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Introduction
Denote by s

(
Zdn
)
the smallest number of elements such that in any sequence

in Zdn of length at least s
(
Zdn
)
one can find a subsequence of length n whose

sum is zero modulo n. In Section 1 (The Number s
(
Zdn
)
) the state of the art

is collected and edited in a uniform notation. Particularly, Section 1.2.1 (Edel
Lifting) is devoted to the clever construction of sequences due to Edel [Ede08].
The subsequent main part of this thesis, Section 2 (Weighted Generalization),
deals with the following weighted generalization of s

(
Zdn
)
. A sequence contains

an A-weighted zero subsum of length n, if it contains a subsequence v1, . . . , vn
of length n and corresponding weights a1, . . . , an ∈ A such that

n∑
i=1

aivi = 0.

Accordingly, denote by sA
(
Zdn
)
the smallest number of elements such that

any sequence in Zdn of length at least sA
(
Zdn
)
contains an A-weighted zero

subsum of length n.
Trivially, s±

(
Zdn
)
≤ s

(
Zdn
)
. In Example 2.9 (Dimension of ones) a new

construction is presented that relates these two numbers the other way round

s±
(
Zdn
)
≥ s

(
Zd−1
n

)
.

This enables to reuse the lower bounds Theorem 1.54 (Edel) and Theorem 1.73
(Edel) from the unweighted case.

In contrast to the unweighted case, one can mutually interchange some
vectors in a sequence in the sense of Observation 2.45 (A-weighted transfor-
mation) without affecting A-weighted zero subsums. This effect has been
defined in Definition 2.4 (A-distinct) and has been discussed in Lemma 2.16
(A-distinct).

Another difference in the weighted case is the zero vector. Although the
zero vector is present in all maximum sequences regarding the unweighted
number s

(
Zdn
)
, the contrary seems to be true in the weighted case, see

Lemma 2.21 (Zero vector). Therefore, a new Notation 2.22 (Allowed vectors)
has been introduced to explicitly exclude the zero vector. With the help of this
Notation the currently best known upper bound s±

(
Zdn
)
≤ nd−1

2 (n− 1) + 1
by Godinho, Lemos, and Marques [GLM13, Theorem 1] has been improved
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in Lemma 2.51 (±-weighted upper bound)

s±
(
Zdn
)
≤ nd − 1

n− 1 (n+ blog2 nc − 1) + n.

Furthermore, the zero vector has been investigated in the ternary case s±
(
Zd3
)

in Lemma 2.60 (Zero vector) which enabled to preserve most of the proofs of
the unweighted case. Thus, those values are known as well, especially their
relation to ternary projective caps, see Corollary 2.64 (±-weighted ternary
values in low dimensions).

In dimension d = 1, the Cauchy–Davenport Theorem applies to A-weighted
zero subsums. In this way, an upper bound to sensible weights A has been
found in Corollary 2.48 (Maximal weights)

sA(Zp) = p+ 1

where |A| ≥ p−1
2 and Property D has been disproved regarding sA(Zp) where

|A| ≥ 2 in Lemma 2.49 (Weighted Property D).
Finally, a computer has been consulted, see Remark 1.28 (Computer

implementation). Not only known sequences have been rediscovered but also
new ones, see Examples 2.75 (±-weighted dimension 4) and 2.80 (Maximal
±-weighted quinary sequence). Let n ≥ 3, odd.

s±
(
Z4
n

)
≥ 4 (n− 1) + 1

s±
(
Z5

5

)
≥ 21 (5− 1) + 1.

The latter quinary sequence is interesting insofar as all other known maximum
sequences so far are ternary sequences. Moreover, some observations of
computer results have been made, see Observation 2.34 and Conjectures 2.53
(Weighted dimension 2), 2.54 (±-weighted dimension 3), and 2.78 (±-weighted
dimension 4).
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1 The Number s
(
Zdn

)
Let (G,+) be a finite abelian group. Find the smallest number `, such that
any sequence (multiset) S in G of length |S| ≥ ` contains a zero subsum
with certain desired properties. Typically, such desired properties concern
the length (number of elements) of a zero subsum.

Definition 1.1 (Zero subsum). A sequence S in a finite abelian group
contains a zero subsum of length k, if it contains a subsequence T of length k
such that ∑v∈T v = 0

Notation 1.2 (Exponent). The exponent expG of a finite abelian group G
is the least common multiple of the orders of the elements of G, respectively
written multiplicatively, the least positive integer such that ∀x ∈ G : xexpG =
1.

Notation 1.3 (Zero subsum). Let (G,+) be a finite abelian group. The
number s(G) denotes the smallest integer, such that every sequence S in G
of length |S| ≥ s(G) contains a zero subsum of length expG.

The fundamental theorem of finitely generated abelian groups states that
every finite abelian group decomposes into cyclic groups. Therefore, the most
fundamental case is the study of cyclic groups (Zn,+) and more generally(
Zdn,+

)
where Zdn denotes the d-dimensional vector space of vectors modulo

n:
(Z�nZ)d.
In the literature notation varies. Initially number theorists used a standard

notation f(n, d) [Har73]. Later, algebraists reformulated the problem for
general finite abelian groups thereby introducing s(G). There, cyclic groups
are written multiplicatively, this is s(Cr

n).
The one-dimensional problem s(Zn) originated from Erdős, Ginzburg, and

Ziv [EGZ61]. Initially, Harborth [Har73] posed it as lattice point problem.
The number s

(
Zdn
)
reformulated reads as follows: What is the minimum

integer such that for every set of at least s
(
Zdn
)
many lattice points in the

d-dimensional Euclidean space one can find n among them whose centroid is
also a lattice point?

The ternary case s
(
Zd3
)
relates to ternary affine caps, see Section 1.1

(Ternary Case).
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Notation 1.4 (Zero subsums). Along the same lines as s(G) there is a variety
of similar interesting questions, see [EEG+07].

s(G) denotes the smallest number of elements such that any sequence S in
G of length |S| ≥ s(G) contains a zero subsum of length expG.

η(G) denotes the smallest number of elements such that any sequence S in
G of length |S| ≥ η(G) contains a short zero subsum, that is a zero
subsum of length between [1, expG].

g(G) denotes the smallest number of elements such that any sequence S of
distinct elements (also called square-free) in G of length |S| ≥ g(G),
contains a zero subsum of length expG.

D(G) the Davenport constant denotes the smallest number of elements such
that any sequence S in G of length |S| ≥ D(G) contains a nonempty
zero subsum (of arbitrary length).

E(G) denotes the smallest number of elements such that any sequence S in
G of length |S| ≥ E(G) contains a zero subsums of length |G|.

Remark 1.5 (Exponent). In dimension d = 1 the numbers s(Zn) and E(Zn)
coincide as expZn = n = |Zn|.

s(Zn) = E(Zn)

Remark 1.6 (Gao). [Gao96, Theorem 1] The Davenport constant D(G) and
its sibling E(G) are closely related:

E(G) = D(G) + |G| − 1.

In this thesis, mainly s
(
Zdn
)
is discussed, namely the smallest number `,

such that among any ` vectors in Zdn one can find n of them whose sum is
zero modulo n.

In the study of both lower and upper bounds of s(G), one has to deal
with sequences S handily.

Notation 1.7 (Free monoid). Let G be a set. The free monoid of G is the
monoid of all finite sequences in G together with string concatenation as
monoid operation written multiplicatively.
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A sequence can be written as product S = ∏
v∈S v and furthermore powers

are interpreted as repetition vk = v, . . . , v︸ ︷︷ ︸
k times

. Note that the order of a sequence

is irrelevant in the study of s(G). Therefore, one identifies sequences with
different orderings Sk = v1, . . . , v1︸ ︷︷ ︸

k times

, . . . , v|S|, . . . , v|S|︸ ︷︷ ︸
k times

.

Example 1.8 (Dimension 1). Already one of the simplest sequence one can
imagine, namely S = 0, 1 respectively Sn−1 is quite interesting. Assume there
is a zero subsum of length n modulo n in Sn−1. But then solely zeros or solely
ones have been taken n times despite they are only available n − 1 times.
This proves s(Zn) ≥ |Sn−1|+ 1 = 2 (n− 1) + 1.

Example 1.9 (Affine basis). The previous example can be trivially general-
ized to higher dimensions to show s

(
Zdn
)
≥ (d+ 1) (n− 1) + 1. Let S in Zdn

consist of the zero vector together with the standard basis. For example in
dimension 3

S =

0
0
0

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1


Example 1.10 (Harborth [Har73]). Being a bit more careful one can even
take all 0-1-vectors n− 1 times, which establishes the lower bound s

(
Zdn
)
≥

2d (n− 1) + 1. Again, for example in dimension 3

S =

0
0
0

 ,
1

0
0

 ,
0

1
0

 ,
1

1
0

 ,
0

0
1

 ,
1

0
1

 ,
0

1
1

 ,
1

1
1


The proof generalizes from the one in Example 1.8 (Dimension 1) naturally.

Proof. Assume there is a zero subsum of length n modulo n in Sn−1. Then in
each coordinate solely zeros or solely ones have been taken n times. Hence a
single vector has been taken n times despite they are all available just n− 1
times.

Another way to prove this is by lifting Example 1.8 (Dimension 1) to
higher dimensions as in Lemma 1.56 (Product construction).
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Example 1.11 (Edel). [Ede08, Lemma 11] Not alone sequences without zero
subsums can be useful. Consider the following sequence

S = 0, 1, 2.

How do possible zero subsums in Sn−1 look like? Let a0, a1, a2 denote the
number of occurrences of zeros, ones, and twos in a zero subsum of length n
in Sn−1. Expressing the zero subsum:

a0 · 0 + a1 · 1 + a2 · 2 ≡ 0 (mod n)

This sum cannot be 0n or 2n as they can only be achieved by n zeros or n
twos, though so many are not available. The congruency simplifies to an
equation

a1 + 2a2 = n

Expressing a0 and a1 in terms of a2 results in a1 = n−2a2, a0 = n−a1−a2 = a2.
Summarized, zero subsums T in Sn−1 are of shape

T =
(
0
)a
,
(
1
)n−2a

,
(
2
)a
, 0 < a ≤ n− 1

2 .

This sequence comes in handy later in Edel’s product construction, see
Example 1.67 (Edel).
Remark 1.12 (Maximal vs. maximum). There is a subtle distinction between
maximal sequence S (cannot be extended) and maximum sequence S (of
maximum cardinality). For example, a maximum sequence regarding s(G)
means a sequence S in G of length |S| = s(G)− 1 without zero subsums of
length expG. An illustration example: S = 0, 0, 0, 1, 2 is a maximal sequence
regarding s(Z4) because extending it by any number permits a zero subsum
of length 4. However, S is not a maximum sequence, since 0, 0, 0, 1, 1, 1 is a
longer sequence without zero subsums of length 4.

In order to reshape and compare different sequences, it is useful to apply
affine transformations. This does not affect zero subsums.
Lemma 1.13 (Affine transformation). Let S be a sequence in Zdn and f be
an affine transformation

f : Zdn → Zdn
v 7→Mv + b

for some M ∈ GL
(
Zdn
)
, b ∈ Zdn. Then S contains a zero subsum of length n

if and only if f(S) = ∏
v∈S f(v) does.
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Proof. A subsequence T of length n in S is a zero subsum if and only if f(T )
is a zero subsum in f(S).∑

ṽ∈f(T )
ṽ =

∑
v∈T

f(v) =
∑
v∈T

(Mv + b) = M
∑
v∈T

v + nb ≡M
∑
v∈T

v (mod n)

Moreover, M is invertible, hence,∑
ṽ∈f(T )

ṽ ≡ 0⇔
∑
v∈T

v ≡ 0 (mod n)

Example 1.14 (Affine transformation). Besides simple affine transformations
like row transpositions one can also scale an entire dimension by a factor α
coprime to n. Furthermore, an affine transformation may also just be a shift
f(v) = v + b. For instance Example 1.9 (Affine basis) in dimension 2

S =
(

0
0

)
,

(
1
0

)
,

(
0
1

)

shifting by b =
(
1 1

)ᵀ
changes into

f(S) =
(

1
1

)
,

(
2
1

)
,

(
1
2

)

Remark 1.15 (Affine basis). As a further consequence of Lemma 1.13 (Affine
transformation), when constructing large sequences one may assume that a
maximal sequence contains an affine basis such as Example 1.9 (Affine basis).
Why is this? The zero vector is obtained by shifting an arbitrary vector.
Applying Gaussian elimination also the basis vectors are attained. Note that
all three types of elementary matrices in Gaussian elimination are invertible
and thus are legitimate affine transformations.

Studying centroids of lattice points, Harborth established basic lower and
upper bounds.

Lemma 1.16 (Harborth). [Har73, Hilfssatz 1]

2d (n− 1) + 1 ≤ s
(
Zdn
)
≤ nd (n− 1) + 1

7



Proof. The lower bound has already been discussed in Example 1.10 (Harborth
[Har73]). For the upper bound apply the pigeonhole principle: Zdn consists of
nd vectors. Accordingly, among more than nd (n− 1) vectors, one of them
must occur at least n times, which gives a zero subsum.

For large n or d one can do much better: Either replace the term nd by a
(large) constant depending only on d or think of n as constant and replace nd
by something smaller.

Theorem 1.17 (Alon and Dubiner). [AD95, Theorem 1.1,3 Open problems]

s
(
Zdn
)

= O(n) , as n→∞

s
(
Zdn
)

= o
(
nd
)
, as d→∞

The latter has been improved further. The result had previously been
proved by Silke Kubertin (unpublished manuscript, around 2005).

Theorem 1.18 (Liu and Spencer). [LS09, Theorem 1]

s
(
Zdn
)

= O
(
nd

dn−2

)
, as d→∞

The number s(G) is closely related with η(G) and g(G).
Observation 1.19 (Gao). [Gao03, Lemma 2.2]

s
(
Zdn
)
≥ η

(
Zdn
)

+ n− 1.

Proof. Let T be a maximum sequence regarding η
(
Zdn
)
. Then S = 0, . . . , 0︸ ︷︷ ︸

n−1 times

, T

does not contain zero subsums of length n since otherwise by removing all
zeros from a zero subsum in S a short zero subsum in T is obtained. In
particular,

s
(
Zdn
)
≥ |T |+ 1 = |S|+ n− 1 + 1 = η

(
Zdn
)

+ n− 1

So far, all known maximum sequences regarding s
(
Zdn
)
fulfill the other

direction as well. This is assumed to be true for all maximum sequences.
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Conjecture 1.20 (Gao). [Gao03, Conjecture 2.3]

s(G) = η(G) + expG− 1.

Geroldinger and Halter-Koch [GH06, Theorem 5.8.3] proved this Conjec-
ture for groups of rank at most 2.

The sequences in Examples 1.8 to 1.10 are all of the shape Sn−1, which
means every vector occurs exactly n− 1 times. It seems that this is true for
all maximum sequences. Van Emde Boas [vEmd69] formulated this for η(Z2

n)
and later Gao and Thangadurai [GT03, Definition 1.1] stated it for general
dimensions s

(
Zdn
)
.

Conjecture 1.21 (Property D). Every maximum sequence S regarding s
(
Zdn
)

is of shape S = T n−1 for some sequence T .

Gao and Thangadurai [GT03, Theorem 1] proved that Property D is
multiplicative with respect to n. Property D has been verified for s

(
Zd2
)
in

Theorem 1.36 (Harborth), s
(
Zd3
)
in Theorem 1.44 (Harborth), s(Z2

5) by Gao
[Gao00], and s(Z3

5) by Gao et al. [GHST07, Proposition 5.6].
Remark 1.22 (Gao and Thangadurai). [GT03, Corollary 1.2(i)] Property D
implies Conjecture 1.20 (Gao).

Proof. As mentioned in the motivating Observation 1.19 (Gao) it suffices
to prove s

(
Zdn
)
≤ η

(
Zdn
)

+ n− 1. Let S be a maximum sequence regarding
s
(
Zdn
)
. We may not only assume that the zero vector is part of this sequence,

see Remark 1.15 (Affine basis), but by assumption even that it is present
n− 1 times. Then the subsequence of S without the zero vectors does not
contain short zero subsums since otherwise by adding up to n− 1 many zero
vectors we would obtain a zero subsum of length n in S. In particular,

η
(
Zdn
)
≥ |S| − (n− 1) + 1 = s

(
Zdn
)
− (n− 1) .

The following property is closely related to Property D.

Definition 1.23 (Property G).

s
(
Zdn
)

=
(
g
(
Zdn
)
− 1

)
(n− 1) + 1

9



Remark 1.24 (Property G). Note that the direction “≤” is always true:

s
(
Zdn
)
≤
(
g
(
Zdn
)
− 1

)
(n− 1) + 1

Proof. Let S be a sequence in Zdn of length at least
(
g
(
Zdn
)
− 1

)
(n− 1) + 1.

To show: S contains a zero subsum of length n. By the pigeonhole principle,
either a vector occurs n times or there are g

(
Zdn
)
distinct vectors. In both

cases we have found a zero subsum of length n as requested.

Remark 1.25. Property G implies Property D.

Proof. Let S be a sequence in Zdn of length |S| = s
(
Zdn
)
− 1 =(

g
(
Zdn
)
− 1

)
(n− 1) without zero subsums of length n and T ⊆ S be its

subsequence of distinct vectors. As n times the same vector gives a zero
subsum, T n−1 ⊇ S. On the contrary, T does not contain zero subsums as
well, which limits its length by |T | ≤ g

(
Zdn
)
− 1 = |S|

n−1 , whence, |T
n−1| ≤ |S|.

It follows T n−1 = S.

Frequently, it remains to consider s
(
Zdp
)
only for primes p, when dealing

with upper bounds. This is due to the following Lemma by Erdős, Ginzburg,
and Ziv [EGZ61] and Harborth [Har73, Hilfssatz 2].

Lemma 1.26 (Multiplicativity).

s
(
Zdnm

)
≤ min

{
s
(
Zdn
)

+ n
(
s
(
Zdm

)
− 1

)
,

s
(
Zdm

)
+m

(
s
(
Zdn
)
− 1

)}
Proof. It suffices to consider the first upper bound since n and m can be
swapped. The proof constructs a zero subsum as required.
As long as there are at least s

(
Zdn
)
many vectors, remove a zero subsum

modulo n of length n. Assume k subsums have already been removed.

s
(
Zdn
)

+ n
(
s
(
Zdm

)
− 1

)
− kn ≥ s

(
Zdn
)
⇔ k ≤ s

(
Zdm

)
− 1

Consequently, one ends up with s
(
Zdm

)
many zero subsums Ti. Among their

well-defined means
x̄i = 1

n

∑
x∈Ti

x ∈ Zdn

10



we can again find m of them which sum to zero modulo m.∑
i∈I

x̄i ≡ 0 (mod m)

Accordingly, a zero subsum T = ⊎
i∈I Ti modulo nm of length nm has been

obtained.

|T | =
∑
i∈I
|Ti| = mn∑

x∈T
x =

∑
i∈I

∑
x∈Ti

x = n
∑
i∈I

x̄i ≡ 0 (mod nm)

Corollary 1.27 (Multiplicativity). It suffices to prove upper bounds of type
s
(
Zdn
)
≤ cd (n− 1) + 1 just for primes n = p.

Proof. Assume the upper bound has already been verified for n and m. Then

s
(
Zdnm

)
≤ s

(
Zdn
)

+ n
(
s
(
Zdm

)
− 1

)
≤ cd (n− 1) + 1 + n (cd (m− 1) + 1− 1)
= cd (nm− 1) + 1

Remark 1.28 (Computer implementation). It helps to verify small examples
with a computer. A method is needed that takes a bunch of vectors in Zdn
and looks at all zero subsums of length n. There are usually a lot of possible
sequences S to test, therefore this method should be as fast as possible. Often,
one assumes Conjecture 1.21 (Property D) which reduces |S| by a factor of
n− 1. Lemma 1.16 (Harborth) tells us to cope with |S| ≥ 2d many different
vectors.

Iterativity. The naive brute force approach of enumerating all
(
|S|
n

)
≥
(

2d

n

)
combinations of vectors does not seem to be the right choice. Throughout
this thesis, an iterative approach has been chosen: Keep track of all
possible values of subsums of length k for k = 2, . . . , n− 1. The idea
behind this is that a lot of subsums of length k will have the same value
already for small k and thus reduce the number of operations. Why is
this? Compare the number of subsums

(
|S|
k

)
≥
(

2d

k

)
to the number of

11



possible values
∣∣∣Zd3∣∣∣ = 3d. For example, already in the ternary case Zd3

there are collisions of subsums of length k = 2 starting at dimension
d = 3 since 33 = 27 < 28 =

(
23

2

)
≤
(
|S|
2

)
and much more as d grows. Let

sk ⊆ Zdn be the set of values of subsums of length k. The two essential
methods are:

A test whether a vector v ∈ Zdn can be safely added to S without
creating zero subsums of length n.
function Sequence.Test(v)

return −v ∈ sn−1
end function

The procedure that adds such a vector v to the sequence S and
updates the corresponding sets sk where sk + v denotes element-
wise addition.
procedure Sequence.Add(v)

for k = n− 1, n− 2, . . . , 3 do
sk ← sk ∪ (sk−1 + v)

end for
s2 ← s2 ∪ (S + v)
S ← S ∪ {v}

end procedure

With these two methods greedy and complete enumeration is possible.
In the greedy approach, vectors v ∈ Zdn are greedily added to obtain
maximal sequences which serve as lower bounds for s

(
Zdn
)
, see Remarks

1.35 (Greedy confirmation of dimension 3), 1.49 (Ternary greedy),1.63
(Odd greedy), 2.66 (±-weighted ternary greedy), and Example 2.80
(Maximal ±-weighted quinary sequence). For not too small n and
dimension d it is also possible to enumerate all maximal sequences of
length m for m = 1, . . . , s

(
Zdn
)
− 1. This way, not only s

(
Zdn
)
can be

determined but also the distribution of maximal sequences and shapes of
maximum sequences, see Remarks 1.48 (Ternary enumeration), 2.65 (±-
weighted ternary enumeration), 2.77 (±-weighted dimension 4 greedy),
and Appendix A.1 (Maximum Sequences).

Addition tables. Modulo operations in multiple dimensions can be speed
up dramatically by precalculated tables. A straightforward initialization
of these tables can take quite a while. For example, in Z6

3 the addition
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table has (36)2 = 531 441 entries. Partially initialized addition tables
can be reused already during the initialization: Two lookups and no
further addition suffices in most of the cases

u+ v = (u+ (v − 1)) + 1.

Vector representation. Now that we have talked about precalculated addi-
tion tables, we should think of an efficient choice of vector representation.
Efficient here means regarding the memory size and possibility to store.
We don’t have to care about addition speed as this is covered by the
addition tables. An optimal choice of storing vectors in Zdn are n-ary
numbers with d digits. Consequently, vectors are represented by plain
integer numbers. For example, in Z4

7
3
1
6
2

 7→ 26137 = 99010 = 11110111102.

Bit array The execution speed of the presented methods Test and Add
depends on a suitable set data structure. A bit array is the simplest and
by far the fastest one, provided the values are represented as integers.

1: procedure BitArray.Add(i ∈ N)
2: ai ← true
3: end procedure
4: function BitArray.Contains(i ∈ N)
5: return ai
6: end function

Sequence representation. When generating maximal sequences, the same
sequence may appear a lot of times “disguised”, because there are a
lot of symmetries. We aim at a unique sequence representation that is
invariant under these symmetries. Because of Remark 1.15 (Affine basis)
we can assume that any sequence contains an affine basis. Additionally,
sort the vectors in lexicographic order. The dimensions can be reordered
as well even further reducing the degree of freedom.

Dimension 1 has been solved by Erdős, Ginzburg, and Ziv in their influen-
tial paper [EGZ61].
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Theorem 1.29 (Erdős, Ginzburg, and Ziv). [EGZ61] Any 2n− 1 integers
contain n of them whose sum is divisible by n.

Proof idea. Induction on the number of prime factors of n.

In other words s(Zn) ≤ 2n− 1. Together with Example 1.8 (Dimension 1)
this yields equality:

s(Zn) = 2 (n− 1) + 1.

Here, a simpler proof is presented as in the original paper that generalizes
to dimension d = 2 Theorem 1.31 (Reiher), as well as to the weighted case
Theorem 2.52 (Adhikari et al.). Yet another proof relies on Theorem 2.42
(Cauchy–Davenport).

Theorem 1.30 (Chevalley’s theorem, [Che35]). Let p be a prime and let

f1(X1, . . . , Xn)
...
fm(X1, . . . , Xn)

be some polynomials in the ring Zp[X1, . . . , Xn] such that the sum of their
total degrees ∑m

i=1 deg(fi) is strictly less than the number of variables n. If
the trivial solution x1 = · · · = xn = 0 is a common zero of the polynomials
f1, . . . , fm then they share another one.

Proof of Theorem 1.29 (Erdős, Ginzburg, and Ziv). The lower bound has al-
ready been established in Example 1.8 (Dimension 1). It suffices to consider
the upper bound of s(Zp) for primes p because of Corollary 1.27 (Multiplica-
tivity). Let n = 2 (p− 1) + 1 and S = a1, . . . , an be a sequence of length n in
Zp. Consider the following clever polynomials f1, f2 ∈ Zp[X1, . . . , Xn].

f1 (X1, . . . , Xn) =
n∑
i=1

aiX
p−1
i

f2 (X1, . . . , Xn) =
n∑
i=1

Xp−1
i

What is the purpose of these two polynomials? Xp−1
i ∈ {0, 1} indicates

whether an element has been selected, f1 = 0 ensures that they form a zero
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subsum, and f2 = 0 validates the number of selected elements to be a multiple
of p between

0 ≤
n∑
i=1

Xp−1
i ≤ n = 2p− 1 < 2p.

Altogether, nontrivial solutions of f1 = f2 = 0 correspond to zero subsums in
S of length p. The polynomials share the trivial solution and the sum of their
total degrees is 2 (p− 1) < n as required, thus Theorem 1.30 (Chevalley’s
theorem, [Che35]) applies and ensures a nontrivial solution to f1 = f2 = 0.

Dimension 2 turned out to be much more difficult. From Example 1.10
(Harborth [Har73]), namely the sequence Sn−1 where

S =
(

0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)

it follows the lower bound s(Z2
n) ≥ 4 (n− 1) + 1. In the 1980s Kemnitz

[Kem82; Kem83] proved in his doctoral dissertation that this also matches the
upper bound in the special cases n = p = 2, 3, 5, 7 and therefore conjectured it
to be true for general n. In 2003, Reiher finally proved Kemnitz’s conjecture.
Theorem 1.31 (Reiher). [Rei07]

s
(
Z2
n

)
= 4 (n− 1) + 1

The following statement tells us that it suffices to look for zero subsums
of length p or 3p.
Proposition 1.32 (Alon and Dubiner). [AD93, Lemma 3.2] Let S be a zero
subsum in Z2

p of length 3p. Then S contains a zero subsum of length p.

Proof. Let n = 3p− 2 and S =
(
a1
b1

)
, . . . ,

(
a3p
b3p

)
be a zero subsum of length

3p in Z2
p. Similar to the presented proof of Theorem 1.29 (Erdős, Ginzburg,

and Ziv) the polynomials are

f1 (X1, . . . , Xn) =
n∑
i=1

aiX
p−1
i

f2 (X1, . . . , Xn) =
n∑
i=1

biX
p−1
i

f3 (X1, . . . , Xn) =
n∑
i=1

Xp−1
i .
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Again, Theorem 1.30 (Chevalley’s theorem, [Che35]) ensures a nontrivial
solution of f1 = f2 = f3 = 0 which corresponds to a zero subsum in S,
however, this time of length p or 2p. In the latter case choose the complement
to obtain a zero subsum of length 3p− 2p = p.

In order to prove Theorem 1.31 (Reiher), a refinement of Theorem 1.30
(Chevalley’s theorem, [Che35]) is needed.

Theorem 1.33 (Chevalley–Warning theorem [Che35; War35]). Same setting
as in Theorem 1.30 (Chevalley’s theorem, [Che35]). Then p divides the
number of common zeros of f1, . . . , fm.

Proof idea of Theorem 1.31 (Reiher). The lower bound has already been es-
tablished in Example 1.10 (Harborth [Har73]) and the case n = 2 in The-
orem 1.36 (Harborth). Reiher applied Theorem 1.33 (Chevalley–Warning
theorem [Che35; War35]) to slightly modified polynomials as in the proof
of Proposition 1.32 (Alon and Dubiner) in order to relate the number of
solutions of zero subsums of different lengths. Eventually, he obtained that
there is a zero subsum of length p or 3p, henceforth, Proposition 1.32 (Alon
and Dubiner) ensures a zero subsum of length p.

Presently, dimension 3 remains open, though the following is assumed,
which has been verified for some special cases.

Conjecture 1.34 (Gao and Thangadurai [GT06] and Gao et al. [GHST07]).

s
(
Z3
n

)
=

8 (n− 1) + 1, n even
9 (n− 1) + 1, n odd

Remark 1.35 (Greedy confirmation of dimension 3). Implementing the greedy
approach described in Remark 1.28 (Computer implementation) and assum-
ing Conjecture 1.21 (Property D) the computer corroborated (not proved)
Conjecture 1.34 (Gao and Thangadurai [GT06] and Gao et al. [GHST07]) up
to n ≤ 26.

Instead of restricting to a specific dimension d, one can also think about
fixing the modulus n. Starting with n = 2, as well as powers of two, this has
been treated by Harborth in the early 70s.

Theorem 1.36 (Harborth). [Har73, Korollar 1]

s
(
Zdn=2a

)
= 2d (n− 1) + 1

16



Proof. The lower bound is established in Example 1.10 (Harborth [Har73]).
For the upper bound, because of Corollary 1.27 (Multiplicativity) it suffices to
consider the case n = p = 2, which has already been covered in Lemma 1.16
(Harborth).

1.1 Ternary Case
The study of the ternary case s

(
Zd3
)
boils down to finding large ternary affine

caps.

Definition 1.37 (Projective space). [BR98, chapter 1.2] A projective space
is a set called points together with a set of subsets of points called lines that
satisfy the following four axioms.

(i) (Line Axiom) There is a unique line passing through any two distinct
points.

(ii) (Veblen–Young) Let A, B, C, D be four distinct points. If the lines
through AB and CD share a common point, then so do the lines through
AC and BD. Broadly speaking, there are no parallel lines.

(iii) Every line contains at least three points.

(iv) (Nondegenerate) There are at least two lines.

The affine geometry introduces the concept of parallel lines. Instead of
stating another bunch of axioms, the affine geometry is usually obtained from
the projective geometry.

Definition 1.38 (Affine geometry). [MS77, appendix B §2] An affine or
Euclidean geometry is obtained by deleting the points of an arbitrary fixed
hyperplane H∞ called the hyperplane at infinity from the subspaces of a
projective geometry.

The next step is to give concrete examples of projective and affine geome-
tries.

Definition 1.39 (Finite geometry). [MS77, appendix B §2] Let Fq be the
finite field of order q and let d ≥ 2.

The affine geometry/space AG(d, q) consists of the points Fdq . The line
through two distinct points x, y ∈ Fdq consists of the points αx + (1− α) y
where α ∈ Fq.
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The projective geometry/space PG(d, q) consists of the nonzero points
Fd+1
q \ {0} with the rule that x and αx are the same point where α ∈ Fq \ {0},

called homogeneous coordinates. The line through two distinct points x, y ∈
Fd+1
q \ {0} consists of the points αx+ βy where α, β ∈ Fq \ {0}.

Remark 1.40 (Desarguesian). One might already feel uncomfortable because in
the Definition 1.39 (Finite geometry) it says “the” affine/projective geometry
but there might also be other constructions. In a so-called Desarguesian
geometry one can introduce coordinates which then can be related to a
finite field. For d ≥ 3 any finite geometry is Desarguesian, consequently,
any finite projective/affine geometry is PG(d, q) or AG(d, q) respectively (see
[MS77, Appendix B §3, Theorem 1] for further references). This justifies the
uniqueness term “the” for d ≥ 3. However, for projective/affine planes d = 2
there are nondesarguesian planes known as well, see [MS77, Appendix B §4,
Theorem 11].

Definition 1.41 (Cap). [Hir98, chapter 3.3] A cap is a set of points no three
of which are collinear.

In the literature, a consistent notation for maximum caps has been estab-
lished only for projective spaces (see for example [Hir98, chapter 3.3]). In
this thesis, a generalization of this notation m2(d, q) is used that equally suits
both affine and projective spaces.

Notation 1.42 (Caps). The maximum size of a cap is denoted by m2(PG(d, q))
or m2(AG(d, q)) respectively.

Observation 1.43 (Ternary equivalences). [EEG+07, chapter 5] Let S be a
sequence of distinct elements in Zd3. The following statements are equivalent:

(i) S contains a zero subsum of length 3.

(ii) S contains three collinear points.

(iii) S contains an arithmetic progression of length 3.

In particular,
m2(AG(d, q)) = g

(
Zd3
)
− 1.

Proof. Arithmetic progression. Three different points form a (proper)
arithmetic progression if

x+ z = 2y.
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Collinearity. Three different points are collinear if αx+ (1− α) y = z. As
these points should be different, α /∈ {0, 1}, and therefore only α = 2
remains, which means

2x− y = z.

Zero subsum. A zero subsum of length 3 of distinct vectors is given when

x+ y + z = 0.

Note that all these equations are equivalent modulo 3.

It remains to connect s
(
Zd3
)
with g

(
Zd3
)
in order to relate s

(
Zd3
)
with

ternary affine caps.

Theorem 1.44 (Harborth). [Har73, Hilfssatz 3] In the ternary case s
(
Zd3
)

Conjecture 1.21 (Property D) is fulfilled. In fact,

s
(
Zd3
)

= 2 g
(
Zd3
)
− 1.

Proof. Recalling Remark 1.25: Property D is implied by Property G, namely

s
(
Zd3
)

=
(
g
(
Zd3
)
− 1

)
(3− 1) + 1 = 2 g

(
Zd3
)
− 1.

Moreover, because of Remark 1.24 (Property G) it suffices to prove s
(
Zd3
) !
≥(

g
(
Zd3
)
− 1

)
2 + 1. Let S be a maximum sequence regarding g

(
Zd3
)
, that is a

sequence of distinct vectors of length |S| = g
(
Zd3
)
− 1 without zero subsums

of length 3. Claim: S2 = S, S does not contain zero subsums of length 3
either, which then concludes the proof

s
(
Zd3
)
≥
∣∣∣S2

∣∣∣+ 1 = 2|S|+ 1 =
(
g
(
Zd3
)
− 1

)
2 + 1.

Assume for a contradiction, there is a zero subsum in S2. As S does not
contain zero subsums, a zero subsum cannot consist of three distinct vectors.
So suppose v + 2u ≡ 0 (mod 3). To fulfill this equation also v = u, yet so
many are not available in S2.

Remark 1.45 (Ternary implementation). Theorem 1.44 (Harborth) speeds up
computer results by working with distinct sequences regarding g

(
Zd3
)
instead

of sequences twice as big regarding s
(
Zd3
)
.
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Remark 1.46 (Largest ternary affine caps). Up to dimension d = 6 maxi-
mum ternary affine caps in AG(d, 3) are known. The latter two are due
to Edel et al. [EFLS02] and Potechin [Pot08]. The corresponding sequence
(m2(AG(d, 3)))d∈N = 2, 4, 9, 20, 45, 112, . . . can be found in The On-Line En-
cyclopedia of Integer Sequences [Hav04a].

Corollary 1.47 (Ternary values in low dimensions).

s(Z3) = 2 (3− 1) + 1 = 5
s
(
Z2

3

)
= 4 (3− 1) + 1 = 9

s
(
Z3

3

)
= 9 (3− 1) + 1 = 19

s
(
Z4

3

)
= 20 (3− 1) + 1 = 41

s
(
Z5

3

)
= 45 (3− 1) + 1 = 91

s
(
Z6

3

)
= 112 (3− 1) + 1 = 225.

Proof. Combine Remark 1.46 (Largest ternary affine caps), Observation 1.43
(Ternary equivalences), and Theorem 1.44 (Harborth)

s
(
Zd3
)

= 2 g
(
Zd3
)
− 1 = 2 m2(AG(d, 3)) + 1.

Remark 1.48 (Ternary enumeration). Implementing the approach described in
Remarks 1.28 (Computer implementation) and 1.45 (Ternary implementation)
all maximal sequences regarding g

(
Zd3
)
have been enumerated up to dimension

d = 3. Regarding g(Z2
3) there are just 2 maximal and at the same time

maximum sequences of length 4. One dimension higher there are 52 different
maximal sequences of length 8 and 7 maximum sequences of length 9.
Remark 1.49 (Ternary greedy). Additionally to Remark 1.48 (Ternary enumer-
ation), the computer was able to greedily find all ternary maximum sequences
up to dimension d = 5, although it takes some time to find the 45 vectors of a
maximum sequence regarding g(Z5

3). In higher dimensions the computer only
found inferior sequences. For example, in dimension d = 6 the best found
sequence was |S| = 80 which is far from the maximum 112. Even lifting the
maximum sequence in dimension d = 3 yields a better sequence in dimension
d = 6 of length |S| = 9 · 9 = 81, see Lemma 1.56 (Product construction).
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In higher dimensions some bounds have been established.

Theorem 1.50 (Meshulam). [Mes95, Theorem 1.2]

g
(
Zd3
)
− 1 ≤ 23d

d
.

In particular,

s
(
Zd3
)

= O
(

3d

d

)
, as d→∞.

Remark 1.51 (Liu and Spencer). [LS09, Remark 6] Retrospectively, Theo-
rem 1.50 (Meshulam) is a special case of Theorem 1.18 (Liu and Spencer) by
calculating the hidden constant explicitly.

Only recently, a dramatic advance happened due to Croot, Lev, and Pach
[CLP16] which has been quickly adapted by Ellenberg and Gijswijt [EG16]
for arithmetic progressions.

Theorem 1.52 (Ellenberg and Gijswijt). [EG16, Corollary 5] There exists
a constant c < 3 such that

s
(
Zd3
)

= O
(
cd
)

= o
(
2.76d

)
, as d→∞.

Proof idea. Let A ⊆ Zd3 be a maximum subset without arithmetic progressions.
Consider the F3-vector space V of polynomials in d variables over the field F3
and denote by V≤k the subspace generated by monomials with total degree at
most k. A natural basis of this subspace V≤k are the monomials in d variables
with degree at most 2 in each variable and total degree at most k. Ellenberg
and Gijswijt examined the subspace of V of polynomials vanishing on the
complement of A, showing that there exists a constant c < 2.756 such that
(assuming d is a multiple of 3)

g
(
Zd3
)
− 1 = |A| ≤ 2 dimV≤ k

2
+
(
3d − dim V≤k

)
, ∀k

≤ 3 dimV≤ 2
3d

= O
(
cd
)
, as d→∞.
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Remark 1.53 (Zeilberger). [Zei16, Asymptotics] A more detailed asymptotic
expression.

c =
3
√

5589 + 891
√

33
8 = 2.755 . . .

g
(
Zd3
)
− 1 ≤ 3.33 c

d

√
d

(
1 + O

(1
d

))
, as d→∞.

A quantitative comparison in Table 1 (Comparison of asymptotic bounds)
shows that Theorem 1.50 (Meshulam) is superseded by Theorem 1.52 (Ellen-
berg and Gijswijt) from dimension d = 27 on, though both upper bounds are
far away from the truth, at least for small dimensions.

The currently best-known asymptotic lower bound uses a ternary affine
cap in AG(62, 3) which gets lifted to higher dimensions. This so-called product
construction is discussed in the following Section 1.2 (Odd Case).

Theorem 1.54 (Edel). [Ede04, 5. Asymptotic Results] There is a ternary
affine cap in AG(62, 3) of size 2 573 417 086 913 773 305 856. In particular,

s
(
Zd3
)

= Ω
(

62
√

2 573 417 086 913 773 305 856d
)

= Ω
(
2.21d

)
, as d→∞.

Proof idea. Similarly to Theorem 1.61 (Elsholtz).

d [Ede04] g(Z3
d)− 1 [Mes95] [EG16]

3 9 18 30
4 20 40
5 56 97
6 112 243 504
9 4 374 9 183

...
24 2.36 · 1010 2.54 · 1010

27 5.65 · 1011 5.05 · 1011

...
63 5.14 · 1021 3.64 · 1028 2.45 · 1027

Table 1: Comparison of asymptotic bounds
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1.2 Odd Case
In order to obtain general lower bounds one can lift sequences without zero
subsums to higher dimensions.

Lemma 1.55 (Trivial lifting).

η
(
Zdn
)
≥ d (η(Zn)− 1) + 1

s
(
Zdn
)
≥ n+ d (η(Zn)− 1)

Proof. Let S be a maximum sequence regarding η(Zn). The idea is to take
S once in every dimension. Let Si be S in dimension i and zero otherwise.
Then S1, . . . , Sd does not contain short zero subsums either since otherwise
there would be a short zero subsum in some dimension i. In particular, see
Observation 1.19 (Gao)

η
(
Zdn
)
≥ |S1, . . . , Sd|+ 1 = d|S|+ 1 = d (η(Zn)− 1) + 1

s
(
Zdn
)
≥ η

(
Zdn
)

+ n− 1 ≥ n+ d (η(Zn)− 1) .

Assuming Conjecture 1.21 (Property D) much better results are obtained.

Lemma 1.56 (Product construction). Let Rn−1, Sn−1 be sequences in Zrn
respectively Zsn which both do not contain zero subsums of length n. Define a
new sequence T n−1 in Zr+sn by

T =
(
R
S

)
:=
{(

u
v

)
∈ Zr+sn : u ∈ R, v ∈ S

}
.

Then T n−1 does not contain zero subsums too. In particular,

s
(
Zr+sn

)
≥
∣∣∣T n−1

∣∣∣+ 1 = |R||S| (n− 1) + 1.

Proof. Note that due to the product construction a vector u ∈ R or v ∈ S
may be available more than n − 1 times in the projection of T n−1 to the
corresponding upper r or lower s dimensions. By assumption, Rn−1 does not
contain zero subsums. Thus, any zero subsum in the upper dimensions of
T n−1 of length n consists of a single vector u ∈ R taken n times. But then in
the lower dimensions all vectors v ∈ S are available at most n− 1 times and
therefore cannot contain a zero subsum since by assumption Sn−1 does not
contain zero subsums either.
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Example 1.57 (Product construction). An illustration example: Suppose
your favorite computer program found two interesting sequences R6, S6 with-
out zero subsums of length 7 in Z2

7.

R =
(

3
6

)
,

(
5
4

)
, S =

(
1
1

)
,

(
2
3

)
Then these can be combined to obtain a sequence T 6 in Z4

7 without zero
subsums either.

T =


3
6
1
1

 ,


3
6
2
3

 ,


5
4
1
1

 ,


5
4
2
3


To gain something significantly, one needs good extremal sequences to

start with.
Observation 1.58 (Elsholtz). [Els04, 2. Proof] Let n ≥ 3, odd. There are
maximum sequences in Zd3, which incidentally also work in general in Zdn. In
particular,

s
(
Z3

3

)
= 9 (3− 1) + 1

s
(
Z3
n

)
≥ 9 (n− 1) + 1.

Elsholtz lifted the following sequence to higher dimensions.
Example 1.59 (Elsholtz). [Els04, 2. Proof] A maximum sequence S2 in Z3

3
has already been discovered by Harborth [Har73], which is essentially three
times an affine basis in dimension 2, the latter one shifted by 1.

S =

0
0
0

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
1

0
1

 ,
0

1
1

 ,
1

1
2

 ,
2

1
2

 ,
1

2
2


Claim: Let n ≥ 3, odd. Sn−1 in Z3

n still does not contain a zero subsum.
Proof. Assume there is a zero subsum in Sn−1. Denote by a1, . . . , a9 the
number of occurrences of the vectors of S in this zero subsum. Written as
linear system:

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 = n

a2 + a5 + a7 + 2a8 + a9 ≡ 0 (mod n)
a3 + a6 + a7 + a8 + 2a9 ≡ 0 (mod n)

a4 + a5 + a6 + 2a7 + 2a8 + 2a9 ≡ 0 (mod n)
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First, replace the equivalences by equalities. The coefficients range between 0
and 2, therefore the candidates are = 0n, = 1n, and = 2n. We want to argue
that the extremal cases cannot happen.

Assume one of the coordinates equals 0n. Then all appearing ai must be
zero since they are nonnegative. In particular a7 = a8 = a9 = 0. However, the
remaining vectors are a subset of the 0-1-vectors in Example 1.10 (Harborth
[Har73]) thence do not contain a zero subsum.

Next, assume one of the coordinates equals 2n. This means solely vectors
with the coefficient 2 in this coordinate have been taken. Again, these vectors
are a subset of Example 1.14 (Affine transformation).

After this prelude, we are left with a linear equation system.

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 = n

a2 + a5 + a7 + 2a8 + a9 = n

a3 + a6 + a7 + a8 + 2a9 = n

a4 + a5 + a6 + 2a7 + 2a8 + 2a9 = n

Adding the first and last row whilst subtracting the second and third one
yields

a1 + 2a4 + a5 + a6 = 0.
which implies a1 = a4 = a5 = a6 = 0. Looking again at the last row:

2a7 + 2a8 + 2a9 = n.

A contradiction to n odd.

Remark 1.60 (Algorithmic approach). The proof of Example 1.59 (Elsholtz) is
quite interesting in the following sense: It can be accomplished by a computer.
There are plenty of integer equation system solvers available, which makes it
possible to test any sequence for zero subsums for general n within seconds.

Theorem 1.61 (Elsholtz). [Els04, 1. Introduction] Let n ≥ 3, odd.

s
(
Zdn
)
≥ 1.125b d

3 c2d (n− 1) + 1

s
(
Zdn
)

= Ω
(

3
√

9d
)

= Ω
(
2.08d

)
, as d→∞

Proof. Let d = 3k + r, 0 ≤ r ≤ 2. Lifting Example 1.59 (Elsholtz) to higher
dimensions, sequences in Z3k

n of length 9k are obtained. In the remaining r
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dimensions further lift the sequence using all 2d 0-1-vectors of Example 1.10
(Harborth [Har73]). In total |S| = 9k2r. Therefore, by Lemma 1.56 (Product
construction)

s
(
Zdn
)
≥
∣∣∣Sn−1

∣∣∣+ 1 = 9k2r (n− 1) + 1

=
(9

8

)k
23k+r (n− 1) + 1 = 1.125b d

3 c2d (n− 1) + 1.

On the other hand, fixing n, as d→∞

s
(
Zdn
)
≥
∣∣∣Sn−1

∣∣∣+ 1 = 9k2r (n− 1) + 1 ≥ 9k ≥ 9
d−2

3 = Ω
(

3
√

9d
)
.

This has been improved with a sequence in dimension 4 of length 20.
Theorem 1.62 (Edel et al.). [EEG+07] Let n ≥ 3, odd.

s
(
Zdn
)

= Ω
(

4
√

20d
)

= Ω
(
2.11d

)
, as d→∞

Remark 1.63 (Odd greedy). Implementing Remark 1.60 (Algorithmic ap-
proach) assuming Conjecture 1.21 (Property D) using Gurobi [Gur16] to solve
linear programs, all best-known sequences regarding s

(
Zdn
)
for all odd n have

been greedily found up to dimension d = 3. In dimension d = 4 Gurobi only
manages to find a sequence of length 18 instead of the best-known 20 vectors
of Theorem 1.62 (Edel et al.). It is not even able to verify these 20 vectors. It
seems that the tools equipped with Gurobi are not enough to solve the linear
programs of “good” sequences. In dimension d = 5 it just finds 33 vectors
which is almost as bad as the trivial lower bound Lemma 1.16 (Harborth).

Having in mind Example 1.59 (Elsholtz), it turns out to be more profitable
to search for maximal ternary sequences simultaneously regarding s

(
Zd3
)
,

s
(
Zd5
)
, and higher odd n. This way one finds 19 vectors verified by Gurobi.

Just verifying for small odd n without Gurobi even all 20 vectors have been
found. One dimension higher in dimension d = 5 this approach finds 36
vectors.

One might think, maybe searching within ternary sequences is not enough
to satisfy all odd n. Taking quinary sequences instead, the computer also
found the 20 vectors regarding s(Z4

n), however, much slower. In dimension
d = 5 it found 35 vectors.

Anyways, we will see in the next Section 1.2.1 (Edel Lifting) that one can
do much better.
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1.2.1 Edel Lifting

The best known lower bound so far is s
(
Zdn
)

= Ω
(
2.13d

)
due to i̧teauthorEdel.2008.

He uses a nontrivial product construction to obtain better sequences in di-
mensions 5,6, and 7. The idea is to group sequences by weight modulo 2 in
order to combine them more efficiently.

Definition 1.64 (Weight). The weight of a vector v ∈ Zdn is the sum of its
entries ∑d

i=1 vi. The total weight of a sequence S in Zdn is the sum of all its
vectors’ weights ∑v∈S

∑d
i=1 vi. A sequence is said to have weight k if all its

vectors have weight k.

Essentially, Edel is exploiting the following observation to be able to pack
more vectors into sequences nonetheless avoiding zero subsums.
Observation 1.65 (Edel). [Ede08, Lemma 13] Let n ≥ 3, odd and S be a
sequence in Zdn of weight k (mod 2). Then any subsequence in S of length n
has total weight k (mod 2).

Proof. The total weight of a subsequence of length n is the sum of its vectors’
weights:

n · k ≡ k (mod 2)

This observation motivates the following definition of sequences, which
then later are used in a more sophisticated product construction to yield
sequences without zero subsums.

Definition 1.66 (Edel sequence). Let S be a sequence in Zdn grouped by
weight modulo 2 into S = Sd, Sd+1. Then S is said to be an Edel sequence if
the groups Sn−1

d and Sn−1
d+1 do not contain zero subsums of length n, though

the entire sequence Sn−1 is allowed to contain zero subsums of length n, albeit
only of total weight d.

Example 1.67 (Edel). [Ede08, Lemma 19] Revising Example 1.11 (Edel)

S = 1︸︷︷︸
S1

, 0, 2︸︷︷︸
S2

We already worked out that zero subsums in Sn−1 of length n are of shape(
1
)n−2a

,
(
0
)a
,
(
2
)a
, 0 < a ≤ n− 1

2 .
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Let n ≥ 3, odd. Then zero subsums in Sn−1 in Zn have total weight

(n− 2a) · 1 + a · 0 + a · 2 = n ≡ 1 = d (mod 2).

Moreover, Sn−1
1 and Sn−1

2 do not contain zero subsums by Example 1.10
(Harborth [Har73]) and Lemma 1.13 (Affine transformation). Hence, S is an
Edel sequence in Zn for all odd n.

Similar to the trivial Lemma 1.56 (Product construction), two Edel se-
quences can be put together in a more sophisticated way.

Proposition 1.68 (Edel). [Ede08, Theorem 16] Let n ≥ 3, odd and R =
Rr, Rr+1, S = Ss, Ss+1 be two Edel sequences in Zrn and Zsn respectively. Let

T =
(
Rr

Ss+1

)
,

(
Rr+1
Ss

)

=
{(

u
v

)
∈ Zr+sn : (u ∈ Rr, v ∈ Ss+1) ∨ (u ∈ Rr+1, v ∈ Ss)

}
.

Then T n−1 does not contain a zero subsum of length n. In particular,

s
(
Zr+sn

)
≥
∣∣∣T n−1

∣∣∣+ 1 = (|Rr||Ss+1|+ |Rr+1||Ss|) (n− 1) + 1

Proof. Note that due to the product construction a vector u ∈ R or v ∈ S
may be available more than n − 1 times in the projection of T n−1 to the
corresponding upper r or lower s dimensions. Nevertheless, a zero subsum
of length n cannot consist of solely one vector taken n times in the upper or
lower dimensions, because then in the remaining dimensions one has found
a zero subsum in one of the four parts Rn−1

r , Rn−1
r+1 , S

n−1
s , Sn−1

s+1 . However, by
assumption neither of them contains zero subsums. Accordingly, any vector
u ∈ R or v ∈ S occurs at most n− 1 times in the corresponding dimensions.
By assumption, Rn−1 and Sn−1 only contain zero subsums of total weight r
and s modulo 2. Therefore, any zero subsum in T n−1 has total weight r + s
(mod 2). On the contrary, every vector in T has weight r+ s+ 1 (mod 2) and
thus, by Observation 1.65 (Edel) any zero subsum in T n−1 has total weight
r + s+ 1 (mod 2).

In order to construct Edel sequences in higher dimensions, the following
lifting is expedient.
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Proposition 1.69 (Edel). [Ede08, Lemma 15] Let n ≥ 3, odd and S =
Sd, Sd+1 be an Edel sequence. The following sequence T = Td+1, Td+2 in Zd+1

n

is an Edel sequence of length |Td+1| = |Td+2| = |Sd|+ |Sd+1|.

T =
(
Sd+1

0

)
,

(
Sd
1

)
︸ ︷︷ ︸

Td+1

,

(
Sd+1

1

)
,

(
Sd
2

)
︸ ︷︷ ︸

Td+2

Proof. Assume there is a zero subsum in T n−1
d+1 . In the bottom dimension we

meet Example 1.8 (Dimension 1). Consequently, a zero subsum must lie either
within Sd or Sd+1 though both, by assumption, do not contain zero subsums.
Analogously nor T n−1

d+2 contains zero subsums. It remains to consider the total
weight of zero subsums in the entire sequence T n−1. Observe that in a zero
subsum of length n in the upper d dimensions of T n−1 any vector v ∈ S
occurs at most n− 1 times. By assumption, Sn−1 only contains zero subsums
of total weight d (mod 2). Example 1.67 (Edel) in the bottom dimension is
an Edel sequence, which means it contains only zero subsums of total weight
1 (mod 2). Thus, zero subsums in T n−1 have total weight d+ 1 (mod 2) as
required.

Specifically in dimension 3, the following construction yields a larger Edel
sequence.

Proposition 1.70 (Edel). [Ede08, Definition 17] Let n ≥ 3, odd. The
following sequence S = Sd, Sd+1 is an Edel sequence in Zdn.
Sd consists of all vectors in {0, 1}d with exactly m zeros and all vectors in
{1, 2}d with exactly m twos for a fixed even m.
Sd+1 is composed of all vectors in {0, 1}d with exactly k zeros and all vectors
in {1, 2}d with exactly k twos for all odd k.
Moreover,

|Sd| = 2
(
d

m

)
, |Sd+1| = 2d

is maximal for m = 2
⌊
d+2

4

⌋
.

Proof. There are multiple things to check. Before, let us characterize zero
subsums of length n in Sn−1. By Example 1.10 (Harborth [Har73]) the part
within {0, 1}d does not contain zero subsums and furthermore by Lemma 1.13
(Affine transformation) neither does the other part within {1, 2}d. It follows
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that in each coordinate a zero subsum equals n since otherwise to gain 0n
or 2n solely zeros or twos are necessary, which restricts to either {0, 1}d or
{1, 2}d. Summing over all coordinates, the total weight of a zero subsum is
d · n ≡ d (mod 2) as required. Before we prove that Sn−1

d+1 does not contain
zero subsums, note that the weights are as claimed

k · 0 + (d− k) 1 ≡ d+ 1 (mod 2)
k · 2 + (d− k) 1 ≡ d+ 1 (mod 2).

The total weight of a zero subsum of length n in Sn−1
d+1 is n (d+ 1) ≡ d + 1

(mod 2) whereas we already observed that all zero subsums in Sn−1 have
total weight d (mod 2). Similarly to Sd+1 the weights of Sd are as claimed
d (mod 2). Assume there is a zero subsum of length n within Sn−1

d . We
already excluded the degenerate cases 0n and 2n. Therefore, as characterized
in Example 1.11 (Edel) in each coordinate there is the same number of zeros
and twos. Hence, also the total numbers of zeros and twos are equal. By
construction every vector consists of exactly m zeros or twos, thus a zero
subsum consists of an even number of vectors in contradiction to its odd
length n. Finally, the cardinality: In Sd there are m out of d positions to
choose the ones or twos, hence |Sd| = 2

(
d
m

)
. In Sd+1 the same is done for all

odd k
|Sd+1| = 2

∑
k odd

(
d

k

)
= 2 · 2d−1 = 2d.

The even parameter m is chosen nearest possible to d
2 = 2d4 in order to

maximize
(
d
m

)
. For example, m = 2

⌊
d+2

4

⌋
works.

Before stating the final results, the largest Edel sequences obtained for
each dimension are arranged.

Proposition 1.71 (Edel). [Ede08, Lemma 19] Let n ≥ 3, odd. There are
Edel sequences S = Sd, Sd+1 of size

• |S1| = 1, |S2| = 2 in Zn

• |S2| = |S3| = 3 in Z2
n

• |S3| = 6, |S4| = 8 in Z3
n

• |S4| = |S5| = 14 in Z4
n.
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Proof. An Edel sequence in dimension 1 of size |S1| = 1, |S2| = 2 has already
been presented in Example 1.67 (Edel). Applying Proposition 1.69 (Edel) this
sequence gets lifted to an Edel sequence in dimension 2 of size |S2| = |S3| =
1 + 2 = 3. In dimension 3, the best results are obtained by Proposition 1.70
(Edel), that is |S3| = 2

(
3
2

)
= 6, |S4| = 23 = 8. Another lifting by one

dimension using Proposition 1.69 (Edel) yields an Edel sequence in dimension
4 of size |S4| = |S5| = 6 + 8 = 14.

Example 1.72 (Edel sequences). Now, what are those Edel sequences actu-
ally?

Dimension 1. Example 1.67 (Edel)

S1 = 1, S2 = 0, 2

Dimension 2. This then is lifted via Proposition 1.69 (Edel).

S2 =
(

0
0

)
,

(
1
1

)
,

(
2
0

)
, S3 =

(
0
1

)
,

(
1
2

)
,

(
2
2

)

Dimension 3. Proposition 1.70 (Edel) yields a bigger example specifically
in dimension 3.

S3 =

0
0
1

 ,
0

1
0

 ,
1

0
0

 ,
2

2
1

 ,
2

1
2

 ,
1

2
2



S4 =

0
1
1

 ,
1

0
1

 ,
1

1
0

 ,
0

0
0

 ,
2

1
1

 ,
1

2
1

 ,
1

1
2

 ,
2

2
2


Theorem 1.73 (Edel). [Ede08, Lemma 19] Let n ≥ 3, odd.

s
(
Z3
n

)
≥ 9 (n− 1) + 1

s
(
Z4
n

)
≥ 20 (n− 1) + 1

s
(
Z5
n

)
≥ 42 (n− 1) + 1

s
(
Z6
n

)
≥ 96 (n− 1) + 1

s
(
Z7
n

)
≥ 196 (n− 1) + 1
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Proof. Combining Edel sequences from Proposition 1.71 (Edel) using Propo-
sition 1.68 (Edel) yields

s
(
Z3
n

)
= s

(
Z1+2
n

)
≥ (1 · 3 + 2 · 3) (n− 1) + 1 = 9 (n− 1) + 1

s
(
Z4
n

)
= s

(
Z1+3
n

)
≥ (1 · 8 + 2 · 6) (n− 1) + 1 = 20 (n− 1) + 1

s
(
Z5
n

)
= s

(
Z2+3
n

)
≥ (3 · 8 + 3 · 6) (n− 1) + 1 = 42 (n− 1) + 1

s
(
Z6
n

)
= s

(
Z3+3
n

)
≥ (6 · 8 + 8 · 6) (n− 1) + 1 = 96 (n− 1) + 1

s
(
Z7
n

)
= s

(
Z3+4
n

)
≥ (6 · 14 + 8 · 14) (n− 1) + 1 = 196 (n− 1) + 1

Corollary 1.74 (Asymptotic lower bound). Let n ≥ 3, odd.

s
(
Zdn
)

= Ω
(

6
√

96d
)

= Ω
(
2.13d

)
, as d→∞

Proof idea. Similar to the proof of Theorem 1.61 (Elsholtz) using the sequence
in dimension 6 of length 96.

Example 1.75 (Edel’s sequences). Finally, what are those sequences? For
example in dimensions 2, 3, and 4:

S =
(

1
0

)
,

(
1
2

)
,

(
0
1

)
,

(
2
1

)

S =

1
0
1

 ,
1

1
2

 ,
1

2
1

 ,
0

0
0

 ,
0

1
1

 ,
0

2
0

 ,
2

0
0

 ,
2

1
1

 ,
2

2
0



S =


1
0
1
1

 ,


1
1
0
1

 ,


1
1
1
0

 ,


1
0
0
0

 ,


1
2
1
1

 ,


1
1
2
1

 ,


1
1
1
2

 ,


1
2
2
2

 ,


0
0
0
1

 ,


0
0
1
0

 ,


0
1
0
0

 ,


0
2
2
1

 ,


0
2
1
2

 ,


0
1
2
2

 .


2
0
0
1

 ,


2
0
1
0

 ,


2
1
0
0

 ,


2
2
2
1

 ,


2
2
1
2

 ,


2
1
2
2
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2 Weighted Generalization
There are many generalizations of Theorem 1.29 (Erdős, Ginzburg, and Ziv).
In 2006, Adhikari and Rath [AR06] proposed another generalization that
includes weights.

Definition 2.1 (Weighted zero subsum). Let A ⊆ Z \ {0} be some nonzero
weights. A sequence S in a finite abelian group contains an A-weighted
zero subsum of length k, if it contains a subsequence T of length k and
corresponding weights av ∈ A such that∑

v∈T
avv = 0

Notation 2.2 (±-weighted). Instead of {1,−1}-weighted one simply writes
±-weighted.

Notation 2.3 (Weighted zero subsums). The unweighted issues in Nota-
tion 1.4 (Zero subsums) are intuitively generalized to weighted zero subsums.

sA(G) denotes the smallest number of elements such that any sequence S in
G of length |S| ≥ sA(G) contains an A-weighted zero subsum of length
expG.

ηA(G) denotes the smallest number of elements such that any sequence S in
G of length |S| ≥ ηA(G) contains a short A-weighted zero subsum, that
is an A-weighted zero subsum of length between [1, expG].

DA(G) the Davenport constant denotes the smallest number of elements such
that any sequence S in G of length |S| ≥ DA(G) contains a nonempty
A-weighted zero subsum (of arbitrary length).

EA(G) denotes the smallest number of elements such that any sequence S
in G of length |S| ≥ EA(G) contains an A-weighted zero subsums of
length |G|.

Maybe you are wondering what happened to the number g(G) about
sequences of distinct elements. We will see in Observation 2.45 (A-weighted
transformation) that under certain weights A some vectors are mutually
interchangeable without affecting A-weighted zero subsums. For example, it
does not matter which one of v or −v to choose regarding ±-weights. Let us
formalize this.
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Definition 2.4 (A-distinct). Let A ⊆ Zn \{0} be some weights. Two vectors
v, w ⊆ Zdn are said to be A-equivalent if they are interchangeable under the
weights A

u ∼A v ⇔ Au = Av

where Av = {av : a ∈ A} denotes the set of element-wise multiplication. Note
that in order to be well-defined this is indeed an equivalence relation.

Now we are able to define a consistent weighted generalization of the
number g(G) minding Observation 2.45 (A-weighted transformation). In
contrast to the straight forward generalization gA(G) which can lead to
misleading results, see Observation 2.24 (Godinho, Lemos, and Marques), the
term A-distinct used in the definition of hA(G) additionally takes the weights
into account.

Notation 2.5 (Weighted zero subsums). The unweighted number g(G) is
generalized to the weighted case in two ways.

gA(G) denotes the smallest number of elements such that any sequence S of
distinct elements in G of length |S| ≥ gA(G) contains an A-weighted
zero subsum of length expG.

hA(G) denotes the smallest number of elements such that any sequence S of
A-distinct elements in G of length |S| ≥ hA(G) contains an A-weighted
zero subsum of length expG.

Observation 2.6 (Transitivity of weights). Let B ⊆ A be some weights. Then
it is easier to avoid B-weighted zero subsums than A-weighted ones. Conse-
quently,

sB(G) ≥ sA(G) .
In particular, connecting the weighted with the unweighted case

s(G) = s{1}(G) ≥ s{−1,1}(G) = s±(G) .

The weighted generalizations of many statements of the unweighted case
just need some extra effort or additional constraints.
Remark 2.7 (Grynkiewicz, Marchan, and Ordaz). [GMO12] The relation
between the Davenport constant D(G) and E(G) in Remark 1.6 (Gao) still
holds in the weighted case

EA(G) = DA(G) + |G| − 1.
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We start off with some examples.

Example 2.8 (Basis). A trivial sequence is a standard basis. Trivially, any
sequence S with exactly one nonzero value in each dimension cannot admit
A-weighted zero subsums. This proves, see Observation 1.19 (Gao)

ηA
(
Zdn
)
≥ |S|+ 1 = d+ 1

sA
(
Zdn
)
≥ n− 1 + ηA

(
Zdn
)
≥ n+ d.

For example in Z3
n

S =

1
0
0

 ,
0

1
0

 ,
0

0
1

 .
In the ±-weighted case we can even take the basis n− 1 times. Let n be odd.

s±
(
Zdn
)
≥
∣∣∣Sn−1

∣∣∣+ 1 = d (n− 1) + 1

Proof sketch. Assume to the contrary that there is a ±-weighted zero subsum
of length n in Sn−1. In order to reach 0, every vector occurs as many times
with weight 1 as with weight −1 which is a contradiction to the assumption
that n is odd.

A similar parity argument enables reuse of sequences from the unweighted
case.

Example 2.9 (Dimension of ones). Let n ≥ 3, odd. For a moment, forget
about the weights and consider your favorite sequence S = v1, . . . , vk in Zdn
without any (unweighted) zero subsum of length n. What happens if we
append a dimension out of sheer 1s?(

S
1

)
=
(
v1
1

)
,

(
v2
1

)
, . . . ,

(
vk
1

)

Claim: The obtained sequence does not contain any ±-weighted zero subsum.
In particular,

s±
(
Zd+1
n

)
≥ s

(
Zdn
)

h±
(
Zd+1
n

)
≥ g

(
Zdn
)
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Proof. What is the use of the row of 1s? All weights in a ±-weighted zero
subsum of length n are the same and therefore we are back in the familiar
unweighted case. To see this, consider a zero subsum of length n as well as
corresponding weights ai ∈ {1,−1} and look at the last row:

n∑
i=1

ai · 1 ≡ 0 (mod n).

As often before, we are going to examine the different cases of the equivalence
sign. To reach n or −n all weights ai have to be the same as desired. In the
remaining case 0 we would have n

2 many weights 1 and −1, though n was
assumed to be odd. Note that the row of 1s also ensures that the obtained
sequence is ±-distinct whenever S is distinct.

Example 2.10 (Adhikari et al.). [ACF+06, 1. Introduction] A superincreas-
ing sequence yields the lower bound in dimension d = 1.

S = 20, 21, . . . , 2blog2 nc−1

Claim: This sequence does not contain ±-weighted zero subsums. In particu-
lar, see Observation 1.19 (Gao)

η±(Zn) ≥ |S|+ 1 = blog2 nc+ 1
s±(Zn) ≥ η±(Zn) + n− 1 = n+ blog2 nc.

Proof. Any ±-weighted subsum in S cannot equal 0 due to the uniqueness
of the binary expansion and multiples of n are also not possible since the
absolute value of any sum is bounded by 2blog2 nc−1+1 − 1 ≤ n− 1 < n.

Example 2.11 (Adhikari, Grynkiewicz, and Sun). [AGS12, Theorem 1.3]
By taking a superincreasing sequence in every dimension Example 2.10 (Ad-
hikari et al.) can be lifted to general dimensions d using the construction of
Lemma 1.55 (Trivial lifting)

s±
(
Zdn
)
≥ n+ d

(
η±(Zn)− 1

)
≥ n+ dblog2 nc.

Example 2.12 (Adhikari, Ambily, and Sury). [AAS10, Proposition 3 (ii)]
Let Q ⊆ Z×p be the subgroup of quadratic residues and let t ∈ Z×p \Q be an
arbitrary nonresidue. Then

S = 1,−t
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does not contain Q-weighted zero subsums. In particular, see Lemma 1.55
(Trivial lifting)

ηQ(Zp) ≥ |S|+ 1 = 3
ηQ
(
Zdp
)
≥ d

(
ηQ(Zp)− 1

)
+ 1 ≥ 2d+ 1

sQ
(
Zdp
)
≥ p+ d

(
ηQ(Zp)− 1

)
≥ p+ 2d.

Proof. Assume to the contrary that there is a zero subsum, that is for some
q1, qt ∈ Q

q11− qtt ≡ 0⇔ q1 ≡ qtt. (mod p)
This is a contradiction as the product of a residue and a nonresidue is a
nonresidue.

Similarly to Lemma 1.13 (Affine transformation) one can reshape sequences
without affecting zero subsums.

Lemma 2.13 (Linear transformation). Let A be some weights, S be a sequence
in Zdn and f be a linear transformation, actually an automorphism,

f : Zdn → Zdn
v 7→Mv

for some M ∈ GL
(
Zdn
)
. Then S contains an A-weighted zero subsum of

length n if and only if f(S) = ∏
v∈S f(v) does.

Proof. A subsequence T of length n in S forms a weighted zero subsum if
and only if f(T ) is a weighted zero subsum in f(S). Let av ∈ A.∑

ṽ∈f(T )
avṽ =

∑
v∈T

avf(v) =
∑
v∈T

avMv = M
∑
v∈T

avv

Moreover, M is invertible, hence,∑
ṽ∈f(T )

avṽ ≡ 0⇔
∑
v∈T

avv ≡ 0 (mod n)

Remark 2.14 (Basis). Lemma 2.13 (Linear transformation) enables in the same
way as in Remark 1.15 (Affine basis) that we may assume that a maximal
sequence regarding sA(G) contains a basis like Example 2.8 (Basis).
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Lemma 2.15 (Godinho, Lemos, and Marques). [GLM13, Theorem 1] Let
n ≥ 3, odd.

s±
(
Zdn
)
≥ 2d−1 (n− 1) + 1

In their original proof, Godinho, Lemos, and Marques constructed an
explicit sequence of size |Sn−1| = 2d−1 (n− 1). Whereas, the presented proof
here is radically simpler. Note that this new proof even enables a stronger
statement, compare Remark 2.32 (Weighted asymptotic bounds).

Proof. This is an immediate consequence of Lemma 1.16 (Harborth) and
Example 2.9 (Dimension of ones).

s±
(
Zdn
)
≥ s

(
Zd−1
n

)
≥ 2d−1 (n− 1) + 1

In the prime case there is a nice characterization of Definition 2.4 (A-
distinct).

Lemma 2.16 (A-distinct). Let A ⊆ Zp \ {0} be some weights. Then for
any vectors v, w ∈ Zdp \ {0}, v ∼A w if and only if w = αv and A = αA for
some scalar α ∈ Zp \ {0} where αA = {αa : a ∈ A} denotes element-wise
multiplication.

Proof. Direction “if”. Let w = αv and A = αA. Then

Av = Aαv = Aw

whence by definition v ∼A w.

Direction “only if”. Let v ∼A w. For the first part let av ∈ A. Since
v ∼A w, there exists an aw ∈ A such that avv = aww whence

w = a−1
w av︸ ︷︷ ︸
α

v.

The second part is a consequence of the finite field Zp where every
nonzero element is invertible.

Av = Aw = Aαv ⇔ A = Aα.
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Remark 2.17 (Subgroup condition). Let A ≤ Z×p be a subgroup of Z×p . Then
the condition A = αA in the previous Lemma 2.16 (A-distinct) is trivially
fulfilled by any α ∈ A.
Observation 2.18 (Adhikari and Rath). [AR06, Remarks] Let A ⊆ Zn \ {0}
be some weights. Scaling the weights by an invertible scalar α ∈ Z×n does not
influence zero subsums. In particular,

sA
(
Zdn
)

= sαA
(
Zdn
)

where αA = {αa : a ∈ A} denotes element-wise multiplication.

Proof. Let S be a sequence and av be corresponding weights of an A-weighted
zero subsum T in the sense of Definition 2.1 (Weighted zero subsum). Then T
is an A-weighted zero subsum if and only if T is an αA-weighted zero subsum∑

v∈T
avv = 0⇔ α

∑
v∈T

avv =
∑
v∈T

αavv = 0.

Remark 2.19 (Weights representation). Let A ⊆ Z×n be some weights. The
previous Observation 2.18 (Adhikari and Rath) tells us that we may assume
1 ∈ A. Note that this representation is not unique. For example, in Z×7

{1, 2, 3} = 4 {1, 4, 5} = 5 {1, 3, 5} .

In the unweighted case the zero vector is part of all maximal sequences, see
Remark 1.15 (Affine basis). However, in the ±-weighted case the zero vector
stands in contrast to Conjecture 2.33 (Property D). Thus, it is unlikely that
the zero vector is part of a large sequence without ±-weighted zero subsums.

Example 2.20 (Zero vector). Let n ≥ 3, odd. Claim: The sequence

vn−1, 0 = v, . . . , v︸ ︷︷ ︸
n−1 times

, 0, v ∈ Zdn

forms a ±-weighted zero subsum of length n.

Proof. Sum up n−1
2 many pairs of vs and −vs

v − v + · · ·+ v − v + 0 = 0.

39



Not even too often two times the same vector is possible with the zero
vector.

Lemma 2.21 (Zero vector). Let n ≥ 3, odd and let A = −A = {−a : a ∈ A}
be some additively invertible weights. If the zero vector is part of some
maximum sequence regarding sA

(
Zdn
)
then

sA
(
Zdn
)
≤ hA

(
Zdn
)

+ n− 2.

Proof. Let S be a maximum sequence regarding sA
(
Zdn
)
and assume the zero

vector is present in S. Since there is no A-weighted zero subsum of length
n in S, there are no n−1

2 many pairs of A-equivalent vectors in addition to
the zero vector since otherwise we could form an A-weighted zero subsum of
length n like in Example 2.20 (Zero vector). Consequently, by subtracting at
most n−1

2 − 1 many pairs and a possibly further zero vector, an A-distinct
subsequence is obtained, still without A-weighted zero subsums of length n.
Therefore, we obtain the lower bound

hA
(
Zdn
)
≥ sA

(
Zdn
)
−
(

2
(
n− 1

2 − 1
)

+ 1
)

= sA
(
Zdn
)
− (n− 2) .

The previous Lemma is an indication that the zero vector is not useful for
large sequences, see Lemma 2.60 (Zero vector). Let us prepare some notation
in order to formalize such statements.

Notation 2.22 (Allowed vectors). Let H ⊆ G be a subset of an abelian group
G. sA(H) denotes the smallest number of elements such that any sequence S
in H of length |S| ≥ sA(H) contains an A-weighted zero subsum of length
expG in G. Analogously for all the other numbers defined in Notations 2.3
and 2.5 (Weighted zero subsums).

In Section 2.1 (Ternary Case) the following number will be of importance:
h±
(
Zdn \ {0}

)
denotes the smallest number of elements such that any sequence

S of ±-distinct nonzero vectors in Zdn of length |S| ≥ h±
(
Zdn \ {0}

)
contains

a ±-weighted zero subsum of length n.
Observation 2.23 (Dimension of ones).

h±
(
Zd+1
n \ {0}

)
≥ g

(
Zdn
)
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Proof. The constructed sequence in Example 2.9 (Dimension of ones) does
not contain the zero vector.

Sequences can be disguised to appear to be distinct provided there are
enough weights and no multiple zero vectors. This has been proved by
Godinho, Lemos, and Marques just for the case s±

(
Zd3
)
.

Observation 2.24 (Godinho, Lemos, and Marques). [GLM13, Proposition 2]
Let H ⊆ Zdp \ {0}.

sZ×p (H) = gZ×p (H)

Proof. Trivially, sA(H) ≥ gA(H) as gA(H) is more restrictive than sA(H). As
for the other direction, let S be a maximum sequence regarding s±(H). Some
vectors might occur up to p− 1 times in S (though already p times the same
vector gives a zero subsum). In order to transform S into a distinct sequence
replace these duplicate nonzero vectors v, . . . , v by v, 2v, 3v, . . . , (p− 1) v
which by Observation 2.45 (A-weighted transformation) does not affect zero
subsums. Consequently, gZ×p (H) ≥ |S|+ 1 = sZ×p (H) .

Example 2.25 (Scaled copy). Let v ∈ Zdn \ {0} be a nonzero vector. The
sequence of scaled copies of v

S = α1v, . . . , α|S|v

where α1, . . . , α|S| ∈ Zn\{0} are some nonzero scalars, contains an A-weighted
zero subsum of length n if |S| ≥ sA(Zn \ {0}).

Proof. Consider the scalars themselves as sequence in Zn \ {0}. Since
|S| ≥ sA(Zn \ {0}) there is an A-weighted zero subsum of length n within
α1, . . . , α|S|. Without loss of generality let T = α1, . . . , αn be this subsequence.
Consequently, S contains an A-weighted zero subsum of length n

n∑
i=1

aiαiv = v
k∑
i=1

aiαi ≡ 0. (mod n)

This previous Example enables to lift upper bounds in dimension d = 1
to general dimensions d.
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Lemma 2.26 (A-weighted upper bound).

sA
(
Zdn
)
≤ nd − 1

n− 1 (sA(Zn \ {0})− 1) + n

Proof. Each of the nd − 1 many nonzero vectors and their n − 1 multiples
occur at most sA(Zn \ {0})− 1 times and the zero vector at most n− 1 times

s±
(
Zdn
)
≤ nd − 1

n− 1 (sA(Zn \ {0})− 1) + (n− 1) + 1.

Lemma 2.27 (Adhikari, Ambily, and Sury). [AAS10, Proposition 3 (ii)] Let
A ≤ Z×p be a subgroup. Then

sA
(
Zdp
)
≤
(
d

|A|
+ 1

)
(p− 1) + 1, ∀d < |A|

p− 1p.

Proof. Let n =
(
d
|A| + 1

)
(p− 1)+1 = dp−1

|A| +p and S =


s11
...
sn1

 , . . . ,

s1n
...
snn

 be

a sequence of length n in Zdp. Similarly to the presented proof of Theorem 1.29
(Erdős, Ginzburg, and Ziv), consider suitable polynomials.

fi (X1, . . . , Xn) =
n∑
j=1

sijX
p−1
|A|
j , 1 ≤ i ≤ d

fd+1 (X1, . . . , Xn) =
n∑
j=1

Xp−1
j

This time, X
p−1
|A|
i ∈ {0} ] A not only indicates whether an element has been

selected but also includes its weight. Again, f1 = · · · = fd = 0 ensures that
they form an A-weighted zero subsum and fd+1 = 0 validates the number of
selected elements provided

n = d
p− 1
|A|

+ p < 2p⇔ d <
p|A|
p− 1 .

Altogether, nontrivial solutions of f1 = · · · = fd+1 = 0 correspond to A-
weighted zero subsums in S of length p. The polynomials share the trivial
solution and the sum of their total degrees is dp−1

|A| +p−1 < n as required, thus
Theorem 1.30 (Chevalley’s theorem, [Che35]) ensures a nontrivial solution.
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The following Corollary generalizes Theorem 2.52 (Adhikari et al.).

Corollary 2.28 (Adhikari, Ambily, and Sury). [AAS10, Proposition 3 (i)]

sZ×p
(
Zp−1
p

)
= 2 (p− 1) + 1

Proof sketch. Applying the previous Lemma 2.27 (Adhikari, Ambily, and
Sury) proves the upper bound. The lower bound comes from Example 2.8
(Basis).

The second Corollary has been confirmed by complete enumeration in
Appendix A.1 (Maximum Sequences) for the cases s{1,4}

(
Zd5
)
where d ≤ 2,

s{1,2,4}
(
Zd7
)
where d ≤ 2, and s{1,3,4,5,9}(Z11). From these computer results

also note that the condition d ≤ p−1
2 is necessary: For example, s{1,4}(Z3

5) =
4 (5− 1) + 1 > 5 + 2 · 3.

Corollary 2.29 (Adhikari, Ambily, and Sury). [AAS10, Proposition 3 (ii)]
Let Q ≤ Z×p be the subgroup of quadratic residues. Then

sQ
(
Zdp
)

= p+ 2d, ∀d ≤ p− 1
2 .

Proof. The upper bound is another application of Lemma 2.27 (Adhikari,
Ambily, and Sury). The lower bound has been presented in Example 2.12
(Adhikari, Ambily, and Sury).

Generalizations of Corollary 2.29 (Adhikari, Ambily, and Sury) for ar-
bitrary n have been proved in dimension d = 1 by Adhikari, David, and
Jiménez Urroz [ADJ08], Chintamani and Moriya [CM12], Grundman and
Owens [GO13], and Grynkiewicz and Hennecart [GH15].
Observation 2.30 (Trivial lifting). The lower bound in Corollary 2.29 (Adhikari,
Ambily, and Sury) comes from Lemma 1.55 (Trivial lifting). For small
dimensions d this seems already to be optimal for several different weights,
see computer results in Appendix A.1 (Maximum Sequences), especially
compare the maximum sequences in Table 5 (Maximal septenary sequences
in dimension d = 1) with those in Table 6 (Maximal septenary sequences in
dimension d = 2).
Observation 2.31 (Subgroup weights). Even though better upper bounds
are known when A ≤ Z×p is a subgroup, computer results in Appendix A.1
(Maximum Sequences) did not show any particular differences to general
A ⊆ Zp \ {0}.
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Remark 2.32 (Weighted asymptotic bounds). The asymptotic upper bounds
from Theorems 1.17 (Alon and Dubiner) and 1.18 (Liu and Spencer) are
trivially inherited.

s±
(
Zdn
)
≤ s

(
Zdn
)

= O(n) , as n→∞

s±
(
Zdn
)
≤ s

(
Zdn
)

= O
(
nd

dn−2

)
, as d→∞

Lifting the asymptotic lower bound of Corollary 1.74 (Asymptotic lower
bound) is yet another application of Example 2.9 (Dimension of ones). Fix
n ≥ 3, odd.

s±
(
Zdn
)
≥ s

(
Zd−1
n

)
= Ω

(
2.13d−1

)
= Ω

(
2.13d

)
, as d→∞

The fact that a sequence can have many A-equivalent representations in
the sense of Observation 2.45 (A-weighted transformation) requires Conjec-
ture 1.21 (Property D) to be adapted for the A-weighted case.

Conjecture 2.33 (Property D). Every maximum sequence S ′ regarding
sA
(
Zdn
)
has an A-equivalent representation S in the sense of Observation 2.45

(A-weighted transformation) that is of shape S = T n−1 for some sequence T .

Observation 2.34. It seems that at least one of Conjecture 1.20 (Gao) or
Conjecture 2.33 (Property D) is fulfilled for at least one maximum sequence
regarding sA

(
Zdn
)
where n is odd, see computer results in Appendix A.1

(Maximum Sequences).
Next, we adapt Definition 1.23 (Property G) for the weighted case. Later,

in Section 2.1 (Ternary Case) we will have to treat the zero vector separately,
that is why we formulate it via the flexible Notation 2.22 (Allowed vectors).

Definition 2.35 (Property H). Let H ⊆ Zdn.

sA(H) = (hA(H)− 1) (n− 1) + 1

Remark 2.36 (Property H). Note that like in the unweighted case the direction
“≤” is always true: Let H ⊆ Zdn.

sA(H) ≤ (hA(H)− 1) (n− 1) + 1
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Proof. The proof is similar to the one of Remark 1.24 (Property G). Let
S be a maximum sequence regarding sA(H). By the Pigeonhole principle,
either there are at least hA(H) many A-distinct vectors or a vector occurs n
times A-weighted. In both cases we have found an A-weighted zero subsum
of length n.

Remark 2.37. Likewise, Property H implies Conjecture 2.33 (Property D).

Proof. The proof is similar to the one of Remark 1.25 (). Let S ′ be a maximum
sequence regarding sA(H) of length |S ′| = sA(H)− 1 = (hA(H)− 1) (n− 1)
and let T ⊆ S ′ be a subsequence of A-distinct vectors of maximum length.
As n times the same vector gives a zero subsum, T n−1 ⊇ S for some A-
equivalent representation S of S ′ in the sense of Observation 2.45 (A-weighted
transformation). On the contrary, T does not contain zero subsums of length n,
which limits its length by |T | ≤ hA(H)−1 = |S′|

n−1 , whence, |T
n−1| ≤ |S ′| = |S|.

It follows T n−1 = S.

Remark 2.38 (A-weighted implementation). The approach described in Re-
mark 1.28 (Computer implementation) still works in the weighted case with
one obvious modification: Keep track of all possible values of A-weighted zero
subsums of length k. The number of candidate vectors can be reduced by a
factor of |A| whenever Observation 2.45 (A-weighted transformation) applies,
which is useful for enumerating all maximal sequences done in Remark 2.65
(±-weighted ternary enumeration).

It turns out that in dimension d = 1 the lower bound by Example 2.10
(Adhikari et al.) is best possible.

Theorem 2.39 (Adhikari et al.). [ACF+06, Theorem 1.1]

s±(Zn) = n+ blog2 nc

Other weights than ±-weights have been treated as well. The following
Theorem has also been confirmed for p ≤ 11 by computer enumeration in
Appendix A.1 (Maximum Sequences).

Theorem 2.40 (Adhikari and Rath). [AR06, Theorem 2]

s{1,2,...,k}(Zp) =
⌈
p

k

⌉
+ p− 1.
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In dimension d = 1 Theorem 2.42 (Cauchy–Davenport) is a useful tool.
For example, Theorem 1.29 (Erdős, Ginzburg, and Ziv) can be deduced.

Notation 2.41 (Sumset). [Nat96, p. 1] The element-wise addition of two
sets is denoted by

A+B = {a+ b : a ∈ A, b ∈ B} .

The following Theorem has been independently proven by Cauchy [Cau13]
and Davenport [Dav35; Dav47], see Adhikari et al. [ACGM10].

Theorem 2.42 (Cauchy–Davenport). [Nat96, Theorem 2.2] Let p be a prime
number and ∅ 6= A,B ⊆ Zp be two nonempty subsets. Then

|A+B| ≥ min {|A|+ |B| − 1, p}.

Corollary 2.43 (Cauchy–Davenport). [Nat96, Theorem 2.3] Let p be a prime
number and ∅ 6= A1, . . . , Ak ⊆ Zp be some nonempty subsets. Then

|A1 + · · ·+ Ak| ≥ min
{

k∑
i=1
|Ai| − k + 1, p

}
.

Proof by induction on k.

Induction basis k = 2. Theorem 2.42 (Cauchy–Davenport).

Induction step. Assume the statement holds for k − 1.

|A1 + · · ·+ Ak| ≥ min {|A1 + · · ·+ Ak−1|+ |Ak| − 1, p}

≥ min
{

min
{
k−1∑
i=1
|Ai| − (k − 1) + 1, p

}
+ |Ak| − 1, p

}

= min
{

k∑
i=1
|Ai| − k + 1, p

}
.

Observation 2.44 (Weighted sums sumset). Definition 2.1 (Weighted zero
subsum) can be expressed as sumset: A sequence contains an A-weighted
zero subsum of length k, if it contains a subsequence T of length k such that

0 ∈
∑
v∈T

Av

where Av = {av : a ∈ A} denotes element-wise multiplication.
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The following Observation is the motivation for defining the number hA(G).
It could have been proved earlier, nevertheless Notation 2.41 (Sumset) offers
a very neat proof.
Observation 2.45 (A-weighted transformation). Let v ∼A w for some vectors
v, w ∈ Zdn, see Lemma 2.16 (A-distinct). Then exchanging v and w in a
sequence does not affect A-weighted zero subsums.

Proof. This follows immediately from Observation 2.44 (Weighted sums sum-
set) since by Definition 2.4 (A-distinct) Av = Aw.

Proposition 2.46 (A-weighted sumset). Let A ⊆ Zp \ {0} be some weights
of cardinality at least |A| ≥ p−1

k
+ 1. Then any k nonzero numbers in Zp

contain an A-weighted subsum of length k of arbitrary value, in particular a
zero subsum.

Proof. Let x1, . . . , xk ∈ Zp \{0} be k nonzero numbers. Utilizing the previous
Observation 2.44 (Weighted sums sumset), the set of values of A-weighted
subsums of length k can be written as sumset Ax1 + · · ·+Axk. We will show
that Ax1 + · · ·+ Axk = Zp via Corollary 2.43 (Cauchy–Davenport).

|Ax1 + · · ·+ Axk| ≥ min
{

k∑
i=1
|Axi| − k + 1, p

}
= min {p, p} = p

k∑
i=1
|Axi| =

k∑
i=1
|A| ≥ k

(
p− 1
k

+ 1
)

= p− 1 + k

Lemma 2.47 (A-weighted upper bound). Let |A| ≥ 2 be some weights. Then

ηA(Zp) ≤
⌈
p− 1
|A| − 1

⌉

sA(Zp) ≤ p+
⌈
p− 1
|A| − 1

⌉
− 1.

Proof. Let S be a sequence in Zp of k =
⌈
p−1
|A|−1

⌉
nonzero vectors, then

|A| ≥ p− 1
k

+ 1⇔ k ≥ p− 1
|A| − 1
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hence by the previous Proposition 2.46 (A-weighted sumset) they contain a
short A-weighted zero subsum of length k ≤ p, showing that ηA(Zp) ≤ k. In
order to show sA(Zp) ≤ p−1+k, let T be a sequence in Zp of p−1+k vectors.
This sequence contains a subsequence of at least k nonzero vectors. As before,
they contain A-weighted subsums of length k of arbitrary value. Adding p−k
many of the priorly dismissed vectors, an A-weighted zero subsum of length
p is obtained.

Corollary 2.48 (Maximal weights). Let A ⊆ Zp \ {0} of cardinality at least
|A| ≥ p+1

2 . Then

ηA(Zp) = 2
sA(Zp) = p+ 1.

Proof. The lower bound is the trivial Example 2.8 (Basis). Lemma 2.47
(A-weighted upper bound) proves the upper bound⌈

p− 1
|A| − 1

⌉
≤
⌈
p− 1
p+1

2 − 1

⌉
= 2.

Lemma 2.49 (Weighted Property D). Let A ⊆ Zp \ {0} be some weights
of cardinality at least |A| ≥ 2. Then in dimension d = 1, Conjecture 2.33
(Property D) is not fulfilled regarding sA(Zp) and ηA(Zp).

Proof. By Proposition 2.46 (A-weighted sumset), any p− 1 nonzero vectors
contain a zero subsum of length p− 1. A fortiori, by Example 2.8 (Basis) the
sequence of p− 1 zeros is not maximal.

Despite the negative result in dimension d = 1 it is nonetheless reasonable
to assume Property D for d large enough, compare with Section 2.1 (Ternary
Case).

Proposition 2.50. Let p be a prime. Then

s±(Zp \ {0}) = p.

Proof. The lower bound is the trivial Example 2.8 (Basis). If n = p is a prime,
then the upper bound follows from Proposition 2.46 (A-weighted sumset)
as any p− 1 or more nonzero vectors contain a ±-weighted zero subsum of
arbitrary length.
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Lemma 2.51 (±-weighted upper bound).

s±
(
Zdn
)
≤ nd − 1

n− 1 (n+ blog2 nc − 1) + n

Furthermore, if n = p is a prime or Conjecture 2.33 (Property D) is fulfilled,
then

s±
(
Zdp
)
≤ nd + n− 1.

Proof. This follows from Lemma 2.26 (A-weighted upper bound) and Theo-
rem 2.39 (Adhikari et al.)

s±
(
Zdn
)
≤ nd − 1

n− 1
(
s±
(
Zdn \ {0}

)
− 1

)
+ n

≤ nd − 1
n− 1

(
s±
(
Zdn
)
− 1

)
+ n

≤ nd − 1
n− 1 (n+ blog2 nc − 1) + n.

The “furthermore” part follows from Proposition 2.50

s±
(
Zdn
)
≤ nd − 1

n− 1
(
s±
(
Zdn \ {0}

)
− 1

)
+ n

= nd − 1
n− 1 (n− 1) + n = nd + n− 1.

or assuming Property D the statement of Lemma 2.26 (A-weighted upper
bound) can be strengthened as the multiplicity of any vector must be a
multiple of n− 1

s±
(
Zdn
)
≤ nd − 1

n− 1

s±
(
Zdn \ {0}

)
− 1

n− 1

 (n− 1) + n

≤ nd − 1
n− 1

⌊
n+ blog2 nc − 1

n− 1

⌋
(n− 1) + n

= nd − 1
n− 1 (n− 1) + n = nd + n− 1.
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This improves for n ≥ 5, odd the currently best known upper bound
s±
(
Zdn
)
≤ nd−1

2 (n− 1) + 1 by Godinho, Lemos, and Marques [GLM13, Theo-
rem 1].

The Polynomial method proof of dimension d = 1 in the unweighted case
Theorem 1.29 (Erdős, Ginzburg, and Ziv) generalizes surprisingly naturally
to dimension d = 2 in the weighted case.

Theorem 2.52 (Adhikari et al.). [ABPR08, Theorem 3] Let n ≥ 3, odd.

s±
(
Z2
n

)
= 2 (n− 1) + 1

Proof. The lower bound has already been established in Example 2.8 (Ba-
sis). It suffices to consider the upper bound for odd primes p due to Corol-
lary 1.27 (Multiplicativity) as Lemma 1.26 (Multiplicativity) still holds in the
A-weighted case provided A is multiplicatively closed. This has already been
presented more generally in Corollary 2.28 (Adhikari, Ambily, and Sury).

It seems that Theorem 2.52 (Adhikari et al.) also holds for different weights
of cardinality |A| = 2, see Appendix A.1 (Maximum Sequences).

Conjecture 2.53 (Weighted dimension 2). Let n ≥ 3, odd and |A| = 2.

sA
(
Z2
n

)
= 2 (n− 1) + 1

In dimension d = 3 only a lower bound is known. A quick construction is
Example 2.9 (Dimension of ones)

s±
(
Z3
n

)
≥ s

(
Z2
n

)
= 4 (n− 1) + 1.

Unfortunately, the proof of Theorem 1.31 (Reiher) does not directly generalize
to the weighted case in dimension d = 3. The argument in Proposition 1.32
(Alon and Dubiner) is broken: A ±-weighted zero subsum of length 3p which
contains a ±-weighted zero subsum of length 2p does not necessarily contain
an ±-weighted zero subsum of length 3p− 2p = p as the weights could differ.

Conjecture 2.54 (±-weighted dimension 3). Let n ≥ 3, odd.

s±
(
Z3
n

)
= 4 (n− 1) + 1
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This has been confirmed for n = 5 in Table 4 (Maximal quinary sequences
in dimension d = 3).

In the even case Example 2.11 (Adhikari, Grynkiewicz, and Sun) deter-
mines the asymptotic behavior up to a small error term

Theorem 2.55 (Adhikari, Grynkiewicz, and Sun). [AGS12] Let n be even
and dimension d fixed.

s±
(
Zdn
)

= n+ d log2 n+ O(log2 log2 n) as n→∞.

2.1 Ternary Case
In the ternary case n = 3 the only nontrivial weights are A = {1,−1} = Z×3 .
Like in the unweighted case, the ternary case boils down to caps, this time,
ternary projective caps. Recall Notation 2.22 (Allowed vectors).
Observation 2.56 (Marchan et al.). [MOSS15, Lemma 5.2] A cap in PG(d, 3)
corresponds to a sequence regarding h±

(
Zd+1

3 \ {0}
)
. In particular, their

maximum sizes coincide

m2(PG(d, 3)) = h±
(
Zd+1

3 \ {0}
)
− 1.

Proof. In addition to Observation 1.43 (Ternary equivalences) note that in
the ternary case Definition 1.39 (Finite geometry) matches Definition 2.4
(A-distinct) in Zd+1

3 \ {0}, see Lemma 2.16 (A-distinct).

In order to relate s±
(
Zd3
)
with projective caps, we need to relate s±

(
Zd3
)

with h±
(
Zd+1

3 \ {0}
)
.

Remark 2.57 (Ternary notation). In the ternary case the numbers η±
(
Zd3
)

and h±
(
Zd3 \ {0}

)
coincide.

η±
(
Zd3
)

= h±
(
Zd3 \ {0}

)
Proof. No zero subsums of length 1 corresponds to nonzero vectors and
forbidden zero subsums of length 2 corresponds to ±-distinct vectors, see
Lemma 2.16 (A-distinct)

u± v ≡ 0⇔ u ≡ ±v (mod 3).
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Even though h±
(
Zd3 \ {0}

)
is the same as η±

(
Zd3
)
, only h±

(
Zd3 \ {0}

)
incorporates the right interpretation and sometimes generalizes statements for
general n. However, Godinho, Lemos, and Marques [GLM13]misuse η±

(
Zd3
)

to represent h±
(
Zd3 \ {0}

)
.

In order to relate s±
(
Zd3
)
with ternary projective caps we need to connect

s
(
Zd3
)
with h±

(
Zd3 \ {0}

)
. In the weighted case the zero vector behaves

differently to the other nonzero vectors. For example, it is the only vector,
that stays the same under any weights A. That is the reason why the zero
vector is treated separately afterwards.

Lemma 2.58 (Ternary Property H). In the ternary case s±
(
Zd3
)
\ {0} Defi-

nition 2.35 (Property H) is fulfilled. In fact,

s±
(
Zd3 \ {0}

)
= 2 h±

(
Zd3 \ {0}

)
− 1.

Proof. The proof is similar to the one of Theorem 1.44 (Harborth). Be-
cause of Remark 2.36 (Property H) it suffices to prove s±

(
Zd3 \ {0}

)
≥

2 h±
(
Zd3 \ {0}

)
−1. Let S be a maximum sequence regarding h±

(
Zd3
)
, that is a

sequence of ±-distinct vectors of length |S| = h±
(
Zd3
)
−1 without ±-weighted

zero subsums of length 3. Claim: S2 = S, S does not contain ±-weighted zero
subsums of length 3 either, which then concludes the proof

s±
(
Zd3 \ {0}

)
≥
∣∣∣S2

∣∣∣+ 1 = 2|S|+ 1 = 2
(
h±
(
Zd3 \ {0}

)
− 1

)
+ 1

= 2 h±
(
Zd3 \ {0}

)
− 1.

Assume for a contradiction, there is a ±-weighted zero subsum in S2. As S
does not contain ±-weighted zero subsums, a ±-weighted zero subsum cannot
consist of three ±-distinct vectors. So suppose v ± u± u ≡ 0 (mod 3). To
fulfill this equation either v = 0 /∈ S or also v = ±u, yet so many are not
available in S2.

It remains to connect s±
(
Zd3
)
with s±

(
Zd3 \ {0}

)
. This happens in two

steps.

Lemma 2.59 (Zero vector). The zero vector is part of all maximal sequences
regarding h±

(
Zd3
)
. In particular,

h±
(
Zd3
)

= h±
(
Zd3 \ {0}

)
+ 1
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Proof. The zero vector can be safely added to any sequence of nonzero
±-distinct vectors without ±-weighted zero subsums of length 3 because
0± u± v ≡ 0 (mod 3) implies that u and v are not ±-distinct.

Lemma 2.60 (Zero vector). The zero vector is not part of any maximum
sequence regarding s±

(
Zd3
)
for all dimensions d ≥ 3. In contrast, in dimension

d = 1 all maximum sequences contain the zero vector. In between in dimension
d = 2 both cases occur. In particular, for d ≥ 2

s±
(
Zd3
)

= s±
(
Zd3 \ {0}

)
.

Proof. Case d = 1. By Theorem 2.39 (Adhikari et al.) s±(Z3) = 4. Assume
to the contrary that there is a maximum sequence of length |S| =
s±(Z3)−1 = 3 avoiding the zero vector. Note that 1s and 2s are the same
under ±-weights, see Observation 2.45 (A-weighted transformation) and
Lemma 2.16 (A-distinct). However, the sequence S = 1, 1, 1 contains a
zero subsums of length 3.

Case d = 2. Theorem 2.52 (Adhikari et al.) tells us that the length of a
maximum sequences is s±(Z2

3) − 1 = 4. Example 2.9 (Dimension of
ones) and Example 2.11 (Adhikari, Grynkiewicz, and Sun) provide both
maximum sequences with and without the zero vector.(

0
1

)
,

(
0
1

)
,

(
1
1

)
,

(
1
1

)
(

0
0

)
,

(
0
0

)
,

(
1
0

)
,

(
0
1

)

Case d ≥ 3. Assume for a contradiction that the zero vector is present in
a maximum sequence regarding |S|. Then Lemma 2.21 (Zero vector)
implies

h±
(
Zd3
)
≥ s±

(
Zd3
)
− 1.

Concatenating this with Lemma 2.59 (Zero vector) and Lemma 2.58
(Ternary Property H) yields

h±
(
Zd3 \ {0}

)
= h±

(
Zd3
)
− 1 ≥ s±

(
Zd3
)
− 2 ≥ s±

(
Zd3 \ {0}

)
− 2

= 2 h±
(
Zd3 \ {0}

)
− 3
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whence 3 ≥ h±
(
Zd3 \ {0}

)
contradicting Observation 2.23 (Dimension

of ones) recalling Section 1.1 (Ternary Case)

h±
(
Zd3 \ {0}

)
≥ h±

(
Z3

3 \ {0}
)
≥ g

(
Z2

3

)
= 5.

Theorem 2.61 (Godinho, Lemos, and Marques). [GLM13, Proposition 1]
Let d ≥ 3. In the ±-weighted ternary case s±

(
Zd3
)
Conjecture 2.33 (Property

D) is fulfilled. In fact, even for d ≥ 2

s±
(
Zd3
)

= 2 h±
(
Zd3 \ {0}

)
− 1.

Proof. By Lemma 2.60 (Zero vector) the numbers s±
(
Zd3
)
and s±

(
Zd3 \ {0}

)
coincide for d ≥ 3 and their values are equal even starting at d ≥ 2. Regarding
the latter number s±

(
Zd3 \ {0}

)
it has been proved in Lemma 2.58 (Ternary

Property H) that Property H is fulfilled which by Remark 2.37 implies
Property D

s±
(
Zd3
)

= s±
(
Zd3 \ {0}

)
= 2 h±

(
Zd3 \ {0}

)
− 1.

Remark 2.62 (±-weighted ternary implementation). Similarly to Remark 1.45
(Ternary implementation), exploiting Theorem 2.61 (Godinho, Lemos, and
Marques) enables working with sequences half as large. Moreover, in the
±-weighted case one can assume that a maximal sequence contains a basis,
see Remark 2.14 (Basis).
Remark 2.63 (Davis and Maclagan). [DM03, Table 3] Large projective caps
in low dimensions have already been tackled in the 1970s by Pellegrino
[Pel70] and Hill [Hil73]. The corresponding sequence (m2(PG(d, 3)))d∈N =
2, 4, 10, 20, 56, . . . can be found in The On-Line Encyclopedia of Integer Se-
quences [Hav04b].
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Corollary 2.64 (±-weighted ternary values in low dimensions).
s±(Z3) = 3 + blog2 3c = 4
s±
(
Z2

3

)
= 2 (3− 1) + 1 = 5

s±
(
Z3

3

)
= 4 (3− 1) + 1 = 9

s±
(
Z4

3

)
= 10 (3− 1) + 1 = 21

s±
(
Z5

3

)
= 20 (3− 1) + 1 = 41

s±
(
Z6

3

)
= 56 (3− 1) + 1 = 113

Proof. Except for dimension d = 1 which is due to Theorem 2.39 (Adhikari
et al.), relating Theorem 2.61 (Godinho, Lemos, and Marques) with Obser-
vation 2.56 (Marchan et al.) also the ternary ±-weighted number s±

(
Zd3
)
is

determined by projective caps, see Remark 2.63 (Davis and Maclagan)

s±
(
Zd3
)

= 2 h±
(
Zd3 \ {0}

)
− 1 = 2 m2(PG(d− 1, q)) + 1.

Remark 2.65 (±-weighted ternary enumeration). Analogously to Remark 1.48
(Ternary enumeration), implementing the greedy approach described in
Remarks 2.38 (A-weighted implementation) and 2.62 (±-weighted ternary
implementation) all maximal sequences have been enumerated regarding
h±
(
Zd3
)
\{0} up to dimension d = 4. Regarding h±(Z3

3)\{0} there are 3 max-
imal and at the same time maximum sequences of length 4. One dimension
higher there are 181 different maximal sequences of length 8 and 18 maximum
sequences of length 10.
Remark 2.66 (±-weighted ternary greedy). Analogously to Remark 1.48
(Ternary enumeration), maximum sequences regarding h±

(
Zd3 \ {0}

)
have

been found up to dimension d = 6.
Example 2.67 (Ternary weighted dimension 4). Apart from the fact the the
value of s±(Z4

3) = 21 is known, exhaustive computer search shows that the
weighted adaption of Example 1.59 (Elsholtz) via Example 2.9 (Dimension of
ones) can be (uniquely) extended by

(
0 0 1 0

)ᵀ
. The full sequence is

S =


0
0
0
1

 ,


1
0
0
1

 ,


0
1
0
1

 ,


0
0
1
1

 ,


1
0
1
1

 ,


0
1
1
1

 ,


1
1
2
1

 ,


2
1
2
1

 ,


1
2
2
1

 ,


0
0
1
0

 .
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In particular,
s±
(
Z4

3

)
≥ 10 (3− 1) + 1 = 21.

Example 2.68 (Ternary weighted dimension 6). Apart from the fact the the
value of s±(Z6

3) = 113 is known as well, it is nevertheless surprising a large
maximum sequence can still be quickly found by a computer as described
in Remarks 2.38 (A-weighted implementation), 2.62 (±-weighted ternary
implementation), and 2.66 (±-weighted ternary greedy). The full sequence S
consists of the vectors of the following matrix.

S =



10100022010201210212212010200211011021210220210201021012
01120201111200200011121212120012112101010020120100220220
11111122001200120000012201222222111200110002001111120002
00001111000011112222000011112222000011112222000011112222
00000000111111111111000000000000111111111111222222222222
00000000000000000000111111111111111111111111111111111111


In particular,

s±
(
Z6

3

)
≥ 56 (3− 1) + 1 = 113.

In higher dimensions better caps are known than found with this greedy
computer approach.
Remark 2.69 (Edel; Bierbrauer and Edel). [Ede04; BE14] The best known
projective caps are available on Edel’s homepage [Ede10].

m2(PG(6, 3)) ≥ 112
m2(PG(7, 3)) ≥ 248
m2(PG(8, 3)) ≥ 541
m2(PG(9, 3)) ≥ 1216

m2(PG(10, 3)) ≥ 2744
m2(PG(11, 3)) ≥ 6464.

The following approach is a different way of obtaining most of the known
upper bounds.

Lemma 2.70 (Godinho, Lemos, and Marques). [GLM13, Proposition 5] Let
d ≥ 2.

s±
(
Zd3
)
≤ 2


s
(
Zd3
)

4

− 1
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Proof. Concatenating Lemma 2.58 (Ternary Property H), Observation 2.24
(Godinho, Lemos, and Marques), and Observation 2.6 (Transitivity of weights)

2 h±
(
Zd3 \ {0}

)
− 1 = s±

(
Zd3 \ {0}

)
= g±

(
Zd3 \ {0}

)
≤ g±

(
Zd3
)
≤ g

(
Zd3
)

whence (note that since hA(H) ∈ N we are allowed to round down)

h±
(
Zd3 \ {0}

)
≤

g
(
Zd3
)

+ 1
2

.
Eventually, in terms of sA

(
Zdn
)
and s

(
Zdn
)
utilizing Lemma 2.60 (Zero vector)

and Theorem 1.44 (Harborth)

s±
(
Zd3
)

= s±
(
Zd3 \ {0}

)
= 2 h±

(
Zd3 \ {0}

)
− 1 ≤ 2

g
(
Zd3
)

+ 1
2

− 1

= 2

 s(Zd
3)+1
2 + 1

2

− 1 = 2

s
(
Zd3
)

+ 3
4

− 1 = 2


s
(
Zd3
)

4

− 1.

Example 2.71. Plugging in the values of Corollary 1.47 (Ternary values
in low dimensions) into the previous Lemma 2.70 (Godinho, Lemos, and
Marques), the following upper bounds are obtained, which are tight except
for dimension d = 5.

s±
(
Z2

3

)
≤ 5

s±
(
Z3

3

)
≤ 9

s±
(
Z4

3

)
≤ 21

s±
(
Z5

3

)
≤ 45

s±
(
Z6

3

)
≤ 113

Combining Observation 2.24 (Godinho, Lemos, and Marques) with Obser-
vation 2.6 (Transitivity of weights) and Theorem 1.50 (Meshulam) yields

Lemma 2.72 (Godinho, Lemos, and Marques). [GLM13, Remark 2] Let
d ≥ 2.

s±
(
Zd3
)

= g±
(
Zd3
)
≤ g

(
Zd3
)
≤ 23d

d
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Similarly, Theorem 1.52 (Ellenberg and Gijswijt) is trivially inherited from
the unweighted case.

Lemma 2.73 (Weighted ternary asymptotic upper bound).

s±
(
Zd3
)
≤ s

(
Zd3
)

= o
(
2.76d

)
, as d→∞

Finally, Theorem 1.54 (Edel) is inherited from the unweighted case via
Example 2.9 (Dimension of ones).

Theorem 2.74 (Asymptotic weighted lower bound).

s±
(
Zd3
)
≥ s

(
Zd−1

3

)
= Ω

(
62
√

2573417086913773305856d−1
)

= Ω
(

62
√

2573417086913773305856d
)

= Ω
(
2.21d

)
, as d→∞.

2.2 Odd Case
Example 2.75 (±-weighted dimension 4). Let n ≥ 3, odd. Let S be the
sequence in Z4

n formed by the columns of one of the two matrices.
1−1−1−1 1 0 0 1 0 0
−1 1−1−1 0 1 0 0 1 0
−1−1 1−1 0 0 1 0 0 1

0 0 0 0 1 1 1−1−1−1

 ,


1 0 2 1 0 0 2 0 2 2
0 1 1 2 0 0 0 2 2 2
1 1 1 1 0 1 1 1 1 2
0 0 0 0 1 1 1 1 1 1


Claim: Sn−1 does not contain ±-weighted zero subsums of length n. In
particular,

s±
(
Z4
n

)
≥ 10 (n− 1) + 1.

Proof. The proof is only performed for the sequence with ±-entries. Besides,
it can be accomplished by a computer anyway, see Remark 2.76 (Algorithmic
approach). Similarly to Example 1.59 (Elsholtz) formulate zero subsums as
congruency system modulo n. Denote by a+

i , a
−
i the number of occurrences

of the vector vi with weight 1 or −1 respectively. Express the total weight
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ai = a+
i − a−i and the total number of occurrences |ai| = a+

i + a−i .

|a1|+ |a2|+ |a3|+ |a4|+ |a5|+ |a6|+ |a7|+ |a8|+ |a9|+ |a10| = n

a1 − a2 − a3 − a4 + a5 + a8 ≡ 0
−a1 + a2 − a3 − a4 + a6 + a9 ≡ 0
−a1 − a2 + a3 − a4 + a7 + a10 ≡ 0

a5 + a6 + a7 − a8 − a9 − a10 ≡ 0

Assume one of the first three coordinates equals ±n. Then solely vectors
with the coefficient ±1s haven been taken. Consider without loss of generality
the first coordinate (the first three coordinates are symmetric). Furthermore,
scale each vector in the sense of Observation 2.45 (A-weighted transformation)
to normalize the first coordinate. Then, recalling Example 2.9 (Dimension of
ones) we are back in the unweighted case (all a−i are zero).

a1 + a2 + a3 + a4 + a5 + a8 = n

−a1 − a2 + a3 + a4 ≡ 0 (mod n)
−a1 + a2 − a3 + a4 ≡ 0 (mod n)

a5 − a8 ≡ 0 (mod n)

The congruency in the last coordinate can be easily resolved to equals 0 since
0 ≤ ai ≤ n−1. Assume one of the other coordinates does not equal zero. This
limits the linear system to just two variables in order to reach ±n. Without
loss of generality consider the first coordinate equals n.

a3 + a4 = n

−a3 + a4 ≡ 0 (mod n)

Then, since 0 ≤ ai ≤ n− 1 the other coordinate equals 0. Adding them up
yields to a contradiction to n odd. Therefore all coordinates equal 0.

a1 + a2 + a3 + a4 + a5 + a8 = n

−a1 − a2 + a3 + a4 = 0
−a1 + a2 − a3 + a4 = 0

a5 − a8 = 0

Again, adding all rows (the second one twice) yields a contradiction to n odd.
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After this prelude, we may assume that the first three coordinates all equal
0 in the weighted case. The last row is not needed anymore and henceforth
omitted . We are left with

|a1|+ |a2|+ |a3|+ |a4|+ |a5|+ |a6|+ |a7|+ |a8|+ |a9|+ |a10| = n

a1 − a2 − a3 − a4 + a5 + a8 = 0
−a1 + a2 − a3 − a4 + a6 + a9 = 0
−a1 − a2 + a3 − a4 + a7 + a10 = 0

Once again, adding all rows yields a contradiction to n odd since |x| ± x is
even.

Remark 2.76 (Algorithmic approach). As seen before in Example 2.75 (±-
weighted dimension 4) and analogously to the unweighted case Remark 1.60
(Algorithmic approach) we can express A-weighted zero subsums as linear
congruency system as well.
Remark 2.77 (±-weighted dimension 4 greedy). Computer search for lower
bounds regarding s±

(
Z4
p

)
where p = 5, 7 did also just find sequences of length

10 but no longer. This motivates the following Conjecture.

Conjecture 2.78 (±-weighted dimension 4). Let n ≥ 3, odd.

s±
(
Z4
n

)
= 10 (n− 1) + 1

Lemma 2.79 (±-weighted lower bound in low dimensions). Let n ≥ 3, odd.

s±
(
Z3
n

)
≥ 4 (n− 1) + 1

s±
(
Z4
n

)
≥ 10 (n− 1) + 1

s±
(
Z5
n

)
≥ 20 (n− 1) + 1

s±
(
Z6
n

)
≥ 42 (n− 1) + 1

s±
(
Z7
n

)
≥ 96 (n− 1) + 1

s±
(
Z8
n

)
≥ 196 (n− 1) + 1

Proof. Except for Example 2.75 (±-weighted dimension 4), these lower bounds
are inherited from the unweighted case Theorem 1.73 (Edel) using Example 2.9
(Dimension of ones).
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So far, good sequences that work for general odd n are all ternary sequences.
Moreover, there are better ternary sequences known than for general n,
compare Corollary 2.64 (±-weighted ternary values in low dimensions) with
Lemma 2.79 (±-weighted lower bound in low dimensions). It turns out
that this is not the case in dimension d = 5 where there are better quinary
sequences than ternary sequences.

Example 2.80 (Maximal ±-weighted quinary sequence). Let S be the se-
quence in Z5

5 formed by the columns of one of the following matrices.
4 2 2 4 4 4 2 2 3 2 4 1 4 2 0 1 1 0 4 0 3
0 1 0 4 0 4 4 3 1 3 4 2 3 0 1 3 2 1 1 3 4
1 1 2 2 1 2 1 2 0 2 1 2 2 0 0 1 2 0 2 1 1
0 0 0 0 3 3 4 4 3 4 0 0 0 2 2 3 3 4 4 1 3
0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 3 3




1 0 1 2 1 2 1 0 1 2 1 2 0 1 0 1 2 1 0 1 0
0 1 1 1 2 2 0 1 1 0 1 1 0 0 1 1 1 2 0 0 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1




0 0 0 0 0 0 0 1 4 1 4 1 4 1 4 1 4 1 4 1 4
1 0 4 0 0 1 4 0 0 4 4 1 1 4 4 1 1 0 0 0 0
0 0 1 4 1 0 1 1 1 0 0 4 4 0 0 4 4 0 0 1 1
0 1 0 1 0 4 4 0 0 1 1 1 1 0 0 0 0 1 1 4 4
0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1




0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 4 4 4 4
0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 4 4 0 0 4 4
4 0 1 0 4 0 1 0 4 0 1 4 0 1 1 0 4 0 1 0 4


Claim: S4 does not contain±-weighted zero subsums of length 5. In particular,

s±
(
Z5

5

)
≥ 21 (5− 1) + 1.

Proof sketch. Let the computer do the work, see Remarks Remark 1.28 (Com-
puter implementation) and Remark 2.38 (A-weighted implementation).
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Conclusion
The majority of Section 1 (The Number s

(
Zdn
)
) could be recovered for the

weighted case s±
(
Zdn
)
, alas not Theorem 1.31 (Reiher). Considering other

weights A, there are less results known, particularly weights A that are not
subgroups of Z×n are rarely covered by any of the known statements.

Apart from that, there are much more related questions that are beyond
the scope of this thesis and thus have not been mentioned like for example
s(G) where G is a different abelian group than Zdn.
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A Appendix

A.1 Maximum Sequences
Implementing the enumeration approach described in Remarks 1.28 (Com-
puter implementation) and 2.38 (A-weighted implementation) all maximum
sequences regarding sA

(
Zdp
)
have been enumerated for small dimensions d

and p ≤ 11.
Remark A.1 (How to read these tables). As already stated in Observation 2.34
it turned out that all maximum sequences either fulfill Conjecture 2.33
(Property D) or are determined by Conjecture 1.20 (Gao). That means that
there are subsequences S such that

sA
(
Zdn
)

=
∣∣∣Sn−1

∣∣∣+ 1 = |S| (n− 1) + 1

or
sA
(
Zdn
)

= (p− 1)︸ ︷︷ ︸
zeros

+ ηA
(
Zdn
)

+ 1.

or both. This is indicated in the tables and only the (shorter) regarding
sequences S are given.

Recalling Remark 2.19 (Weights representation) the tables have been
slimmed further: Only one of the equivalent weights is given. For example,
2 {1, 3} ≡ {1, 2} (mod 5) hence it suffices to look at s{1,2}

(
Zd5
)
.

Corollary 2.48 (Maximal weights) enables further less weights A in dimen-
sion d = 1, because sA(Zp) = p + 1 where |A| ≥ p+1

2 . In these cases there
is just one maximum sequence Example 2.8 (Basis). This is why they are
omitted.

The last convention: Repeating rows are indicated by “—” dashes.
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d s±
(
Zd3
)

shape of maximum sequences S
1 4 η±(Z3) = 1 + 1 S = 1

2 5 η±(Z2
3) = 2 + 1 S =

(
1
0

)
,

(
0
1

)

s±(Z2
3) = 2 (3− 1) + 1 S =

(
1
0

)
,

(
0
1

)

3 9 s±(Z3
3) = 4 (3− 1) + 1 S =

1
0
0

 ,
0

1
0

 ,
0

0
1

 , v v ∈ {1, 2}d

4 21 s±(Z4
3) = 10 (3− 1) + 1 18 examples

Table 2: Maximal ternary sequences
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d A sA
(
Zd5
)

shape of maximum sequences S
1 ± 7 ηA(Z5) = 2 + 1 S = 1, 2
1 {1, 2} — — S = 1, 1

2 ± 9 ηA(Z2
5) = 4 + 1 S =

(
1
0

)
,

(
0
1

)
,

(
1
2

)
,

(
−2
1

)

S =
(

1
0

)
,

(
0
1

)
,

(
2
0

)
,

(
0
x

)
, x ∈ Z5

sA(Z2
5) = 2 (5− 1) + 1 S =

(
1
0

)
,

(
0
1

)

2 {1, 2} — ηA(Z2
5) = 4 + 1 S =

(
1
0

)
,

(
1
0

)
,

(
0
1

)
,

(
x
1

)
, x ∈ Z5

S =
(

1
0

)
,

(
1
0

)
, v, v, v ∈

{(
0
1

)
,

(
1
4

)
,

(
2
3

)}

sA(Z2
5) = 2 (5− 1) + 1 S =

(
1
0

)
,

(
0
1

)

2 {1, 2, 3} 7 ηA(Z2
5) = 2 + 1 S =

(
1
0

)
,

(
0
1

)
2 Z×5 — — —

Table 3: Maximal quinary sequences in dimension d ≤ 2
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A sA(Z3
5) shape of maximum sequences S

± 17 sA(Z3
5) = 4 (5− 1) + 1 S =

1
0
0

 ,
0

1
0

 ,
0

0
1

 , v, v ∈


1

1
1

 ,
1

1
4

 ,
1

2
2

 ,
1

2
3

 ,
1

3
3




{1, 2} 17 sA(Z3
5) = 4 (5− 1) + 1 S =

1
0
0

 ,
0

1
0

 ,
0

0
1

 , v, v ∈


1

1
4

 ,
1

2
3




{1, 2, 3} 9 ηA(Z3
5) = 4 + 1 S =

1
0
0

 ,
0

1
0

 ,
0

0
1

 ,
1

2
3


Z×5 8 ηA(Z3

5) = 3 + 1 S =

1
0
0

 ,
0

1
0

 ,
0

0
1


Table 4: Maximal quinary sequences in dimension d = 3
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A sA(Z7) shape of maximum sequences S
{1, 2} 10 ηA(Z7) = 3 + 1 S = 1, 1, 1
± 9 ηA(Z7) = 2 + 1 S = 1, v, v ∈ {2, 3, 4, 5}
{1, 3} — — S = 1, v, v ∈ {1, 3, 5}
{1, 2, 3} — — S = 1, 1
{1, 2, 4} — — S = 1, v, v ∈ A
{1, 2, 5} 8 ηA(Z7) = 1 + 1 S = 1
{1, 2, 6} — — —

Table 5: Maximal septenary sequences in dimension d = 1
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A sA(Z2
7) shape of maximum sequences S

± 13 sA(Z2
5) = 2 (7− 1) + 1 S =

(
1
0

)
,

(
0
1

)

{1, 2} — ηA(Z7) = 6 + 1 S =
(

1
0

)
,

(
1
0

)
,

(
1
0

)
,

(
0
1

)
,

(
x
1

)
,

(
y
1

)
, x, y ∈ Z7

sA(Z2
7) = 2 (7− 1) + 1 S =

(
1
0

)
,

(
0
1

)

{1, 3} — sA(Z2
7) = 2 (7− 1) + 1 S =

(
1
0

)
,

(
0
1

)

{1, 2, 3} 11 ηA(Z2
7) = 4 + 1 S =

(
1
0

)
,

(
1
0

)
,

(
0
1

)
,

(
x
1

)
, x ∈ Z7

{1, 2, 4} — — S =
(

1
0

)
,

(
x
0

)
,

(
0
1

)
,

(
y
z

)
, x, z ∈ A, y ∈ Z7

{1, 2, 5} 10 ηA(Z2
7) = 3 + 1 S =

(
1
0

)
,

(
0
1

)
,

(
1
2

)

{1, 2, 6} — — S =
(

1
0

)
,

(
0
1

)
,

(
1
3

)

{1, 2, 3, 5} — — S =
(

1
0

)
,

(
0
1

)
,

(
3
5

)

{1, 2, 5, 6} — — S =
(

1
0

)
,

(
0
1

)
, v, v ∈

{(
2
3

)
,

(
2
4

)}

{1, 2, 3, 4} 9 ηA(Z2
7) = 2 + 1 S =

(
1
0

)
,

(
0
1

)
{1, 2, 3, 4, 5} — — —
Z×7 — — —

Table 6: Maximal septenary sequences in dimension d = 2
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A sA(Z11) shape of maximum sequences S
{1, 2} 16 ηA(Z11) = 5 + 1 S = 1, 1, 1, 1, 1
{1, 3} 15 ηA(Z11) = 4 + 1 S = 1, 1, 1, 1
± 14 ηA(Z11) = 3 + 1 S = 1, 2, 4

S = 1, 2, 5
S = 1, 3, 5

{1, 5} — — S = 1, 1, v, v ∈ {3, 7, 8}
S = 1, 3, 4

{1, 7} — — S = 1, 1, v, v ∈ {1, 5}
{1, 2, 3} — — S = 1, 1, 1
{1, 2, 4} — — —
{1, 2, 5} 13 ηA(Z11) = 2 + 1 S = 1, v, v ∈ {1, 7, 8}
{1, 2, 7} — — —
{1, 2, 8} — — S = 1, v, v ∈ {1, 2, 6}
{1, 2, 9} — — S = 1, v, v ∈ {3, 4, 7, 8}
{1, 2, 10} — — —
{1, 3, 4} — — S = 1, v, v ∈ {1, 3, 4, 5, 9}
{1, 3, 5} — — —
{1, 3, 8} — — S = 1, v, v ∈ {2, 5, 6, 9}
{1, 3, 10} — — —
{1, 5, 7} — — S = 1, v, v ∈ {1, 5, 7, 8, 9}

Table 7: Maximal undenary sequences where |A| ≤ 3
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A sA(Z11) shape of maximum sequences S
{1, 3, 4, 5} 13 ηA(Z11) = 2 + 1 S = 1, v, v ∈ {1, 3, 4, 5, 9}
{1, 2, 3, 6} — — S = 1, v, v ∈ {1, 2, 6}
{1, 2, 5, 7} — — S = 1, v, v ∈ {1, 7, 8}
{1, 2, 3, 8} — — S = 1, v, v ∈ {2, 6}
{1, 2, 4, 9} — — S = 1, v, v ∈ {3, 4}
{1, 2, 9, 10} — — —
{1, 2, 5, 10} — — S = 1, v, v ∈ {7, 8}
{1, 3, 4, 10} — — S = 1, v, v ∈ {5, 9}
{1, 3, 8, 10} — — S = 1, v, v ∈ {2, 5}
{1, 2, 3, 4} — — S = 1, 1
{1, 2, 3, 5} — — —
{1, 2, 3, 7} — — —
{1, 2, 4, 5} — — —
{1, 2, 7, 8} — — —
{1, 2, 3, 9} 12 ηA(Z11) = 1 + 1 S = 1
{1, 2, 3, 10} — — —
{1, 2, 4, 7} — — —
{1, 2, 4, 10} — — —
{1, 2, 5, 9} — — —
{1, 2, 7, 10} — — —
{1, 2, 8, 9} — — —
{1, 2, 8, 10} — — —

Table 8: Maximal undenary sequences where |A| = 4
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A sA(Z11) shape of maximum sequences S
{1, 2, 3, 4, 5} 13 ηA(Z11) = 2 + 1 S = 1, 1
{1, 2, 3, 4, 6} — — —
{1, 2, 3, 5, 8} — — —
{1, 3, 4, 5, 9} 12 ηA(Z11) = 1 + 1 S = 1, v, v ∈ A
{1, 2, 3, 5, 8} — — S = 1
{1, 2, 3, 5, 8} — — —
{1, 2, 3, 5, 8} — — —
{1, 2, 3, 5, 8} — — —
{1, 2, 3, 5, 8} — — —
{1, 2, 3, 5, 8} — — —
{1, 2, 3, 5, 10} — — —
{1, 2, 3, 5, 10} — — —
{1, 2, 3, 6, 8} — — —
{1, 2, 3, 6, 10} — — —
{1, 2, 3, 7, 8} — — —
{1, 2, 3, 7, 9} — — —
{1, 2, 3, 8, 9} — — —
{1, 2, 3, 8, 10} — — —
{1, 2, 3, 9, 10} — — —
{1, 2, 4, 5, 7} — — —
{1, 2, 4, 5, 9} — — —
{1, 2, 4, 7, 9} — — —
{1, 2, 4, 7, 10} — — —
{1, 2, 4, 9, 10} — — —
{1, 2, 5, 7, 10} — — —
{1, 2, 7, 8, 10} — — —

Table 9: Maximal undenary sequences where |A| = 5
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