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Abstrakt

In dieser Arbeit zeigen wir, dass Genetische Algorithmen (GA) dazu verwen-
det werden können, um die Ergebnisse von Prozeduralen Modellierungsal-
gorithmen zu kontrollieren. Wir zeigen einen effiziente Art die Entschei-
dungen, welche während einer prozeduralen Erzeugung getroffen wer-
den, in einem hierachischem Genom zu codieren. Durch Verwendung von
speziellen Mutations- und Reproduktionsoperatoren, welche auf die kon-
trollierte prozedurale Erzeugung abgestimmt wurden, kann unser GA eine
Population von individuellen Modellen hin zu einem beliebigen abstraktem
Ziel zu evolvieren. Mögliche Anwendungen sind u.a. ein Volumen, dass von
einem prozeduralem Baum ausgefüllt werden soll, oder eine gemalte Shilou-
ette, welche von der Skyline einer prozeduralen Stadt dargestellt werden
soll. Diese Ziele sind für einen Künstler einfach aufzustellen, verglichen mit
den zehntausen Variablen, welche ein erzeugtes Modell beschreiben, und
vom GA ausgewählt werden. Frühere Ansätze für kontrollierte prozedurale
Modellierung verwenden entweder Reversible Jump Markov Chain Monte
Carlo (RJMCMC) oder Stochastisch geordnet Sequentielle Monte Carlo
(SOSMC) als Optimizierungsalgorithmus. Während RJMCMC langsam kon-
viergiert, und mitunter mehrere Stunden für die optimierung von größeren
Modellen benötigt, erzeugt es doch qualitiative Modelle. SOSMC zeigt ein
schnelleres Konvergierungsverhalten under strengen Zeitvorgaben, kann
aber aufgrund von Entscheidungen in den Frühstadien der Optimierung
stecken bleiben. Unser GA zeigt schnelleres Konvergierungsverhalten als
SOSMC und erzeugt bessere Modelle als RJMCMC mit langer Laufzeit.
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Abstract

In this work, we show that genetic algorithms (GA) can be used to control
the output of procedural modeling algorithms. We propose an efficient way
to encode the choices that have to be made during a procedural generation
as a hierarchical genome representation. In combination with mutation
and reproduction operations specifically designed for controlled procedural
modeling, our GA can evolve a population of individual models close to any
high-level goal. Possible scenarios include a volume that should be filled by
a procedurally grown tree or a painted silhouette that should be followed
by the skyline of a procedurally generated city. These goals are easy to set
up for an artist compared to the tens of thousands of variables that describe
the generated model and are chosen by the GA. Previous approaches for
controlled procedural modeling either use Reversible Jump Markov Chain
Monte Carlo (RJMCMC) or Stochastically-Ordered Sequential Monte Carlo
(SOSMC) as workhorse for the optimization. While RJMCMC converges
slowly, requiring multiple hours for the optimization of larger models, it
produces high quality models. SOSMC shows faster convergence under
tight time constraints for many models, but can get stuck due to choices
made in the early stages of optimization. Our GA shows faster convergence
than SOSMC and generates better models than RJMCMC in the long run.
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1 Introduction

Procedural modeling not only has a long history in computer graphics,
but also sees increasing interest in recent years as the demand for detailed
models and large virtual worlds is growing rapidly. Using a procedural
approach, a wide variety of detailed variants of a model or family of models
can be generated by altering the parameters that control the procedural
generation. Examples include vegetation models, which can generate ev-
erything from small bushes to full leaf and needle trees (Pirk et al., 2012),
and building grammars, which can generate everything from dog sheds
to skyscrapers (Schwarz and Müller, 2015). While such generative models
potentially offer technical artists the ability to create a complex object within
seconds, achieving a desired result is often still a complicated and time-
consuming process. Because the model’s parameters can control recursive
generation processes and small parameter adjustments can be amplified
throughout the generation, the influence of a single parameter on the final
model is often unpredictable and artists have to rely on excessive trial and
error. Unsurprisingly, this cumbersome process turns many artists away
from procedural modeling back to manual model generation.

As a remedy to this problem, the processes of procedural generation have
been cast as a probabilistic inference problem (Talton et al., 2011). Given
a procedural generator that has the expressive power to generate a suit-
able model and a scoring function that tells how close a model is to the
desired goal, these approaches view the generation of a model as drawing
a sample from a probability distribution. Naively speaking, the scoring
function allows for an optimization over the entire space of possible models
to find a model that fits the scoring function as closely as possible. The
approach is complicated by the fact that the space of possible models is
trans-dimensional, theoretically unbounded, and lies in a mixed domain
space; the scoring function is in general non-linear and non-convex; and
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1 Introduction

(a) Uncontrolled Generation (b) Controlled Generation

Figure 1.1: (a) Procedural approaches can generate models with large variety. (b) Given
a high level target as a sketch (drawing at the far right), the generation can
be directed towards this goal. Previous approaches are either tuned for speed
(SMC, red circle and SOSMC, orange circle) and thus might not reach the
desired result, or require a long time to achieve a good result (RJMCMC, green
circle); our proposed solution using a genetic algorithm converges fast and
achieves high quality results (blue circle), clearly matching the target the best.

generating a model and evaluating the scoring function can take significant
amounts of time. Clearly, the problem of finding a set of parameters that
generates a model that matches a given target is a non-trivial problem, e.g.,
consider the results shown in Figure 1.1.

Most previous approaches on probabilistic inference for procedural gener-
ation rely on Markov Chain Monte Carlo (MCMC) methods to solve the
problem (Talton et al., 2011; Stava et al., 2014; Yeh et al., 2012). As alternative
to the relatively slow converging MCMC, stochastically-ordered sequen-
tial Monte Carlo (SOSMC) has been proposed (Ritchie et al., 2015). While
SOSMC, in general, improves on the convergence of MCMC, there is a possi-
bility that it gets stuck in bad initial conditions, especially if the procedural
models become more complex. Also, SOSMC requires the scoring function
to yield reasonable results for unfinished models, which cannot be guaran-
teed in general. Given the mere existence of only two classes of approaches
for the probabilistic inference problem in targeted procedural modeling and
the increasing importance of (semi)-automated content creation, we see high
potential benefits in exploring further alternatives.

In this work, we show that genetic algorithms (GA) can be used for con-
trolled procedural modeling. While the principles of GAs are not new,
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applying GA to a new domain is never without new challenges. We tackle
these challenges and make the following contributions:

• We present a simple and yet efficient way to encode a variety of
procedural generation approaches as genomes for the use in a GA for
controlled procedural modeling.
• We show how the core operations of a GA—reproduction and mutation—

can be implemented for these genomes such that only valid modeling
operations are created.
• We show that our genome representation can not only be used to

implement GA, but also MCMC variants and SOSMC using alternative
mutation operations.
• We show that our GA yields significantly better convergence rates

than the previous state-of-the-art implementations, especially when
more complex models are generated.

In the following, we give an overview of related work (Section 2); introduce
GA for controlled procedural modeling (Section 3); present our genome
representation for procedural modeling (Section 3.2); explain the mutation
and reproduction operations (Section 3.3); provide details on the GA setup
(Section 3.4); show how MCMC and SOSMC can be modeled within the
same genetic algorithm framework (Section 3.5); evaluate the influence of
the parameters of the GA and compare our GA implementation against pre-
vious state-of-the-art for different kinds of scoring functions and generation
methods (Section 4); and summarize the findings (Section 5).
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2 Related Work

2.1 Procedural Modeling

Procedural modeling has been a part of computer graphics for decades.
Among the first procedural modeling approaches were Stiny’s original shape
grammars (Stiny, 1975) and Lindenmayer’s L-systems (Lindenmayer, 1968;
Prusinkiewicz and Lindenmayer, 1991). Starting with these early works, a va-
riety of approaches have been proposed, including realistic trees (Weber and
Penn, 1995), plants (Lintermann and Deussen, 1998), trees interacting with
their environment (Měch and Prusinkiewicz, 1996), split grammars for fa-
cades (Wonka et al., 2003), botanic trees (Okabe, Owada, and Igarash, 2005),
a language for complex objects (Havemann, 2005), a grammar for build-
ings (Müller et al., 2006), self-organizing tree models (Palubicki et al., 2009),
interconnected structures (Krecklau and Kobbelt, 2011), plastic trees (Pirk
et al., 2012), and complex buildings (Schwarz and Müller, 2015). At the
same time, speeding up procedural generation on modern hardware has
received increasing interest (Magdics, 2009; Marvie et al., 2012; Steinberger
et al., 2014). Our approach can be used for any of the previously mentioned
procedural approaches and will benefit directly from faster generations.

2.2 Controlled Procedural Generation

Controlled procedural generation has received increasing interest in recent
years. Viewing procedural generation as an inference problem, high-level
goals can be considered during generation. Talton et al. used the reversible
jump MCMC (RJMCMC) algorithm, a variant of the Metropolis Hastings
(MH) algorithm for controlled grammar-based procedural modeling (Talton
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et al., 2011). While their implementation achieved impressive results choos-
ing thousands of parameters for tree and building models to match target
volumes and silhouettes, their MH algorithm also requires tens of thousands
of iterations to converge, leading to running times of up to multiple hours.
When using MCMC to only choose a few parameters, e.g., to position a
small number of pieces of furniture, good results can be obtained within a
second (Merrell et al., 2011). However, more complex furniture layout gen-
eration, which also require RJMCMC methods, increases the running time
again to minutes or hours (Yeh et al., 2012). In case one is not interested in a
specific model, but rather a sub-family of models that are similar to a target,
finding a suitable similarity measure is a non-trivial task (Stava et al., 2014).
With such a similarity measure in place, MH can be used to choose a small
number of meta-parameters for the sub-family. However, running times
might still be long due to costly similarity evaluations. Tackling the rather
long convergence time of the MH algorithm and its variants for controlling
procedural modeling, Ritchie et al. proposed to use SOSMC (Ritchie et al.,
2015). Their approach can be seen as a combination of guided procedural
modeling (Beneš et al., 2011) with probabilistic inference. Models are not
only scored when they are fully generated, but the score of early stages of
the generation determines how likely it is that the generation of a model
continues. For simple models, good results can be obtained within seconds
or minutes, outperforming MH approaches when only little time is available.
Our approach can be seen as an alternative to MH and SOSMC, showing
even better convergence rates than SOSMC under tight time constraints and
outperforming MH in the long run.

2.3 Evolutionary Approach

Evolutionary approaches have been used in computer graphics before. Most
noteworthy is the work by Sims. He showed that evolutionary algorithms
with simple mutation and random crossover operations can be used to
generate 3D plant structures, images, textures, and animations (Sims, 1991).
In his follow-up work, he described the genotypes and phenotypes of virtual
creatures including their animation using evolutionary algorithms, allowing
them to walk, jump, and swim (Sims, 1994). Sims’ approach sparked a
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2.3 Evolutionary Approach

(a) Uncontrolled Generation (b) Controlled Generation

Figure 2.1: (a) Although quite simple, the spaceship generator can produce a variety
of ships. (b) Given a volumetric target (dark shape), the generation can be
optimized to fill the target. Note that the best solutions of different algorithms
(GA: blue, SMC:red, SOSMC: orange, MCMC:green) differs not only in the size
of the parts but the structure of the entire ship.

Wing:
(sx,sy,sz,o)

Body:
(sx,sy,sz)

Top:
(sxz,sy)

.5.4

.8.7

.9

(a) (b) (c)

Figure 2.2: (a) The generator graph for the simple spaceship models (see Figure 2.1) consists
of three nodes: Each part can generate an instance of itself (probabilities next
to edges). The body part may generate a top and a wing part. All parts are
parameterized by scaling factors; the wing has an additional offset. (b,c) The
derivation tree fully describes a generated model. (b) corresponds to the center
model of Figure 2.1(a), (c) to the blue ship in Figure 2.1(b). Note that parameter
choices are not shown here due to the size of the graphs.
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2 Related Work

variety of approaches following the same direction, like, e.g., Creature
Academy (Pilat and Jacob, 2008), which uses Sims’ encoding schemes to
evolve creatures that are capable of a variety of motions. Evolutionary
algorithms have also been used to control L-systems to optimize parameters
of 2D-plants Ochoa, 1998, or fit basic 2D shape grammars to simple targets
O’Neill et al., 2009. They have also been used for real world objects (Funes
and Pollack, 1998), enabling the design of robots that can be assembled
using Lego bricks. Genetic algorithms can also be applied for shapes within
shape collections, extending the variety of models in design galleries (Xu
et al., 2012). In this “fit and diverse” gallery, evolution is not applied on an
abstract genome representation, but directly on the models by exchanging
their parts using fuzzy crossover operations. While the aforementioned
evolutionary approaches have been used to represent shapes and models,
they either work directly on model parts or a high-level, meta-graph which
allows edges between arbitrary nodes. Applying GA to parameter selection
for procedural generation has different requirements and a direct adoption
of the previous representations is not possible. With our work we provide
such a representation and underline the special requirements of controlled
procedural generation with GAs.
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3 Genetic Algorithms and
Controlled Procedural Modeling

Virtually all approaches that are classified as procedural modeling, can be
described in a unified way: they apply a sequence of modeling operations
on objects. Each operation either alters an object or generates new objects,
on which modeling operations can again be applied. These objects are in
turn translated into geometry that constitutes the generated model. The
operations are usually parameterized, e.g., translate by vector t, rotate by
angles (φx, φy, φz), and so on. These parameters are generally chosen at ran-
dom to add variations to the generated models. Also, the number and type
of generated objects may be chosen randomly. Based on these observations
it seems natural to capture procedural generation as directed graphs (with
cycles). This fact has been explicitly noted for L-systems (Boers, 1995), shape
grammars (Patow, 2012), and stack-based modeling languages (Havemann,
2005) before. Also languages like the one used by Ritchie et al. (Ritchie et al.,
2015) can be translated into a directed graph by applying the principles of
data flow programming (Wadge and Ashcroft, 1985). Thus, we do not limit
our approach to any specific procedural approach, but only work with a
directed graph representation, where nodes correspond to parameterized
operations and the edges correspond to objects. We simply call the descrip-
tion of the procedural generation in their respective language a procedural
generator and the associated graph the generator graph, see Figure 2.2(a) for a
simple example.

The generator graph describes the procedural generation itself and thus
all models that can be generated by that generator. The generation of
a specific model can also be described by a graph or, more specifically,
a tree. This tree captures all intermediate objects as they move through
the generator graph, with the operations applied to them including the
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3 Genetic Algorithms and Controlled Procedural Modeling

randomly chosen parameters. In grammar-based modeling this tree is called
derivation tree (Sipser, 2006). Although we do not limit our approach to
grammar-based modeling, we do adopt this name. As the operations can
generate a different number of objects at random, the derivation trees for
different models can vary in structure and number of parameters, as shown
in Figure 2.2(b,c). In any case, a model is fully described by its derivation
tree.

For complex models, derivation trees can become very large, containing tens
of thousands of nodes with as many or more parameters. This underlines
that expecting a technical artist to choose these parameters by hand is infeasi-
ble. As the derivation tree describes the generation, we can view controlled
procedural modeling as an optimization problem or Bayesian inference
problem of derivation trees. Each possible derivation tree corresponds to
a sample from the procedural generator, leading to Bayesian inference. At
the same time, finding those derivation trees that maximize the scoring
function creates a classical optimization problem. The problem is obviously
in a mixed domain: deciding whether a node should be added to the tree is
a boolean decision; the parameters describing operations in Euclidean space
are in the continuous domain. Also, derivation trees of different models
have different structures, which emphasizes the trans-dimensional nature
of the problem.

3.1 Genetic Algorithms

Genetic algorithms are well suited for this kind of problem. GA is inspired
by evolution and natural selection, where traits and characteristics of in-
dividuals of a species are encoded as genes. Due to the selection process
individuals with successful traits get a higher chance to pass on their genes
to future generations, while less successful traits tend to disappear, overall
leading to a better adapted population. The basic steps of GA are out-
lined in Algorithm 1. For controlled procedural modeling we want each
individual to represent a derivation tree. During evolution individuals can
be altered (mutated) and information from different individuals can be
combined (reproduction). To use GA for controlled procedural modeling
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3.1 Genetic Algorithms

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2),15,~,8][W,-8,(1.1,0.3,0.4,-0.3),~][B,-15,(1.0,0.9,1.3),~,~,~]

(a) Our packed genome representation encodes a derivation tree with parameters
flattened out in memory. Every gene (separate bar) has a symbolic link to
its generation tree node (first entry), identifying the meaning of the stored
parameters and making sure a valid generation is represented. Each gene stores
the relative offset to its parent (second entry), as well as the relative offset to
each child; if a child is not present the entry is empty.

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2),15,~,8][W,-8,(1.1,0.3,0.4,-0.3),15][B,-15,(1.0,0.9,1.3),~,~,~][W,-15,(1.5,0.2,0.2,0.4),~]

(b) The grow mutation adds another gene to the chromosome. It can simply be
added to the back of the chromosome and only the offsets of the parent need to
be adjusted. Thus the operation is very efficient.

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2),15,~,8][W,-8,(1.1,0.3,0.4,-0.3),15][B,-15,(1.0,0.9,1.3),~,~,~][W,-15,(1.5,0.2,0.2,0.4),~]

[B,~,(1.1,0.9,1.3),41,8,20][T,-8,(0.8,0.1,0.5),6][T,-60.8,0.6,0.4,0.2),~][B,-15,(0.9,1.1,1.2), ~, ~,8][W,-8,(1.1,0.3,0.4,-0.3), 7 ][W,-7,(1.5,0.2,0.2,0.4),~]

(c) The cut mutation (top to bottom) not only removes the cut gene, but the entire
sub-tree of dependent genes (grayed out). Thus, arbitrary amounts of memory
can be removed. However, with a single sweep starting at the gene that is
removed, we can remove all dependent genes and at the same time compact the
representation by copying the remaining genes to the front and adjusting the
offsets.

Figure 3.1: Example of our genome representation and mutations applied to the example
spaceship from Figure 2.1(a) and 2.2(b)

we require mutation and reproduction operations that work on derivation
trees while making sure the resulting derivation trees conform with the
generator graph. The complexity of the optimization—working in a mixed
domain and the trans-dimensionality—is hidden in these two operations.
To determine the fitness of individuals, as required by a GA, we directly
use the scoring function, which can also include additional constraints like
the size of the derivation tree or how balanced the tree should be. However,
two challenges need to be solved: (1) an encoding of the derivation tree
as genome representation is required, and (2) the genetic operations for
mutation and reproduction need to be described.
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3 Genetic Algorithms and Controlled Procedural Modeling

Function GeneticAlgorithm
population← { }
for i ∈ {1 . . . PopulationSize } do

append(population, newIndividual())
end
for j ∈ {1 . . . MaxGenerations } do

fitness← evaluateFitness(population)
sort(population, fitness)
newPopulation← { }
for k ∈ {1 . . . Elitism } do

append(newPopulation, population [k])
end
for k ∈ {1 . . . (PopulationSize- Elitism )/2} do

par1← select(population,fitness)
par2← select(population,fitness)
if rand() ≤ MutationProbability then

chld1← mutate(par1)
chld2← mutate(par2)

else
chld1,chld2← reproduce(par1, par2)

append(newPopulation, chld1, chld2)

end
population← newPopulation

end
Algorithm 1: The basic structure of genetic algorithms is straightforward.
A population of individuals are managed for a given number of genera-
tions. The best individuals are allowed to influence the next generation,
by either copying them directly, mutating them, or allowing them to
reproduce.

12



3.2 Genome Representation for Procedural Models

3.2 Genome Representation for Procedural
Models

The genome representation must be able to encode all possible solutions
to the problem, i.e., all possible derivation trees. To describe the genome
representation we use the following terms: a gene is the smallest element of
the genome; a chromosome is the set of genes that make up an individual.
Ideally, the representation of a chromosome and hence a gene should be
simple and allow for efficient genetic operations. Furthermore, the fitness
evaluation requires a translation of the chromosomes into their expression,
i.e., into a geometric model. Thus, given the chromosome, we want to run the
procedural generator replacing the random decisions with the parameters
decoded from the chromosome in an efficient manner.

Because each chromosome needs to encode the derivation tree, the tradi-
tional GA approach of using bit-strings of fixed size as genome representa-
tion is not feasible. We propose to store the derivation tree directly as nodes
and edges, similar to Sims’ graph representation (Sims, 1994). Every node
is described by one gene. Each gene keeps a reference to its correspond-
ing node in the generator graph, the parameters chosen for its associated
operation, and a pointer for each possible output object, i.e., child node,
which we set to empty if no output is generated. If an output is present, it
points to the gene within the same chromosome that encodes the generated
object. Furthermore, every gene stores a pointer to the gene that describes
its parent node. We call the pair of pointers between a parent and child gene
a connection. Each connection is associated with an edge in the generator
graph. Note that genes are of different size, depending on which node and
operation they describe. We pack all genes of one chromosome compactly
in memory. The pointers are stored as local relative memory offsets, which
allows for efficient copying of subtrees; see Figure 3.1(a) for an example.

Our genome representation allows for variable length chromosomes and
easy insertion of new genes into the chromosome without changing the
already existing entries. Furthermore, copying genes from one individual
to another can be carried out efficiently due to the use of local offsets. The
reference to the generator graph is required to ensure that operations on the
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3 Genetic Algorithms and Controlled Procedural Modeling

chromosomes do not yield individuals that cannot be created by the proce-
dural generator, i.e., lie outside of the sampling space. Within the generator
graph we additionally store the distribution of each random variable and
probability for each output object. Thus, the GA has all required information
available in the generator graph and can construct any chromosome using
the genome representation.

3.3 Genetic Operations

At the core of each GA there are two genetic operations that evolve the
population: mutation and reproduction. Mutation allows the GA to explore
the problem space outside the already existing population by introducing
random modifications to the genes of an individual, i.e., generate a sample
that is outside the space spanned by the individuals of the current pop-
ulation. Reproduction combines features from two individuals, creating
individuals that contain parts of both parents and possibly yield better
results than either of them. Combining traits from different high-scoring
derivation trees, the GA may be able to converge faster.

3.3.1 Mutation.

As the chromosomes of an individual not only encode parameters, but also
the structure of the generation, we propose to use three different mutation
operations: grow, cut, and alter.

Grow, outlined in Figure 3.1(b), appends a gene to a gene that does not
generate the maximum number of children in its current form. We choose a
gene i and its non-expressed child j with the probability

pgrow,i,j =
pi,j

∑k ∑l pk,l
,

with pi,j being the probability of object j being generated by a node of type i;
k runs over all genes that do not express their maximum number of children;
l runs over those non-expressed children. Thus, the probability of adding
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3.3 Genetic Operations

a gene is proportional to the likelihood of the object represented by the
gene being generated in an uncontrolled generation. After a new gene has
been added we choose its parameters randomly based on the probability
distributions stored in the generator graph. The gene can simply be added
to the back of the chromosome and grow is thus very efficient.

Cut, outlined in Figure 3.1(c), removes a random gene and the sub-tree that
follows it. The probability of choosing a gene i is

pcut,i =
1− pj,i

∑k ∑l(1− pk,l)
,

where k runs over all genes that have children and l over those expressed
children. Thus, genes are removed with a probability that is inverse propor-
tional to the likelihood that the object represented by the gene is generated
in the uncontrolled production. Note that objects which are generated with
a probability of one are never cut and thus no invalid derivation trees are
generated. If there is no gene with a probability pcut,i 6= 0, no cut is ap-
plied. Although cut may involve the removal of multiple genes which are
spread across the chromosome, the operation can be completed efficiently,
sweeping over the chromosome, moving non-removed genes further to the
front essentially replacing removed ones and adjusting the local offsets. The
operation can therefore be completed in O(G), where G is the chromosome
length. This guarantees that the operation remains efficient even for more
complex derivation trees.

Alter changes the parameter values of a random gene. We choose a gene
with parameters from the chromosome with equal probability and replace
all its parameters by drawing a new random sample from the parameter’s
distribution as described in the generator graph. Alter is obviously the
simplest and most efficient mutation.

3.3.2 Reproduction.

Our reproduction operation is an adapted version of the single-point-
crossover operation, which creates a valid pair of children given a pair
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(a) (b)

Figure 3.2: (a) Our crossover operation chooses one random gene connection in the left
parent (red highlight), identifies all matching connections from the right parent
by consulting the generator graph (red edges) and chooses one at random (red
highlight). (b) Exchanging the subtrees (yellow and purple) yields two offspring.

of parents. In its basic form the single-point-crossover operator selects a ran-
dom crossover point in both parent chromosomes and creates the offspring
by swapping the genes at the crossover points. The number of possible
different children given the same set of parents is limited by the number of
crossover points. This strategy cannot be directly applied to chromosomes
describing a derivation tree since the results may be incompatible with the
generator graph.

Our proposed crossover operation selects a random gene connection from
the first parent, chooses another random connection from all compatible
connections in the second parent, and exchanges the genes including all
successors at these connections. The set of compatible connections contains
those that describe the same edge in the generator graph. In this way, we
can guarantee that the offspring are compatible with the generator. The
crossover operation is outlined in Algorithm 2 and Figure 3.2. With our
genome representation the crossover operation is efficient, since compatible
connections can easily be selected based on the reference to the generator
graph and copying genes from a parent can be viewed as combination of
cut and grow operations, which are both efficient as well.
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Function reproduce(parent1, parent2)
for i ∈ {1 . . . MaxRetries } do

C1← connections(parent1)
e1← selectUniformly(C1)
type← generatorGraphEdge(C1)
C2← findMatching(parent2, type)
if C2 is empty then

continue

end
e2← selectUniformly(C2)
child1← cloneUntil(parent1, e1)
child1← cloneFrom(parent2, e2)
child2← cloneUntil(parent2, e2)
child2← cloneFrom(parent1, e1)
return child1, child2

end
return parent1, parent2

Algorithm 2: The proposed crossover operation is computationally very
efficient, as the explicit links to the generator graph make sure every
offspring describes a valid chromosome. Thus, crossover usually only
requires drawing two random numbers and copying genes from the
parents to the offspring.
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3.4 Genetic Algorithm Setup

3.4.1 Selection Method

The selection method is one of the central parts of a GA. It determines which
individuals are allowed to reproduce and influence the next generation.
The selection is usually done by selecting individuals according to their
fitness, with some margin for stochasticity. A purely deterministic selection
method would select the best individuals only, limiting the exploration
of the problem space to the proximity of the fittest individual, while a
purely random method would lead to an entirely undirected exploration
decreasing the probability of finding a good solution considerably. There
exist several selection methods that take the fitness into account while
allowing for random deviation. The most widely used ones are roulette wheel
and k-tournament selection (Blickle and Thiele, 1996).

Roulette wheel selection chooses an individual I with a probability pI
proportional to the individual’s fitness f I :

pI =
f I

∑j f j
,

where j runs over all individuals of the current generation. The name stems
from the informal description of the method as a roulette wheel, where the
size of each possible spot relates to the fitness of the individual occupying
it.

k-tournament selection starts by selecting k individuals at random with
equal probability. From that group, the individual with the highest fitness
is selected, i.e., letting the individuals fight in a tournament. k-tournament
selection can be implemented efficiently, while the selection pressure can be
controlled by adjusting k. In our approach we use roulette wheel selection
to choose one parent and k-tournament to choose the other.
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3.4.2 Initial Population

A good initial population is important to introduce enough variety into the
evolution. We create the initial population starting with individuals that
contain an empty chromosome. For each individual we repeatedly apply the
grow mutation until their chromosomes reach a randomly chosen size. The
GA converges fastest if the average chromosome length of the initial popula-
tion is comparable to the final solution. However, as crossover and mutation
change the chromosome length, even far off initial populations converge.
As the grow mutation is very efficient, generating the chromosomes of the
initial population has a low computational cost.

3.4.3 Elitism

Elitism is a technique that ensures that future generations also contain the
best individuals of previous generations. Using elitism, the individuals with
the highest fitness are copied unchanged to the new generation. However,
these individuals can still also be selected as parents for reproduction.
This ensures that the quality of the solution never decreases and increases
convergence rates as good solutions are available for reproduction more
often. However, if the population size is too small, elitism can lead to
stagnation as the GA cannot explore different solutions. We use elitism in
all our experiments.

3.5 MCMC and SOSMC as GA

As SMC, SOSMC (Ritchie et al., 2015), and reversible jump MCMC (Talton
et al., 2011) for controlled procedural modeling work on individual particles
or chains that can be viewed as individual (partially finished) procedural
generations, we argue that they can be implemented in a GA framework. The
following description should be considered an outline of how to implement
these approaches, details can be found in the original papers.
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3.5.1 SMC and SOCMC

SMCis arguably the simplest of the three approaches. The particles used in
SMC can be seen as individuals, each starting with an empty chromosome.
SMC does not allow for interaction between particles and thus can be
described with mutations only. Ritchie et al. sample particles based on their
fitness, which we can provide in terms of a selection method. As mutation
operations, we only require an adjusted grow mutation: It is not allowed to
choose any non-expressed child, but has to follow the order they are found
in the chromosome. Additionally, the next child is only expressed with a
probability equal to the original generation (as found in the generator graph).
If it is not expressed, it is marked as such in the chromosome and will never
be expressed. The mutation continues until a new geometric output object
is generated, showing the same behavior as the original SMC (Ritchie et al.,
2015).

SOSMC can be implemented the same way as SMC with the difference that
the mutation choses a random non-expressed child and does not have to
follow the order in the chromosome. This step again continues until a new
geometric output object is generated. Note that the state of the chromosome
can be seen as the structure storing the stochastic futures (Ritchie et al.,
2015).

3.5.2 Reversible jump MCMC

Reversible jump MCMC is arguably more complicated to implement. Each
production chain corresponds to an individual. In the default setting, no re-
production is supported either. The selection method picks each individual
once, moving mutated versions of each individual to the next generation.
The diffusion operations correspond to a sequence of alter mutations fol-
lowed by a scoring function evaluation, which determines if the mutation
is accepted or rejected. The jump moves can be viewed as mutations that
combine a cut move with grow mutations on top of the cut gene. Further-
more, the initialization of the newly found subtree does not draw new
random variables, but copies the ones from the cut subtree (new values are
drawn if there are not enough for copying). The mutation is accepted based
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on the fitness ratio between the mutated and original individual, and the
probability of the jump move.

While the described setup models the basic reversible jump MCMC algo-
rithm, further optimizations are required to achieve good results (Talton
et al., 2011). These optimizations can also be modeled in a GA. Non-terminal
selection is added by altering the probability with which the mutations
choose genes. Parallel tempering adds a temperature to each individual.
The temperature changes the acceptance probability and—implementing
a reproduction operation—exchanges the temperature of two individuals
depending on their fitness. Delayed rejection extends the jump mutation with
additional alter mutations, which allows a mutated individual to adjust
before being rejected. Finally, annealing can be added on top of all rejection
tests, slowly reducing the chance of accepting a worse individual.
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To evaluate the performance of GA for controlled procedural modeling, we
compare it to the previous state-of-the-art for a variety of scenes, complexity
levels, and types of scoring functions. As evaluation platform we used
an Intel Core i5-4570 @ 3.2GHz with 8GB of memory and an NVIDIA
Geforce GTX 970. For running the procedural generation, we used a custom,
multi-threaded, template-meta programming C++ generator that works on
abstract shapes. This generator can be used for L-systems, shape grammars,
and custom modeling languages. To obtain fast generation speeds, the
generator graph descriptions is input to the C++ compile step, specializing
the generator for the approach at hand.

4.1 Volumetric targets

Volumes as targets are a common way to specify high-level goals for a
procedural generator. To this aim, we take any number of volume-describing
target models Ti and weights wi and w̃i as input, voxelize them and compute
the scoring function svol for a generated model M:

svol(VM) = ∑
i

 ∑
v∈Vi

wi ·VM(v)

+

 ∑
v∈VM

w̃i · (1−Vi(v))

 ,

where VM is the voxelized representation of M and Vi is the voxelized
representation of Ti. In this way, volumes that should be filled or avoided
can be specified setting positive or negative wi and w̃i.

For efficient implementation, we compute the maximum bounds among
all Ti and combine the voxels of all targets into a regular voxel grid Vcomb,
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where each voxel corresponds to the sum over the weights of all targets.
During evaluation, we voxelize the generated model, compute the overlap
with Vcomb and sum up all weights. For all voxels that fall outside the bounds
of the voxel grid, we add ∑ w̃i to the score. To perform the voxelization of
each M efficiently, we use a GPU voxelizer implemented in CUDA.

During voxelization it is easy to detect self intersections of the model com-
ponents. Thus, we take another optional weight wsel f which is subtracted
from the overall model score every time a voxel is hit multiple times. In this
way, self intersections of models can be avoided completely by setting wsel f
to a high weight, or punished slightly in case a few self intersections are
acceptable.

4.2 Image targets

Images as targets are also a common way to specify high-level goals. We
take any number of floating point images Ii and camera parameters Ci as
input and compute the scoring function simg for a generated model M:

simg(M) = ∑
i

(
∑
p∈Ii

projectCi(M)(p) · Ii(p)

)
,

where projectCi(M)(p) corresponds to projecting M using the camera pa-
rameters Ci and sampling the image at position p. Regions that are very
important to be hit by the generated model should have high positive pixel
values, areas that should be avoided high negative pixel values, and areas
that do not matter zero values.

For efficient evaluation of simg, we render the generated model into a black
and white texture using OpenGL. Then, we run a compute shader to mul-
tiply the rendering result with Ii and perform a parallel reduction of the
obtained values on the GPU.
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4.3 Parameter Selection

4.3 Parameter Selection

The selection of parameters for a GA is a complicated task, since the param-
eters are interdependent, e.g. a high mutation rate can produce good results,
but only if the population size is large enough. There have been various
attempts to optimize this selection, such as using statistical models (François
and Lavergne, 2001), or even using other optimization algorithms to find
the best set of parameters, which introduces the problem of finding parame-
ters for that algorithm. Since the execution time of our implementation is
manageable, we were able to find a good set of parameters by changing one
parameter at a time and comparing the results. The basic parameters during
our tests are fixed to the following baseline, unless stated otherwise:

Population size: 50 individuals
Initial population: random with 10 symbols
Max. generations: 50

Elitism: 1 individual
First selection: roulette wheel

Second selection: k-tournament, size 10

Mutation prob: 30%
Mutation operator: cut/grow/perm. uniform distr.

All values were averaged over three discrete runs using the spaceship
generator defined in Figure 2.2 and the volumetric target seen in the center
of Figure 2.1.

4.3.1 Selection method

The available selection methods are a roulette wheel selection, a k-tournament
selection of size 10, and random selection. As shown in Figure 4.1, using a
semi-stochastic method for at least one parent produces better results than
purely random selection, with tournament selection performing better. The
best results were produces by a combination of tournament and roulette
wheel selection, although tournament selection for both parents increases
the fitness values initially slightly faster.
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Figure 4.1: The fitness values with different selection methods.

4.3.2 Population size

Since the GA recombines parts of already existing solutions, a bigger pop-
ulation increases the chance to combine two good parts to create a better
solution, and it also increases the probability that a individual already has a
good fitness value from the beginning, therefore increasing the fitness of
the solution immediately, as shown in Figure 4.2. Unfortunately, a increase
in the population size also increases the execution time significantly, which
requires finding a trade-off between speed and fitness. When increasing the
population from 10 to 500 individuals, the fitness increases as well, but after
a size of 200 individuals the increase is negligible compared to the increased
execution time.

4.3.3 Mutation probability

If the mutation rate is too low, the probability to produce beneficial changes
is low as well, while a high mutation rate can introduce disadvantageous
changes to already good solutions. This can be mitigated to some extend
with elitism, but this can introduce it’s own set of problems. When we
increase the mutation rate from 0% (only crossover) to 100% (only mutation),
as shown in Figure 4.3, the fitness increases as well, although the difference
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Figure 4.2: The fitness values with increasing population size.

is only significant in later generations. Using only mutation produces good
results, but we found in further evaluation that the effect diminishes with a
higher population size.
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Figure 4.3: The fitness values with increasing mutation rate.
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4.3.4 Elitism

Elitism allows the GA to explore the problem space surrounding good
solutions by keeping them unchanged from one generation to the next,
while still using them as parents. A small elitism rate in a large population
can lead to a replacement of the elite in every turn, thus having no impact
at all, while a large elitism rate can lead to stagnation. By changing the
elitism rate from 0 to 45 individuals (90%), as shown in Figure 4.4, we find
that the use of 10 to 15 individuals (20 - 30%) produces the best results,
although the impact is not very significant. It does, however, ensure a
steadily increasing fitness value. We also found in further evaluations that
the impact of elitism is highest with small populations, and diminishes with
increasing population sizes. And, as expected, keeping a large part of the
population as elite does decrease the quality of the result significantly, and
also leads to periods of stagnation.
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Figure 4.4: The fitness values with increasing elitism levels.

4.3.5 Initial Population

The length of the randomly initialized population was increased from 10

symbols up to 100 symbols (Figure 4.5). Since the target model can be
modeled better with a certain number of symbols, the closer the length of
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the initial population is to this value, the better the initial fitness value will
be. This of course influences the initial performance of the algorithm. But
we found that the GA is able to recover from a bad initial population within
a few generations.
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Figure 4.5: The fitness values with an increasingly complicated and less fit initial popula-
tion.

4.4 Test scenes

The test scenes used recreate scenes from previous work (Talton et al., 2011;
Ritchie et al., 2015): a spaceship generator with models shown in Figure 2.1
and the generator graph in Figure 2.2(a); a tree generator with models
shown in Figure 1.1 and 4.11(a) (using a different foliage geometry), and
generator graph in Figure 4.6(a), and a city generator with models shown in
Figure 4.11(b-d) and generator graph in Figure 4.6(b). The spaceship genera-
tor is rather straight forward, as each new object occupies its own space and
every node generates geometry. The tree generator is still relatively simple,
however, there are many possible ways for branches reaching the same spot.
Thus a variety of solutions and scenarios with self intersection are possible.
Still, every node generates geometric output. The city generator has two
recursive nodes which generate empty building lots and essentially iterate
over the scene. Only the building node is responsible for creating output
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Trunk:
(r,l)

Foliage

Branch:
(φ,ψ,s,l,o)

(a) Tree

City
Center

Diagonal

Straight

Building:
(φ,sx,sy,h)

(b) City

Figure 4.6: (a) The generator graph for the tree scene can output a trunk with a radius and
length; the trunk and branches can have up to three sub-branches, which are
each controlled by normal and inclination angles, radial scaling, length and
offset; the foliage is always added as extension of a final branch. (b) While the
city generator is simple too, only the building node directly generates visible
objects; the blue nodes recursively iterate over the space of possible building
lots; the building can be rotated, and its size and height is controllable.

geometry. Hence, decisions made during city generation might not directly
lead to visible differences and a possibly large number of empty lots are
required to extend the city towards areas where buildings should be set
up. The targets and scoring functions for the scenes are: a sketch for the
silhouette of the generated model from a fixed perspective in Figures 1.1
and 4.11(b,c), a volumetric target to fill for Figures 2.1 and 4.11(d), and a
volumetric target to avoid for Figure 4.11(a).

4.5 Results

The Results obtained during optimization for the models presented in Fig-
ure 1.1 and Figure 2.1 are shown in Figure 4.7. The results obtained for
the remaining test cases are shown in Figure 4.11. MH corresponds to the
reversible jump MCMC for Metropolis procedural modeling including the
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Figure 4.7: Development of the mean fitness values and standard deviations over time
for the scenes shown in Figure 1.1 and 2.1. For a simple scene and short
optimizations times as in the spaceship scenes, SOSMC and even SMC show
good performance, while MH takes considerably longer to achieve good results.
In complex scenarios, like the tree sketch, SMC and SOSMC only show good
performance in the beginning, while MH slowly converges. GA in both cases
shows very good early convergence rates and continues to improve over time.

parallel tempering, nonterminal selection and annealing optimization de-
scribed by Talton et al. (Talton et al., 2011). We use their proposed parallel
tempering factor that assigns a 1% acceptance probability in the coldest
chain to mutations that have a 70% chance in the hottest. As annealing factor
we use 1.1. SMC and SOSMC correspond to the approaches described by
Ritchie et al. (Ritchie et al., 2015). GA corresponds to the genetic algorithm
proposed by us. In all cases, we run them in our framework, as described
in Section 3.5. GA uses a mutation probability of 30%, divided into 13.5%,
13.5%, and 3.0% for grow, cut, and alter, respectively for tree and spaceship
scenes and a probability of 40%, divided into 12.5%, 10% and 18.0% respec-
tively for the city scenes. For tournament selection we use k = 10 and an
elitism of one fifth of the population size. We tried to tune the population
size for all approaches to achieve the best possible results and report them
as PMH, PSMC, PSOSMC, and PGA alongside the test results. Note that SMC
and SOSMC work better with larger population size while MH works more
efficiently with smaller populations; GA usually works best with a value in
between.

The spaceship and tree sketch scenes (Figure 1.1, 2.1 and 4.7) outline the
performance of the approaches well. For simple models like the spaceships

31



4 Evaluation

with volume evaluation, where every node of the generator graph leads to
a geometric object, SMC and SOSMC perform quite well. As they require
the evaluation of the scoring function for every step it takes some time
until a first model of sufficient size is generated (about 4s). While SMC
slightly outperforms SOSMC during this first seconds, SOSMC outperforms
SMC in the longer run. However, both of them plateau pretty soon, as
they cannot “undo” their initial choices. MH behavior is the opposite, since
the initial state contains already full models, which score reasonably well.
However, improving them takes a long time, falling below SMC and SOSMC.
Then again, the improvement is steady and in the long run MH eventually
outperforms SMC and SOSMC. GA also starts with a full initial population,
from which it quickly increases the score, matching SOSMC during its best
phase. However, in the long run GA keeps improving, similarly to MH.
Note that the generation of the initial population hardly costs any time,
as repeatedly calling the grow mutation has virtually no cost. For more
complex targets, like the tree sketch image evaluation, SMC and SOSMC
only show a good performance over the first seconds. Afterwards, MH and
GA significantly improve the result, while SOSMC and SMC are stuck with
the early parameter choices. GA in this case significantly outperforms MH.
The GA solution after 3min achieves the same score as MH after 20min;
SMC and SOSMC never reach this score. In this case GA profits strongly
from the fact that it can copy partial solution from one of the three branches
to the other.

The SMC and SOSMC methods have problems with complex generators,
since choices made in the early iterations reflect in the performance during
later stages. While this can be mitigated with a larger sample size at the
cost of longer calculation time for each iteration, these complex generators
usually also require a large number of geometric objects for good solutions.
Which, due to the nature of SMC and SOSMC, require many iterations,
therefore increasing the required calculation time even further. This makes
choosing the right number of samples highly problem dependent, and
especially cumbersome when aiming to achieve the best result within a
limited computational budget.

We observe comparable behaviors in the other test cases shown in Figure 4.7.
The large number of volumetric scoring function evaluations for uncom-
pleted models reduce the early performance of SMC and SOSMC (a). More
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(a) Trees avoiding a cylinder with holes: PMH = 50, PSMC = 250, PSOSMC = 250,
PGA = 200
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(a) Matching the skyline of a city: PMH = 60, PSMC = 170, PSOSMC = 170, PGA = 180

complex generators, like the city (b,c), which contain nodes that do not
generate any visible objects are troublesome for the convergence of SMC and
SOSMC. However, after these issues have been overcome, SOSMC at least
can catch up with MH, before it plateaus. MH on the other hand always
slowly and steadily converges. For the volumetric city scene (d), the weights
were chosen such that wrongly placed buildings are punished severely. This
removes the advantage of the initial population for MH and GA. But even
so they manage to improve the score, with GA significantly outperforming
MH, while SMC and SOSMC do not succeed to improve upon the solution
after the first couple of generations. GA in almost all cases seems to combine
the best of all worlds. Starting with a random population there is enough
information to recombine good initial solutions which quickly increase
the score. Furthermore, in contrast to SOSMC, GA continues to improve
similarly to MH. Overall GA achieved the best results in all test cases during
initial convergence and in the long run.
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Figure 4.11: Mean fitness values and standard deviation obtained for different test scenes
plotted over time. SMC and SOSMC struggle during the beginning of the
volumetric tree scene (a), as they run the relatively costly voxelization on many
non-finished models. The image city scene (b,c) is also difficult for them as
the generator graph is more complex. They fail to improve after the first few
generations for the volumetric city scene (d). MH works reasonably well in
all cases but shows slow convergence rates. GA in all cases shows the best
convergence behavior among all tested approaches. Note that the fitness values
are not normalized and depend on the chosen weights.
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5 Discussion and Future Work

We have shown that genetic algorithms can be used for controlled procedural
modeling in a variety of procedural approaches. Using our compact tree
representation to encode genomes and linking this tree to the generator
graph allows for efficient mutation and reproduction operations while
making sure that all resulting chromosomes are valid. Comparing our
GA to the state-of-the-art, we found that using a GA combines the best
characteristics of previous approaches. The initial convergence is better than
SOSMC and in the long run it significantly outperforms MCMC, yielding
the best convergence in all stages of optimization. We attribute that to GA
being able to combine the best features from an entire population. We also
found that GA shows good performance independently of the complexity
of the used generators and scoring function. Also, in our testcases it was
rarely necessary to tune the parameters to achieve good results, which
hints at good stability of the approach. A limitation we experienced is that
by copying parts of the genome, similar features can be duplicated in the
model, e.g., the remains of a heart shape are visible in the left branch of
the GA result in Figure 1.1. Furthermore, our implementation of elitism
is somewhat susceptible to “sample impoverishment”, leading to almost
identical copies of the same individual in the elite population, but we did
not notice a diminished performance caused by this.

In the future we will increase the efficiency of our approach further, by using
a GPU-based generator. This will also increase the efficiency of the proposed
scoring function evaluations which already use the GPU. Furthermore,
we believe that combining SOSMC, MCMC, and GA and automatically
choosing the best approach might even increase convergence further, i.e.,
using SOSMC to create an initial population, switching to GA after a few
iterations and then switching to MCMC in the long run. Considering our
description of SOSMC and MCMC within our GA framework this seems
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to be possible. Finally, the major challenge we see is tackling full inverse
procedural modeling, where the generator consists of the entire set of
modeling operations and the goal is given by a fully detailed object or a
scan of a real world object. We believe genetic algorithms have the potential
to help make full inverse procedural modeling possible.
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Měch, Radomır and Przemyslaw Prusinkiewicz (1996). “Visual Models
of Plants Interacting with Their Environment.” In: Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’96. New York, NY, USA: ACM, pp. 397–410. isbn: 0-89791-
746-4 (cit. on p. 5).

Merrell, Paul et al. (2011). “Interactive Furniture Layout Using Interior
Design Guidelines.” In: ACM Trans. Graph. 30.4, 87:1–87:10. issn: 0730-
0301 (cit. on p. 6).

Müller, Pascal et al. (2006). “Procedural Modeling of Buildings.” In: ACM
Trans. Graph. 25.3, pp. 614–623. issn: 0730-0301 (cit. on p. 5).

Ochoa, Gabriela (1998). “On genetic algorithms and lindenmayer systems.”
In: Parallel Problem Solving from Nature — PPSN V: 5th International Confer-
ence Amsterdam, The Netherlands September 27–30, 1998 Proceedings. Ed. by
Agoston E. Eiben et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 335–344. isbn: 978-3-540-49672-4. url: http://dx.doi.org/10.1007/
BFb0056876 (cit. on p. 8).

Okabe, Makoto, Shigeru Owada, and Takeo Igarash (2005). “Interactive
Design of Botanical Trees using Freehand Sketches and Example-based
Editing.” In: Computer Graphics Forum 24.3, pp. 487–496. issn: 1467-8659

(cit. on p. 5).
O’Neill, Michael et al. (2009). “Shape Grammars and Grammatical Evolu-

tion for Evolutionary Design.” In: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation. GECCO ’09. Montreal,
Qu&#233;bec, Canada: ACM, pp. 1035–1042. isbn: 978-1-60558-325-9
(cit. on p. 8).

Palubicki, Wojciech et al. (2009). “Self-organizing Tree Models for Image
Synthesis.” In: ACM SIGGRAPH 2009 Papers. SIGGRAPH ’09. New
Orleans, Louisiana: ACM, 58:1–58:10. isbn: 978-1-60558-726-4 (cit. on
p. 5).

Patow, G. (2012). “User-Friendly Graph Editing for Procedural Modeling of
Buildings.” In: IEEE Computer Graphics and Applications 32.2, pp. 66–75.
issn: 0272-1716 (cit. on p. 9).

Pilat, M. L. and C. Jacob (2008). “Creature Academy: A system for virtual
creature evolution.” In: 2008 IEEE Congress on Evolutionary Computation

38

http://dx.doi.org/10.1007/BFb0056876
http://dx.doi.org/10.1007/BFb0056876


Bibliography

(IEEE World Congress on Computational Intelligence), pp. 3289–3297 (cit. on
p. 8).
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