary 2.2 in Chapter II of [GK69)

M(A) = M (0)7(\)* € &2(L*(%)).
With p =1 > g — 1 the desired result follows. O

The following Lemma shows again, that the codimension of ¥ plays an important role.
Whereas in the case that ¥ is a closed manifold of codimension 1 which separates R? into
an interior domain €2; and an exterior domain €2, the Friedrichs extension of S is given by
the orthogonal sums of the Dirichlet operators on €2; and on €2, the situation is different if
the codimension is 2.

69



4 Schrédinger operators with d-interactions on manifolds of codimension 2

Theorem 4.5. The operator A is the Friedrichs extension of S.

Proof. Define the form s by
s(u,v) := (Su,v), doms = dom S.

Then the domain of 5 is given by

doms = {u € L2(R) : I(wp) C dom S with [|u, — [z = 0 and s[u ol R, 0)

= {u € L*(RY) : I(up)r, € dom S with ||uy — u| g LaiN 0} = dom g™ &Y.

Let now v € H 1(Rd) be arbitrary. Hence there exists a sequence (¢,), € C§°(R?) with
|u—@nll g1 ey < (2n)7'. Note that ¥ has codimension 2. Therefore the H'-capacity of ¥ is
0, cf. Corollary 3.3.4 and Corollary 5.1.15 in [AH96]. This means in particular that we can
ﬁnd for every n € N a function 1, € .%(R?) which is equal to 1 on an open neighborhood
of ¥ and satisfies ||1)n || g1rey < (2n]/¢n|lcrrey) . Defining u, := (1 — ¥y)p, € dom S we
get

[|lu — unHHl(Rd) < lu— SOnHHl(Rd) + meﬁnHHl(Rd)
1

< o + | ¥nllcr eyl nll 7 (re

1 1 1

< — N — =
<o Inloe g o ~

Hence H'(R?) C dom dom 5" ®Y As the converse inclusion is obvious we get doms = H'(RY).
Therefore we have

5(u,v) = lim s(ug, vg) = hm (Suk,vk = kh—>Holo Z@juk,@jvk) = Z(@-u,@v)
j=1

k—o00 -
Jj=1

for all u,v € H*(R?). Hence we get for all u € H?(R?) = dom A and all v € H!(R?) =
dom 5

n

(Au,v) = (—Au,v) = Z<8ju,3jv> =5(u,v).

J=1

According to Corollary 2.4 in [Kat76l Ch.VI] this means that A is contained in the repre-
senting operator of s, i.e. A C Sp. As both operators are selfadjoint they coincide. ]

4.2 The operators Ag

In this section we investigate the operators Ag generated by the generalized boundary triple
constructed in the previous section. We give criteria for selfadjointness of Ag and estimates
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4.2 The operators Ag

for the spectrum o(Ag) in dependence on the parameter © (note that the parameter ©
might be an operator or even a linear relation in L?(X)). Moreover we show that (under
certain conditions) the operators Ag can also be parametrized within the setting of a
d-interaction on a manifold of codimension 1.

We start with a first criterion for selfadjointness.

Theorem 4.6. Let © be a closed symmetric linear relation in L*(X) with H'(3) C ran ©
and 0 ¢ 0,(©). Then the operator

Aou=Tu, domAg={ucdomT:Tu€O}={ucdomT:0 'Tyu="Tou}

is a selfadjoint operator in L*(RY). If we assume additionally that 0 ¢ o(©) and that 3 is
a compact C'°°-manifold then

(Ao =)' = (A= N7 € G, (L*(RY)
holds for all X € p(Ae) N p(A) and p > & —1.

Proof. Keeping in mind rany(\)* C rantry = H'(X) the selfadjointness of Ag follows
directly from Theorem for A\ = 0. Moreover we get 0 € p(Ag) and

Agh = A7 =4(0)0714(0)".

If 0 ¢ 0(0) then © € L(L*(X)). Moreover, if ¥ is a compact C**-manifold then v(0) €
S, (LA(X), L*(RY) and 7(0)* € &,(L*(RY), L2(X)) for all ¢ > d — 2, cf. Lemma[d.3] Hence
we get with Corollary 2.2 in Chapter II of [GKG9] and p := 2 > ¢ —1

Agh— A7 =1(0)0(0) € S (L*(RY) = SP(LA(RY)),

For arbitrary A € p(Ag) N p(A) note that I + AM(Ag — A\)~! and I + A(A — \)~! belong
both to £(L?(R?)) and hence

&P (L2(RY) 3 (1 + A(Ag — )\)‘1) (A(gl - A—l) (1 A /\)‘1>
(Ag-¢r%+m@—Ay4—Ag—Au@—Ar%rﬂ(L+MA—ArQ
:(m@_mﬂ_Aﬁ—Ame—m4A4ﬂj+MA—»4)
(Ao =27 = A7 = X(Ae = )14 ) + Ao — ) (A= 1)
+ (1 + A\(Ae — /\)‘1> (“A)AL(A = 2) L
- M@—M”—A*—AM@—M”A”>+MA@—M”M—AY1
+ <I + A(Ae — A)*) <A*1 (A )\)*1>
= (A0 =) = A7 = A(Ae = N)TAT) + A(4e — ) (A=)
A

(A= N NAe =N TTATE = A(Ag = A)THA - )T
=(Ae =N =(A-N"7,

+
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

where we have used the well-known resolvent identity (A — p)(Ae — )"} (Ae — p)™' =
(Ag — A)7! — (Ae — u)~! and an analog identity for A. O

In the next theorem we show that Ag is semibounded from below if the parameter © is
uniformly positive.

Theorem 4.7. Let © be a selfadjoint operator in L*(X) with © > 0 for some 6 > 0. Then
Ag s selfadjoint and o(Ag) C [9%2, oo with ¢ := || trate || for e €]0,1].

Proof. As already seen in the proof of Lemma {4.4] the function R 3 X = (M(X)f, f)r2x)
is strictly increasing for all f # 0. With M(0) = 0, cf. Lemma , we have therefore
(M(N)f, frze) <0 for all A < 0. Hence

([© =M, e = (Of, e — (M(N)f, f>L2(El >0 fI.

<0

Hence [© — M()\)] > 6 and [© — M()\)]™t € L(L*(X)). Therefore Ag is selfadjoint and
A € p(Ap) for all A <0, cf. Theorem
Let now A € [0, 1[. If ||[M(XN)] < 6 we have

<[@ - M()\)]fa f)LQ(E) = <@f7 f>L2(E) - <M()\)fa f)LQ(E)
> 0L = 1M A1 = @ = M) - LA

Hence [© — M(N\)]™! € L(L*(X)) and X € p(Ae). It remains to verify that [|[M(\)|| < 6

holds for 0 < X\ < 9#%. For A = 0 this is obvious. Note that 0 < A < OJFLCQ implies

\)\—1|_1—/\_1_1>8+02 2
N 6 0

Q

Hence we get with Lemma 4.4

(min{[A—1,1}) "%

M| <N - -
IMN) < [N P

st <

A—1] 2

Consequently | — 0o, -2 C p(Ag) and therefore o(Ag) C [;2

7 O+c2 0+c2> OO[ O

Next we give an analog of the previous theorem for uniformly negative parameter.

Theorem 4.8. Let © be a selfadjoint operator in L*(X) with © < 0 for some 6 < 0.
Then Ae is selfadjoint and p(Ae) 2 1%, 1[ with ¢ = || trg™ || for some ¢ € ]0,1]. If
O(H' (X)) C H'(X) then Ag is unbounded from below.

Proof. As in the proof of the previous theorem we observe for all A € ]0, 1]

(0 =MW, Hlraw) = (OF flrae) — (M), fras) < 01f1* +0.

-

>0
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4.2 The operators Ag

Hence [© — M()\)] < 0 and [© — M(\)]™! € L(L*(X)). Therefore Ag is selfadjoint and
A € p(Ag) for all A € ]0,1[, cf. Theorem [2.8]
Let now c% < A <0. Then we get with Lemma

_l4e
(min{|A —1],1}) 2
A—1|72
Hence 0+ | M(X)|| < 0. Using (M(A)f, f)zas) > =MW | £]? we get

([0 =M. Fres) = OF, ey — (M), fres) < 0+ M) I

Hence © — M(\) < 0+ ||[M(\) < 0. Therefore [© — M(\)]™! € L(L*(X)) and X € p(Ae)
for all A € ]%,0].

It remains to show that Ag is unbounded from below under the additional condition
©(H' (X)) € H'(X). For this assume the converse, i.e. that Ag is bounded from below.
As A is the Friedrichs extension of S (see Theorem {.5)) we know A > Ag (cf. Proplem 2.22
in [Kat76l Ch.VI]). Hence

[MN)]| < [A]- ekt )P = A\ < —6.

(A-N)"< (Ao — N7
for all A < min{1,info(Ae)}. Using Kreins resolvent formula we get
0< (Ao =) = (A= )" =9(N)[6 = M(N)] 5"
Hence we have for all u € L?(R?)
0.< (Y(N[O = MON)] (N w0 r2eey = ([6 = M(N)]
As rany(\)* = H'(X) the above estimate can be written as
0<([0-MN)] 'g.9)i2x),  YgeH (D).

If f e H(X) then g := [0 — M(\)]f € H (), because ran M (\) C ranT; = H'(X) and
O(H' (X)) C H'(X). Hence we get

0<(f,[0=MWN]flraw), VY [feH (D)

1

1 * *
YA u, Y (A) u) r2(x).-

and therefore

(M, Pz <OF, Hliee), ¥V feH(X) (4.3)
Choose a sequence (f,), € H'(X) with || fullr2)y = 1 and || fullg-1(x) 7% 0 (such a
sequence exists because otherwise the norms || - || z2(x) and || - || z-1(x;) would be equivalent).

Note that M()) can be considered as an continuous operator from L*(X) to H'(X). Hence
we get

(M) fos Fud 2| = M) fo, Fad iy r—rcy] < IMO| - | fall 2y L fall 15y —= 0.
Therefore (4.3]) implies
0> 0 =0l fullioes) = (Ofu, fadra) = (M(N) fu, fu) 12z — 0,

which is a contradiction. Hence Ag is unbounded from below. O
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

Finally we will discuss in this section how a d-interaction supported on ¥ can be understood
as a d-interaction supported on a manifold of codimension 1 with singular strength. For
this we assume that X is contained in a compact C?-manifold 7 of codimension 1 without
boundary. By trrs we denote the trace from H3%(T) to H(X). For h € L*(%) we define
the distribution hds, € H=3/%(T) via

(hds, (P>H*3/2(T),H3/2(7’) = (h, tr7s @)LQ(Z)a Y e H3/2(T)-
Analogousy as for hds, one checks that hds belongs in fact to H~%/2(T):

|<hd2790>H*3/2(T),H3/2(7’)’ = \(hatrﬂz 90>L2(2)!
< [hllezs T trrs el 2
< Al |l tr7 12 @l ()
< [Pllzewll trrs |- 1@l 32 )-

The calculation above shows in particular that the operator
G:L* %) = H3*(T), hw— hdy,
is continuous. Its adjoint is given by

G* H¥*(T) = LA(%), ¢ ¢ls.
Recall the definitions of the operators S and T’

Su=(—A+1)u, dom S = {u € H*(RY) : triu =0}
Tu= (—A+1)u — hdy, domT = {u € L*(R?%) : 3h € L*(X)
with (—=A 4 1)u — hdy € L*(R%)}

and the definitions of the boundary maps I'y and I'y

[y:domT — L*(%), u > h,
[y domT — L*(X), U > i U, U= u.+u, € H*(R?) + ker T = dom T.

The generalized boundary triple for S* used in this chapter is (L*(X), T, 1), cf. Corol-
lary [4.2]
As T is a manifold of codimendion 1 we know by Example [3.§ that

Gy IN(T) = HARY,  fos for

is a continuous operator and that the operator Sy := A | ker(G7)* is given by

Stu = (—A + 1)u, dom S = {u € H*(R?) : tr3-u = 0}.
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4.2 The operators Ag

Its adjoint contains the operator T7 defined by

Tru=(-A+1u— for,
dom Ty = {u € L*(R?) : 3f € L*(X) with (—=A + 1)u — fé7 € L*(R%)},

and (L2(X),T7,TT) with the boundary maps

I7 . domTr — L*(T), u— f,
I'7 :dom Ty — L*(T), U tro-u.

as in (3.6) is a generalized boundary triple for S>. Due to ran(G%)* N L*(R%) = () we can
even construct an ordinary boundary for S3 as in Theorem : Let t_ : H3/2(T) — L*(T)
and vy : H32(T) — L*(T) be isomorphisms as in (3.4), i.e.

<u’U>H3/2(T)7H‘3/2(T) = <L+U7L—U>L2(T) YVue H?’/Q(T),U c H‘3/2(7'),
Then the triple (L*(T), fOT, f‘?) with

I7 - dom Sk — LA(T), ur t_f,
I7 :dom Sk — LA(T), uw tytr>u,, u=u.+u, € H(R?) + ker S5 = dom S

is an ordinary boundary triple for the operator S7-, which is given by

Shu = (=A+1)u— for,
dom S = {u € L*(RY) : 3f € H3(T) with (=A + 1)u — fé7 € L*(R%)}.

Note that ST C S and hence T' C S* C S7. Therefore kerT" C ker S3. This means in
particular that for u € domT" the decomposition v = u. + us € H 2(IR”Z) + ker S% is also a
decomposition with respect to H*(R?) + ker T'.

As already mentioned in Example the operators which are known in the literature
as Schrodinger operators with d-interactions supported on 7T are restrictions of T7 and
can be parameterized with the generalized boundary triple (L?(X),T],I'7). Note that
the representation of S3 only differs from the representation of T by the fact that the
functions f can be in H~%2(T) and not only in L?(7). Hence, it is reasonable in a certain
way to call the operators parameterize by the ordinary boundary triple (L2(7),T7,T7)
Schrodinger operators with d-interactions of singular strengths. We will discuss in the
next section how the parameter ¥ must be chosen such that Ay becomes a Schrodinger
operators with d-interactions supported on . The next theorem shows how both concepts
are connected. Roughly speaking a Schrodinger operator with d-interaction supported on
the manifold 3 of codimension 2 is a Schrodinger operator with d-interaction with singular
strength supported on the manifold 7 of codimension 1. The singular strength is again a
d-interaction.

5



4 Schrédinger operators with d-interactions on manifolds of codimension 2

Theorem 4.9. Let ¥ be a symmetric linear relation in L*(X) such that Ay C T with
dom Ay = {u € domT : E:Oﬂ € 19} is selfadjoint. Define the symmetric linear relation
1

-1

© =1 (GV'G*) ZN C LA(T) x LA(T).

nT
Then the operators Ay and Ae C S7 with dom Ag = {u € dom S : FO u

FTu] € @} coincide.
1

Proof. Due to ¢, = (1=')* the linear relation © is symmetric. Hence Ag is symmetric too.
Let now u € dom Ay with u = u, + us € H*(R?) + ker T' C H?*(R?) + ker S3. Hence

h . F()U
tréue|

(412
try, U,

h

Flu] ey =

o = |

-trgruc 01 Ao Gh Soa—1 Ay —1
— _éh}ecw G = Lr%uc]e(cm G
[ L_éh/ = oa—1 5%\ —1 -1
— _L+ tI‘%— u;| - Ly (Gﬁ G ) L.

Note that
(GhoT, ©) -2ray,m2(Re) = (Ghy 05 @) gr-sr2(7) mrorz ) = (hs, 005 ©) gr-sr2(7) 27
= (h, trrs (tr’r o) e = (h, trs; ) 2 ) = (hs, 0) r-2(ma), 12 (Re)
holds for all p € H?*(R?). This implies
(=A + Du — Ghdr = (~A + 1)u — hds € L*(RY) (4.4)

and therefore T u = +_Gh. Hence we get

~

Tou ._Gh S a1 A\ =1 1 FOTu
{FW] cy = LUQT“J € (Gu'GY) It = [ffu c 0,

i.e. u € dom Ag. Moreover (4.4]) implies Ayu = Agu. Consequently Ay C Ag. As Ay is
selfadjoint and Ae is symmetric both operators coincide. O

A natural question appearing now is the following: Which parameters © lead to Schrodinger
operators with d-interaction? To answer this question we have to introduce the concept of
the generalized trace, which is done in the following section.

4.3 The generalized trace and d-interactions on X

According to Lemma every element u € dom 7' can be written uniquely as u = u. + us
with v, € dom A = H%*(R?) and u, € kerT. Setting h := Tou we have u, = v(0)h.
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4.3 The generalized trace and d-interactions on %

Consequently, the trace of u to ¥ should be “uls, = u.|s + (7(0)h)|s”, but a look at (4.1])
shows that there is a problem: Due to the singularity of G_; it is in general not possible
to evaluate

(OW) @) = [ Hw)CTe—3) do)
b
at x € 2. A possible solution is to “cut out” the singularity, see Definition below.

For this we require that ¥ is a compact, regular C*-manifold without selfintersections and
without boundary. Furthermore the corresponding parametrizations should satisfy the
following conditions.

(C1) There exist bounded open sets 2; C R%2 relatively open sets ¥; C ¥ and home-
omorphism o; : Q; — X; for i € {1,...,m}, such that each o; is C?();), o; ' is

Lipschitz continuous and [ J;*, ¥; = X.

(C2) For each i € {1,...,m} and each & € Q; the Jacobian matrix Do;(¢) € R%42 has
full rank.

(C3) Foreachi € {1,...,m} exists a continuous function F; : Q; x Q; — R? and a constant
C; > 0 such that we have for all s,t € §;

oi(s) = 0i(t) + [Do;(t)](s — t) + Fi(s,t) and |Fi(s,t)| < Ci|s — t|*.

As Do;(€) € R*4=2 has full rank there exists () € R 292 with full rank such that
Do;(§) - Py(§) is an isometric matrix, e.g.

1
Doy(€) - P(€) = g

0 --- 0

0 --- 0]

The construction of the matrix P;(§) can be done with the help of the singular value
decomposition. We require from the matrices P;(§) the following additional condition.

(C4) For each i € {1,...,m} the matrix valued function P, : Q; — R¥">%2 & P(§), is
in C*(€), i.e. each component is in C*(€;).

Remark 4.10. We make same definitions and remarks concerning the conditions above.

(i) Condition (C1) implies in particular that also all o; are Lipschitz continuous. We
will denote by L > 1 a common Lipschitz constant of all o; and all o; .
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4 Schrédinger operators with d-interactions on manifolds of codimension 2
(ii) There exists M > 1 such that for all i € {1,...,m} and all s,t € Q; the estimates
it—s <||Do;(t)|(s —t)| < M|t — s
M

hold.

(iii) Foreachi € {1,...,m} the function s — \/det ([Do;(s)]T[Da;(s)]) belongs to C*(£;)
and is hence Lipschitz continuous. Denote by K > 0 a common Lipschitz constant.

(iv) Let @ > 1 be such that ||P;(€)| < Q and [|P;(¢)7Y| < @ hold for all i € {1,...,m}
and £ € Q;. Furthermore set C' := max{1,C},...,Cp,}.

(v) There exists € > 0 such that for each z € ¥ exists i € {1,...,m} with B.(z)NX C ;.
For < e and =z € ¥ we define
Ys(z) =X\ Bs(x) =X\ {oi(s) : s € Q; A |oy(s) — x| <},
where i € {1,...,m} was chosen as in item (v) of Remark [4.10]

Lemma 4.11. Let A < 1. The function ky defined by

ka(z) - = lim [/Z ( )G/\—l(x —y) do(y) + -~

A——00

is bounded and satisfies sup ey, kx(x) —— —oo.

Proof. Let i be as in item (v) of Remark and & := 0; '(z) € Q. Define g; : Qi — %,
by 6; = 0; 0 P,(€), where ; := [Pi(£)]71;, and set ¢ := &; '(z) € ;. Hence & = P;(&)t
because 0;(§) = z = 7;(t) = 0;(P;(&)t). The parametrization &; has the important property
that for all s € R92 the identity

|D5i(t)s| = [Dai(§) - Pi(§) - s = [s].
holds. Moreover we have with L and ¢ from Remark for all s € €; the estimate

|6:(t) — 6i(s)| = |oi(Pi(§)t) — 03(Fi(§)s)] < L|P( )t = Pi(&)s| < LQIt — s,

~ 5 1 (4.5)
|0:(t) = 0i(s)| = los(Bi(E)t) — oi(Pi(E)s)] = —\P( Jt = Bil&)s| = 7olt = sl.
Note that (C3) implies for all s € €;
Gi(s) = 0i(Pi(€)s) = ai(Pi(§)t) + [Dai(t)](Pi(§)s — Pi(&)t) + Fi(Pi(&)s, P(&)t)
= G:(t) + [Dai(t))(s — t) + Ey(s, ) (4.6)
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4.3 The generalized trace and d-interactions on %
with Fj(s, t) := F;(Pi(€)s, P(€)t). Moreover we get with C' 1= CQ? > 1
(s, )] = [F(P€)s, BEY)| < CIP(E)s — P < CQ2ls —t]2 = Cls — 12,

As €, is open we can assume without loss of generality that & from item (v) of Remark
is so small such that

£ < ——— and {seR¥2:|s—t]| <e} CQ (4.7)
20QL

hold.

We split the integral in the definition of k) into several parts:

Ind
/ Gr1(z —y) do(y) + o
s(x) T
_ / Grr(z — y) — Gola — y) do(y) n / Gl —y) do(y)  (4.5)
sz
o) $5(2)\ Be ()
-1 1
(560> 6, (t)—:(5) >} S5 (2)NB- (z)
r¢-1 1
——2 -/ - 4.10
o / T (4.10)
{s€RI=2:1>|s—t| A (s€QS V |5;(t)—5:(s)|>€)}
INCE)) 1 Ind
—2 7 - 2. (411
T / f a2 Tor W

{sERI=2:1>|s—t| A (s€QS V |5(t)—5:(s)|>6)}

We show that the limits of (4.8)), (4.9), (4.10)), and (4.11)) for 6 — 0 exist, are finite and

can be estimated by constants independent of x. We start with the first integral in (4.8]).
Its integrand can be written as

(et o _ _
Gr-a(a) ~ Golor) = 20 [T =L g <,
2755 |42 Jo 2 +1)

where we have used

dt

Cola) = rEg—-1 T4 . \/EF(%__ 1) r(dL) /OOO ( .

a Are|z]d-2 B oS |zld-2 2T(4F) B 275 |x|d-2 £2+1)%
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

and

cos(v1 — ]x\t)

(2 +1)

<£w(“§j>f<¢£3ﬁ§fmal
IC Iyt e I

(t2+1)z

o | |42

cf. the integral representation given in [GROT, 8.432 5.]. Hence

0> Gri(z —y) — Go(z — y) do(y)
Y5 ()

B INE=y cos(v1 — Az — y|q) d o
Lm) ; A q do(y) (4.12)

2

(@+1)7
V1i=Az—yl|

INE=Y / 1 /°° sin® (¥ q)
= - 2 2 — dq dO‘(’y)’
@ [T =yl o (¢ + 1)%

+0 sin <=0 = 2¢in? 2. At first we

where we have used 1 — cosa = cos0 — cosa = 2sin * 2
consider the case d = 3. For this consider the function f 10, 00[ — R defined by f(s)

¢ “sinh(s) 0. This function satisfies

S

[ — e *sinh(s) + e * cosh(s)]s — e~ sinh(s)

(s = -
e * [, sinh(s) e lef—e®
=— h(s) — cosh = — —e* <0
- |sin (s) — cosh(s) + . } . { 55 e ] <
and
lim £(s) = lim e *sinh(s) ~ lim —e~*sinh(s) + e~* cosh(s) .
s\0 s\0 S s\,0 1

Hence f(s) < 1 for all s > 0. Using this and [~ % dq = Se~“sinh(a) we observe
?+1

from (4.12))

0>/ Gi_ 1($— ) GQ(.%'—Z/) do(y)
25(1
\/7\3: yl . h(mm—yl

/) M—y! 2 )ddw
[ Ay,

z—% dofy) = -
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4.3 The generalized trace and d-interactions on %

As the integrand is nonpositive the above estimates shows that the first integral in (4.8)
converges for 9 — 0. Note that the bounds given above are independent of x.
For the case d > 3 we make use of 2sin® ¢ < a for @ > 0. Hence (4.12)) implies

0> - )G,\—l(l‘ —y) — Go(z —y) do(y)
INC=S —V1I- Az —ylg
> | T Lé gy o) da
r(d—

=—V1i-A

T el )

The first integral in (£.13)) converges for d > 3 and equals 5. We split the remaining

integral again into two parts and use ¥5(x) \ B:(z) = ¥\ B(x):

1 1 1
— do(y) = / — do(y) +/ s do(y)
/zé(x) |z — y|d-3 Y\ B. (x |$ — yl|¢—3 Ys(x)NBe(z) |z — y|d-3

<y /{ L) (4.14)

y€S;ie>|r—y|>d} |z =yl

For s := o} (y) we get |s —t| = |o; *(z) — 0; ' (y)| < L|z — y| = L|oi(s) — o:(t)| with the
Lipschitz constant L from item (i) of Remark |4.10l Hence |:c—yl|d*3 < ‘Sfcz;’,g, and

{s€Qiie>|oi(t) —0i(s)| >0} C{s € R"?: Le > |t — s|}.

With det ([Do;(s)] " [Doi(s)]) < [|Doi(s)[|*4? < M*@=2) and polar coordinates we get

; do(y) = \/det([DUz‘(s)]T[DUz‘(S)]) d
o — gt W o:(t) —ou(s)[is
{yeSie>|e—y|>6) {s€Qie>[oi(t)—04(5)[25}
Ld—3Md—2
= P
{s€RI—2:Le>|t—s|}

o T /Lf L4-3pfd—2 o T

d—3
: dr — —
e TP

=T
Hence we observe from (4.14)), (4.13) and (4.15)

—VIZAT(E) [ 8] | 27
d—=3 4z% |2 T(¢-1)

(LM)*2¢. (4.15)

0> /G)\ 1ZL’— GO('T_ )d(f(y)

6

As the integrand is nonpositive the above estimates shows that the first integral in (4.8)
converges for 6 — 0. Note that the bounds given above are independent of z.
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

The estimate for the second integral in (4.8) is easier. As § < e this integral is in fact
independent of §. Moreover we get the (z-independent) estimates

reg-—1 g —1)
o< [ Golir ~ ) doty) = [ B k E o 11
S5 (2)\Be (2) S\B.(z) 472 |z — y|?2 4rr2gd—2

Next we consider ([{.9). As {s € Q; : € = |5,(t) — G,(s)|} is a set of measure zero we get

réd—-1 1
@--— [ e [ Gl -paw
472 |t — 8|
{s€Qi:e>15:(t)—5:(s)| >0} YsNBe(x)
(g -1 Dai(s)]T[Da; 1
_ <2_d) / \/det~([ 4 (5~)] [Dai(s)]) ds. (4.16)
Are |64(t) — Gi(s)[*2 |t — 5|42

{s€Q:e>5:(t)—5:(s)|>6}
Note that (&.5) and (&.7) imply for all s € Q; with & > |5,(t) — &:(s)|

t— | < LQI&A(t) — 5:(s)] < LQe < % < (4.17)

It follows from (@.6)) that |t —s| — C|t — s|> < |5:(t) — &4(s)|. Hence we get for the integrand

of (4.16]) the estimate

Vdet (Do) TDa(s)) 1 _ /et (Do) [Dai(s)]) 1
6] = o)l ST (s = Ol s) T s
_[Vaet (D) Da) ] 1
e e I T (4.18)
Ve e maen -1, 1-(1-Cl-s)**] 1
(1—é|t—8|)d_2 (1_é|t—s|)d_2 |t—$|d—2'

Note that 1 — Ot — s| > 1, cf. ([{I7). Therefore all denominators above are positive.
Moreover we have
Vdet ([D5;(s)]T[D;(s)]) = v/det ([Doi(Pi(€)s) - Pi(€)]T[Dai(Pi(€)s)]Pi(€))
= V/det P(§)TV/det ([Doi(F(§)s)] T [Dai(B(€)s)])/det Bi(€)
= | det P,()]\/det ([Doy(Pi(€)s)] T [Dai(P.(€)s))) (4.19)

and

1 = /det ([Do(€) - B,(&)]T[Dai(€)]Pi(€))
= \/det () T\/det ([Doy(€)]T[Da;(€)])/det Pi(€)

= | det P,(&)|v/det ([Doy(€)] T [Do(€))).-
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4.3 The generalized trace and d-interactions on %

Hence we get with 0,(§) = x = 6;(t) = 0;(P;(&)t), the constants K and ) from item (iii)
and (iv) of Remark and with | det P;(€)] < ||P(€)]|** < Q%72 the estimate
Vdet ([D5;(s)]T[Dai(s)]) — 1
— |det P6)| [/t (Do (PO Do (PO — v/t (Do D@
<QUTKIP(E)s — €[ = QT K|P(§)s — PO < KQ' - |s—t].  (4.20)

Moreover we have for [t —s| <1

d—2
1—(1- ]t—s\ = ( )1d_2_k(—C~’]t—sDk
k=0
=2 0 i d—
— < L )(_1)k0k|t _ |t _ S Z ( ) k 10k|t S|k—1
k=1 =1
a2 0
<|t— e = - )42 1) . .
<t Slkzl( . )C It — s| ((1+C) 1) (4.21)
Moreover we have due to C|t — s| < :
(1-Clt—s))"> (1~ %)“ = 202 (4.22)

Hence we get with (L18), [@20), (@21), (22) and R := KL H0+O1T2 1

Vet (D5,(s)] [Da:(s)) 1
50— ()2 i sl N
< Vdet ([Da:(s)]T[Da(s)]) — 1 N 1—(1=Clt - SDd—Q .
B T [ (R
_ KQd—1_|5_t’+|t—S| <(1+é)d—2_1) .
= 9d—2 9d—2 ‘t — Sld—2
}_(Qd—l L1+ 1 B R
92d—2 . |t — S|d_3 o |t — S|d—3'

Analogously we get

Vet ((Di(s)]"[Dai(s)) 1 R
|6:(t) — Gi(s)|92 [t —s9=2 = |t — s]d3"

Note that the constant is independent of x. Hence the absolut value of the integrand in
(4.16)) can be estimated by the function s #. This function is integrable because
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

([&.17) implies {s € Q; : e > |5:(t) — 5:(s)|} C {s € R*2: > |t — s|} and hence

R R
/ T / F—sis %

(s€9:e>15,(t) =51 ()]} {s€RI-2:1>|t—s]}
1
275 / R 44, _ ™TR
= T S = —— .
d d— d
r(g—1)J rs r(g—1)

By Lebesgue’s dominated convergence theorem the limit of (4.9) for 6 — 0 exists and can

72

be estimated by :l:”( ). Also these bounds are independent of z.

The term in (4.10|) is independent of §. Hence it suffices to show that the integral in (4.10))
converges and can be bounded by a constant independent of ¢. Note that

5 1> s — ~ o~ C > s —
(seQ:1>|s—t A |5:(t) al(s)|>e}_{seﬂ 1> s t\>LQ}

cf. (4.5). Hence we get with (4.7))

{seRT2:1>|s—t| A (s€QS V |5:(t) — :i(s)| > &)}
—{seQ:1>|s—tJU{seQ:1>|s—t| A |5:(t) — Gi(s)| > €}

Q{seflf:12|s—t|>%}u{s€9 1>|s—t| > LQ}
—dseR 21> 51> }
{ S 75
and therefore
1
0< ——d
- / f— sl
{s€ERI=2:1>|s—t| A (s€EQS V |5:(t)—5i(s)|>€)}
1 o 11 21’5 LQ
< / ——ds = / -rd_3ds:d—ln—.
[t — 5|72 P —1) /g r2 rE—1 ¢

{s€RI=2:1>|s—t[> 5}

Note that this estimate is independent of x. Next we consider (4.11]). Note at first that

r¢-1) d-3
—e 7 — ds = —InJ. 4.2
- / (=2 s|d 2 / iz 0 ds=—ln (4.23)

{s€RI-2:1>|t—s|>6}

Recall that |6;(t) — 6;(s)| < [t — s|(1 + Clt — s|) holds for all s € Q;, cf. ([&.6). Moreover
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4.3 The generalized trace and d-interactions on %

we can assume that ¢ is so small that {s € R*2: |s — | < §} C Q;. Hence

{s€R¥2:1> s —t| A (s € Q5 V |6:(t) — 7i(s)| > 6)}
={seQ:1>|s—t| >0 U{seQ:1>]|s—t| A |5:(t) —Gi(s)| >}

~ ~ J
Q{sGQf:lZ|s—t|2+}U{369i:12|3—t|2~—}
14+ Clt—s| 1+ Clt—s|

:{SERd2:12 s — ¢ 2#} (4.24)
1+ Clt —s|

With (4.23) and (4.24) we get now

r¢-1) / L o
— — S _I._ -
472 ] 27
{SERI=2:1>|s—t| A (s€Q¢ V |6;(t)—54(s)|>8)}
re-—1 1 1
< (2—61) / —— ds — / ——ds
4mz |t — s]42 It — s|d2
{seRd*2:12|s—t\zm} {s€RI=2:1>|t—5|>5}
rd_1 1 re—1 1
4t |t — s 4t |t — s
{SERd—2:6>|s—t|Zﬁ} {SERd_2:6>‘5—t|21+‘S@5}
-1 27% % 1 1 5 In(1+ C§
= G y ) . Wd_z / —dr=—{Ind —1In R ) :M. (4.25)
473 I'(%5%) 5T 27 14+ 06 27

We have [s —t| < LQ|G;(t) — 7i(s)] for all s € Q;, cf. equation (.5). Hence |s —t| > §LQ
implies |6;(t) — &;(s)| > ¢ for all s € ;. Hence

{seR¥2:1>|s—t|>606LQ A (s € QS V |6:(t) — ()| > 6)}

4.26
D{scR¥"2:1>|s—t|>ILQ}. (4.26)

As we are just interested in the limit 6 — 0 we can assume in the following that ¢ is so
small that {s € R*?: |s —t| < LM} C Q; holds, which is possible because €; is open.
Moreover recall that |5;(t) — 6;(s)| > |t — s| — C|t — s|*> holds for all s € Q;. Hence

{s eR“26LQ > |s—t| A (s €QS V |6(t) — i(s)| > )}
={s €RT*:0LQ > [s —t| A [ai(t) — Gi(s)| > 0}
D{seR"2:6LQ>|s—t| A |t—s|—C|t—s>> 5} (4.27)
={seR¥"2:6LQ > |s—t| >+ C|t —s|*}
D{seR¥2:6LQ >|s—t| >+ C(OLQ)*}.
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

Combining (4.26]) and (4.27)) we get for 6LQ) < 1
{seR¥2:1>|s—t] A (s€ Q¢ V |6:(t) — 5(s)| > 6)}

={seR"2:1>|s—t]>0LQ A (s € QS V |5,(t) — &,(s)| > 0)}
U{s eR¥2:6LQ > |s—t| A (s € QS V |5:(t) — 54(s)| > 0)}
D{scR¥"2:1>|s—t| >+ COLQ)?}. (4.28)
With (4.23) and (4.28]) we get now
¢ —1 1 Iné
472 |t — s|92 27
{sERI=2:1>|s—t| A (s€QS V |54(t)—5:(s)|>6)}
e —1) 1 1
> 2 7 ——ds — —d
= it / =2 / =
SERI=2:1>|s—t|>5+C(5LQ)2} {s€RI=2:1>t—s|>4}
re—1 -1
= —(2 . ) / —— ds
Ars |t — 5|2
{s€RI-2:64+C(5LQ)2>|s—t|>6}
5§+C(6LQ)? ~ 5
1 -1 —<1Il ((5 + O((SLQ)Q) —1In 5) In (1 + C5(LQ)2)
_ 1 / - _ . (4.29)
27 r 2w 2

0

From (4.25) and (4.29) we conclude that (4.11)) tends to 0 if § — 0. Note that also this
convergence is independent of z.

It remains to show sup,cy ka(x) 277 oo, As the first integral in (4.8]) is the only
term depending on A it suffices to consider just this term. For this we use the following
representation resulting from (4.12)):

(éGAﬂx—w—GMw—wdﬂw
- F(% <in (x/ilw qu)
— T 441 / |$— |d 2/ ( —1 dq dO‘(y)

Tz q* + 1)
F%l/ /&nw’wy)d<>d
= 1 o\y) aq
5 Jo (2 +1) >y |yl
INE=D) 1 sin? (Y——2lz=vl 1_’\‘I_y‘q
< — dil / 5 = / ( 2d72 ) do(y) dg. (4.30)
% Jo (@+1)7T Jew |z —Y

Due to (4.7) and (4.5) we have
d-2 . _ 0. C () : 1G5 (1) —
&eR s ﬂ<LQ} &egz| ﬂ<LQ}_@em 15,(t) — G:(s)| < )
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4.3 The generalized trace and d-interactions on %

and therefore
20 B(r) = (s € D 103(r) ~ (o)l < <b) 263 ({s R st < 15 })

Hence we get for the inner integral in (4.30]) the estimate
02 (V1ZAlz—y)
sin® (Y——5—4%
/ ( 2d_2 Q) do(y)
$NB.(z) |z —y

n2 VI=XG(0)-6:()lg _____
- /{seRd 2:Js—t]< 25} |ai() Gi(s)[d2 \/det([DUi(S)] [D&;(s)]) ds. (4.31)

According to item (iii) in Remark there exists a constant m; € R with
Vdet ([Dai(P,(€)s)]T[Doy(Pi(€)s)]) = m

for all s € ;. From condition (C2) it follows m; > 0. Set mq := min{my, ..., my,}. Due
to | det P;(€)| = | det[P;(€)]7|~! and | det[P;(€)]7!| < Q42 with the constant @ from item
(iv) in Remark we observe hence from equation (4.19))

Vdet ([D5(s)]T[Dai(s)]) = | det P,(€)|\/det ([Dai(P(€)s)] T [Dai(Pi(€)s)]) =

Qd—2 ’

Therefore we can conclude from (|4.31))

.2 (VI-Nz—y] -2 VI=A5:(t)—5i(s)lg

sSim” |\ ——— S1n
/ ( 2 q) do(y) > o / 2 ds. (4.32)
YNB:(z) {s€RI—2:|s—t|<

|z =yl Qe 1 10i(t) = Gils)|?
Next we define the function @, : R¥2 — R4 via
s—t
P =t+ .
als) T— A
Note that [D®,](s) = \/%Id,g and det[D®,] = ﬁ Moreover

@A({SGRd_22|S—t’<%}> { e R ]s—t|<LQ}

Hence we get for every R > 1 and every sufficiently large A the estimate

si? YR 00y / sin? YA 0t
= = s = = ~ S
|03(t) — Gi(s)|> |03(t) — Gi(s)|*2
{seRI~2:|s— t<ig} Dy ({SGRd 2:]s— t|<€ })
n2 Yi-AGi(t ) UZO‘I’/\(S)PI 1
_ . ds
/ !Uz'( )—dio ‘I’A( =2 yT=x"?

{sGRd*2:|s—t|<€7VLl(5>‘}

/ sin? VI=NGi(H)=5:0®5(s)|g
2
~ ~ di
(VI=X3i(t) = 610 Bx(5))"

>

ds. (4.33)

{sERd—2:%§|37t|§R}
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

According to we get
VT = NGi(t) — 650 Dy (s)]| = VI = )\‘[D&i(t)](da(s) — 1) + Fy(Dx(s), t)‘

§\/1—/\’[D6i(t)]\j%‘+\/l— c‘ st
Cls —t[?
iy

=|s—t|+

and analogously
Cls — t|
VI=X

Hence we get for t € {s € R"?: & < |s — t| < R} the estimate

VI=NG:(t) — 610 By(s)| > |s — | —

_ _ Cls —t[? CR?
1—MAoi(t) —6;0® — s =1 < <
VI Mat) - v 0a(o) — s —l| < T2 <« T

Note that this estimate is independent of x. Hence the integrand in (4.33)) converges for
A — —oo uniformly against

sin? —|5_2t|q
|s — t]d=2"

Note that also this convergence can be estimated independently of x.
As the set {s € R2: }l{ < |s —t| < R} is compact also the integral converges against

. —t d—2 .
sin? Is 5 la 22 R gin? g
T ds = y T dr
|s — t]4 rEg—-1) /. ri-

{sGRd*Q:%ﬂs—t\gR} "

d—2 ﬂ2 a—2 ﬂZ
212 /2smp 2d 212 /ZSlnpd
= 2 AP = o - ap
r(z—1) e TE-1)Jg p

2R

where we have used the substitution p : Tq. Again this convergence can be estimated

independently of x. Together with - and - we get

[ Grata =) - Golo — ) dot) <

F(%) 1 mo Sin2 \/ﬁ|az(t)2 ;0P (s)|q d d
T T i I Qi N - a— 4549

T2 (% + 1) s (V1= X|G:(t) — G, 0 Px(s)))

{SER :7<|s—t\<R}
Rg
A——o0 mo F(d— 2 sin’p
—  gis é / / dp dg.
T2 (¢® + 1 L P
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4.3 The generalized trace and d-interactions on %

Also this convergence can be estimated independently of x. Hence

0o Ry . o
lim sup/G,\l(at—y)—Go(x— / /2 Snp dp dq.
A—=—00 g3 ; q —|—1 L D

2R

with the corresponding constant C' > 0. As the integral fooo Si‘;# dp does not converge and
R > 1 was chosen arbitrary we conclude

lim sup/EG,\l(a: —y) — Go(z —y) do(y) = —oc.

]

Definition 4.12. For x = 0(sg) € X let B¥(x) := {o(s) : |s — so| < d} be the open ball in
¥ with center x and radius 6. For A < 1, z € ¥ and h € C*(X) define

(Byh)(z) = lim [/Z\BZ( )h(y)G,\_l(x —y) do(y) — h(x)@ :

SN0 2T

Lemma 4.13. The definition above gives rise to a well defined operator By in L*(X) with
domain dom By = C%(X) C L?(X). The operator By is symmetric and bounded from
above by the finite number sup, ¢y, k().

Proof. Let h € C%}(X). Note that we can write (Byh)(z) as

N0

B =l | [ )= )] Goe =) doy

INCER
—(2 d)wd 31n6
42

h(x)Gyr_1(z —vy) do(y) — h(z
*/E\B;@” (z — y) do(y) - h(z)

- im [ /E o, [P0 = H@)Gra o =) )|+ ) (4.34)

with ky(x) defined as in Lemma m Denoting by L a Lipschitz constant of h we get for
the integral in (4.34)) the estimate

Lo, B0 1@ Cr (=) dot)

< [ 1w = nie)l 13( ‘“‘”) Ky (V=0 Dl — ) do()

(2) |z =yl
(L—M /iﬁ Avl-lx—w)

(2m)? o —yl2™

<L do(y).

89



4 Schrédinger operators with d-interactions on manifolds of codimension 2

The singularity of the integrand at x is in O(|x —y|~9*3), cf. (7.44) in [Tes09, Chapter 7.4].
As ¥ is a compact (d — 2)-dimensional manifold the integral converges. Hence the limit in

exists and we get
Bu)a) = [ () = b)) Grorlo =) doty) + hab(@)  (439)

and the estimate

[(Bxh)(2)] < L

- Kd1 11— :L‘—
(10 A; VO=Dle =) @l s

(27)% & — |72

Hence we get the estimate

,_1 \/ |.17 - y|)
1 Bah| 125y < A VI do(y) + [hll 2y - [Falloo-

|z — yl“2

Thus By, is a well defined operator in LQ(Z).
Let now h,g € C%(X). Then

(Bah, g)r2(sy — (h, Bag) r2(sy = ([Bx — kAR, @) 2wy — (hs [By — EA]9) 2(x)

_1/(/Tmm—h@ﬂGkﬂx—wddw>ﬂ?ﬂﬂ@
[ ([ [0 o) sste — ) o)) dory
//y

where we have used for the last equality that the integrand is skew-symmetric with respect
to s and x. Hence B, is symmetric.
Due to the symmetry we observe now

2([By — kylh, h>L2(E) = ([Bx — ka)h, h>L2(E) + (h,[B) — k)\]h>L2(E)
= [ ([ 146) = 1) Grosto = ) doty) ) T ot
+ / h(y) ( / [h(z) — h(y)]|Groi(z — ) da(x)) do(y)
bfjlhlw— (2h)R(@) — h(2) ~ () doly) doz).

9(y) — h(2)g(z)]|Gr_i(x — y) do(y) do(z) =0,

Setting v := Re(h) an Im(h) we observe
(

)
2mmﬂ5—va2|m>F
= 2[uly)u(z) + wv(y)u(z) — iu(y)o(z) +v(y)o(@)] — u(@)? - v(@)? - uly)? - o(y)?
= —[u(y) — u(@)]” — [o(y) — v(2)]" + 2i[v(y)u(z) — u(y)v(z)].
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4.3 The generalized trace and d-interactions on %

Hence we get

2([By — kaJh, h) oy = — //lex— ([u(y) — u(@)] + [o(y) — v(2)]*) do(y) doz)

//QZG,\ 1(z—y < (y)u(z) —u(y)v(x)) do(y) do(x).

Note that 2([Bx—kx]h, h)2(x) is real whereas the second integral above is purely imaginary
and thus zero. The integrand of the first integral above is nonnegative which implies 2([B)—
Exh,h)r2sy < 0 or, equivalently, (Byh,h)r2isy < (kah,h)r2s). From this we observe
By < supgey ka(z). Recall that sup,cy, k() is finite as k is bounded, cf. Lemmal[d.11]

Define now the operator By = —F (—B,), where F(—B,) is the Friedrichs extension of
—B,. Note that also B, is bounded from above by sup,cs, k(z).

Lemma 4.14. Let A < 1. Then By = By + M(X). In particular dom B, is A-independent.
Proof. For all h € C%(X) C L?(X) = dom M (\) we have

(B30) () = (UOR) @) =l | [ B Gaa (o =) d) ) -
— lim h Ga1(x —vy)—G_1(x — do
A A W)[Gra(z = v) (z = v)] do(y)
L L5 — 1wn-3
~t| [ o, MO ) do) - O

Hence B)\ = By+ M (). Recall that M (A) is bounded and selfadjoint. Hence we can apply
Lemma [2.16) and get

E = —F(=By) = —=F(=By = M(\)) = —=F(=By) + M()) = By + M()).
In particular dom By = dom By N dom M (\) = dom By N L3(S) = dom By, O

Now we are ready to define the generalized trace for a large class of elements in the domain

of T'. For this recall that for A < 1 every element u € dom T can be written uniquely as
u = u) +u} with v} € H*(R?) and u} € ker(T — \), cf. Lemma 2.1, Moreover u} = y(\)h
for some h € L*(X), cf. the definition of ()\) in Lemma[2.6|

Definition 4.15. Let A < 1. For & € dom B, we define the generalized trace of v(A)h via
trs (Y(A)h) := Byh.
Hence for an element u = u +y(A\)h € dom T with h € dom B, we define

trs u = tryu) + Byh.
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

The definition above has the disadvantage that it seems to depend on A < 1. However,
this is not the case as we will show in the following lemma.

Lemma 4.16. The definition of try u is independent of the particular choice of A < 1.

Proof. Let A, pn < 1 and u = u, + y(A\)h € domT with u, € H*(R) and h € dom By =
dom B,,, cf. Lemma m Hence we can write u as u = @, + y(u)h with

e = e+ 7 (Nh = 7(h = ue + (A = p)(A = X)"y(wh € H*(R?),

where we have used the formula y(\) = v(u) + (A — p)(A — A)"Ly(), cf. Lemma [4.14]
Hence u = 4. + y(p)h is also a decomposition of v as u = u. + y(A\)h. Moreover we get
with Lemma 4.4 and Lemma [4.14]

trs (YA = (w)h) = trs (Y(N)h —7(0)h) — trs (v(1)h = 7(0)h)
— M(\h — M(u)h

= [Bo+ M(N)]h = [By+ M(p)]h = B\h = Byh.
Hence we get
trs u. + Byh = try (u—~(N\) + Byh = try (@e +v(p)h —~v(N) + Byh = trs G, + E;h
From this we observe that try u is independent of the particular choice of A < 1. O]

Next we have to specify an operator © in L?(X) such that the operator Ag as defined in
Section coincides with a Schrodinger operator with d-interaction of strength i on ¥,
i.e. with an operator which acts formally like

1 1
<—A — —(52) u = —Au — —U|E . (52.
(0% (6]

On the other hand, the action of the operator " — 1 is given by —Au — hdy. Equating
both expressions we get

1 1 1 —
h = au|g = atrz (uc +’y(0)h) = a(uclz + Boh).

Hence ah — E)h = u.|y. Using the generalized boundary triple from Corollary this
equation is equivalent to (a — Bg)[pu = I'ju. This heuristic explanation motivates the
following definition.

Definition 4.17. For a € R\ {0} define the Schrodinger operator —Ay ,, in L*(R?) with
d-interaction of strength i supported on ¥ as —Ay, := Ag — 1 with © := o — By. This
means

~ 1
dom —Ay, =dom Ag = {u € domT : (o« — By)l'ou =T'u} = {u € domT : h = —trgu},
o

1
—Az’au = (A@ — 1)u = —Au— h(SE = —Au— atrz u - (52.
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4.3 The generalized trace and d-interactions on %

If @ > sup,cy ko(x) then © > o — sup,ex ko(x) > 0, cf. Lemma [£.13] Hence we know
from Theorem [4.6| and Theorem [4.7] that the operator Ag is selfadjoint and bounded from
below. Moreover, if ¥ is a compact C'*°-manifold, the resolvent difference with A belongs

to &,(L*(RY)) for p > ‘51 — 1. Obviously —Ay, has the same properties. The following

theorem shows that the assumption o > sup, ¢y, ko() is not necessary for this.

Theorem 4.18. Let Ny < 1 be such that sup,cs, kx(xz) < a holds for all A < Ao, cf.
Lemma .11, Then the Schrédinger operator —As, is selfadjoint in L*(RY) and bounded
from below by Ao — 1. If we assume additionally that 3 s a compact C°°-manifold then

(_AE,a - )‘)71 - (_Afree - )‘)71 € GP(LQ(RC{))

holds for all X € p(—Aso)N p(—Apee) and p > $—1. In particular this resolvent difference
is compact and 0e55(—Ayx o) = [0, 00].

Proof. As in Definition set © := a — By. As M (M) is bounded and selfadjoint for
A € R, cf. Lemma2.7, © — M(]) is selfadjoint too. Moreover we have for all A < A

@—M()\):&—(/BvojLM()\)) :a—g\z&—supk,\(x)>0,
€Y

ie. 0 € p(© — M(X)). By Theorem the operator Ag is selfadjoint in L?(RY) and
A € p(Aeg). As this is true for all A < \g we get Ag > A\g. Hence also —Ay, = Ag — 1 is
selfadjoint and bounded from below by Ay — 1.

Note that also by Theorem Krein’s resolvent formula holds for all A < \y. Hence

(—Aso =N = (—Apee = A) T =7yA+ DO - M+ )] Iy(A+ 1)
holds for all A < \g — 1. If we assume that ¥ is a compact C'**°-manifold then Lemma [2.23
implies (A + 1) € &,(L*(X), L*(RY)) and v(A + 1)* € &,(L*(R?), L*(X)) for all ¢ > d — 2.
As [©@ — M\ + 1] ! € L(L*(Z)) we get with Lemma 2.3 in [BLLI3D| (see also I11.§7.2.2
in [GK69])
(=Asa =N = (=Agee = A) =AM+ 1[0 = M(A+ 1) 'y(A + 1)* € &,(L*(RY))

for p:=14 > d—;2 and all A < A\g — 1. Analogously as in the proof of Theorem 4.6 we get

for an arbitrary 1 € p(~Asa) N p(~Ape)
(Ao =) = (Agee =) T = Ui((=As0 = A) 7 = (—Apee = X)) Us € 6,(L*(R))
with the two bounded operators

Upi=(I+(p=N(-Aga—p)") and U= (T4 (1= A)(—Dpee — 1) ).

As the resolvent difference belongs to &,(L*(R?)) it is in particular compact. Hence we
get with Theorem 6.19 from [Tes09] 0ess(—Asx ) = Oess(—Agree) = [0, 00]. O

For a better analysis of —Ay, a deeper understanding of the operator E\ is needed. In

particular a better knowledge of the eigenvalues of E\ is helpful to describe the eigenvalues
of —Ay , more accurate. As the eigenvalues of B, are dependent on the dimension we
restrict ourself to the case that ¥ is a closed curve in R3, which is done in the next section.
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4 Schrédinger operators with d-interactions on manifolds of codimension 2
4.4 Application to d-interactions on closed curves in R3

Throughout this section X is a compact, closed, regular C?-curve in R? of length L > 0
without self-intersections. Of course it is possible to find a set of parametrizations o;
satisfying the conditions (C1) to (C4) from Section [£.3] but for our purpose it is more
convenient to use a C*-parametrization o : [0,L] — R? of ¥ with |5(s)] = 1 for all
s € [0, L]. Moreover, we define for x = ¢(t) € ¥ and § > 0 the open intervall in 3

I3 (x) = {o(s) : s €]t — 6,t + §[}.

(If ¢t = 0 or t = L we have to replace o by its L-periodic extension or by a shifted
parametrization. However, this case is not important as it just concerns a set of measure
0.) As o is Lipschitz-continuous with Lipschitz constant 1 we observe I¥(x) C XN Bs(z)
and hence ¥\ I¥(x) D ¥\ Bs(z). In general, these sets do not coincide, but when § tends to
0 they become similar. This allows us to give an alternative representation of the function
ky in the following Lemma.

Lemma 4.19. Let A < 1 and let ky be the function defined in Lemmal[{.11 Then

kx(z) = lim

d _
5—0 oY 2T

Ar|z — y|

/ efm\x*yl Inéd
B\IF (z)

holds for all x € X.

Proof. Let x € ¥ and t € [0, L] such that o(¢) = z. As mentioned above we can assume
t # 0 and t # L. Furthermore we assume in the following that ¢ is sufficently small such

that 6 < min{¢, L;}. Due to X\ IF(z) = [X\ Bs(z)] U [(X N Bs(z)) \ I (x)] we have

d

/ o~V ~ODlz—y
S\IF ()

do(y)

drlz —y| drle —y|

_/ \/T\m y| +/’ e—m\w—yl
¥\ Bs(z) (ENBs(x))\I5 (z)

ds.

/ -/ —(A=1)|z— y| / e~V —(A=D)le(t)—o(s)]
¥\ B;s(x) {s€[0,L]:|o ()

+
47\55 — | s)|<o<ls—t)y 4mlo(t) —o(s)]
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4.4 Application to d-interactions on closed curves in R?

Hence we get with the definition of k) in Lemma |4.11

lim do(y) — —
0—0 IE( ) 27T

4|z — y|

' e~V —(=Dlz—yl Ind
= lim do(y) — —
(BNBs (2))\I5 ()

50 Ar|x — y 2
(4.36)
\/7()\ D)o (t)—a(s)]|

—I—/ ds
{s€[0,L):|o(t)—o(s)|<6<|s—t|} 47T|U( ) —a(s)]
( ) \/7()\ D)o (t)—o(s)]
= ky(x) + lim ds.
00 J1sel0,L):|o(t)—o(s)|<d<|s—t|} drlo(t) —o(s)|

As ¥ is a C?-curve we can apply Taylor’s theorem to each component of o and get for
some suitable (7, (o and (3

o (1) AG)] (1 o
o(t) = |o2(t) | = o(s) +0(s)(t =) + | o3(C) | ~—
o3(t) 03(C3)

With the constant C, := /[|o}[|% + |lo4]|2, + [|e4]|%, and a local Lipschitz constant L of
o~! we get now

ot (E) || (4 _ g2
CRCELC RNk s = Lo

_ |t—s\(1—%|t—s|) > |t—s|<1——L|a (S)y) > |t_5|(1_%m)

for all s € [0, L] with |o(t) — o(s)| < § < |t — s|, if we assume that ¢ is sufficently small
such that 1 — %Lé > 0. Hence

(s€[0,L]:|o(s) —o(t) <5< |s—t]} C {se 0, L] : |t—s]<1— C”La) <5< ]s—t\}
5

= el0,L]:0< |t —s| < ————
and therefore

/ e~V —(A=Dlo(t)=a(s)|
{s€l0,L]:|o(t)—o(s)

ds
—o(s)|<o<ls—ty Amlo(t) —o(s)]

- / w/f(/\ D]o(t)—o(s)]| s < / L p
< s < ——ds
{se[o,L]:5§\t—s|<$} drlo(t) — o(s)| {sE[O,L}:ég\t—sK@} drlt — s

5
5 L C 6—0
_ L PO g (lm—  _Ins) = ——1 (1——L5) 320, ¢,
o /s s & 2w(n1_&L5 n) or 2

2
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

The assertion follows now with (4.36]). O

Note that with Lemma and with equation (4.35)) in the proof of Lemma we also
get the following alternative representation

(Bah)(z) = lim

§—0

(4.37)

- —(A=Dz—y] 1
[ / h(y)S do(y) — h(x>—n‘5
S\I5 () 2

drr|z — y|

of the operator B). We will use in the following this representation of B) because it is
easier to handle than the one given in Definition [£.12]

Next we consider at first the case that the closed curve is a circle of radius R > 0 in R3.
In order to distinguish it from a more general closed curve X the circle is denoted by T.
Without loss of generality we assume that 7 is parametrized by the function

7:[0,27R] = R®, ¢+ R(cos(t/R),sin(t/R),0).

Furthermore we will use the formula

s —t

7(t) — 7(s)| = 2R sin (W) . (438)

At first we will show the following Lemma.

Lemma 4.20. The function ky defined as in Lemmal[{.11]is independent of x. In particular
_ In(4R)
ki(z) = == forallz € T.

Proof. Due to the symmetry of the circle 7 we observe that k; in fact is independent of x.
Hence we can choose in the following w.l.o.g. z = 7(0). Moreover we get with formula (4.38)

and the substitution s := ﬁ

1 2rR—6 1
Gola —9) dot) = | —doly) = [ at
T (2) Ti(@) 47|z — | 5 dr|r(t) — 7(0)]
2rR—§ 1 7T—2i 1
:/' — ﬁ:/ 9Rds
5 47 - 2R sin (ﬁ) £ 8mRsin s

:/ﬂ_r"% L g [P 2 ds:i[_1n<cos(t/2))+1n(sm(t/2))]

s 4msin s £ 2msin s 21

(VB

o
3R 2R

R

[ ~In (cos(m/4)) + In (sin(7/4)) + In (cos(8 /4R)) — In (sin(8/4R)) }

[ 1n (cos(3/4R)) — In (sin(6/4F)) |

1
2m
1
2m
% {ln (cos(d/4R)) + In ( —In 5] :
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4.4 Application to d-interactions on closed curves in R?

Recalling the alternative representation of k) in Lemma {4.19| we get hence

/ Go(z —y) do(y) + o

_ 1 lim |In (cos(d/4R)) + In 0
27 650 o8 sin(0/4R)
1. ARS In(4R) 1 . d In(4R)
= —liml = — lim1 = :
27 5030 n(sin5> 27 +27r 550 n(siné) 2m -

Next we consider the operator B; defined by Definition or equation (4.37) for the case
of a circle. In order to distinguish it from the case of a general closed curve it is denoted
by BT.

Lemma 4.21. The operator B] defined by

[ g+ hm@] = [P hriy) 4 o)
T T

B h)(z) = li
(Bi h)(w) = lim (@) 47| — 9| 27 drt|x — y|

§—0

is essentially selfadjoint in L*(T). Its closure B_lT s semibounded from above, has a compact
resolvent, and its eigenvalues (ordered nonincreasingly and counted with multiplicity) are
given by

(1) =20 () = () =

>1|+~

k
Z 2] e N.

Jj=1

Proof. At first we calculate the eigenvalues of BY. If h is a constant function we get
obviously [B] — kgJh = 0. Consider next the function h; defined by hy(z) := sin(kt/R)
with ¢ := 77!(z) and k¥ € N. With the identity (4.38) and sin(ks/R) — sin(kt/R) =

2sin (’“52;%’“) cos (%) we obtain

(IBT = kohe) (x) = /7_ h(y) — h(x) dr(y) = /0 ™ sin(ks/R) — sin(kt/R) s

Ar|z — y| 47 - 2Rsm<|525f|>

ds

/27rR sin (k(;—;t)) cos (k(5+t)>
0 47TRSln<‘s2Pf|>
/t sin <k(25—;)> cos (%—?) dot /27rR sin (k(;;)> coS ( oR > ;
- S
0 ¢

ls—1|
47rRsm< 3R )

97



4 Schrédinger operators with d-interactions on manifolds of codimension 2

With the fact, that sin is an odd function, the substitution z := s — ¢t + 27 R and the
formulas sin(a+7) = —sin(a) and cos(a+m) = — cos(«) the first integral in becomes

¢ sin (%) cos (%) ¢ sin (%) cos (%)
ds = ds
0 0

An R sin (\s t\> —4rRsin (

_ /Q’TR sin (;“IZ% — k:7r) cos (kt —1— k7r) 0 /%R sin (5;) cos (% + 5—;) "
9w Rt —4m Rsin (55 — 77) 9w R—t AmRsin (55) ’

QR)

Analogously we get with the substitution z := s — t for the second integral in 4.39

. k(s—t k(s+t
[ () eon (“52°) [ ),
S = X P
¢ A7 R sin <|8Rt\> 0 47 R sin (—)

Combining these two resulst we obtain from (4.39) with the substitution s := 5% and the
formula cos(a + ) = cos(a) cos(f) — sin(a) sin(3)

R ez Kt k2 T kt
(BT = kalha) (@) = / sin (£2) cos (& + £2) g / sin(ks) cos (% + ks) i
0 AmRsin (%) 0 27 sin(s)

= /0” %ﬁiz) {cos (%) - cos(ks) — sin (%) -sin(ks)] ds
= cos kEY [ Sin(ks).cos(k’s) s kt\ [T M .
_ —hk(<£ )/01 - cZ(ZIZS)dS, ’ (R> /0 2rsin(s) ¢

4 sin(s)

where we have used in the last step the definition of hy, the formula 2sin?(a) = 1 — cos(2a)
and

" sin(k k
/ sin(ks) cos(ks) ds =0,
0

27 sin(s) -

cf. [GROT, 3.612 1.]. With the indefinite integrals [GROT, 2.526 1. and 2.539 4.] we get

"1—cos(2ks) . " cos (27 —1)s i i
/0 —sin(s) ds = [ln (tan ) —2; 2%~ 1 —1 (tan >] 4227

Jj=1

Hence

1t
;;2] )

len 1
T _ E _
Blhk—(ko—;‘ 2j—_1>hk—<

Jj=1
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B hy, = (

for the function Ay defined by hy(z) := cos(kt/R) with t := 77 '(z) and k € N. Therefore

k
o (BT) Q{m (4R) _122] ,keNO}. (4.40)

Analogously we get

=1|+~

SR

=1

.

™ —
As the span of the functions hy, hy with k& € N and the constant function i = 1 is already
dense in L2(T) and B is symmetric there are no other eigenfunctions and hence no other
eigenvalues, i.e. in equality holds. Note that the eigenvalue ln(4R) has multiplicity
one, while all other eigenvalues have multiplicity two.
Due to

, In(4R) 1<~ 1 _
T _ 2
(Blzl:z)hk—( o W;%_liz)hk and
k

~ 1 1 -
BT +i)h, = - +
(B £i)hg ( o . 51 z) hy,

we observe that ran(B] + i) is dense in L*(7), hence By is essentially selfadjoint, cf.
[Wei80, Theorem 5.21]. O

Next we want to extend the results from Lemma to all A <1 and to a general closed
C?-curve Y of length L = 27 R, which is parametrized by its arc length parametrization
o : [0, L] — R3. This is done by a perturbation of the operator B]. As a preparation we
show the following lemma.

Lemma 4.22. Let A < 1. The operator D) : L*(X) — L*(X2) defined by

L eV -OA=Dle®)—=c(s) o=/ =A=DIr()=7(s)|
h(o(s - ds 4.41
[ 1o Fpm—aer ~ S o 4y
1s compact and selfadjoint. Moreover there exists a A-independent constant C' > 0 such
that ||Dy|| < C for all A < 1.

(Dah)(a(t)) =

Proof. In the following we will identify the parametrizations ¢ and 7 of ¥ and T, respec-
tively, with their L—periodic continuations on R. Let s,t € R with |s — ] < % Define

f:(0,00) = Rvia f(z2) = (Alzfo z > 0. Then

) 1 _\/T_l)e—w—(k—l)z’z . 6—\/—()\—1 z e—\/—()\—l)z _()\ — 1) 1
|f (Z)|:E 22 = e > —f—; .
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

Note that the functions z — e”V - A1z % and z — < are all monotonously nonin-

22
creasing on (0, 00), therefore the same is true for |f’|. Hence it follows

VAo —0(s)] gV A (s)]
irlo(t) —o(s)|  Ax|7(t) — 7(s)]

< Gain)| - [lo () = a(s)| = [7(t) = 7(s)l| ~ (4.43)

With Guin = min {|o(t) = o(s)],17(t) = 7(s)|}.
Note, that there exist e, > 0 and e, > 0 such that for all s,¢ € R with |s —¢| < %

lo(s) —o(t)] > es|ls—t] and |7(s) —7(t)] > e-|s — ]
holds. With ¢ := min{e,, e, } > 0 the estimate (4.43]) can be simplified to

VAW -0(s)] g VA —(s)]
irlo(t) —o(s)|  Ax[r(t) — 7(s)]

<|f'Cels = thlllo(t) = a(s)| = [7(t) = 7(s)l|. (4.44)

As ¥ is a C?-curve we can apply Taylor’s theorem to each component and get for some
suitable (7, (5 and (3

o1(t) o1(C1) (t — )2
o(t) = |oa(t)| = a(s) +0'(s)(t —s) + |05((2) 5
o3(t) 03 (C3)

With C, = /[[o7Z + [o4]Z + [[o4]% and |o"(s)| = 1 it follows

a1 (C1) _5)2
o) ~ o) < I ()] -t — ol +| | 3(G) | | L2

<ft—sl+ Lop— s
— S —_— — S|
2 - 2

Analogously we get with C, := \/||T{'||go + 1% + 175112

2] | (4 o2

C;
> ]t—s|—7|t—s\2

2
2
73 (&3)
for some suitable &;, & and &3. Hence
C, +C,
o(t) = ()] = I7(t) = 7(s)| < =t = 5[
By changing the roles of o and 7 we observe
Co +C;
jo(t) = o)l = I7(t) = 7(s)|| < =t = sI” (4.45)
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4.4 Application to d-interactions on closed curves in R?

Note that e~*(z + 1) < 1 for > 0. Together with ([£42), ([&45) and C' := C2tC= the
estimate (4.44]) implies

e~V A=Dlet)=o(s)l o=/ =A=DIT()=7(s)|

drlo(t) — o(s)] Arlr(t) — 7(s)]

Foy/— O Dels—| [vV/=(0 = Dels — t| + 1]

C (4.46)

IN

IN

for all s,t € R with |s — | < L. For arbitrary s,t € R there exists k € Z such that
(s + kL) —t| < £. As o and 7 are L-periodic it follows that holds for all s,t € R.
From (4.46)) we conclude that the integral kernel given in the definition of D, in is
bounded and hence square-integrable on [0, L]?. Therefore D) is a compact operator, cf.
[RS80, Theorem VI.23]. Since the integral kernel of D, is real and symmetric it follows
that D, is selfadjoint. Moreover we observe with the A-independent constant C' := 5L,

the definition of D) in (4.41)) and estimate (4.46)

- —(>\ 1 Vo (t)—o(s)] e—\/—(/\—l)\T(t)—T(S)\ 2
— ds di
47T|a —o(s)] @) —1(s)| | “

IDARN L2y < 1Pl Z2(s)

< CQHh”LZ(E)
for all h € L*(X). O

Lemma 4.23. Let A < 1. The operator By s essentially selfadjoint in L*(X). Its clo-
sure By is semibounded from above, has a compact resolvent, and its eigenvalues (ordered
nonincreasingly and counted with multiplicity) satisfy

Ink
ve(\) = _;l_w +O(1) as k- oo.
Moreover for every k € N the function X — vg(X) is continuous and strictly increasing on
the interval (—oo, 1] and vx(A) — —o0 as A — —o0.

Proof. Note that By can be written as
By = D+ J*B] J,

where J : L*(X) — L*(T) is the unitary operator defined by Jh = hooor~! for h € L*(2)
and the operator D) : L*(X) — L*(X) is given by (4.41)). Recall that B] = BT + M7 ()),
cf. Lemma and that M7 (\) and D, are compact and selfadjoint, cf. Lemma
(together with Remark and Lemma m Hence we get

By = Dy + J*(B] + MT(\))J = Dy + J*(B] + M"(\))J
= Dy +J* (BT + MT(\)"J = D + (7 (BT + MT(A))J)* — B,
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

i.e. By is essentialy selfadjoint. For every function u € dom By we have

(Byu, u)g2(sy = (Dau, u)ogsy + (J* (B_Ir+ MT(N) Ju, )z
= (Dyu, w) 2y + (BT Ju, Ju) 2oy + (M7 (N) Ju, Ju) 127
< DAl el sy + BN TullZer + 1M NI 1Tl 72,
< (CHE + M7 ulla s

with the constants C' from Lemma [4.22 and k] = @, cf. Lemma [4.20, Hence B, is

bounded from above. Moreover we have with Lemma 2.2]

Byu,u
V]()\) = sup min M
UCdom B, “€U\0} ul|z2(s)
dim U=j
. _ (Dyu,u)pasy + (BT Ju, Ju paery + (MT(N) Ju, Ju) 207
= up min
UCdom By, €U0} w22 (x)
dim U=j

BT Ju, J
< sup  min {BUIETUR@ oy
UCdom B, w€UMO} | JullL2em

dim U=j

BTv,v
_ sp  min {—< 1 >L2”’}+0+||MT<A>||=V,T<1>+0+||MT<A>||.
ngomez— veV\{0} ||U||L2(T)
dim V=7

Analogously we get v;(A) > v/ (1) — C — [|[M7(X)|| which implies

v;(A) =v] (1) +0(1) as j— oo (4.47)
Recall that Z] 1 =Ink+ O(1), see e.g. [AS64, Equation 4.1.32]. Hence
k 2k k
1 1 1 In(k In(2k
S S 23 =2k - ) oy =20 L o0) as ko 4o
2] j 2 J 2 2
7j=1 J=1 7j=1
(4.48)
With equation (4.47), (4.48) and Lemma we get
k
1 In(2k)
var(A) = v (1) + O(1) = = Z =———+0(1) as koo
Moreover we get
In(2k In(2k +1
I/QkJrl()\) = ng()\) = — néﬂ_ ) + 0(1) = — ( o ) 0(1) as k — oo
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4.4 Application to d-interactions on closed curves in R?

It remains to show that the eigenvalue functions A — vy () are continuous and strictly
increasing for each k& € N. For this let A\, u < 1 and define the operator D, , : L*(X) —
L3(X) by

6_ V —()\—1)|x—y| — 6_ V —(,U,—l)'CC—y|

4|z — y|

(Dauh)(x) = / hy) do(y).

As e —e7P| < |a — ] for all a, 8 > 0 we for the integral kernel of D, , the estimate

e V=0l _ o=/~ (=Dl ,\/7_1 \/7_1, (4.49)

A7 |x —y\

Hence D, , is a compact operator and its norm can be estimated by VASES o V- 1)IL
cf. [RS80), Theorem VI.23]. Since the integral kernel of D, , is real and symmetric it follows
that D, , is selfadjoint.

It follows from the definition of D, , and the definition of By and B,, that Byh — B,h =
D, .k holds for all h € C%(X) and hence that

Byh = B,h+ Dy ,h
holds for all h € dom By. With Lemma [2.2 we get

B U, u B u, u + D u,u
Vk‘()\> = sup min M — sup mi < o >L2(E) < A p >L2(E)
UCdom By, “€U\0} ||U||L2(2) UCdom B, “€U\0} ||U||L2(E)
dim U=k dim U=Fk

Ucdom B, w€UMO} | [Jullr2(s)
dim U=k

. <B_U>U>L2 b
<  sup min {M—()‘FHDA,MH = V() + || Dapl|

and analogously vy () > v (p) — || Dy u||. Hence

) = ()] < 1Dyl < AV =V = DIy oo

i.e. A = 14(\) is continuous.
According to Lemma and Lemma [2.7] we have

(Bx— Bu)h = (M(X) — M(p))h = (A — p)y(A\) v (p)h

for all h € dom By = dom B_u Hence we get

d . <B)\h, h>L2(E) - <Bﬂh7 h>L2(E)
o Bal By = limy A —
= lim (y(A)"y(wh, h) r2(s)
H—A
= Tim (y ()2, YR 22y = V(M)A 72() > 0
n—A
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

for all h € dom By \ {0} , i.e. the function A\ — (Byh, h)z2s) is strictly increasing on
(—o0, 1]. Therefore we get with Lemma 2.2 for A < p <1

—v(A) = min__ max (—Byh,h)resy) > min_ max (—B,h, h) ey = —vk(p),
UCdom B, heU UCdom B, heU
dimU=k [Ihl[=1 dimU=k [Ih]=1

where we have used that the operators — B, and _B_u are semibounded from below. Thus
vE(A) < v(p) for A < p < 1. O

Now we are in the situation to improve the results about the spectrum of —Ay,.

Theorem 4.24. Let A € p(—Asxo) N p(—Apee) and s1(N) > so(N) > ... be the singular
values of the resolvent difference

(—Aso =N = (= Apee — A7 (4.50)

counted with multiplicities. Then

sk(A) = O(k211nk) as k — oo.

Proof. According to Theorem the resolvent difference in (4.50) can be written as
(~Aza =N = (“Anee = N = 9N (0= By) ()"

With Lemma and Remark [2.24) we get v(A) € &,(L*(R?), L* (X)) for p > 1 and
si(7v(N)) = O(1/j) for j — oo. Hence also s;(y(A\)*) = O(1/j) as j — oo, i.e. there exists
a constant C' > 0 such that
¢ .
si(Y(N) < 5 o si(v(N)7) < T
Moreover it follows from Lemma that the singular values (which coincide with the
eigenvalues) of the selfadjoint operator (v — By)™! satisfy

| Q

.
sj((a=By)™") < I

for some suitable C'. Without loss of generality we assume in the following C' = C. With
[GK69,, Corollary 2.2, Chapter II] and Inj = %ln(jS) > %ln(&j) for j > 2 we get

5352 (7(/\)(@ - B_/\)_IV()\)*) < Sg5-1 (7(/\)<04 - B_A)_l) Sj (7()‘)*)

< 503 (0 - By Y s, () < & < 2T

= 1nj = (32 In(3))

for 5 > 2. Due to

537 (To(@ = BY)7'4,) < syja (Mol = Ba)73,) < sajea (@ = Ba) '3,
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4.4 Application to d-interactions on closed curves in R?

and

27C° 27C° 27C3

GiP(E)) ~ (3 - 12l(3j —1) = (3 — 2°n(3j —2)

this implies
— 1 . 27C3
sk (M@ = By)7'3,) < 2k
for all k e N, k > 4. ]

A consequence of the compactness of the resolvent difference is that the only possible
accumulation point of the negative eigenvalues is 0. Moreover we know that —Ay, is
semibounded from below, cf. Theorem [£.18 The following Theorem shows that there are
even only finitely many negative eigenvalues and gives and estimate for its number. For

this define
L L
dg I:/ /
0o Jo

Note that dy is the norm of the operator D; defined in equation (4.41]) of Lemma m
Furthermore define for r € Ny the disjoint intervals

2

1
dt ds.

1
drlo(t) —o(s)]  dnlr(t) —(s)]

r

In(4R) li 1 In(4R) 32 1 ) nd 1 [1n(4R)’+OO)

[7: = B 9 .
2 (il 29 —1" 27 T 27 —1 27

such that R =)~ | I,.

Theorem 4.25. Let o # 0 and r,l € Ng U {—1} such that « +dx € I, and o — dx € 1.
Denote by N, the number of negative eigenvalues of —Ay ,, counted with multiplicities.
Then

2r +1 < N, <max{2l + 1,0}.

. _ . In(4R)
In particular No =0 if a —ds > ——.

Proof. Denote by v4(\) the k-th eigenvalue (ordered nonincreasingly and counted with
multiplicity) of By. Let N € Ny be the number of eigenvalues of B; (counted with multi-
plicity) which are larger than « (note that N = oo is not possible because the eigenvalues
accumulate to —oo, cf. Lemma [4.23):

nl)>wml)>...>vy1)>a>vna(l) > ...
Recall that the eigenvalues v (1) of By = Dy + J *B_TJ can be estimated by

vl (1) = IDill < wi(1) <w[ () +[IDi)l, k€N,
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

with the operator D; as defined in (4.41). By |[RS80, Theorem VI.23] the norm of D
equals the L%-norm of its integral kernel, i.e. || D;|| = dx. Hence, if a + dx. € I, we have

In(4R) 1< 1 -
dy < ————=) = 1
o+ dy < or W;Qj—l Vori1(1)

and therefore a < v (1) — ds; < vp.41(1). This means that B; has at least 2r + 1
eigenvalues larger than o, i.e. 2r+1 < N.
In(4R)

If a — dy € I_; or, equivalently, a — ds, > -2 = 1] (1) we have v1(1) < v/ (1) +ds < o

This means that B; has no eigenvalues larger than «, i.e. N = 0.
If « — dy, € I; for some | € Ny we have

a—dy >

I+1
In(4R) 1 1 T
_ = - 1
o W;Qj—l Vyr42(1)
and therefore o > 1] ,(1) + dsy > vo42(1). This means that By has at most 2/ + 1
eigenvalues larger than «, i.e. N < 2]+ 1. So far we have shown

2r +1 < N <max{2l+ 1,0}

and it remains to show IV, = N, i.e. the number of negative eigenvalues of —Ay; , coincides
with the number of eigenvalues of B, larger than a.

As seen in Lemma the functions A — () are continuous and strictly increasing on
(—o00, 1] and v (\) — —o0 as A — —oo. Hence for each k € {1,..., N} there exists A\ < 1
such that v(\;) = a and v;(A\) < o for all 7 > N and all A < 1.

As y()) is for every A < 1 an isomorphism between ker(aw — By) and ker(Ag — \) we get

dim ker ( — Ay o — (A — 1)) = dimker(Ag — A\¢)
=dimker(a — By,) = #{j € {1,...,N} : v;(\) = o}

for each k € {1,..., N}. In particular A\, — 1 is a negative eigenvalue of —Ay ,. Moreover
all negative eigenvalues of —Ay, , are of the form \; — 1 for some j € {1,...,N}.

If A\ — 1 has multiplicity s (and A\ > A\g_1) then vp(A\x) = ... = vprs_1(Ar) = . Hence
the number of negative eigenvalues of —Ay, , counted with multiplicity coincides with the
number of eigenvalues of B; larger than a: N, = N. This completes the proof. O

The following picture illustrates the proof of Theorem .25 Each intersection of an eigen-
value function v; with the constant line « indicates a negative eigenvalue \; of —Ay,.
Note that this picture is just a rough sketch to illustrate the principle idea. In particular
one can not expect that the eigenvalue functions v; are linear.
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4.4 Application to d-interactions on closed curves in R?
(1)
p2(1)

v3(1)
Ay = /\'g

'V4(1)

I

«

U5(1)

&)

g /
In the next corollary we give a more explicit estimate for the number of negative eigenvalues
Of-—132¢y

Corollary 4.26. Let o # 0. Then the number N, of negative eigenvalues of —Ay 4,
counted with multiplicities, can be estimated by

2Rc e T 1 — 2(6713 —1) < Ny < 2Rce™ ™7 41, (4.51)

2mdy

where v ~ 0.577216 is the Fuler—Mascheroni constant and ¢ = e In particular,

N, = e 2m+t0M) 45 o — —00.

Proof. As in Theorem let 7,1 € NgU {—1} such that a +ds € I, and o — dy € I,.
The proof is based on the following estimate for the harmonic sum, which can be found
for example in equation (9.89) in [GKP89]:

Ikt~ !
n —_—
T ok T 10k2

1 1 1
<Z <Ink+7y+—

b . 4.52
o 122 T oo MEN (4.52)

. k 2% k
Equation ([4.52) and 7 2]—1_1 =i 2j1—_1 — 521 2] - imply

i 1 1 1 1 1
In(2k —————(1 k — )
Z e e R T R L G R I CYE R T
7lnk:—|—ln4—|—7+ 1 1 >1nk‘—|—1n4+7
B 2 48k2?  240k4 2 ‘

Hence if [ € N then a — dy, € [; implies with the estimate above

In(4 1 1 In(4 Inl+1n4
a—dg<n(R) 22 n(4R) Inl+Ind+vy

— = <
2m T £ 7 —1 27 2m
Jj=1
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

and therefore Inl < —27(a — dy) + In R — . This implies together with the estimate
N, <20+ 1 from Theorem [4.25

Na < 204+ 1 = 2elnl +1< 26727F(a7d2)+1nR7’y +1= 2Rc€f2ﬂ'a7'y + 17

which is the upper estimate in @ Ifl=—-1orl=0then N, <1, cf. Theorem m
and the upper estimate in @ follows immediately from the fact, that the exponential
function is positive.

For the lower estimate in (4.51)) we deduce from in the same way as above

zkjl <I(2K) 47+ 7~ o+ o — o (kg o — )
n — — —_—— —
21 TR T a8k T 1920k 2 T ok T 12k

_ Ink+Ind+~y 1 N 1 <1nk+ln4+7+ﬁ
N 2 48Kk2  1920k* 2 '

Hence if r € Ny then o 4 dyx; € I, implies with the estimate above

dy >
tds 2 2

> J—
T 27 —1 27 2m

In(4R) 1 § 1 In(4R) In(r+1)+mnd+~+ 23(r+1)

and therefore

In(r+1) + > 21(a+ds) +In R — . (4.53)

23(r + 1)2

Equation (4.53) implies together with the estimate N, > 2r + 1 from Theorem [4.25]
N, —2Rc e ™7 > 9p 4+ 1 — 9p~2m(atds)+In R—y

2€ln(r+1)+

1
23(r+1)2

>2r+1-—
= 2(r 1) — 2(r + 1)eBr? — 1
—2(r 4+ 1)(1 — eTeT7) — 1 =: g(r).
As ¢/'(r) > 0 for all » > 0, the minimum of ¢ for » > 0 is attained at r = 0. Hence
N, — 2Rc™ e ™27 > 2(1 — e3) — 1,

which gives the lower estimate in (4.51)) for r € Ny.
For r = —1 we have a + dy, > 1“(4R) and hence 27(a + dx) > In(4R). Therefore

2Rc e 2™ T — 1 — 23 — 1) = 2Re 2= T _ 1 _ 9(em — 1)
< 2Re”mUR)=Y _ ] _9(e23 — 1)

2R
= 1i° —1—2(623 —-1)<0.
Hence the lower estimate in (4.51)) is also true for the case r = —1. [
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4.4 Application to d-interactions on closed curves in R?

Motivated by [Exn05l, [EHLO6] we prove finally the following theorem.

Theorem 4.27. Let T be a circle in R® of radius R = % and assume that 3 is not a
circle. Let a < 4R 4R . Then

mino(—Ag,) < mino(—Ar,),

where —Ar,, denotes the Schrodinger operator with d-interaction of strength é supported
on the circle T.

Proof. The proof follows the ideas of [Exn05, [EHLO6] and is based on the strict inequality
/ lo(s+u) —o(s )|ds<—sm7r—u u € (0,L/2], (4.54)

cf. Proposition 2.1 and Theorem 2.2 in [EHL06]. Here o is again the parametrization of

the curve ¥ and is identified with its L-periodic extension to R.
At first we will show that (4.54) holds also for u € (£, L) For this let u € (%, L). With the
substitution ¢ := s + u and the fact, that ¢ is L-periodic, is L-periodic we get

(A'“&+“‘”“”*“i/ Clo() — ot — )| dt
<_/|dﬂ—a@—mhﬁ+é lo(t) — ot — )| di

B ’ (4.55)
:/‘W@—JG—MHﬁ+/\ﬂﬂ—a@—MMt
U 0
L L
:/hﬁ%w@ﬂMﬁ:/hw+M—@—ﬁMﬁ
0 0
As L —u € (0, ) we can use (4.54)) to estimate the last integral in ({.55) by
L*  7w[L—wu] L2 et L* . 7u
o L0 omb—u L7 _my _ Py
lo(t+[L —u]) —o(t)] dt < —sin—— —sin <7T L) —sin— (4.56)

Combining (4.55) and (4.56]) we observe that (4.54) holds for all u € (0, L).
Next we define for A < 1 the function G, : (0,00) — R via

—(A-1Dz
Gi(x) := — x> 0.

It is easy to see, that G is strictly monotonically decreasing and convex. As (4.54]) holds
for all u € (0, L) we get with the fact that G is decreasing the inequality

(A( /'ws+w—a(n@>>GAG$m%Q. (4.57)
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

Using Jensen’s Inequality (see e.g. [Rud70, Theorem 3.3]) the convexity of G implies

( /\as+u ~o(s |ds) /GA (s + u) — o(s)]) ds (4.58)

Combining (4.57) and (4.58]) we observe

[ o (Eanm)awas<n [ (L [ lotew-ato)as)
= /OL /OL Gr(|o(s +u) — o(s)|) ds du.

With the substitution ¢ := s + u and the formula sin a = sin(7 — «) we get

/OLGA (£sinf) du_/SHSGA (ésm”(tgs))dt
:/LGA (£81n <t;3))dt+/ N (%sin—ﬂtJrLL_S))dt
/G (—sm )dt+/G (—sn )dt /G ( i 7T|t_S|)dt

and with the same substitution and the L-periodicity of o we get

(4.59)

L+s

/O Gr(lo(s+u) —a(s)])du = Gr(|lo(t) —a(s)])dt

S

:/ GA(|a(t)—a(s)\)dt—|—/OSG,\(]a(t—i-L)—a(s)Ddt
= [ Gullatt) = o)t + [ Galott) = ate)at = [ Galla(0) - ols) .

With these two equalities we observe from (|4.59))

0< /OL /OL Gr(lo(t) — a(s)]) — G (5 sin @) dt ds. (4.60)

™

Next we recall that the operator B) can be written as
By = Dy + J*B] J,

with the selfadjoint compact operator D, : L*(¥) — L*(3) and the unitary operator
J : L*(X) — L3(T) defined in the proof of Lemma [4.23] According to the definition of Dy
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4.4 Application to d-interactions on closed curves in R?

in (4.41), equation ([4.38) and ( we have

( V-O-Dle—0()| o=/~ O=Dlr®)=7(s)] e
D)\]l ]l L2 / / |: - } s dt
dmlo(t) — a(s)] dm|r(t) = 7(s)]

_ / / (o (1) - o(s)]) — Gallr(t) — (s)]) ds dt

:/OL/OLGAUJ(t)—a( ) — G (—sm”'tL ’)dsdt>o.

Hence we have with the constant function h = ﬁ on ¥ (which implies ||A||f2(x) = 1)

1 (A) > (Bah, B)12(s) = (Dah, h) sy + (BT Jh, JR) 27y > (BT Jh, Jh) 2¢1y = v] (),
(4.61)

Denote now by Ay = mino(—A7,) < 0 the smallest eigenvalue of —As ,. Due to
dimker (— Ag o — (A — 1)) = dimker(Ag — ) = dimker(a — B))

this means that « is an eigenvalue of B)Tl L1 As vl (A + 1) denotes the largest eigenvalue

of B;H and due to (4.61]) we get the estimate
a < 1/17—(/\1 + 1) < 1/1(/\1 + 1)

According to Lemma the function A — () is continuous and strictly increasing on
(—00,0]. Hence there exists Ay < A; such that o = vy(Ay + 1), i.e. Ay + 1 is an eigenvalue
of —Ay,. Hence mino(—Ax,) <A+ 1< A +1=mino(-Ar,). O

Finally, we will compare our operators —Ay , to the operators defined in [Pos01, Exam-
ple 3.5] and [Tet90l § 3], which we consider as representatives of the class of Schrédinger
operators with d-interactions defined in the literature.

Lemma 4.28. Let —AZ be the singular perturbed Laplacian as defined in [Pos01, Exam-
ple 3.5]. Then —AZ and —Asx,, coincide.

Proof. Let € > 0. As in [Pos01] we define in L*(X) the operator I'(A) by
e~ V-Alz— yl

+ h(z) In(™) /L Ipg(t—s|) e VAo
2m o Arm|t—s| Art|o(t) — o(s)]

domT'(\) :={h € C}(Z) : supph C £\ ¢7'(0)} C dom By ,.

(FOIR) () = / [h(z) — h()]

ds| ,
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4 Schrédinger operators with d-interactions on manifolds of codimension 2

Note, that this operator is independent of ¢, cf. equation (19) in [Pos01]. Hence we get for
all h € domI'(\) and all x € X
e*\/j‘|x —

(Broah) @)+ (FR) @) = [ ) = i) % do(y) + hiapk(a) + FOA()

4|z — y|

In(e™t) /L Ipg(lt —s)) e VAo o
27 o Amlt — s Art|o(t) — o(s)|

VA Ing
e n

= h(z)li —d —
(z) 530 [/Eé(x) Am|x — y| o)+ 27

In(e~! Edpoq(|t — —V=Xo(t)=0(s)|
N n(e™t) / ngllt—sl) e ’ ds
0

o Am|t —s|  Ax|o(t) — o(s)

—V=X|z—y| Lq t— —V=Ao(t)—o(s)|
— h(z) lim [/ er - da(y)+/ oot —s)) e | ds],
b 0

50 s Amlr =y 4|t — s| Am|o(t) — o(s)

where we have chosen in the last step € = 9. Due to

e~V Ayl Llpg(t —s) eV Ao@-o6)l
C do(y) + - ds
ss() A7lz =yl o Anft—s|  drlo(t) —o(s)]

L V= Aa(t)—o(s)| Ly (1 — VAo (1) (s)]
= [ 1= sl 0] oy [ Hoali= o s
0 ’ drlo(t) — o(s)] o 4t — s drlo(t) —o(s)|
L 1 eV ool
= [ 1ot — -
[ w0 g~ e o)
/t+6 1 e~ V=Alo(t)=o(s)| q
— — S
s At —s|  Arw|o(t) — o(s)|
we observe
(Bia) () + (PR (2)
L t+6 1 e~V Alt—s| i 6 o=V =Alt—s| e—V=Alo(t)—a(s)] ;
= =) im /t_5 Anlt —s|  dnft —s| 3*/,5_5 At —s|  dnlo() —o(s)] |

Analogously as in (4.49) on page and in (4.43)) on page we see that boths integrands

are bounded. Hence, if we send § to 0, the integrals converge to 0. Therefore —I'(\) C By,
and hence
a+T(\)Ca-Bix=a—Bo— M1+ =0 M(1+\)
with © := a — By, cf. Lemma m Hence we get for all sufficently small A < 1
(~Asa— A7 = (Ao — (14+ )
— (A= (14 X) " 91+ 2)(0 = M(1+ 1) 'y (1+A)

D (= Apee = A) T (1N (a+T) (1 + M)
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4.4 Application to d-interactions on closed curves in R?

Keeping in mind (1 + \)* = tr% (4 — (1 + )\))71, cf. Lemma E, we observe that the
last expression coincides with (=AY — \)~1 cf. the equation after (19) in [Pos01]. Hence
(—Aga — A7 D (=A% — N)7! and therefore —Ayx, 2 —AZ. As both operators are
selfadjoint they coincide. ]

Lemma 4.29. Denote by — Amz the Schréodinger operator with d-interaction of strength
a € R\ {0} on ¥ as defined in [Tet90]. Then — )\, 5, and —Ay o m2 coincide.

Proof. Let € > 0 be sufficently small (in the sense of conditions C-1 and C-2 in [Tet90])
and let A < 0 be arbitrary. For h € C%'(X) and = € ¥ we define

3 " . . . e~ V—Alz—yl y
(FasO) @) = [ e) = ) Tt o)

6_\/j|x_y‘ t+e 1 e—\/j|0(5)_0(t)| ]n(2€)
e [“‘/wmd”@”/t_g = el — o] " 2 ]

cf. (3.2) and (3.9) in [Tet90]. As above, t € [0, L] is chosen such that o(t) = = € X.
Moreover, o is again identified with its L-periodic continuation on R. As we are interrested
in the limit 6 — 0 we can assume in the following § < . At first note

- e~ V—Alz—y| n
(Bl—i-/\h)(m) + (Fa,z()\)h) (x) = h(x)lim [/2 — do(y) + Q]

50 s Amlr =y ? 27
Vel te V() (8) In(2¢)
e e nlze
W) la— [ g _ ds —
+ ) [“ Lo T @0+ | i mem—em o
—V=Alz—y| —V=Alz—y| Ing —1
— h(z)lim / oy —/ do(y)+2 T RE
60 | sy 4mlT — Y| () dmlr —yl 4T
t+e 1 e~ V=Alo(s)=a(t)l In2
h _ ds+a— 22|
* (x)[/u dnls—1  anlo(s) —o@)] T 2x

Due to 25(1) \ Eg(x)

={o(s) : 0 <|s—t| <e} =o(t —e,t —0]U[t+6t+c¢]) and
t—6 1

Ing—Ine=— [ Hds=— jﬁ? ﬁ ds we observe

—V=Alz—y| —V=Alz—y| Ing —1

e e n ne

[ ety - [ ety 2™
sy (2) 47T — Y| () dmlr —yl 4m

t=5 v/ Ro(s) = (0] ] tre gy Rlo()=o(t)] |
= — ds + — ds.
. o) o] a5 T s Wlo) o] dnls 1]
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Hence

(Bigah)(z) + (Tas(M)h) ()

=8 ,—v/=Ao(s)=a(t)| 1 te o—vV=Xo(s)—a(t)] 1

= | | et~ L e—ew R ds]
o] [ g e ]

o [ st ] e ]

=P | /jmy:_ - 47r!0(8)1— o) " : ;wi;(j j(:éf;(\t)ds ) [a ) 1;172] |

Analougously as in (4.43)) and (4.49) we see that the integrand in the last line is bounded.
Hence, if we send 0 to zero the integral vanishes and we get

- In2
(Bl-i-)\h) () + (Fa,E(A)h)(x) = h(z) [a - %]
for all z € ¥ and all h € C%'(X). In particular we can consider T,x()\) as an essentially
selfadjoint operator in L?(X) with dom [y 5(A) = C%N(Z) and Iy x(A) = a — 22 — By,
Let 'y 5 () be the representing operator of the lower bounded closed symmetric sesquilinear

form @) i, in L*(X) defined by

dom @),y := {h € L*(X) : @} 5,(h, h) < oo},
—Flw yl____
®niheg) =5 [ [ he) = o) G Ta) = ] do(y) dote) +

47r|a: —y
t+e
—V=A|z— y| 1 e*V*MU(S)*U(m ln(Qg)
A _ - — ds — d
/ ()9 [oz / A7)z — y| do(y) +/47r|s —t|  Arlo(s) —o(t)] N 27 o (@),

by S (x) t—e

cf. (3.7) and (3.8) in [Tet90]. Because of

f\ﬁlz vl
| ) = no) =) = )] dety) o)

47T|fff Y|

e~ V—Alz—yl S
2 ( [ vte) = ) e o <y>> () do(a)

we get @) ,(h,h) = (Ta(A)hy B) r2(s) < o0 for all h € dom Ty 53(\). Hence dom 'y 5(\) C
dom @ ;. Moreover we get @) 5,(h, g) (Tox(MNh, g) 125 for all h € domT,x()\) and
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4.4 Application to d-interactions on closed curves in R?

g € dom @), .. According to Corollary 2.4 in [Kat76, Chapter VI] this means

Tas(A) CTax(N).

As T, x(A) is essentially selfadjoint and ', () is selfadjoint we conclude with Lemmam

- m2 I
Tox(N) = Fax(\) = a — ;—W B =0+By—-Bia=0 - M1+ )\

for © == a — 1;—73 — By. Hence, with Proposition 5 in [Tet90] and Lemma , we get
-1
(=, =N
_Afree - /\)_lu + / [FQ,Z(A)_I(tr%(_Afree - /\)_lu)i| (y) : G)\( - y) dO'(y)
)

(
= (= Dpee+ 1= (1+ X)) w471+ A)(© = M1+ X)) 91+ N)*u
(Ao — (1+2) u=(~Axs — N 'u.

for all w € L*(R?). Hence ( — JAVES —/\)71 =(-Aga—A)and — A 5 = —As,. O
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