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Abstract (English)

Seven selected papers build this cumulative dissertation. The selected publications are included in the
form as they have been originally published. The publications showcase the scientific introduction and
examination of the topic ”Visualization Support For In Silico Medicine”. In particular, this cumulative
thesis sums up works ranging from a case study in cell physiology, a general report of biomedical infor-
matics approaches for visual analysis of biological data, looking into more detail into the visualization
of RNA secondary structures, protein-protein-interaction and last but not least focusing on computational
approaches to support tumor growth analysis. Finally this work concludes with prospect research strategies
for making use of visualization to support ”In Silico Tumor Growth modeling”.
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Abstract (German)

Sieben ausgewählte Publikationen bilden diese kumulative Dissertation. Die Beiträge sind in jenem For-
mat eingebunden, wie sie ursprünglich publiziert wurden. Die Papiere zeigen exemplarisch die wis-
senschaftliche Aufbereitung zum Thema ”Visualisierung Zur Unterstützung Von In Silico Medizin”. Genauer
umfasst diese kumulative Arbeit eine einleitende Fallstudie zu computergestützten Analysemethoden in der
Domäne der Zellphysiologie, einen Bericht über aktuelle Anwendungen in der medizinischen Informatik
zur visuellen Analyse komplexer Daten, eine Studie zur visuellen Darstellung von RNA-Strukturen und
ihren Wahrscheinlichkeiten, eine Studie über aktuelle Möglichkeiten zur visuellen Analyse von Protein-
Protein-Interaktionen und führt schließlich in die Thematik der Tumorforschung ein. Die Arbeit berichtet
abschließend von neuartigen Ansätzen für computergestützte Visualisierung zur Unterstützung von ”In Sil-
ico Modellierung von Tumor Wachstum”.
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Chapter 1
Introduction

Within my phd studies I was working on topics related to the working title of this PhD thesis ”Visualiza-
tion Support For In Silico Medicine”, that has been assigned to the subject of HCI/Visualization. During
the last years I managed to publish several conference and journal publications in the fields of HCI and
Visualization, in particular on Visual Analytics (VA) within the medical domain.

Interested in how fundamental research is being applied in biomedical science and how computational
approaches are used, I started by conducting a case study in the domain of biomedical science [2]. I
visited laboratories dealing with research in preclinical and translational medicine to understand how visual
analysis is applied to fundamental research. The first goal was to highlight opportunities how fundamental
research may benefit from applying sophisticated visualization methods known in the domain of computer
science. Therefore, by observing some experiments, documenting data analysis steps and highlighting
developable computational approaches, a first case study indicated the need for computational assistance
in both validation as well as data analysis and proposed improving the choice of visual analysis tools that
are used towards an integrated visualization and analysis approach.

Since then I also looked into other sub-research areas of biomedical science and studied uses of visu-
alization to support the analysis of heterogeneous data from different biological scales. First of all, by
continuing with participating in a review publication on interactive visual analysis in biomedical informat-
ics I could strengthen my understanding of visualization methods used in in silico medicine as well as
consolidated current state of the art within this field [8]. The state-of-the-art paper reflected on 59 exam-
ples of related literature and categorized them into two perspectives, namely into three different levels of
integration versus three different analytical tasks. The work concluded with listing several open problems
and underlined that most top ranked problems in the biomedical domain are related to usability issues.

To widen the understanding of the use of visualization in in silico medicine I explored and surveyed
integrated visualization features for analyzing protein-protein-interaction databases [4]. Graphs are often
used for visualizing biological data. Protein-protein-interaction databases integrate several different graph
visualization libraries. 53 online available protein-protein-interaction databases have been examined, 10
of them have been described in more detail and ranked, according to their effective and efficient applica-
tion to interactive visual analysis. Significant differences in user interface quality and data quality have
been shown. The work also lists some open problems when visualizing biological networks ranging from
providing interactive features for exploration and the handling of large graphs and high levels of details.

Since the beginning of my phd research I have been interested in tracking visualization problems within
the biological domain. Therefore I tracked listed challenges and topics of ongoing and upcoming BioVis
meetings. BioVis meetings have the goal to foster visualization research in problems in biological data
visualization, as well as bioinformatics and biomedical research in state-of-the-art visualization research.
Therefore, I participated in a BioVis contest [1] on uncertainty visualization of specific RNA data and de-
scribed three different approaches to visualizing RNA folding uncertainty [5]. Each entry was reviewed

1



Chapter 1. Introduction

by 5 reviewers from the biological and/or visualization domain, but none of the entries could solve the
problem completely. While a lot of questions remained open, there were several ideas for narrowing down
the problem. My proposed ideas included user interface metaphors for interacting with several possible
configurations to setting thresholds or for selecting structures that should be compared. The interactive
approach was well rated regarding its excellent and detailed presentation. However, certain shortcomings
regarding hiding information behind interactions have been marked as well as unanswered questions re-
garding the possibility of cluttering when not being limited to a certain threshold. On the other handy, one
reviewer already mentioned, that the latter problem may be solved by the proposed graph approach that
also was reviewed to work best. Next to my interactive proposal there was also a static one making use
of Arc Diagrams, the winner with a circular one called CS2-UPlot, another circularly arranged one called
RNA-SequenLens, a combination of the traditional dot plot and the MFE structure in the background and
one making use of nested concave hulls to highlight certain probabilities [1].

Last but not least, my latest works include a project dealing with visualization support for in silico
cancer research. Together with a domain expert in molecular biomedical science I managed to implement
a simulation tool for cancer growth visualization that has been published in a high ranked systems biology
journal [3]. Further case studies and reviews [7, 6] round up this research and mark the beginning of a
promising research opportunity for future projects to fight cancer.
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Chapter 2. Publications

2.1. On Visual Analytics and Evaluation in Cell Physiology: A Case
Study

Within this conference publication I report on field notes and observations including lessons learned while
studying how research is conducted in analyzing imaging data from experiments in the domain of cell
physiology. Therefore, I visited a laboratory dealing with research in molecular biology and medical
science, observed how experiments are made while taking notes, accompanied data analysis process steps,
and finally interviewed a domain expert. A key challenge was the inability to publish any details on
experiments’ results, because of privacy protection reasons. However, the study was a key motivator for
conducting further studies in the domain of biomedical science, because the observation highlights the need
for enabling collaboration, conducting evaluation and improving tools used so far.
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On Visual Analytics and Evaluation in Cell

Physiology: A Case Study

Fleur Jeanquartier and Andreas Holzinger

Research Unit Human-Computer Interaction, Institute for Medical Informatics,
Statistics and Documentation, Medical University Graz

{f.jeanquartier,a.holzinger}@hci4all.at

Abstract. In this paper we present a case study on a visual analytics
(VA) process on the example of cell physiology. Following the model of
Keim, we illustrate the steps required within an exploration and sense-
making process. Moreover, we demonstrate the applicability of this model
and show several shortcomings in the analysis tools functionality and us-
ability. The case study highlights the need for conducting evaluation and
improvements in VA in the domain of biomedical science. The main is-
sue is the absence of a complete toolset that supports all analysis tasks
including the many steps of data preprocessing as well as end-user devel-
opment. Another important issue is to enable collaboration by creating
the possibility of evaluating and validating datasets, comparing it with
data of other similar research groups.

Keywords: visual analytics, evaluation of visualization, human com-
puter interaction, biomedical science.

1 Introduction

From the first data analysis attempts to exploratory data analysis, up to in-
formation visualization, today we are facing the possibilities of visual analytics
(VA). With VA several analysis processes may be transformed and become more
effective and efficient through integrating automated analysis results and reason-
ing [1]. There is ongoing research in a variety of application areas ranging from
document analysis over network security to molecular biology. Applying visual
analysis techniques within these areas bring up certain limitations [2]. Dealing
with the complexity of biological data requires sophisticated visualization tech-
nologies. Prominent examples of visualization for exploration and analysis in the
domain of biology come from systems biology and include, among many others,
the visualization of biological networks and omics data [3] such as protein struc-
tures [4], visual analysis of gene expression data [5], but also visual analysis of
cell signaling networks [6]. For populating such databases for network analysis
biologists also deal with basic research in cell physiology.

In Fig. 1 we see a slightly modified version of the VA Process, first described
by [7]. According to Keim, humans have to be included early in the data analysis

A. Cuzzocrea et al. (Eds.): CD-ARES 2013, LNCS 8127, pp. 495–502, 2013.
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process. By using their background knowledge and being supported by process-
ing, transformation and visualization tools the analysis process eventually brings
up new insight. We illustrate the mapping of a VA process during one example
cell physiological experiment. Life scientists especially in the domain of biomed-
ical science may struggle with the fact, that the process starts with a first data
analysis. As for the observed work process later described in the Section 2 the
domain expert also started with describing the hypothesis and then choosing
suitable materials and methods for data acquisition. According to [7] input for
the data sets used in the VA process are of heterogeneous nature and can be
results from scientific experiments. Therefore we included the prior results as
input for the feedback loop. The hypothesis may be formed by a preceding ex-
ploration. The domain expert makes use of knowledge gained by preceding work.

Fig. 1. Adapted Version of Keim’s VA Process for the Application In Cell Physiology

Human computer interaction (HCI) and knowledge discovery (KDD) along
with biomedical informatics are of increasing importance to effectively make
sense out of data [8]. Biologists can benefit from a data deluge with the means
of an integrated visualization approach, however, conducting evaluation and im-
proving toolsets are still required to overcome certain hurdles on the way to
new insights [9]. A domain expert as analyst often works alone while analysing
data sets facing many problems, some of that have been illustrated by [10]. To
foster sense-making and insights in VA systems it is essential to conduct stud-
ies and determine how people are using such systems [11, 12]. Case studies as
field studies are a common approach to evaluating VA systems [13]. Qualitative
evaluation such as observational studies can be conducted in a more realistic
setting and allow improved understanding of existing practices for analysis and
environmental constraints [14].



On Visual Analytics and Evaluation in Cell Physiology: A Case Study 497

Consequently, we describe an observational study of a domain expert in cell
physiology to present the current practice of VA in this domain.

2 Observation

The user, a domain expert within biomedical science, is part of the visual analysis
and KDD process of a group of researchers dealing with cell physiology experi-
ments. We accompanied the domain expert while investigating and analysing a
set of experiments’ results and observed the expert’s analysis work. The analysis
process includes visual analysis as part of the data processing, data analysis and
KDD process as well as visual communication for dissemination.

A fluorescent biosensor [15] measures the concentration of certain molecules
within cellular compartments. Fluorescent biosensors can be used for monitoring
various processes and analytes such as metabolites, ions, target localization,
gene expression and physiological relevant changes within subcelluar regions [16].
The biosensor allows to quantify variations in concentration or localization of
the specific analyte within the cell by a change in fluorescence intensity. This
quantification is further visualized as intensity signal over time in terms of kinetic
curves. By that method, data in hundreds of columns and rows is recorded and
has to be processed further. In summary, this method provides the measurement
of biological signaling dynamics in vivo.

Experiments start with monitoring kinetics in signal transduction. The signal
represents the fluorescence intensity [17]. First of all sequences of high-resolution
fluorescent imaging of cells are acquired to capture dynamic changes. This ac-
tion takes place in the lab’s dark room. Fluorescence images are captured by
a digital camera incorporating a CCD detector, connected to the fluorescence
microscope. A commercial bioimaging software is used to communicate with the
hardware, translating recorded signals to raw data. The software also provides
some data/image processing functionality. Once the measurements are complete,
the analysis process continues with data processing and image analysis. Noise
(such as background lights within the dark room) reduction of images is sup-
ported by a ratio function. The domain expert marks specific regions of interest
within the cell in order to monitor biological activites in healthy and pathological
cells. Image segmentation is done manually insofar as the domain expert manu-
ally selects specific regions of interest on the image data for further comparison
and analysis. Hence, regions of interest as polygon shapes are placed on every
raw source to display the intensity value. The evaluation of whether the data
and to what extent is accurate is done by manually comparing specific regions
with a background region. The software allows the scientist to explore the data
only in a very limited way. For not occupying the lab’s dark room workplace
for the time-consuming tasks of data processing and analysis, the expert moves
to another workplace outside the dark room. Consequently, when the domain
expert believes, that the data is sufficient, the raw data is exported to a com-
mercial spreadsheet computation software via CSV for further processing and
analysis.
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Fig. 2. First visual analysis of intensity signal over time

The domain expert creates a first visualization (compare Fig. 2) of the data,
describing the kinetic changes in specific groups of healthy and pathological
cells. This task is done semi-automatically by end-user development [18]. The
following visual analysis shows, that the data has to be further filtered, cor-
rected and transformed and finally improved in terms of readability and to be
visualizable for the task of dissemination. It is up to the domain expert and the
implicit knowledge of models, developed by the group of researchers within the
lab, which transformation and manipulations are considered to be appropriate.
Some of the processing tasks are automatic and some are again manual. The do-
main expert uses several tools for the various tasks and switches between them
while advancing in the analysis process. While the process itself is occasionally
being discussed in group, several smaller but complex actions are double checked
by colleagues. Both the experiments and the visual analysis process are repeated
many times until certain ”surprising” [19] results get visible. This repetitive ap-
proach to gain new insights, also known as explorative data analysis (EDA),
supports the process illustrated in Fig. 1 as it consists of a feedback loop. Fi-
nally, when the visual analysis results show surprising effects, the domain experts
concludes with the dissemination (see Fig. 3) of the results, again with the means
of visualization. The final visualizations are again being iteratively improved.

By further discussing the case study’s process and comparing it with the VA
process, we try to outline certain issues when dealing with the evaluation of
scientific visualizations.

3 Discussion

The case study shows, that there are analysis processes in biomedical science
which embody VA as a lived approach. At the same time, the case study also
shows the need for improvements regarding HCI and end-user development. Ex-
perts in this domain are using their domain knowledge in combination with both
automatic and visual analysis together, but need to be guided by computer sci-
ence experts to improve the choice of tools that are used. There are certain tasks
still done manually that could be automated or at least semi-automated, using
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Fig. 3. Visualization of the kinetic parameters measured within the groups of healthy
control to pathological cells for dissemination

the right tool, such as image segmentation, noise reduction as well as post-
processing up to creating a set of fitting visualizations for dissemination. For
instance, there already exist attempts to automatically estimate suitable back-
ground in fluorescence imaging [20] and automatic localization of cell nuclei [21].
The case study supports the statement, proposed by VA, that automated anal-
ysis often speeds up analysis tasks. It also shows that communication through
visual representations is used for the dissemination of research results (see Fig.
3). Therefore, the case study shows, that visual analysis plays an important
role for gaining new insights and dissemination. However, the case study also
highlights that certain evaluation tasks are missing.

Lessons Learned include that there is a gap in free exploration of data and
information due to the lacking usability and interaction possibilities of the tools
used. The researchers within this field of study state, that they do not know
about powerful VA solutions. At the same time, they are facing certain restric-
tions that hinder them to cooperate fully with computer science experts. During
the observation the domain expert made complaints about shortcomings in the
analysis tools’ functionality and usability. Many tasks have to be repeated, not
only due to data inconsistency, but also because most tools are hardly fault-
tolerant and lack in supporting the user in certain data preprocessing steps as
well as in the post-processing such as choosing the right visualization technique
and improving the visualization’s readability.

There are several possibilities to improve the end-user development and to min-
imize the interaction junk [22] within the observed process, such as simplifying
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the creation of the effect curves for both visual analysis as well as dissemination.
Furthermore, the visualizations in use are still limited to curve diagrams and bar
charts. Alternative visualization metaphors such as multi-variate data visualiza-
tions [23] allow scientists to explore the data and it’s various dimensions in other
ways and may highlight certain effects that are not visible within the current
effect curves.

The discussion after the observation further included improvements and sug-
gestions to support the whole VA process. Due to the reason that both data as
well as study results are confidential we are not allowed to go into detail in this
respect. However, we already communicate general aspects of HCI and KDD and
present general suggestions for improving VA within this domain. The domain
expert agreed that there are several possibilities how evaluation could be inte-
grated to support VA. Lam et al. already list some fitting evaluation goals and
questions within the VDAR- and the CTV scenario [13]. However, the very idea
of discussing the visual analysis process with a domain expert in HCI already
brought up certain shortcomings within the visual analysis work. Suggestions
include: Evaluating the dataset, comparing it to datasets of other similar groups
of researchers, would help validating specific models as well as techniques and
speed up the analysis work. Moreover, enabling and facilitating collaboration
supports scientific problem solving [24]. The researchers in the group also agree
on the fact, that evaluating software in use and furthermore, having the possi-
bility to improve and extend the tools functionality would improve their daily
research tasks. Incooperating the many steps of data examination and prepro-
cessing into a single tool would be highly appreciated. The case study highlights
the need for conducting evaluation and improvements in VA in the domain of
biomedical science.

4 Conclusion

Every day scientists in many sub domains of life sciences such as biomedical sci-
ence are facing the challenging task of VA with the goal of reaching new insights.
Life scientists may benefit from a data deluge with the means of an integrated
visualization approach. However, conducting evaluation and improving certain
toolsets for exploratory data analysis and end-user development are prominent
challenges on the way to new insights.

We described an observational study of VA in cell physiology. We compared
the process to Keim’s VA process. The case study shows, that there are analysis
processes in biomedical science which embody VA. Further studies may include
additional practice of VA related analysis work of various other approaches in
biomedical science. The observation highlights the need for conducting evalua-
tion and improvements in VA in the domain of biomedical science. We suggested
evaluation possibilities and further noted challenges regarding its’ application for
visualization in life sciences. Among others, suggestions include incooperation
and improvement of support for developing visualization in regard to analysis.
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Nielsen, C.B., North, C., Olson, A.J., Procter, J.B., Shattuck, D.W., Walter, T.,
Wong, B.: Visualizing biological data - now and in the future. Nature Publishing
Group 7(3), S2–S4 (2010)

[10] Wong, B.L.W., Xu, K., Holzinger, A.: Interactive Visualization for Information
Analysis in Medical Diagnosis. In: Holzinger, A., Simonic, K.-M. (eds.) USAB
2011. LNCS, vol. 7058, pp. 109–120. Springer, Heidelberg (2011)

[11] Kang, Y.A., Görg, C., Stasko, J.: How Can Visual Analytics Assist Investigative
Analysis? Design Implications from an Evaluation. IEEE Transactions on Visual-
ization and Computer Graphics 17(5), 570–583 (2010)

[12] Wong, P.C., Shen, H.-W., Johnson, C.R., Chen, C., Ross, R.B.: The Top 10 Chal-
lenges in Extreme-Scale Visual Analytics. IEEE Computer Graphics and Appli-
cations 32(4), 63–67 (2012)

[13] Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical Studies
in Information Visualization: Seven Scenarios.. IEEE Transactions on Visualiza-
tion and Computer Graphics 18(9), 1–18 (2011)

[14] Carpendale, S.: Evaluating information visualizations. In: Kerren, A., Stasko, J.T.,
Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 19–
45. Springer, Heidelberg (2008)

[15] Morris, M.C.: Fluorescent biosensors of intracellular targets from genetically
encoded reporters to modular polypeptide probes. Cell Biochemistry and Bio-
physics 56(1), 19–37 (2010)

[16] Okumoto, S., Jones, A., Frommer, W.B.: Quantitative imaging with fluorescent
biosensors. Annual Review of Plant Biology 63, 663–706 (2012)

[17] Mehta, S., Zhang, J.: Reporting from the field: genetically encoded fluorescent
reporters uncover signaling dynamics in living biological systems.. Annual Review
of Biochemistry 80, 375–401 (2011)



502 F. Jeanquartier and A. Holzinger
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2.2. On Computationally-Enhanced Visual Analysis of
Heterogeneous Data and Its Application in Biomedical
Informatics

I participated in a joined work for a book chapter on integrative visual analysis in biomdeicine. My part was
to review existing work in this domain, describe and classify visualization examples, identify challenges
and extend the summary table.
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Abstract. With the advance of new data acquisition and generation
technologies, the biomedical domain is becoming increasingly data-driven.
Thus, understanding the information in large and complex data sets has
been in the focus of several research fields such as statistics, data mining,
machine learning, and visualization. While the first three fields predomi-
nantly rely on computational power, visualization relies mainly on human
perceptual and cognitive capabilities for extracting information. Data vi-
sualization, similar to Human–Computer Interaction, attempts an appro-
priate interaction between human and data to interactively exploit data
sets. Specifically within the analysis of complex data sets, visualization
researchers have integrated computational methods to enhance the in-
teractive processes. In this state-of-the-art report, we investigate how
such an integration is carried out. We study the related literature with
respect to the underlying analytical tasks and methods of integration. In
addition, we focus on how such methods are applied to the biomedical
domain and present a concise overview within our taxonomy. Finally, we
discuss some open problems and future challenges.

Keywords: Visualization, Visual Analytics, Heterogenous Data, Com-
plex Data, Future Challenges, Open Problems

1 Introduction and Motivation

Our society is becoming increasingly information-driven due to new technologies
that provide data at an immense speed and scale. Even scientific practices are
going under significant changes to adapt to this tremendous availability of data
and data analysis is an important part in answering scientific questions. One
of the fields where data analysis is especially important is biomedicine. In this
domain, datasets are often structured in terms of both the scales they relate to,



2 Turkay et al.

e.g., from molecular interactions to how biological systems in the human body,
and the inherent characteristics they carry, e.g., images from different medical
devices. Such structures are both a challenge and a opportunity for scientists
and significant efforts are put in several domains to understand these data. In
this paper, we focus on how visualization, in particular those that incorporate
computational analysis, approaches and enhances the analysis of structured in-
formation sources. We start with a section that discusses our goals and move on
to more specific discussions on understanding information in data.

1.1 Goals

The best way of beginning such a paper, would be to start with the definition
of Visualization and discuss the goal of visualization: A classical goal of visu-
alization is, in an interactive, visual representation of abstract data, to amplify
the acquisition or use of knowledge [1] and to enable humans to gain insight
into complex data sets, either for the purpose of data exploration and analysis,
or for data presentation [2], [3] (see section Glossary and Key Terms for more
discussions). Visualization is a form of computing that provides new scientific
insight through visual methods and therefore of enormous importance within
the entire knowledge discovery process [4].

The goal of this paper is to provide a concise introduction into the visual-
ization of large and heterogeneous data sets, in particular from the biomedical
domain. For this purpose we provide a glossary to foster a common understand-
ing, give a short nutshell-like overview about the current state-of-the-art and
finally focus on open problems and future challenges. We base our taxonomy
on a 2D structure on the different analytical tasks and on how computational
methods can be integrated in visualizations. All the relevant works are then
grouped under these categories. In addition to studies that do not have a spe-
cific application domain, we categorize visualization methods that specifically
aimed at solving biomedical problems. Such subsets of work are presented under
each category.

The goal of this dual focus strategy is to identify areas where visual-
ization methods have shown to be successful but have not yet been applied to
problems in the biomedical domain.

1.2 Understanding Information in Data

Understanding the relevant information in large and complex data sets has been
in the focus of several research fields for quite a time; studies in statistics [5],
data mining [6], machine learning [7], and in visualization [8] have devised meth-
ods to help analysts in extracting valuable information from a large variety of
challenging data sets. While the first three fields predominantly rely on com-
putational power, visualization relies mainly on the perceptual and cognitive
capabilities of the human for extracting information. Although these research
activities have followed separate paths, there have been significant studies to
bring together the strengths from these fields [9–11]. Tukey [12] led the way
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in integrating visualization and statistics with his work on exploratory data
analysis. Earlier research on integrating statistics [13] and data mining [9] with
information visualization have taken Tukey’s ideas further.

This vision of integrating the best of both worlds has been a highly praised
goal in visualization research [14–16] and parallels the emergence of visual an-
alytics as a field on its own, which brings together research from visualization,
data mining, data management, and human computer interaction [15]. In vi-
sual analytics research, the integration of automated and interactive methods
is considered to be the main mechanism to foster the construction of knowl-
edge in data analysis. In that respect, Keim [17] describes the details of a visual
analysis process, where the data, the visualization, hypotheses, and interactive
methods are integrated to extract relevant information. In their sense-making
loop, based on the model introduced by van Wijk [18], the analytical process is
carried out iteratively where the computational results are investigated through
interactive visualizations. Such a loop aims to provide a better understanding of
the data that will ultimately help the analyst to build new hypotheses. However,
previously presented approaches still lack considering certain research issues to
support a truly cross-disciplinary, seamless and holistic approach for the process
chain of data > information > knowledge. Research needs to deal with data inte-
gration, fusion, preprocessing and data mapping as well as issues of privacy and
data protection. These issues are being addressed in the HCI-KDD approach
by Holzinger [19], [20] and is supported by the international expert network
HCI-KDD (see hci4all.at).

1.3 Understanding Information in Biomedical Data

Interactive visual methods have been utilized within a wide spectrum of domains.
In biomedicine, visualization is specifically required to support data analysts in
tackling with problems inherent in this domain [20–22]. These can be summarized
in three specific and general challenges:

Challenge 1: Due to the trend towards a data-centric medicine, data analysts
have to deal with increasingly growing volumes and a diversity of highly com-
plex, multi-dimensional and often weakly-structured and noisy data sets and
increasing amounts of unstructured information.

Challenge 2: Due to the increasing trend towards precision medicine (P4 medicine:
Predictive, Preventive, Participatory, Personalized (Hood and Friend, 2011)),
biomedical data analysts have to deal with results from various sources in differ-
ent structural dimensions, ranging from the microscopic world (systems biology,
see below), and in particular from the ”Omics-world” (data from genomics, pro-
teomics, metabolomics, lipidomics, transcriptomics, epigenetics, microbiomics,
fluxomics, phenomics, etc.) to the macroscopic world (e.g., disease spreading
data of populations in public health informatics).
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Challenge 3: The growing need for integrative solutions for interactive visual-
ization of the data mentioned in challenge 1 and 2. Note that, although there
are many sophisticated results and paradigms from the visualization community,
integrated solutions, e.g. within business hospital information systems, are rare
today.

An example from the biological domain can emphasize the aforementioned
challenges: Biologists deal with data of different scale and resolution, ranging
from tissues at the molecular and cellular scale (”the microscopic”) up to or-
gan scale (”the macroscopic”), as well as data from a diversity of databases of
genomes and expression profiles, protein-protein interaction and pathways [23].
As understood by systems biology, the biological parts do not act alone, but in
a strongly interwoven fashion, therefore biologists need to bridge and map dif-
ferent data types and analyze interactions [24]. Biomedicine has reached a point
where the task of analyzing data is replacing the task of generating data [25]. At
this point, visual analysis methods that support knowledge discovery in complex
data become extremely important.

2 Glossary and Key Terms

In this section, we try to capture visualization and data analysis related terms
that are only referenced explicitly within this paper. We do not cover the whole
spectrum of visualization and analysis terms.

Visualization: is a visual representation of datasets intended to help people carry
out some task more effectively according to Tamara Munzner [26]. Ward de-
scribes visualization as the graphical presentation of information, with the goal
of providing the viewer with a qualitative understanding of the information con-
tents [3].

Space: A set of points a ∈ S which satisfy some geometric postulate.

Topological Visualization: a prominent trend in current visualization research,
driven by the data deluge. A topological abstraction provides a common math-
ematical language to identify structures and contexts [27], [28].

Visual Analytics: is an integrated approach combining visualization, human fac-
tors and data analysis to achieve a deep understanding of the data [14,15].

Interactive Visual Analysis (IVA): is a set of methods that have overlaps with
visual analytics. It combines the computational power of computers with the
perceptive and cognitive capabilities of humans to extract knowledge from large
and complex datasets. These techniques involve looking at datasets through dif-
ferent, linked views and iteratively selecting and examining features the user
finds interesting.
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Heterogeneous data: composed of data objects carrying different characteris-
tics and coming from different sources. The heterogeneity can manifest itself in
several forms such as different scales of measure, i.e., being categorical, discrete
or continuous, or challenging to relate representations, e.g., genomic activity
through gene expression vs. molecular pathways; a recent example of such data
sets is described by Emmert-Streib et al. [29].

Classification: Methods that identify which subpopulation a new observation
belongs on the basis of a training set of observations with known categories.

Factor Analysis & Dimension Reduction: is a statistical method that aims to
describe the information in the data by preserving most of the variety. This pro-
cess often leads to derived, unobserved variables called the factors [5]. Similarly,
there exist dimension reduction methods, such as Principal Component Analysis
(PCA) and Multi-Dimensional Scaling (MDS) that project higher dimensional
data onto lower dimensional spaces by preserving the variance in the data [5].

Decision tree: is a predictive statical model that enhances classification tasks [30].
It is often represented visually as a tree to support decision making tasks.

Regression analysis: is a statistical method that aims to estimate the relations
between data variables. In other words, it tries to model how dependent certain
factors are on others in the data [31].

3 State of the Art

There are a number of surveys that characterize how the integration of auto-
mated methods and interactive visualizations are accomplished. Crouser and
Chang [32] characterize the human computer collaboration by identifying what
contributions are made to the process by the two sides. In their survey, sev-
eral papers are grouped according to these types of contributions. According
to the authors, humans contribute to the analytical processes mainly by visual
perception, visuospatial thinking, creativity and domain knowledge. On the other
side, the computer contributes by data manipulation, collection and storing, and
bias-free analysis routines. Bertini and Lalanne [16] categorize methods involving
data mining and visualization into three: computationally enhanced visualization,
visually enhanced mining, and integrated visualization and mining. Their cate-
gorization depends on whether it is the visualization or the automated method
that plays the major role in the analysis.

In this state of the art analysis, we categorize the related literature in two
perspectives. Our first perspective relates to the analytical task that is being
carried out. After an investigation of literature from the computational data
analysis domain [5,33,34], we identify a general categorization of the most com-
mon data analysis tasks as follows: summarizing information, finding groups &



6 Turkay et al.

classification, and investigating relations & prediction. We discuss these tasks
briefly under each subsection in the following. Our second perspective relates
to how the integration of computational tools in visual analysis is achieved. We
identify three different categories to characterize the level of integration of com-
putational tools in visualization, namely, visualization as a presentation medium,
semi-interactive use of computational methods and the tight integration of in-
teractive visual and computational tools. These levels are discussed in detail in
Section 3.1.

In the following, we firstly organize the literature under the three analytical
task categories and then group the related works further in sub-categories re-
lating to the levels of integration. Before we move on to the literature review,
we describe the three levels of integration introduced above. Even though we
describe each analysis task separately, the categorization into the three common
analysis tasks can be seen as a series of steps within a single analysis flow. Start-
ing with summarizing information, proceeding with finding groups and last but
not least finding relations and trends. One aspect that we do not cover explicitly
is the consideration of outliers. Outlier analysis focuses on finding elements that
do not follow the common properties of the data and needs to be part of a com-
prehensive data analysis process [35]. In this paper, we consider outlier analysis
as an inherent part of summarizing information although there are works that
are targeted at treating outliers explicitly [36].

Table 1 groups the investigated literature under the categories listed here.
One important point to make with respect to the allocations to sub-groups in
this table is that the borders within the categories are not always clear and
there is rather a smooth transition between the categories. There are methods
that try to address more than one analytical question. For such works, we try
to identify the core questions tackled to place them in the right locations in this
table. Similar smooth transitions also existent for the levels of integration, and
our decision criteria is discussed in the following section.

3.1 Levels of Integration

On the first level of integration of computational tools within visual data anal-
ysis, visualization is used as a presentation medium to communicate the results
of computational tools. These visualizations are either static representations, or
only allow limited interaction possibilities such as zooming, panning, or making
selections to highlight interesting parts of the data. A typical example for this
category is the use of graphical plotting capabilities of statistical analysis soft-
ware such as R [37]. In this system, users often refer to static visualizations to
observe the results from computational procedures, such as clustering or fitting
a regression line.

The second level of integration involves the use of the computational tool
as a separate entity within the analysis where the tool’s inner working is not
transparent to the user. In this setting, the user interacts with the computational
mechanism either through modifying parameters or altering the data domain
being analyzed. The results are then presented to the user through different
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Visualization as
presentation

Semi-interactive
Methods

Tight
Integration

Summarizing
Information

[38], [25] [39], [40], [41], [42],
[43], [44], [45], [46],
[47], [48], [49], [50]
[51]

[52], [53], [54], [55],
[56], [57]

Groups
& Classification

[58] [59], [60] [61], [62], [63], [64],
[65], [66], [67], [68],
[69], [70], [71], [72],
[73], [74], [75]

[76], [77], [78],
[79], [80], [81]

Dependence
& Prediction

[82], [83], [47] [84], [85], [86], [87],
[88], [89], [90]

[91], [92], [93]

Table 1. Analytical Tasks vs. Levels of Integration. This 2D structure is used to
categorize the reviewed literature in this paper.

visual encodings that are often accompanied by interaction. One potential benefit
here is that if problems are just too large so that a comprehensive computational
approach is totally unfeasible, for ex., exhaustively searching a high-dimensional
parameter space, then some directed steering by the intelligent expert user can
help.

The third level constitutes mechanisms where a tight integration of inter-
active methods and computational tools is achieved. In these approaches, the
automated methods are used seamlessly within interactive visual analysis. So-
phisticated interaction mechanisms make the automated tools an integral part of
the visualization. Methods in this category also interfere with the inner working
of the algorithms and the results of automated tools are communicated imme-
diately to the user.

When the second and the third levels are considered, we observe that cate-
gorizing a paper is not straightforward since the boundaries between these levels
are smooth rather than discrete. In that respect, our classification criteria for
level three is whether the integration allows for flexibility and done in a seamless
way. If the integration is done at a manner where the automated method exists
explicitly as a black-box that allows interaction to a certain level, we categorize
the method under level two.

3.2 Summarizing Information

Data sets are becoming large and complex both in terms of the number of items
and the number of modalities, i.e., data measured/collected from several sources,
they contain. In order to tackle with the related visualization challenges, methods
that are based on the summarization of underlying information are widely used
in both automated and interactive visual data analysis [94]. Methods in this
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category involve the integration of descriptive statistics, dimension reduction,
and factor analysis methods in general.

Visualization as presentation

For this category, we focus only on visualization tools in the biomedical context
where there are many examples for visualization as presentation. As databases
have become an integral part of dissemination and mining in biomedicine, the
consolidation of such experiments data already brought up comprehensive tools
for managing and sharing data. To name one, the Cell Centered Database [38]
is a public image repository for managing and sharing (3D) imaging data. Next
to image databases there is also a wide variety of different visualization tools,
including interaction networks, pathway visualizations, multivariate omics data
visualizations and multiple sequence alignments that have been reviewed recently
by others [24, 25, 95]. In this context, visualization is most commonly used for
exploration (hypothesis generation). Common visualization methods in addition
to network visualization include scatter plots, profile plots/parallel coordinates
and heatmaps with dendograms, while many tools provide combinations of those
as linked views. Comprehensive summaries of visualization tools exist for cer-
tain areas. Nielsen et al. [25] present a review on tools for visualizing genomes,
in particular tools for visualizing sequencing data, genome browsers and com-
parative genomics. Gehlenborg et al. [24] present a table of visualization tools in
the area of systems biology, categorized by the different focusses of omics data.
While most tools still lack in usability and integration, some of the listed tools
already provide sophisticated interactive possibilities like annotating, comparing
and showing confidence measures and prediction results next to view manipu-
lations such as navigating, zooming and filtering. There is also a trend towards
implementing web-based solutions to facilitate collaboration.

Semi-interactive Methods

Perer and Shneiderman [46] discuss the importance of combining computa-
tional analysis methods, in particular statistics, with visualization to improve
exploratory data analysis. Jänicke et al. [39] utilize a two-dimensional projec-
tion method where the analysis is performed on a projected 2D space called the
attribute cloud. The resulting point cloud is then used as the medium for inter-
action where the user is able to brush and link the selections to other views of
the data. Johansson and Johansson [40] enable the user to interactively reduce
the dimensionality of a data set with the help of quality metrics. The visually
guided variable ordering and filtering reduces the complexity of the data in a
transparent manner where the user has a control over the whole process. The
authors later use this methodology in the analysis of high-dimensional data sets
involving microbial populations [41]. Fuchs et al. [42] integrate methods from
machine learning with interactive visual analysis to assist the user in knowledge
discovery. Performing the high-dimensional data analysis on derived attributes
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Fig. 1. Data can be visually analyzed on interactively created 2D spaces. (Image by
Jänicke et al. [39])

is a strategy utilized in a number of studies. Kehrer et al. [50] integrate statisti-
cal moments and aggregates to interactively analyze collections of multivariate
data sets. In the VAR display by Yang et al. [49], the authors represent the
dimensions as glyphs on a 2D projection of the dimensions. A multidimensional
scaling operation is performed on the glyphs where the distances between the
dimensions are optimally preserved in the projection.

In Biomedicine there are only a few visualization tools that are being used to
construct integrated web applications for interactive data analysis. Next to the
UCSC Genome Browser [47], the IGV [48] is another common genome browser
that integrates many different and large data sets and supports a wide variety
of data types to be explored interactively. A few similar tools that are tightly
integrated with public databases for systems biology are listed by Gehlenborg
et al. [24].

In MulteeSum, Meyer et al. [51] used visual summaries to investigate the
relations between linked multiple data sets relating to gene expression data.
Artemis [44] supports the annotation and visual inspection, comparison and anal-
ysis of high-throughput sequencing experimental data sets. The String-DB [45] is
a commonly used public comprehensive database for protein-protein interaction
that supports visual data analysis by providing interactive network visualiza-
tions.

Otasek et al. [96] present a work on Visual Data Mining (VDM), which is
supported by interactive and scalable network visualization and analysis. Otasek
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Fig. 2. A selection of data transformations are chained together interactively to achieve
dimension reduction. (Image by Ingram et al. [55])

et al. emphasize that knowledge discovery within complex data sets involves
many workflows, including accurately representing many formats of source data,
merging heterogeneous and distributed data sources, complex database search-
ing, integrating results from multiple computational and mathematical analyses,
and effectively visualizing properties and results.

Mueller et al. report in a recent work [97] on the successful application of data
Glyphs in a disease analyser for the analysis of big medical data sets with auto-
matic validation of the data mapping, selection of subgroups within histograms
and a visual comparison of the value distributions.

Tight Integration

Nam and Mueller [52] provides the user with an interface where a high-dimensional
projection method can be steered according to user input. In MDSteer [53], an
embedding is guided with user interaction leading to an adapted multidimen-
sional scaling of multivariate data sets. Such a mechanism enables the analyst to
steer the computational resources accordingly to areas where more precision is
needed. Ingram et al. [55] present a system called DimStiller, where a selection of
data transformations are chained together interactively to achieve dimension re-
duction. Endert et al. [54] introduce observation level interactions to assist com-
putational analysis tools to deliver more reliable results. The authors describe
such operations as enabling the direct manipulation for visual analytics [56].
Turkay et al. introduce the dual-analysis approach [57] to support analysis pro-
cesses where computational methods such as dimension reduction [93] are used.



On Computationally-enhanced Visual Analysis of Heterogeneous Data 11

3.3 Finding groups & Classification

One of the most common analytical tasks in data analysis is to determine the
different groups and classifications [5]. Analysts often employ cluster analysis
methods that divide data into clusters where data items are assigned to groups
that are similar with respect to certain criteria [98]. One aspect of cluster analysis
is that it is an unsupervised method, i.e., the number of groups or their labels are
not known a priori. However, when the analyst has information on class labels
beforehand, often referred to as the training set, classification algorithms can be
utilized instead. Below, we list interactive visualization methods where cluster
analysis tools and/or classification algorithms are utilized.

Visualization as presentation

Parallel Sets by Kosara et al. [59] is a successful example where the overlaps
between groups is presented with a limited amount of interaction. In the soft-
ware visualization domain, Telea and Auber [60] represent the changes in code
structures using a flow layout where they identify steady code blocks and when
splits occur in the code of a software. Demvsar et al. [58] present a visualization
approach for exploratory data analysis of multidimensional data sets and show
it’s utility for classification on several biomedical data sets.

Semi-interactive Methods

May and Kohlhammer [65] present a conceptual framework that improves the
classification of data using decision trees in an interactive manner. The authors
later proposed a technique called SmartStripes [66] where they investigate the
relations between different subsets of features and entities. Interactive systems
have also been used to help create decision trees [99]. Guo et al. [71] enable
the interactive exploration of multivariate model parameters. They visualize the
model space together with the data to reveal the trends in the data. Kando-
gan [72] discusses how clusters can be found and annotated through an image-
based technique. Rinzivillo et al. [73] use a visual technique called progressive
clustering where the clustering is done using different distance functions in con-
secutive steps. Schreck et al. [74] propose a framework to interactively monitor
and control Kohonen maps to cluster trajectory data. The authors state the
importance of integrating the expert within the clustering process in achieving
good results. gCluto [75] is an interactive clustering and visualization system
where the authors incorporate a wide range of clustering algorithms.

In Hierarchical Clustering Explorer [70], Seo and Shneiderman describe the
use of an interactive dendogram coupled with a colored heatmap to represent
clustering information within a coordinated multiple view system. Other exam-
ples include works accomplished within the Caleydo software for pathway analy-
sis and associated experimental data by Lex et al. [61–63]. In a recent paper, the
integrated use of statistical computations is shown to be useful to characterize
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Fig. 3. Results of statistical test computations are communicated through visual en-
codings to support the identification of discriminative elements in subgroups. (Image
by Turkay et al. [64])

the groupings in the data [64]. Gehlenborg et al. [24] identified that scatter plots,
profile plots and heat maps are the most common visualization techniques used
in interactive visualization tools for tasks like gene expression analysis. Younesy
et al. [67] presents a framework where users have the ability to steer cluster-
ing algorithms and visually compare the results. Dynamically evolving clusters,
in the domain of molecular dynamics, are analyzed through interactive visual
tools by Grottel et al. [68]. The authors describe flow groups and a schematic
view that display cluster evolution over time. Mayday is one framework example
where a visual analytics framework supports clustering of gene expression data
sets [69].

Tight Integration

Turkay et al. presents an interactive system that addresses both the genera-
tion and evaluation stages in a clustering process [80]. Another example is the
iVisClassifier by Choo et al. [81] where the authors improve classifitcation per-
formance through interactive visualizations. Ahmed and Weaver [76] discuss how
the clustering process can be embedded within an highly interactive system. Ex-
amples in biomedical domain are rare in this category. One example is by Rubel
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Fig. 4. Interactive systems have been used to help create and evaluate decision trees
(Image by van den Elzen and van Wijk [99])

et al. [77], who present a framework for clustering and visually exploring (3D)
expression data. In the domain of molecular dynamics simulation, there are some
examples of tight integrations of interactive visualizations, clustering algorithms,
and statistics to support the validity of the resulting structures [78], [79].

3.4 Investigating dependence

An often performed task in data analysis is the investigation of relations within
different features in a data set [100]. This task is important to build cause and
effect relations, understanding the level of dependence between features, and pre-
dicting the possible outcomes based on available information. In this category,
we list interactive methods that incorporate computational tools to facilitate
such tasks. Often employed mechanisms are: regression, correlation, and predic-
tive analysis approaches. In the biomedical domain, Secrier et al. [101] present a
list of tools that deal with the issue of time, however, they note that it is yet an
open challenge in comparative genomics to find tools for analyzing time series
data that can handle both the visualization of changes as well as showing trends
and predictions for insightful inferences and correlations.
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Fig. 5. Visualization helps analysts in making predictions and investigating uncertain-
ties in relations within simulation parameters (Image by Booshehrian et al. [87])

Visualization as presentation

In this category, we focus mainly on works from biomedical domain. Krzywinski
et al. [82] presents a tool for comparative genomics by visualizing variation in
genome structure. Karr et al. [83] present a promising topic, namely computing
comprehensive whole-cell model and presenting model predictions for cellular
and molecular properties.

Nielsen et al. [25] reviews tools for the visual comparison of genomes. The
list of referenced tools includes Circos [82], a visualization presentation method
for visualizing synteny in a circular layout. One example referenced is the al-
ready mentioned UCSC genome browser [47] that also provides simple phylo-
genetic tree graphs. The list also includes tools that integrate computational
methods and support the visual analysis of comparative genomics more interac-
tively, which are discussed in the next level of integration.

Semi-interactive Methods

Visualization has shown to be effective in validating predictive models through
interactive means [85]. Mühlbacher and Piringer [86] discuss how the process of
building regression models can benefit from integrating domain knowledge. In the
framework called Vismon, visualization has helped analysts to make predictions
and investigate the uncertainties that are existent in relations within simulation
parameters [87]. Interaction methods facilitate the investigation of multivariate
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Fig. 6. The process of building regression models can benefit from integrating domain
knowledge through interactive visualizations. (Image by Mühlbacher and Piringer [86])

relations in multi-variate data sets [89]. Yang et al. [90] analyze the relations
between the dimensions of a data set to create a hierarchy that they later use
to create lower-dimensional spaces.

Within biomedical applications, Meyer et al. [84] present a synteny browser
called MizBee, that provides circular views for the interactive exploration and
analysis of conserved synteny relationships at multiple scales. In a later paper,
they investigate the dependencies within signals coming from related data sets
and present a comparative framework [88].

Tight Integration

Berger et al. [91] introduce an interactive approach that enables the investi-
gation of the parameter space with respect to multiple target values. Malik et
al. [92] describe a framework for interactive auto-correlation. This is an example
where the correlation analysis is tightly coupled with the interactive elements
in the visualization solution. Correlation analysis have been integrated as an
internal mechanism to investigate how well lower-dimensioal projections relate
to the data that they represent [93].

4 Open Problems

Chaomei Chen (2005) [102] raised a list of top 10 unsolved information visual-
ization problems, interestingly on top are usability issues, which are particularly
relevant for the biomedical domain, as a recent study has shown [103]. This is
mostly due to the fact that usability engineering methods are still considered
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as nice add-on and not yet an integrated part in the software development pro-
cess [104]. Here we list a number of open problems in relation to the literature
we cover in this report.

Problem 1. A topic that needs further attention is to address the uncertainty
within the analysis process. The explorative nature of interactive visual analysis
creates a vast amount of analysis possibilities and often leads to several plausible
results. It is thus of great importance to reduce this space of possibilities and
inform the user about the certainty of the results.

Problem 2. Although we have seen several works that involve a tight integration
between computational methods and visualization, examples of seamless inte-
grations are rare. With this term, we refer to interaction mechanisms where the
support from appropriate sophisticated computational tools are provided to the
user without the analyst noticing the complexities of the underlying mechanisms.
One example to clarify this term could be: applying regression analysis locally
on a selection within a 2D scatterplot and presenting the result immediately
with a regression line.

Problem 3. One aspect that needs to be investigated further in the integra-
tion of interactive and automated methods is the issue of usability. Most of the
solutions introduced here require significant literacy in statistics and skills in us-
ing different computational methods – which can lead to a demanding learning
curve.

Problem 4. We have seen that most of the visual analysis methods are focussed
at particular data types. However, given the current state of data collection
and data recording facilities, there are often several data sets related to a phe-
nomenon. There is the need for advanced mechanisms that can harness these
various sources of information and help experts to run analysis that stretches
over several data sets. This issue relates to the goal of developing an integrated
visualization environment spanning several biological dimensions, from micro
to macro towards an integrated approach. The recent survey by Kehrer and
Hauser [105], which illustrates the many different axes along which data com-
plexity evolves and how visualization can address these complexities, is a starting
point to identify suitable approaches.

Problem 5. One observation we make is that the visualization methods often use
the support from a single, specific computational mechanism. However, in order
to achieve a comprehensive data analysis session, one needs to address all of the
analysis tasks we present in our discussions above from summarizing informa-
tion up to finding cause and effect [23, 101]. Especially, when works relating to
biomedical applications are considered, we notice that studies that involve the
tight integration of computational tools are rare. Given the successful application
of such methods in other domains, it is expected that biomedical applications
can also benefit significantly from these approaches.
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5 Future Outlook

As stated within the open problems above, there is a certain need for mecha-
nisms to improve the interpretability and usability of interactive visual analysis
techniques. Possible methods could be to employ smart labeling and annotation,
creating templates that analysts can follow for easier progress, and computation-
ally guided interaction mechanisms where automated methods are integrated
seamlessly. Such methods need to utilize computational tools as underlying sup-
port mechanism for users, one aspect that needs attention in this respect is to
maintain the interactivity of the systems. Appropriate computation and sam-
pling mechanisms needs to be developed to achieve such systems.

In order to address the uncertainties in visual data analysis, mechanisms
that communicate the reliability of the observations made through interactive
visualizations need to be developed, e.g., what happens to the observation if the
selection is moved slightly along the x-axis of a scatter plot? If such questions
are addressed, interactive and visual methods could easily place themselves in
the everyday routine of analysts that require precise results.

The ability to define features interactively and refine feature definitions based
on insights gained during visual exploration and analysis provides an extremely
powerful and versatile tool for knowledge discovery. Future challenges lie in the
integration of alternate feature detection methods and their utilization in intel-
ligent brushes. Furthermore, integrating IVA and simulations, thus supporting
computational steering, offers a wide range of new possibilities for knowledge
discovery [106].

An interesting direction for future research relates to improving the usability
of analysis processes. Current usability studies often focus on specific parts of
a technique. However in order to evaluate the effectiveness of the whole anal-
ysis process, there is the need to perform comprehensive investigations on the
interpretability of each step of the analysis and study the effects of using compu-
tational tools interactively. Such studies can be carried out in forms of controlled
experiments where the analysts are given well-determined tasks and are asked to
employ particular types of analysis routes. These routes can then be evaluated
and compared against non-interactive processes where possible.

A challenging future research avenue for effective HCI is to find answers to
the question “What is interesting?” as Interest is an essentially human con-
struct [107], a perspective on relationships between data that is influenced by
context, tasks, personal preferences, previous knowledge (=expectations) and
past experience [108]. For a correct semantic interpretation, a computer would
need to understand the context in which a visualization is presented; however,
comprehension of a complex context is still beyond computation. In order for a
data mining system to be generically useful, it must therefore have some way
in which one can indicate what is interesting, and for that to be dynamic and
changeable [109].

A very recent research route in HCI is Attention Routing, which is a novel
idea introduced by Polo Chau [110] and goes back to models of attentional
mechanisms for forming position-invariant and scale-invariant representations
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of objects in the visual world [111]. Attention routing is a promising approach
to overcome one very critical problem in visual analytics, particularly of large
and heterogeneous data sets: to help users locate good starting points for their
analysis. Based on anomaly detection [112], attention routing methods channel
the end-users to interesting data subsets which do not conform to standard be-
haviour. This is a very promising and important research direction for Knowledge
Discovery and Data Mining [?].

Top end research routes encompassing uncountable research challenges are in
the application of computational topology [27], [113], [114] approaches for data
visualization. Topology-based methods for visualization and visual analysis of
data are becoming increasingly popular, having their major advantages in the
capability to provide a concise description of the overall structure of a scientific
data set, because subtle features can easily be missed when using traditional
visualization methods (e.g. volume rendering or isocontouring), unless correct
transfer functions and isovalues are chosen. By visualizing a topology directly,
one can guarantee that no feature is missed and most of all solid mathemati-
cal principles can be applied to simplify a topological structure. The topology
of functions is also often used for feature detection and segmentation (e.g., in
surface segmentation based on curvature) [115].

In this state-of-the-art report, we investigated the literature on how visual-
ization and computation support each other to help analysts in understanding
complex, heterogeneous data sets. We also focused on to what degree these meth-
ods have been applied to biomedical domain. When the three different levels of
integration are considered, we have observed that there are not yet many works
falling under the third integration level. We have seen that existing applications
in this category have significant potential to address the challenges discussed
earlier in the paper. However, there exist several open problems, as discussed
above, which can motivate the visualization and knowledge discovery commu-
nity to carry out research on achieving a tight integration of computational
power and capabilities of human experts.
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Visual analytics: Definition, process, and challenges. Information Visualization
(2008) 154–175

18. van Wijk, J.J.: The value of visualization. In: Visualization, 2005. VIS 05. IEEE,
IEEE (2005) 79–86

19. Holzinger, A.: Human-computer interaction and knowledge discovery (hci-kdd):
What is the benefit of bringing those two fields to work together? In Cuzzocrea, A.,
Kittl, C., Simos, D., Weippl, E., Xu, L., eds.: Availability, Reliability, and Security
in Information Systems and HCI. Volume 8127 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2013) 319–328

20. Holzinger, A., Jurisica, I. In: Knowledge Discovery and Data Mining in Biomedical
Informatics: The future is in Integrative, Interactive Machine Learning Solutions.
Springer, Heidelberg, Berlin (2014) in print

21. Holzinger, A.: On knowledge discovery and interactive intelligent visualization
of biomedical data - challenges in humancomputer interaction and biomedical
informatics. In: DATA 2012, INSTICC (2012) 9–20

22. Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B.:
Bioinformatics challenges for personalized medicine. Bioinformatics 27(13) (2011)
1741–1748

23. O’Donoghue, S.I., Gavin, A.C., Gehlenborg, N., Goodsell, D.S., Hériché, J.K.,
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2.3. Integrated web visualizations for protein-protein interaction
databases

Within this journal publication I present results from studying visualization features provided by PPI anal-
ysis tools that are freely available via Internet. By observing that fundamental research in biomedicine in
particular in the domain of proteomics needs tools that support identifying information on relations within
protein interaction databases i created the idea of providing a review of existing visualization features. By
that I started with supervising two computer science studies to set up a first comparison table. Together
with my sister, a domain expert in molecular biomedical science, we validated first results and further ex-
tended the table. We present a comprehensive table of PPI databases and describe evaluation results of a
sub-group of the identfied tools that are both openly available as well as provide visualization features.
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Abstract

Background: Understanding living systems is crucial for curing diseases. To achieve this task we have to understand
biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of
databases and tools that support analysts in exploring protein-protein interactions on an integrated level for
knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research
and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of
protein-protein interactions used to gain insights into answering some of the many questions of systems biology.
Many computational resources integrate interaction data with additional information on molecular background.
However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We
present a survey of databases that enable the visual analysis of protein networks.

Results: We selected M= 10 out of N= 53 resources supporting visualization, and we tested against the following
set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data
coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of
interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the
user change the network layout. A comprehensive comparison table is available via web. The supplementary table
can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.

Conclusions: Only some web resources featuring graph visualization can be successfully applied to interactive visual
analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization
integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive
feature and visualization maturing.

Keywords: Visualization, Visual analysis, Network visualization, Protein-protein interaction, Systems biology

Introduction andMotivation
Both, wet and dry scientists in the domains of Bioinfor-
matics and Life Sciences have to deal with huge amounts
of data on protein-protein interactions (PPIs) to under-
stand human life. They have to rely on comprehensive data
from web resources. Getting an overview is crucial. Visu-
alization supports this complex task. There are numerous
web resources and databases. But assessments of individ-
ual strengths and weaknesses of the available resources are
scarce. In this paper, we evaluate identified resources in

*Correspondence: f.jeanquartier@hci-kdd.org
1Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and
Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz,
Austria
Full list of author information is available at the end of the article

regard to the support of integrated visualization and high-
light promising examples. To our knowledge there is no
such up-to-date comparative study.
Proteins are the building blocks of life. Interactions

between proteins determine cellular communication. Sig-
nal transduction cascades process information of various
stimuli for a cell to respond to external signals. Cell sig-
naling is based on molecular circuits consisting of recep-
tor proteins, kinases, primary and secondary messengers.
Together, they modulate gene transcription or the activity
of other proteins [1].
Studies on these complex interaction networks give

insight into life-determining processes and can be used for
combating disease. Therefore, large datasets are used that
contain information on PPIs gained from experiments

© 2015 Jeanquartier et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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using yeast two-hybrid systems as well as affinity-bait sys-
tems [2]. Computational tools for uncovering PPIs are
based on the comparison of large-scale experiments, liter-
ature curation, text-mining and computational prediction
results of protein interactions. These tools are available
to the public via online databases [3]. There are numer-
ous software tools and huge databases of PPIs used to
gain new insights into systems biology.While many Bioin-
formatics resources integrate interaction data with other
types of information, visualization plays amajor role in the
process of understanding and sense-making [4–6].
In the last decade, experts started to integrate pos-

sibilities for visualization of PPI networks to facilitate
exploration and analysis tasks. Visualizations of interac-
tion networks are mostly rendered graphs providing an
overall picture of pathways mapping biological functions
[7–10].
Some of the many available resources lack maintenance

and input of updates. Most of all, they lack usability [4, 5,
11]. The question remains: Which tool is the best choice
for the analysis task at hand? Many analysts in the field
of Biochemistry manually mine text. They try to find
information on related studies and search for appropri-
ate tools. Many researchers do not know which resources
are available and which one is best suited to support
their analysis. From a computer science perspective there
are many possibilities to facilitate the analysis process,
particularly making use of visualization features to fully
exploit the human capabilities of information processing
and pattern perception [12]. To support analysts in Bio-
chemistry it is crucial to pick the right tool for the task
at hand [6, 11]. We, therefore, highlight a small set of
tools, available on the web, that integrate auxiliary visual-
ization features. The study focuses on web page integrated
visualization software that uses the most common tech-
nologies supported by current standard web browsers.
Online solutions offer fast and easy utilization character-
istics compared to client standalone tools. By making use
of web visualization tools we overcome issues with stan-
dalone solutions including the complicated task of finding
and installing third-party solutions, appropriate plugins,
difficulties in retrieving biological data, finding appropri-
ate information when searching in default databases that
are too generic within local standalone solutions, lack of
central storage, interchange and collaboration possibilities
[10, 13]. Web visualization represents a field of research
on its own finding solutions for limitations in speed,
interoperability and navigation. Hence, interdisciplinary
scientists improve Bioinformatics databases and tools by
adding biological content as well as integrating perva-
sive web applications featuring graph-based information
representation. Interaction and export options are inte-
grated into online tools for further processing of graphs
with standalone tools including Cytoscape or Navigator

for high computing analysis tasks [9, 10, 14–16]. Stan-
dalone tools offer the possibility of individual upgrades
in form of add-ons and plugins, numerously available
online. Changes to web tools have to be implemented by
the provider. Computing power and capacity constitute
limiting factors for both web and standalone products.
Cytoscape represents a software, most commonly used by
bioinformaticians. Still, covering this topic goes beyond
the scope of this work. We focus on software that can be
easily accessed and used by all experimentalists who deal
with PPI analysis. We focus on web software, that nei-
ther requires any particular system, nor any root rights,
any user’s knowledge of system administration or how to
install a particular software.
We start with giving some background on visualiza-

tion in PPI analysis. Then present the comparison study
and summarize comparison results of identified tools that
suite the task of interactive visual analysis. At last we
present its’ discussion and identified challenges.

Background
The human genome contains over 20000 protein-coding
genes, while the total number of different proteins is still
unknown and estimated to be much higher [17, 18]. Com-
prehensive knowledge of protein interactions represents
the key to understanding the underlying functional net-
work. The molecular organization can be visualized as
a network of differentially connected nodes. Each node
stands for a protein and edges represent dynamic interac-
tions. Nodes thereby receive input and output values as
mathematical functions [19].
Computational results can be analyzed by interactive

visualizations. The integrated process of Visual Analytics
is essential to sensemaking in Life Sciences. Analyzing a
problem in a visual way allows to highlight certain features
that are not perceptible otherwise [4, 5, 11, 12].
There are several tools for PPI visualization that not only

deal with the general questions of PPI analysis but focus
on structural analysis of particular protein domains and
peptide sequences (e.g. PDB that archives a large amount
of macromolecular structural data that can be visualized).
Furthermore, many resources are domain specific and do
not support the analysis of the entire interactome (e.g.
“NIA”, a Mouse PPI Database, or PFAM, a collection of
protein domains). The interactome incorporates proteins
as well as other chemical compounds as ions, nucleic
acids, in sum all interacting elements. In this work, we
focus on general resources for PPI analysis that integrate
tools for visualizing parts of the human proteinogenic
interactome as PPI network.
Graph drawing represents the traditional way of visual-

izing interactions. Graph visualizations constitute a well-
known, sophisticated method in computer science [14].
There are many different well-established and evaluated
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layout algorithms for node arrangement in graphs. Force-
directed layouts are the main algorithms used for graph
drawing. As a result related nodes are placed closer to each
other, and highly connected protein interactors as well
as clusters of interactors are easily identifiable. Current
network visualization resources make use of visualization
libraries. One example is the Flash version of Cytoscape
[20], that is used n the tool IntAct [21] among others.
Additionally, JavaScript (JS) based visualization libraries
are currently emerging, including BioJs [22], that is used in
PINV [23]. Cytoscape.js is a successor of Cytoscape Web
and there is also a wrapper for using cytoscape in BioJs
[22].
However, there are several issues and open problems

when visualizing biological networks [24, 25]. Nodes are
connected through edges representing underlying inter-
actions and should provide interactivity for supporting
exploration [26]. Standalone tools like Gephi, Navigator
or Cytoscape include various modifications and settings
for such purposes. In case of (web-based) graph rendering

there are several challenges regarding the handling of
large graphs, when dealing with high levels of details and
interaction features [16, 26, 27].
Figure 1 summarizes the visual analysis process. Cur-

rent available biological databases contain huge quanti-
ties of different proteomic data that are used by tools
to support the analysis process [3, 28]. Droit et al. [29]
present an overview of different experimental and Bioin-
formatics methods to elucidate PPIs. Ben-Hur et al. [30]
present computational approaches for prediction of PPIs
to help experimentalists in the search for novel interac-
tions. Mosca et al. [31] describe necessary steps towards
a complete map of all human PPIs and list a set of cur-
rently available methods and resources for PPI analysis.
There are several reviews and meta-databases of cur-
rently available interaction databases and tutorials on
analyzing interaction data including [32–36], but none
of these summaries depicts visualization features. Mora
et al. [37] presents an analysis of some currently available
software tools for PPI network visualization. However,

Fig. 1 Process of visual PPI analysis
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the authors only focus on standalone software tools and
do not include the analysis of web-based tools. Oveland
et al. [38] review different proteomics software and depict
exemplified visualization features for a wide range of pro-
teomics data. The authors give a broad overview, but
neither focus on PPI network analysis, nor provide a com-
prehensive overview of online available resources. There
are also works that describe how to visualize protein
interactions in three-dimensional space [39–42]. Regard-
ing efficiency and effectiveness there are already some
ongoing evaluations and efforts [4, 11, 15]. Several works
also emphasize the importance of collaboration between
computer science and biology [11]. For instance, PPI ana-
lysts would benefit from deepening studies not only in
organizing and processing data, but also in text mining
for protein function prediction as well as for enrich-
ing and combining different data and tools for extending
association networks etc.
Computational systems biology assesses biological net-

works to analyze and visualize their complex connec-
tions computationally at a system-wide level [43]. In silico
models have the purpose of replacing costly and time-
consuming experiments with reconstruction and pre-
diction by integration of the vast amount of biological
information into multiscale computational modeling [44].
Modeling cellular networks in the context of physiolog-
ical processes as well as diseases, including proteins as
their major effectors, remains an exciting, open-ended
domain [45]. Filling the gaps of missing data input by addi-
tion of literature-curated functional protein annotations
poses a major task. Text-mining tools should help to ana-
lyze the overwhelming amount of literature [46]. Still, in
regard to reliability and universality, tools require contin-
uous improvements, for instance recognition of variable
nomenclature and the implementation of ortholog-based
annotations from conserved protein interaction graphs
[47]. Biological management systems aim to provide user-
friendly work-flows, shared to scientists, with integrated
real-time visualization [5, 48].
To our knowledge there is no up-to-date comparative

study of current tools that facilitate the interactive visual
analysis of protein systems.

Methods
We compare web-based resources for PPI analysis. 4 ana-
lysts take part in the evaluation. The interdisciplinary
team consists of 3 domain experts fromComputer Science
and 1 from Biochemistry. 2 of the analysts are mentioned
in the Acknowledgments. The other domain experts are
the first 2 authors of this manuscript. We test the Bioin-
formatics resources by examining search user interfaces as
well as visualization abilities. A checklist is completed dur-
ing the test that includes qualitative meta-data and notes
on usage. Additionally, several quantitative parameters

are evaluated such as the number of links to different
PPI sources, the total amount of PPIs, the number of
search results for the specific query and other data if
available.
We conduct a search for the “G Protein-Coupled

Receptor Associated Sorting Protein 1” (GPRASP1), also
known as “gasp1” with its UniProt ID “Q5JY77”. The
example protein is chosen as input determinant due
to its known involvement in G-protein coupled recep-
tor (GPCR) signaling which constitutes a major cellular
signal transduction cascade [49]. The cytosolic protein
GPRASP1 is a validated tumor marker and, therefore,
associated with cancer.[50]. Thus, we review the availabil-
ity of information on disease associations. Additionally,
we test for a set of proteins including GPRASP1 plus
some of its putative interaction partners, namely cannabi-
noid 1 receptor CNR1 (P21554), calcitonin receptor
CALCR (P30988), dopamine D2 receptor D2DR (P14416),
bradykinin 1 receptor BDKRB1 (P46663) [49]. Results on
the PPI searches regarding a single and multi-protein
input are listed in Table 2.
We examine the presentation of results as well as visu-

alization and interaction features. Quantitative and quali-
tative characteristics as well as notes are collected within
spreadsheets. The results are summarized in a compre-
hensive comparison table (see link http://tinyurl.com/
PPI-DB-Comparison-2015).

Comparison Criteria
Evaluations of visualization tools have to be prepared
carefully. It is essential to choose an appropriate base-
line for comparison and metrics by evaluating efficiency,
effectiveness, visualization quality and insights. There
are quantifiable factors such as speed (e.g. task perfor-
mance), accuracy, latency, number of results, or insights.
Additionally, there are standards formeasuring qualitative
factors that are currently used for the evaluation of
research in clinical data visualization [51–54]. Some of
these criteria are taken into account and are summarized
for comparison. The review focuses on the following 5
criteria:

• Support of Multi-Platform: Nowadays research is
conducted on miscellaneous devices, several
operating systems and various browsers. Therefore, it
is necessary to assess the requirements of a particular
tool. Javascript and SVG are generally slower than
Java applets or proprietary browser plugins such as
Flash or Silverlight [55, 56]. None of the tested tools
makes use of Silverlight at the frontend. Although
Javascript often has shown performance problems in
past, browser performance is rapidly evolving.
Therefore, Javascript and SVG solutions can be used
for graph rendering [20, 56–58].
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Next to a modern browser, end users often need to
install plugins, including fFash. Java applets often
need additional adjustments to the client’s security
settings. Thus, Java applets but also Flash frontends
(regardless whether based on Java or not) may pose a
hurdle in making use of a visualization tool. Thus,
Javascript and SVG visualization get the highest score
for evaluating this criteria.

• Service in General: Determines the quality of the
user interface (UI) in general. The UI determines the
simplicity and efficiency of the search and its
visualization characteristics.

• Interoperatibility (Import, Export, Formats,
Plugins): Summarizes a tool’s network export
options (e.g. textual, graphics, individual format), it’s
interaction possibilities, manual import or similar
options. This is particularly crucial when starting an
analysis with one specific tool or one specific
platform but continuing with another one.

• Visualization Quality (Speed, Clarity, Usability):
Describes the visualization itself. Main focus lies on

speed, clarity, and ease to use. This section also
identifies items for possible improvement. In Fig. 2
all network views are compared to each other
visually.

• Visualization Features: There are interactive
visualization features that are crucial to exploration
interfaces [12]. This section examines and lists
available features like drag-and-drop, move
background, area-selection a.o.

• Data Coverage: Represents the number of hits from
the single and multi-protein search for PPIs as well as
further information on associated diseases.

Each of the ten identified PPI web resources are tested
against these criteria and the extent to which require-
ments are met for supporting the interactive visual
analysis of PPI networks is evaluated. The evaluation sum-
mary comprises quantitative results such as the number
of linked databases as well as the number of interac-
tions found. Evaluation results also include last updates as
important factor of comprehensiveness.

Fig. 2 Graphical Comparison of all tools showing interactions networks for Q5Yj77: [A] APID, [B] Biogrid, [C] CPDB, [D] IntAct, [E] I2D, [F] Mentha, [G]
MINT, [H] PINV, [I] String, [J] UniHI
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Results
We specifically describe the most promising web
resources. The visualization features of the selected
resources are summarized in Table 1. Quantitative results
are summarized in Table 2. We conclude with highlight-
ing the top rated three resources that integrate the most
promising interactive visualization features as well as
integrate data comprehensively.
The identified resources are: Agile Protein Interaction

DataAnalyzer (APID) [59], BioGrid [10], Consensus-
PathDB (CPDB) [60], IntAct - Molecular Interaction
Database [21, 61], Interologous Interaction Database
(I2D) [62], Mentha - The Interactome Browser [63],
Molecular INTeraction database (MINT) [64], or more
specific its’ separate annotation of human PPIs called
HomoMINT [65], Protein Interaction Network Visual-
izer (PINV) [23], StringDB - Search Tool for the Retrieval
of Interacting Genes/Proteins [66] and Unified Human
Interactome (UniHI) [67].

Agile Protein Interaction DataAnalyzer (APID)
Support of Multi-Platform: APID allows a protein’s
interactions to be visualized as graph within a separate
Java applet called ApinBrowser. Due to the usage of an
embedded Java applet, the tool itself is multi-platform
ready.
Service in General: APID allows queries of several

input names. Results are presented in a concise way. Click-
ing on the number of interactions presents amore detailed
overview of the PPIs including the number of experiments
and information on sources of the various interactions. By
clicking on the ’graph’ labeled button the Java applets are
loaded into a separate window.
Interoperatibility: The tabular data can be exported.

The graph itself can be stored as an image. Import
possibilities are limited to searches throughout linked

databases. The creators also provide a Cytoscape plugin
for APID called APID2NET.
Visualization Quality: The visualization is dynamic

and makes use of a simple force-based layout for graph
drawing. It lacks anti-aliasing and othermodern rendering
techniques for visualization.
Visualization Features: APinBrowser provides options

for zoom, filter and limiting details on demand. There
are minor adjusting possibilities such as background color
and edge thickness. Still, this resource lacks several fea-
tures as visual clustering or highlighting certain nodes and
edges.
Data Coverage: A single protein query quickly returns

a mid-range number of interactions. Unfortunately, there
is no direct option to include more than one protein
name or ID into the search. However, after searching
for one protein and visualizing the graph, it is possi-
ble to add additional proteins by using the “add” and
“import” functionality within the applet. By further click-
ing on paint the additional proteins are included into
the graph visualization. Associations to diseases are not
available.
Evaluation Summary: The user interface of queries

includes a concise tabular overview of results. Yet, anti-
aliasing and options for adjusting nodes are missing. The
web resource itself might be outdated due to the fact that
last updates have been added in 2006.

BioGrid
Support of Multi-Platform: This Bioinformatics re-
source can be opened in all current browsers. Therefore,
installation of a specific plugin is not required.
Service in General: Biogrid provides a simple search

option offering a quick glance on results in addition to fil-
ter and sorting features. The presentation of the results
shows basic information.

Table 1 Summary of identified PPI resources’ visualization control features

Tool ID/ Apid BioGrid CPDB IntAct I2D Mentha Mint Pinv String UniHI
Control Feature

Zoom y - y y y y - y y y

Select neighbors - - y y y y - - - -

Toggle labels y - y y y y - y - -

Fix/Unfix - - - - y y y y y -

Shrink/Grow - - - - - y y - - -

Toggle node shape - - - - y - - - - -

Select hubs y y - y y y y y - y

Select tree - y - - - y - - - -

Fit to screen y - y - - - - - - y

Clustering - - y - - - - y y y

Expand network y - y y - y y y y -
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Table 2 Summary of the quantitative results concerning data integration

Tool ID/ Apid BioGrid CPDB IntAct I2D Mentha (Homo)Mint Pinv String UniHI
Quantity aspect

binary interactions 52 35 149, 22 53 35 17 95 201 (default 37) 50

of Q5JY77 (60 distinct)

max. PPIs 322 579 543 666 368 654 473 426 1 539 758 480 517 330 377 n/a 332 235 675 374 833

(Mint)

human PPIs 83 670 173 728 221 328 154 338 318 717 157 932 241 458 2 942 636 942 636 n/a

(HomoMint)

predicted PPIs 44 040 n/a n/a n/a 635 488 n/a 6 782 n/a n/a n/a

experimental PPIs 278 539 n/a n/a n/a 922 617 n/a 323 595 n/a n/a n/a

group PPIs (Q5JY77, 91 n/a 4192 818 106 67 93 1894 470, 284

P21t4, P30988, 2 internal

P14416, P46663)

disease associations n/a n/a n/a 0-2 n/a 0 n/a n/a 13 0

links to DBs 29 12 32 27 29 6 6 1 23 15

Interoperatibility: The visualized graph can not be be
exported. It can be downloaded as a simple textual list
only. Additional download options can be found outside
of the visualization view. However, a specific graph format
for Cytoscape or similar tools is not included.
Visualization Quality: The button for opening the

graphical viewer is placed non-intuitively. The graph view
loads quickly and does not require any plugin by mak-
ing use of a modern circular layout that can be seen in
Fig. 3. The radial view is not as intuitive as traditional
graph presentations and the small labels are hard to read.
Still, additional information is found quickly during the
exploration process. There are no interactive features con-
nected to the graph’s edges. By selecting a node, edges
connected to this node are highlighted. During this pro-
cess, the font size of the interacting nodes increases, that
results in overlapping neighbors, rendering the text hardly
readable. In terms of usability, the graph visualization
provides features for basic analysis. Settings to adjust color
and shape are missing.
Visualization Features: The visualization is static. The

use of filtering options or other features forces the page
to reload, which requires some computational time. Only
exceptions are some hover effects. Rearrangement can
be accomplished by clicking on a node. There are some
features as highlighting, searching, filtering by the use
of check-boxes and a field for input of text. Details
are shown on mouse-over, also indicating the connected
partners. Additional mouse-over details are options to
search/follow interactions and download interaction data
as text file. However, the visualization lacks zooming and
scaling options.
Data Coverage: The single-protein query resulted in a

low to mid-range number of interactions. Input options

for a multi-protein search are not available, neither is
information on disease associations.
Evaluation Summary: BioGrid supports visual analysis

in a limited way.

ConsensusPathDB (CPDB)
Support of Multi-Platform: Dynamic rendering of SVG
visualization is possible in all modern browsers.
Service in General: CPDB offers an intuitive search

combined with short computational loading times for the
presentation of results. In addition, mapping criteria for
filtering makes this resource a supportive PPI analysis
tool.
Interoperatibility: CPDB is supported by only a small

number of institutions unlike the other resources. Yet, it
makes use of most important databases and offers features
such as manual upload.
Visualization Quality: The network’s SVG based visu-

alization is not as fancy as modern Flash based frontend
presentations. Nevertheless, it already integrates anti-
aliasing and interactiveness. CPDB provides many pos-
sibilities and includes many information sources. The
graphs are largely and densely packed due to automatic
stretching. The thickness of nodes does not correlate to
the amount of visualized nodes. Their scale correlates
with the zoom level, thus, the visualization becomes hard
to read at a high zoom-level. The utilization of different
colors and shapes facilitates a distinction between specific
interaction- and node-types.
Visualization Features: Filter functions are not inte-

grated into the visualization but have to be defined before
mapping of interactions. The resource provides several
criteria for mapping such as choosing particular databases
to be integrated into the results. The dataset is visualized
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Fig. 3 Screenshot of Biogrid’s graph view

comprehensively. Additional information on nodes are
shown by hovering and clicking on them. The network
view makes use of zoom and repositioning options as well
as color and shape differences of nodes and edges for
highlighting certain attributes. The characters of shape
and color are described in a concise and informative way
within a legend. Edges can be merged and demerged. Net-
work statistics can be retrieved and there is also a search
option within the graph.
Data Coverage: CPDB shows the highest number of

possible hits for both the single and multi-protein search.
Information on associated diseases are not implemented.
Evaluation Summary: CPDB holds the key benefit

for supporting exploration by making use of PPI data
obtained from literature curation, computational text-
mining, orthology-based prediction as well as manual
upload. Figure 4 presents a CPDB graph including interac-
tion data, integrated in a merged manner. The developers
try to avoid redundancies, still, the network visualization

shows much more protein interactions compared to the
other tools examined. On the one hand, CPDB’s graph
presentation encourages exploration. On the other hand,
there are difficulties of getting an overview.

IntAct - Molecular Interaction Database
Support of Multi-Platform: The graph visualization is
implemented via Flash. Flash has multi-platform support
and is usable in all modern web browsers with installed
Flash plugin.
Service in General: The search function is simple and

intuitive. No preselection of attributes is necessary. Search
results are presented as set of several subcategories.
Interoperatibility: PPI data within search results can

be exported as tabular text. Additionally, the user can
export export a network to the format of Cytoscape for
further analysis and manipulation in the standalone tool.
Visualization Quality: The layout can be changed

between force directed, radial and circular views. IntAct
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Fig. 4 Screenshot of CPDB’s UI of interaction mapping and visualization

offers additional features as merging/splitting groups of
nodes and zooming with modern anti-aliasing. However,
IntAct lacks options for adjusting color and shape. There
is a clear need for visual clustering, since every node looks
the same. Titles of nodes are too large and occupy more
area than the nodes themselves. Nodes overlap edges even
in small graphs.
Visualization Features: There are several features as

simple zoom and repositioning. Limited details are shown
on demand by clicking on a node. The graph layout can
be interactively adjusted. The user can switch between the
list and the graph tab. Edges can bemerged and demerged.
Specific interactions can be filtered. Yet, there is no inte-
gration of detailed variations and highlighting specific
variables.
Data Coverage: The single-protein query returns the

low number of 22 possible PPIs, in case of protein ID
as input, or 23 possible interactions in case of name
abbreviation. IntAct presents one of the highest num-
ber in PPIs for the protein-group query. The feature
of connecting to further EMBL-EBI resources reports
associations of diseases in case of abbreviated name
query.

Evaluation Summary: IntAct is supported by EBI and
updated regularly. The integrated Flash based graph pro-
vides different export options including a translation to
Cytoscape. However, the integrated visualization lacks
important features such as filtering, adjustment of color
and shape attributes.

Interologous Interaction Database (I2D)
Support of Multi-Platform: I2D’s graph viewer needs
Java installed and activated.
Service in General:The search option does not provide

any auto-suggest and correction suggestions. The user has
to search precisely. Other resources include such features.
The table of results is very limited in information content,
which only links to other meta-information on different
platforms. No filter or sorting options are provided. It
would be helpful to know the type of interaction at first
sight.
Interoperatibility: There is only one possibility of

inter-operating, as the graph can be exported as tabular
text.
Visualization Quality: Due to the usage of an old fash-

ioned Java applet the visualization lacks anti-aliasing and
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visualization quality. Nodes are covered by edges also in
graphs with low numbers of nodes and edges. Rescaling
options are missing.
Visualization Features: There are many hidden fea-

tures that require parallel or cumulative actions with mul-
tiple input devices. A legend on key usage can be found
on the right side within the network view. The legend is
large and one example to the non-intuitive visualization
approach.
Data Coverage: I2D presents a mid-range number

of possible interactions for the single and multi-protein
search. An option for disease association was not
available.
Evaluation Summary: This resource links to many

databases and therefore steadily expands its comprehen-
siveness. Still, the tool itself does not facilitate the pro-
cess of visual analysis due to the outdated visualization
integration.

Mentha
Support of Multi-Platform: Mentha’s so called ‘inter-
actome browser’ is implemented by Java. A newer but
also limited SVG version is additionally provided as an
alternative to Java.
Service in General: This Bioinformatics resource offers

an intuitive search field but a less intuitive presentation
of the results. The ‘browse’ button starts the network
view. The ’list’ button itemizes interaction results and
meta-information.
Interoperatibility: The new version does not provide

export or import. The Java version supports export as
textual tabular data and png graphics.
Visualization Quality: The SVG version is intuitive but

still limited in optional features. Promising updates are
already planned.
Visualization Features: The dynamic network viewer

features zoom, filter details on demand and provides a
flexible layout. Moreover, the Java version offers possibili-
ties for coloring and highlighting.
Data Coverage: The interactome browser presents a

low to mid-range number of possible interactions in
case of the single-protein search and the lowest count
in PPIs using the multi-protein input. Results can be
easily filtered by confidence for a fast overview. The
list is supplemented with meta-information from e.g.
KEGG database and could offer associations to diseases
but without any results from the particular evaluated
search.
Evaluation Summary: There are several differences

between the old and new visualization that are being
integrated into Mentha. One comes with better com-
pliance to the browser, the other one offers a higher
degree of interaction possibilities. If being combined and
steadily updated, the two visualization possibilities would

definitely support the sense-making process. Future
updates will include further enhancements to the new
visualization.

Molecular INTeraction database (MINT) / HomoMINT
Support of Multi-Platform: (Homo)Mint requires a
browser with Java installed.
Service in General: The search UI provides a concise

overview of results as well as includes an overview of the
various databases used.
Interoperatibility: No import and export functions are

integrated.
Visualization Quality: The resource is based on an old

Java version does not integrate state of the art rendering
techniques such as anti-aliasing. Most important interac-
tion features are offered and performance is sufficient. A
graphical legend is missing for a quick glance at means of
color or shape.
Visualization Features Interaction possibilities include

zoom, filter and details on demand. The user can change
the size of nodes in order to improve speed and clarity.
An adjustable threshold is available for filtering the output
and number of displayed nodes. Drag and drop is pos-
sible (as in most other Java applets, too). Some features
require a long computing time. One example is the option
’connect’ on a newly selected node for adding edges to it’s
neighbors. Others are the MITAB and PSI functions. In
this case, there are no notifications to the user. According
to Nielsen’s response times, feedback should be provided
after one second.
Data Coverage:Mint shows the lowest number of inter-

actions for the single protein. Only 3 out of 5 proteins
from the group input are detected and result into 93 PPIs
after connecting the single graphs to each one of them.
Information on associated diseases are available show-
ing 3 interacting proteins out of 93 to be involved in
pathological processes.
Evaluation Summary: Both quantitative (number of

databases linked or number of interactions found) and
qualitative results (old-fashioned visualization without
anti-aliasing) underline the limitations of the Bioinformat-
ics resource MINT. Since it is produced and provided by
Uniroma, it is recommended to switch to the newer PPI
tool supported by Uniroma: Mentha, which offers new
visualization features, not limited to Java anymore.

Protein Interaction Network Visualizer (PINV)
Support of Multi-Platform: The graph visualization
runs in current browsers having Javascript installed and
activated.
Service in General: The user interface for a query is

intuitive. The idea of using the BioJS and D3 framework
to create an HTML5 application, as it has been applied
to this tool, offers interesting possibilities for supporting
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visual analysis online. However, performance limitations
for large and dense graphs are still an issue when using the
tool more intensely. Feedback often is missing at the right
point and interaction possibilities could be smoother.
Interoperability: There are several possibilities to

exporting the graph, both graphically and as textual tables.
Visualization Quality: Due to the increasing prospects

of JS, the graph is rendered dynamically as SVG using anti-
aliasing. This mode allows the user to interact with nodes
and edges including smooth transitions. The default graph
layout is a standard force-based view. In addition, PINV
offers a circular layout, a heatmap as well as a simple table
view.
Visualization Features: The tool features several inter-

action possibilities, foremost zoom, filter and some details
on demand. Next to the zoom option there are several
possible manipulations to the visualization by defining
rules for filtering, highlighting, coloring and options for
uploading expression data. The screenshot in Fig. 5 illus-
trates that exploration is based on the process of defining
rules.
Data Coverage: A suitable data-set has to be chosen

from a list of online available sources before conduct-
ing protein search. By choosing the ’human’ data-set the
single-protein input results into a higher count of 95
PPIs. One of the highest counts of 1894 PPIs follow from
the multi-protein input. Further information on disease
associations are not available.

Evaluation Summary: The visual analysis tool provides
features for exploration and sensemaking in a modern
fashion. Wizard-like usage and adding rules for manipu-
lation can be recommended for other tools. Performance
issues as well as not caught JS errors hinder the task of
visual analysis of PPIs.

StringDB - Search Tool for the Retrieval of Interacting
Genes/Proteins
Support of Multi-Platform: StringDB’s interactive net-
work viewer requires a modern browser including the
Flash plugin.
Service in General: The query option is simple and

includes data from several databases including multiple
organisms.
Interoperability: The graph can be exported as several

file formats, both as graphic and as text.
Visualization Quality: Graphs are rendered dynami-

cally as PNG ore implemented as interactive Flash visu-
alization that offers numerous interaction possibilities. In
addition to the network view, there are options for sim-
ple visualizations such as the occurrence view. Figure 6
illustrates some of StringDB’s UI capabilities. Further
information as well as structural data are included if avail-
able. Details are displayed within the context menus upon
clicking on individual nodes.
Visualization Features: The resource provides a vari-

ation of four different designs, namely confidence,

Fig. 5 Screenshot of PINV UI showing search results for Q5Yj77
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Fig. 6 Screenshot of STRING UI showing the evidence view

evidence, actions and interactive view. The view can be
changed from a simple default to an advanced mode. The
interactive view allows the user to adapt the layout. The
UI provides many different filter and control features next
to simple zoom and scaling functionality. StringDB offers
visualization options, such as node/label hide/show, and
functional options of clustering or enrichment. The nodes
and edges are colored. Node colors represent direct asso-
ciations but are not adjustable. Line Colors are mapped
to types of evidence. Line thickness represents confi-
dence. These presentation presets are not customizable.
The view does not allow zoom and is not adjustable in an

arbitrary fashion. It provides options to grow and shrink
the rendered image.
Data Coverage:The single protein query returns a mid-

range number of hits, as does the multi-protein query.
The default limit of reported interactions is set to 10 and
has to be increased accordingly. Possible interactions are
easily filtered by confidence. StringDB provides the option
to get further information on disease associations. 13
associations are found within the 37 interacting proteins.
Evaluation Summary: StringDB combines comprehen-

siveness with state-of-the-art visualization features. It
supports PPI visualization and analysis.
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Unified Human Interactome (UniHI)
Support ofMulti-Platform:The graph visualization runs
with Adobe Flash.
Service in General: The Java-based implementation

needs to be improved regarding loading perfomance. The
search UI is intuitive and easy to use. Still, tabs cannot
be changed easily due to the UI’s implementation with-
out hovering effects. UniHI links to several databases as
common to most PPI resources. The graph visualization
is rendered within the network tab.
Interoperatibility: Export options include text files,

png and pdf.
Visualization Quality: The network visualization

makes use of the common Cytoscape Web. This tool
provides a modern but also simple Flash interface as
frontend. The visualization encloses basic layout and fil-
tering features that are capable of smoothly rendering
large graphs. Unfortunately, the graph does not include
any visual details. The visualization is rendered within
a separate window. Selected or highlighted nodes are
indicated by a lighter circle around the node. A sepa-
rate menu at the right side of the resource includes filter
and analysis features. Textual information is hard to read
due to its’ small font-size. UniHI makes use of basic
clustering or enrichment functions. Types of connec-
tions are colored differently within the visualization (red
and blue). However, version 7.1 lacks functional layout
palettes.
Visualization Features: The resource includes com-

mon control features such as zoom, repositioning and
scaling to fit the page. It is possible to filter interac-
tions (e.g. regarding source of interactions or amount of
evidence). Details are provided in separate windows by
clicking on a node. Analysis options are also provided.
There are ‘Help’ links and a reset button for reconstructing
the original graph setup.
Data Coverage: The single protein query yields a mid-

range count in PPIs as does the multi-protein search.
Information on target proteins are received from the
KEGG database. In case of our query no implication on
pathological associations could be detected.
Evaluation Summary: The old Java applet frontend

has been upgraded to making use of Cytoscape’s Flash
version. Yet, the resource does not meet the needs for
exploration. Most of all, UniHI lacks performance and
often throws irreproducible server errors that force the
user to restart the query. Thus, UniHI cannot be rec-
ommended to support exploration as a step towards
sensemaking.

Discussion
We conducted an extensive web research and scanned
through a list of more than 300 tools for PPI analy-
sis. 53 are available online and suite the basic needs of

protein system analysis within the human interactome.
Only a small subset of the examined online tools (10 out
of 53) offers integrated visualization. Interactive visual-
ization features are summarized in Table 1. Quantitative
metrics are summarized in Table 2.
At first glance, the primary goal of a search within

web resources is to receive the largest amount of data.
We quantified data retrieval by the number of possible
interactions with a specific input variable. Therefore, web
resources have to integrate data from several databases,
and they have to be updated regularly. Ideally, data is
obtained from several sources at once including litera-
ture curation, computational text-mining and prediction
methods. A great amount of data does not equal a great
deal of information. The search field and input options
have to be easy to use. The user will stop his/her search
at the initial stage if query options are not properly pre-
sented in the resource. Moreover, the presentation of data
is crucial for its interpretation.
An ideal software tool for PPI analysis would possess

the following features: At default results should be avail-
able as concise overview. Detailed information should
become apparent on demand. Options for filtering and
adjusting the confidence level are essential for a success-
ful data translation. Graph visualization should be scalable
and include features for manipulation. Nodes and edges
exemplary should be adjustable in color, shape, size and
position. Resources should offer various options to graph
export and import. Results should be both complemented
and downloadable as tabular text, graphics and also in
other standardized file formats used by standalone tools.
Above all, Bioinformatics web resources have to provide
a modern interface. They have to comply with multi-
platform standard browsers avoiding performance issues,
outdated proprietary software, annoying software update
requests or server errors.
In summary, the ideal web-based Bioinformatics

resource features comprehensiveness, an intuitive user
interface, as well as a modern visualization.
Each of the evaluated software has its respective

strengths and weaknesses:
APID provides intriguing entry points such as a concise

overview and a Cytoscape plugin. On the other hand, it
lacks state-of-the-art rendering and modern visualization
features like visual clustering.
Biogrid would benefit from improvements regarding

readability and interactive features. Visualization would
be ameliorated by making use of color and shape vari-
ations to visualize specific attributes. None of the test
users found the option for opening the graphical viewer
in Biogrid at first sight. This fact indicates the need for
usability improvements.
CPDB presents a comprehensive dataset, while its visu-

alization’s overview could be improved.
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IntAct features an option for changing the network
layout. However, it is only suitable to represent sim-
ple networks due to the lack of tagging and additional
information.
I2D lacks state-of-the-art visualization quality and an

intuitive and effective user interface. I2D’s user interface
hinders exploration and sense-making.
(Homo)Mint provides interesting interactive visualiza-

tion features like an adjustable threshold and drag and
drop. Unfortunately, a graphical legend on feature descrip-
tion is missing. Some features require long computation
times, and visualization quality is not state-of-the-art.
The idea of using JS frameworks such as BioJS and D3 in

PINV is promising. However, PINV does not fully comply
with the task of visual analysis of PPIs due to occurring
performance issues as well as not caught JS errors.
StringDB’s presentation presets are not customizable

yet. However, StringDB is our first choice of Bioinfor-
matics resources due to its comprehensiveness, the use
of confidence scores and state-of-the-art visualization
features.
UniHI comes with two versions, a network view based

on Java and another one running with Adobe Flash.
The Java-based implementation needs to be improved
regarding loading performance. Performance limitations
are more likely to arise due to issues on server- and not
client-side.
Force-directed layout is the main algorithm used in this

kind of visualization tools. 2D graphs are the preferred
solution for integrated visual analysis of PPI online. None
of the tested tools features 3D views.
Only a few resources reasonably support exploration

and sense-making. All identified web resources differ
from standard graph visualization tools, mostly stan-
dalone software. Resources dedicated to PPI analysis also
vary from graph analysis applications in other domains
like link, social network or market analysis. Differences
are observed in visualization quality and interaction pos-
sibilities. Therefore, export/import options are commonly
implemented.
While conducting the evaluation of several online net-

work visualization tools for PPI analysis we identified the
following prominent challenges:

Challenges
• Challenge 1: Current tools vary strongly in terms of

comprehensiveness. Thus, it is still a crucial issue to
link to all PPI databases available, finding suitable
update mechanisms and providing a good overview
in the distinct presentation of PPI networks.

• Challenge 2: Another only little-touched issue is
dealing with confidence levels. Only a few tools
provide the possibility to manipulate the graph
drawing by adjusting the confidence of the various

interactions as well as computing common metrics
for graph network analysis. This is not only due to
incompleteness of the underlying data used, but also
because interactive features for visualization
manipulation have long not been point of interest in
the tool’s development.

• Challenge 3: A more general but also clear challenge
deals with maturing visualization integration within
the Biochemistry domain. There is a clear need to
foster usage of modern visualization features such as
easily changing layout settings, deleting nodes or
adding group annotations, integrating richer
possibilities for interactive visual clustering and
extending layout palettes. The evaluation also
highlights the need to also integrate, next to
force-based algorithms, multi-level algorithms to
overcome issues of assessing certain differences in
networks and providing possibilities for presenting
large graphs as both visually appealing and readable.

Conclusions
The top three rated resources are String, IntAct and
CPDB. They integrate graph visualization and can be suc-
cessfully applied to interactive visual analysis of PPI. We
also identified significant differences both in the UI as well
as in the amount of hits on PPIs. Web-based resources are
best used as starting point in research. Detailed analysis
is still more efficient, effective and satisfying by mak-
ing use of standalone graph visualization tools. This fact
clearly reveals the necessity of further enhancing visu-
alization integration in analysis tools in the domain of
Biochemistry.
Closing, we encourage greater collaboration amongst

the two scientific research fields of Systems Biology and
Computer Science regarding visualization techniques.
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Chapter 2. Publications

2.4. Visualizing Uncertainty Of RNA Sequence Base Pairing Variants

I participated in this design contest regarding visualization uncertainty in the domain of RNA biomedicine.
The topic caught my attention because I am particularly interested in deepening my understanding in
biomedicine and also believe that visualization is key to knowledge transfer as well as gaining new in-
sights.
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Visualizing Uncertainty of RNA Sequence Base Pairing Variants

Fleur Jeanquartier, Claire Jean-Quartier and Andreas Holzinger

Abstract—This work describes a design oriented approach to visualizing uncertainty of RNA secondary structure probabilities. We
address the challenge of finding an intuitive visual representation of encoding uncertainty in RNA secondary structures. We highlight
certain limitations and present three different but not exclusive approaches for tackling this challenge.

1 INTRODUCTION

In molecular biology researchers have to deal with a decreasing cer-
tainty when predicting secondary structures of RNA sequences. Prac-
tical testing is limited, computational methods fill the gap in the data
with predicted and hence uncertain data. Computational biologists
have developed methods to predict the secondary structures (2D fold-
ing views of RNA) from a primary sequence of RNA. The outputs of
this calculation includes the minimum free energy structure (MFE),
the thermodynamically favored and most likely structure, and equilib-
rium base pairing probabilities. These outputs are typically visualized
as a ”dot plot”, where a box on a square grid of nxn (n is the se-
quence’s length) encodes the base pair binding probability in its area
on a logarithmic scale. In addition, the predicted MFE structure is
often represented as a secondary structure graph.

2 BACKGROUND

Dot plots (base pair probability matrices) are a common way for visu-
alizing secondary structure calculations. The squares in the plot area
represent a pair (x,y), while either color, transparency, blur effects or
size of a dot is used to indicate the probability of a base pair [13].
For today, conservation consensus dot plots can even be interactively
controlled to some extent: For example, Sorescu et al. [12] describes
a mechanism to specify a threshold probability for dynamic visual-
ization adaptation. However, dot plot representations for base pair
probabilities are also said to be confusing when complexity rises, and
therefore alternative representations exist too. Base pairings visualiza-
tion can also be found as linear and circular representations. Alberts
et al. [1] introduced so called ”RNAbow” diagrams. Hofacker [6]
described a software package for analyzing secondary structures and
rendering structures as mountain plot and other representations.
When speaking of uncertainty, uncertain data sets may have di-
verse sources, including data acquisition (signal-to-noise ratio), data
mapping (pre-processing and post-processing) and the visualization
method itself. Uncertainty can be described as a composite of differ-
ent concepts, such as errors, accuracy, and subjectivity [4]. Visualizing
uncertainty is a difficult problem in all kinds of scientific domains too
[5, 11, 2, 8]. Potter et al. [10] already identified uncertainty represen-
tations commonly used in visualization and presented a taxonomy of
visualization approaches.
None of the mentioned research already dealt with visually encoding
uncertainty of the complete set of folding possibilities into one single
visualization.
Therefore, we submit this entry to the BioVis 2015 Design Contest [3],
that addresses the challenge of visualizing uncertainty of RNA sec-
ondary structures. In the following, we describe our visual approaches
to the challenge of visualizing uncertainty.

• Fleur Jeanquartier, Claire Jean-Quartier and Andreas Holzinger are with
the Research Unit HCI-KDD, Institute for Medical Informatics, Statistics
and Documentation, Medical University Graz. E-mail:
{f.jeanquartier,c.jeanquartier,a.holzinger}@hci-kdd.org

3 VISUAL APPROACH TO CHALLENGE 1
We address the first contest’s challenge, namely visualizing uncer-
tainty. The problem is defined as follows:

3.1 Problem:
Design an intuitive visual representation of RNA secondary structure
to encode the uncertainty within all the possible base pairing possibil-
ities. The top-right triangle of a dot plot encodes base pairing proba-
bilities and the bottom-left triangle represents the MFE structure. The
RNA sequence of n nucleotides is shown on the edge of the nxn square
grid. The MFE secondary structure is visualized as a graph, where the
color of each nucleotides depicts the strength of base pairing. The
challenge is to design a structural representation that is in line with the
uncertainty.
To deal with this challenge, however, using the right visualization tech-
nique is a question of scaling: An unanswered question remains: What
is the limit of possible base pairing probability matrices that can be
visualized within one single visualization? Since the number ob po-
tential secondary structures is exponential to the rna sequence’s length
n [9]. Therefore, we present the following three different approaches
for (interactive) visual analysis of rna base pair configurations:

3.2 Approach 1:
One possible interactive visualization approach is sketched in Fig. 1:

Fig. 1. Visualizing encoded uncertainty of RNA secondary structure
possibilities as interactive heatmap including detail view

Holzhuter et al. [7] have shown that particularly heat maps can be
dangerous as they can be over-plotted. It is possible, up to a certain
amount, to visualize the ensemble organized in a heatmap. But, as
common to information visualization, there will be the necessity to
integrate interactive exploration features for zoom and filter. We also
sketched such interaction integrations. The slider filter at the bottom
supports viewing only those rectangles that are related to the most
probable configurations but also allows for highlighting the unusual
ones. Different perspectives support the interactive visual analysis ap-
proach. Additional interactions should be taken into account, like a



slider for filtering specific temperature areas and/or ion concentration
settings and adding a switch for sorting not only by probability but also
other data variables (i.e. number of base pairs, hairpins, free energy).

3.3 Approach 2:

To overcome some of the heatmap’s limitations, another additional or
alternative approach is visualizing the complete set of dot plot repre-
sentations as interactive visual analysis approach making use of the
”Rolodex”-art metaphor (also known from window manager in oper-
ating systems, apple’s time machine or windows exposé), illustrated
in Fig. 2. All possible structures are visualized as matrices one af-
ter another, while the most probable, the MFE, is the first one on top
and behind lay the less probable ones. Interaction allows for toggling
through all the possible structures seamlessly while clicking on upper
right part of the dot plot all secondary structures are shown in a details
view the following manner: All the possible configurations are shown
at once, while the most probable is on top. Below all other configu-
rations are shown but with increased transparency values. The most
likely is therefore 100% opaque, while the less likely ones are more
translucently renderer.
Additionally, Eterna’s animation metaphor can be used: Single bases
and base pairs within the details view can be animated insofar, as the
base pairs movement in pixel per second is related to the structure’s
folding stability and probability.

Fig. 2. Visualizing encoded uncertainty of RNA secondary structure
base pairings by exploring complete set/ensemble at once

3.4 Approach 3:

Last but not least, another possible approach could be visualizing all
possibilities not as box but as part of a network graph, sketched in
Fig. 3. The graph is composed by the complete ensemble of structures
as follows: Each node represents one possible folding structure, each
edge stands for a user defined number x similar base pairs between
two structures, while the whole graph integrates the complete ”pic-
ture”. Thereby, similar base pair areas can be marked with another
color (compare sketched red area in Fig. 3)
The nodes’ transparency (or color/contrast variance) depicts the prob-
ability of the particular structure. The node that stands for the MFE is
highlighted (in darkest contrast or special color) as the root or center of
the graph as the most probable base pairing combination. If the MFE is
not the most probable configuration, the visualization can be adapted
to distinguish between root, as most probable one, and MFE, as a node
somewhere else within the graph highlighted by another color.
According to the dynamic programming algorithm for all subse-
quences (i, j) of a dot plot, the less probable folding possibilities can
be traced back too. Less probable configurations are marked in a
translucent manner: The more like configurations are represented by
nodes with higher opacity while the more unlikely ones are rendered
with less opacity.
Regarding the interaction: By adjusting x certain isles are highlighted,
where the configurations represented by the nodes within an isle are
more similar to each other. Additional network analysis approaches
may further suite the rna analysis process.

Fig. 3. Visualizing encoded uncertainty of RNA secondary structure by
putting focus on the configurations’ related base pairs as network graph

4 MATERIAL AND METHODS

Due to the fact, that the submission should be no more than 2 pages
we include only a few figures into it. We also recommend watching
a short animation, that depicts some details about the three different
visualization approaches and the structural representation that is in line
with the uncertainty: http://youtu.be/PZp5GNpNZX4.

5 TERMS AND CONDITIONS

By submitting this entry, we give the BioVis 2015 organizers permis-
sion to publish it in conference-related materials. Any usage or refer-
ence to any submission will include full credit to its authors.
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2.5. Integrating Open Data on Cancer in Support to Tumor Growth Analysis

2.5. Integrating Open Data on Cancer in Support to Tumor Growth
Analysis

Within this conference publication I present preliminary results from studying the availability of open
cancer data with the goal to identify some pointers for data that can be used for in silico modeling of tumor
growth as well as tumor growth visualization and simulation.
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Abstract. The general disease group of malignant neoplasms depicts
one of the leading and increasing causes for death. The underlying com-
plexity of cancer demands for abstractions to disclose an exclusive subset
of information related to the disease. Our idea is to create a user inter-
face for linking a simulation on cancer modeling to relevant additional
publicly and freely available data. We are not only providing a cate-
gorized list of open datasets and queryable databases for the different
types of cancer and related information, we also identify a certain sub-
set of temporal and spatial data related to tumor growth. Furthermore,
we describe the integration possibilities into a simulation tool on tumor
growth that incorporates the tumor’s kinetics.

Keywords: Open data · Data integration · Cancer · Tumor growth ·
Data · Visualization · Simulation

1 Introduction

Interactive data integration, data fusion and, first and foremost, the selection of
datasets is a key research direction to enable knowledge discovery in health infor-
matics generally, and bioinformatics and computational biology specifically [1].

Our aim is to link publicly and freely available data on cancer to an enhanced
version of our recently presented tool on tumor growth [2]. Thereby, we list
open databases providing datasets on the different types of cancer and collect
related information. The datasets are examined for growth-related parameters
and subsequently integrated into a simulation tool on modeling neoplasms. This
simulation on neoplasia comprises abnormal tissue growth such as benign and
malignant tumors. Additional text-based information and non-growth-relevant
data is scanned and revised for accessory visualization features.

c© Springer International Publishing Switzerland 2016
M.E. Renda et al. (Eds.): ITBAM 2016, LNCS 9832, pp. 49–66, 2016.
DOI: 10.1007/978-3-319-43949-5 4
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We further describe and sketch possibilities for integration and visualization
of cancer-related data into our recently presented simulation and visualization
tool on tumor growth [2]. The Web tool is based on the implementation of
the Cellular Potts Model (CPM) and Cytoscape, that is available at https://
github.com/davcem/cpm-cytoscape. We present an integrative approach to can-
cer research. The study rests upon the idea of enhancing the tumor growth
simulation by integrating multiple genuine data.

First, we introduce the topic of open data for research in general and on
cancer in detail. Further, we recap the biological settings for cancer modeling.
We approximate and appoint open datasets on cancer involving tumor growth
information by considering temporal and spatial aspects. And, we discuss their
feasible incorporation into an online simulation. We proceed with a summary
on the key challenges for embedding open data to our cancer simulation. We
thereby suggest that an integrative approach is key to understanding cancer.

2 Related Work

2.1 Open Data for Scientific Research

There is a strong trend towards an increasing number of freely available datasets
becoming available in many domains, including scientific research. The idea of
open data is to provide unrestricted access for sharing, validating, reusing and
merging relevant data to advance scientific research. Several works already show
that new opportunities arrive with the increasing amount of open data. The
so-called Fourth Paradigm [3] envisions data-driven research by widened access
to open data for common good.

While open data provides opportunities, there are challenges associated with
the provision, discovery and usage of open data. Typically, relevant content needs
to be retrieved by researchers. Then, data from different sources of possibly het-
erogeneous data regarding data type, quality, and resolution need to be inte-
grated for joint analysis.

Interactive visualization can help to explore and related data during the dis-
covery process. Domain- as well as application-specifics need to be taken into
account to choose the right visualization tool for supporting search and explo-
ration in general data exploration [4–6]. In previous work, approaches for dis-
covery of relevant data in research data repositories based on exploration and
visual querying have been proposed. The VisInfo system [7] allows to query
for content in large time series databases. Often, content needs to be related to
metadata. In [8] data patterns are correlated with metadata, for enhanced explo-
ration. Visual search for bivariate data has been addressed in [9] using features
obtained from scatter plot representations of input data. In absence of example
queries from real data, user sketching of patterns can be useful, if appropriate
similarity functions can be obtained [10]. Besides exploration, visual-interactive
approaches can also be useful for the effective semi-interactive integration of
heterogeneous data sources, which is a primary requirement in many open data
analysis projects [11].
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More specifically regarding the medical domain, we recently compared meth-
ods for visualizing and analyzing data in online proteomics databases. Only a
few available tools meet the needs for interactive visual analysis [12].

Increasing data availability is not only considered as an opportunity but also
new issues arise. Challenges of data integration in the biomedical sciences include
determining available and usable data, completeness, re-use for novel approaches
for data discovery and exploitation [1,13].

2.2 Open Data in Cancer Research

Biomedical data comes in many guises [1]. Initiatives are already fostering open-
access research for improving patient care. There are several freely accessible web
portals, yet, providing exploration support for cancer genomics due to increasing
efforts in the area of Bioinformatics regarding genomic data handling [14–22].
For example, challenges in normalizing clinical drug data have been illustrated
while using open access druggable genome datasets for target discovery in the
context of cancer therapeutics [23].

With regard to imaging data there are several online resources providing
several million cancer images, which are partly public, partly protected. Avail-
able imaging data includes computed tomography, magnetic resonance and other
images. De-identification scripts support moving more and more images on pub-
lic servers [24].

Text mining for literature curation is common for omics data [25]. Sum-
maries of fundamental concepts for text mining in cancer research are mainly
concerned on relation extraction mechanisms such as identifying protein-protein,
gene-gene or gene-disease relations [26]. Text mining has already been combined
with manually curated data for data integration in the context of disease-gene
associations [27]. Several open access literature resources exist to apply text
mining for finding suitable disease data. However, text mining in biomedical lit-
erature is more sophisticated than for clinical data [28]. Only a few databases
provide information on cancer incidences and statistics. Movements come from
the American Cancer Society and the World Health Organization [29–31]. Data
protection regulations and privacy is one of the obstacles to tackle to providing
open data for biomedical research [33,34] There are approaches for space-time
analysis and visualization related to cancer, but they deal with population data
such as location and age [35].

Sophisticated integrative analysis tools for cancer are yet to be found [36].
Online available disease ontologies help understanding the relationships of cancer
terms and foster communication and exchange [37,38].

To our knowledge, there is no approach to identifying tumor growth related
open data. We therefore focus on identifying temporal and spatial entities within
available cancer data.
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2.3 Biological Background

There are two basic biological phenomenons which play essential roles in the
disease of cancer. First, spontaneous mutations occur naturally and frequently
within all cells [39]. Secondly, normal cells can undergo programmed cell death,
so-called apopotosis, with time. In some cases however, such mutations can have
an effect on cellular functions. Tumor cells are characterized by a change in
the proliferative capacity. Malignancy can be developed if mutations lead to
the inhibition of apoptosis or excessive proliferation and could further end in
differentiation. Tumors can look and function similar to normal cells. Benign
masses of tumor cells are normally localized. They only become problematic
if space is limited or keep producing hormones in excess [40]. Malignant tumor
cells become more serious. They do not only grow more rapidly but they can also
invade other tissues and parts throughout the body. Parameters that relate to
the specified aspects in tumor growth are of particular importance for modeling
cancer. Since mutations are the onset of cancer, open data is concentrated on
genetic data. Still, in order to combat the disease relational information has to
be retained.

3 Approach

Our approach is to study open datasets for querying and relating interaction data
to (gene classified) cancer diseases. The goal is to extend an existing framework
for simulating and visualizing tumor growth [2] by integrating a selected subset
of spatial and temporal data for supporting exploration and sense-making. To
achieve this goal several data integration steps are necessary. Most important,
available data has to be identified and examined for relevance.

3.1 Relevance to Tumor Growth?

We focus on summarizing and picking specific information on tumor growth.
Presently, there are no web-resources providing exclusive data on tumor growth.
So, relevant information has to be isolated from an abundance of data in matters
of cancer research. We aim to gather cancer-relevant data in regard to spatial
and temporal criteria in particular.

Temporal and spatial characteristics on tumor growth can be influenced
by several factors, such as gene regulation or mutations as well as drugs and
other inhibitors or promoters. In cancer, the balance between growth promoting
and inhibiting factors is shifted towards proliferation. The underlying signal-
transduction pathways are complex biological processes involving several key
steps as well as mediators which are dynamically and differentially regulated.
The influencing factors have to be recognized and parameterized in order to be
integrated into the simulation.

We are equally interested in statistical assessment of growth kinetics from
various tumors and cancer subtypes, as well as incidence reports on isolated case
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reports. Notably, entity relationship descriptions and interaction data in regard
to tumor growth characteristics are of relevance and primary focus.

Previous studies on tumor growth prediction could be likewise included. In
order to enhance the cancer modeling tool, we aim to provide a comprehensive
simulation comprising growth characteristics of various kinds of tumors. Most
studies on predictive cancer modeling focus on the kinetics of various cancer
diseases. We try to collect and capture the specifics of several tumor types and
to likewise broaden and refine the visualization approach tumor growth analysis.

4 Results

We present an overview of available cancer-related open data. We categorize
identified datasets corresponding to the content types that can be found with
respect to cancer research. The study shows that genomic data as well as imaging
data is increasingly available. But, explicit information on temporal and spatial
aspects are hardly found. Text mining in incidence reports and open access
publications have to be taken into account in order to find suitable data for
tumor growth simulation. Furthermore, we describe the integration of a subset
of open data related to tumor kinetics, temporal and spatial data in particular,
into an existing tumor growth simulation user interface that is freely online
available via github.

4.1 Overview of Available Data

We categorize online available information from cancer research under 5 different
categories. First, many datasets provide genomic data. Secondly, incidence
data can be analyzed and downloaded from several portals. Third, there are
large archives consisting of imaging data. Fourth, there are several databases
that consist of disease associations such as disease ontologies. Last but not
least, open access databases provide a comprehensive list of literature data for
text mining.

By considering content quality, license information and access possibilities
for each of the listed entries, we chose a subset that satisfied the needs for free
non-commercial usage as well as data relevance. Table 1 lists facts about the
identified databases regarding its data category relation.

Starting with a review of currently available cancer genomic databases for
research [41], our search strategy included systematically examining lists of data-
bases of cancer-related data presented at metasites found via online search.
Therefore, we iteratively extended a table of cancer related databases until we
arrived at a comprehensive list of databases that we are summarizing below. We
examined available databases and included information about access possibili-
ties as well as descriptions about the provided data type/category, the data’s
coverage, whether download of data as well as a web API is provided, license
information and last but not least studied optional input and output entities.
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Table 1. Statistics about list of non-filtered databases

Category # Identified # Chosen Possibilities Possibilities

databases databases for spatial data for temporal data

Genomic data 15+ 9 – –

Imaging data 6+ 5 � –

Incidence data 6 4 – �
Disease associations 6 3 � �
Literature data 2+ 2 � �

genomic db

cBioPortal, 
intogen…

imaging db

NBIA, TCIA, 
MTB, HPA...

genomic db

TCGA,  
Ensembl...

disease assoc.

DO, FACD, 
MTB…

genomic db

ICGC, CGAP, 
UCSC...

incidences db

Seer Cancer

incidence db

Cancer 
Research UK

← input: cancer study, cancer type
→ output: case lists metadata, 

case list details, study metadata, 
study details, cancer types, genetic 

profiles, mutations, survival, age, 
proteomics data etc.

(web api, tools & data for download)

← input: cancer type, 
anatomical site etc.

→ output: images & metadata
(web api & images for 

download)

→ input: cancer type, population specifics 
etc. 

← output: cases, fact sheets, population 
data, mortality data, country attirbutes etc.

(limited api & downloadable data)

← input: gene, genesets, mutation, donor, 
    drug, project name, keyword etc.
→ output: genes, genesets, mutations, donors, 
    cancer project names, drugs etc.
(web api available, software & data for download)

← input: name, disease, keywords, 
    Mesh Code, NCI, ICD10 etc.
→ output: disease metadata & 
    details, disease relations etc.
(web api, downloadable data)

→ input: cancer type, 
    disease, biospecimen ID, 
    mutation annotations 
→ output: sample metadata, 
     samples, clinical data, 
     sequence data, publications
(webapi & data for download)

← input: cancer type
→ output: statistics on mortality, 

survival, risk factors, 
diagnosis and treatment

(html search & downloadable data)

literature db

open access 
publications

← input: free text query search
→ output: article ids & metadata, 
     cross-referenced articles, 
     retrieving full text
(web api for most dbs, e.g. PMC apis...)

Fig. 1. Overview of cancer databases for integration

Therefore, next to the availability of spatial and temporal data, we further dif-
ferentiate between possible input and output. Figure 1 shows an overview of our
approach. The input and output is being summarized. The node’s color corre-
sponds to the data’s category.
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Table 2. Summary of examined databases that may be suitable for the task of data
integration

Category/Name Abbreviation Data access Ref.

Genomic data

The Cancer Genome Atlas - Data Portal TCGA REST, download [16]

cBio Cancer Genomics Portal cBioPortal REST, download [15]

NCI’s Cancer Genome Anatomy Project CGAP download [43]

International Cancer Genome Consortium - Data

Portal

ICGC REST, download [19]

United States Cancer Statistics - Cancer Genomics

Browser

UCSC download [16]

Catalogue of somatic mutations in cancer COSMIC REST, download [18]

Integrative Onco Genomics INTOGEN download [20]

Integrative Genomics Viewer IGV download [21]

Many more general genome databases such as

Ensembl

ENSEMBL REST, download

Imaging data

The Cancer Imaging Archive TCIA REST, download [24]

CancerData.org - Sharing data for cancer research CancerData download [45]

Mouse Tumor Biology - Database MTB download [44]

National Biomedical Imaging Archive NBIA REST, download [24]

Many more such as the Human Protein Atlas HPA download

Incidence data

WHO Cancer Mortality Database WHOdb download [46]

Center for Disease Control and prevention - Cancer

Data and Statistics

CDC download

Surveillance, Epidemiology, and End Results -

Program

SEER download [30]

Cancer Incidence in Five Continents CI5 download [31]

Disease associations

Diseases Ontology DO REST, download [37]

Mouse Tumor Biology - Database MTB download [44]

NCI Thesaurus NCIt REST, download [38]

Literature data

PubMed Central PMC REST, download [26]

Europe PubMed Central Europe PMC REST, download [32]

Table 2 lists all examined databases providing cancer-related content as
download that is free for non-commercial, scientific purposes, sorted by cate-
gory.

The summarizing table shows only a small subset of examined resources due
to the fact that several licensing issues as well as quality issues such as depre-
cated data that has not been maintained for years have been identified during
our research. We also observed that several data portals make use of others,
e.g. the Disease Ontology’s cancer project includes several mappings from other
databases, especially genomic data. The “+” in the column of identified data-
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bases within Table 1 implies that more databases could be found but are already
included within other databases. To that effect, the databases’ peculiarities also
include data coverage such as databases that cover other databases’ contents
as well. Due to that reason, we chose to use only the largest two archives of
biomedical literature data for further literature mining.

4.2 Literature Mining

We conducted a search for some tumor growth related terms to test the suitabil-
ity of literature databases for finding data to be integrated. PubMed has been
reported to be one of the best biomedical publication archives [26]. Therefore, we
chose to conduct some mining within the two public archives of biomedical and
life sciences literature, “Europe PMC” and “Pubmed Central” (PMC). Addi-
tionally, we made use of an information retrieval tool for biological literature
called “Textpresso” [42]. Example queries are summarized below.

Table 3. Example queries for text mining

Database Query for Query for Query for Query for

or tool “abnormal “tumor growth” “tumor cell “neoplasm”

cell growth” growth”

Textpresso 111 matches, 3891 matches, 37072 matches, 3990 matches,

33 documents 926 documents 6519 documents 2000 documents

Europe PMC 1399 matches, 121435 matches, 12555 matches, 4076094 matches,

277 open access 35174 open access 4089 open access 436216 open access

PMC 1389 matches 98822 matches 13557 matches 2837065 matches

Making use of specific text mining tools is favored over literature mining
for finding most relevant results and presenting sets of results. E.g. highlighting
matching sentences is crucial to a fast scan through results and the identification
of relevant information.

4.3 Data Processing

Most online portals provide free access to the data available as downloadable
content, some accompany web interfaces such as web services for direct access
too. In each case further data processing steps are necessary to respond to the
needs of (visual) data mining and integration into the existing user interface.

Most genomic data portals already provide entity relationship (ER) diagrams
for documentation of available data entities and relations. However, we focused
on finding temporal as well as spatial tumor growth data and were not able to
identify explicit information about those aspects within available cancer genomic
data. Further mining techniques have to be taken into account to accomplish
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the task of finding suitable information about specific growth impact on cancer
disease-gene associations.

As a starting point for data integration we created a set of different growth
functions by literature curation. We collected data points for comparing discrete
growth functions for tumor growth, vascularization inhibition and cell density
inhibition on growth. Data points come from three different publications found
via PMC and is summarized in Fig. 2 [47–49].
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Fig. 2. Literature-curated discrete tumor growth - data samples: various
tumor types, determined growth in tumor size, given in miscellaneous units, over time,
presented in days.

4.4 User Interface Extensions

Cpm-cytoscape is a tool for scientific simulation and visual analysis of tumor
growth. The web application makes use of the CPM for modeling tumor growth.
The CPM is a popular lattice-based, multi-particle cell-based model that has
been used for modeling tumor growth in a wide area. The tool incorporates
a novel graph-based visualization approach [2]. Figure 3 shows an annotated
screenshot of the existing user interface, describing the different interaction and
visualization possibilities of the tool’s user interface.

The tool’s framework integrates visualization features for analysis via
JavaScript and HTML. A Converter Class allows for extending the data objects
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2 5

1   adjustable parameter settings for CPM computation, including custom profile selection

6

6   Toggleable line chart 
     container shows 
     computed growth 
     with export button.

3 4

2   At top there are
     are buttons for 
     initializing and 
     computing the 
     lattice sites. 

4   Rght side shows the 
     output for the last
     computation step.
     The table below shows
     computed cell data.

3   Left side shows the
     initialization output 
     as rendered graph.
     The table below shows
     the initialized cell data.

5   Toggle button

Fig. 3. Overview of User Interface with custom profile showing kinetics and cell sorting
after several simulation steps

that represent simulated cell sorting and kinetics. Another Converter allows for
processing data to communicate between backend and frontend. This Java Class
maps the graph data from the modeling computation to the format needed by the
visualization renderer in the frontend. Such converter classes are easily extend-
able and support integrating additional information. The simulation and its sev-
eral computation steps are started via Representational State Transfer (REST)
calls, while the user interface displays response information both within the
graph visualization as well as in an overlay as simple Line diagram. Details on
its usage and implementation can be found on the project’s github page [2].

Profile Specific Simulation and Visualization. The first implemented
extension to the user interface is the ability to provide “profiles” for running
simulations under different configurations. The simulation can be started with
the help of choosing a profile or specifying a custom profile. Figure 3 shows a com-
pleted simulation for a custom profile. The profile extension is a good example
of extending the user interface neatly and encapsulated. A separate JavaScript
function call via changeProfile() is located in an separate extension. Each profile
for selection is represented as JSON file for easy maintenance. The profile can
be selected via a dropdown (Fig. 4). The parameter settings that are available
via JSON files can be replaced with a dynamic function that communicates with
another server to get all the various parameter settings.
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Fig. 4. Screenshot of profile selection possibilities

Until now we did not find any database that holds all the data needed to have
different complete configurations to run a simulation, therefore we are providing
static configuration files to try out different settings that have found via manual
literature mining. However, this extension is a good example to start the task
of data integration and can be further extended as soon as a suitable dataset is
available.

Presenting Details on Cell Nodes. The visualization of cell sorting and
kinetics is based on a graph. Each node is representing a so called “cellular
brick” of a cell. A cell is a set of 0 to n cellular bricks with the same cell-index,
while each cell sigma is of a specific cell-type τ . Until now, we only differentiate
between proliferating tumor cells and healthy cells as distinct cell types, with
different growth rates and volume constraints for each type, rendered as colored
nodes. Thirdly, we use grey nodes to represent the extracellular matrix (ECM).
Additional information on nodes can be provided via context menu. According
to the node’s cell-index σi,j additional information about the associated cell-
type can be shown, while proliferating tumor cells are called “dark” cells and
the other healthy cells are called “light” cells. Cells with σi,j = 0 represent the
ECM, visualized as grey nodes. Cells with odd σi,j represent the “dark” cells
and are visualized as dark red colored nodes. The other cells with an even σi,j

show “light” cells and can be recognized by the lighter blue to green colored
nodes.

Search for Reports on Related Diagnosis and Treatment. Text-based
search within an existing incidence data provides exploration of similar cases,
diagnosis, treatment as well as other possible relations. Figure 5 shows a mock-
Up of a simple integration. As starting point we just link to additional infor-
mation. However, a tight integrative approach would be adding further data to
the computation of the several simulation’s steps. Taking additional information
into account such as drug information that has impact on growth could then be
presented as uncertainty visualization as sketched in Fig. 6.

Direct Inclusion of Time-oriented Data for Growth Simulation. An
ultimate goal is to include information not only on existing related incidences but
far more information on drugs and other inhibitors or promoters to be integrated
directly into the computation process. In particular time-oriented data as we see
in the simple line diagram showing the growth of different celltypes supports
integration of additional information to be visualized for further exploration and
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Fig. 5. Screenshot, showing additional information for cell nodes (Color figure online)

Fig. 6. Mock-Up of a time-line extension showing results of a computation taking
additional information on treatment into account

analysis. Regarding the carcigonesis we have to include information about several
attributes of tumor progression as well as genetic theory. Genomic databases
also provide data in biotab format that includes temporal data such as “days
to death” [50]. The possibilities are numerous. Comparing progress is possible
with visualization metaphors such as making use of a Layer Area graph, Braided
graph, Stream-graph or even parallel coordinates as well as many others [51].

5 Challenges

Our work is an intermediate step in extending cancer research using a specific
tool and feeding it with additionally enhanced data. A number of challenges has
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to be addressed. There are many open issues for data integration, in particular
to cancer data. We summarize and explain the most important ones.

Relevance. A key challenge is finding suitable relations in a domain-specific
manner. Are relevant data such as growth rates explicitly available via open data
sources or hidden within text retrieval of open access publications (literature
curation)? How can relevant data sets be successfully retrieved?

Data Quality. Regarding data quality, aspects of accuracy and completeness
have to be taken into account. Several genomics databases show associations
between diseases and genes for several reasons, sometimes only because of the
fact that queried terms occurred in the same publication. Further data processing
steps have to be taken into account to decrease retrieval of false-positive or false-
negative associations.

Tight Integration of Visualization. Integration for visual data analysis is
possible on different levels. Moving beyond visualization as simple presentation
of computation results, several interaction possibilities have to be included seam-
lessly to foster understanding of the underlying processes [5].

Specifically in the case of simulations, experts need to set many parame-
ters but it is often not clear what the effect of the different parameters will be.
Hence, there is a need for representing sensitivity and also, uncertainty of the
analysis results. The latter is particularly relevant in case of incomplete data,
or data of varying levels of resolution. Moreover, the integration of the knowl-
edge of a domain expert can sometimes be indispensable, and the interaction
of a domain expert with the data would greatly enhance the whole knowledge
discovery process pipeline, i.e. interactive machine learning puts an human-into-
the-loop to enable what neither a human nor a computer could do on their
own [52].

Ease of Use. Incorporating a human computer interaction perspective into can-
cer simulation and visual analysis, we have to face the danger of user interface
overload due to the complexity of data integration. Integrating various multi-
dimensional result-sets of different databases in a consistent and concise way
to maintain an intuitive user interface. While our approach is to provide tumor
growth simulation and visual analysis via an intuitive user interface that is online
available, questions to be answered still remain: How to facilitate exploration and
discovery and how to make complex cancer data easily accessible.

6 Discussion and Conclusion

Cancer research is a data-intensive application domain that, on the one hand,
raises many challenges for researchers, technicians and clinicians. On the other
one in silico modeling may benefit from the many possibilities that come with
accessible data related to the disease of cancer.

We implemented an easily extendable user interface using open-source com-
ponents, with the ultimate goal of supporting in silico modeling by dissemination
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and contribution throughout the Computational Biology community for cancer
research. Visualization for scientific simulations can have a positive impact on
exploration, comparison and understanding. Therefore we are iteratively extend-
ing a visualization approach to tumor growth simulation and describe some
examples as a starting point, how publicly available data can be used to further
enhance the analysis of tumor kinetics.

We believe that it is essential to exploit and integrate data to achieve the
goal of supporting clincians’ decision making. The tool’s extensions have been
co-designed and validated by a domain-expert, but have not been evaluated by
clinicians so far. Future plans are to conduct iterative testing and validating.

This contribution is preliminary work and aims to facilitate integration of
heterogeneous data sources for tumor simulation and analysis by providing a
categorized list of databases and describing integration possibilities. Open Data
for cancer research can be disposed on a large scale: Incidence reports can be
used to enhance a statistical and probabilistic approach to prediction regard-
ing population data such as age, sex, etc. Imaging archives can be exploited for
input testing. Further, profiles can be created and utilized. First attempts are
discussed in [53]. Databases provide information about mutation probabilities
regarding specific cancer types. Subsequently, genomic information can be used
for biomarker discovery, for targeting strategies regarding novel drugs. Moreover,
the comparison of biopsies with other incidence reports may foster personalized
medicine. Data can be used for parameter refinement not only for extending the
set of profiles but also including more variables according multicellular struc-
tures.

In general, the sheer abundance of data, derived from multiple experiments
in cancer research, asks for a more comprehensive approach to data retrieval,
analysis and application [36].

The progress of sophisticated biochemical and biomedical methods may not
outrank the development of bioinformatic methods in order to salvage the often
multi-dimensional information There is a general need to readily access cancer
data from public repositories. Data integration resembles one promising option
to this task.

So far, Web repositories on cancer information focus genomic and mutational
data in particular. We experienced that one can easily get sunk within this mag-
nitude of information in search of completely different readings. We aim to pick
and choose details of growth-relevance in order to refine and improve kinetic
models within field of computational biology in cancer. In anticipation of future
development, in terms of personalized medicine, individual mutational profiles
could be compared to those from repositories and integrated by determining the
scope of the specific tumor growth. This approach could be equally employed for
proteomic material. For that matter, further information on spatial and tempo-
ral changes due to genetic changes have to be allocated to online repositories.
Ultimately, such an approach will predict the outcome of the disease and the
patient’s survival possibilities.
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Concluding, we believe that the key to understanding the concept of cancer
lies within the integrative translation and multi-dimensional connection of open
data.
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Chapter 2. Publications

2.6. In silico modeling for tumor growth visualization

Within this journal publication we describe an in silico modeling approach to tumor growth with the help
of a visualization and simulation tool. I created the idea of this tool together with my sister, expert in
molecular biomedical science. By being supervising a computer science student we achieved to create a
first implementation. I further extended the user interface according to feedback provided by my sister. My
sister and I also designed the first experiments and analyzed data together.
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Abstract

Background: Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight
into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research
on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant
neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge
necessary to grasp and to apply a model to their own research.

Results: We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel
Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input
variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of
heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of
the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available
under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-
cytoscape/.

Conclusion: In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in
terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our
visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and
gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will
benefit from the systems biology perspective.

Keywords: Cancer, Tumor growth, In silico, In silico medicine, Visualization, Visual analysis, Computational biology,
Cellular Potts model, Glazier and Graner model, Cell proliferation

Background
Around 13 % of all deaths worldwide are due to can-
cer [1]. Cancer depicts a group of diseases which refer
to abnormal new growth of cells which can spread and
invade different areal parts throughout the body [2].
A tumor is most commonly described as an abnormal
growth of clustered cells which can be either benign
(well-structured and non-harmful) or malignant (cancer-
ous) [3]. Treatment against cancer directly relates to the
growth-behaviour rendering the onset of therapy critical
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for its outcome. As a matter of fact, oncology is primar-
ily based on prediction aspects [4]. In this regard, we
focus on the assessment and prediction of tumor growth.
The growth of tumors depends on their supply of oxygen,
nutrients as well as survival factors and is influenced by
growth factors as well as its local surroundings [5]. Char-
acteristics are individually based on the different types
of tumors [6]. The mathematical basis for tumor growth
has been described in the mid of the last century not to
be exclusively exponential but to be following a continu-
ous deceleration as presented by the Gompertz function
[7, 8]. Modern approaches, for example, take the hetero-
geneous subclonal mixtures [9] of tumor cells into account
or even its interdependency to cellular motility [10]. Our
model includes basic ideas of tumor growth, set for further
enhancement through multiple expansion possibilities.
We apply in-silico modeling of tumor-growth as a primary

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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tool, and further advance it to a novel Web-based simula-
tion, evenhandedly available for biomedical scientists and
clinicians with a focus on feature visualization. Features
are key to learning and understanding. Thus, features are
of enormous importance for knowledge discovery.

Computational modeling in biomedical science
These days, biomedical science heavily relies on com-
puterized support for analyzing big data, quantifying
dynamic and multiscale events, or likewise for simulat-
ing complex models. Computational models have been
applied for intra- and inter-cellular, tissue- and organ-
specific aspects [11]. Additionally, there is the ongoing
project of creating a virtual physiological human [12] in
order to support clinical decision-making. The project
includes multi-level modeling of a wide range of infor-
mation dealing with patient-specific signaling and genetic
data up to whole-organ physiological mechanisms.
There are two main advantages of the bioinformatic

approach in computational modeling of disease. First,
simulations can be used for predictions in regard to
the basic idea of alternative testing methods in addition
to or instead of laborious experimentation. Alternative
testing methods comprise the categories of replacement,
reduction as well as refinement of in-vivo experimenta-
tion, that are summed up by the 3R principle [13, 14].
Thereby, in-silico methods are applied to in-vivo and in-
vitro extrapolation [15, 16]. Secondly, prediction models
overcome the lack of experimental methods for insuf-
ficient or nonexistent early screening tests. In general,
models can be used to gain insight into complex bio-
logical systems and may address the gaps in litera-
ture as well as form the foundation for future research
[17–19]. Simplification and approximation of the numer-
ous detailed information gained from biomedical science
offers the possibility to patient-personalized prediction,
avoids hard-to-measure variables or compensates non-
measurable factors [20]. Still, models are, so far, inflexible
to simple extensions or even rescaling. Furthermore, we
have to overcome the conflict between complexity and
oversimplification. For instance, global mapping of cell
community is computationally too laborious while the
averaged approach lacks detailed description of molecular
variables [21]. Still, in silico modeling and other computa-
tional techniques help answering key questions in cancer
research [22–25].
We emphasize the approach of computational mod-

eling of biological systems and developing computa-
tional modeling tools for simulation and reproducibility
of experiments in biologic research. Fisher et al. [26]
coin the term Executable Biology which highlights the
difference between mathematical and computational bio-
models in regard to their representation. Executable Biol-
ogy describes computational algorithms in support to

reproducible results in biomedical research as well as
efficient simulation and analysis of biological systems. In
this regard, Executable Biology is recommended to be
integrated as standard method into bio-science.
Regarding the dynamics of tumor growth, computa-

tional models for various types of tumors exist, from
animal models and the human body, dealing with the
individual stages of tumor development [27]. In silico can-
cer modeling provides significant opportunities, however,
Edelman et al. [28] argue that it is yet in its infancy.
Understanding the tumor heterogeneity with respect

to personalized cancer treatment represents the ultimate
goal of computational tumor-growth modeling. For that
matter, multiple groups of scientist have to work together,
accentuating the need for interchangeable infrastruc-
ture of linking big data and adoptable specialized
models [29].

Mathematical modeling of tumor growth
Tumor growth kinetics follow relatively simple laws that
can be mathematically described [30]. Such mathematical
models could forecast individual phases of tumor growth
[31]. In general, there are basic modeling approaches
of cancer kinetics [28], that include exponential growth,
the Gompertz model [32], metabolic models [33], the
so-called universal model [34] and hybrid models [35].
Various mathematical models have been developed for
the description and prediction of tumor growth. Each
model, available so far, is optimized for specific scales of
time and size plus certain aspects of metabolism or inter-
actions [28, 35]. In regard to different biological scales,
Deisboeck et al. [36] discuss innovative multi-scale cancer
modeling approaches, ranging from atomic and molecu-
lar up to macroscopic scale. However, there is no universal
law yet. Simple models have prediction rates less than
70 %, while some models used for specialized simulations
achieve ≥ 80 % prediction rates [30]. Cancer models can
be categorized based on their basic mechanisms to cal-
culate tumor growth, but several additional factors have
to be considered. Tumors originate from differentiating
cells exhibiting the behavior of excessive proliferation up
to migration [20, 37]. Tumors can be either dormant or
growing [38, 39]. After reaching a critical mass, primary
tumor growth stops andmigration throughmetastasis will
occur. From a biological perspective, tumor growth also
depends on the underlying network structure [40–42].

Cellular Potts modeling of tumor-growth
The Cellular Potts model (CPM) poses a most widely
used example of agent-basedmodels which are feasible for
research regarding cell-based phenomena and, therefore,
are favorable for cancer research [43, 44]. The CPM was
first presented by Graner and Glazier [45, 46]. The CPM
or also named Glazier-Graner-Hogeweg (GGH) model
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is based on individual cells in contrast to continuum
models which summarize cell populations to tissues and
continuous materials [47, 48]. It represents a modeling
approach on tissue level with the main focus on intra-
cellular and intercellular events as well as the cellular
microenvironment. It has been implemented for tumor
progression and invasion before [43]. The model includes
single-cell characteristics of cellular geometry and inter-
actions, rendering the simulation more efficient for ques-
tions on a detailed level than for a general overview.
Glazier and Graner’s model was originally developed for
simulating the rearrangement of individual cells and cell
sorting [46]. They upgraded the model to a compartmen-
tal view of cellular subelements. In principle, various cells
are described as objects covering multiple shifting nodes
on a 2D or 3D lattice while moving and changing their
size. Thereby, CPM simulations support studies on type-
specific cellular morphology and interaction [49]. The
model describes different cell states and allows for addi-
tional parameters such as cell division and migration [50]
as well as chemical diffusion and the extracellular matrix
(ECM) [51]. Graner et al. [45] showed that differential cell
adhesion and chemotaxis can be controlled through CPM,
while the model is robust in regard to certain parame-
ter choices. Glazier et al. [47] revise several development
steps of the CPM and Szabo et al. [43] summarize the
usefulness of CPM for simulating multi-cellular processes
related to cancer. Boas et al. [52] recently conducted
a global sensitivity analysis of the CPM, taking model
extensions for angiogenesis into account, and showed that
introducing a dynamic parameter for chemoattraction
has the highest impact, being followed by the diffusion
coefficient and cell-cell adhesion.
CPM has been used in a wide range of applications and

there are extensions in terms of kinetics also referred to
as extended CPM as well as hybrid CPM models [49].
The background of CPM modeling on cell sorting for
various cell-types has been successfully used for the sim-
ulation of benign tumor growth [53] and cancer inva-
sion [54]. Moreover, multiscale-models based on CPM
have been implemented for various cancer-related studies
[43, 51, 55–60].

Visualization for computational modeling
Visualization supports the understanding of biological
data and provides insight into biological systems [61].
Visualization and computation mutually contribute to the
sense-making process of biomedical analysts [62]. It is
advised to provide integrated frameworks for biological
studies. Graphical representations used for biological data
visualization need to be adjusted to an appropriate level of
detail. Graphs, in which each node represents a biological
object and each edge a relation between these nodes, are
often found in visualizations of biological data. While it

has been primarily used for large interaction networks so
far, graph visualization offers several user-friendly layout
algorithms and is applicable for a wide are of application
areas, ranging from social networks, finance to biology
[61, 63]. Our recent study [64] on integrated visualization
of biological networks highlights current possibilities for
using Web technologies to support analysts in exploring
biological relations.
The field of computational cancer biology lacks visu-

alization types apart from network visualization. The
“cBioPortal” with its focus on cancer genomics offers
interactive visualization of pathway networks, mutations
in protein domains, statistical information and trends on
gene sets and clinical patient data of 10 published can-
cer studies [65]. Besides, there are only a few attempts
on integrating visualization in computational modeling
tools for cancer biology. Simulation results of a multiscale
model for glioma growth have been visualized by the use
of the software SciRun [66]. Specific cell growth processes
can be simulated and visualized with the tool CellSys
[67]. CompuCell3D [68] and the Tissue Simulation Toolkit
[69] are exemplary frameworks for testing and extend-
ing computational models, integrating visualization fea-
tures on cell interactions for simulation and analysis.
Last but not least, there have been efforts in developing
a virtual biobank [70] and a cancer modeling commu-
nity [36] to exchange data and to facilitate visualization
integration.
Though computational modeling has become a feasible

tool for tumor growth research, simulation tools are rare.
There is a step by step tutorial available how to simulate
collective cell behavior based on Cellular Potts modeling
[71]. CompuCell3D is one of these tools which has been
used for in silico modeling of cellular and multi-cellular
behaviors [68]. The latter research group introduces a
tutorial for building cell-based simulations for visualizing
tumor growth by making use of an open source library
for simulating the CPM, written in C++. Though provid-
ing step-by-step instructions, basic knowledge of the use
of the terminal and a C++ compiler are required. This
technical know-how is often a limitation to clinicians and
researchers in biomedical sciences. Moreover, they do not
describe how to create iterative computations and how to
differentiate between cell-types.
However, despite the availability of many different

tumor growth models on the one hand and many Web-
based visualization libraries on the other hand, adequate
and usable simulation tools are still rare. To our knowl-
edge, there have been no efforts in creating easy to
use,Web-based computational cancer modeling tools that
integrate visualization features. Our main idea is creating
usable and extendable implementations of tumor models
to foster ease of use of simulations and support knowledge
discovery.
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Methods
Mathematical basis of tumor growth
In general, tumor growth is mathematically summarized
by the Gompertz function [7, 8, 32, 43]:

Vt
V0

= e
a

x∗(1−e−at)

with tumor size at variable time Vt and the initial tumor
size V0, a and b being tumor-type characteristic con-
stants, for cell clone division [7, 8]. In detail, we choose to
describe tumor growth using the CPM by GGHwhere the
probability for a spin copy and therefore cell proliferation
is expressed as:

p
(
σi,j → σi′,j′

) =
{
e

−�H
T if �H > 0;

1 if �H ≤ 0;
(1)

The CPM is a time-discrete markov chain and its tran-
sitions σi,j → σi′,j′ are calculated by a Hamiltonian (or
energy) function �H , a sum of several terms [46, 47]. We
further describe details on its implementation within the
next subsection.

Implementation of the CPM
The Potts model is based on the differential adhesion
hypothesis which states that motile cells rearrange them-
selves according to the lowest energy configuration along
the potential energy landscape [46, 72]. Within the CPM
by GGH, cells are assigned certain spin states. Cells are
build up by multiple cellular bricks, likewise termed (cel-
lular) lattice nodes, sites or points. A multi-scale growth
is accomplished through surface adhesion and space com-
petition of cellular bricks scattered through the discrete
lattice. Cellular bricks are associated with spins at lattice
sites. Spins can be flipped between spin states allocating a
celluar brick to another cell. These spin-copy attempts are
calculated through Monte Carlo Steps (MCS). MCS are
the mathematical basis for the probability simulation. The
key parts of the computation are theHamiltonian function
�H , also referred to as configuration energy [47], shown
in Eq. 2, and the temperature T shown in Eq. 3.

H = J
∑
i,j

(
1 − δσi,jσi′ ,j′

)
(2)

If �H < 0 the new spin state is always accepted because
the system’s energy will be decreased. If �H ≥ 0 the new
spin state is accepted with a certain probability. While the
cell is growing its target volume increases too. A cell in
the CPM is the set of all cellular bricks with the same
cell-index. Each cell relates to a certain cell-type. The
cell-types are defined by the set τ .

�H constitutes the energy of interactions between cel-
lular bricks i with the neighbour j. The discrete version of
the Kronecker delta δ = 1 if two neighbouring bricks are
from the same cell, otherwise δ = 0.

A cell will reach a critical point for division upon mini-
mum �H . Each cellular brick is assigned a σi,j with type-
dependent interaction energies, the spin-spin coupling
energy constants J(σi,j) to neighbouring cells. J effects a
cell to be inclined to comprise a formation of connected
cellular bricks over loose entities.
MCS is a series of n spin-copy attempts for a lattice

consisting of n lattice sites. Each MCS step resembles
the rearrangement of cells and, therefore, the time. The
calculation shown beneath includes the temperature T
which resembles a cellular motility factor [47]. The MCS
calculates a change in configuration of H0 to H1 for:

�H = H1 − H0 ≤ 0 or otherwise p = e
−�H
T (3)

The CPM Hamiltonian H is the sum of a series of terms
that are related to different cell attributes such as interac-
tion energy as well as volume. Extended versions exist that
include other addends [49]. The original CPM includes a
second term next to the first term of all surface energies
J. H also includes a λ as cellular constraint as function of
elasticity, shown in Eq. 4.

H = J
∑
i,j

(
1 − δσi,jσi′ ,j′

)
+ λ

∑
σ

(v(σ ) − Vt(σ ))2 (4)

In more detail, H includes the number of lattice sites
v(σ ) in a given domain with the spin σ , and the target
number Vt(σ ) within that domain. The second term con-
fines a cell’s volume v to the range of a specific target
volume V, while the variable σ i′j′ sums up the number
of neighbours. We focus on a schematic two-dimensional
cellular grid. A cell’s volume v and target volume Vt is
thereby reduced to area a and At .

Web-based model implementation
The implementation for the purpose of visual analysis of
tumor growth includes:

• CPM implementation, based on Glazier et al. 1993
[46]

• Servlet for client-server communication
• Network visualization based on Cytoscape.js [73]
• Line chart visualization based on Flot [78]
• HTML5 frontend
• Tests
• Documentation

TheCPM is implemented as server side backend. There-
upon a cross-browser user interface integrates client side
visualization libraries for multiple visualization outputs
(Fig. 1).
The presented tool cpm-cytoscape offers an HTML5

based graphical user interface that makes use of JavaScript
(JS) libraries, first and foremost Cytoscape.js. Below the
frontend, the backend is implemented in JAVA and
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Fig. 1 Architectural Representation of cpm-cytoscape: The architecture is composed of two distinct layers: The frontend layer contains a
Cross-browser web presentation layer. It contains the customizable visualization components as well as a dynamic user interface for interacting with
the CPM implementation via AJAX (with GET/POST). At the backend layer the JSONCPMServlet serves as interface for the actual CPM Lattice
computation in the backend

information between frontend and backend is exchanged
in JavaScript Object Notation (JSON), a common data
exchange format that is used by Cytoscape.js. The JSON
data holds a reference for the output container as well as
several elements. The elements further contain child ele-
ments such as the complete set of edges and nodes, while
each node again contains data about id, position, color,
neighbour, parent, selection and other parameters. More-
over, the JSON structure includes information about the
graph’s layout and style parameters. By making use of a
Java implementation of the CPM computation, a set of
Java Servlets are requested asynchronously and delivering
the data needed both for the computation in the backend
and for the visualization rendering in the frontend.

Visualization
We developed an HTML5 frontend that can be easily
adjusted by means of modern web design via editing
markup, JS and presentation stylesheets. The frontend can
further be extended by integrating additional control ele-
ments as well as by making use of additional JS-based
visualization libraries. For the visualization we searched
for a library capable of rendering nodes along a lattice, and
we found Cytoscape.js to be the graph visualization library
of our choice. We use visualization libraries to create
and update the visualization during a simulation run. The
rendering method requests the JSONCPMServlet, a Java
servlet that delivers data needed for the frontend render-
ing. Therefore, the JSONCPMServlet first receives JSON
data, parses it, maps it and sends it back as JSON, that is
then used for the graph rendering. For now, the frontend

rendering parts include a graph visualization and a simple
line chart. We use Cytoscape.js to plot the lattice-based
graph visualization as well as Flot, a Jquery.js extension, to
draw simple line charts.

Usage of cpm-cytoscape
Based on a study on a brain cancer type modelled
by CPM [51] and our ongoing work on tumor growth
profiles for simulation [74] we introduce the tool
through a short tutorial at https://github.com/davcem/
cpm-cytoscape. We encourage readers to use GitHub for
having a closer look at our implementation, explore its fea-
tures and suggest enhancements as well as participate in
the development. Design and implementation of the pre-
sented tool took place in an iterative manner. Informal
validations have been conducted by several discussions
with a domain expert. The basic idea up to the model’s
implementation and the tool’s user interface have been
co-designed and reviewed by a domain-expert.

Results
Wepresent a new 2D visualization approach for a dynamic
cellular model simulation that accounts for lattice size, cell
size, environment parameters and interactions between
cells. The tool developed and used for the simulations has
been published in the GitHub repository, saved as cpm-
cytoscape. It can be obtained via the url address: https://
github.com/davcem/cpm-cytoscape. Further, we provide
a demo version that is online available on: http://styx.cgv.
tugraz.at:8080/cpm-cytoscape/.
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We created the tool to allow for easy manipulation by
its user. The upper region offers a number of variables
which can be set by the user in order to discriminate
and process various experiments. The CPM is computed
solely in the Java backend, while initialization parameters
can be adjusted in the frontend and are communicated
by requesting the servlet. By varying several parameters
the user is allowed to simulate a wide range of conditions.
These parameters are the lattice’s size (x,y), the count of
monte carlo steps, its’ substeps, max σ , the matrix den-
sity, interaction parameters as well as the temperature.
The Java packages consist of the implementation of the
CPM itself, a graph converter to convert the CPM lattice
into a graph structure, a more specific cytoscape con-
verter to represent the graph enrichment needed for the
visualization library as well as the servlet to provide the
communication interface between backend and frontend
via JSON.
Individual cells are visualized as group of nodes, we refer

to as cellular bricks, on a grid. Cytoscape.js provides a
grid layout rendering algorithm that arranges the nodes
in a square grid whereby the circular nodes represent
subcompartments of cells. We differentiate between light
cells that represent normal cells, dark cells that represent
mutated cells and the ECM that surrounds cells. The ECM
is represented as grey nodes. The other nodes with σ ≥ 1
are represented by the colored, either dark or light nodes.
For now, we only differentiate between a light and a dark
cell-type. Nodes which are not indexed as light or dark
cells are attributed to the ECM. They resemble the cellular
surroundings without peculiar growth variables.
The growth rate can be visualized as line chart for σ =

2 by using the button “show line chart”. The line chart
shows the amount of computation steps on the x-axis and
the amount of cellular bricks on the y-axis. Experimen-
tal data can be exported as spreadsheet in the format of
comma-separated values. This option offers the possibility
of making the data available offline for further analysis.

Initialization and lattice settings: The lattice is created
on the left side of the browser window by pressing the but-
ton initialize (Fig. 2). Thereby, the size and likewise the
number of nodes is determined by the input of variables x
and y. This allows to adjust the experimental area. Nodes
are indexed randomly to light and dark cells or ECM
according to the input of the number of cellular clusters σ ,
matrix density and the light/dark ratio. After initializing a
random graph according to the user interface’s settings the
computation possibilities with the button “compute next
simulation run” and “compute next two simulation runs”
are enabled (Fig. 2).
Our implementation of the CPM currently consists of

maxSigma cells relating to 3 different cell-types, while
σ = 0 attributes to the ECM, the odd numbers refer

to dark cells and the even numbers to light ones. There-
fore, by making use of the max σ parameter one can
also define more than two different cells, also referred to
as cellular clusters. Max σ defines the quantity of indi-
vidual cell components or respectively cellular clusters.
If max σ is set to 2 we use the color lightblue for light
(normal/healthy) cellular bricks and darkred for the dark
(tumor/mutated) ones (Fig. 2). If max σ is set to > 2 we
use a colorscheme for coding dark and light cell nodes
slightly differently to better distinguish between differ-
ent σ , shown in Fig. 3. The factor σ can be redefined
to resemble the number of cell-types. The cell-types are
represented by τ , in some papers also referred to as cell
or medium. We currently distinguish between three cell-
types, namely ecm, light and dark cells as denoted in the
original paper by Graner et al. [46]. A cell-type is referred
to as τi, while τ = {0, 1, 2} with τi=0 = ECM, τi=1 = dark,
τi=2 = light.
Thematrix density defines the number of cellular bricks

indexed as light or dark cells in relation to the given
number of nodes. Setting matrix density = 1 uses all lat-
tice sites for cellular bricks. Setting matrix density = 0
represents a lattice site filled only with ECM.
The parameters MCS and #substeps represent units of

time, while a substep is related to a random copy attempt.
We implemented the number ofMCS and substeps as vari-
ables and allow the parameters to be defined and adjusted
by the user. Each MCS is divided into a specified amount
of substeps for simulating different time settings.
The temperature T functions as cellular motility fac-

tor since high T leads to frequent spin-copies, thus, an
increase in the number of cellular bricks and an increase in
cellular invasive radius. The impact ofT on the overall run
is highlighted in Fig. 4 (panel A). The default temperature
is set to 10 degrees as suggested in [46, 75]. A comparison
of our default settings with values, previously published by
others, are summarized in Table 1.
The parameter for area energy λ represents a limit-

ing factor to cell growth, also termed cellular elasticity λ.
Panel B in Fig. 4 demonstrates the impact of λ. High λ val-
ues more strongly constrain cell growth while low λ leads
to frequent spin-copies. The target area At is related to
the lattice’s size parameters x and y, while the target area
factors for light and dark cells can be adjusted.
The energy interaction parameter J is the basis to the

overall Hamiltonian and spin-copy attempts. This so-
called boundary energy coefficient determines cell growth
as multiplicative degree of freedom [47]. Panels C to F
in Fig. 4 illustrate the impact of low and high interac-
tion values for different cells as light and dark cells and
ECM on the overall simulation outcome and the underly-
ing Hamiltonian and spin-copy attempts. The impact on
the simulation by the parameter variables are presented
within Fig. 4.
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Fig. 2 Overview of the tool’s user interface: 1© At top there are adjustable parameter settings for CPM computation and 3© buttons for initializing
and computing the lattice sites. 2© The left side shows the initialization output as rendered graph with grey nodes representing parts of ECM, while
colored nodes representing cellular bricks corresponding either to light blue colored (normal/healthy) or dark red colored (tumor/mutated) cells.
The table below shows information about the initialized cell data. 5© The right side shows the output for the last computation step, while the table
below contains computed cell data. 4© A toggle buttons controls the 6© lightbox in the middle that provides line chart visualization and export

Application example of cpm-cytoscape
We created a step-by-step tutorial on the presented
tool using a tumor growth example based on parame-
ters from a study on a brain cancer type modelled by
CPM [51], available under https://github.com/davcem/
cpm-cytoscape [74]. This example results in cellular
growth of dark cells, representing tumor cells, showing
a trend similar to Gompertz law. The simulated cancer
cells thereby imitate 2D cultured glioma cells or likewise
tumor-spheroids implanted in animals [51].

Discussion
We present a web-based solution to allow for simple
access to such a tumor growth visualization tool via Inter-
net. By making use of the CPM implementation, we
describe a potential use case for the cpm-cytoscape tool.
The manipulable tool offers the advantage of adjustable
settings for several input variables. By correlating various

growth parameters we highlight the importance of hetero-
geneous cell interactions regarding its impact on tumor
growth.

Options to visualization: There are many JS-based visu-
alization libraries which can be used to foster the goals
of visualization, namely to facilitate understanding and
to gain novel insight, in our case into one of the many
questions of biomedical research [76]. We make use of
Cytoscape.js since it features user-friendly presentation of
interaction data and supports several common browsers
like Chrome, Firefox and Safari, while the first is the fastest
one. It represents an open-source library on graph the-
ory that was written in JS and developed for analysis and
visualisation [73]. Thereby, layouts of the display area can
be altered while graph elements can be accessed offering
several possible operations including sorting and filtering
as well as graph querying. These options can be exploited
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Fig. 3 Screenshot of a graph rendering with σmax = 14: The graph consists of 14 distinct cells (also denoted to as cellular clusters). Each cell is
represented by a certain amount of nodes that we call cellular bricks. Cellular bricks with dark red or purple color tones correspond to the dark
(tumor/mutated) cells, while nodes in a light shade of blue to green are referencing the so called light (normal/healthy) cells. The amount of these
are listed in the table below the graph visualization. For this example, the cell with id = 9, represented by the purple nodes, consists of 39 cellular
bricks at the initialization phase. After 2 computation steps, we see at the right side, that the cell with id = 9 has grown and now holds 465 cellular
bricks. Grey nodes represent the ECM

for future extensions to the tool. Moreover, Cytoscape.js
[77] is regularly updated and supports directed as well as
undirected, mixed or multi-graphs.
Furthermore, Cytoscape.js layouts can be easily changed

by just specifying another graph layout for the layout
parameter in the cytoscapeRender method. There are also
alternative visualization libraries that can be used in the
frontend [77–79]. Possible alternatives to Cytoscape’s lay-
out algorithm would be using a bubble chart layout or
even a three dimensional surface plot layout that can be
created with another JS library such as D3.js.
Cytoscape.js offers different layout rendering options

out of the box. We chose to use the grid layout that
fits into traditional CPM visualization. In general, tumor
growth kinetics and effects of cell growth can be visual-
ized as line chart with the two dimensions of volume/size
or cell number over time [80]. Therefore, we use the exten-
sion of simple line charts. Time series visualization may
help users from the fact that time spans and iterations
can dynamically be adjusted and are neither restricted by
sensory constraints nor by experiment and animal costs.

Lattice-based visualization of cells: The lattice is orga-
nized in two dimensions, since 2D-modeling reduces the
computational load just as well as visualization compre-
hensiveness. Still, in terms of numbers, themodel could be
manually transcribed and extended to a third dimension
as the need arises.

In a figurative sense, the lattice represents tissue in the
biological context. Cellular bricks are translated as tex-
tural compartments of a biological cell-layer. By way of
example, the two-dimensional cellular grid can then be
described as representative cross-section translated from
the possible style of tissue slices. In a conceptional matter
of speaking, cellular bricks represent variable compart-
mental states of a cell that can be translated to several
criteria such as the impact of genes or likewise proteins,
effects by modulators, inhibitors as well as promoters, or
localized phenomena in general. The specific factors can
be applied and extended in regard to the individual focus
of research in a problem-directed manner.

Initialization and lattice-site settings: The variable
number of lattice sites offers the possibility to adjust
the computational workload according to the require-
ments of individual questions. In difference to general
computational models, the Web-based implementation is
attempted to be computed with low latency. Good ren-
dering performance of computation results is needed to
create dynamic output for smaller lattice sizes at once,
as well as to enable animation for multiple computation
steps at once. Still, some experiments concerning specific
timing problems will have to be conducted using a high
number of nodes. Thus, the variables can be be chosen in
compliance with the requirements.
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Fig. 4 Cell growth in relation to varying parameters: line chart showing representative ratios between numbers of dark and light cellular bricks over
computed steps. Comparison of varying parameters, for temperature T = 80, 20, 10, 0,−1 (panel A), λ = 1, 0.1, 0.05, 0.01, 0 (panel B),
Jmix = 0, 2, 5, 10, 15, 100 (panel C), comparison of various Js as indicated for Jdark , Jlight , Jmix , Jecm (panel D), Jecm = 100, 50, 10, 0 (panel E), Jdark and
Jlight each 0 or 100 (panel F). Adjusted to default settings of nodes = 32 ∗ 32,mcs = 32,mcssubsteps = 64, σmax = 2, λ = 0.05, targetAreas = 0.4,
initial dark/lightratio = 1/4
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Table 1 CPM parameter settings: comparison of presented default settings and values from literature [45, 46, 51, 75]

Max X * Y MCS, substeps max σ matrix density T JECM Jlight Jdark Jmixed λ At(light) At(dark) ratiolight/dark

default settings 32 * 32 32, 64 2 0.8 10 16 15 2 11 0.05 0.4 0.4 1/4

GGH 1992 40 * 40 100, 1 2 1 10 16 14 2 11 1 0 0 1

GGH 1993 ≤ √
40 ∗ 1000 ∗ √

40 ∗ 1000 16, max X * Y 1000 1 5 8–16 14 2 11 1 40 40 1

Ouchi 2003 128 * 128 1 , 1 16 1 10 –/0 –5 –25 –3 10 64 64 1

Rubenstein 2008 500 * 500 400, Max X * Y 65 <0.1 0 0 2 2 9 1 40/2 50/2 1
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The random distribution, to a certain degree, simulates
environmental behaviour and the random occurrence of
mutations within cells. Spheroid models start from an
initial mass of proliferative cells only. Still, in nature,
mutated cells showing abnormal growth are intermixed
with “normal” cells. Thereby, our tool allows to set var-
ious cell-types. Tumor cells are set to grow by means
of proliferation and further invasion. The ECM can be
set as background or individual cells to be equally or
inhomogeneously in size and distribution [51]. For the
future, we plan to implement extensions that will include
additional initialization settings, such as the introduc-
tion of a dynamically configurable cell-type or another
dimension. Further variations could include the option
of spheroid models. Another elaborate feature could
even offer pre-defined cellular mixtures corresponding to
uploaded images from treated tissue-slices.

The impact and translation forMCS and #substeps: A
MCS’s series of random copy attempts is equal to the total
amount of cellular bricks. Graner and Glazier [45, 46] pro-
posed MCS to be 16 × x × y while x × y ≈ 1000 and
x = y ≈< 40 and did not make use of defining substeps.
They suggested this setting for observing gradual move-
ment behaviour. Later works define oneMCS to consist of
as many index-change attempts as the number of pixels in
the lattice x×y. If the setting forMCS×#substeps is lower
than x × y, then unintended results are observed.
The time, by means ofMCS steps, is an abstraction and

relates to tumor specifics. The various kinds of tumor
cells proliferate and divide more frequently than normal
cells, depending on the localities and their differentiation
status. Thereby, tumors can be classified by their spatial
occurrence, and further, be characterized by their tem-
poral growth dynamics. For each case, MCS steps can be
translated to either hours, days or years. Future exten-
sions to our tool will include pre-defined initialization
settings of growth rates and time units corresponding to
exemplary tumor types.

Temperature T : In general, temperature affects move-
ment, and in our case, cell growth. In more detail, T
functions like a cellular motility factor since high T will
lead to frequent division of cells, thus, an increase in the
number of cellular bricks and an increase in cellular inva-
sive radius as shown in Fig. 4 (Panel A). If the interaction
energy, represented by the several J parameters, is much
greater than T, cells will shed into loose bricks at the
boundaries. If T is too large, relative to J, boundaries will
become stiff. Low temperatures inhibit proliferation. Sub-
zero temperatures stop changing spin values and therefore
kinetics and growth. At very low subzero temperatures,
any biological activity is effectively stopped but cells could

also take damage through freezing, that could be taken
into account as additional factor in future studies.

The energy interaction parameter J : The range of the
individual interaction energies is defined by the original
cell-types as well as the manifested mutations responsi-
ble for the excessive proliferation by tumor cells. Thereby,
these factors correlate with the class of tumor and it’s
tissue-residency. Individual cells exhibit heterogeneous
tendencies towards growth correlating to tumor aggres-
sivity, thus, interaction energies can vary over time. This
phenomenon can be manually emulated by adjusting the
individual interaction parameters after a specified num-
ber of MCS. Future extensions could include this adjust-
ment as an automatic option in correlation to underlying
relations of further variables.
In our case, default parameters of cpm-cytoscape impli-

cate low values within the first term for the Hamiltonian
computation, consisting of the interaction parameters J, in
comparison to the second term, factoring values of area
calculation such as λ, a andAt (see details to Eq. 4). As can
be seen in Fig. 4 (panel C) a change in Jmix, the interaction
energy between different cells, impacts growth of dark
cells considerably. However, there are no significant dif-
ferences if the J parameter of dark or light cells is changed
selectively (panel F). Changes of JECM, the interaction
energy between parts of ECM, result in similar insignifi-
cance, though high values can lead to sudden changes in
the ratio between dark and light cells through dark cells
migrating to and taking over former ECM space (panel
E). Rather high values are needed to manipulate ratios.
Figure 4 (panel D) demonstrates three cases of combined
changes in the interaction parameters Jdark , the interac-
tion energy of dark cells, in comparison to the interaction
energy of light cells Jlight , as well as Jmix and Jecm. The
ratio between dark and light cells is only slightly decreased
upon an 100-fold increase of Jdark . However, the number
of dark cells over light cells is completely reduced upon
increasing Jmix and Jecm. At the same time, the relation
between Jdark and Jlight plays a minor role in determin-
ing the probability of spin-copy attempts rather to their
measure in proportion to Jmix and Jecm. This fact can be
translated to the biological importance of heterogeneous
interactions between cells and their environment. Fur-
ther refinement will include the integration of additional
parameters such as Jdark−ecm, Jlight−ecm or other Jdiff as well
as the search for suitable realistic values to relate to differ-
ent cell-types, a factor to be taken into account in future
studies.

The target area and the parameter for area energy λ:
The factor λ is considered a constraint, in our case, for
limiting cell growth. The so-called cellular elasticity λ
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attaches the value of area calculation within the Hamilto-
nian computation. Differences between current and target
area will likely have more effect on spin-copy attempts if
λ is high. If λ becomes too high relative to the residual
calculation parameters, any spin-copy attempt should be
refused. This is true as long as the cellular area is differ-
ent from the target area. The quadratic function does not
distinguish whether the cellular area is larger or smaller
than the target area. In terms of cell size, cellular elastic-
ity will play a major role for rigid cells which tend to stay
within the range of their target volume. Cell growth and
division are correlated so that cells of unequal size will
divide at a given speed and even out to a mean cell size.
This is true only, if cell growth rate is constant. An abnor-
mal increase in cell size is possible under the influence of
excessive discharge of growth hormones or similar patho-
logical circumstances such as hypertrophy. Other cases of
instant changes in cell size include the natural processes
of cellular differentiation and enlargement or shrinkage
according to the metabolic state.
Generally, various cell-types are differently sized. Some

cancers are known to manifest giant cells. Even normal
cells exhibit different dimensions according to their ori-
gin. Cell diameters range from 1μm to 1mm and more, for
instance nerve cells can reach a length over 1m [81]. Fur-
thermore, cell-sizes vary within one cell-type. Still, cells
have medial sizes specific to their type. This constraint is
thereby necessary to limit cellular growth to an underlying
biological scale.
For future matters, the discrete view of cellular area

can have a completely different meaning. Cellular bricks
resemble conceptional factors that occur or are replaced,
distributed or accumulated within individual cells. These
factors will be assigned by the researcher depending on a
given task and scope of work.

The ECM occupies space which is not attributed to cel-
lular clusters. Its energy area is initially suppressed, but
if reprogrammed to a positive number within the source
code, the ECM will grow and spread like light and dark
cells. This could simulate gap-filling after cell-death and
be the case of radiation procedures, cellular starvation or
exposure effects of chemicals. This variation will be of
importance in future studies introducing multiple affec-
tors of cell growth by integration of biomedical databases,
including drug, protein and genetic information related to
tumor growth.

The matrix density was introduced as factor for sim-
ulating various cell densities within the area of interest.
For instance, tissue slices could show distinct cellular
colonization in locally fragmented patterns. Moreover,
different cell-types as well as organelles can exhibit var-
ious densities. In general, varying cell densities can be

attributed to the water content relative to the mass of
proteins, nucleotides, carbohydrates or lipids within and
around the cells.
Cell density often resembles the proliferative state of

cells controlling protein expression. Consequently, the
change in matrix density can be used for future stud-
ies focusing its effect on tumor growth, dormancy or
metastasis. Further, matrix density can be interpreted in
a more formalized manner, such as the variable abun-
dance and occurrence of discrete factors within cellular
regions.

The role of fostering in silico modeling: There is a
trend towards computational simulations of biological
processes making use of different mathematical mod-
els [82]. In particular simulation-based experiments in
the field of bioinformatical cancer research can save
resources in terms of time and costs. Collaboration
between experimentalists and modelers has to be pro-
moted and extended. This fact is most interesting for
fostering cooperation of researchers from the interdisci-
plinary fields of computer science, mathematics, human-
computer interaction, life sciences and biomedicine [83].
The tool represents a basic instrument to supporting

biomedical researches and a preliminary step towards
supporting clinical scientists. Until now, the tool has not
been evaluated by clinicians. Future plans are to conduct
further iterative testing and verification and to experiment
with machine learning approaches [84].

Conclusion
Recent advances in Computational Biology show high
potential to deepen the understanding of origin and pro-
gression of cancer. Our general aim is to enrich cancer
research by providing a tool that will make Computational
Biology applicable to both researchers and clinicians. We
focus on the fundamental pathological processes of cancer
which are represented by tumor growth. Since abnormal
cell growth involves chaotic, heterogeneous and highly
differentiated structures, we chose to investigate cellular
growth on the single-cell level. By refining model param-
eters of the cellular potts model, we highlight the impact
of heterogeneous interceullular interactions on tumor
growth.
Herein, we describe the implementation of the CPM for

the purpose of simulation and visual analysis of tumor
growth and provide its sources on github. We chose
the lattice-based visualization style as primary approach
to present and display tumor growth for research pur-
poses. The graph computation allows for multiple dif-
ferent visualization approaches. The user interface is
highly adjustable and its implementation is designed to be
extended. The possibilities and accessibility of our simula-
tion and visualization approach might ultimately promote
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researchers and practitioners to progressing the field of
tumor research towards personalized medicine.
Our approach offers several potential future applica-

tions of studying tumor dynamics. First, we plan to
implement more simplistic models in order to offer fast
computations and visualizations. Secondly, we plan to
integrate various profiles into the tool, to offer exem-
plary simulations on different types of tumors [74]. Next
to iterative testing, profiles lead to the task of verifi-
cation. Furthermore, the implementation of additional
dynamic parameters may enhance the simulation’s pos-
sibilities. Multiple optional features to modeling as well
as visualization styles will provide preferential outcomes
in regard to detailed information or fast overview per-
formance. Another interesting step towards supporting
researchers and clinicians is providing image loading and
size detection of regions of interests as input parame-
ter for the simulation. Future integrations will include
biomolecular networks such as drug-protein impact or
genetic alteration patterns. Harnessing tumor growth data
and related gene data as well as providing an open source
database for tumor growth related data [85] are big steps
forward to supporting science collaborations and clinical
applications, and finally help contributing to fight cancer.
We believe that our approach is a motivator for fostering

in silico modeling towards 3R and a better understanding
of tumor dynamics.
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Chapter 2. Publications

2.7. Machine Learning For In Silico Modeling Of Tumor Growth

This book chapter provides a practical overview of pointers to machine learning methods applied to tumor
growth modeling research. This work is an essential step towards understanding the different possibilities
of applying ML techniques to support in silico modeling of tumor growth. A future goal is to possibly use
ML for validation and later on also to integrate novel insights into our tumor growth modeling visualization
tool. Therefore, I set up the paper’s structure, started with the review work, identified challenges and op-
portunities and last but not least, invited the other authors to contribute to describing application examples
and finalized the paper.
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Abstract. The various interplaying variables of tumor growth remain
key questions in cancer research, in particular what makes such a growth
malignant and what are possible therapies to stop the growth and prevent
re-growth. Given the complexity and heterogeneity of the disease, as well
as the steadily growing set of publicly available big data sets, there is
an urgent need for approaches to make sense out of these open data
sets. Machine learning methods for tumor growth profiles and model
validation can be of great help here, particularly, discrete multi-agent
approaches.

In this paper we provide an overview of current machine learning
approaches used for cancer research with the main focus of highlighting
the necessity of in silico tumor growth modeling.

Keywords: Tumor growth · Cancer modeling · Machine learning ·
Computational biology

1 Introduction

Cancer prognosis and prediction is advancing by making use of data that has
been mined and interpreted with the help of machine learning techniques.
Machine Learning (ML) also aids the process of interpreting and understanding
the complexity in big data sets [1].

Johnson et al. describe cancer informatics as hybrid discipline; although, even
with the latest ML advances, there is still a gap to fill in fostering mathematical
modeling and computer simulation of cancer [2].

Modeling tumor growth is a very challenging problem because, besides from
being highly complex, it involves dynamic interactions spanning multiple scales
both in time and space. This involves both continuous and discrete variables that
call for hybrid approaches [3]. Araujo and Mcelwain [4] historically summarize
how mathematical modeling has contributed to elucidating tumor growth.

c© Springer International Publishing AG 2016
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1.1 Glossary and Key Terms

In Silico refers to being performed on a computer instead of a wetlab and stands
opposite to in vivo or in vitro [5]. Naturally, integration and interplay of all three
approaches is essential for research advances.

Machine Learning (ML) addresses the question of how to design algorithms that
improve automatically through experience [6]. Besides primary goal of learning
useful models, scalability of these algorithms play an increasingly important role
in the the era of “big data analytics”.

Interactive Machine Learning (iML) defines learning algorithms that can inter-
act with both computational agents and human agents, and can optimize their
learning behavior through these interactions [7], by bringing in a human-in-the-
loop [8].

Agent-Based Modeling (ABM) depicts a computational method for simulating a
system, which is based on individual units, calculated by a given rule-set on a
discrete level [9].

Cellular Potts Modeling (CPM) defines a stochastic process of simulating the
collective behavior of cellular structures [10].

Cellular Automata (CA) are representations for modeling complex systems
dynamics [11–13].

Support Vector Machines (SVM) are supervised learning algorithms to solve
primarily classification and regression problems [14,15].

Electronic Health Records (EHR) are longitudinal electronic records of patient
health information with the ability to generate complete records of clinical
patient encounters [16].

Protein-Protein Interactions (PPI) comprise the concurrence and the effect of
proteins on each other based on surface properties as well as local features [17].
PPIs form the basic concept of biological communication and the specificity in
signal transduction [18–20].

2 Motivation for Applying ML to Cancer Research

There are different entry points for ML to tumor growth research. Within this
paper, we summarize possible approaches to using ML in the field of cancer
research and the various kinds of models of tumor growth in computational or
systems biology.

Cancer research started around 250 years ago [21]. There are several methods
to study the disease, still, basic research comes down with animal experimen-
tation. In vitro cell systems and the comparison of cellular processes help to
understand the complexity of uncontrolled cell growth.
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In silico models complement traditional in vitro and in vivo animal models.
While ML is not new to cancer research the full potential of diverse ML algo-
rithms has not been realized yet. In fact, in silico techniques are often underrated
but can be vital to fundamental questions to beat cancer [22]. Knowledge discov-
ery with ML outperforms bio assays [23] and image analysis could outperform
human [24]. The principles of the 3Rs - replacement, reduction and refinement -
can be used for the reduction of animal research, saving resources as well as
reducing costs spent on clinical and wet-lab experiments in cancer research. In
this regard, computerized experiments, meeting the terms of 3R, offer new pos-
sibilities for biomedical research. In silico suits the task of refinement as well
as knowledge discovery. Recently, we presented an in silico approach for tumor
growth simulation that holds the advantage of data visualization over multiple
implementation possibilities [25,26]. It is clear that ML techniques will give new
insights into tumor growth modeling. Thereby, the goal is to increase the basic
understanding of tumor progression as well as the onset of cancer.

3 In Silico Modeling of Cancer

In silico models involve various disciplines of mathematics, biology, medical
and computer science. The underlying data is computationally processed from
biomedical literature sources, based on wet-lab and clinical investigations, and
extended or refined through hypothesises and theoretical characterizations [22].

There are different kinds of models in biology, such as spatial ones, space free
ones but also cell descriptive models based on density, cell-based, sub-cellular
or molecular, relating to their scale of phenomenon, and so far, various models
for cancer have been described [10,27]. Models can also be differentiated by
their biological scale, ranging from the cellular and molecular level up to the
genetic macro scale. On the other hand, there are also diverse computational
modeling approaches, such as statistical, network-based as well as models on
tissue-level. Regarding the cell-cell interactions there are discrete/agent-based
to continuum-based modeling approaches. This leads us to the term agent that
is shortly discussed in the next paragraph.

3.1 Agents in Modeling and ML

Agents play an important role both in Agent-based modeling (ABM) as well as
in Machine Learning (ML). As described by Russell et al., “an agent is anything
that can be viewed as perceiving its environment through sensors and acting
upon that environment through effectors” [28]. According to [29] ABM is used
to model phenomena as dynamical systems of interacting agents. Thereby, agents
individually assess a situation and make decisions on the basis of a set of rules
[30]. So far, agents can be robot or human [7].

New agent-based models of tumor growth have been developed to foster the
understanding of cancer, while agents can be used to model different parts of
tumor growth to understand peculiarities such as factors that influence a tumor
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becoming malignant etc. [9,25,31]. Followingly, we shortly describe aspects of
tumor growth for ABM.

Tumor growth kinetics follow simple laws that can be mathematically mod-
eled [32]. Among them, the Gompertz law describes growth following a contin-
uous deceleration [33–35].

Cellular Potts Model (CPM) is an agent-based modeling approach that has
been introduced and described by Graner and Glazier [36]. It is used to simulate
the collective behavior of cellular structures and has been used in a wide range
of applications, among them, tumor dynamics [10].

Spatial & temporal scales are key descriptors in ABM in general and in mod-
eling tumor growth in particular [10,25,32]. Regarding the description of spatial
aspects, different topologies are used in ABM, such as spatial grids. Grids have
been implemented as CA, i.e. Conway’s Game of Life [37]. We [25] use also
the term lattice as a group (not partially ordered set) to describe the topology
and therefore the connectedness of several cellular bricks. The agent’s neigh-
borhood is described by an agent only interacting with its neighbors located
close-by. However, agents may also interact with their environment, therefore
environmental parameters can be taken into account. Regarding the temporal
aspects, ABM follows discrete event cues, in particular a sequential schedule of
interactions, computed by Monte Carlo steps (MCS).

Cellular Automata (CA) is a concept introduced by Stanislaw Ulam and John
von Neumann in 1940s [11–13]. A typical CA includes a spatial lattice comprising
units, called cells, where each cell can reside in one of finite number of pre-defined
states. State of each cell in the lattice is updated according to the transition rules,
so that the state of the cell in the given time depends on its own previous state
and on the previous state if its close neighbors. The overall state of the entire
lattice is evolving in discrete times steps, either synchronously, when all cells
are updated at once, or asynchronously, when single randomly selected cell is
updated in each time step. The Concept of CA was later popularized by Stephen
Wolfram, who showed that even simple transition rules allow CA to exhibit
variety of complex behaviors including phenomena of “self-organization” [38].
CA have been then extensively utilized in model dynamics of complex systems
across diverse fields, including cancer biology. CA have been successfully adopted
to realistically model tumor growth [39–46], as well as angiogenesis [47–49] and
immune evasion [50,51].

Transition rules governing the behavior of the automaton, are sometimes for-
mulated directly according to the available experimental knowledge [39,44,48],
but more often are subject of inference using numerical optimization with respect
to desired macroscopic qualities, e.g., transient dynamics of the tumor growth,
or its geometric properties [42,46]. Alternatively, transition rules and associ-
ated quantitative parameters are varied in order to reveal association between
microscopic properties of the single cell and macroscopic properties of the
tumor [40,41].

Ideally, a model gives emergence to phenomena that could not be a priori
deduced, and can be tested against experimental data.
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ABM is not inductive, that means models are not based on a set of data and
do not make inferences that lead to that data, but rather describe a system’s
mechanisms of rules and seek to reconstruct observations. This leads to ML, that
is suitable to find patterns in existing data as well as can be used for validation,
to extend in silico modeling tools.

4 ML Applications Areas in Cancer Research

ML approaches for cancer research have been reviewed before [1,52–56]. These
reviews deal both with biological questions as well as on algorithmic details.
While most ML reviews in this domain cover genomic studies and image based
analysis, some also tackle the question how to support the understanding of
tumor kinetics in particular. But there is a clear lack of new results in this area.
An advanced search within EuropePMC with the query:

(TITLE : “cancer” AND “machine learning”) AND (OPEN ACCESS : y)
yielded 671 results.

The search query: (KW : “machine learning” AND KW : “cancer”) AND
(OPEN ACCESS : y) delivered only 41 results.

Regarding the term “tumor growth” there are hardly any works. The query:
(TITLE : “tumor growth”) AND (KW : “machine learning”) even resulted in no
results at all.

This work is not aimed at providing a comprehensive list of all studies that
can be found on machine learning methods related to tumor growth research,
even, if there are hardly any found. It is rather thought to provide a practi-
cal overview of pointers to machine learning methods applied to tumor growth
modeling research with identifying challenges and opportunities.

In order to understand the different possibilities of applying ML techniques
to cancer research, we first differentiate between specific application areas and
later continue on describing research on tumor growth in particular. An overview
of ML applications in cancer research is presented in Fig. 1.

Most reviews on ML for cancer focus on discussing existing cancer research
that applies ML methods for predicting susceptibility, recurrence and survival
[1,53]. Next to prediction, ML methods are applied to identification and diagno-
sis [57]. A classification of ML application areas in bioinformatics shows partially
overlapping areas of genomics, proteomics and metabolomics but also evolution-
ary developmental biology, text mining, systems biology other advanced model-
ing applications [58]. Computational prediction approaches based on computer
algorithms, allow for multivariate analysis in cancer diagnosis and comprise sev-
eral methods such as linear or penalized discriminant analyses, logistic regres-
sion, learning vector quantization, decision trees, random forest, support vector
machines, Bayesian networks and artificial neural networks [59,60]. These com-
putational approaches overcome the lack of sensitivity and selectivity that, still,
are often found in conventional methods based on univariate factors such as sin-
gle biomarkers [60]. To evaluate prediction accuracy of these models the data is
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● classification of metastasis,

● identification of signaling cascades, 

● identification of cancer biomarkers,

● identification of drug response

● identification of drug treatment,

● prediction of drug response,

● identification of patient subgroups,

● identification of metabolic alterations, 

● identification of stages, 

● validation of groups, 

● validation of mutations, 

● validation of tumor growth models

Metabolomics

Genomics

● classification of cancer subtypes, 

● validation of gene-interactions,

● identification of gene-interactions

● identification of cancer-driving CNAs,

● prediction of patient survival,

● prediction of drug response

EHR

● identification of phenotype features

● prediction of drug response,

● prediction of survival

Data For Tumor Phenotyping

IMAGING

● classification of tumors, 

● prediction of growth,

● evaluation of biomarkers

 

Fig. 1. Overview of ML approaches in cancer research regarding data type

randomly separated into training-, validation-, and test-sets. However, this gold
standard method is solely feasible for large data sets. Cross-validation, a simple
and commonly applied approach, splits data into subsets, while each subset is
left out once for testing, the model is trained on the remaining data. Independent
of univariate or multivariate methodology, permutation-based evaluation is rec-
ommended to assess the superiority of the model compared to a model trained
on a randomized outcome variable [61].

ML approaches for cancer research can also be organized according to their
algorithmic approach as well as the type of data used, ranging from imaging,
genomics up to pathologic and demographic [53]. We next list works sorted by
data approach to provide pointers for using ML on open cancer data [26].
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4.1 Processing Imaging Data

ML can be used to detect and classify tumors in medical images [53]. For exam-
ple, Morris et al. model glioma tumor growth using magnetic resonance (MR)
scans for learning the parameters of a diffusion model [62]. Thereby they use
patient data and preprocessing of images such as noise reduction and segmenta-
tion for feature extraction and consecutively prediction of glioma growth through
classification and diffusion.

HealthAgents is another interesting project implementing a multi-agent sys-
tem (MAS) for classifying brain tumors by applying pattern recognition methods
on MR images [63].

Moreover, ML methods have been used for the evaluation of different
radiomic features for predicting survivability [64]. Results highlight the several
features’ utility as radiomic biomarkers [64].

Cancer imaging, in particular image analysis of MR scans, already provides
many possibilities for biomarkers [55]. But, images not only allow for measure-
ments of the dynamics of shape and size. Fluorescence microscopy is also used to
monitor small parts of cells [65]. Understanding complex diseases also requires
identifying interactions among different components which leads us to the world
of “Omics”. Processing additional data such as combing picture archives with
genomic profiles and even more, with electronic health records (EHR), brings us
one step closer towards personalized medicine. Next, we summarize main con-
cepts in Omics data and further proceed with examples in processing electronic
healthcare records and hybrid data approaches:

4.2 Processing Omics Data

The molecular etiology of cancer is not well understood. Although numerous
molecular cancer biomarkers have been identified, they are often ineffective for
tasks such as cancer diagnosis, classification of cancer subtypes, prediction of
cancer recurrence, or prediction of response to treatment [66]. One of the most
promising strategies for addressing these problems is analysis of molecular net-
works, combined with machine learning and graph theory algorithms. These
approaches lead to better predictions across diverse samples, and identify mole-
cular mechanisms underlying cancer [67].

Protein-Protein Interaction (PPI) networks were the first type of molecu-
lar network used for identifying cancer biomarkers. Chuang et al. [68] identified
PPI subnetworks that could serve as biomarkers for classifying breast cancer
metastasis. Their approach combined PPI data with gene expression data from
patients with and without breast cancer metastasis. The approach searched for
protein subnetworks whose corresponding gene expression levels could distin-
guish metastatic and non-metastatic patients. The average expression of all genes
in a subnetwork was used as a biomarker, unlike previous approaches, where bio-
markers were individual molecules. The identified subnetworks had significant
associations with hallmarks of cancer, and indicated novel relationships between
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signaling cascades (functional networks or pathways) and tumor progression.
Furthermore, subnetwork biomarkers outperformed single-gene biomarkers in
two important aspects: reproducibility across data sets and classification perfor-
mance. Reproducibility considers whether the same biomarkers can be identified
using different data sets: subnetwork biomarkers from different expression data
sets overlapped by 12.7 %, whereas single-gene biomarkers overlapped by only
1.3 %. Classification performance - the ability of biomarkers to predict metastatic
status - was assessed by using biomarkers as inputs to classifiers (logistic regres-
sion and support vector machines), that were tested through cross-validation.
Subnetwork biomarkers significantly outperformed sets of single-gene biomark-
ers with all classifiers and data sets tested. Subsequent studies used PPI networks
to identify subnetwork biomarkers of bladder, colorectal, gastric, liver, and lung
cancers [69,70], and single-protein biomarkers of brain, breast, liver, lung, and
skin cancers [71–75]. PPI networks have also been used to identify biomarkers
of response to cancer treatment [76,77]. Cancer-related biomarkers cannot only
be described in Proteomics but also in Genomics.

Genomic Data has brought up several biomarkers for measuring therapeutic
response and validating drug treatment of cancer [78]. Moreover, genomic data
such as gene expression samples can be used for identifying cancer subtypes
[79] but also for predicting evolution even including response to drugs [53]. For
example, gene expression data [79] and molecular profiling [80] have been used to
improve glioma classification. Genomic data has also been used for the prognosis
of possible relapse after treatment of prostate cancer [81].

Upstill et al. describe ML approaches for discovering gene-gene interactions in
sequencing data [57]. While They call the type of data “disease data”. They also
underline that most studies report on applying ML for validating results rather
than on identifying new disease-related interactions. The Matchmaker Exchange
API [82] is a tool for cohort discovery and variant disease causal validation that
also makes use of so called “disease data” from different genomic databases.

In general, networks based on gene expression data have been used to iden-
tify biomarkers predictive of patient drug response and prognosis. Two types
of networks are typically constructed from gene expression data: co-expression
networks, where edges connect pairs of genes that have correlated expression
across samples, and gene regulatory networks, where edges indicate regulatory
effects between pairs of genes. Both types of networks have helped identify can-
cer biomarker genes and gene modules. These biomarkers were used as inputs
to statistical or machine learning methods for various disease prediction and
classification tasks. Biomarkers from co-expression networks have been used to
predict patient prognosis [83–85] and response to treatment [85]. Applications of
gene regulatory networks have included biomarker discovery for prostate cancer
[86] and breast cancer [87], and modeling of ovarian cancer progression [88].

As genomic alterations are a fundamental feature of cancer, several network-
based methods have been developed for analyzing these alterations, and
identifying subsets that are cancer biomarkers. Jörnsten et al. developed causal
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network models to understand how DNA copy number alterations in glioblas-
toma affect gene expression [89]. These models, based on regression and boot-
strapping methods, predict key cancer-related alterations, their effects on gene
expression, and patient survival. Shi et al. developed an alternative network
model, using Laplacian shrinkage, to analyze the effects of copy number alter-
ations on gene expression [90]. Leung et al. introduced a method for identifying
frequently mutated gene modules in molecular networks associated with patient
drug response, patient survival and other clinical or phenotypic data [91]. Similar
approaches identify cancer-deregulated subnetworks [92].

There is a vast amount of publicly available heterogeneous genomic data,
making data mining and ML well suited to solve key problems in the world of
genomic medicine [93]. Complementing genetic studies leads us to the field of
Metabolomics.

Metabolomics has been introduced to cancer “omics” studies relatively
recently. It opened new opportunities towards biomarker discovery, identi-
fication of signaling molecules associated with cell growth, cell death, cel-
lular metabolism [101]. Metabolomics is therefore frequently used for stud-
ies aiming at the detection of cancer even in early stages. Most commonly
used analytical technologies comprise NMR spectroscopy, LC/MS, GC/MS and
MCC/IMS [101,102]. In order to meet the demands of cellular proliferation and
the required uptake and conversion of nutrients into biomass, cancer cells mod-
ify their metabolism during tumor development. Many of these key metabolic
alterations are similar across tumor cells. A prominent example are the changes
in the glucose metabolism leading to an increase of the described biosynthetic
activities, and to the ‘Warburg’ effect, an inevitable adaptation to cope with the
lack of ATP generation [103].

Metabolomics technology can be used to identify clinically relevant subgroups
of cancer patients. For instance, O’Shea et al. analyzed the metabolites in spu-
tum from patients with lung cancer and age-matched volunteers smoking con-
trols using flow infusion electrospray ion mass spectrometry and found potential
marker using artificial neural networks [104]. A sequential application of recur-
sive feature elimination on linear-SVM and orthogonal partial least squares dis-
criminant analysis (PLS-DA) was used to find the minimum set of discriminant
features separating early-stage ovarian cancer patients samples from controls.
Permutation testing was performed to validate the results [105]. Another study
analyzed the metabolom of exhaled air by MCC/IMS within normal, COPD
and lung cancer patients. A variety of supervised ML methods, e.g., linear-SVM
or random forest, were applied to evaluate their capabilities to differentiate the
three groups [106].

A second group of studies focus on validation. G12C k-RAS mutation has
been suspected to be a key player in promoting metabolic rewiring, in isogenic
non-small cell lung caner (NSCLC) cell line. Brunelli et al. applied OPLS-DA
models and discovered a robust separation between G12C and WT k-RAS iso-
forms both in vitro and in vivo. Authors further validated their findings by
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mapping the quantified metabolites to the KEGG pathway database. Further-
more, they identify a list of most likely enriched metabolic pathways associated
with the given metabolites [107].

The third application focuses on the prediction of disease outcome.
Metabolomic NMR fingerprinting was utilized to assess the survival of patients
with metastatic colorectal cancer (mCRC). A combination of partial least
squares and support vector machines (PLS-SVM) was first applied to discrimi-
nate patients with mCRC and healthy subjects. In a second step, PLS-SVM was
successfully used to evaluate whether patients with short or long overall survival
can be identified by metabolomic profiling using NMR [108]. Wei et al. utilized
a metabolomics approach to predict the effectiveness of treatments. In particu-
lar, PLS-DA is applied to model the response to neoadjuvant chemotherapy for
breast cancer [109].

These findings show that metabolomics data can be used to differentiate not
only tumor from control samples but also identify different stages of the grow-
ing tumor. Thereby, these technologies could be used for continuous monitoring
of tumor growth and development in order to validate and optimize presented
approaches in silico tumor growth models. Processing healthcare records forms
another example in need of computerized support within the field of personalized
cancer therapy and research, that is discussed next.

4.3 Processing Healthcare Records and Combined Data

When dealing with medical records, its anonymization is an important topic that
can be supported through the use of ML [7]. Learning from various data sets
opens up novel possibilities for cancer research.

So far, several works have described different ML techniques for the classi-
fication of patient cohorts [94]. Standardized multi-scale information models of
cancer phenotypes provide information in computable form that are important
for complementary approaches such as tumor growth modeling [95].

Delen et al. [96] describe a comparative study of neural networks, decision
trees as well as logistic regression for mining a data set of more than 200,000
cases provided by SEER [97] for testing prediction of breast cancer survivability.

Menden et al. describe an approach for predicting how cancer cells respond
to drugs based on combined data analysis, genomic features of cell lines as well
as chemical features of drugs [98].

EHR have also been used for predicting cancer survival with the help of
support vector machines (SVMs) [99]. Weighted Bayesian networks have been
developed on the combination of EHR and PubMed data to predict pancreatic
cancer [100].

Hybrid methods provide effective means to detect and quantify a broad range
of small molecules for studying complex biological networks.
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5 ML Towards Extending In Silico Modeling

Lisboa et al. [55] highlight how modeling of biological processes related to can-
cer may benefit from data mining approaches. They summarize main concepts
found in literature as on the one hand, mining data from experiments to better
understand parts of signaling pathways, and on the other hand to predict the
evolution of dynamical systems.

Integration of data can be used to extend the descriptive part of compart-
mental states [26], such as by relating information on inhibitors and promotors
to tumor growth curves, but also by making use of cancer classifications to create
cancer profiles [110].

ML methods can be used on open cancer data for several possibilities, i.e.,
identifying tumor suppressing and inhibiting genes and further advancing a
tumor growth related interaction network [111] that may help find and select
precisely targeted treatments [92,112,113]. Existing treatment data can be fur-
ther integrated into simulation tools to validate both tool and model and improve
the tumor growth prediction rates. Such predictions gained via ML approaches
can be combined with the ABM approach for further analysis. Other subjects
of interest can be described further, such as specific cells or parts of it, that
are again remodeled as discrete entities or agents, and iteratively validated to
support sense-making in tumor growth analysis.

Additionally, visualization supports interaction with data and models [114].
Visualization in ABM is needed to visually convey the behavior of the model
[31,115]. We have recently introduced a novel visualization approach of simu-
lating and analyzing cell-related variables regarding tumor growth kinetics [25].
Thereby, visualization is used to show patterns of tumor growth. The graph-
based visualization approach makes use of nodes, representing cellular bricks.
These cellular bricks are related to compartmental states, including localized
phenomena.

Last but not least, ML can be used to include image analysis in two ways:
First, images can be used as input for the modeling, while the classification
of images can be supported by ML techniques. Second, by analyzing a set of
existing images related to tumor growth, the model can be compared to ML
results and further validated.

6 Challenges in Network-Based ML Approaches

Network analysis combined with machine learning has proven to be an effective
approach for identifying biomarkers and molecular mechanisms of cancer [116].
This approach is likely to further increase in popularity, but continued progress
will require addressing multiple challenges:

Challenge 1. foremost, we need to increase coverage and annotation of diverse
networks, to include tissue and process specificity;
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Fig. 2. The “big picture” in the modeling and visualization of tumor growth [25,26]

Challenge 2. we need to improve scalability of algorithms to addressed increased
size and complexity of networks;

Challenge 3. biomarker performance will need to be measured by standardized
unbiased methods;

Challenge 4. multiple types of omics data will need to be combined into unified
network models; and

Challenge 5. networks may need to be tailored to individuals to facilitate per-
sonalized medicine.

7 Challenges in Modeling Tumor Growth Dynamics

In Silico models complement the lack of in vitro and in vivo models. How-
ever, tumor growth modeling also brings up many questions concerning specific
aspects of the various kinds of benign and malignant neoplasms. The main chal-
lenges in modeling tumor growth kinetics include:

Challenge 1. There is no universal tumor growth model. As Benzekry
et al. [32] described, dormancy phases creates challenges for finding a generic
growth law. The Gompertz or power law has been used to predict tumor growth;
however, with a very low prediction rate. A so called “Universal Law of tumor
growth” has to be found yet. However, [117] proposed to classify tumor growth
patterns into fundamentally different categories. Therefore, cancer classification
and profiling has to be taken into account.
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Challenge 2. The disease’s complexity poses a big open problem to tumor
growth modeling. According to Edelman et al. [27] modeling the heterogeneous
nature of tumor growth needs to take various characteristics into account. These
characteristics are to be comprehensively discovered, as well as, in the latter
modeled.

Challenge 3. Data heterogeneity challenges integration and fusion. Data
fusion poses significant challenges. While diverse data sets exist, data comes
from different laboratories, with different type and quality controls, different
representation and processing [27,118–120]. Integrating current bioinformatics
workflows with knowledge engineering provides the necessary step in the right
direction.

Challenge 4. Visualizing evidence and uncertainty with aggregation and dis-
play of specific information is required to make informed decisions. However, visu-
alization still poses a big challenge. Offering reproducable, transparent and inter-
active visual analysis output of learned patterns is one of the many challenges for
applying Visual Analytics methods to the biomedical domain [121–124].

Challenge 5. Finally, the question remains of how to infer knowledge from
existing data. Machine learning may be used to infer graphical models from
data [118], but there are difficult learning tasks to infer graphical models, yet to
be solved.

8 Conclusion and Future Outlook

Combining ML and ABM can be used on various biological scales, as shown in
Fig. 2: The lattice’s nodes are represented as cellular bricks, which can be related
to localized phenomena such as intra- & intercellular interactions, information
on absorption, excretion, distribution as well as modulators, inhibitors and pro-
moters, but also protein interactions and gene ontology. The overall goal remains
to understand properties and peculiarities regarding cancer disease signaling.

In summary, ML can be used to improve in silico modeling, ranging from
model validation to identifying novel insights. Future studies may involve the
integration of proteomic and metabolomic networks behind ABM in order to
simulate drug effects on tumor growth towards personalized medicine. Further
exploration on genomic information regarding disease-driving mutations could
be embedded within a multi-agent approach to simulating tumor growth in more
detail. This may include studies on evolutionary dynamics of tumor growth and
the underlying cellular heterogeneity of tumors using in silico environments.
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10. Szabó, A., Merks, R.M.: Cellular potts modeling of tumor growth, tumor invasion,
and tumor evolution. Front. Oncol. 3, 87 (2013)

11. Von Neumann, J.: The general and logical theory of automata. Cereb. Mech.
Behav. 1(41), 1–2 (1951)

12. Neumann, J.V., Burks, A.W.: Theory of self-reproducing automata (1966)
13. Ulam, S.: Some ideas and prospects in biomathematics. Ann. Rev. Biophys. Bio-

eng. 1(1), 277–292 (1972)
14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297

(1995)
15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York

(2000). doi:10.1007/978-1-4757-3264-1
16. Mantas, J.: Electronic health record. Stud. Health Technol. Inf. 65, 250–257

(2002)
17. Waugh, D.F.: Protein-protein interactions. Adv. Protein Chem. 9, 325–437 (1954)
18. Pawson, T., Nash, P.: Protein-protein interactions define specificity in signal

transduction. Genes Dev. 14, 1027–1047 (2000)
19. Przulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein

interactions. Bioinformatics 20(3), 340–348 (2004)
20. Jeanquartier, F., Jean-Quartier, C., Holzinger, A.: Integrated web visualizations

for protein-protein interaction databases. BMC Bioinf. 16, 195 (2015)
21. Wagoner, J.K.: Occupational carcinogenesis: the two hundred years since percivall

pott. Ann. N. Y. Acad. Sci. 271(1), 1–4 (1976)
22. Trisilowati, Mallet, D.G.: In silico experimental modeling of cancer treatment.

ISRN Oncol. 2012, 828701 (2012)
23. Kotlyar, M., Pastrello, C., Pivetta, F., Sardo, A.L., Cumbaa, C., Li, H., Naranian,

T., Niu, Y., Ding, Z., Vafaee, F., et al.: In silico prediction of physical protein
interactions and characterization of interactome orphans. Nat. Methods 12(1),
79–84 (2015)



Machine Learning for In Silico Tumor Growth 429

24. Snell, E.H., Lauricella, A.M., Potter, S.A., Luft, J.R., Gulde, S.M., Collins, R.J.,
Franks, G., Malkowski, M.G., Cumbaa, C., Jurisica, I., et al.: Establishing a
training set through the visual analysis of crystallization trials. Part II: crystal
examples. Acta Crystallogr. Sect. D: Biol. Crystallogr. 64(11), 1131–1137 (2008)

25. Jeanquartier, F., Jean-Quartier, C., Cemernek, D., Holzinger, A.: In silico mod-
eling for tumor growth visualization. BMC Syst. Biol. 10(1), 1 (2016)

26. Jeanquartier, F., Jean-Quartier, C., Schreck, T., Cemernek, D., Holzinger, A.:
Integrating open data on cancer in support to tumor growth analysis. In: Renda,
M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832,
pp. 49–66. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43949-5 4

27. Edelman, L.B., Eddy, J.A., Price, N.D.: In silico models of cancer. Wiley Interdisc.
Rev. Syst. Biol. Med. 2(4), 438–459 (2010)

28. Russell, S., Norvig, P.: Artificial Intelligence. Prentice-Hall, Englewood Cliffs
(1995)

29. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. J.
Simul. 4(3), 151–162 (2010)

30. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating
human systems. Proc. Nat. Acad. Sci. 99(suppl 3), 7280–7287 (2002)

31. Starruß, J., de Back, W., Brusch, L., Deutsch, A.: Morpheus: a user-friendly mod-
eling environment for multiscale and multicellular systems biology. Bioinformatics
30(9), 1331–1332 (2014)

32. Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J.M., Hlatky, L.,
Hahnfeldt, P.: Classical mathematical models for description and prediction of
experimental tumor growth. PLoS Comput. Biol. 10(8), e1003800 (2014)

33. Laird, A.K.: Dynamics of tumour growth. Br. J. Cancer 18, 490–502 (1964)
34. Loeb, L.: Tissue growth and tumor growth. J. Cancer Res. 2, 135 (1917)
35. Gocka, E.F., Reed, L.J.: A method of fitting non-symmetric gompertz functions

for characterising malignant growth. Int. J. Biomed. Comput. 8, 247–254 (1977)
36. Glazier, F., Glazier, J.A.: Simulation of biological cell sorting using a two-

dimensional extended potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)
37. Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s

new solitaire game “life”. Sci. Am. 223(4), 120–123 (1970)
38. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Modern Phys. 55(3),

601 (1983)
39. Qi, A.S., Zheng, X., Du, C.Y., An, B.S.: A cellular automaton model of cancerous

growth. J. Theor. Biol. 161(1), 1–12 (1993)
40. Smolle, J., Stettner, H.: Computer simulation of tumour cell invasion by a sto-

chastic growth model. J. Theor. Biol. 160(1), 63–72 (1993)
41. Smolle, J.: Cellular automaton simulation of tumour growth-equivocal relation-

ships between simulation parameters and morphologic pattern features. Anal.
Cellular Pathol. 17(2), 71–82 (1998)

42. Kansal, A.R., Torquato, S., Harsh, G., Chiocca, E., Deisboeck, T.: Simulated
brain tumor growth dynamics using a three-dimensional cellular automaton. J.
Theor. Biol. 203(4), 367–382 (2000)

43. Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A.: A cellular automaton
model of early tumor growth and invasion: the effects of native tissue vascular-
ity and increased anaerobic tumor metabolism. J. Theor. Biol. 213(3), 315–331
(2001)



430 F. Jeanquartier et al.

44. Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour
growth in inhomogeneous environment. J. Theor. Biol. 225(2), 257–274 (2003)

45. Gerlee, P., Anderson, A.R.: An evolutionary hybrid cellular automaton model of
solid tumour growth. J. Theor. Biol. 246(4), 583–603 (2007)

46. Brutovsky, B., Horvath, D., Lisy, V.: Inverse geometric approach for the simula-
tion of close-to-circular growth. The case of multicellular tumor spheroids. Phys.
A Stat. Mech. Appl. 387(4), 839–850 (2008)

47. Chaplain, M., Anderson, A.: Mathematical modelling, simulation and prediction
of tumour-induced angiogenesis. Invasion Metastasis 16(4–5), 222–234 (1995)

48. Anderson, A.R., Chaplain, M.: Continuous and discrete mathematical models of
tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998)
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Chapter 3
Conclusion

The herewith presented papers showcase the scientific introduction and examination of the topic ”Visu-
alization Support For In Silico Medicine”. Results highlight certain challenges for using and extending
existing computational approaches, but also challenges when it comes to introducing novel approaches.

The state-of-the-art report on methods for visual analysis of heterogeneous data in biomedical informat-
ics [8] listed several open problems, including the rarity of tightly integrated tools and the balance between
focused and comprehensive approaches. The list continues with the necessity for improving usability of
analysis processes, but also proposed the idea of attention routing for helping users to find good starting
points for analysis. Additionally, it has been stated that several research challenges existed in the appli-
cation of topology-based methods for visualization. Yet, the work mentioned that these methods were
becoming more and more popular. Existing challenges have not been specific to the biomedical domain
but rather general. Several works regarding this topic have been published also showing successful appli-
cations for the visual analysis of many types of data of different domains. Challenges of topology-based
methods for visualization remain.

Data fusion has been and remains another recurring topic in biomedical research, mentioned in [6, 7, 8].

Uncertainty visualization and uncertainty awareness in analysis processes was mentioned as an addi-
tional big open problem listed in the state-of-the-art work [8], partially approached in [5] and mentioned
again in [6, 7]. This topic will most probably remain interesting within the next years, too.

Above all, there are two central and recurring themes: First, it is essential to further enhance visualization
integration in analysis tools in the biomedical domain. Second, we have to foster greater collaboration
amongst the two scientific research fields of biomedical science and computer science.

Last but not least, many interesting challenges remain regarding visualization related to tumor growth.
Topics include, next to visualizing probability and uncertainty, comparative visualization and model visu-
alization.

There has been an increase in the availability of visualization tools for systems biology. I believe that
biomedical research in general and research on tumor growth in particular will benefit from the systems
biology perspective. By facilitating visualization integration and further making use of computational
techniques we can help answering key questions in fundamental biomedical research.

...

In memoriam to our beloved friends and family we lost by cancer: We owe them to always keep up with
studying, exploring, reflecting and analyzing. We shall never give up the search for a suitable approach to
help conquering a merciless disease.
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