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Abstract

In today’s Industrial Control System (ICS), trends towards connected off-the-shelf devices
pose new challenges such as exposure of new security threats. Especially for critical
infrastructure where the lack of a safe system function could potentially result in harm to
human beings, awareness for these challenges is rising. Designing systems with security in
mind, however, does not eliminate the possibility of being compromised by an adversary. In
distributed systems such as ICS, single devices have to rely on the unhindered execution of
software components on other participants in their network to ensure the overall system’s
functionality.
Our thesis is that innovative methods for integrity reporting enable the assurance of un-

hindered function of devices in networked embedded systems in a way that the integration
into real-world systems is feasible. To do so, we propose building upon existing integrity
reporting methods such as remote attestation where each device provides evidence of its
system state to its peers. Existing approaches, however, add strong dependencies between
the devices, what results in reduced maintainability of the overall system. Each configura-
tion change of a single device yields to an update of all peers. Furthermore, the integration
of such methods raises requirements for the development and production process of the
used devices.
Hence, we suggest using information about how a single software component on a single

device may behave to augment the evidence generated for integrity reporting. Based on
this idea, a remote attestation method which reduces the addressed dependency between
the devices can be generated.
Moreover, we discuss the impact on earlier product lifecycle stages such as development

and production processes of such devices that arise from the integration of the proposed
security features. We show how risk management processes can be extended to gain
privilege separation of software components. For the manufacturing process, we introduce
a tool that significantly reduces the effort needed for generating manufacturing and test
procedures for customized devices based on model-based testing techniques. Building upon
this tool, a generic secure provisioning process can be used to securely establish trust for
varying devices.
Based on real networked control devices used in hydro-electric power plants, we show

that, compared to existing methods, the proposed methods and tools decrease the im-
pact on maintainability significantly by adding arguable overhead during development,
manufacturing and operation.
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Zusammenfassung

Durch die zunehmende Vernetzung und die Verwendung von Standardhardwarekompo-
nenten in industriellen Steuersystemen wurde die Anfälligkeit gegenüber Cyber-Attacken
solcher Systeme in den letzten Jahren erheblich gesteigert. Vor allem im Bereich kritischer
Infrastruktur (KRITIS), in dem eine Fehlfunktion zu erheblichen Schaden für Mensch
und Umwelt führen kann, verstärkt sich das Bewusstsein für dieses Problem. Da immer
wieder neue Angriffsmöglichkeiten gefunden werden, können aber auch gute Sicherheits-
maßnahmen erfolgreiche Angriffe nicht völlig ausschließen. In verteilten Steuersystemen
müssen die einzelnen Geräte (z.B. Steuercomputer) jedoch sicherstellen können, dass ih-
re Kommunikationspartner frei von externen Zwängen funktionieren, da sonst die eigene
Funktionalität gefährdet ist.
In der vorliegenden Arbeit wird untersucht, ob innovative Methoden zur Integritätsbe-

scheinigung sich dazu eignen, in einem für reale Systeme umsetzbaren Weg die benötigte
ungehinderte Funktion aller Geräte im Netzwerk zu gewährleisten. Dafür werden bestehen-
de „Remote Attestation“-Methoden, bei denen jedes Gerät Beweise sammelt, mit denen
sichergestellt werden kann, dass sein Systemzustand nicht kompromittiert ist, erweitert.
Aktuelle Methoden verursachen jedoch starke Abhängigkeiten zwischen den Geräten. Bei
einem Konfigurations-Update eines einzelnen Systems müssen alle Kommunikationspart-
ner aktualisiert werden. Dies führt erstens zu einer reduzierten Wartbarkeit, und zweitens
werden Anforderungen an die Entwicklungs- und Produktionsprozesse gestellt.
Diese Arbeit untersucht, ob sich Informationen über das Verhalten von Softwarekom-

ponenten nutzen lassen, um die Reduktion der Wartbarkeit zu vermindern. Basierend auf
dieser Idee, kann eine „Remote Attestation“-Methode mit verringerten Abhängigkeiten
zwischen den Geräten konstruiert werden.
Außerdem wird der Einfluss der Implementierung dieser Methoden auf die früheren Le-

benszyklusphasen wie Entwicklungs- und Produktionsprozess diskutiert. Es wird gezeigt,
wie Risikomanagementprozesse dazu verwendet werden können, eine Aufteilung von Soft-
warekomponenten bezüglich ihrer Systemrechte zu erreichen. Für den Produktionsprozess
wird vorgeschlagen, Technologien aus dem Bereich modellbasierten Testens zu verwenden,
um geheime Schlüssel sicher zu verteilen.
Die vorgestellten Methoden werden basierend auf vernetzten Steuergeräten, die in Was-

serkraftwerken verwendet werden, evaluiert. Im Vergleich zu bestehenden Methoden wird
der Einfluss auf die Wartbarkeit signifikant verringert.
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1 Introduction

Industrial Control System (ICS) are ubiquitous in our society as they are used in industries
such as electricity, transportation, chemistry or even food industries. Initially, there was
little overlap between ICS and traditional IT systems. Physically and logically isolated
specialized hardware using proprietary protocols provided the required function. This,
however, has been changing recently. The growth of the renewable energy sector, for
example, has a high impact on the technology of hydro-power plant unit control systems
[1]. Nowadays, they have to react to power grid changes in time to achieve overall grid
stability. As a consequence, control devices in single power plants as well as control devices
at different power plants have to cooperate in order to achieve the system-wide control goal.
Hence, off-the-shelf hardware and software components are used in the control devices to
handle the rising complexity [2]. Similar trends can be observed in many other domains
as well. The availability of low-cost IP devices and ever cheaper off-the-shelf hardware
components accelerates the trend towards replacing proprietary and isolated solutions in
general [3, 4, 5, 6]. Recent studies predict even more collaborative control systems and a
penetration of additional domains and applications in near future [7]. At the same time,
these trends constitute new security threats. Systems that have been isolated physically
before are now becoming more and more complex and exposed. Especially in control
systems for critical infrastructure, this development enables security attacks [8].

1.1 Motivation

1.1.1 Security Incidents in Industrial Control Systems

It is difficult to determine an accurate number of adversarial incidents in the ICS domain
— among other reasons because some incidents may not be reported at all. The Industrial
Control Systems Cyber Emergency Response Team (ICS-CERT) is an organization of the
department of homeland security and provides a trusted party to report the incidents [3].
These reports are protected from disclosure by law and the ICS-CERT performs on-site
deployments to respond and analyze the incidents. Figure 1.1 summarizes the annual
incidents reports of the ICS-CERT [9, 10, 11, 12]. According to these numbers, a positive
trend including both the number of incidents and the number of vulnerabilities related to
ICS over the last years can be observed.
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Figure 1.1: Reported security incedents during the last six years (Numbers from [9, 10, 11, 12]).

Examples of Known Attacks

One of the first famous cyber incidents in ICS was a Trojan horse in the Trans-Siberian
gas pipeline [13, 14]. The resulting incident caused ’the most monumental non-nuclear
explosion and fire ever seen from space’ [13]. It was, however, never officially confirmed.
In 1992, a former Chevron employee disabled the company’s alert system by hacking into
their computers. This act of vandalism was not discovered until an emergency occurred
and several thousand people were put at risk [15]. In 2003, computers in the Davis-Besses
nuclear power plant in Ohio were infected by a worm resulting in an outage of the safety
parameter display system and the plant process computer [16]. Stuxnet [17] was probably
the most famous and also the most sophisticated attack on ICS. This worm aimed at
manipulating and destroying centrifuges used for uranium-235 concentration in Iran. It
used four zero-day exploits and targets control devices used in this domain specifically.
In 2012, Duqu, a new malware similar to Stuxnet focussing information gathering was
discovered [18]. Havex is a Trojan that primarily targets ICS in the energy domain to
conduct industrial espionage [19]. A recent incident was the attack on the Ukrainian
power grid in 2015, resulting in a power outage for over 200,000 customers [20].

Adversaries and Targets

As these examples showed, different types of adversaries can be observed. Some attacks
are conducted by insiders while other incidents such as the Ukrainian blackout reveal
complex, external long-term attacks on multiple system levels. This observation is backed
by the ICS-CERT’s investigations which revealed that about 55 percent of all reported
incidents involved an Advanced Persistent Threat (APT) or sophisticated actors [21]. The

2
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most targeted sectors included critical manufacturing, energy, water and communication
branches. In summary, these numbers point to adversaries that are highly motivated,
educated and have enough resources to conduct an intensive long-term attack.

1.1.2 Cyber Security in Industrial Control Systems

The increased connectivity of ICS, but also the real incidents that occurred in the past
raised awareness concerning security in this domain, especially in the field of critical infras-
tructure. Governmental authorities start to mandate cyber security measures for specific
industries [22], while domain-specific security standards and recommendations are pub-
lished. In the field of process control systems for the energy industry, for example, the
ISO/IEC TR 27019 [23] extends the generic ISO/IEC 27001/27002 [24, 25] standards to
provide guiding principles for information security management. National interest groups
publish guidelines adapted to specific industries and local legislative obligations to simplify
and harmonize the implementation of cyber security processes and features [26]. These
guidelines describe processes for secure development, rollout, maintenance and updates of
control devices and how to implement such processes. Additionally, they provide guidelines
and recommendations for specific implementations from the architectural and design level
(e.g., authentication mechanisms) down to the implementation level (e.g., what protocols
to use).
In ICS, different control devices (i.e., a Remote Terminal Unit (RTU)) are connected to

achieve the overall control goal. The implementation of security by design and protection
mechanisms such as authentication is a mandatory step to gain reasonable confidence in the
system’s security. Remote Terminal Units (RTUs) and their interfaces are, however, often
employed in insecure environments, which makes them susceptible to being compromised
by adversaries.

1.2 Problem Statement

Integrity Violations

While devices in ICS are typically physically secured, the rising demand for connectivity,
however, increases the logical attack surface significantly. As discussed before, this fact has
already been actively exploited. At the same time, successful attacks cannot be prevented
completely. A successful attack enables an adversary to compromise a system component
and the alteration of its configuration (i.e., an integrity violation). Networked devices
depend on information they receive from their communication partners and make their
decisions based on the received information. Integrity violations of single components or
devices could thus compromise the overall system.

3
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Goals

In this thesis, we want to examine whether it is possible to integrate a mechanism that
detects such integrity violations in a feasible way for embedded devices (e.g., RTUs) in
domains such as ICS. In order to be feasible, such a method

• (1) should not significantly complicate maintainability of the overall system at run-
time,

• (2) should be generally applicable for various types of systems in the embedded
domain, and

• (3) should not add unacceptable overhead in terms of
– (3a) computing time, memory and communication during operation and
– (3b) additional effort during earlier product lifecycle stages such as development

or production.

Boundaries and Approach

This thesis focuses on the detection of integrity violations of networked embedded devices.
It was carried out as part of a research cooperation project in the field of control systems
for hydro-electric power plants1. RTUs in such environments are consequently the main
use case that will be referred to in the course of this thesis.
In order to mitigate the problem of compromised devices, mechanisms to establish trust-

worthiness in the software configuration (i.e., the running software components and their
configurations) of remote devices have to be ensured. Trustworthiness, in this context,
means that the device behaves demonstrably compliant with its intended functionality.
Assuming that the initial system configuration represents the intended functionality, a
system is trustworthy if its integrity is not violated. In order to establish trustworthiness,
integrity reporting where a prover reports its integrity to a challenger is used as shown in
Figure 1.2.
The prover collects evidence of the integrity of its configuration. In the trusted com-

puting context, this process is called measurement [27]. In order to do so, the prover
identifies system properties that can be used as integrity proof later on. One example
of such integrity properties is the content of the program memory. This property reflects
the executed program code and can therefore be used to detect integrity violations in the
system.
Based on a policy that defines rules and reference values, the challenger is able to verify

the prover’s integrity. In the exemplary use of memory content as integrity property, the
policy would consist of a reference value of the memory content (i.e., a copy) and a rule

1The HyUnify Project: https://www.tugraz.at/en/institute/iti/research/projects/hyunify/
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Prover

Integrity Representation
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Property1 = Value1
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Verify Prover
Integrity
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Figure 1.2: Integrity Reporting: The prover collects evidence of its software configuration (mea-
sures its configuration) by storing values of properties that reflect the current system
state. The challenger compares the measurement to a reference in order to verify the
integrity of the prover.

that defines this reference as valid system state. Whenever the executed software on the
prover is changed, the challenger would detect the integrity violation. Thus, the value of
the reference depends on the prover’s system state.
In the context of trusted computing, this process is called remote attestation, is well

known and still a research topic. Its application in real-world systems, in particular in
embedded devices, is, however, limited. The main problems concern the maintenance of
the reference measurements [28]. Especially in distributed embedded systems such as in
typical ICS architectures, these references have to be distributed to all possible commu-
nication partners of each proving device. Moreover, every time the prover’s configuration
is updated, all references have to be redeployed. This is a tedious task and not feasible in
real-world distributed systems. In order to reduce the degradation of system maintainabil-
ity resulting from the integration of such technologies (i.e., down times due to updates),
a feasible remote attestation method would weaken the dependency of the challenger’s
reference measurements and the prover’s system state.

Research Challenges

When exploring such a method, the main challenges are

• the identification of system properties that are suitable for evaluating integrity in
order to enable feasible attestation for a given domain,

• the system architecture and design of the attestation method that enables an in-
tegration of the method into various systems in order to evaluate the attestation
method, and
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• the evaluation of the impact on the development and production processes to
the system and how these processes have to be adapted.

1.2.1 Identification of Integrity Properties

The integrity property of a computer system is seen as the guarantee that the system will
perform as intended by the creator [29]. In other words, the system meets its specification
in the first place and has not been modified in an unauthorized or unintended way (the
absence of improper system alterations) [30]. Integrity, however, cannot be measured
or identified directly. There is, thus, no method to create a strong statement about
the system’s integrity without further information. Usually, a detour via other system
properties is taken.

The first challenge is to identify properties that enable a feasible attestation in the ICS
domain. A property should reflect the integrity of the system in a way that enables a
considerable credible statement about the system’s state. At the same time, the identifi-
cation of the properties (i.e., the measurement) as well as the verification should easily be
possible. The most important aspect in this context is to reduce the dependencies of the
challenger’s reference measurements on the prover’s configuration.
Therefore, a common understanding and also classification of such properties is needed.

Additionally, is has to be understood how they can be used to make a statement about the
overall integrity of a distributed system. Moreover, a chosen property has to be measurable
and verifiable in a feasible way, while impact on the system behaviour and the size of the
reference measurement has to be arguably small.

1.2.2 Integration of the Remote Attestation Method

Based on the chosen properties, a trusted computing architecture has to be integrated
with the functional system. It must be ensured that a potentially malicious component
on the prover cannot forge already measured properties (i.e., forge the evidence of the
system’s state).
At the other end, the verification of these measurements has to be integrated into the

challenger. Since the prover’s configuration should be verified as often as needed (i.e., each
time the challenger communicates with a device with unknown or changed configuration),
the verification mechanism must not add significant computing overhead. At the same
time, it has to assure the quality of the statement about integrity.

1.2.3 Impact on the Development and Production Process

The integration of the attestation middleware does not only have an impact on the opera-
tional lifecycle stage of an RTU but may also raise requirements for the development and
production lifecycle stages of the devices.
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As we will discuss later in this section, the chosen attestation middleware requires the
system to implement privilege separation. This means that all components have to be
classified regarding their capability of accessing critical system resources or functions and
isolated based on this classification. In distributed control systems, however, the access
to a resource on one specific device does not necessarily provide a statement about the
privilege classification of the component. The critical assets (i.e., resources that should be
protected) are at system level (i.e., the distributed control application). One example is
the privilege to change important control parameters. In distributed systems, the mapping
of local privileges (e.g., write access to a specific file on a specific device) to such system
level privileges is often not straightforward.
One key requirement for establishing trust is assured identification or authentication,

which usually relies on secrets (e.g., private keys) that have to be deployed on the devices.
This process is called secure provisioning or imprinting and can be executed during pro-
duction, deployment or configuration phases of a device. Studies suggest establishing trust
during deployment of the devices [31, 32]. They argue on the basis of the high complex-
ity and costs in manufacturing-based approaches. Moreover, whenever the manufacturer
is not the same company as the Original Equipment Manufacturer (OEM), it has to be
ensured that the manufacturer’s processes can be trusted. In our setup, however, secure
provisioning during deployment should be avoided because of the added complexity and
the potential lack of internet access when setting up the devices. Therefore, a lightweight
provisioning process that can be executed in a potentially malicious environment (external
manufacturer) is required.

1.3 Contributions

Figure 1.3 illustrates the suggested methods and contributions to assure system integrity
in distributed industrial control systems. First, we identify patterns to show how to as-
sure integrity in distributed systems in general and what classes of properties can be used.
Subsequently, we propose the privilege of software components as potential property can-
didate and discuss how this property potentially reduces the dependency of the reference
measurements on the prover’s system configuration in different embedded system settings.
Based on the identified patterns, we examine the security architecture that is needed to
integrate remote attestation based on this property in different application domains for
two different use cases. Moreover, we identified requirements for the development and
production processes for devices that use this type of attestation and proposed tools and
process extensions to implement these requirements. Additionally, we evaluated the pro-
posed methods, architecture and process changes based on a real control device used in
hydro-electric power plants.
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Figure 1.3: Overview of the suggested methods and contributions of this thesis

1.3.1 Integrity Assurance Techniques

We identify two basic approaches to assure integrity in distributed systems and document
them as patterns. Integrity Protection adds the ability to enforce a policy that pro-
tects a system from a behavior that would violate its integrity. Integrity Attestation
(also known as ’Remote Attestation’) is used to prove the system’s integrity state to a
another system.
Similar to the verification entity, we document two patterns, Static Integrity Prop-

erties and Dynamic Integrity Properties, as classification parameters regarding
their evaluation time. Static Integrity Properties reflect the state, while Dynamic
Integrity Properties reflect the behavior of a system.

Based on these two dimensions, we propose a classification scheme for integrity assurance
methods and show how existing solutions as also the remote attestation method proposed
in this thesis correspond to this scheme. Moreover, this classification will be used later as
basis to choose proper integrity assurance methods for the proposed security architecture
for RTUs.

8



1 Introduction

1.3.2 Privilege-Based Remote Attestation

In order to address the problem of maintainability, we introduce PRIvilege-Based remote
Attestation (PRIBA). Software components that do not have the privileges required to
harm the integrity of another component, are removed as dependencies for reference values.
The presented approach potentially reduces the size and the update frequency of the

challenger’s reference measurement list. Additionally, we examined how to identify (or
measure) such privileges with different approaches based on library linking, direct library
calls or comprehensive call graphs.

1.3.3 Development and Production Processes

We identify two fundamental process requirements when building a trusted computing
architecture based on PRIBA: privilege separation and secure provisioning.
During the development process, risk assessment and privilege separation have to be

conducted (i.e., splitting up monolithic modules concerning their privileges and strictly
isolating the resulting components). We propose augmenting standard risk management
processes to achieve privilege separation and a classification of subsystems regarding their
security criticality. Explicit mapping of system level assets (e.g., access to the control
function) to software level assets (e.g., write access to a file) allows the understanding
of the system level privileges of every software component. Based on this classification,
subsystems that require in-depth threat analysis and code reviews are revealed. Moreover,
the process provides a list of privileges each component requires and, thus, eases the
generation of sandboxing policies to ultimately enable isolation during runtime.
In addition to the challenge of secure provisioning during the manufacturing process,

another challenge has to be faced: The RTUs consist of several sub-modules and the
production process has to handle both product lines and customization. Therefore, no
single provisioning process can be applied to all types of devices. To master this challenge,
we proposed a manufacturing and test entity that uses model-based testing techniques
for assembly and test steps. This approach significantly reduces the effort to configure
the manufacturing procedures for varying devices. Moreover, the proposed system uses
an OEM-controlled manufacturing device that enables secure provisioning at the contract
manufacturer’s site. We show that this assumption even holds true when the manufacturer
is partly compromised. Through the previously introduced manufacturing entity, one
generic provisioning process can be applied to a variety of different devices.

1.3.4 Evaluation and Use Cases

In order to show the applicability of PRIBA, we integrated two use cases in different
domains. First, we discussed a comprehensive trusted computing architecture for a smart
home use case, implemented on top of an Internet of Things (IoT) middleware. Due to the
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transparent protocol and the reduced set of known references, this solution is practicable
for systems with a high amount of services/devices.
The second use case demonstrates the applicability in the ICS domains and is based

on RTUs used in hydro-electric power plants. With the help of the integrity assurance
patterns, we were able to formulate and argue a security architecture for RTUs where each
device protects its own integrity and all devices mutually attest their integrity.
Based on the RTU use case, we examined the overhead concerning computing time,

memory and communication for an RTU used in hydro-electric power plants. While the
approach adds significant amount of boot-time, the runtime overhead is acceptably low
for this application. Additionally, the two implementations allow an evaluation of the
maintainability aspect of PRIBA. The proposed remote attestation method significantly
reduces the number of required reference measurements for both the smart home and the
RTU use case.
Moreover, we conducted a security analysis to show PRIBA does not have any disadvan-

tages compared to binary attestation — a state-of-the-art attestation method proposed by
the Trusted Computing Group (TCG). Due to the requirements regarding isolation and
separation of privilege, even fewer attacks are possible.

1.4 Organization of the Thesis
The scientific contributions of this thesis, the corresponding chapters and publications are
summarized in Table 1.1. The rest of this dissertation is organized as follows: chapter
2 discusses the background and existing work related to this thesis. Chapter 3 describes
the documented patterns. Moreover, the proposed remote attestation method will be
described and classified based on these patterns. Chapter 4 explains the required process
adaptions and Chapter 5 discusses the applicability of the approach by discussing two use
cases and evaluations concerning maintainability, resource and process overhead as also
security. Chapter 6 concludes the thesis by summarizing the obtained results beyond the
state of the art and by suggesting future research topics.
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Table 1.1: Overview of the contributions of this thesis

Challenge Contribution

Identification of
Integrity Proper-
ties

• Classification of integrity enforcing technologies in dis-
tributed systems based on patterns (Section 3.1.1, [Paper
D]).

• Classification of integrity properties regarding their verifi-
cation time based on patterns (Section 3.1.2, [Paper E]).

• PRIvilege-Based Attestation, a method to improve the
maintainablity compared to binary-based attestation based
on software privileges (Section 3.2, [Paper A]) and an ex-
amination whether static binary analysis is feasible to
identify these privileges (Section 3.2.4, [Paper I]).

System Design
and Architecture

• Integration and analysis of PRIBA into
– IoTivity for an exemplary smart-home use-case (Sec-

tion 5.1.1, [Paper B]), and
– existing RTU architecture for hydroelectric power

plants (Section 5.1.2, [Paper C])

• to enable evaluations regarding the
– the maintanability of the proposed method for the

described use-cases (Section 5.2, [Paper B], [Paper
C]),

– the overhead of the proposed method for the de-
scribed use-cases (Section 5.3, [Paper B], [Paper C]),

– methods security properties (Section 5.5 [Paper B]).

Impact on De-
velopment and
Production Pro-
cesses

• Adapted development process that includes privilege sep-
aration based on identified high-level assets (Section 4.2,
[Paper F])

• Adapted production process that enables secure provision-
ing of diverse devices by
– using model-based testing technologies for the manu-

facturing procedure (Section 4.3.2, [Paper G])
– use the test-framework to securely deploy secrets

(Section 4.3.3, [Paper H]) 11





2 Background

This section starts with a discussion of the basic structure and terminologies used in Su-
pervisory Control and Data Acquisition (SCADA) systems. Subsequently, the security
objectives, especially the differences compared to conventional IT systems, will be de-
scribed. Then, existing Intrusion Detection System (IDS) solutions that target the Indus-
trial Control System (ICS) domain will be reviewed to motivate the need for device-level
integrity verification and reporting (attestation) capabilities. In this work, integrity re-
porting is achieved by trusted computing methodologies. Therefore, this chapter provides
an overview of trusted computing basics and existing integrity attestation methodologies.
This section is mainly composed of parts from [Paper J].

2.1 Industrial Control Systems

The National Institute of Standards and Technology (NIST) defines an ICS as a general
term that comprises different types of control systems such as SCADA systems, Distributed
Control System (DCS) or Programmable Logic Controller (PLC) [3]. In general, an ICS
is in charge of controlling a physical process. A control device (i.e., a computing device)
reads physical values and decides how to manipulate the process. In order to do so,
sensors and actuators are needed. Moreover, a Human-Machine-Interface (HMI) may be
provided to allow operators to control the algorithms, supervise the process or processing
the data. While such HMIs are often local, the need for remote access and maintenance or
cooperation of controllers has been rising recently due to the increased connectivity and
distribution of processes.
SCADA systems are used to control, supervise and manage distributed control systems

centrally, as illustrated in Figure 2.1. At field or process level, the controlled physical
process is measured and manipulated through sensors and actuators. On device level,
Remote Terminal Units (RTUs) (depending on the provided functionality, they are also
referred to as PLC) are the actual control devices that execute the control strategy and
interface with the environment (i.e., communicate with sensors and actuators). Since
the control strategy could be distributed, the RTUs have to communicate directly with
each other. Each location maintains its local SCADA server that collects information
from the corresponding RTUs. All local servers synchronize with the central SCADA
server in order to enable the central SCADA client to supervise all plants. A real system
would contain additional clients at the different sites and also HMI panels which are
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Figure 2.1: Generic SCADA System Structure: Different (geographic) distributed processes are
controlled locally but supervised at one central station.

directly mounted on the control devices. However, these device provide similar (although
degraded) functionality and will for the sake of simplicity not be considered here.

2.1.1 Security Considerations in Industrial Control Systems

Traditionally, ICS were not comparable to usual IT systems. Proprietary protocols, hard-
ware and software were used to control a physical process locally. The devices and inter-
faces were physically secured and not connected to any open network, which reduced the
need for IT security solutions. Nowadays, low-cost IP devices usually replace these pro-
prietary solutions [3] and new requirements, for example in the field of energy generation
[1], demand the cooperation of geographically distributed control systems. This leads to
new attack vectors which are already exploited actively [8]. In contrast to usual IT sys-
tems which handle data, ICS handle physical processes within particular environments. A
malfunction could cause risk to health and safety of human lives, serious damage to the
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environment or a breakdown of critical infrastructure such as the power grid. For that
reason, national governments start forcing the operators of critical infrastructure by law
to implement state-of-the-art security measures [22].
The main difference between traditional IT systems and ICS is the priority of security

properties [3]. For most IT systems, the importance of confidentiality exceeds that of
integrity and availability. In ICS, however, a loss of the function’s availability is often
safety-relevant or may have a huge (financial) impact on companies or even society (e.g.,
critical infrastructure). Therefore, availability is the main goal in such systems. Since
component integrity is a requirement for ensured availability of the expected function,
integrity is just as important. Confidentiality is, although important, typically considered
a second priority. Information leakage is usually not as critical as the loss of functionality
[3]. This change of priority is the main reason why security solutions in the ICS domain
are often different to general IT systems.

2.2 Intrusion Detection Systems (IDS)

While hardening an ICS with regard to security is an important task, neither remote
attacks (e.g., exploiting software bugs or using social engineering) nor insider attacks can
be prevented completely (e.g., [17, 20, 33]).
Intrusion detection or prevention systems are used to analyze information systems and

detect signs of intrusion [34]. Concerning the layer of application, IDS can roughly be
separated into two groups. Network-based IDS monitor network traffic and may run on
dedicated devices without directly affecting the actual system components. Host-based
IDS are located at the host computer, server or control device to monitor ongoing events
on the equipped device at the cost of performance overhead. Independently from the
system layer, these solutions can be grouped into three categories regarding the type of
analysis [34]: signature, integrity and statistical analysis.
Signature analysis is probably the most known type. Pattern matching is used to identify

suspicious programs, data or activities. Network-based IDS compare network traffic on
different protocol levels to known attack patterns. Snort [35], for example, provides rules
for common protocols such as HTTP and TCP but also for domain-specific protocols such
as Modbus or DNP3. Host-based IDS can check configuration files or executables against
known adverse programs or configurations.
Integrity analysis identifies whether a specific component has been altered in an unau-

thorized or unintended way. Usually, cryptographic mechanisms such as hashes or signa-
tures are used to verify the integrity of a message, a configuration file or an executable.
Statistical analysis (often referred to as anomaly-based analysis) tries do identify devi-

ations from normal behavior. Signature analysis can only identify known attacks, while
integrity analysis relies on a known reference state. By inspecting the behavior of a com-
ponent, it is possible to identify attacks that have not been known before. However,
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depending on the actually used metrics, statistical analysis may be tricked very simply or
produce a significant amount of false positives [36].

2.2.1 Intrusion Detection in Industrial Control Systems

Due to the specific constraints in the ICS field (availability comes before integrity and
confidentiality) and the frequent use of performance-constrained devices for the control
task, many domain-specific intrusion detection mechanisms have been proposed. Since
SCADA systems integrate classical IT systems, control systems and physical processes,
solutions for the process, the device and the network level exist [36, 37].

2.2.2 Anomaly Detection on Different System Levels

Process Level

Intrusion detection systems trying to detect intrusions on the process level are mainly
concerned with false data injection or false control commands [38]. While many systems
integrate basic integrity checks such as threshold or state estimation to identify false values
arising from wrong measurements, these techniques are not sufficient to detect malicious
attackers being able to control sensor readings.
In a typical control loop, a physical process is measured by sensors. The controller uses

these measurements, usually together with state information, to calculate the excitation of
actuators. Since this process follows physical laws, anomaly detection on the process level
uses a model of the physical process and compares measured values with an estimation
based on the actuator excitation. In [37], the authors show that most IDS for control
systems use behavior-based detection (statistical analysis) and nearly half of all surveyed
IDS use information about the physical process model to identify intrusions.
In [36], the authors identified two main model types: auto-regressive models basically

predict the next sensor value based on the last N measured values. Linear dynamic state-
space models, on the other hand, also take into account control inputs and internal states.
Whenever the measured value significantly deviates from the expected one (generated
by the model), an event occurs. Stateless anomaly detection systems raise an alarm at
the first event, while stateful systems take track of such events and combine historical
deviations to decide whether an alarm should be given. While most surveyed methods use
stateless detection, stateful approaches generally perform better.
Another class of contributions try to use more general models to identify anomalies

independent from the underlying physical process. Such methods use clustering of cor-
related sensor signals to react to entropy changes [39] or Gaussian mixture models [40].
Also, multivariate statistical approaches are used to distinguish between normal process
disturbances and intrusions [41].

16



2 Background

Network Level

Since the network level which is composed of the SCADA servers and the connections to
the control devices is similar to ’normal’ IT systems, at this level IDS are also comparable
[37]. Most ICS/SCADA-specific IDS provide rules for special protocols such as CAN,
DNP3 or Modbus. While network-based IDS are a good substitution since they do not
interfere with the system function, they suffer from visibility problems: The IDS nodes only
see a subset of the system (i.e., accessible network packets) and, therefore, cannot make
strong statements about the overall system integrity. Due to the high amount of legacy
devices in SCADA networks, network-based IDS are nevertheless important to detect a
compromised device that do not provide state-of-the-art security measures. Therefore,
much research is currently done in this field. Bro [42], for example, is extended to support
automated white-listing for the IEC-61870 protocol what leads to reasonable small false-
positive rates [43]. Other approaches try to combine process level and network level IDS
to increase detection rates [44, 45].

Device Level

IDS on the device level try to identify intrusions or integrity violations of single devices.
Similar to the process level methodologies, for example, one could create a plausibility
checker to verify the decisions (i.e., the calculated actuator stimuli) of a control device.
Also, specific malware detection tools for PLC code have been proposed [46]. In [47], the
authors use fingerprinting techniques to detect intrusions on the device and network level.
They measure the cross layer response time (i.e., the time difference between a TCP ACK
and the actual application layer response) and operation time (i.e., the time a device needs
to execute a command) to fingerprint devices and software. Significant deviations from
these fingerprints would indicate the existence of an intrusion.

2.2.3 Summary

A variety of IDS have been proposed on each level of ICS. Each layer covers a set of
possible attacks. In contrast to this thesis, the vast majority of ICS-specific intrusion
detection solutions take into account the physical process or work on the network level,
which is important to deal with legacy devices and resource-constrained hardware. In this
thesis, we focus on the device level to explore one possible method that can be used in
future generations of control devices in ICS. Chapter 3 will propose a method for remote
attestation that could be feasible in such networks under some specific constraints and
protect networked control devices from being silently compromised.
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2.3 Trusted Computing

In this thesis, we suggest using trusted computing techniques to enable integrity reporting
in ICS. This section summarizes some principles of this field of research. The Merriam-
Webster dictionary defines the term trust as

(A) Assured reliance on the character, ability, strength, or truth of someone
or something, or
(B) one in which confidence is placed.

Thus, trust means that some entity can rely on a property of another entity in a guaran-
teed (assured) way. Generally, the term trust is ambiguous for many people. In trusted
computing, trust is used in the sense of behavioral reputation. Something is trusted if
it behaves as anticipated. In distributed computing systems, trust is a very important
property since the function of one entity depends on the assumption that other entities
behave as expected.

In computing systems, one can trust another person or a device under the following
presumptions [48]:

• it can be identified unambiguously

• it operates unhindered and

• there is known, consistent good behavior of the entity (OR some third person who
is trusted attests such good behavior).

The first premise to trust an entity is identification. You can only expect a certain
behavior of someone/something you know. Second, you have to assure that this entity
works unhindered. Even if the entity would work as expected for itself, you have to ensure
that there is no external (or internal) force that hinders the entity from doing so. Third,
you have to have some reference value, some ’reason’ why you trust the entity – either
by experience (e.g., the entity has been behaving ’good’ for a long time), or someone you
trust certifies the trustworthiness of the entity.

2.3.1 Trusted Computing Group

In 1999, the Trusted Computing Platform Alliance (TCPA), a consortium of different
industry vendors, aimed at generating an open specification to build a solid foundation to
increase trust in PCs [49]. In their first white paper, they discuss the seeming contradiction
of open platforms and trust as also the limitations of software-based trust. They advocated
the TCPA subsystem, a mechanism that is used to provide evidence for trust in the whole
platform. The subsystem comprises two building blocks:
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• a dedicated hardware module, the Trusted Platform Module (TPM) [50], which is
the anchor to prevent all software-based attacks.

• software that performs integrity metrics in conjunction with the TPM.

With the help of this subsystem, the TCPA aims at creating a hardware-based foun-
dation for trust based on the integrity metrics. These are platform characteristics that
can be used to establish a platform identity. Basically, they propose to hash all com-
ponents and extend these so-called ’measurements’ to the TPM prior to the execution of
every component. This process prevents software components from hiding the fact of their
execution and is nowadays known as ’Authenticated Boot’ or ’Measured Boot’.
In 2003, the Trusted Computing Group (TCG) [51] developed out of the TCPA and

continued TCPA’s work. The TCG defines trust as [52]:

(Trust is) the expectation that a device will behave in a particular manner
for a specific purpose. A trusted platform should provide at least three basic
features: protected capabilities, integrity measurement and integrity reporting.

This definition is similar to the previously introduced behavior-based definition of trust.
Also, the integrity property of a computer system is seen as guarantee that the system will
perform as intended by the creator [29]. In other words, the system meets its specification
in the first place and has not been modified in an unauthorized or unintended way. Thus,
one can trust a system if the initial system state is trusted and it is ensured that its
integrity has not been not violated. In order to trust the initial system state, one has
to know the system’s specification and it has to be assured that the system fulfills this
specification. Moreover, the specification must reflect the behavior that is expected from
the system. Additionally, processes in the development (and even in the production and
deployment) phases of a system have to be in place to ensure the trustworthy initial
system. We do not consider these requirements in this thesis but it is important to keep
in mind that there are important prerequisites when using the TCG’s approach.
The TCG defines three features a trusted platform has to encompass. Similar to the

previous proposal of the TCPA, a trusted platform has to provide protected capabilities
(which means a TPM in the TCG’s specification) and hardware-backed software mecha-
nisms to measure and report (attest) the integrity of the platform.

2.3.2 Protected Capabilities
Protected capabilities are a set of commands with exclusive permission to access shielded
locations. A TPM is a hardware module that implements such protected capabilities. It
implements key management, authenticated integrity measurement reporting and shielded
locations (e.g., the Platform Configuration Register (PCR)) to protect the measurements.
The basic blocks of a TPM are:
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• a Non Volatile Memory (NVM) which is utilized to store the Storage Root Key
(SRK) and the Endoresement Key (EK) as well as user-defined values. This memory
is physically located in a shielded location where it is protected against interference
from the outside and exposure.

• an RSA engine which is used for asymmetric encryption/decryption of keys/data
and for creating and verifying digital signatures.

• an SHA-1 engine employed for Hashed Message Authentication Code (HMAC).

• a True Random Number Generator (TRNG) which is used for key generation.

Platform Control Register (PCR)

PCRs are used to save measurements on the TPM. It is necessary to prevent arbitrary write
access for these registers. Otherwise, a malicious software with privileged access would
be able to write false measurement states and, therefore hide the fact of its execution.
In order to handle this problem, a TPM only provides an ordinary read and an extend
command. The extension of a PCR is a function that hashes the concatenation of the
previous value (in the register) and the new value (the new measurement). This process
is non-commutative. Consequently, writing an arbitrary value into such registers (i.e.,
hiding the fact of execution) is protected through the first pre-image resistance of the
used cryptographic hash.

TPM Keys

In order to implement different types of functions, the TCG defines different key types for
TPMs [50].

• Endorsement Key (EK): This key is the unique platform identity key. Some
manufacturers create the key during production and sign it to certify that it comes
from a TPM. It cannot leave the TPM and cannot be used for signing.

• Storage Root Key (SRK): The SRK is the root element of the key hierarchy and
used to generate keys of the next three key types.

• Storage Key: Used to encrypt other elements in the hierarchy.

• Signature Key: Used for signing operations.

• Binding Key: Used to encrypt small amounts of data (like keys used for symmetric
cryptography).

• Attestation Identity Key (AIK): These keys are used as aliases for the EK to
sign PCR values for remote attestation as will be described later in this section.
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Since the Non Volatile Memory (NVM) of the TPM is very limited, only the EK and SRK
are stored permanently. All other keys are managed in a tree structure and encrypted by
their parent.

2.3.3 Integrity Measurement and Reporting
Besides protected capabilities, a trusted platform according to the TCG has to provide
integrity measurement and reporting features. Integrity measurement is defined as [52]

[...] the process of obtaining metrics of platform characteristics that affect
the integrity (trustworthiness) of a platform and putting digests of those met-
rics in PCRs.

The starting point for measurements is the Root of Trust for Measurement (RTM).
A Static Root of Trust for Measurement (RTM) starts the measurement at a well-known
starting state (i.e., power on). Each subsequently executed component has to be measured
and extended to a PCR prior to its execution. This builds up the so-called chain of
transitive trust and enables the verification of the system’s state at a later point.
Remote attestation (integrity reporting) is the process of proving the integrity of the

configuration of one system (prover) to another entity (challenger). The prover (also
referred to as appraiser [27]) supplies evidence for its claim (the integrity measurements).
A challenger has to store a policy or reference that enables the verification of whether the
measured configuration represents a non-compromised system. Additionally, a protocol
for securely sharing this information has to be in place. Usually, the challenger sends
a random value, called nonce, to request the prover’s configuration. The prover signs
the measurement together with the nonce. This is done by the TPM with an AIK. The
challenger is now able to verify whether the retrieved measurement complies to its policy
to check the signature with the public part of the AIK in order to ensure the integrity of
the reported values.

2.3.4 Methods for Integrity Measurement and Reporting
A system’s configuration is represented by the software components running on the device
and their configurations. Remote attestation methods for binaries, properties, security
policies and platform-specific permission systems have already been introduced. Two of
the most common methods are binary and property-based attestation.
The Integrity Measurement Architecture (IMA) [53] generates a measurement list of all

binaries and configuration files loaded by the system. The cumulative measurement (i.e.,
hash) of the measurement list is extended into a PCR. To attest the system’s state, the
prover sends the measurement list to the challenger and proves its integrity with the help
of the TPM. Binary measurement approaches are not suitable for systems with different
or dynamic configurations because each challenger has to maintain a comprehensive list of
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known ‘good’ configurations. Especially when system updates or backups are taken into
account, the set of possible configurations may grow to an unmaintainable size. Moreover,
the verification of all binaries is not necessary every time. The challenger might only be
interested in modules which may affect the integrity of the target software. Our work uses
IMA for the attestation of highly privileged software components.
Property-based attestation [54, 55] overcomes some issues of binary-based methods. A

challenger is only interested in whether the prover fulfills particular security properties or
not (e.g., strict isolation of processes). Therefore, a set of possible platform configurations
is mapped to different properties. This approach eliminates the need for comprehen-
sive lists of reference configurations on the challenger by introducing a Trusted Third
Party (TTP), which is in charge of the mapping. Similar approaches focusing on privacy-
preserving features [56] do not need a TTP and use ring signatures to protect the prover’s
configuration from exposure. In this thesis, we contribute PRIvilege-Based remote Attes-
tation (PRIBA), which uses the absence of privileges that enable specific components to
harm other component’s integrity as attestation property.
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(PRIBA)

This chapter starts with a description of patterns we identified concerning integrity as-
surance in distributed systems. With these patterns, we will propose a classification of
integrity assurance techniques based on the component which verifies integrity and the
type of property that is used to decide on the integrity of a components configuration.
Moreover, we will show how existing approach fit into this classification to support the
understanding of what the different integrity assurance techniques actually protect. Then,
PRIvilege-Based remote Attestation (PRIBA), a new remote attestation method will be
introduced and discussed.

3.1 Integrity Assurance Techniques

3.1.1 Integrity Patterns

In order to ensure the integrity of a software system, the integrity of all modules has to
be unharmed. The integrity of a component (e.g., a software application) M is violated
whenever M is altered in an unintended way or another module is able to harm the
functionality of M. A module that is maliciously altered may not act on behalf of the
creator of the system and may harm the system’s overall integrity. Therefore, a large
body of work exists to assure integrity in distributed systems.

We identified two basic patterns concerning the integrity verifying entity. The In-
tegrity Protection pattern describes systems that protect their integrity by prevent-
ing harmful actions. Integrity Attestation, on the other hand, is a procedure that
allows a system to verify the integrity of a remote system.
In both cases, the integrity of a system A is evaluated (in terms of evidence of the

system’s state is collected). For Integrity Protection implementations, these evalua-
tions are verified against a policy on the same system. System A, thus, enforces its own
integrity. Integrity Attestation implementations send these evaluations to a remote
system B. In this case, B verifies the integrity of A by verifying whether the evaluations
comply to B’s policy for A. This process can be triggered periodically or at specific events.
Table 3.1 shows the differences concerning the application of the two patterns. The in-

tegrity of a software module can be evaluated and verified at installation time, at execution
time (i.e., prior to the execution) and at runtime. Moreover, these processes can either be

23



Check your Privilege: Remote Attestation in Networked Embedded Systems

performed by the verified system (internal) or by another entity (external). Depending on
the actual implementation evaluation and verification time for Integrity Protection
differs. However, both the verification and evaluation is done internally by the verified
system. Integrity Attestation uses similar evaluation concepts, but the verification
is done by a remote entity at runtime.

Table 3.1: The differences of the presented patterns. Depending on both, the time and executing
entity of evaluation and verification, a different pattern can be applied.

Pattern Evaluation
Time

Verification
Time Evaluation Entity Verifying Entity

Integrity Protection Varying Varying Internal Internal
Integrity Attestation Varying Runtime Internal External

3.1.2 Integrity Property Patterns

All systems implementing the patterns presented in the last section aim at ensuring their
integrity. This property, however, cannot be evaluated directly. Therefore, the imple-
mentations use other system properties and verify them against a policy to determine
whether integrity is violated or not. We examined such properties used in existing solu-
tions and identified two patterns regarding their evaluation and verification time. Static
Integrity Properties are used to reflect the integrity of a system by detecting changes
in static system parts, while Dynamic Integrity Properties are used to reflect the
integrity of a system by detecting abnormal behavior.

Static Integrity Properties

As illustrated in Figure 3.1, Static Integrity Properties do not change during run-
time. Therefore, only one point of evaluation (1) is needed to gain a representation of the
system’s integrity. The integrity representation is a list of properties and their correspond-
ing values. At some point in time (before or during execution), the integrity representation
is verified (2, 3). Verification is done by comparing the values of the integrity representa-
tion with an integrity policy that defines allowed values. During runtime, no re-evaluation
is needed since the properties will not change anymore. Therefore, no additional comput-
ing overhead for evaluation is needed. However, the verification of the integrity can be
done multiple times by different entities.

Dynamic Integrity Properties

As illustrated in Figure 3.2, Dynamic Integrity Properties change over time. There-
fore, one evaluation prior to every verification has to be done. At time (1), for example,
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Figure 3.1: Static properties are evaluated before a component is actually used and do not change
over time. Therefore, the integrity representation is valid during the whole time of
execution or use and there is no need for re-evaluation for every verification. Figure
adapted from [Paper E].

the value of Property 1 differs compared to time (2). Moreover, Property 3 vanishes com-
pletely during time (1) and (2). The integrity policy, however, requires the existence of
this property and, therefore, the component’s integrity is considered violated at time (2).

3.1.3 Classification and Examples

With the four described patterns, we propose two-dimensional classification of integrity
assurance methods. The first dimension reflects the verification entity (Integrity Pro-
tection or Integrity Attestation). The second dimension is the property type. As
shown in Table 3.2, existing techniques fit well into the proposed scheme.
One common integrity protection mechanism based on static properties is secure boot

[57]. Here, a cryptographic hash of each executed binary is created and compared with
a reference prior to the execution to prevent maliciously altered or unauthorized software
from being executed. Checksums [58] or digital signatures [59] are used to verify data
integrity before certain information is used.
Sandboxes are one of the most common technologies where dynamic properties (i.e.,

application behavior in terms of resource access) are used to protect the system from
being corrupted. Canaries [62] are used to detect dynamic changes of program stacks that
could result in a change of the control flow. Other systems inspect kernel data structures
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Figure 3.2: Dynamic properties may change over time. Therefore, they have to be re-evaluated
prior to every verification. Figure adapted from [Paper E].

Table 3.2: A classification for integrity assurance methods based on the introduced patterns.

Verification Type Property Type Examples (selected)
Protection static Secure Boot [57]

Checksums [58]
Digital Signatures [59]

Protection dynamic Sandboxes (e.g., [60, 61])
Canaries [62]
Contextual Inspection [63]
Virtual Address Space Access Control Pattern [64]
Voting Pattern [58]
Distributed Safety Pattern [65]

Attestation static Binary Attestation [53]
Policy-Reduced IMA [66]
Privilege-Based Attestation (this thesis)

Attestation dynamic ReDAS [67]
DynIMA [68]
Control-Flow Attestation [69]
Dynamic Privilege-Based Attestation (future work)

to identify potential malformed function pointers [63]. A common method is to prevent
processes from accessing memory regions arbitrarily [64]. Voting [58] or the Distributed
Safety [65] pattern are usually used in the fault-tolerance domain but can also be used
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to identify unintended behavior of one instance.
Some attestation methods based on static properties have already been introduced in

Chapter 2. Also, PRIBA, the method proposed in this thesis, is part of this class. Dynamic
attestation methods attest runtime properties such as function base pointers [67], use taint
analysis [68] or attest the control flow path [69]. Moreover, as discussed in Chapter 6,
PRIBA can be modified to attest dynamic behavioural changes of applications as well.

3.2 Privilege-Based Remote Attestation
We aim at integrating Integrity Attestation based on Static Integrity Proper-
ties into networked embedded devices such as Remote Terminal Units (RTUs). In order
to address the problem of maintainability, we will now introduce PRIBA. Software compo-
nents that do not have the privileges required to harm the integrity of another component
are removed as dependencies for reference values.

3.2.1 Goal
Due to ever cheaper hardware and increased performance of embedded System-On-Chips,
many services are integrated on top of the same platform. Conventional attestation meth-
ods, however, often aim at verifying the integrity of the prover’s overall configuration as
shown in Figure 3.3a.
Thus, each challenger has to maintain a reference list containing all possible executables

of the prover. Different services running on the prover may, however, be independent.
Challenger 1 communicates with Service 2 on the prover. Therefore, Challenger 1 is
only interested in whether the integrity of the used Service 2 is assured. Other services,
that are not able to violate the integrity of Service 2 are not of interest for Challenger 1.
This is usually true for services that can strictly be isolated from each other. Generally,
a Service Y cannot be compromised by another Service Z if there is no direct or indirect
write from Service Z to Service Y and Service Y does not directly or indirectly read from
Service Y. This formulation maps to the ’Strict Integrity Policy’ (’Biba Integrity Policy’)
[29] where a high-integrity component must not read from a low integrity component. The
analysis of the information flow has to be conducted for the complete set of configuration
and components of a device to detect potential indirect information flows. An operating
system kernel, for example, is always able to write to any process through syscall return
values. While the methodology could be extended for hardware components too, we focus
on software components only.
If it is possible to enforce the integrity policy (i.e., isolate all services), the amount of

required reference measurements is potentially reduced significantly as shown in Figure
3.3b. Hence, each challenger only maintains reference measurements from privileged sys-
tem components such as the operating system, the used service and components which
are able to write to this service.
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Figure 3.3: In conventional binary-based attestation, reference configurations on every device are
composed of binary measurements of all prover’s modules (3.3a) although only some
of them are important for this specific challenger (3.3b). Figure adapted from [Paper
B].

3.2.2 Related Work

Remote Attestation Methods

Concerning the measurement list reduction, one alternative way is using a Dynamic Root
of Trust for Measurement (D-RTM) (for example [70, 71]). These methods, however, rely
on Central Processing Unit (CPU) extensions such as Intel TxT [72] or AMD SVM [73].
Moreover, they completely detach critical functions such as encryption or password access
from the underlying system to minimize the size of the reference measurement list. Both
restrictions are not acceptable in the Industrial Control System (ICS) domain because
(1) the used CPUs often do not support the required extensions and (2) our aim is to
provide a statement about an overall’s application integrity, not only about one separated
functionality.
The most related group of approaches conduct information flow analysis based on se-

curity policies [66, 74]. These approaches model all possible communications between
processes. The basic idea is that a high-integrity process is successfully attested if all bi-
nary measurements are valid and there is no possible information flow from low-integrity
to high-integrity processes. They reduce the number of platform configurations since only
a small set of system and high-integrity applications has to be measured. However, they
rely on well-defined security policies and the generation of additional filter components.
In our work, we do not rely on existing policies or descriptions because these artifacts are
created at runtime.
Some approaches directly use the security policy of an application to attest its integrity.

In [75], an approach that attest the semantics of a security policy with a query language
instead of the hash was proposed. Moreover, a method based on platform-specific Model-
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Carrying Code (MCC) such as the Android [76] permission system has been introduced
[77]. This approach, however, also requires the presence of a privilege classification (i.e.,
a security policy), is only applied for the Android platform and may be coarsely grained
(e.g., the Android permission system is not able to restrict access to specific files on ex-
ternal storage). For PRIBA, we propose that the required permissions should be reflected
implicitly in the program code instead of explicitly adding a privilege classification. More-
over, our approach enables a wide range of different privilege types. In fact, PRIBA
could be used to reflect the Android permission system as well by parsing either the meta
information or the Java byte-code.
In [78], similar problems in the same domain are discussed. The authors analyze how to

use trusted computing and remote attestation in hydro-electric power plants to verify the
integrity of sensor data. The authors integrated verified boot into smart sensors to prove
their integrity to other network participants. They built a prototypical implementation
based on Integrity Measurement Architecture (IMA) [53] and proposed distributing their
integrity measurement entries incrementally. This approach reduces the network and
verification overhead for remote attestation. However, they aim at attesting the integrity
of simple devices (i.e., smart sensors) to more complex devices. Therefore, they do not
have to cope with the challenge of complex reference measurements. Another approach
in the automation domain proposes software-based remote attestation [79]. Due to the
lack of a security hardware such as a Trusted Platform Module (TPM), these approaches
demand on higher software complexity and provide weaker security properties.

Virtualization and Sandboxing

Previous work [75, 80] used language-based virtual machines or sandboxes to attest se-
mantics of applications that to some degree reflect expected or enforced ’behavior’ of
applications. Similar to these approaches, PRIBA confines all software components to
their least privilege [81] with sandboxes. There are two common methods to confine soft-
ware components. Isolation-based methods provide every component with its own set of
resources (e.g., [82, 83]), similar to virtualization (e.g., [84]). Rule-based methods, on the
other hand, do not rely on resource replication since every resource access is mediated and
checked against a policy (e.g., [60, 61, 85].
Both isolation-based and rule-based methods have advantages depending on the actual

application. For PRIBA, both methods are applicable: As shown in Chapter 5, we use
chroot, which is isolation-based and a sandbox implementation based on AppArmor [61]
in the integrated use cases.

Call Graph Generation

Concerning call graph generation, there are methods that exploit features of the program-
ming language or use the source code which would generate a more accurate call graph in
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a potentially faster way [86, 87, 88]. Another group of approaches uses dynamic tracing
of the application behavior to get information about the called system functions [89, 90,
91]. All these methods aim at generating confinement policies during development. Access
to source code or use of dynamic tracing techniques are both, however, not suitable for
privilege measurement in PRIBA during operation.

3.2.3 Approach Overview

We propose PRIvilege-Based remote Attestation (PRIBA) (see [Paper A]), a method that
’measures’ component privileges (i.e., what critical system function or resources a com-
ponent is able to access) prior to their execution, similar to the measurements for binary
attestation. As shown in Figure 3.4, both binary and privilege measurements are created
on the prover. During an attestation process, the challenger receives the privilege mea-
surements and generates an information flow graph to determine critical components (i.e.,
components that are able to write to the targeted component). Then, the challenger uses
conventional attestation techniques (e.g., binary attestation) to verify the critical (high-
privileged) components only. Based on the communication policy, the challenger is able
to decide whether the received information flow graph and binary measurements represent
a system state with maintained integrity. The rest of this section discusses how PRIBA
generally creates the integrity proof of a system and how a challenger is able to verify it.
Subsequently, we will discuss the implications that arise when the proposed methodology
would be integrated into an existing system.

Operating System
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Measurement

Unit

Privilege 
Measurement

Unit

System Libraries

Challenger

Verification Unit

Reference 
Measurements

Prover

Communication
Policy

Component 1 Component N...

Measurement
List

Privilege 
Measurement

Unit

Figure 3.4: Basic components of PRIBA: The measurement units on the side of the prover are
in charge to generate the measurements that are verified by the challenger. Figure
adapted from [Paper A].

Generally, remote attestation is a directed process. The prover attests the challenger
its integrity. In real networks, this process often has to be done mutually. Here, the same
process is executed twice but with reversed roles. In this thesis, we focus on one-way
attestation for simplicity, but all considerations are true for mutual attestation as well.
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3.2.4 Integrity Proof Generation

As mentioned before, PRIBA uses binary measurement for the verification of privileged
components. Therefore, we propose a measurement process as shown in Figure 3.5. A
static measurement unit generates binary measurements (i.e., cryptographic hashes) of all
components that are about to be executed. For components that are subject to PRIBA, an
additional privilege measurement is generated. In order to ensure the integrity of the mea-
surements, both the binary measurements and the privilege measurements are extended
to a Platform Configuration Register (PCR) of a TPM to enable a secure attestation of
the prover’s configuration.

Binary
Measurement

Component About
To Be Executed

PRIBA
Applicable

Privilege
Measurement

Execute
Module

  No

Component in
Execution

Yes

Static Measurement Unit

Figure 3.5: The static measurement unit is used to generate binary and privilege measurements
of the executed software components. Figure adapted from [Paper A].

Privilege Classification

The first challenge is the measurement or identification of component privileges. For that
purpose, we propose exploiting invocations of system or library functions. A call to the
Unix-syscall open (or the fopen or open function of libc), for example, would point to a
file access. If it is possible to identify the function parameter, it would also be possible
to identify the actual file node and the access mode. Similarly, a socket syscall points to
network access. At this point, granularity is a very important aspect. Coarsely grained
privileges (e.g., file system access or network access) may be not meaningful enough to
enable a feasible verification. Each component that is able to access the file system would
be a critical component. Too fine-grained privileges (e.g., read access to specific file XY ),
on the other hand, could potentially lead to large privilege measurements (e.g., one entry
for each file access) and may be impossible to determine prior to the execution of the
module. Based on the two use cases, we will show that the solution is domain-dependent
and there are different ways to achieve meaningful attestation.
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Privilege Measurement

The second challenge is the identification of the function invocations. For this, we ex-
amined a control-flow-based and a symbol-based privilege measurement. Both PRIBA
implementations that will be presented later in this thesis use information about linked
symbols or libraries. However, another possibility is control-flow-based privilege measure-
ment which is based on the tool proposed in [Paper I]. Basically, the call graph of the
component and all linked libraries are traversed to find invocations of critical functions.
In contrast to symbol-based methods, constant parameters are identified automatically to
refine the privileges (e.g., filenames or access modes). As shown in Table 3.3, the control-
flow-based method requires significantly more time to calculate the privileges of various
components since the call graph of the program and all libraries have to be traversed.
Moreover, the binary-based call graph generation produces incomplete graphs, especially
for virtual functions or function pointers that cannot be resolved statically. Therefore,
we decided to use symbol-based measurement and propose simply reading the external
symbols from the linking information in the component’s executable.

Table 3.3: The execution time of the privilege measurement methods compared to a simple hash
calculation.

Name Size [B] Call Graph
Edge Count

Time
SHA1[ms]

Measurement Time
Control-Flow [ms]

Measurement Time
Symbol [ms]

mysql 6.4M 775 142 3560 142
git 1.6M 1144 130 4560 127
ssh 686k 2167 78 11000 110

testApp 11k 2 103 1454 103

3.2.5 Integrity Proof Verification

The proposed verification process on the challenger is relatively straight forward due to
the design of PRIBA. We define three groups: the targeted component(s), dependencies
and other component. The targeted component is the service which is actually used by
the challenger. Dependencies are all components that are able to influence the targeted
component. A challenger uses binary attestation to verify the integrity of the targeted
component and the dependencies. Based on the privilege measurements, the challenger
generates an information flow graph to identify which components are contained in the set
of dependencies. This is a directed graph where every node represents a component or an
object (e.g., a file or set of files) and every edge represents a directed information flow (i.e.,
a read or write operation). Through traversing all edges backwards (i.e., from information
sink to information generator), beginning with the targeted component, the challenger is
able to identify all components that are able to manipulate the targeted component.
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3.2.6 Integration Considerations

By integrating PRIBA into real system architectures, some requirements concerning differ-
ent aspects come about. In general, the type of the privileges, the measurement method,
the measurement enforcement and the verification method have to be considered.

Types of Privileges

As mentioned before, a general solution would take into account all possible information
flows to build a dependency graph in order to determine how components can influence
each other. This general solution poses two fundamental problems concerning the infor-
mation flow graph and the level of classification.
First, it is hard to determine all objects that are accessible by one component via only

inspecting the executable binary. Especially file system access is often highly dynamic in
terms of what files are written to or read from at runtime. Moreover, even if the generation
of a complete information flow graph is possible, traversing the graph could take significant
computing time on the challenger. The second problem is that the ability to access objects
on one specific device does not provide information regarding the criticality of a component
at application or system level. Therefore, component dependencies across device borders
might be difficult to identify.
In order to mitigate these problems, we propose using privilege classifications adapted to

the actual application and system. Instead of building a complete information flow graph,
the components are classified in a way that enables a statement about which classes of
components can influence other classes. In this case, the traversal of the information
flow graph is reduced to a comparison of the classification. Components with a critical
classification are considered as dependencies. An example of this approach will be shown
in Chapter 5 based on the first use case. Extending this idea with component ratings
based on system level assets solves the second problem. The second use case will show
how this concept enables classification of components across device borders.

Measurement of Privileges

We propose identifying the privileges of components by collecting information concerning
the data objects every component is able to access. In order to realize this method, data
objects on all devices have to be augmented with meta information. Instead of tagging
all objects, we suggest using object classes, analog to the privilege classes, and classified
interfaces. The underlying idea is to employ separated functions for accessing objects of
different privileges and provide them via a special library. Prior to the execution of a
component, the privilege measurement unit analyses the executable and locates calls to
such classified functions in order to identify (measure) the privileges of a component.
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Enforcement of Privileges

Using special libraries and functions that enable an automated classification of software
components causes an important constraint concerning the component’s behavior. It must
not use any other functions to access data objects, otherwise the privilege measurement
unit would not be able to identify the privilege classification. A potential malicious com-
ponent could just circumvent the provided library and directly use low-level libraries or
system calls to access resources. Another problem is the static nature of the privilege mea-
surement. The execution of late-loaded code cannot be foreseen in a reliable way before
the application is started. Therefore, the identified privileges of an application have to be
enforced. We propose generating confinement policies based on the privilege classification
and use state-of-the-art sandboxing technologies to enforce the identified privileges. Since
all objects and components have already been classified, the generation of policies does
not introduce significant overhead.

Verification of Integrity

The proposed concept of classifying components which are able to violate the integrity
of other components in other privilege classes enables a verification process that is more
lightweight compared to generic traversing of information flow graphs. On the down-
side, system specific semantic is added to the privilege classification. Consequently, a
verification unit has to understand the system-specific privilege classes, what potentially
adds complexity. When integrating PRIBA, this aspect has to be considered.

3.3 Conclusion
With PRIBA, we aim to loosen the heavy dependency between the reference measurements
that have to be stored on the challenger in order to enable remote attestation. This is
achieved by understanding what software components are able to modify which parts of
the system and augment the integrity verification process with this information. In order
to integrate this method into actual systems, the method has to be adapted to the specific
needs. There is no single on-size-fits-all solution for each aspect. Based on two different use
cases, we propose two exemplary solutions for integrating PRIBA in Chapter 5 and discuss
the impact and performance of both solutions. Moreover, we will discuss the performance
overhead and the security properties of the proposed method.
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In order to use PRIvilege-Based remote Attestation (PRIBA) during the operational phase
of networked embedded devices, the single components have to meet specific prerequisites
that have to be ensured during earlier product lifecycle stages such as the development or
manufacturing phase. In this section, we will first discuss what such prerequisites are and
then show process adaptions and tools that enable meeting these requirements.

4.1 Implications for Product Lifecycle

The proposed remote attestation method contributes to improving the security during
operation. Figure 4.1 shows a simplified lifecycle model of an embedded device. First,
the Original Equipment Manufacturer (OEM) develops the system. When the system is
ready for use, it is manufactured by a contracted manufacturer, which could be a different
company. A customer uses the device during the operational phase. After disposal, the
gathered information can be used to refine future designs. This model deliberately omits
additional stages such as deployment or maintenance for the sake of simplicity. In this
thesis, we focus on the prerequisites for the operational phase and propose fulfilling them
during development and production phase. Therefore, the simplified model is detailed
enough for the discussion.

As indicated by the green arrows in Figure 4.1, the integration of a remote attestation
method such as PRIBA has an impact on other lifecycle stages. PRIBA requires sand-
boxing (i.e., component isolation) technologies to be in place. In order to enable this
isolation, monolithic modules have to be split up regarding their privileges to generate dif-
ferent domains that are isolatable. This procedure is called privilege separation and has to
be conducted during the development phase. We suggest integrating privilege separation
into a usual risk assessment process which is usually conducted anyway for security critical
systems. Moreover, many methods (remote attestation, secure channels, secure firmware
updates etc.) rely on public key cryptography which itself rely on securely distributed
secrets. Therefore, we propose integrating a secure provisioning process that determines
how to create and deploy such secrets during the manufacturing phase. A more detailed
analysis of the different lifecycle stages’ relations can be found in [Paper H].
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Figure 4.1: The basic product lifecycle model and the stakeholders which are in place at every
stage. Figure adapted from [Paper H].

4.2 Development Processes

In order to enable efficient privilege separation, we suggest integrating privilege classifica-
tion of components into the risk assessment process. This is achieved by a privilege rating
that classifies a component based on the system level assets which the component is able to
access. In this case, system level assets are resources or objects that have to be protected
in the entire control or Supervisory Control and Data Acquisition (SCADA) system. An
exemplary system level asset could be write access to a critical control function. Software
level assets, on the other hand, are software resources that can be mapped to such system
level assets (e.g., write access to a file that defines the control function). By explicitly
mapping the system level assets to software components, we are able to understand the
requirements and also able to prevent unnecessary high privileges of components early in
the system lifecycle. Based on the classification that results from the privilege rating of
the components and an information flow graph, the privilege separation process can be
automated in the future.

4.2.1 Related Work

Risk management is an important method to identify, evaluate and treat risks in informa-
tion systems. ISO/IEC 27005 [92] contains guidelines for systematic and process-oriented
risk management. Basically, stakeholders (e.g., owners) want to protect objects of a cer-
tain value. These objects are referred to as assets. As shown on the left side of Figure 4.2,
this process starts with information gathering and the identification of possible security
risks. Subsequently, the risks have to be quantified by a metric and evaluated concerning
their potential impact. Critical threats have to be mitigated to accept the remaining risk.
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Generally, it is important to rate security risks of a system regarding their criticality in
order to prioritize them. Some risks may need in-depth investigation, while others do not
need to be considered at all because of their small probability. As a result of this range,
many frameworks and metrics for different domains [93, 94, 95, 96, 97], also especially
for SCADA systems [98, 99] have been introduced. In essence, they all follow a similar
risk assessment process but vary with respect to the estimation criteria to fit the specific
domain. Some approaches also take into account asset dependencies [100, 101]. These
methods target risk assessment on organizational or system level assets. Software-focused
methodologies such as Microsoft’s DREAD [102], Common Vulnerability Scoring System
(CVSS) [103] and OWASP Risk Rating Methodology [104], on the other hand, focus on
software vulnerabilities and the impact of a potentially successful exploit. Our proposed
approach aims ad bridging the gap between these two classes of assessment methodologies.
The high-level asset ratings identified by using a method from the first set of methodologies
are applied as classification for software components to determine critical subsystems that
are examined rigorously with software-focused approaches. Results from this process (i.e.,
previously unknown threats to the assets originating from the system architecture) are fed
back to the higher-level process.
The concept of explicitly mapping system level assets to software level is similar to the

concept of Asset Containers, which is used in the Octave Allegro risk assessment process
[105]. Asset containers describe places where information assets are stored, transported or
processed. Our approach models asset containers as the components that are in the same
trust domain as the asset.
Monolithic systems have to be split up to enable the separation of software components

regarding their privileges. When no legacy applications exist, the system has to be split up
during the architecture and design of the system. Existing software components, however,
have to be separated afterwards. There have been attempts split up software components
on the procedure level (e.g., C-functions [89]) and on the module level [106]. Such ap-
proaches can be used to extend the proposed method to automatically identify adequate
edges in the information flow graph where privilege separation should be conducted.

4.2.2 Integrated Risk Assessment and Privilege Separation

In [Paper F], we propose extending the general risk management process on system level
with asset mapping, component risk rating and trust domain reduction as shown in Figure
4.2. When all organizational level assets and their risk ratings have been identified, we
suggest mapping them to the software architectural model (asset mapping). Based on
the mapped assets and an information flow graph (e.g., generated from the architecture
model), software components can be rated based on the assets they are able to access
(component risk rating). Components that share their privileges are part of the same
trust domain. In order to reduce the attack surface, the size of trust domains with high
privileges should be minimized. We propose introducing filter components that transform
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assets regarding their criticality for this purpose (trust domain reduction). Based on the
resulting classification, additional assessment methodologies such as threat modeling can
be prioritized. The output of this subprocess comprises additional threats to the assets
that can be used for further evaluation in the high-level risk management process.

Context Establishment

Risk Identification

Risk Estimation

Risk Evaluation

Risk Treatment

Risk Acceptance

Risk Assessment Software Risk Assessment

Software
Risk Assessment

[Paper F]

High-Level
Risk Managment

according to ISO/IEC 27005

Asset Transformation

Component Classification

Threat Modeling
and Component Risk

Assessment

Assets

Additional 
Threats

to Assets

Trust Domain 
Reduction

Figure 4.2: A simplified risk management process according to ISO/IEC 27005 [92] (left) and an
illustration of how our approach is used to generate additional possible threats to assets
that may originate from vulnerabilities in software components. Figure adapted from
[Paper F].

Asset Mapping

The upper part of Figure 4.3 shows an exemplary output of the risk estimation step: a
rated list of dependent assets with arrows denoting the dependency. Server 1, for example,
depends on the protection of the Server Room. In this example, the risk rating is a simple
scalar value that denotes the criticality of an asset (higher value means higher criticality).
When generating the software architectural model(s), either a subset or all of the assets
are mapped to resources or software components. An information asset, for example, maps
to a data resource (e.g., a file or a database), while a critical business function maps to a
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set of software components (e.g., a bank transfer). The way of mapping is illustrated in
the lower part of Figure 4.3.
To enable the rating of all components, we use a metric that basically quantifies software

components by accumulating the risk ratings of the assets they are able to access directly
or indirectly. Cohering parts of the architecture that share the same rating are referred
to as trust domains. The edges of these domains are called trust borders.
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Figure 4.3: The risk assessment process generated a list of assets, their dependencies and their
risk rating (lower number corresponds to ’less’ risk). Some assets have a counterpart
in the different software architectural models. Based on this mapping, the rating of
all software components can be calculated. Figure adapted from [Paper F].

Component Classification

In order to introduce automated calculations and analyses, we propose modeling the soft-
ware architecture as illustrated in Figure 4.4. A system is composed of a set of software
components. Similar to other approaches, we quantify the risk rating of components based
on their privileges. In this case, a privilege is the possibility of a component to access (i.e.,
read or modify) an asset. Every component accesses a set of assets (by having specific priv-
ileges) and possesses explicit information flow connections to other components. Based on
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the accessed assets, there may be other, implicit, information flows (e.g., two components
are accessing the same file). In the lower part of Figure 4.3, the two assets Private Data
and Money Transfer Function are, following this model, accessible by all components.

Every asset represents a resource that has to be protected in some way (e.g., a privacy-
sensitive information). The accessCriticality reflects the relative ’value’ that has been
identified during the high-level risk assessment process. Moreover, there may be privilege
combinations that raise the criticality of the component accessing an asset. In order to
represent this increased level of criticality, an asset contains a set of riskFactors that map
additional privileges by weightings.
A filter component is a special type of component that does not propagate specific or

any privileges. Formally, a filter component is a transformation of one set of assets to
another set of assets. An authenticator, for example, transforms the asset ’all data’ to
’data of a specific user’. Cipher components transform the assets ’confidential data’ and
’encryption key’ to ’encrypted data’.

Figure 4.4: A privilege-centric view on software systems: Different components are interacting
with each other and have access to different assets. To enable these accesses, privileges
are needed. Moreover, there are special components that are in charge of protecting
security properties of critical assets. Figure adapted from [Paper F].

Privilege Rating

In order to generate an early estimation of the possible risks of vulnerabilities in one com-
ponent, we calculate a privilege rating (PR) for every component. Each privilege P enables
a component C access to an asset A. Since similar privileges may enable access to differ-
ent assets, we do not directly rate the privileges but use the accessCriticality (Crit(A))
property of the accessed asset. Moreover, every asset contains weighted riskFactors. For
each of the component’s privileges contained in this list, the risk factor is increased by
the weight (RF (A, P )). Therefore, the overall privilege rating of a component PR(C) is
generated by Crit(A) of all accessed assets and the sum of all active risk factors, as shown
in [Paper F]:
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PR(C) =
∑

A=Assets(C)

(
Crit(A) +

∑
P =P riv(C)

RF (A, P )
)

Whenever two components A and B are connected via an information flow, the privileges
of the components are merged. This is only a rough generalization due to the following
problems:

1. A directed information flow may not allow the sharing of privileges in both directions.

2. Some components may not allow access to their privileges at all or only with restric-
tions.

Both problems can, however, be modeled with filter components. A filter that drops
a specific set of privileges models both the hindered sharing of privileges due to directed
information flows and actually enforced access control.

Trust Domain Reduction

Components sharing their privileges are part of the same trust domain. In order to reduce
the attack surface, the size of trust domains with a high risk should be minimized (i.e.,
fewer critical components). Therefore, the software and/or security architect is able to
introduce filter components, which are able to transform assets regarding their criticality.
An authenticator in the ’DB System’ in Figure 4.3, for example, may reduce the asset
’all private data’ to ’data of a specific user’. Thus, a filter component separates these
domains and introduces a trust border. By re-applying the metric, the effect is reflected
instantaneously in the architectural model and the software architect is able to iterate this
step until the trust domains are acceptable in terms of size and risk. In the future, this
introduction could be automated by finding strongly connected components [107] in the
information flow graph to determine possible trust borders.

Threat Modeling

Now, a list of software components with high criticality as well as components in charge
of protecting high risk assets (i.e., filter components on trust borders) can be generated.
Based on this list, it is possible to prioritize components that should be taken into account
for in-depth risk analysis and threat modeling. Threats towards components in the trust
domain of an asset are inherited by the asset (as the components have full control over the
asset). Therefore, this analysis identifies new threats (or threat-tree-branches) for assets
that can be integrated into the high-level risk management process.
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4.2.3 Conclusion
In order to enable early privilege separation of software components, we propose explicitly
integrating this process into the system-wide risk assessment process. We specifically
map system or organizational level assets to components in software systems. In contrast
to existing methods, we propose automatically classifying all components of a software
architecture based on the information flow graph and a risk rating of the assets. With
the introduction of filter components, the proposed process supports privilege separation
which is needed for setting up strong isolation. Additionally, the resulting classification is
fed back into the overall risk management process. Doing so supports the identification
of components that may be of high risk and should be considered for in-depth evaluation
like comprehensive threat modeling or code review.

4.3 Manufacturing Process
In order to enable authentication and remote attestation mechanisms, secrets, or more
generally, security credentials have to be deployed on each device. The lifecycle of the
security credentials typically consists of four steps [108]: First, cryptographic keys which
represent the secret have to be generated (1). With an certification (2), keys are bound
to a device2. Moreover, they have to be distributed (3) and stored (4) on the device.
We propose integrating the four steps into the manufacturing process. Hence, two main
challenges must be faced: First, even the manufacturer who is often an external com-
pany may be (partly) compromised. Thus, we have to ensure that the access to secret
key material is as difficult as possible during the production process. Moreover, a large
number of different and customized devices has to be built and provided with keys: In our
scenario, a Remote Terminal Unit (RTU) consists of a variety of different components.
They all have some similarities (e.g., an MCU executing a specific firmware) but vary in
features, configuration and also security requirements. We propose using techniques from
the Model-Based Testing (MBT) domain to create a Manufacturing and Test Environment
(MaTE) ([Paper G]) and integrate a secure provisioning process based on OEM-controlled
hardware on top of it ([Paper H]).

4.3.1 Related Work
Manufacturing tests have come into focus in the field of integrated circuits for single
targets in mass production [109]. In [110], aspect-oriented programming is used to improve
maintenance and re-usability in the context of testing product families. However, the
authors state that especially in the embedded domain, tool support is crucial. While this

2Here, certification is achieved through using public-key cryptography. The private part of the key
represent the device secret. The public part signed by the OEM and augmented with meta-information to
generate the certificate.
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is not necessarily the case for aspect orientation, model-based technologies are widely used.
Concerning testing, variants in product families relate to variants in software product lines,
where MBT is already widely used [111]. Feature models [112], decision models [113] or
orthogonal variability management [114] is used to model variability. Our approach uses
feature models as a specific view on the system under test model to identify possible
interfaces that are required for a production step.
Different approaches for trust provisioning in the context of industrial automation have

already been discussed [115]. The conclusion is that a manufacturer-based approach for
bootstrapping is most suitable for this domain. However, the assumption is that the OEM
and the manufacturer are both part of the same company. Therefore, the additional com-
plexity is not reflected in this study. Other approaches suggest trust establishment based
on physical contact of devices [32] or based on the interaction with an employee of the plant
[31]. Both argue on the basis of the high complexity and costs in manufacturing-based
approaches. The approach presented within this thesis, however, tackles this problem
with the provision of the manufacturing entity by an OEM-controlled hardware based on
a generic adaptable process.

4.3.2 Manufacturing and Test Entity (MaTE)

Input Component
C
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Input Component
C
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Output Component
C'

Operation
System Under

Test Model

Test Procedure
Model

Component
Assembly

Integration
Test

Calibration

Figure 4.5: In a generic manufacturing process, a procedure of operations (e.g., assembly or test)
is performed on one or more components. The result is a (new) component that may
be the input for the next production step. Figure adapted from [Paper H].

As shown in Figure 4.5, Manufacturing and Test Environment (MaTE) builds upon
a generic production process [116]. Every production step is an operation on one or
more input components to create one output component. The operation may include
assembly, integration test or calibration steps. A complete production procedure is a set of
such production steps. Instead of configuring or implementing all production procedures
and steps for all possible device variations, we propose defining generic test procedure
models (e.g., installing all software components) and System Under Test (SUT) models.
Based on the currently produced components, these two artifacts enable the generation
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of the actual test procedure instance with its production steps. Moreover, MaTE exploits
reflection mechanisms of the Remote Terminal Units (RTUs) to generate the SUT model
at runtime. In order to achieve automated SUT model discovery, a discovery step is
added to enumerate all components that form the actual device under test. Based on
the components found an internal SUT model is generated and production steps for the
components in this specific combination are taken.

4.3.3 Secure Provisioning

Figure 4.6 illustrates the proposed secure provisioning process. The OEM commissions
different contract manufacturers to produce the devices. At each manufacturing location,
hard- and software components are assembled to produce the control devices. Ultimately,
the certified devices are shipped to the customer. Since even a manufacturer may be com-
promised, the process should protect the key material in a manner that makes it imprac-
tical to reveal it for the manufacturer. Therefore, we propose integrating the framework
for the manufacturing process on an OEM-controlled and trusted device called MaTE.
Based on MaTE, the OEM is able to trust the manufacturing process at the contract
manufacturer’s site. The proposed approach ([Paper H]) is based on three concepts: local
key generation, local certification and global certification.
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Figure 4.6: Overview of the secure provisioning process. Figure adapted from [Paper H].

Local Key Generation

As shown in Figure 4.6 (steps 1 and 2), the secrets (i.e., private keys) are directly generated
on the produced device. Therefore, no unnecessary exposure of key material takes place at
any time. Usually, neither the manufacturer nor the customer have access to the generated
secrets. Optionally, the keys can be generated on hardware security components to protect
keys from adversaries with direct hardware access.
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Local Certification

In order to attach a meaning to the generated secrets, the OEM has to create certificates
that enable binding private keys to a specific device (i.e., signing the public part of the
produced device’s identification key, steps 3 and 4). If the device secret would be certified
in an uncontrolled way, a possibly compromised manufacturer would be able to create
certificates, or at least signing requests at its will. Due to the trusted manufacturing
device, the OEM has, however, full control over the locally signed certificates. Based
on hardware security components such as a Trusted Platform Module (TPM), it can be
ensured that the process is secured from tampering by malicious parties who intercept the
manufacturing process.

Global Certification

In order to track all produced devices globally, the device secret is additionally sent to the
OEM, together with the certificate created by MaTE (steps 5 to 7). The OEM is able to
verify the validity of the created device by checking the local certificate. After additional
examinations, such as checking the orders placed for the specific manufacturer to prevent
them from creating cloned devices, the OEM creates the actual certificate which is used
to authenticate the device during operation.

4.3.4 Conclusion
One key requirement for establishing trust is authentication, which usually relies on certi-
fied secrets that have to be deployed to all devices. This secure provisioning process has to
be performed in a way that hinders malicious parties from eavesdropping on the secrets or
forging the certificates in order to prevent identity spoofing. We propose using techniques
from the model based testing domain to enable a manufacturing and test framework for
customized devices. In Section 5.4.1, we will show how the proposed tool performs in
a real-world scenario for the production of RTUs. Based on this framework, we suggest
a generic secure provisioning process backed by hardware security devices to enable the
generation and certification of secrets during the production process in a lightweight way.
The application of this process will be discussed in Section 5.4.2.
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The main goal of this thesis is the integration of a feasible remote attestation method
into networked embedded systems. In Chapter 1, the goals of retained maintainability,
general applicability and limited overhead have been elaborated. This chapter discusses
whether the proposed methods contribute towards the achievement of these goals. First,
we will describe how privilege-based attestation can be integrated into two different use
cases, namely a generic Internet of Things (IoT) and an Industrial Control System (ICS)
setup. Second, the maintainability and overhead aspects for both use cases are evaluated
and a security analysis is conducted to compare the approach to conventional attestation
methods.

5.1 Use Cases
The method has to be applicable to different domains and systems. While the main use
case and driver for this thesis are ICS, we also integrated a smart home use case in order
to evaluate the applicability of the method. For both use cases, specific solutions for
integration challenges (as described in Section 3.2.6) will be discussed as well.

5.1.1 Smart Home

The first use case is a typical IoT scenario in an exemplary smart home setup. Here, the
main goal is to attest the integrity of a relatively complex central gateway device to all
lightweight IoT devices such as smart sensors and actuators in the network. We integrated
PRIvilege-Based remote Attestation (PRIBA) on top of IoTivity [117], an existing IoT
middleware. This architecture should enable a feasible attestation when numerous services
from different vendors are integrated into the same gateway. Since PRIBA is used, the
lightweight devices which only communicate with one specific service do not need to be
aware of other services from other vendors on the central gateway when verifying its
integrity.

System Overview

The resulting trusted computing architecture, Thingtegrity ([Paper B]), distinguishes be-
tween Full Devices and Constrained Devices similar to other IoT frameworks [117, 118].
A Constrained Device is a simple sensor or actuator device with a specific purpose. In a
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smart home scenario, this could be a switch, a temperature sensor or an actuator for an
HVAC device. These devices are usually very constrained in terms of computing power
and energy. At the same time, there are more powerful hubs or gateways that execute
different services, which are used by the different devices. Each service is an application
that is deployed to the same hub by the device owner and originate from different vendors.
The main goal of Thingtegrity is to enable attestation of the Full Device’s integrity to the
Constrained Devices. Figure 5.1 shows an exemplary architecture. The central hub is
connected to two Constrained Devices, a HVAC actuator and a temperature sensor. For
each type of Constrained Device, there exists a special service or application on the Full
Device, which are isolated by sandboxes.

Sandbox 2Sandbox 1

Service 1.1 Sensor Service

Central Hub (Full Device)

Operating System 
and Thingtegrity Broker

Bootloader

Mediated Communication

HVAC
(Constrained Device)

Temp. Sensor
(Constrained Device)

HVAC Service Remote Attestation,
Secure Connection

Remote Attestation,
Secure Connection

Figure 5.1: The proposed security architecture for enabling integrity assurance at device level for
the smart home use-case in an examplary setup.

Types of Privileges

In Thingtegrity, services from different vendors are executed on the same Full Device.
Often, they are independent from each other, which eases the isolation of the services.
We propose the privileges listed in Table 5.1 for such systems. Most services only require
access to private files and offer a network service. For more privileged applications, global
and system-wide file access privileges exist.

Identification of Privileges

Thingtegrity uses the Linux implementation of Integrity Measurement Architecture (IMA)
to generate binary measurements for all components. Moreover, it provides a system-API
where every privilege is represented by one specific API function. For example, there is a
function called openPrivate, which enables the access to files in the application’s private
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Table 5.1: The fine grained API for resource access provided by the runtime.

Name Type Access Method
openPrivate Open service private file
openGlobal Open other service’s file Read, Write
openSystem Open system-wide files Read, Write
openTemp Open files in temp system
createSocket Create a network socket Client, Server

directory. If the application tries to open other files with this function, an error is returned.
Thingtegrity uses a GNU nm to read such API calls prior to the execution of the service
to generate a privilege measurement.

Enforcement of Privileges

Without some kind of enforcement, a service would be able to use an ordinary open
syscall to access files that are not inside the identified constraints. Therefore, Thingtegrity
prevents all services from directly accessing any files or other resources through a sandbox.
The only possibility to access resources is using the Thingtegrity broker which checks every
resource access dynamically.

Verification of Integrity

The verification of a Full Device’s integrity on a Constrained Device consists of several
steps:

• The Full Device authenticates itself with a so-called Platform Identity Key (PIK).

• The integrity of the operating system, framework and other system libraries are
attested with binary attestation.

• All components that are able to read or write the targeted service’s private files are
added as dependencies.

• The integrity of the targeted service and its dependencies is attested with binary
attestation.

In order to further reduce the number of binary measurement references, property sig-
natures are used. Basically, a Trusted Third Party (TTP) (i.e., the system owner or device
vendor) signs hashes for specific software components. A challenger is now able to check
the signature (if asymmetric cryptography is feasible) instead of maintaining the reference
measurements.
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5.1.2 Industrial Control System

The second use case of PRIBA is an implementation for Remote Terminal Units (RTUs)
([Paper C]) for which we extended a real-world Remote Terminal Unit (RTU) platform
used in hydro-electric power plants. In particular, we use Hipase devices from Andritz
Hydro [2]. These are control devices specifically developed for hydro-electic power plants
and integrate the functionality to be used for different applications such as excitation,
protection, synchronization and turbine control. While the long-term goal is a mutual
attestation at each system level (client, server, RTUs and smart sensors/actuators), here
we focus on the attestation between RTUs.
In order to integrate a sufficient security architecture, it is common practice to com-

bine Integrity Protection and Integrity Attestation mechanisms to integrate a
defense in depth approach [119]. Different integrity properties are used on different sys-
tem layers according to the security requirements. Before the integration of PRIBA will
be discussed, we will briefly describe the overall security architecture of the system. A
comprehensive description of the security considerations can be found in [Paper H].

System Overview

Figure 5.2 illustrates the geographic local part of the targeted Supervisory Control and
Data Acquisition (SCADA) system, similar to the generic architecture shown in Chapter
2. Different RTUs cooperate to achieve the overall control goal by using sensors and
actuators to measure and manipulate the environment. The local SCADA server is used
to gather all the information and supervise the control devices. Moreover, there is a hot
standby device for some important RTUs which is activated in case of faults of the main
devices. A security assessment process based on STRIDE [102] has been conducted and
revealed four groups of required security enhancing technologies: communication channels,
interactions between devices, user interactions and system integrity verification.
For communication channels, Transport Layer Security (TLS) is used to ensure confi-

dentiality and integrity of the information sent. Whenever two entities (i.e., devices or user
and device) interact with each other, they have to be authenticated by certified private
keys and password-based authentication. However, as discussed before, the RTUs may be
susceptible to compromise, which is why their integrity has to be assured.

Security Architecture

Figure 5.3 illustrates the integrity-enforcing technologies used at device level. Basically,
every device runs a set of services which are all for a different purpose (e.g., control,
communication, administration or logging). Secure boot is used to ensure static integrity
protection of all software components, while sandboxing technologies are in place to mit-
igate exploitable bugs in the services (dynamic integrity protection). Remote attestation
should be used to mutually verify the integrity of the communication partners. We aim at
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Figure 5.2: Structural diagram of the local part of the targeted SCADA system.

exploiting the existence of the hot standby device. After an integrity violation is detected,
the overall system has to report the violation, isolate the compromised device and activate
the standby RTU. While the execution of these additional actions is out of scope of this
thesis, there is ongoing work to provide the required framework [120]. In order to enable
the detection of such violations, the rest of this section will describe how PRIBA can be
integrated into RTUs.

Types of Privileges

In contrast to the smart home use case, it is not possible to simply confine different
applications to their own data. Different software components running on different devices
work on the same data points (i.e., process variables, input and output data) . Therefore,
we propose using the data points to formulate application level privileges as shown in
Table 5.2. Figure 5.4 illustrates the existing RTU system architecture and its connections
to the outer world. Due to its service-oriented nature, privilege separation is already in
place. There are dedicated services for file system access and access to the actual control
task. Therefore, the proposed privileges fit well into the existing system.
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Figure 5.3: The proposed security architecture for enabling integrity assurance at device level for
the industrial control system use-case. Figure adapted from [Paper H].

Table 5.2: The system-wide privilege classes

Name Description
System Access to system functions (i.e., full system access)
Control (R+W) Access to all data points of the control process

Reduced Read access to the control process and the privilege
to generate new data points (no write to existing data points)

Limited Only read access to public (non-critical) data points

Identification of Privileges

Every service provides a client library that enables other services to access its functions
via inter-process communication. We exploited this existing architecture by mapping
specific privileges to specific libraries. For high-privileged services (such as the application
service that is able to manipulate the control task), there are various client libraries.
Lower privileged services can use libraries that drop privileges, for example by preventing
write access to data points. The privilege measurement process is similar to the one used
in the smart home use case. Using library-wide privileges, however, enables a privilege
measurement based on linked libraries instead of the symbol table.

Enforcement of Privileges

Measured privileges are again enforced with sandboxing and mediated inter-process com-
munication.

Verification of Integrity

Due to the system-wide linear privilege levels, the challenger does not need to generate
the information flow graph. All components with privileges at the same or at a higher
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Figure 5.4: The most important components in the RTU and their interfaces to the SCADA-server
and maintenance console. Figure adapted from [Paper C].

level than the targeted service have to be verified by binary attestation.

5.1.3 Applicability of PRIBA

While the two presented use cases share some common properties, they vary significantly
in some details that raise different requirements for an application of PRIBA. Although the
two case-studies diverge due to this fact, the basic concept is applicable to both use cases.
Hence, there are two findings: First, the similarities of the implementations indicated that
the method is applicable for different systems. Techniques that enable strong isolation
between software components have to be in place for all integrations. However, in order
to create optimal solutions, domain-specific knowledge can help find good candidates for
privilege classes.

5.2 Effect on System Maintainability

In order to achieve a maintainable remote attestation method, updates of the prover’s
configuration should significantly less often result in an update of reference lists on other
devices compared to conventional methods such as binary attestation. The reduction of
reference measurements highly correlates with the actually used privileges and the number
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and type of devices in the entire network. Therefore, we will evaluate this aspect separately
for both use cases.

Smart Home Use Case

In order to evaluate Thingtegrity, we set up a simulated smart home environment. One
central hub is connected to six Constrained Devices such as a temperature sensor and a
door lock actuator. For every type of device, one or more services are installed on the
central hub (e.g., for data accumulation, storage and forwarding to a visualizing client).
In this setting, scalability is crucial. Adding new devices and services to the central
hub should not require a reconfiguration of all devices. Devices that are not affected
by the newly installed services should not need an update. When using conventional
binary attestation, the deployment of a new service on the central hub would cause a
change of configuration and a reference measurement (i.e., a hash) of this service has to
be deployed to all other devices. When using PRIBA, the new service is confined and
an additional privilege measurement is taken. Other devices have to verify whether the
new service’s privileges comply with their policy but do not have to be updated with a
new reference measurement. The scalability issue is addressed by PRIBA since the size
of the reference measurement list does not necessarily scale with the number of running
software components on the prover, especially in environments with many independent
applications.

RTU Use Case

The overall measurement list of the evaluated RTU contains 42 entries, comprising the
start-up sequence (operating system kernel and start-up programs, libraries and configura-
tions) as also the running services for communication, control and additional applications.
Figure 5.5 visualizes the effect of privilege-based attestation on the measurement list. The
size and privileges of the entries directly correlate with the number of reference measure-
ments the challenger has to maintain. As mentioned before, there exist four privilege
classes (system, control, reduced and limited) for this use-case.
A control task, for example, communicates with the application service which has control

privileges. Without privilege-based attestation, another device with control privileges
would have to maintain 42 (system privileged) reference measurements, including many
configuration files and executables of services that change quite often but do not affect the
control task at all. With the application of the proposed privilege classification, we can
reduce the size of this reference list to 13 entries. The remaining 29 entries do not have
to be considered because of their privilege classification. For the more complex future
task of attesting SCADA servers to RTUs and mutual attestation of RTUs (required when
different control tasks want to cooperate), this reduction will be even higher due to the
additional complexity.

54



5 Integration and Evaluation

Binary Attestation Privilege-Based

Method

0

10

20

30

40

50
S

iz
e
 [

#
 o

f 
E

n
tr

ie
s
]

Reduction of the Size of the Measurement list

System Priv.

Control Priv.

Reduced Priv.

Limited Priv.

Figure 5.5: Reduction of the size and dynamics of the measurement list by applying PRIBA.

5.3 Computing, Memory and Communication Overhead

In contrast to the number of reference measurements, the runtime overhead for integrity
identification and verification is similar for different implementations of the proposed
method. Therefore, the focus is on the RTU use case for these evaluations.

5.3.1 Generation of Integrity Proof

In order to enable PRIBA, the prover has to create a representation of its configuration
(measurement). Both binary and privilege measurements of all components have to be
taken. Moreover, they have to be secured by extending the values to a Platform Configu-
ration Register (PCR).

The first consequence of using a Trusted Platform Module (TPM) is that an additional
chip is needed on the controller board. Hence, the cost of the board is raised, especially
when the decision of using a TPM is made only after the first designs have been fin-
ished. Another implication is that TPMs meeting the Trusted Computing Group (TCG)
V 1.X specification provide only limited protection against hardware attacks [121]. Both
problems could be mitigated by using on-chip solutions like ARMs TrustZone [122].
The second consequence is the overhead in the boot process of the device, as shown

in Table 5.3. Using an ARM9 with 454Mhz results in a boot time of 21s without the
proposed measurement techniques. Adding both types of measurement and the PCR
extensions raises the boot time to nearly 50s (about 260 files are measured). While this is
a huge overhead, it is arguable because at runtime, no additional measurements have to
be taken (except when a new component is added). Moreover, the actual critical control
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task is being carried out on a dedicated Central Processing Unit (CPU), which is available
earlier.
In contrast to the binary measurements, the privilege measurements are only taken for

the current 8 non-privileged services and their dependencies. The introduced overhead
of the privilege measurement including the extensions to the TPM is about 1.6 seconds.
About 22kB are required to store the resulting measurement list, which is usually negligi-
ble. This overhead is arguable small comapared to the benefits gained during verification.

Table 5.3: Performance drawback in Linux with activated IMA.

Action Time
Boot Time Without IMA 21s

IMA with disabled TPM (hashing only) 41.8s
IMA with enabled TPM 47.2s

IMA, TPM and privilege measurements enabled 48.9s

5.3.2 Verification of Integrity Proof

The attestation process basically consists of three parts: The prover has to generate the
quote, the challenger has to verify the measurement and the process has to be communi-
cated via the network.
Generating a quote on the TPM requires about 1.9s. Thus it is important to minimize

the number of generated quotes. However, it has to be ensured that the attestation process
is performed every time the configuration changes. One promising way would be the reset
of network connections of all services within a specific privilege class whenever a new
component on the same or higher privilege class is started. In this case, all challengers
would be notified implicitly when the prover’s configuration changes since they have to
renegotiate the network connection.
Communicating the measurement list and the quote (256B) as also the computational

overhead for verifying the quote is no noteworthy overhead in today’s systems.

5.4 Impact on Earlier Product Lifecycle Stages

As discussed in Chapter 4, the integration of the proposed trusted computing architecture
raises requirements for earlier product lifecycle stages. Hence, in the following, we will
discuss the impact of the proposed process and tools on the product lifecycle based on the
RTU use case.
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5.4.1 Development Processes

The main impact on the development process arises from the introduction of different
client libraries for the same service on the communication controller. Since the existing
architecture already uses a service-oriented approach, the main difference is that now
different interfaces of the same service require different access libraries. Applying the
proposed approach would be much more complex for existing architectures that do not
already implement such concepts. However, future systems in the ICS domain will likely
tend towards integrating privilege separation and the principle of least privilege due to
regulations and guidelines anyway [22, 26].
In order to provide maximum efficiency, the proposed architecture requires data points

(i.e., process variables) to be classified regarding their criticality. Classifying data points
concerning their importance for the control tasks would also help protect other dependabil-
ity properties such as safety or reliability. One could introduce redundancy and diversity
for system components that handle such data points. Thus, there are strong reasons to
introduce such classifications and this topic should be examined in the future.
The augmented risk assessment method proposed in this thesis targets both challenges.

Understanding high-level assets at software level helps classify data resources (in this
case: data points). The required client libraries often map to filter components. They
mediate the access to services with potentially different privilege classifications. All in all,
integrating the architecture raises some initial overhead during the development, especially
for legacy systems. After the awareness for privilege separation has been raised and the
initial setup, the remaining overhead is arguably small.

5.4.2 Manufacturing Process

Manufacturing and Test Entity

As the time of writing, Manufacturing and Test Environment (MaTE) [Paper G] handles
19 different components within the context of RTUs for hydro-electric power plants. This
RTUs consist of different components such as controller boards, I/O boards. For each
component, there are up to four different production procedure templates (setup, test,
calibration and integration). As shown in Table 5.4, the proposed approach significantly
reduces the effort for configuration. Based on 59 generic production step configurations
and 19 system under test models (i.e., different product types), MaTE generates over 600
production step instances. Instead of configuring all steps manually, the 19 System Under
Test (SUT) models are used to extend the templates with the information required to
actually perform the production operations.
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Table 5.4: The configuration and implementation effort for the OEM. Based on relatively little
test case definitions, MaTE generates 635 tests for the 19 different devices.

Type Quantity
SUT Models 19

Production Procedure Templates 18
Production Step Templates 59

Generated Test Cases 635

Secure Provisioning

The proposed secure provisioning process has two drawbacks. First, the Original Equip-
ment Manufacturer (OEM) has to create and deliver custom production devices to the
contract manufacturer. This can be accomplished for products with high customization
needs but low production quantities such as the RTUs targeted here. For high-quantity
products, however, there may be a need to adapt the solution to the specific needs.
The second drawback is the required permanent internet connection which is used to

store the production data and centrally certify the products. Usually, this may not be a
problem for many contracted manufacturers today. Nevertheless, it would be possible to
completely certify the products locally through the OEM-controlled production devices.
Applying the proposed solution enables contingent restrictions for individual manufac-

turers. Every produced device is controlled by the OEM through the central certification.
Because of the local key generation, there is no unnecessary exposure of private keys.
Since this action is part of the production process, the required harnesses (i.e., compo-
nents which are used to generate the key) can be temporarily placed on the device and
automatically be deleted in the next production step. Due to the use of MaTE, the secure
provisioning process is enabled for a variety of different devices without requiring specific
configurations for all variations.
While the secure provisioning process adds significant overhead to the manufacturing

process of the RTUs, this is not an exclusive consequence of integrating PRIBA into the
devices. Secrets are required for device authentication and secure network connections.
Therefore, this process nonetheless has to be integrated for RTUs because of forthcoming
regulations [22].

5.5 Security Evaluation

In order to understand the performance of PRIBA, we conducted a security analysis based
on the smart home use case in [Paper B]. The main goal of remote attestation is to detect
integrity violations or improper system alterations. Consequently, the analysis will now
focus on these threats.
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Attacker Model

IoT devices are often exposed to a publicly accessible environment. Thus, an adversary
may have limited physical access to the hardware of the Constrained Devices (e.g., J-TAG
access). The adversary is therefore able to modify the software configuration. More-
over, new malicious devices may be added to the network and existing hardware may be
modified. However, critical data such as private keys or the attestation functionality is
protected by additional hardware measures.

Detected Integrity Violations

Table 5.5 shows potential attacks on the system and whether Thingtegrity is able to detect
the attack and what type of attacks have to be countered with additional technologies.
Basically, the system can be modified by manipulating an existing or inserting a new
hardware or software component.

Table 5.5: Overview of possible attack types regarding system modifications.

Name Description Mitigation
Manipulation

Hardware Modification of the hardware of a device x
Privileged (static) Static modification of a privileged software module X

Non-Privileged (static) Static modification of a non-privileged software module X
Privileged (dynamic) Runtime modification of a privileged software module x

Non-Privileged (dynamic) Runtime modification of a non-privileged software module (X)
Insertion

Hardware Insertion of a new device X
Privileged Insertion of a privileged software module X

Non-Privileged Insertion of a non-privileged software module X

Since PRIBA is working on the software level of the devices, modifications of the hard-
ware cannot be detected. An adversary may be able to forge sensor values by shorting
GPIO pins or similar attacks. In order to detect this type of compromise, anomaly detec-
tion on the process level is required.
PRIBA uses Static Integrity Properties. Therefore, the modifications of soft-

ware components at runtime (e.g., changing the components control flow by exploiting a
security-relevant bug) cannot be detected. Due to sandboxing, however, some attacks on
sandboxed components may be mitigated and detected. This class of attacks can only
be mitigated or detected by Integrity Protection or Integrity Attestation with
Dynamic Integrity Properties.

Static modifications (i.e., modifications of software components before they are used)
are, however, detected and mitigated with a trusted computing architecture based on
PRIBA. Moreover, insertions of unknown software or hardware components are discovered.
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Although this security analysis is based on the smart home use case, the assumptions
are also true for the RTU use case. Actually, the attacker model is stronger for IoT because
control devices in RTUs are usually better protected against physical tampering.
A trusted computing architecture based on PRIBA can therefore detect the same types

of attacks compared to binary attestation (the detection of runtime violations originates
from the sandboxing requirement, not from PRIBA).
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6 Conclusion
This final chapter concludes this thesis by summarizing the contributions and discussing
potential future research on the covered topics.

6.1 Contributions
The approaches presented in this thesis aim at increasing security properties of embedded
control devices used in typically distributed Industrial Control System (ICS) setups. In
particular, we focused on integrity assurance methods for the overall system. A special
focus was on the integration of a feasible integrity reporting methodology for Remote Ter-
minal Units (RTUs) by keeping in mind all implications for the operational, development
and manufacturing lifecycle stages of the devices. The main goals were the identification of
device properties that can be exploited for remote attestation which (1) does not decrease
maintainability by decreasing the size and dynamics (i.e., how often does it change) of re-
quired reference measurement lists significantly and (2) does not introduce unreasonable
overhead concerning resources at runtime and process overhead for earlier lifecycle stages.
To attain these goals, we proposed a pattern-based classification of integrity assurance

methods. The two dimensions, the challenger and the integrity property type, provide a
suitable base to classify existing integrity assurance features with regard to their protection
type. Based on this classification, we discussed a security architecture with state-of-the-art
technologies for RTUs that should be augmented with remote attestation.
In order to move progress toward a feasible remote attestation method, we suggested

PRIvilege-Based remote Attestation (PRIBA), a method that reduces the size of the ref-
erence measurement list by taking into account software privileges. The main idea is to
omit software components that are not able to violate the integrity of the currently used
service on the prover during the integrity verification. In order to decide which modules
can be omitted, the components privileges are identified and enforced. In this context,
privileges are the ability of a component to access a resource at device level or an asset
at system level. We showed that it could be beneficial to decide about the classification
of these privileges based on the actual application domain. With two implementations of
PRIBA for a typical Internet of Things (IoT) and an ICS use case, we demonstrated the
variation but also its applicability for different domains.
Additionally, we examined the implications of using this trusted computing architecture

in embedded control devices for their development and production processes and intro-
duced tools and process extensions to support the integration of PRIBA. We proposed
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extending existing risk management processes on the organizational level to explicitly
map the identified assets to the software level in order to enable a classification of soft-
ware components based on high-level risk ratings. Based on this classification and an
information flow graph, the size of critical trust domains can be reduced through the
integration of filter components. The newly identified threats to the system level assets
through possible threats can be fed back to the overall risk management process, while the
component classification contributes to the decision which components should be undergo
a rigorous security assessment.
In order to handle the variety of the produced components and control devices, we

proposed exploiting techniques used in the Model-Based Testing (MBT) domain to enable
a more efficient configuration of production and test procedures. Based on this framework,
we demonstrated how to enable secure provisioning for embedded control devices with the
help of an OEM-controlled trusted manufacturing device.
The security properties of PRIBA are similar to conventional binary-based remote at-

testation. Moreover, we showed its applicability to different domains and the evaluations
showed a significant reduction of required reference measurements. At the same time,
the introduced resource overhead is arguable and the effort of integrating PRIBA into
existing systems is limited when privilege separation is already a design principle of the
architecture.
Summarized, the contributions of this thesis comprise a new remote attestation method

that reduces the impact on maintainability, tools and process extensions that support this
method and an integration into systems in different domains to show its applicability. The
resulting 11 scientific publications and their relation to this thesis and its contributions
will be shown in Chapter 7.

6.2 Future Work

As already mentioned earlier, there are some limitations regarding the discussed aspects
that offer opportunities for future extensions.

Dynamic Privilege-Based Remote Attestation

Currently, the proposed remote attestation method identifies the privileges statically (i.e.,
measures static privileges of a component). Consequently, PRIBA cannot attest any run-
time properties. Instead of measuring the privileges prior the component’s execution and
enforcing the privileges at runtime, an architecture that tracks all resource accesses to dy-
namically build the privilege measurement of a component could be created. In this case,
the privilege classification of a software component would change at runtime. This concept
can be compared to the low-water-mark integrity model [29]. Here, a high-privileged sub-
ject drops privileges by accessing low-privileged objects. In a dynamic version of PRIBA,
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a component can be trusted until it does something that may violate the system’s in-
tegrity. A pure dynamic approach could be combined with the static approach to enable
the detection of runtime integrity violations that would be reflected in a changed privilege
measurement.

Integration of Additional Properties at Other System Levels

As mentioned before, integrity reporting at device level cannot provide any statement
about the integrity of process-level information such as sensor data. A comprehensive ap-
proach could integrate anomaly detection mechanisms to augment the trusted computing
architecture with dynamic properties on the process level. Due to the central collection
of calibration data during production, such methods could also be augmented with unit-
specific tolerances as static properties.

Local Certification during Secure Provisioning Process

While the central certification is sufficient and beneficial for our use case, a decentralized
version of this process would significantly rise its general applicability due to the removed
requirement for internet connection. The main advantages of the current version is the
centralized storage of production and certification data as also the central supervision of
a manufacturer’s production contingents. Centrally accumulating data, however, requires
a permanent internet connection. Synchronization could be done sporadically too. The
remaining issue of contingent monitoring could be solved with the help of the trusted
manufacturing device. A clearance of a specific contingent can be achieved offline: The
Original Equipment Manufacturer (OEM) signs a certain quantity and type of devices
to be produced by one specific manufacturing entity. This blob can be delivered to the
manufacturer (e.g., per storage card) and enables the manufacturing entity to certify the
exact amount of allowed devices. Since all other manufacturing entities refuse to accept
this specific clearance data, such an approach would enable distributed certification.

Real World Application

Since this work was conducted in a research cooperation project, significant parts of this
thesis are already proven in use. The extended risk assessment process [Paper F] has been
successfully used to evaluate a SCADA system architecture and to refine the system to
integrate security measures. Moreover, the Manufacturing and Test Environment (MaTE)
[Paper G] is already used in the production environment for the control devices of our
industrial partner. While some parts of the security architecture presented in Chapter
5 [Paper C] have been already integrated into the productive system, this process is not
completely finished yet. Before the remote attestation architecture can be integrated
safely, additional aspects have to be examined. One important future research direction
is the influence of the integration of trusted computing techniques on other dependability
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properties of the system. While detection of compromise is important, the presence of
such methods must not degrade availability or reliability.

Hardware Backends

The reason for the focus on Trusted Platform Module (TPM) 1.x devices as trust anchors
in this thesis is only due to available hardware during the work. As already mentioned,
these devices have some strong limitations, especially when a possible adversary is able to
access the hardware (e.g., during the manufacturing process). Therefore, there is a need
to analyze other possible trust anchors in order to improve the security assumptions of
the proposed solution.
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ABSTRACT
Remote attestation is used to assure the integrity of a
trusted platform (prover) to a remote party (challenger).
Traditionally, plain binary attestation (i.e., attesting the
integrity of software by measuring their binaries) is the
method of choice. Especially in the resource-constrained
embedded domain with the ever-growing number of inte-
grated services per platform, this approach is not feasible
since the challenger has to know all possible ’good’ config-
urations of the prover. In this work, a new approach based
on software privileges is presented. It reduces the number
of possible configurations the challenger has to know by ig-
noring all services on the prover that are not used by the
challenger. For the ignored services, the challenger ensures
that they do not have the privileges to manipulate the used
services. To achieve this, the prover measures the privileges
of its software modules by parsing their binaries for partic-
ular system API calls. The results show significant reduc-
tion of need-to-know configurations. The implementation of
the central system parts show its practicability, especially if
combined with a fine-grained system API.
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1. INTRODUCTION
Remote attestation is a technology used to assure the in-

tegrity of a remote system prior to the transmission of sensi-
tive data. Basically, a prover wants to prove that its config-
uration is trustworthy to the challenger. In order to achieve
this, the prover measures its configuration and cryptograph-
ically ensures the integrity of this measurement with hard-
ware components like a Trusted Platform Module (TPM)
[16] or secure co-processors [15]. In most cases, a measure-
ment is a hash-value of the measured entity. The prover
sends the measurement and the cryptographic proof of its
integrity to the challenger that compares the measurement
to a set of well-known ’good’ configurations. If the configu-
ration is not known, the prover is considered as non-trusted.
Thus, the challenger has to know all possible ’good’ config-
urations of the prover.

In the resource constraint embedded domain, where aware-
ness for security arises more and more in the last few years,
this technology has become a wide research topic for dif-
ferent applications and at different levels of abstraction [12,
5, 1, 9, 10]. On the other hand, ever-cheaper hardware is
becoming increasingly powerful. Therefore, a trend is going
towards integration of many different services and software
modules in a single platform. Thus, many architectures
rely on highly integrated and high-performance backend-
platforms (servers) which are providing services for a lot
of different lightweight devices with very limited resources
(clients; e.g. sensors). Different clients may rely on different
services of the server. By additionally taking into account
software updates on the server, the list of possible trusted
server configurations gets unmaintainable in both, size and
update-frequency. In connection with natural resource con-
straints of the clients, it is impracticable to use remote attes-
tation of the server’s integrity in many cases. However, the
different services are often independent and do not interfere
with each other. Thus, a client that is using a service has
no need to know all other services running on the server.

Previous approaches are based on measuring software-
binaries [14], security-properties [13, 3] or information flows
[8, 17]. However, none of them is really practicable in the
embedded domain. Binary attestation and property-based
attestation suffer from problems with too many possible con-
figurations or the need of a Trusted Third Party (TTP). Sys-
tems based on information flow analysis depend on compre-
hensive access control policies of all modules on the prover
platform. However, the idea of generating an information
flow graph can be used on top of the work presented in this
paper.

©2015 ACM. Reprinted, with permission. Not for redistribution. The definitive version was published in Proceedings of the
Workshop on IoT Privacy, Trust, and Security (IoTPTS), April 2015.
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In this work, a new approach based on software privi-
leges is proposed. A software privilege is the possibility of
a software module to access a resource or a critical system
function. In the following, the focus is set on resources like
files or network access. However, other critical system func-
tions are handled analogous. Similar to other systems, the
basic idea is to use a hybrid approach where only a mini-
mal subset of the prover’s configuration has to be checked
with binary attestation. The prover is a platform running N
software modules (e.g. operating system, libraries, services).
A platform configuration is the set of all running modules
ConfProver = {M1,M2, ...MN}. Using plain binary attes-
tation methods, a challenger that is communicating with a
module Mk has to verify the whole platform configuration.
However, in case that no harmful module is running on the
platform, the integrity of Mk only depends on Mk itself and
maybe some additional modules (e.g. the operating sys-
tem or other dependencies). Thus, the integrity of Mk can
be verified by checking only a subset of the configuration
Confk ⊆ ConfProver. Additionally, it has to be ensured,
that no other module Mo ∈ ConfProver\Confk is able to
harm the integrity of Mk or one of its dependencies.

PRIvilege-Based remote Attestation (PRIBA) uses bi-
nary attestation to ensure the integrity of the configuration-
subset Confk. Since the integrity of Mk and all its de-
pendencies is ensured, another module is only able to harm
Mk’s integrity by tampering with resources (e.g. files) used
by it1. To address this, the challenger has a set of rules that
every Mo has to meet. Each rule defines a resource that
no unknown module is allowed to access in order to ensure
the integrity of Mk. The resource accesses are measured by
parsing all modules for system API calls.

This work provides the following:

• A remote attestation method that reduces the set of
platform configurations by ignoring all modules that
do not have the privileges to interfere with the tar-
geted service (i.e., the service, the client wants to use).
This approach increases the complexity of measure-
ments on the server but significantly reduces the size
and update frequency of the list of known configura-
tions maintained on the lightweight clients.

• A measurement method that parses binaries of soft-
ware modules to detect system API calls and their pa-
rameters to generate the privilege classification needed
by the attestation method.

• A prototype implementation of the central parts of the
system to show the practicability.

The paper is organized as follows. Section 2 discusses
related work and Section 3 describes the proposed system.
Section 4 discusses the suitability of the approach with some
common use cases and shows the feasibility with the help of
a prototype implementation. In Section 5, the benefits and
the drawbacks of the system, as well as future directions are
summed up.

1Assuming an operating system with strict process sepa-
ration.

2. RELATED WORK
A variety of methods for integrity measurement are avail-

able in the literature. Remote attestation methods for bi-
naries, properties, security policies and platform specific
permission-systems have been introduced.

Integrity Measurement Architecture (IMA) [14] is mean-
while part of Linux and generates a measurement list of all
binaries and configuration files loaded by the system. The
cumulative measurement (i.e., hash) of the measurement list
is extended into a Platform Configuration Register (PCR).
To attest the system’s state, the prover sends the measure-
ment list to the challenger and proofs its integrity with the
help of the TPM. Binary measurement approaches are not
suitable for systems with many different or dynamic config-
urations because each challenger has to maintain a compre-
hensive list of known ’good’ configurations. Especially when
system updates or backups are taken into account, the set
of possible configurations may grow to an unmaintainable
size. Moreover, the verification of all binaries is not neces-
sary every time. The challenger might only be interested in
modules which may affect the integrity of the target soft-
ware.

Property-based attestation [13, 3] overcomes some is-
sues of binary-based methods. A challenger is only inter-
ested whether the prover fulfills some requested security-
properties (e.g. strict isolation of processes). Therefore, a
set of possible platform configurations is mapped to different
properties. This approach eliminates the need for compre-
hensive lists of reference configurations on the challenger by
the introduction of a TTP which is in charge for the map-
ping. Similar approaches [4] focusing on privacy-preserving
features do not need a TTP and use ring-signatures to pro-
tect the prover’s configuration from exposure. However,
they do not solve the problem with the high number of pos-
sible configurations without a TTP.

Another group of approaches use information flow analy-
sis based on security policies [8, 17]. These systems use bi-
nary approaches to attest the integrity of all modules needed
to enforce security policies for Mandatory Access Control
(MAC) systems like SeLinux [11]. All other applications
are split up into high-integrity and low-integrity processes
whereat the high integrity processes are measured by a bi-
nary approach too. Based on the security policy, the system
builds an information flow graph. Thus, these approaches
model all possible communications between processes. The
basic idea is that a high-integrity process is successfully at-
tested if all binary measurements are valid and there is no
possible information flow from low-integrity to high-integrity
processes (except via some special applications called fil-
ters). These approaches reduce the number of platform
configurations since only a small set of system- and high-
integrity applications has to be measured. However, these
approaches rely on well-defined security polices and the gen-
eration of all filters and exceptions is a hard manual task
[17].

Some approaches directly use the security policy of an ap-
plication to attest its integrity. In [18] an approach to attest
the semantics of a security policy with a query language
instead of the hash has been proposed. Moreover, a system-
based on platform specific Model-Carrying Code (MCC) like
the Android [6] permission system has been introduced [2].
However, they also need the presence of a privilege classifi-
cation (i.e., a security policy) and may be coarsely grained
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(e.g. the Android permission system is not able to restrict
access to specific files on external storage).

3. PRIVILEGE-BASED REMOTE ATTES-
TATION

Figure 1 shows the basic concept of privilege-based at-
testation. The prover represents the system which provides
services to the outer world. This part depends on a strict
isolation between processes, as well as on a mediated access
to system resources (e.g. by an operating system). Backed
by hardware support like a TPM or similar technologies,
the prover takes measurements from its running components
prior to their first execution. A challenger wants to use one
of the prover’s services but only if the service can be trusted.
For each service, the challenger maintains a communication
policy which describes what properties the prover has to
fulfill to enable the communication. The verification unit
is in charge to verify whether the prover’s configuration is
compliant.

Operating System

Binary 
Measurement

Unit

Privilege 
Measurement

Unit

System Libraries

Requester

Verification Unit

Reference 
Measurements

Prover

Communication
Policy

Service 1 Service N...

Measurement
List

Figure 1: Basic components of PRIBA: The mea-
surement units on the prover side are in charge to
generate the measurements that are verified by the
challenger.

3.1 Measurement
The functionality of the measurement units is shown in

Figure 2. Whenever a new module should be executed, a
binary measurement is taken. For all non-privileged mod-
ules, an additional privilege measurement is done. For the
prover, the differentiation between non-privileged and priv-
ileged modules simply reduces the size of the measurement
list. The system administrator sets up a list of privileged
modules which are checked against a known binary measure-
ment every time and do not need a privilege measurement.
The challenger has to decide which modules should be con-
sidered as privileged for each use case. All measurements
are stored in a measurement list. Similar to IMA, the cu-
mulative measurement is extended into a PCR to prove the
integrity of the measurement list to a challenger.

3.1.1 Binary Measurement
Binary measurement is done by an extended IMA [14] that

generates a hash over the module image. The modifications
are primarily concerned with the measurement entry format
to fit into the global measurement list. A measurement entry
of a binary measurement consists of the hash of the binary.
All measurement entries are sent to the measurement list.
Moreover, a trusted boot sequence has to be built up with

Binary
Measurement

Module About
To Be Executed

Privileged
Module

Privilege
Measurement

Execute
Module

  Yes

Module in
Execution

No

Static Measurement Unit

Figure 2: The measurement process. The static
measurement unit is initiated on module start-up.

binary measurements. All boot-modules, including the op-
erating system, as well as the measurement units have to be
measured prior to their first execution.

3.1.2 Privilege Measurement
Basically, privilege measurement is done by searching for

calls to resource access functions in the module binary. Since
it is the most critical part of PRIBA, we compare two pos-
sible approaches: With and without taking into account the
program’s control flow. Both methods locate pre-defined
calls to library functions in the application’s binary to iden-
tify resource accesses. For now, only file and network ac-
cesses are searched. A more comprehensive configuration is
part of ongoing work.

1. Control-Flow-Based Privilege Measurement: This mod-
ule is based on another, currently submitted but not
yet published, work. Basically, the program’s call
graph is built from the binary and all calls to pre-
defined library functions are located. In order to iden-
tify more detailed information about the accessed re-
source and the access type, the privilege measurement
unit searches for constant parameters in the resource-
function calls. For example, the file name and access
mode (i.e., read or write) can be determined if the
parameters are hard-coded in the binary. If this infor-
mation cannot be extracted, the property is set to a
pre-defined value with the highest possible privileges.
As an example, undefined file accesses are considered
as possible write accesses to the whole file system.

2. Symbol-Based Privilege Measurement: In contrast to
the control-flow based approach, this module simply
reads the external symbols of the application’s binary
and compares them against known system library calls.
Since the control flow is not known, it is not possible to
extract function parameters with this method. How-
ever, as discussed in Section 4, a finer granularity of
the system API would also lead to an accurate mea-
surement.

A measurement entry of a privilege measurement contains
a set of Resource Access Descriptions (RAD). RADs contain
the resource type and additional attributes based on the
type. In the current version, the resource type can only be
one of file or network. A file-RAD contains the file name
and the access type (read/write) as additional properties.
Currently, network -RADs do not have additional properties.
However, properties like protocol and remote address would
be interesting candidates.
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3.1.3 Measurement List
The measurement list contains one entry per line. An

entry consists of the module name and the measurement
type. The type is either binary or privilege. As mentioned
before, based on the type, different additional attributes ex-
ist. After each added line, the ASCII-representation of the
measurement entry is hashed and extended to the TPM. Ta-
ble 1 shows an exemplary measurement list for 2 modules.
Module1 and Module2 have been measured. Module1 is a
privileged module (for example the system libraries), thus
only a binary measurement generated by IMA exists. Mod-
ule2 has an additional static privilege measurement. The
privilege measurement unit was able to locate network ac-
cess and read/write access to a specific file in the binary.

Table 1: An exemplary measurement list with dif-
ferent types of measurements.

Name Type Attributes
Module1 binary hash=0cedac001ab4
Module2 binary hash=b607c8734a9e

Module2 privilege
RAD1={network}

RAD2={file,/home/user/test,rw}

3.2 Verification
Similar to IMA, the verification consists of two parts. The

challenger gets the measurement list and a quote of the PCR
with the cumulative hash of the list. While the quote enables
the verification of the integrity and authenticity of the list,
the measurement list is used to verify whether the remote
system is in a state that ensures integrity of the targeted ser-
vice (i.e., the service, the client wants to use). In contrast
to usual binary attestation, privilege-based attestation only
considers the service which is used by the challenger and en-
sures that no other module is able to manipulate it. This is
accomplished by executing the rules defined in the commu-
nication policy and comparing the reference measurements
to the prover’s measurement list based on these rules.

3.2.1 Communication Policy
There exists one communication policy for each interest-

ing module on the system. It consists of five parts. The
name and the type, rules for file and network accesses and
dependencies.

1. Name: Each module is identified by its unique name.
A communication policy corresponds to a module, if
this attribute matches its name.

2. Type: The module can be privileged or non-privileged.
Besides the name, this entry has to be set in a minimal
policy.

3. FileConsistency: A FileConsistency rule defines a file
(or set of files) which integrity or confidentiality has
to be ensured to trust the module. It contains the
following attributes:

• Path: The path of the file which has to be exam-
ined.

• AccessMode: Defines read or write access.

The integrity of a file can be ensured if no unknown
module is able to modify a file. Similarly, the file can-
not be disclosed to others if no unknown module can
read the file.

4. NetworkAccess: A NetworkAccess rule defines whether
access to network resources is allowed for unknown
modules.

5. Dependency: A Dependency defines relationships to
other modules. Basically, dependencies are a list of
modules that have to be checked in order to verify the
integrity of the main module.

3.2.2 Verification Unit
The overall process of the verification is illustrated in Fig-

ure 3. After the profile is loaded, the binary verification
is executed only if the module is privileged. The file and
network rules are checked for all modules. Additionally, the
process is started for all dependencies. If dependency veri-
fication fails, the overall verification fails. The targeted ser-
vice and all its dependencies are set to privileged by default
since a binary measurement of these modules is unavoidable
to ensure integrity.
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Verification    
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Another
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Figure 3: The verification process: The module it-
self, as well as all dependencies are verified.

The binary verification is simply done by comparing the
measurement taken by IMA with the value in the reference
list. For file and network-rules, the verification process is
more complex. The first step is the generation of the list of
privileged modules. Therefore, all communication policies
are parsed and all modules which are denoted as privileged
are added to the list. Additionally, all dependencies are
added. Thus, there exists global list of privileged modules
that can be extended for each targeted service. With this
list, the actual verification can be executed. Each privi-
lege measurement entry in the measurement list is checked
whether it conforms to the rule. If an entry violates the
rule, the verification fails for non-privileged modules. On
the other hand, a privileged module that violates a rule is
added to the dependency list. Thus, privileged modules may
violate the rules but only if they are fully trusted (since the
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binary of a violating module will be checked because it is on
the dependency list).

4. DISCUSSION AND EVALUATION
To verify the suitability of privilege-based remote attes-

tation, two typical use cases are examined. Moreover, the
feasibility of the approach is investigated with the help of a
prototype implementation of critical core modules.

4.1 Evaluated System
For the use cases, the following scenario, illustrated in

Figure 4, is considered. A system (Server) provides some
web services to the outer world. SVC 1 and SVC 2 are
providing information from the storage. SVC 3 is used to
store data on the system. SVC 4 is a maintenance service
which is used for system updates and other administrative
tasks. Hence, SVC 4 requires extensive system privileges.

Server

Operating System/Interfaces

SVC 1

Storage R

Network

SVC 2

Storage R

Network

SVC 3

Storage W

Network

SVC 4

System

Network

Storage W

Figure 4: An exemplary server with 4 different ser-
vices running on top of an operating system.

The operating system itself provides three types of inter-
faces for the services: network, storage and system. The
network interface allows access to the network services of
the system. With the storage interface, file access can be
done in read and write mode. For simplification, file sys-
tem access is considered globally and does not distinguish
between different files. All other interfaces are summarized
as system interfaces and represent privileged interfaces used
by the maintenance service.

A minimal communication policy for the operating system
and the interface library exists. Both are defined as privi-
leged modules. Thus, the binary verification of the operating
system is seamlessly integrated in the verification process,
although it does not reflect a real module with measurable
privileges (since it does not interface with itself).

In this use case, SVC 3 and SVC 4 are considered as priv-
ileged modules. Therefore, all clients have to know reference
measurements of the corresponding binaries. SVC 3 allows
authenticated clients to write to the storage and SVC 4 is
able to fundamentally change system properties. Thus, both
services should be checked completely by all clients with bi-
nary attestation. Both services depend on the operating
system.

SVC 1 and SVC 2 use the same communication policy.
Both are non-privileged and depend on the operating system
and the integrity of the storage. Thus, a file rule is added
that disallows any non-privileged module that has access to
the file system.

4.2 Use Case 1: Verification of a Trusted Sys-
tem State

The first use case examines system behaviour in case that
all services running on the system are trustworthy. A client

is communicating with SVC 2 to get data from the server’s
storage. The client has to know the binary measurement
of SVC 2, SVC 3, SVC 4 and the operating system, but
not from SVC 1. To verify the integrity of SVC 2, the cor-
responding communication policy is loaded and executed.
The verification of the service itself is done by comparing its
binary measurement to the reference measurement. SVC 3
and SVC 4 violate the file rule of SVC 1. However, they
are privileged and match the known reference measurement.
Also, the dependency of all services and the operating sys-
tem, is measured correctly. Thus, the server’s integrity is
successfully verified.

Another important aspect is the behaviour when services
that do not interfere with the targeted service are added
or changed. Both, changing SVC 1 or adding similar ser-
vices with the same privileges does not affect the verifica-
tion result, because they do not violate the rules defined in
the communication policy. This is a fundamental advantage
compared to plain binary attestation methods.

4.3 Use Case 2: Detection of Malicious Code
This use case is set up similar to the first one. The dif-

ference is, that an adversary has been able to add a service
that writes malicious data to the storage. Since this ser-
vice is measured by the measurement unit on the server, the
client is able to detect the policy violation (an unknown ser-
vice is able to write to the storage) and stops communication
with the server.

If an adversary is able to modify existing services to act
maliciously, there are two possible consequences. If the mod-
ified service does not violate a policy rule, the targeted ser-
vice is trusted anyway since the malicious module is not
able to interfere with it. On the other hand, if the modified
service is able to violate the policy, it has to be privileged
from the client point of view. Therefore, the client would
fail to match the malicious binary measurement against its
reference measurements and successfully detect the altered
service.

4.4 Prototype Implementation
A prototype of privilege-based attestation is currently im-

plemented for Linux. At the moment, only the libc interface
for files and networking, namely the fopen and socket func-
tions are supported for privilege measurement. The most
critical part is the privilege measurement unit since it may
be too slow to use it practically. Therefore, a test program
that shows the functionality, as well as some reference pro-
grams are measured and the performance is compared to
usual binary measurement methods.

The implementation of the control-flow-based privilege
measurement module is based on Dyninst [7], a library that
eases the generation of a call graph and the parse of the bi-
nary. Basically, calls to known library functions are located
and, based on the call convention of the current binary, the
parameters are extracted if they are hard-coded. The im-
plementation of the symbol-based measurement method is
based on the the GNU-nm tool2 that is used to extract the
symbols from the file-header.

The test program is shown in Figure 5. The program sim-
ulates basic file I/O. In the first example, the writeToFile
function, all parameters are hard-coded. Therefore it is pos-

2https://sourceware.org/binutils/docs/binutils/
nm.html
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sible to decode this information and the resulting privilege
measurement contains both entries (the read and the write
access) with their corresponding paths. Usually the use of
hard-coded parameters for resource accesses lead to systems
that are hard to maintain or reconfigure. However, using a
convention over configuration paradigm could mitigate these
problems. Another approach, as shown in the readFromFile
function, is to alter system interfaces to reflect finer-grained
resource accesses in a machine-readable way. Especially in
the embedded domain, where interfaces are often stricter
and the number of possible resource types is small in com-
parison to standard PCs, this approach may be applicable.
Moreover, software developers can be supported by static
source code analysis or even dynamic run-time analysis to
re-write API calls in existing software to a finer granular-
ity in a (semi-)automated way. The result would be a very
fine-grained module classification that would lead to fewer
privileged modules.

void writeToFile(char* buffer)
{

int f = open("/patho/file1", O_WRONLY);
// ...

}

void readFromFile(char* buffer)
{

int f = openPrivate("/home/.program/file2",
O_RDONLY);

f = openTemp("/tmp/fileX");
// ...

}

int main()
{

char* buffer = "static_buffer";
writeToFile(buffer);
readFromFile(buffer);

}

Figure 5: An exemplary test program with hard-
coded resource access (writeToFile) and a finer
grained system interface (readFromFile) that re-
stricts the access to a resource type based on the
used function.

Table 2 shows the time used to measure different binaries
on a common PC compared to an ordinary SHA-1 calcula-
tion over the binary. The applications used for the bench-
mark are chosen to illustrate different binary sizes and com-
plexities of the call graph. Before each measurement, the
page cache of the underlying operating system is cleared to
enforce a re-read from the hard disk and several runs are av-
eraged to eliminate random fluctuations. The time used for
control-flow-based privilege measurement does not correlate
with the binary size, because the implementation follows
the call graph of the binary. In general, the control-flow-
based measurement takes a very long time in comparison
to a hash calculation. However, this measurement has to
be done only once at the first execution of the binary and
therefore it only increases boot time what is acceptable in
many cases. Moreover, the current implementation is very
slow and there are many potential improvements regarding
to performance which are part of ongoing work.

Symbol-Based privilege measurement is comparable to
hashing regarding the measurement time. Therefore it
should be the more appropriate candidate for privilege mea-
surement. However, based on the underlying technology and
level of abstraction, this approach might not be suitable:
Symbol-based privilege measurement can only be used if it
is not possible to call external symbols without adding them
to the symbol list. Otherwise an application might hide the
fact that a privileged function is used. In future work we
will mitigate this problem by using an hybrid approach that
discovers symbol calls with local call tree instead of relying
on the whole control flow graph.

5. CONCLUSION AND FUTURE WORK
In this work PRIBA, a lightweight approach for remote

attestation for embedded system, has been presented. In
contrast to plain binary attestation methods, PRIBA re-
duces the number of possible platform configurations need
to known by a challenger by ignoring software modules that
do not have the privilege to interfere with the service the
challenger is using. Privilege measurement is done by pars-
ing the binary for system API calls. The feasibility of the
system has been discussed and evaluated.

While the results show significant reduction of need-to-
know configurations, especially in systems that integrate
many independent services, some challenges remain for fu-
ture work. The current proof-of-concept implementation is
not complete and has a lot of unused performance poten-
tials. Currently, the system relies on static fine grained re-
source access at application binary level to generate mean-
ingful classifications. However, a dynamic measurement unit
that measures all resource accesses at runtime and enables a
dynamic verification of the system that reduces the need of
non-configurable resource accesses has already been added.
The description of this extension would exceed the page
limit. Another solution to this problem is the use of a finer
grained system API that reflects the resource accesses in a
machine readable way.

The limitation to file and network resources is not suf-
ficient. Many operating systems provide system calls that
enable controlling or monitoring other processes. If this kind
of interaction is not prohibited, the current approach simply
fails. Furthermore, self-modifying-code can not be allowed
at the moment. Again, restricting the API can mitigate
these problems.

First tests showed that the distinction between network
and file accesses in the policy is not very reasonable and
should be abstracted to general privileges, since other priv-
ileges like the debugging capabilities mentioned before have
to be added in the future. Ongoing work is focusing to add
these aspects and generate a complete implementation for a
Linux-based embedded system in the automation domain.

Another important part of future work is the implementa-
tion of information flow analysis to extend the possibilities
of communication policies. For example, an unknown mod-
ule may be able to read confidential information, if there is
no possible information flow from the unknown module to
the network interface.

In summary, this approach again shows the importance
of addressing security considerations in early design stages.
With a fine grained system API that enforces the principle of
least privileges, not only the attack surface is reduced but
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Table 2: The execution time of the privilege measurement methods compared to a simple hash calculation.

Name Size [B]
Call Graph
Edge Count

Time
SHA1[ms]

Measurement Time
Control-Flow-Based [ms]

Measurement Time
Symbol-Based [ms]

mysql 6.4M 775 142 3560 142
git 1.6M 1144 130 4560 127
ssh 686k 2167 78 11000 110

testProgram 11k 2 103 1454 103

also significant improvements to traditional security mea-
sures (in this case binary attestation) are possible.
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Abstract
Remote attestation is used to prove the integrity of one

system (prover) to another (challenger). The prover mea-
sures its configuration and transmits the result to the chal-
lenger for verification. Common attestation methods lead to
complex configuration measurements (e.g., hash of all exe-
cutables), which are updated every time one of the software
modules changes. The updated configuration has to be dis-
tributed to all possible challengers since they need a refer-
ence to enable the verification. Recently, an idea of reducing
the complexity of the configuration measurement by taking
into account privileges of software modules has been pre-
sented. However, this approach has not been exhaustively
analyzed since, as yet, no implementation exists. Especially
in the Internet of Things (IoT) domain, where resources are
constrained strictly while devices are potentially physically
exposed to adversaries, attestation methodologies with re-
duced overhead are desireable. In this work we combine
binary-, property- and privilege-based remote attestation to
integrate a trusted computing architecture transparently into
IoTivity, an existing IoT middleware. As a first step, we aim
to enable to attestation of the integrity of complex devices
with different services to constrained devices. With the help
of an illustrative simulated environment, we show that our
architecture reduces the effort of bootstrapping trusted rela-
tions, as well as updating single modules in the whole sys-
tem, even if software and devices from different vendors are
combined.

1 Introduction
Studies predict the prevalence of connected devices in the

near future and estimate that there will be over 13 billion de-
vices by 2020 [1]. Essentially, these devices are connected
sensors or actuators that measure or modify their environ-
ment. The high density of sensors potentially implies pri-
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vacy issues whilst the ability to access actuators from any-
where may allow adversaries to control critical infrastruc-
ture. Recently, large scale TV manufacturers are warning
their customers not to discuss private information in front of
their devices [2], light bulbs reveal the owner’s WiFi creden-
tials [3] and pacemakers have been controlled by unauthenti-
cated devices [4]. Individuals are not the only target of adver-
saries. Supervisory Control and Data Acquisition (SCADA)
systems are also continuously attacked [5]. Therefore, a lot
of research has been done to improve the authentication of
devices and the integrity and confidentiality of their com-
munication. However, even if a communication partner is
authenticated, how is it possible to ensure that the software
running on it is not harmful?

Remote attestation is used to assure the integrity of one
system (prover) to another (challenger). In order to achieve
this, the prover measures its configuration and cryptographi-
cally proves the integrity of this measurement with hardware
components like a Trusted Platform Module (TPM) [6] or
secure co-processors [7]. The integrity of the prover’s con-
figuration is verified by comparing the measurement against
a known value. The challenger therefore has to know all
possible ‘good’ configurations of the prover. In the resource
constrained embedded domain this technology has become a
wide research topic for different applications and at different
levels of abstraction [8, 9, 10, 11].

Today’s systems are often comparable to the architecture
illustrated in Figure 1a. On the one hand, different types of
small devices are used for a particular purpose (e.g., a sen-
sor or an actuator). These devices are often constrained with
respect to energy and performance. On the other hand, cen-
tral stations such as gateways, field controllers or powerful
consumer electronics exist. These devices benefit from hard-
ware that is becoming increasingly powerful. Consequently,
it is desirable to integrate different services into one device
in order to reduce hardware cost. Such devices may con-
trol actuators based on sensor values or just connect differ-
ent segments in a bigger network to reduce the clusters to
maintainable sizes (i.e., gateways).

Whenever communication occurs, the corresponding de-
vice needs to ensure the integrity of the central station. Here,
the integration of different services on the central device
causes problems. Each sensor/actuator has to know a ref-
erence configuration that is composed of all services running

©Reprinted, with permission. Not for redistribution. The definitive version was published in Proceedings of the 2016 International
Conference on Embedded Wireless Systems and Networks (EWSN 2016), March 2016.
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Figure 1. A common architecture: Many Constrained Devices communicate with a central device or gateway (Full
Device). The reference configurations on each device is traditionally composed of binary measurements of all gateway
modules (1a) although only some of them are important for this specific device (1b).

on the central device. Moreover, every time any of the ser-
vices is updated, the reference configuration on all other de-
vices has to be updated too. A superior solution has to reduce
the complexity of the reference configuration to a minimum,
as shown in Figure 1b. The challenger only has to know
all services that influence the communication partner. For
other services, the central station has to prove that there is no
possibility for them to influence the challenger’s services of
interest.

Previous approaches based on measuring software-
binaries [12] or security properties [13, 14] suffer from
the problems of too many possible configurations or the
requirement of a Trusted Third Party (TTP). Systems
based on information flow analysis [15, 16] depend on
comprehensive access control policies for all modules on the
prover platform. Recently, the concept of privilege-based
attestation has been proposed [17]. If a module does not
have the privileges or permissions to harm the integrity of
the targeted function on the prover, the challenger does
not have to know a reference measurement. This approach
could significantly reduce the complexity of the reference
measurement list. However, until now no implementation of
this scheme exists.

In this work, we provide the first usable design of this con-
cept. We contribute a comprehensive trusted computing ar-
chitecture, implemented on top of an Internet of Things (IoT)
middleware. It combines binary-, property- and privilege-
based measurements with a focus on a low overhead. In par-
ticular, this paper provides:

• The integration of a trusted computing architecture into
IoTivity, an existing IoT middleware. To the best of our
knowledge, this is the first comprehensive solution that
brings remote attestation at system level to this domain.

• A transparent remote attestation protocol. Security is
done under the application layer and high level services
can focus on functionality.

• The application of different remote attestation method-
ologies in the IoT domain to reduce the set of known
reference configurations. Therefore, compared to exist-
ing solutions, the approach is also practicable for sys-
tems with a high amount of services/devices.

Moreover, we created an experimental test environment to
evaluate the architecture based on a virtual test-bed. Our so-
lution provides simple methods for bootstrapping and con-
figuring trusted relationships to enable authenticity for inter-

device communication in ecosystems with device and vendor
diversity. Furthermore, the system enables investigation of
additional attestable properties for prospective devices and
services. Similar to many IoT middleware implementations
like IoTivity or AllJoyn, Thingtegrity distinguishes between
Full Devices and Constrained Devices. In this work, we fo-
cus on the attestation of the integrity of Full Devices to Con-
strained Devices by reducing the size and dynamics of the
configuration measurements. The attestation of Constrained
Devices is out of the scope of this paper and left for future
work.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 describes the pro-
posed system. Subsequently, Section 4 provides implemen-
tation details and explains how the architecture is integrated
into IoTivity. Section 6 discusses the suitability of the ap-
proach based on an exemplar system that is introduced in
Section 5. In Section 7, the benefits and the drawbacks of
the system, as well as directions regarding our future work
are summed up.

2 Background and Related Work
Trusted computing generally aims to build more secure

systems by the implementation of different features. One
of these features is remote attestation. This section de-
scribes the basic process of this concept and discusses exist-
ing methods that generate configuration measurements and
verify them on the challenger.
2.1 Remote Attestation

Remote attestation is the process of proving the configura-
tion of a system (prover) to another entity (challenger). In or-
der to integrate this process, the prover has to provide a Root
of Trust for Measurement (RTM) and a Root of Trust for Re-
porting (RTR). The RTM is in charge to measure properties
that reflect the prover’s system integrity (i.e., the integrity of
all other software components on the system). Since mali-
cious software would be able to change the taken measure-
ments afterwards, a RTR is used to securely store this in-
formation and to protect it from malicious forging. Further-
more, the challenger has to comprise a policy or reference,
that enables the verification whether the measured configu-
ration represents a non-compromised system and a protocol
for secure exchange of this information has to be in place.

Usually, the challenger sends a random value, called
nonce, to request the prover’s configuration. The prover
signs its measurement (taken by the RTM), as well as the
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nonce with its private key. Both the storage of the mea-
surements and the signature is normally done by a dedicated
hardware (the RTR) to prevent software from tampering with
these values. One common way is to use a TPM [6] and
perform the TPM_QUOTE operation. However, other tech-
nologies like ARM’s TrustZone [18] or Intel’s Trusted Exe-
cution Technology (TXT) [19] enable similar functionality.
The challenger is now able to verify whether the retrieved
measurement complies to its policy and check the signature
with the public part of the prover’s key in order to ensure
data integrity. Both, TPM- and TrustZone-based attestation
methodologies are too complex and expensive for many low-
end embedded systems. Therefore, more lightweight ap-
proaches to enforce isolation of security-critical code have
been introduced (e.g., [20], [21], [22]). These solutions en-
able attestation of tiny devices and would extend our system
to also integrate mutual attestation for this class of devices.

2.2 Configuration Measurement and Verifica-
tion

In order to attest the integrity of different devices to each
other, the integrity of their configuration has to be measured.
Basically, the configuration is represented by the software
components running on the device. A variety of schemes
and implementations that tackle this problem exist in the lit-
erature. Remote attestation methods for binaries, properties,
security policies and platform-specific permission-systems
have been introduced. However, the mapping of these con-
cepts into the IoT domain is not a trivial matter due to re-
source and connectivity constraints.

The Integrity Measurement Architecture (IMA) [12] gen-
erates a measurement list of all binaries and configuration
files loaded by the system. The cumulative measurement
(i.e., hash) of the measurement list is extended into a Plat-
form Configuration Register (PCR). To attest the system’s
state, the prover sends the measurement list to the challenger
and proves its integrity with the help of the TPM. Binary
measurement approaches are not suitable for systems with
many different or dynamic configurations because each chal-
lenger has to maintain a comprehensive list of known ‘good’
configurations. Especially when system updates or backups
are taken into account, the set of possible configurations may
grow to an unmaintainable size. Moreover, the verification
of all binaries is not necessary every time. The challenger
might only be interested in modules which may affect the
integrity of the target software. Our work uses IMA for the
attestation of high-privileged software components.

Property-based attestation [13, 14] overcomes some is-
sues of binary-based methods. A challenger is only inter-
ested in whether the prover fulfills particular security prop-
erties (e.g., strict isolation of processes). Therefore, a set
of possible platform configurations is mapped to different
properties. This approach eliminates the need for compre-
hensive lists of reference configurations on the challenger by
the introduction of a TTP which is in charge of the mapping.
Similar approaches focusing on privacy-preserving features
[23] do not need a TTP and use ring-signatures to protect the
prover’s configuration from exposure. In this paper, we use
this concept to sign reference measurements.

Another group of approaches use information flow anal-
ysis based on security policies [15, 16]. These approaches
model all possible communications between processes. The
basic idea is that a high-integrity process is successfully
attested if all binary measurements are valid and there is
no possible information flow from low-integrity to high-
integrity processes. These approaches reduce the number of
platform configurations since only a small set of system and
high-integrity applications has to be measured. However,
they rely on well-defined security policies and the genera-
tion of additional filter-components. In our work, we do not
rely on existing policies or descriptions. They are generated
at execution time.

Similar to policy-based and information flow based meth-
ods, PRIvilege-Based remote Attestation (PRIBA) [17] tries
to reduce the information needed by the challenger by using
privileges of software modules as trust properties. For soft-
ware modules that have privileged access on the executing
prover, binary measurement is used. All other modules are
parsed for privileged calls to the system library to generate a
privilege measurement of the module. The challenger is able
to decide whether the measured module violates the prover’s
integrity by checking the measurement against a policy. The
presented approach potentially reduces the size and the up-
date frequency of the challenger’s reference measurements.
However, until now only the basic concept has been pre-
sented and no implementation exists. Neither the measure-
ment of a modules’s privileges nor the verification against
the policy has been investigated. In our work we fill this gap
by implementing privilege measurements as a central part of
the trust properties used to attest a system’s configuration.

3 System Architecture
This section provides an overview of Thingtegrity, our

proposed trusted computing architecture and its underlying
ideas. In Section 4, we will describe how the architecture
is integrated into an IoT communication stack, namely the
IoTivity middleware.

3.1 Overview
Thingtegrity aims to enable mutual verification of the in-

tegrity between these devices by introducing a transparent
trusted computing architecture that enables remote attesta-
tion in this domain. To enable this attestation, the configura-
tions of the devices have to be measured.

In this work, we focus on the configuration of Full De-
vices. These devices usually have a more complex and dy-
namic configuration, while their challengers are constrained.
Therefore, the reduction of these measurements is an impor-
tant first step to generate a trusted computing architecture in
this domain. However, the architecture can be used for both
type of devices and will be extended in future work.

3.1.1 Remote Attestation
Whenever two services on two different devices want to

communicate they have to execute the following steps:
• Set up a secure connection: Before any communica-

tion, a secure connection that provides confidentiality,
integrity and authenticity has to be set up. This is done
with DTLS in the communication stack (IoTivity).
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• Mutual attestation: Each service checks the measure-
ment of the counterpart’s configuration against the cor-
responding communication policy. This communica-
tion policy defines the rules the counterpart has to com-
ply with to be trusted.

• Actual communication: If both services trust their com-
munication partner, they can exchange information on
the secure channel.

As mentioned in Section 2.1, additional hardware support
(the RTR) is needed for storing and reporting these configu-
rations. For simplicity a TPM is assumed to perform these
actions in the remainder of this paper (although other hard-
ware options like ARM’s TrustZone are also possible).
3.1.2 Configuration Measurement and Verification

While the RTR enables storing and exchanging of the
measurements in a tamper resistant way, components that
are able to measure (prover) and to verify (challenger) the
configurations are needed. As mentioned before, a vari-
ety of schemes exist for this challenge. Thingtegrity aims
to use privilege-based attestation [17] to attest the integrity
of the different services of a Full Device. These devices
can contain many independent services. Therefore, this ap-
proach potentially minimizes the memory overhead for ref-
erence configurations, as well as the communication over-
head. However, only the theoretical idea has been discussed
for this privilege-based attestation. Hence, some technical
implications have to be considered here: First, the privilege
measurement unit requires ‘measureable’ accesses to priv-
ileged system functions. Therefore, we introduce an API
with appropriate access granularity, which is discussed later.
Furthermore, the system has to ensure, that these measured
accesses are not circumvented at runtime. This is ensured
by a sandbox. In order to enable a simple integration, we
designed the introduced API in a way that enables auto-
mated generation of sandbox-policies at service-startup. The
privilege-measurement unit is the RTM for this type of mea-
surements. However, privilege measurements of this com-
ponent as well as other low-level components cannot be
taken. Therefore, we integrated the existing IMA [12] im-
plementation for Linux into our framework to enable binary-
measurements.

For verification, we introduce a simple policy that enables
the decision whether the communication partner’s integrity is
intact. However, through the IMA-based measurements, the
reference configuration lists may be too big and too dynamic
to be handled in a network of constrained devices. Therefore,
we also implemented a property-based attestation scheme,
where measurement lists are signed by Trusted Third Parties
(TPP). Additionally, we use the authentication mechanisms
of the underlying communication protocol to integrate au-
thentication of the device hardware.

3.2 Framework Architecture
The components of a Full Device are shown in Figure 2.

Basically, a Full Device is composed of a hardware platform,
a software platform and services. The hardware provides
security features that enable any kind of remote attestation.
The software platform consists of the operating system, the
system libraries and the service framework.

The system libraries and framework provide functions to
access the operating system and helper functions for com-
mon tasks. A service represents an actual application run-
ning on the platform. Thingtegrity distinguishes between
privileged and non-privileged services. Privileged services
have direct access to the system functions and thus com-
prehensive system access. Based on the underlying oper-
ating system, this access may be restricted through an ac-
cess control system. Non-privileged services, however, do
not have direct access to system resources. These services
are initiated by the Thingtegrity runtime. The runtime gen-
erates a sandbox for each service that prohibits direct sys-
tem access. Instead, the runtime provides an Inter Process
Communication (IPC) interface that enables fine grained re-
source access to services. As described further on, this ap-
proach enables privilege measurement and ensures that ser-
vices cannot access resources in an uncontrolled way. To en-
able configuration measurement, the operating system con-
tains the measurement units. The binary measurement unit
is in charge of taking binary measurements of all libraries
and services while the privilege measurement unit generates
privilege measurements of unprivileged services. Similar to
IMA, the integrity of the measurement results are ensured
with the help of a TPM.

Each device has to manage a platform identification key
(pinned to the hardware) that is used to authenticate the hard-
ware platform to other devices. As illustrated in Figure2, this
key is stored in the TPM to protect it from software access.
However, assuming a proper isolation by the operating sys-
tem, the key can also be stored conventionally in the device’s
non-volatile memory.

Moreover, each device manages a list of Trusted Third
Party (TTP) certificates and property signatures. A TTP
property signature is used for property-based attestation and
is a signed tuple of the software module’s name, a hash (bi-
nary measurement) of its executable and the property name.
Currently, Thingtegrity only uses one property, named Trust-
edByThirdParty. This property indicates, that a third party
(e.g., the device vendor or the system administrator) trusts
this binary and it is allowed to execute on the system. Each
device manages the list of TTP certificates that contain the
public part of their keys to verify the property signatures of
other devices.

In contrast to Full Devices, a Constrained Device has a
reduced feature set. They are simple devices like sensors
or actuators that do not require support for highly dynamic
services. Basically, their architecture is similar to Figure2.
However, since there is no need for non-privileged services,
they neither contain a Thingtegrity run-time nor a privilege
measurement unit.
3.3 Measurement

In order to implement integrity assurance, the software
components of the prover have to be measured. To achieve
this, Thingtegrity uses binary measurement and privilege
measurement. Here, the measure-before-execute paradigm
is used: Prior to the execution of a new software module,
a measurement of the module is taken and stored. More-
over, this measurement is extended to the PCR of the TPM.
Since a PCR cannot be changed arbitrarily, malicious soft-
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Figure 2. The components of a Full Device. All devices
securely store a platform identification key that is used
for authentication. Besides normal (privileged) services,
the runtime confines non-privileged services that may or
may not be able to influence each other.

ware is not able to deny its execution. Thingtegrity performs
binary measurement of all services and additional privilege
measurements of non-privileged services.
3.3.1 Binary Measurement

Binary measurements are taken at different tiers. To prove
the integrity of the operating system, the boot process has to
be measured. Therefore, at each boot stage, the next module
loaded is hashed and extended into a PCR prior to its execu-
tion. This process is called an authenticated (or trusted) boot.
The very first module is thus never measured (as there is no
former module). Therefore, the first module should be as
small as possible to reduce the attack surface and some mea-
sures should exists that prevent its substitution (e.g., write
protected memory or hardware based solutions [24]). In the
simplest architecture, a small bootloader initiates the TPM,
measures the operating system kernel and executes it.

After this so called chain of trust is built up, the operat-
ing system is in charge of measuring the remaining modules.
Here, Thingtegrity uses an extended version of IMA [12].
The modifications are primarily concerned with the measure-
ment entry format required to fit into the global measurement
list. A measurement entry of a binary measurement consists
of the hash of the binary. This module also adds the measure-
ments taken during the boot process (i.e. the measurement of
the operating system) to the measurement list.
3.3.2 Privilege Measurement

The privileges of non-privileged services are measured to
understand what kind of actions the service is able to per-
form. Whenever a non-privileged service is executed, the
Thingtegrity framework generates a sandbox and initiates a
privilege measurement for this module. The generation of
these measurements is done by parsing the external symbols
(i.e., function calls to system libraries) that access system re-
sources from the service’s executable. A found fopen call,
for example, reveals that the service is able to access files on
the system. However, this information is not very useful. A
service that has read access to other service’s files has com-
pletely different privileges compared to a service that only
accesses private files. Since this information is provided by

function parameters that are not static (i.e., they cannot be
parsed from the executable), Thingtegrity provides a finer
grained API to resources. As shown in Table 1, Thingtegrity
currently provides functions for file and network access. In
Section 5, we show that the chosen granularity provides
enough information to enable privilege-based attestation for
an exemplar system. Moreover, the API is coarse enough to
make it feasible to use; it also allows the migration of legacy
software with little effort.

Table 1. The fine grained API for resource access pro-
vided by the runtime.

Name Type Access Method
openPrivate Open service-private file
openGlobal Open other service’s file Read, Write
openSystem Open system-wide files Read, Write
openTemp Open files in temp-system

createSocket Create a network socket Client, Server

The sandbox does not allow direct resource access for
non-privileged modules. Whenever the service has to allo-
cate a resource (like a file or a network socket), an IPC call
is performed via the interface. The framework performs the
actual allocation and forwards the resource descriptor to the
service. With this sandbox, we ensure that the service cannot
hide a resource access from the framework. As an example,
the service may try to directly use low-level system calls in
an obfuscated way. The privilege measurement unit may not
be able to decode such calls and the access would not be
measured. However, the sandbox prevents such calls on a
lower layer and all resource accesses have to be made via the
given API.
3.3.3 Measurement List

The measurement list is the container that a prover uses
to store all its measurements. It is composed of a list of mea-
surement entries. A measurement entry consists of the mod-
ule name, the measurement type and a value. The entry-type
is binary or privilege, depending on the measurement unit
generating the entry. For binary measurements, the mea-
surement value is the hash of the executable representing
the module. A measurement entry of a privilege measure-
ment contains a set of Resource Access Descriptions (RAD).
RADs contain the resource type and additional attributes
based on the type. In the current version, the resource type
can only be one of file or network. A file-RAD contains the
file type (equivalent to the API functions in Table 1) and the
access type (read/write) as additional properties.

Table 2 illustrates an exemplary measurement list. The
OS and the framework are measured with the binary mea-
surement unit. Two services are running and both are mea-
sured with the binary and the privilege measurement unit.
While CalcService only provides a calculation service on the
network and thus does not need to access the disk, Storage-
Service has access to its private files.

3.4 Integrity Assurance
The described building blocks enable a scalable trusted

computing architecture for heterogeneous devices. If a Full
Device has to prove its integrity to a challenger, various as-
pects have to be considered:
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Table 2. An exemplary measurement list with different
types of measurements.

Name Type Value
Platform OS binary hash=0cedac001ab4
Framework binary hash=b607c8734a9e
CalcService binary hash=1223bccdef66
CalcSerivce privilege RAD1={network}

StorageService binary hash=84fedacd2323

StorageService privilege RAD1={network}
RAD2={file,Private,rw}

• A Full Device is a composition of different components
from potentially different vendors. A component may
be the hardware platform, the software platform (OS,
framework) or a service.

• The overall system or the current cluster has an (proba-
bly human) owner or administrator that defines the pol-
icy that describes which devices and services are al-
lowed in the system.

• Since smaller devices may be battery-powered and RF
communication is expensive in terms of energy, the
communication overhead for integrity assurance has to
be minimal.

• A Full Device may integrate a variety of services the
challenger is not interested in. If the challenger has to
know all services the prover could possible execute, the
system may not be feasible due to the high administra-
tive overhead.

Thingtegrity combines the principles of binary attestation
and privilege-based attestation to attest the integrity of the
prover’s state and introduces some security properties to re-
duce the overhead for communication and computation.
3.4.1 Attested Components

Table 3 lists the different components and the correspond-
ing integrity assurance method based on the measurement
technologies described above. Although there exists work
about measuring the integrity of hardware in the literature
(e.g., [25]), Thingtegrity does not take into account this as-
pect. However, the hardware is authenticated through the
Platform Identification Key (PIK). The used keys are stored
in a tamper resistant way and the attestation based on a TPM
is somewhat secured against hardware attacks1. A challenger
only communicates if the prover’s public key is known as
trusted. This is ensured with a digital signature during the
initiation of the communication. Therefore, depending on
the key distribution process, it is not possible to add a mali-
cious node to the system.

Platform software consists of two parts. The operating
system and the framework and all services are attested with
an authenticated boot process and IMA (binary attestation.
For non-privileged services, also a privilege-based attesta-
tion is used.
3.4.2 Integrity Assurance Process

Figure 3 describes the integrity assurance process. The
prover tries to initiate the connection by sending a connec-
tion request, signed with its PIK, to the challenger. If the

1TPM 1.x chips are considered broken for physical access [26]. How-
ever, future revisions or on-chip solutions may reduce this attack surface

Figure 3. Attestation of a system configuration: After a
secure connection is set up, the prover provides all data
the challenger needs to verify its integrity.

challenger is able to verify the PIK, a secure connection is
established. This implies that the challenger has to know
the prover’s PIK prior to the communication. The challenger
provides a nonce to prevent replay-attacks. Together with
the PCR (i.e., the hardware-protected proof of the measure-
ments), the nonce is signed by a TPM key to create the cer-
tificate for the measurement list.

With the measurement list, its certificate and possible
property signatures, the challenger is able to verify the
prover’s integrity. The certificate ensures the integrity of
the measurement list and the verification unit on the chal-
lenger checks whether the measurement list conforms to the
communication policy. Since the measurement list and the
property signatures sometimes imply a high communication
overhead and only change in the relatively rare cases of soft-
ware updates on the prover, the challenger can cache them
and only request a fresh certificate on further communica-
tions.

3.5 Verification
For verification, we use a very similar concept as pro-

posed for privilege-based attestation [17]. In contrast to
usual binary attestation, privilege-based attestation only con-
siders the service which is used by the challenger and its
dependencies. For all other services, it is ensured that they
are not able to manipulate the integrity of the targeted ser-
vice(s). This is accomplished by executing the rules de-
fined in the communication policy and comparing the ref-
erence measurements to the prover’s measurement list based
on these rules.

3.5.1 Communication Policy
The communication policy proposed for privilege-based

attestation is very complex since it offers a very high flexi-
bility that enables comprehensive information flow analysis
for all services. Since this is a task that may be to heavy-
weight for constrained devices, Thingtegrity currently uses a
very simple policy which is forced for all modules. The pol-
icy simply states that no other service is allowed to access a
service’s (or one of its dependencies) private files in read or
write mode. Although this policy limits the flexibility of the
system, it is a good representation of the generic ’no other
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Table 3. The measured components and the corresponding integrity assurance method.
Component Assurance Method Technology
Hardware Authentication (Platform Identity Key) Digital Signature

OS Binary Attestation Authenticated Boot
Framework Binary Attestation IMA

Privileged Services Binary Attestation IMA
Non-Privileged Services Binary Attestation, Privilege-Based Attestation IMA/Privilege Measurement

service is able to influence the service’s integrity’ policy and
feasible enough to show the functionality of the prototype.
3.5.2 Verification Unit

The reduced communication policy enables a very
lightweight verification unit. All modules from the prover’s
measurement list are separated into a privileged and a non-
privileged list. The privileged list contains the following
entries:

• Modules where no privilege measurement exists (OS,
framework, system libraries, privileged services).

• The remote service that is targeted by the challenger
(communication partner). This information is either
provided by the challenger’s endpoint service (as in our
implementation) or by the prover’s Thingtegrity frame-
work.

• All dependencies of the communication partner. This
information is provided by the prover’s Thingtegrity
framework since the challenger may not be aware of
these relations.

All non-privileged services are checked as to whether they
comply with the communication policy. If a service vio-
lates the policy, it is added to the privileged list. It is thus
considered as dependency (from the security point of view)
and verified by binary attestation. For all privileged services,
the binary measurement must either be in the local reference
measurement list or certified by a TTP property signature
(i.e., the prover provided the signature and the correspond-
ing TTP certificate is in the local list).
4 IoTivity Integration

We integrated the architecture described above into IoTiv-
ity, a framework for IoT applications. For the current ver-
sion, we targeted Full Devices with Linux on ARM and x86
platforms. However, we are working on integrating support
for Constrained Devices on platforms like Arduino.

IoTivity is a resource-based, RESTful framework that
provides device and resource management, as well as a uni-
fied communication stack for IoT. It defines devices, re-
sources and operations. A device provides resources to the
outer world. A resource is a component that can be viewed
or controlled by another device. An example of a resource
may be a temperature sensor or a light controller. Moreover,
IoTivity offers resource topologies and virtual resources. Via
a RESTful API, IoTivity supports different operations (e.g.,
GET and PUT) on these resources. Based on these compo-
nents, IoTivity provides functionality to register a resource,
find a resource in the network and to perform operations on
remote resources. For secure connections, we use IoTivity
with DTLS based on Elliptic Curve Cryptography (ECC). To
reduce the overhead, these authentication keys are currently
used as the PIK.

4.1 Thingtegrity Runtime
As mentioned before, Thingtegrity consists of the run-

time that sandboxes non-privileged services, the measure-
ment units and the remote attestation process on top of a
secure channel. In our implementation, we use many com-
ponents that are already implemented in Linux and IoTivity
to keep the overhead minimal.

4.1.1 Sandboxing and Resource Interface
The Thingtegrity runtime is the central point that manages

all non-privileged services. It is in charge of their execution,
sandboxing and resource access and achieves this with the
following parts:

• A service that allows deployment or update of other ser-
vices on the system to authorized users.

• A chroot jail for all non-privileged services.

• One local socket for each service to enable communi-
cation with the runtime.

• An interface that provides access to the system re-
sources via the runtime and replaces libc’s functions.

The deployment of a new service or the update of an exist-
ing service is done via the Thingtegrity deployment service.
This is a privileged service that adds (or removes) services
to the runtime. Currently, this is authenticated with a simple
password-check. Thingtegrity generates a directory structure
for each service. This sandbox contains the executable, the
libraries used by the service and the local socket file. Prior
to the execution, the runtime chroots into the directory to
prevent the service from accessing the file system directly.
Generally, chroot jails are not a security feature and fail if
the guest applications gain root access in their confined en-
vironment. However, in combination with Grsecurity that
mitigates many of chroot’s security problems, this type of
sandboxing is suitable for our prototype since we execute
the services with a very restricted user. Another advantage
of this approach is that the runtime has control over the li-
braries used by the service. Currently we only provide Io-
Tivity, the Thingtegrity interface and their dependencies. To
simplify the development of new services, we also added a
modified version of Qt, which uses the Thingtegrity interface
for file access. While such libraries may not be feasible on
a Constrained Device, a Full Device should normally have
enough resources to allow their usage.

Analogous to the sandboxes, a private file directory for
each service is generated to store their private data. In or-
der to access a file outside the chroot jail, an application
uses the Thingtegrity interface that provides resource allo-
cation functions similar to the interface introduced in Table
1 with dedicated functions for the read and write variations.
The framework checks whether the function call is valid (i.e.,

83



Paper B - EWSN 2016

this type of resource access was measured before for this ser-
vice), opens the file and passes it back to the service.
4.1.2 Integrity Measurement

Currently, Thingtegrity uses Linux’s IMA implementation
as the binary measurement unit. It is configured to measure
all files that are executed. Privilege measurement is done
by the Thingtegrity framework in user-space. The runtime
extends GNU nm to read the external symbols of the exe-
cutables. These symbols are mapped to resource access de-
scriptors and added as privilege measurements to a dedicated
privilege measurement list. Both measurement lists use a dif-
ferent PCR. However, when a challenger requests the lists,
they are merged into a combined structure.
4.2 IoTivity Extensions

IoTivity differentiates between secure and non-secure re-
sources. Based on this property, a secure connection is used.
We added a property, called RequiresAttest, that indicates,
that a resource also needs a trusted client to enable commu-
nication. Since our attestation method relies on a secure con-
nection, this property implies the secure resource property.

Whenever a device wants to enumerate IoTivity resources
in the network, it multicasts a request to all other devices that
are providing resources (server). Each server responds with
a list of all its resources and their properties. If attestation is
required for one of the listed resources, the server also adds
a nonce as a header option to the response. Based on these
properties, the client decides whether it has to attest its in-
tegrity to access a resource. In this case, the client adds a
header option to the GET or PUT request, and adds the at-
testation information to the payload. As mentioned before,
this information is either the complete measurement list, the
certificate and the property signatures, or the certificate only
(in case the server already has a cached copy of the current
measurement list). We extended IoTivity to extract this in-
formation from the payload and forward it to the runtime that
checks the response. Therefore, this process is transparent to
the actual service running on top of the framework.

5 Use Case
In order to evaluate the trusted computing architecture,

we generated a set of IoTivity services that simulate an ex-
emplary home automation use-case where products of dif-
ferent vendors are used in one system that is controlled by
its owner. Although this use-case is relatively simple, it rep-
resents all basic mechanisms and since Thingtegrity is non-
intrusive and transparent to the actual system, the results in
other environments such as an industrial automation system
or a cluster of a bigger network would be similar. Figure 4 il-
lustrates the evaluated system. The Control Center (CC) is a
Full Device running on an ARM single board computer and
hosts a number of services. We also simulated a set of Con-
strained Devices, each in a virtual machine running on an
off-the-shelf PC. The Constrained Devices represent simple
sensors or actuators. Since we are not interested in func-
tionality here, they either provide or consume some random
values. We assume that the devices and services are from
different vendors. Therefore, they don’t know or trust each
other when the system is set up. However, some of them
provide a known API so other services are able to request

their data. In this evaluation, we assume that corresponding
services and devices (i.e., temperature control and temper-
ature sensors) are from the same vendor. Moreover, a user
(the owner) exists, who is interested in retaining control of
the overall system. The services running on the CC provide
the following functionality:

Deployment: This service is used to deploy all other ser-
vices on the CC. As described in the previous section, this is
a privileged service and part of the framework. The CC and
the framework is delivered by Vendor1(V 1)

Bootstrap: This service is also part of the framework and
used to bootstrap the trusted relations between the CC and
the Constrained Devices.

Backup: In this scenario, the system owner created a
backup service that collects and stores private data from all
other services. Therefore, this service has global file access.

TemperatureControl: This service periodically reads
data from different temperature sensors and writes values
to actuators. The service and devices are delivered by
Vendor2(V 2).

AccessControl: This service represents an access control
system to an apartment or house. An authenticated Con-
strained Device (e.g., a smartphone) is able to control the
actuator (e.g., the door lock). Moreover, the service main-
tains a ‘presence’ state of the owner. The user is able to in-
form the service about its absence. This information can be
requested by other authenticated services. The service and
devices are delivered by Vendor3(V 3).

LightControl: This service represents a light control
service that allows authenticated devices (like switches or
smartphones) to control the state of light bulbs. Moreover,
this service requests the ‘presence’ state from the Access-
Control service and sporadically switches lights on or off in
case the absence lasts longer than a defined time interval T .
The service and devices are delivered by Vendor4(V 4).
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Figure 4. The exemplary system for investigation of the
implemented architecture. The Control Center (CC) car-
ries different applications from different vendors that
communicate with different types of constrained devices.

The implementation of the services revealed by the priv-
ileges and dependencies are shown in Table 4. All services,
except Backup only access private data. Moreover, Light-
Control depends on the integrity of AccessControl, because
this service is indirectly able to manipulate the actuators’

84



7 Publications

Table 4. Control Center (CC) services with their file priv-
ileges (Private, Global, Read, Write) and dependencies.

Name Priv. Dependency
1 Deployment -
2 Bootstrap Service -
3 Backup G(R)
4 TemperatureControl P(RW)
5 AccessControl P(RW)
6 LightControl P(RW) 5

states.
5.1 Bootstrapping Trust

In order to set up the system, all devices have to be con-
figured with some basic information like the PIK or TTP sig-
natures. To create a feasible trust-architecture, this process
should be as lean as possible. In our scenario, we have some
basic assumptions:

• Every device is provisioned with a PIK in the manufac-
turing process.

• Each vendor defines itself as TTP. Each device there-
fore has the public key of its vendor in its TTP list.

• A vendor that releases a service as a binary, also pro-
vides the corresponding signature of the TrustedThird-
Party property. This is also true for the platform vendor,
who signs the OS and framework measurements and de-
ploys these signatures with the CC. In the current imple-
mentation, only a plain signature of the binary’s hash is
generated since there are no other properties.

• The user trusts the vendor of the CC-platform, since this
device is always able to access the user’s data.

A PIK exists for each device (PIKCC,PIK1...PIKN) and a
property signature key for each vendor (PKV1 ...PK1) as well
as for the user (PKU ). Each of these keys consist of a public
and a private part.

Based on these assumptions, the user is able to create the
trusted relationships between all its devices with few steps:

• Get ownership of one device (CC) and set it up (install
software).

• If there are dependencies, configure them.

• For each other device: Add it to the network (which
eventually needs a manual confirmation).

First, the Bootstrap service is used to set the user as the de-
vice owner by loading the public part of the user’s PKU to
the CC. This action is only possible once and secured by
a one-time password (e.g., printed on the device). Subse-
quently, the user deploys all devices and property signatures
via the deployment service. Moreover, the user configures
the LightControl service to use the AccessControl’s presence
feature. PKU is used to sign a TrustedByThirdParty property
for the AccessControl service. This indicates that this service
is trusted in the user’s system. This signature is stored to CC
with the Deployment service.

Whenever a Constrained Device joins the network, it tries
to locate a Bootstrap service. If the communication suc-
ceeds, the service automatically deploys the property sig-
nature keys of the user and CC’s platform vendor to the
Constrained Device. Currently we use the trust on first

sight paradigm. A sensor or actuator device therefore only
trusts the first bootstrap service it is able to find. How-
ever, we could also use other mechanisms like the one-time
password or Password Authenticated Key Exchange (PAKE)
(e.g., [27]), if the Constrained Device is a more complex
device and has some kind of key pad). Another possibil-
ity would be one-time passwords that are printed onto the
device. In order to allow the device to access the network,
an authenticated user has to confirm its membership via the
Bootstrap service. Technically this adds the device’s PIK to
the CC’s known and trusted PIK list.

In our test system, the smartphone is modeled as a Con-
strained Device that executes two services (for communica-
tion with the AccessControl and the LightService) on the CC.
Therefore, the property signature keys of both vendors are
known by this device. In a real-world scenario the smart-
phone should be modeled as Full Device with another vendor
that is trusted by the CC.

5.2 Integrity Assurance
After the initial configuration, devices which have to com-

municate are able to attest their integrity to each other. All
devices are authenticated with their PIK. A sensor or actua-
tor node is able to check the integrity of the CC by verifying
the property signatures of CC’s OS and framework against
PKV 1. Moreover, these devices are able to verify the integrity
of its corresponding service or its dependencies by using its
vendor’s or the owner’s signature key.

Although the test system currently does not perform this
task, the CC would be able to check the integrity of the
other devices by verifying the property signature of their bi-
nary measurements. Since Constrained Devices do not con-
tain the full framework, they only provide binary attestation.
Moreover, all Constrained Devices that have to communicate
with each other (e.g., the light actuators Light1 and Light2)
are able to attest their integrity to each other, because they
share the same vendor key. The current implementation,
however, relies on a TPM, what is not feasible for tiny de-
vices. Therefore, more lightweight approaches (e.g., [20],
[21], [22]) have to be included in the framework in order to
enable mutual attestation in the future, as discussed in Sec-
tion 2.

Whenever a vendor updates one of its services, the owner
just has to deploy the update over the deployment service (or
allow the vendor to push updates). The new property signa-
ture is automatically propagated to all devices and nothing
has to be reconfigured. If no property signatures are used
and the other devices manage reference measurements, the
new reference only has to be pushed to devices that actually
used the new service.

6 Evaluation
In order to build a feasible trusted computing middleware

for IoT, the system has to provide an attestation mechanism
that targets common threats in this domain without adding
too much overhead in terms of administration, communica-
tion and computing to ensure scalability. With the help of
the exemplar system described above, we are able to analyze
the proposed system regarding common attacks as well as
the additional complexity.
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6.1 Security Evaluation
We analyze different methods of potential malicious mod-

ifications of the overall system and how they are detected.
Moreover, we analyze the communication protocol and the
current set of attested properties for future directions.

6.1.1 Attacker Model
Given that the sensed information or actuated environ-

ment of the device owner should be protected, this stake-
holder is considered trusted in this evaluation. Since the de-
vices may be exposed in a publicy accessible environemt, an
adversary may have limited physical access to existing hard-
ware (e.g., J-TAG access). Therefore, she has the possibility
to modify the software configuration. Additionally, an ad-
versary is able to modify existing hardware and may try to
add new devices to the system. However, the adversary is
not able to read or modify information, that is protected by
additional hardware measures (e.g., the PIK).

6.1.2 System Modifications
Table 5 shows potential attacks on the system and whether

Thingtegrity is able to detect the attack or mitigate the threat
and what type of attacks have to be countered with other
technologies. Basically, the system can be modified by ma-
nipulation of an existing or insertion of a new hardware or
software module.

Hardware Manipulation: Adversaries with physical ac-
cess to the system may modify existing hardware. They
might be able to forge sensor values or directly read/write
unprotected electrical signals. Other devices would not be
aware of this security breach because the altered device
would authenticate with its PIK and the software is not mod-
ified. However, this type of attack usually demands on in-
deep system knowledge and high effort. If potential moti-
vated (in terms of revenue) attackers have physical access to
the devices and their direct environment, other measures like
physical protection or plausibility checks of signals have to
be in place.

Static Software Manipulation of a Privileged Service;
Here, the term static manipulation means that the binary of
a module is changed statically (i.e., persistent). A modified
privileged service or a modification of other system compo-
nents would cause another binary measurement that is not
known or issued by any other entity. This measurement
would violate the communication policy of other devices and
therefore they would refuse to communicate. Adversaries are
thus isolated and cannot access the network. However, they
may be able to perform Denial of Service (DoS) or jamming
attacks on the physical layer to reduce availability of other
services.

Static Software Manipulation of a Non-Privileged Ser-
vice: If a non-privileged module is altered in a way that
changes its properties (privileges), these changes are re-
flected in the privilege measurement. Therefore, this case
is comparable to manipulation of a privileged service. If
the non-privileged service is changed without escalating the
properties, the integrity of other modules is not harmed in
case of a proper communication policy. Here, this means
that the module is still not able to access another modules
files. As discussed later, this policy may not be sufficient

for all possible systems and security properties (e.g., avail-
ability). A device that is directly communicating with this
(maliciously modified) service considers it as privileged ser-
vice, and therefore is able to detect the manipulation. Again,
an adversary is not able to maliciously modify the system
without detection.

Dynamic Software Manipulation of a Privileged Service:
Additionally to static manipulation, we have to consider run-
time code modifications. Examples may be buffer over-
flow attacks or Return Oriented Programming (RoP) attacks.
Since the binary measurement is taken prior to the execution,
these modifications are not reflected in the measurement list
and cannot be detected. Therefore, other mitigation tech-
niques like a shadow stack (for example [28]), have to be
used against this type of attacks.

Dynamic Software Manipulation of a Non-Privileged Ser-
vice: In contrast to privileged services, a sandbox is gener-
ated based on the identified privilege measurement of the ser-
vice. Therefore, similar to static manipulation, the service is
at least not able to harm other service’s integrity. However,
it may perform malicious actions that comply with the ser-
vices’ sandbox. Therefore, the principle of least privilege
should be enforced during service development.

Insertion of Hardware/Devices: Assuming that an adver-
sary has no access to valid PIKs, additional devices are ig-
nored by the system. However, again DoS or jamming at-
tacks have to be considered.

Insertion of new Software Modules: Technically, the in-
sertion of new software modules is the the same as statically
changing a module. Therefore, the same considerations ap-
ply here.
6.1.3 Communication Protocol

The underlying secure communication protocol prevents
message modifications on the channel. Moreover, the cur-
rent PSK scheme pins a PIK to a device and therefore pre-
vents man-in-the-middle attacks. As described above, it is
not possible to (maliciously) add new devices into the sys-
tem. This is an additional counter-measurement against this
type of attacks. Moreover, the protocol is resistant against
replay-attacks because of the used nonce. Therefore, the pro-
tection of the PIK, the key-exchange, as well as the quality
of the random nonce should get special attention when im-
plementing the system.
6.1.4 Measured Properties

Currently, we only measure binaries and privileges of
services. As mentioned before, these properties may not
be enough for security requirements of many real systems.
Binary attestation does not protect against dynamic code
changes and the overall measurements do not protect against
a variety of attacks: For example a malicious service would
be able to consume a high percentage of a hardware resource
to prevent other services on the same device from working
properly. Another possible class of attacks may be side-
channel attacks. In future work, we will use the exemplary
system described above to examine possible other properties.

6.2 Overhead
To evaluate the overhead of Thingtegrity in terms of com-

munication, computation and memory, we compared the full
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Table 5. Overview of possible attack types regarding system modifications.
Name Description Mitigation

Manipulation
Hardware Modification of the hardware of a device x

Privileged (static) Static modification of a privileged software module X
Non-Privileged (static) Static modification of a non-privileged software module X
Privileged (dynamic) Runtime modification of a privileged software module x

Non-Privileged (dynamic) Runtime modification of a non-privileged software module (X)
Insertion

Hardware Insertion of a new device X
Privileged Insertion of a privileged software module X

Non-Privileged Insertion of a non-privileged software module X

implementation with binary-attestation only (IMA). Figure 5
shows the results for our exemplar system. We used property
signatures for binary measurements in both cases to make the
results more comparable. The use of plain reference mea-
surements would lead to comparable results, because anal-
ogous to the TTP keys, each device would have to manage
keys to verify updates of the reference measurements. The
actual memory and time complexity of the overhead highly
depends on the used cryptograhic schemes (e.g., key size and
signature verification complexity).

As shown in Figure 5a, the information stored on the
constrained devices is singificantly smaller if Thingtegrity is
used. Only TTP certificates for privileged services, the target
service and its dependencies have to be in stored. Moreover,
less stored keys are also reflected in a simpler bootstrap-
process (less keys have to be provisioned), as well as in better
scalability (if a new unprivileged service or device is added
to the system, existing devices do not need an additional TTP
certificate, as shown in Figure 5b). Moreover, a high number
of TTP certificates increases the chance of one leaked private
key that is considered trusted by the whole system.

However, this architecture increases the size of the mea-
surement list and adds overhead from the additional privi-
lege measurements, their verification and the sandbox. The
extended measurement list with privilege measurements and
dependencies increases the number of bytes that have to be
transmitted on the network interface. Since many of the
targeted applications are battery-powered with wireless net-
work interfaces, this is a critical part. Therefore, we com-
pared the sizes of the measurement lists for our test system
with and without privilege measurements and dependencies.
While the size of the binary measurement list is 429B, the
full list requires 506B, an increase of 18.8%. Compared to
the gain of information, the increase is relatively small. The
measurement list also only contains four non-service entries,
because we were able to merge some binary measurements
for different libraries contained within the framework. More-
over, this overhead vanishes after the first communication
because the measurement list is cached by the challenger.
Additionally, it has to be stated that we do not send more
packages than without attestation, since we integrate all in-
formation into the existing communication.

The process of measuring the privileges of software mod-
ules does not significantly affect performance. Since we only
parse the headers of the executables, the time used for mea-
surement is similar to hashing to whole binary [17].

Regarding the fine grained resource access API, two as-
pects have to be considered. First the IPC calls have an

impact on performance. However, since resource access
calls are normally relatively slow anyway, our measurements
showed that the time overhead for fopen is only about 0.1ms
(Off-the-shelf PC with SSD, cleared file system caches).
Moreover, after the first access (i.e., the file is opened), the
normal system API (like read or write) can be used. Al-
though the fine-grained API is unfamiliar and we have not
yet done usability studies, we believe the impact on service
development is not significant. For the test system, we added
wrapper functions for libc, as well as for the Qt framework
(with different versions of QFile). Based on these library
extensions and static analysis, we were also able to update
legacy software to the new API relatively simply.

Similar results could be achieved by directly using sand-
box policies or model carrying code instead of measuring
the executables before their execution. Some of these meth-
ods are described in the related work. However, with the
measure-approach, neither the module developer nor the sys-
tem administrator has to generate these policies. Moreover,
the system itself is able to decide what type of privileged
functions are relevant. Therefore, updates of the communi-
cation policy model do not require an updated service.

7 Conclusion and Future Work
In this work Thingtegrity, a trusted computing architec-

ture for systems with many devices that are constrained in
terms of energy, connectivity and performance has been pre-
sented. We combined concepts from binary-, property- and
privilege- remote attestation and integrated it into IoTivity.
The architecture is transparent and hides the complexity of
remote attestation from the overlying application. Addition-
ally, we provide a testbed that enables the investigation of
further attestable properties for future devices and systems.

As a first step, we implemented the system for the attesta-
tion of software configurations on Full Devices. We showed
that the architecture enables a simplified bootstrapping of
trusted environments. Compared to traditional remote at-
testation systems, the maintainability and scalability of the
trusted relations is improved. This is achieved by reducing
the complexity of configuration measurements. This reduces
the memory and communication overhead significantly for
systems with a high number of services or devices.

The next step is the integration of attestation of Con-
strained Devices. In order to enable support for real-world
tiny devices, more investigation with regards to security ar-
chitectures at device level, as well as the reduction of asym-
metric cryptography has to be conducted. We thus have
to provide support for other, non-TPM RTRs for hardware-
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Figure 5. The additional memory used to store TPP public keys (5a) per device, as well as the size of the measurement
list that has to be verified on the temperature sensor (5b).

based signatures.
Based on the test system, it would be desirable to build

more use-cases for different domains to explore the usability
of the current resource access API. Moreover, support for
other resource types such as sensors has to be added. The
current sandboxing solution should also be replaced with a
less intrusive method. Especially, regarding ports to other
environments, this part should be interchangeable.

Based on future investigations, the communication poli-
cies should be refined. Currently only access to files of other
services is considered. However, also other resources and
IPC mechanisms have to be examined. Moreover, informa-
tion flows are not the only threat to a service’s integrity. A
malicious module without any permissions may consume a
lot of CPU or storage to prevent other modules from working
correctly. Therefore, further properties should be introduced
to prove attributes like computing capacity.

In summary, we showed that remote attestation is in fact
feasible for IoT architectures and with the spread of common
standards systems that are comprised of a high number of
modules from different vendors are also capable of proving
their integrity.
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Abstract— Security is a vital property of SCADA systems,
especially in critical infrastructure. An important aspect is
maintaining (sub-)system integrity in networks of embedded
control devices. One technology that is used to achieve this
is remote attestation. It is used to prove the integrity of one
system (prover) to another (challenger). However, due to the
complexity of the maintenance of reference measurement, it is
seen impractical in such constrained distributed systems. In this
work, we show how recent advances such as privilege-based
attestation enable an architecture that is more feasible to use.
Based on real control systems used for hydro-electric power
plants, we evaluate the impact of the proposed infrastructure
on the device performance and discuss our experiences with
consequences of using such technologies for the production and
development processes of such systems.

I. INTRODUCTION

The growth of the renewable energy sector has a high
impact on the technology of hydro-power plant unit control
systems[1]. Nowadays, these have to react on power grid
changes in time to achieve overall grid stability. As a conse-
quence, control devices (depending on the provided function-
ality, they are also referred to as Remote Terminal Unit (RTU)
or Programmable Logic Controller (PLC)) in single power
plants, as well as control devices of different power plants
have to cooperate in order to achieve the system-wide control
goal. These requirements lead to networks of small, embedded
control devices and heavyweight Supervisory Control and Data
Acquisition (SCADA) servers and clients. At the same time,
these power plants represent critical infrastructures that have
to be protected against security attacks that raised lately [2].

Analyzing attacks such as the recent Ukrainian blackout
reveals complex, long-term attacks on multiple system levels
[3]. More and more countries are starting to obligate operators
and suppliers of critical infrastructure to protect security
properties of such systems. Much work is going on concerning

security of SCADA servers [4] and sensor data integrity [5].
Both, industry and academia, are also focusing on security
properties of RTUs and their communication and embedded
systems in general.

In this work, we focus on the property of system integrity
of RTUs in order to establish trust throughout the network.
According to the Trusted Computing Group (TCG), a trusted
system is a ‘device that will behave in a particular manner
for a specific purpose’ [6]. Similarly, the integrity property of
a computer system is seen as the guarantee, that the system
will perform as intended by the creator [7]. Therefore, one can
trust a system if one trusts the initial system state and one can
ensure that its integrity is not violated. Only if the integrity
of all participating devices is intact, the (control) application
running on top of it can be trusted.

Remote attestation is used to assure the integrity of one
system (prover) to another (challenger). The prover generates
a measurement of its configuration and the challenger ver-
ifies it based on a policy against a reference measurement.
While this technology is well known and still a research
topic, its application in real world systems, especially in
embedded devices, is limited. The main problems concern
the maintenance of the reference measurements. Especially in
distributed embedded systems, such as in typical Industrial
Control System (ICS) architectures, these references have to
be distributed to all possible communication partners of each
proving device. Moreover, every time the prover’s configura-
tion gets updated, all references have to be redeployed. This is
tedious and not feasible in real-world distributed systems. This
is especially true when connectivity and resources in terms
of computing power are constrained, as in control systems
for power plants. However, as shown in Section II, a lot of
research is focusing on reducing the complexity and dynamics
of the reference measurements. One approach of ignoring
low-privileged components that are not able to influence the
system’s integrity has been shown promising in other domains
[8]. Here, privilege refers to the capability of an application
to perform a certain (critical) task. An browser, for example,
requires the privilege of accessing network resources.

In this work, we analyze the impact of such technologies on
embedded control devices, focusing on resource constrained
interconnected RTUs. We show how we apply and adapt
existing ideas to build an architecture that enables remote

©2017 IEEE. Reprinted, with permission.
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attestation in such networks in a feasible way. In particular,
we provide the following:

• Based on a real control system architecture for hydro-
electric power plants, we classify system components
regarding their privileges with regards to their influence
on the actual control task.

• We describe the integration of a trusted computing archi-
tecture based on these privileges into the existing system.

• We evaluate the impact of such an architecture on the
devices. Especially the use of hardware-backed integrity
protection has a huge impact on different performance
metrics.

• Additionally, we discuss our experiences concerning the
impact on the development and production process of the
RTUs.

The remainder of this paper is organized as follows: Section
II discusses related work. Section III and Section IV describe
the existing system and the integrated trusted computing
architecture. Section V discusses the results and in Section
VI, we recap the benefits and the drawbacks of the system, as
well as directions regarding our future work are summed up.

II. BACKGROUND AND RELATED WORK

Trusted computing generally aims to build more secure
systems by the implementation of different features. One of
these features is remote attestation. This section describes the
basic process of this concept and discusses existing methods
that generate configuration measurements and verify them on
the challenger.

A. Remote Attestation

Remote attestation is the process of proving the configu-
ration of a system (prover) to another entity (challenger). In
order to integrate this process, the prover has to provide a
Root of Trust for Measurement (RTM) and a Root of Trust for
Reporting (RTR). The RTM is in charge to measure properties
that reflect the prover’s system integrity (i.e., the integrity of
all other software components on the system). Since malicious
software would be able to change the taken measurements
afterwards, a RTR is used to securely store this information
and to protect it from malicious forging. Furthermore, the
challenger has to comprise a policy or reference, that enables
the verification whether the measured configuration represents
a non-compromised system and a protocol for secure exchange
of this information has to be in place.

Usually, the challenger sends a random value, called nonce,
to request the prover’s configuration. The prover signs its
measurement (taken by the RTM), as well as the nonce with
its private key. Both the storage of the measurements and the
signature is normally done by a dedicated hardware (the RTR)
to prevent software from tampering with these values. One
common way is to use a Trusted Platform Module (TPM)
[9] and perform the TPM_QUOTE operation. The platform
configuration is represented within the so-called Platform
Configuration Register (PCR) of the TPM. Since software
cannot directly write to these registers, but only update them

(called ’extending’) in a non-commutative way, malicious
code cannot hide its existence afterwards. However, other
technologies like ARM’s TrustZone [10] or Intel’s Trusted
Execution Technology (TXT) [11] enable similar functionality.
The challenger is now able to verify whether the retrieved
measurement complies to its policy and check the signature
with the public part of the prover’s key in order to ensure data
integrity.

B. Configuration Measurement and Verification

In order to attest the integrity of different devices to each
other, the integrity of their configuration has to be measured.
Basically, the configuration is represented by the software
components running on the device. A variety of schemes and
implementations that tackle this problem exist in the literature.
Remote attestation methods for binaries, properties, security
policies and platform-specific permission-systems have been
introduced. However, the mapping of these concepts into the
embedded control systems domain is not a trivial matter due
to resource and connectivity constraints.

The Integrity Measurement Architecture (IMA) [12] gen-
erates a measurement list of all binaries and configuration
files loaded by the system. The cumulative measurement (i.e.,
hash) of the measurement list is extended into a PCR. To
attest the system’s state, the prover sends the measurement
list to the challenger and proves its integrity with the help
of the TPM. Binary measurement approaches are not suitable
for systems with many different or dynamic configurations
because each challenger has to maintain a comprehensive
list of known ‘good’ configurations. Especially when system
updates or backups are taken into account, the set of possible
configurations may grow to a non-Maintainable size. More-
over, the verification of all binaries is not necessary every time.
The challenger might only be interested in modules which may
affect the integrity of the target software. Our work uses IMA
for the attestation of high-privileged software components.

Property-based attestation [13], [14] overcomes some issues
of binary-based methods. A challenger is only interested in
whether the prover fulfills particular security properties (e.g.,
strict isolation of processes). Therefore, a set of possible
platform configurations is mapped to different properties.
This approach eliminates the need for comprehensive lists of
reference configurations on the challenger by the introduction
of a Trusted Third Party (TTP) which is in charge of the
mapping. Similar approaches focusing on privacy-preserving
features [15] do not need a TTP and use ring-signatures to
protect the prover’s configuration from exposure. In this paper,
we use this concept to sign reference measurements.

Another group of approaches use information flow analysis
based on security policies [16], [17]. These approaches model
all possible communications between processes. The basic idea
is that a high-integrity process is successfully attested if all bi-
nary measurements are valid and there is no possible informa-
tion flow from low-integrity to high-integrity processes. These
approaches reduce the number of platform configurations since
only a small set of system and high-integrity applications has
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to be measured. However, they rely on well-defined security
policies and the generation of additional filter-components. In
our work, we do not rely on existing policies or descriptions.
They are generated at execution time.

Similar to policy-based and information flow based meth-
ods, PRIvilege-Based remote Attestation (PRIBA) [18] tries
to reduce the information needed by the challenger by using
privileges of software modules as trust properties. For soft-
ware modules that have privileged access on the executing
prover, binary measurement is used. All other modules are
parsed for privileged calls to the system library to generate a
privilege measurement of the module. The challenger is able
to decide whether the measured module violates the prover’s
integrity by checking the measurement against a policy. The
presented approach potentially reduces the size and the update
frequency of the challenger’s reference measurements. In [8],
an architecture that uses this approach for the Internet of
Things (IoT) domain has been presented. This work focused
on smart homes, where one central hub comprises software
modules from different vendors, which are communicating
with different types of devices (e.g., temperature sensors or
switches). They used, however, low level system privileges
such as file or network resource access for the reduction of
the reference measurement complexity. They provided wrapper
libraries to introduce basic differentiation such as system-
files or application-file access. However, this level of privilege
granularity is not applicable in our context. The main asset
in control systems in the context of critical infrastructure is
the (safe) function. Components on different system levels
(sensors, RTUs, server, clients) are able to modify datapoints
used by the actual control task. For such systems, we introduce
a simplified classification that can be used over all system
components. Moreover, their approach relies on devices that
are mainly connected to the internet and they still require a
relative high frequency of (automated) updates, what often is
not on behalf of power plant operators.

In [5], similar problems in the same domain are discussed.
They analyze how to use trusted computing and remote
attestation in hydro-electric power plants to verify the integrity
of sensor data. These sensors are often placed in physically
unprotected locations and adversaries may tamper with their
data. Since the control decisions are taken based on the
sensor values, their integrity has to be protected. The authors
integrated verified boot into the sensor’s controller to proof
their integrity to other network participants. They built a
prototypical implementation based on IMA and proposed to
distribute their integrity measurement entries incrementally.
This approach reduces the network and verification overhead
for remote attestation because this does not seem to be a big
problem when attesting small devices like sensors to more
complex and connected devices.

III. EXISTING SYSTEM ARCHITECTURE

This section provides an overview on the implemented
integrity verification features in the control devices. We intro-
duce the existing system and the basic security concept. The

next section describes the integration of the security enhancing
features concerning integrity.

A. Overview

Fig.1 sketches the overall SCADA system that is used to
supervise and control power plants at different geographic
locations. One central SCADA client in a central location
is used to supervise all plants. The actual system contains
additional clients at the different sites and also panels which
are directly mounted on the control devices. However, they
provide similar (although degraded) functionality and are
therefore not considered here for simplicity. The RTUs are
the actual control devices that execute the control strategy and
interface with the environment (i.e., communicate with sensors
and actuators). Since the control strategy could be distributed,
the RTUs have to communicate directly with each other. In
addition to the normal client that is used to supervise the
system, there exists a maintenance terminal. These terminals
are used to configure and deploy the control tasks to the RTUs.

Geographic Location A Geographic Location B

Compound Level Control Room

Central
SCADA 
Server

Client

SCADA 
Server
Site 1

SCADA 
Server
Site 2

Device Level 
(RTUs, PLCs, ...)

RTU RTU

Bus-Level
(Sensors, Actuators, ...)

Site 1 Site 2

RTU
Maintenance

Terminal

Fig. 1. Overview of an SCADA system which is used to control power plants
at different geographic locations.

The integrity verification features described in this work are
part of a project that aims to implement a resilient and secure
infrastructure for distributed embedded control systems [19].
In this work, we focus on integrity protection at device level.
The control devices (i.e., the RTUs) consist of a central module
and additional interface modules. The central module is in
charge for the actual execution of the control strategy, as well
as communication to other devices in the network. In order
to interact with the environment, additional interface modules
are connected to the central module. These interface modules
provide actual digital and analog I/Os that are connected to
the sensors and actuators of the plant.

Internally, the central module consists of two subsystems,
each with its own CPU. The application controller runs a real-
time operating system and executes the control application,
which is component-based and inspired by the IEC 61131 [20]
standard for programmable controllers. Basically, there exists
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a cyclic task that executes a control application based on input
datapoints (i.e., sensor values, variables) and produces output
datapoints (i.e., actuator values, variables).

The communication controller runs a customized version of
Linux and is responsible for network connections and acts as
gateway for the application controller. It contains modules that
enables access to datapoints (i.e., sensor and state information
of the control application) on the application controller, as well
as additional modules that are used to provide some specific
calculations or curve-generation for these datapoints.

Due to the separation of concerns between the application
controller and communication controller, the control task (crit-
ical in terms of reliability and safety) can be separated from
the communication tasks (critical in terms of security).

B. RTU Components

Fig.2 illustrates the main components of the RTU, as well
as the connected systems. The SCADA-server collects and
modifies datapoints from different RTUs (and other SCADA-
servers). Since every plant operator has individual needs, the
OEM of the SCADA server allows operator specific appli-
cations with limited privileges to be executed on the server.
Moreover, for maintenance task such as firmware updates, a
maintenance console is used.

The communication controller of the RTU contains differ-
ent services that provide the required interfaces. The most
important services are the communication service and the
application service, which are in charge to enable the access of
datapoints from the control task on the application controller
to the outer world (i.e., the SCADA-server). The file system is
mediated through the virtual file system component. All other
services access their files via this service and therefore do not
need to access the file resources directly. Moreover, there exist
some operator specific services such as generation of curves
based on control datapoints that also provide interfaces to the
outer world.

Legend

Communication
Service

Virtual File
System

Application
Service 

Operator
Service 1

Reduced 
Privileges

SSH
Server

Control Process
Privileges

Operator
Service XY

Log Service

Limited 
Privileges

D-BUS

Control Task

System
Privileges

Application Controller

Communication Controller

SCADA Server
Operator

Application
SCADA
Server

Maintainance
Console

RTU

Fig. 2. The most important components in the RTU and their interfaces to
the SCADA-Server and Maintenance Console.

C. Overall Security Concept
While this work focuses on the integrity-verification mech-

anisms that are introduced in the system, we sketch the overall
security concept to provide enough context for the reader. We
were able to determine security and design requirements for
the overall system with the help of a comprehensive risk and
threat analysis based on STRIDE [21]. On an architectural
and design level, the security enhancing technologies can be
split into four groups: communication channels, interactions
between devices, user interactions and system integrity verifi-
cation.

1) Communication Channels: All our communication
channels are based on Ethernet. While communication
between different RTUs on the same site is often protected
to a certain degree by the operator’s network infrastructure,
connections between different SCADA servers often use
public infrastructures. We thus need to protect confidentiality
and integrity of the communicated information. In our
system, we use Transport Layer Security (TLS) to ensure
these properties.

2) Interaction between Devices: Ensuring integrity and
confidentiality on the communication channel alone is not
enough. Devices have to be authenticated to ensure the proper
source and destination of data flows. This can be achieved with
TLS and the use of a Public Key Infrastructure (PKI) for point-
to-point connections. Authentication is also a requirement to
enable authorization in the system.

In some cases data may be sent via multiple hops. For
example, a firmware update from the device Original Equip-
ment Manufacturer (OEM) is sent to the plant operator. This
operator uses the maintenance client to update the firmware.
However, the OEM wants to ensure, that the operator is not
able to run non-licensed or manipulated software on a RTU.
Therefore, in addition to authentication and integrity checks on
the channel, end-to-end verification is needed. This is achieved
by the use of cryptographic signatures. Again, a PKI is needed
as supportive technology.

3) User Interaction: Similar to device-to-device interac-
tion, authentication is needed whenever a user wishes to
interact with the system. We solve this by password-based and
token-based authentication and a central login-server, which
provides access-tokens that are used for authorization later on.

4) System Integrity Verification: The technologies
described so far improve the authentication of devices and the
integrity and confidentiality of their communication. However,
due to software bugs or security design flaws, adversaries
may still be able to compromise parts of the system. We
thus need to ensure the integrity of the devices. Each device
has to enforce its own integrity by means of adequate
measures. Additionally, devices need to check the integrity of
their communication partner. Fig.3 shows the basic integrity
measures at device level. To achieve integrity verification,
each device uses secure boot and sandboxing (if applicable).
In order to attest integrity to communication partners, we use
remote attestation. Basically, Device 2 checks the integrity
of Device 1 by analyzing the software components running
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on Device 1. Traditionally, this is achieved by comparing the
hash values of the running executables to reference values.
However, such an approach is not feasible for networks
with many devices since the reference values have to be
updated every time the configuration of one device changes.
Therefore, we use extensions such as the analysis of software
privileges to reduce the size and dynamics of the reference
values [8]. In the next section, we will describe the introduced
features in more detail.
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Fig. 3. Overview of the integrity verification at device level. While we
can use state-of-the-art technologies such as Secure Boot and Sandboxing
for INTEGRITY PROTECTION, we had to come up with a feasible ourselves
solution for INTEGRITY ATTESTATION.

IV. TRUSTED COMPUTING ARCHITECTURE AT DEVICE
LEVEL

The main goal here is to integrate attestation of the integrity
of RTU configurations. This is required whenever two RTUs
are communicating with each other. Moreover, inside a RTU,
the communication controller is the component which is run-
ning more complex software (e.g., a Linux kernel) and exposed
to the network. This component also deploys the control
tasks to the application controller. Therefore, each application
controller has to verify the configuration of the corresponding
communication controller prior to such critical tasks. Due to
the separated architecture, an application controller can per-
form the control task (in a degraded, but safe way), even when
the communication controller is compromised. Currently, we
focus on these two aspects, but similar techniques will be
implemented for the communication between a SCADA-server
and a RTU as well. In both cases, the communication con-
troller has to prove its integrity to another entity (either an-
other communication controller or the application controller).
Consequently, we focus on how to integrate the configuration
measurement into the communication controller architecture
here.

However, as mentioned above, state-of-the-art binary attes-
tation techniques tend to produce measurement lists with many
entries that also tend to change a lot over time. However,
operators of power plants often prefer conservative update
strategies and do not want to update all RTUs each time one
of them has to be changed. Additionally, not all RTUs have
access to an update-server all the time. Therefore, we adapted
an architecture that aims to reduce the dynamics of such
measurement lists based on privileges of software components
[8] for our targeted system. As described in the original work,

one has to tackle a set of challenges in order to achieve a
feasible reduction of the measurement dynamics:

• First, we have to define privileges of all components in
our system. We have to find a granularity that is coarse
enough to enable easy computation of information flow
graphs but fine enough to represent the potential danger of
a component. Instead of using low-level system privileges
(as in previous work), such as file and network access,
we use domain-specific privileges based on the accessible
datapoints.

• Then, the privileges have to be ’measured’. Instead of
only intercepting system calls, we additionally exploit
existing libraries used for inter-process-communication to
build an information-flow graph to determine software
privileges.

• Moreover, the measured privileges have to be enforced
by a sandboxing mechanism. Here, we can use the deter-
mined privileges to automatically configure the policies.

A. Framework Overview
Fig.4 shows the architecture that enables binary and privi-

lege measurements for a RTU (and for the SCADA-server in
future). The platform executes privileged and non-privileged
services. Privileged services are applications with comprehen-
sive system access (e.g., an SSH-server). Therefore, we do not
have to consider such applications for privilege measurements
at all. Non-privileged services are services that have mediated
access to other applications and system functions. They use
special interface functions to access system resources such
as files. Prior to the execution of all applications, a hash
value of its binary is stored in the measurement list by
the binary measurement unit. We use Linux’ IMA[12] for
this part. Moreover, for non-privileged services, the privilege
measurement unit identifies and stores the privileges of the
service. We implemented the privilege measurement unit by
adapting the Thingtegrity-runtime [8]. As shown in the ex-
emplary measurement list in Table I, we also have to store
measurements of the bootloader, operating system kernel and
libraries to establish a chain of trust. In order to protect
the measurement list from being tampered with by malicious
software which may be executed on the platform, hardware
support is needed. In our systems, we use a TPM.

TABLE I
AN EXEMPLARY MEASUREMENT LIST WITH DIFFERENT TYPES OF

MEASUREMENTS.

Name Type Value
Bootloader binary hash=43234de2322

OS binary hash=b607c8734a9e
Library1 binary hash=b607c8734a9e

SshServer binary hash=1223bccdef66
CommService privilege Control Privilge
CommService binary hash=84fedacd2323

B. Privilege Classification
In the architecture illustrated in Fig.2, we were able to

identify the four privilege classes described in Table II. For
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Fig. 4. Overview of the configuration measurement architecture

example, all components which are used to communicate
between the SCADA-client and the control task (i.e., SCADA
server, communication service, application service, control
task) can potentially write to all datapoints and therefore have
the ’Control’ privilege. If we can ensure that there is no write-
up and no read-down (e.g. write from a reduced privileged
service to a control privilege service), we can ensure, that the
lesser privileged services are not able to harm the integrity
of the higher privileged services [7]. In order to achieve this,
we have to identify the privileges actually required by the
components and permit them to perform any actions that
would escalate their set of privileges.

TABLE II
THE SYSTEM-WIDE PRIVILEGE CLASSES

Name Description
System Access to system functions (i.e., full system access)
Control (R+W) Access to all datapoints of the control process

Reduced Read access to the control process and the privilege
to generate new datapoints (no write to existing)

Limited Only read access to public (non-critical) datapoints.

C. Privilege Identification

We identify the privileges of services at startup time of the
specific component. In order to achieve this, we use the linking
information (obtained with tools based on GNU ldd and GNU
nm) to identify which libraries are linked against and which
system functions (e.g., open()) are used. In order to identify
inter-service information flows, we created access libraries,
which can filter the access to the services.

Similar to previous work [8], we solved the problem of
granularity (a found call to open() does not provide any
information about what kind of file or resource is opened)
by mediating such calls through a more fine-grained library.
For network resources, we extended the existing socket library
(Qt is used in our system) by two sub-classes. They allow
the distinction between access to the external network and
the internal network (i.e., the application controller). Since
the existing architecture already provides a virtual file system
module, we did not have to do similar work for file system
access.

As shown in Fig.2, the communication controller has a
service-oriented architecture. Each service provides at least
one ’client-library’ that provides the interface through D-BUS.
If another service Service B is linking against this client-library
of Service A, this indicates that Service B is using Service A.
If Service A is a service with high privileges (e.g. control
privileges), the service may provide different client libraries
that provide different levels of access. A lower-privileged
service is able to access low-privileged interfaces of the service
through one client library, while other (higher privileged)
services are able to access the full functionality. Due to the
different interfaces, the higher privileged module is able to
restrict the access to its resources for lower-privileged services.
In the evaluation section, we will discuss how this introduction
of different client libraries for one service influences the
development process and how we ensure that the principle
of least privilege is enforced.

A configuration file enables the mapping of client libraries
to privilege levels. For example, the application service in
Fig.2 provides two client-libraries, one with access to all its
interfaces and one with access to reduced privileges. This
allows the operator service 1 to access datapoints of the
application controller in a restricted way without raising its
privileges.

D. Sandboxing Mechanism

Based on the identified privileges, we are able to generate
sandboxing polices for AppArmor, that restrict services from
performing actions that are not recognized at startup-time.
Even if one of the services gets compromised (e.g., by an
exploitable bug), it is not able to harm the integrity of higher-
privileged services.

E. Integrity Verification of Remote Devices

Every time, the configuration of the prover changes, it has
to fetch and verify the current measurement list.

In order to identify a change of configuration, the prover
generates a TPM quote (i.e., a proof about the state of the
measurement list) which can be checked by the challenger.
Whenever this state changes, the measurement list has to be
re-verified.

The verification of the measurement list itself consists of
two steps: First, the challenger has to know the name/id of
its target service. The application controller, for example, is
communicating with the application service. Based on the
privilege level of the targeted service, the challenger ignores
all services that have a lower privilege level (in this example:
reduced and limited). This is valid because the measurement
list contains the proof that these services are not able to
harm the prover’s integrity in such a way, that the function of
the targeted service is affected1. The underlying measurement

1We do not consider DoS attacks yet. Even a low privileged service would
be able to affect the overall system’s function by using too many resources.
However, this problem could be tackled by constraining resources for such
services.
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units that generate this proof are itself part of the chain-of-trust
and verified by binary measurements.

The second step of the measurement list verification is a
check, whether all binary measurements are valid. Here, we
use IMA [12]. The challenger holds a list of reference hashes
and compares them to the actual measured values. If and
only if the measurement list contains well-known software
components only, the remote system is trusted.

Compared to binary-measurement only, our approach re-
duces the size and updates of such measurement lists espe-
cially for smaller, not always-on devices with high privileges
such as the application controller and the communication
controller. Moreover, compared to previous designs based on
privilege-based attestation, our approach does not rely on
device-level privileges such as file or network access. Such
privileges have to be interpreted by the challenger and that
is a tedious task. With the introduction of domain-specific
privileges for the overall SCADA-system, it is possible to use
the same privileges on all system levels.

V. EVALUATION AND DISCUSSION

In this section we analyze whether the approach described
above is feasible for real-world use in embedded control
systems. Previous approaches proposed to reduce the commu-
nication overhead by sending only incremental updates of the
measurement list to the challenger [5]. However, we also want
to analyze whether the overhead of measuring and verifying
the components is arguable, especially in environments with
constrained resources. Moreover, the size and frequency of up-
dates of the reference measurement list has to be minimal. We
thus have to consider the following aspects in our evaluation:

• What is the impact on measuring all software components
(i.e., from bootloader to services), on constrained devices,
such as a RTU.

• What are the implications of using a TPM to ensure the
integrity of the taken measurements.

• How do the chosen privilege classes work out in real-
world applications. How well do existing components fit
to these classifications.

• What is the impact on the development process when
using different libraries to connect to the same service.
How do well do we prevent developers from just using
the most privileged access library, what would violate the
principle of least privilege?

• What is the storage, computation and communication
overhead for the attestation process?

• How well do the chosen privilege classifications reduce
the size and dynamics of the reference measurement lists?

All these measurements are taken on a custom ARM-based
controller board which is used for both, the communication
controller and the application controller. The boards are config-
ured with the real productive environment and extended with
the proposed architecture.

A. Measuring Software Components on Constrained Devices

Hashing all software components on a resource constrained
device may have an impact on the performance of the actual
function. Verified and/or secure boot add a significant overhead
in terms of processing-time. Both, the measurement itself (i.e.,
the hash function) and the extension to the TPM are relatively
time intensive. In order to analyze this overhead, this section
provides measurements concerning the boot time differences
of enabled and disabled integrity measurements. Table III
shows the basic setup of the bootloader, kernel and hardware.

TABLE III
SETUP TO MEASURE AUTHENTICATED BOOT PERFORMANCE IMPACT.

Module Version
System on Chip Freescale i.MX287 (ARM9, 454MHz)

Bootloader U-Boot 2014.01
OS Linux 3.10

1) Bootloader and Kernel: Table IV shows the performance
impact of the verified boot process in U-Boot. The normal
boot sequences contains some accesses to peripheral hardware
like EEPROMs and therefore takes about 2s. The hash of the
operating system kernel adds another 222ms. The initialization
and extension of the kernel hash to a PCR adds another
400ms. All in all, the startup overhead on U-Boot is about
30%.

TABLE IV
PERFORMANCE DRAWBACK IN U-BOOT WHEN MEASURING A KERNEL.

Action Time
Boot Time Without TPM 2s

Measure Kernel 222ms
Extend to TPM 300ms

Trusted Computing Overhead 622ms

2) Userspace Binary Measurements: After the kernel is
loaded, IMA is taking over responsibility for measuring the
rest of the system. Each executed binary, as well as the config-
uration files are measured prior to their execution/usage. Table
V shows the introduced overhead for these measurements.

TABLE V
PERFORMANCE DRAWBACK IN LINUX WITH ACTIVATED IMA.

Action Time
Boot Time Without IMA 21s

IMA with disabled TPM (hashing only) 41.8s
IMA with enabled TPM 47.2s

IMA, TPM, and privilege measurements enabled 48.9s

All in all, 267 files are measured. Later in this section, we
will show how different types of files are distributed in this
measurement list. The accumulated size of all files is about
49.8MB. This explains the relative high hash-calculation over-
head of about 21 seconds. It is notable that the extensions to
the PCR of the TPM take another 5 seconds. This is explained
by the distribution of file sizes shown in Fig.5. The vast
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Fig. 5. Distribution of sizes of the measured files: The big time overhead used
for extending the measured values to the TPM is explained by this distribution.
Most of the 267 measured files are relatively small.

majority of files is relatively small. Therefore, many extensions
have to be performed after very short hash functions. While
we add more than 100% time overhead to the boot-process,
the run-time overhead is relatively small, since normally no
additional services are loaded. We thus only have to cope with
performance drawbacks when the system is booted or updates
are installed. The requirement for the control application to be
started is 15 seconds after power-on. Since this application is
running on the application controller, the boot overhead on the
communication controller does not influence this requirement.
The deadline for the communication controller is 60 seconds
and can be met with enabled IMA.

3) Userspace Privilege Measurements: In contrast to the
binary measurements, the privilege measurements are only
taken for the currently 8 non-privileged services. The intro-
duced overhead of the privilege measurement including the
extensions to the TPM is about 1.6 seconds.

B. Using a TPM in an Industrial Control Device

While the TPM ensures that no malicious software can
tamper with the measurement list, it has some implications on
the device itself, as well as on the production and development
processes.

The first consequence of using a TPM is that an additional
chip is needed on the controller board. This raises the cost
of the board, especially when the decision of using a TPM is
taken after the first designs are finished. Another implication
is that TPMs that meet the TCG V1.X specification provide
only limited protection against hardware attacks [22]. Both
problems could be mitigated by using on-chip solutions like
ARMs TrustZone.

No matter what type of hardware-bases solution is used,
some kind of initial deployment of secrets such as private keys,
as well as the generation of certificates is needed in order to
establish trust. Due to the diversity of the devices (in terms of
I/O configuration and tasks), this is a complex process. One
solution is to provide a generic manufacturing process, where

the OEM provides trusted tools to the device manufacturer
(which normally is not the same company) that enables the
centralized distribution and certification of such secrets [23].

C. Privilege Classification

Previous work used low-level system functions such as file
or network access to determine component privileges. They
provided wrapper libraries to introduce basic differentiation
such as system-file- or application-file access. However, this
level of privilege granularity is not applicable in our context.
The main asset in control systems in the context of critical
infrastructure is the (safe) function. This function is performed
by the control task based on input datapoints. Therefore, the
integrity of this task, its executing platform and the datapoints
has to be ensured. It is, however, complex to map from specific
file accesses to data point accesses. Especially since we have
to protect the datapoint integrity at different system levels such
as RTUs and SCADA-servers in a similar way.

Therefore, we analyzed the overall system of Fig.1 and
identified different roles of system components and mapped
them to privilege classes. Beside the introduced privileges
of Table II, there exist also a set of components that are
in charge of process configuration. These components define
the control task itself, as well as meta-information for the
process and its visualization. To simplify the presentation in
this paper, however, we merged the control privilege class with
this control administration privilege.

The justification of the system and limited privilege classes
are relatively straight-forward: There have to exist some com-
ponents that represent the underlying platform such as the op-
erating system and also components that enable maintenance
tasks for these components. They thus have system privileges.
On the other hand, there exist modules that do tasks that may
be important (such as a logging service) but they do not need
any privileges that enable harming other component’s integrity.
Therefore, as long as they are sandboxed properly, they have
limited privileges and can be ignored by other components.

Assuming a platform with ensured integrity, the safe func-
tion of the control task relies on the integrity of all components
that are able to modify the datapoints used in the control task
or the control task itself. We thus can classify all components
accessing datapoints with the control privilege.

Modules with limited privileges are, however, the minority.
The reduction of the reference measurements would not be
very high with these three classes. It turned out that some
components running on the communication controller do not
write data relevant for the control task, but only read them
and compute additional datapoints. Such tasks mainly pro-
duce operator-specific computations or pre-calculations for
visualization. For the more complex SCADA-servers, up to
30 different applications that execute such type of tasks
exist. Often, they are running complete isolated on dedicated
devices. Most of them have in common that it is possible to
prevent them from writing to control relevant datapoints and
therefore from influencing the control task.
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By the introduction of the restricted privilege class, we
therefore can not only ignore many software components
running on SCADA-servers or a communication controller
but also complete devices when verifying the integrity of the
control process. However, even if datapoints are only used for
visualization, special care has to be taken at the SCADA-client.
When one of these datapoints should trigger an action by the
operator (which is then part of the control loop), this datapoint
is indeed relevant for the control task. As discussed in the next
subsection, some kind of classification of datapoints would be
preferable.

D. Impact on the Development Process

The main impact on the development process arises from
the introduction of different client libraries for the same
service on the communication controller. Since the existing
architecture already uses this service-architecture, the main
difference is that now different interfaces of the same service
require different access libraries.

In order to ease the developer’s live, we integrated macros
in the build-process that hide what specific client libraries are
linked against. Basically, we add all libraries to the compiler
arguments and the linker simply drops all unused links. The
initial overhead of migrating to the multi-library solution
introduced additional work because the client-libraries had
to be split up by hand. However, the adaption of the clients
was mainly automated by search-and-replace scripts. After this
initial effort, the difference for developers are limited. Some
class and method names changed based on what client library
is actual used but everything else is done by the build-system.

Another process impact arises from the previously sketched
problem of classification of datapoints. For the OEM (the
developer of the RTU), a datapoint classification is simply
an additional meta-value for all datapoints. When configuring
the control task and integrating other services, this potentially
tedious classification has to be done manually. However, clas-
sifying datapoints concerning their importance for the control
tasks would also help to protect other dependability properties
such as safety or reliability. One could introduce redundancy
and diversity for system components that are handling such
datapoints. There are thus strong reasons to introduce such
classifications and we are planning to investigate this topic in
future work.

E. Reduction of Reference Measurements

Since we are interested in the performance overhead on
constrained devices, we investigate the process of the com-
munication controller attesting its integrity to the application
controller. As mentioned before, the overall binary measure-
ment list consists of 267 entries. 177 entries are representing
the startup sequence (including the measurement of the kernel
itself) and 50 are representing the framework and shared
libraries. The remaining 40 entries are representing the 8
running services, their configuration files and private libraries.

The vast majority of measurement entries are thus resulting
from the platform and the framework. Normally, all entries

have to be maintained separately, because the order how
applications are started differs from boot to boot and the
extension of the PCR is non-commutative. In our system,
however, the init scripts are executed in a specified order. Ad-
ditionally, we added a startup-script, that ’touches’ all required
shared libraries and therefore triggers a measurement of the
framework files in a specified order. While the IMA still has to
handle all measurements separately, our global measurement
list, that will be sent to the application controller only has
to maintain 42 measurements. The platform-composite, the
framework-composite and the 40 service measurements. This
approach is also supported by the structure of the device: The
platform and framework is normally updated as a whole, while
services can be deployed independently.

Now, the majority of the measurements represent the ser-
vices. Therefore, the size and dynamics of the reference
measurement list highly depends on these components. One
service requires system privileges (the virtual file system), 2
require control privileges, 3 reduced privileges and 2 limited
privileges. The former 32 entries are dependencies of the
services (in terms of private libraries or configuration files).
Consequently, they have they share the privilege class with
their associated service.

Fig.6 visualizes the effect of the described methods on
the measurement list. The size and privileges of the entries
directly correlates to the number of reference measurements,
the challenger has to maintain.

A control task, for example, is communication with the
application service, which has control privileges. Without
privilege-based attestation, the application controller would
have to maintain 42 (system privileged) reference measure-
ments, including many configuration files and executables of
services that do change quite often but do not affect the control
task at all. With the application of our privilege classification,
we can reduce the size of this reference list to 13 entries.
For the more complex future task of attesting SCADA-servers
to RTUs and mutual attestation of RTUs (which is required,
when different control tasks want to cooperate), this reduction
will be even higher due to the additional complexity.
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Fig. 6. Reduction of the size and dynamics of the measurement list by
applying different methodologies.

F. Overhead of the Attestation Process

The attestation process basically consists of three parts: The
prover has to generate the quote, the challenger has to verify

9

97



Paper C - PRDC 2017

the measurement and the process has to be communicated
via the network. Since we are interested in the performance
overhead on constrained devices, we investigate the process
of the communication controller attesting its integrity to the
application controller, based on the platform configuration
shown in Table III.

The prover has to store the IMA measurement list, as well
as the reduced measurement list, that additionally contains the
privilege information, as well as the dependency information.
While the IMA list has a size of 22509 bytes, the reduced list is
5578 bytes. On the first communication, the communication
controller has to transmit the reduced list and a quote (256
bytes). For each following communication, only the quote has
to be sent, because normally the measurement list does not
change. Only after updates or changes in the configuration, we
sent an incremental update of the measurement list, similar to
the solution in [5].

While the verification of the quote is relatively fast (about
40ms), the generation of the quote is done on the TPM and
takes about 1.9s. It is thus important to minimize the number
of generated quotes. However, it has to be ensured that the
attestation process is performed every time the configuration
changes. We are currently investigating different solutions.
One promising way would be the reset of network connections
of all services within a specific privilege class, whenever a new
component on the same or higher privilege class is started. In
this case, every communication partner is notified (because
they have to re-initiate the communication) and can request a
new quote.

VI. CONCLUSION AND FUTURE WORK

System integrity is an important property of RTUs in
distributed control systems. While remote attestation does
provide the establishment of trust between such devices,
it has been seen impractical and complex to maintain the
reference measurements. In this work we evaluated how recent
advances in research enable architectures that are feasible to
integrate in real systems. We quantified the performance and
communication overhead and discussed the implications on
development and production of RTUs. While the results show a
significant reduction of the size and dynamics of the reference
measurements, some challenges remain for future work.

Our work revealed the need of datapoint classification.
While it seems to be a tremendous task to classify data-
points regarding their impact on the control task, such meta-
information would also help to maintain other dependability
properties. Therefore, we plan to investigate possible trade-offs
in this direction. Moreover, we plan to expand the architecture
to enable the attestation of SCADA-servers to RTUs and inter-
RTU-communication. Since the introduced privilege classes
are applicable on the overall SCADA-system, we can use the
same classifications on all levesl.
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Protecting the integrity of software modules is a critical task on all secure systems. Although many different technologies exist to examine and
ensure software integrity, to the best of our knowledge, no security patterns that describe the underlying concepts exist yet. This work provides
two new patterns that aim to provide solutions for examining, enforcement and attestation of software integrity. The application of the patterns
is shown in a practical example that also illustrates the importance of these concepts.
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1. INTRODUCTION

The integrity of running software modules is a critical system property. In order to ensure the integrity of a software
system, the integrity of all modules has to be unharmed. The integrity of a software module M is violated whenever
M is altered in an unintended way or another module is able to harm the functionality of M. A module that is
maliciously altered may not act on behalf of the user or owner and may harm the system’s overall integrity.
Therefore, there exists many technologies to inspect and protect the integrity of software modules. While some
implementations of these technologies are already expressed as patterns, there is a lack of patterns that describe
their overall concept and application.

In this work, we introduce two new patterns, INTEGRITY PROTECTION and INTEGRITY ATTESTATION, that describe
processes to examine, ensure and attest the integrity of a system’s software modules. INTEGRITY PROTECTION is
used for systems that pro-actively protect themselves from execution of potentially malicious software modules.
INTEGRITY ATTESTATION is used to proof the integrity of a system to another system in a way that eliminates the
possibility of forging.

This work is structured as follows: Section 2 provides a short overview of related patterns. Subsequently, we
illustrate a motivating example, which is resolved with the help of the introduced patterns after their discussion.

2. RELATED PATTERNS

This section outlines patterns that are used by or related to the patterns described in this work.
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2.1 Patterns supporting Integrity Protection

The SECURE BOOT pattern [Löhr et al. 2010] verifies the integrity of software modules at boot-time by comparing
the hash values of executed modules to pre-defined values. SECURE STORAGE is a supplementary technique
that is used to enforce the integrity and confidentiality of stored data by granting access only to authorized and
unmodified software modules. The SANDBOX [Mouratidis and Giorgini 2003] and VIRTUAL ADDRESS SPACE

ACCESS CONTROL [Fernandez 2002] patterns are used to execute non-authorized software modules in a secure
way by observing all privileged system calls and prevent the module from doing something harmful.

(1) Secure Boot
On conventional platforms, software modules and their configuration may be altered or replaced. Due to

security related bugs, also an adversary may be able to inject malicious software or configurations into a
system. However, such malicious modules normally cannot harm the system’s integrity without being executed
(or loaded, in case of configurations).
SECURE BOOT exploits this property by allowing only known software to be executed (respectively only
known configurations to be loaded). This is done with the measure-before-execute paradigm: At deploy time,
measurements (i.e., hash values of the binaries) of all modules (including bootloader, operating system,
applications, etc.) are installed onto the system.
The first module that is executed on system start-up is called Root of Trust for Measurement (RTM). This is
the only module that is not measured prior to its execution. Therefore, there is no guarantee of its integrity.
However, since the RTM is small and is not updated very often, it may be stored on a non-writable memory or
protected from alternation in another way.
The RTM measures and verifies the first module of the bootstrap process, which is normally the bootloader. It
thus generates a hash of the bootloader and compares it with the stored, trusted value. If and only if these two
values are equal, the bootloader is executed. Otherwise the boot process is halted.
This measure-before-execute paradigm is applied on all levels. The bootloader measures the kernel and the
kernel measures the applications and their configurations. Therefore, the execution of possible malicious
software is prevented.

(2) Sandbox
A system executes a variety of software modules (applications). However, some of the modules might be

malicious or may be overtaken by an adversary. Therefore, they are able to violate the system’s security policy.
Therefore, the underlying system (e.g., the operating system) formally defines a security policy for all applica-
tions running on top of it. This policy grants the minimum set of privileges an application needs to execute
correctly (LEAST PRIVILEGE [Fernandez et al. 2011]). The policy is enforced by intercepting all API calls (e.g.,
system calls) an application calls on the underlying system. Before the call is granted, the system checks
whether the current application is allowed to execute the specific function with the given parameters. Therefore,
given that the security policy is well-defined, it is not possible for an application to perform malicious tasks.

2.2 Patterns supporting Integrity Attestation

AUTHENTICATED BOOT is a variant of SECURE BOOT that executes modules without comparing the measurements
with pre-defined values. Instead, the measurements are stored and every interested entity is able to read it and
compare it to values this entity considers ’trusted’. Since potential malicious software is executed on the system,
the measurements have to be stored in a way that prevents software from maliciously altering them. This is
normally done by hardware modules (e.g., a Trusted Platform Module (TPM)).

To prove data integrity and authenticity, this work uses DIGITAL SIGNATURE WITH HASHING [Hashizume et al.
2009] with public key cryptography. Hereby, the sender of a message encrypts a digest (i.e., a hash) of the
message with its private key of an asymmetric encryption scheme. The receiver is able to use the sender’s public
key to verify the integrity of the received message.
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3. MOTIVATING EXAMPLE

In order to show how to apply the described patterns, we consider the situation illustrated in Figure 1: An off-the-
shelf PC is used by Max, who wants to use the computer for paying the bills. To simplify their customer’s life, Max’
bank provides a server with online banking. In order to maintain and update software modules on the banking
server, an administrator employed by the bank is allowed to connect with his maintenance-terminal. In this small
scenario, we can identify two major requirements regarding software integrity:

—Both, Max and the bank want the banking server only to run trusted modules.

—According to the bank’s policy, only trusted terminals are allowed to connect to do maintenance work. Thus, the
server has to check that the integrity of all software components on the maintenance-terminal is given.

Max
E-Banking

Server

Administrator

Fig. 1. An exemplary scenario: Max wants to use his computer for online banking. The bank’s server is administrated with a maintenance
console. This simple scenario contains several systems that need to implement techniques that ensure their integrity.

4. INTEGRITY PROTECTION

4.1 Intent

A system protects its integrity by preventing harmful actions. This is done by the interception of defined action
classes and identifying their impact on the system’s integrity. If a specific action would violate the integrity, the
system refuses its execution.

4.2 Context

A computer system runs a set of software modules. Different types of adversaries may benefit from altering existing
modules to act maliciously or to add completely new modules that act in their behalf since the system may protect
critical information or resources. The system may be a server, a PC, any kind of embedded system or a virtual
machine. However, it runs autonomously (i.e., with little human interaction) most of the time.

4.3 Problem

An adversary tries to tamper with the software modules on the system. A software module that is modified without
authorization possibly leaks critical information or resources or harms the functionality of the overall system.
Therefore, the integrity of running software modules has to be ensured.

4.4 Forces

—(Prevent Execution of Malicious Software): Execution of malicious software modules harms the integrity of
the overall system. After the modules are executed, the integrity violation can be located in any subsystem and
may be hard to find. Therefore, the execution of the malicious module should be prevented in the first place.
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—(Integrity without Monitoring): The system might not be accessible and it is not possible to monitor it all the
time. Though, the integrity of the system should be ensured at any time.

—(Updatability): The solution should provide the possibility to do software updates or install additional software
modules without changing the underlying system.

—(No Mutation): The solution should not require changes in existing modules.

4.5 Solution

The system either ensures that all loaded software modules are known and verified before, or it ensures that no
module is able to violate the integrity of other modules or the whole system.

(1) Structure
As shown in Figure 2, the system is running a set of SoftwareModules. Calls to the SystemAPI are redirected
to the DecisionUnit . In order to decide whether a specific call is allowed or not, the DecisionUnit performs an
identification of the request via the RequestIdentificationUnit and compares the result to an IntegrityPolicy .

Fig. 2. INTEGRITY PROTECTION: The system intercepts privileged system requests of all software modules to prevent integrity violations.

(2) Dynamics
Figure 3 illustrates the basic procedure: Whenever SoftwareModule calls a function of the SystemAPI, the

DecisionUnit intercepts this call and triggers the RequestIdentificationUnit . This module gathers information
about the request and the result is compared to the IntegrityPolicy . Based on this policy, the DecisionUnit
either forwards the call to the actual SystemAPI or returns an error.
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Fig. 3. INTEGRITY PROTECTION: The decision unit intercepts system requests and only allows them if they conform to the policy (i.e., would
not violate system’s integrity).

(3) Implementation
The implementation of the DecisionUnit can be done in different ways. Systems that implement the SECURE

BOOT pattern verify a software module by hashing its binary and comparing it to a known value prior to
execution. On the other hand, systems based on the SANDBOX pattern are verifying all calls to the SystemAPI
and decide whether it is allowed for the specific SoftwareModule or not.
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4.6 Consequences

(1) Benefits
—(Prevent Execution of Malicious Software): Assuming that the IntegrityPolicy is complete, the integrity

checks prevent malicious software from being executed on the system.
—(Integrity without Monitoring): No external supervisor is needed. The system enforces its integrity au-

tonomously.
—(No Mutation): There is no need to alter the software modules itself.
—(Updatability): Based on the chosen implementation, little (e.g., sign the new module) or no effort is needed

to add additional non-harmful modules to the system.
(2) Liabilities

—(Maintenance): In systems with very volatile and heterogeneous configurations, the maintenance of the
IntegrityPolicy is potentially hard.

—(Performance): INTEGRITY PROTECTION may reduce the performance significantly. Especially on lightweight
devices, this might be a problem.

—(Updatability): Adding software that does not conform to the IntegrityPolicy is not possible. Similar problems
may arise with software updates.

4.7 Known Uses

Since there exist a variety of implementations of both, the SANDBOX pattern [Loscocco 2001][Cowan et al. 2000]
and the SECURE BOOT pattern [Safford and Zohar 2005], the INTEGRITY PROTECTION pattern is implemented in
many systems. Some systems, like Android1, combine both implementation patterns to ensure integrity.

Another example is a shadow stack (example, ROPDefender [Davi et al. 2011]). Here redundancy is used to
protect software against stack overflow attacks. A shadow copy of the actual stack is held and on each return,
the system checks whether the return addresses of the stack and the shadow stack are equal. If not, the stack
integrity is properly harmed.

5. INTEGRITY ATTESTATION (REMOTE ATTESTATION)

5.1 Intent

INTEGRITY ATTESTATION is a procedure, that allows a system to proof its maintained integrity state (i.e., that it was
not changed in an unauthorized way) to another system.

5.2 Context

A client is communicating with an application on a server. The application on the server requires sensitive
information from the client (e.g., passwords or pins for online banking) or the authenticity of the information
provided by the server is very important to the client. The client wants to check the server’s integrity prior to
sending sensitive information to the server.

5.3 Problem

The client needs to make sure that the server is in a trustworthy state and the integrity of its running software
modules is assured.

5.4 Forces

—(Integrity Measurement): The server has to measure properties that reflect its integrity, otherwise the client is
not able to verify it.

1https://source.android.com/devices/tech/security/

Patterns for Software Integrity Protection — Page 6

104



7 Publications

—(Reference Measurement List): The server and the client have to share a pre-agreed measurement list or
policy, that defines which measured properties define a maintained integrity.

—(Integrity of Measurement List): Since malicious software may be executed on the server, the integrity and
authenticity of the resulting measurement list has to be ensured too.

5.5 Solution

A system (prover) proves its integrity to a client (challenger) by taking measurements of properties that reflect its
integrity and ensuring that the measurement cannot be tampered with.

(1) Structure
As shown in Figure 4, the Prover is executing a set of SoftwareModules. The PropertyMeasurementUnit is
in charge to measure integrity-properties of all modules. These properties have to reflect the integrity of the
modules or the overall system (e.g., did somebody tamper with the software module). The MeasurementResults
are stored in the ResultStorage. Since potential malicious applications may be executed on the system, the
ResultStorage has to be implemented in a way that prevents malicious applications from tampering with it.
Moreover, the properties of a module have to be measured before the module is able to forge it (e.g., prior
to its execution). Since the connection between the Client and the Prover may be insecure, the integrity
and authenticity of the MeasurementResult has to be ensured by a DIGITAL SIGNATURE WITH HASHING. In
order to prevent potentially malicious software from forging this signature on the prover , this signature has
to be generated by hardware (i.e., the signature key is not accessible by software). The Client compares
the MeasuremetnResults with an IntegrityPolicy that defines reference measurements that are considered
trustworthy.

Fig. 4. INTEGRITY ATTESTATION: The Prover observes its running software modules with the PropertyMeasurementUnit . The measurements
are stored in a secure way and used to prove the system’s integrity to the client.

(2) Dynamics
As shown in Figure 5, the Prover measures all its modules via the PropertyMeasurementUnit . Whenever a
Client wants to communicate with the Prover , the Prover signs its MeasurementResults and sends it to the
Client . Now, the client compares the received results with the IntegrityPolicy and is able to decide, whether
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the integrity of the Prover is given. Only if the received list matches the policy, the actual communication is
started.

Fig. 5. INTEGRITY ATTESTATION: The client verifies the integrity of the prover prior to the actual communication.

(3) Implementation
Similar to INTEGRITY PROTECTION, this pattern can be implemented in different ways. In systems that

implement authenticated boot (a variation of SECURE BOOT ), the hash values of executed modules are used
as integrity-properties. Another approach is to identify application behavior (similar to SANDBOX) by logging
calls to critical system functions and their arguments. It is possible to implement INTEGRITY PROTECTION and
measure the integrity of the integrity-protection system. In this case, the Client only has to verify this single
measurement. If the integrity-protection system is in place, no modified software can be executed.

5.6 Consequences

(1) Benefits
—(Integrity Measurement): The integrity of the system’s software modules is identified by the quantification

of measureable properties.
—(Reference Measurement List): The integrity policy can be defined based on the client’s requirements of

the server’s state.
—(Integrity of Measurement List): The MeasurementResults are stored in a SECURE STORAGE. Thus,

malicious software is not able to corrupt this information.

(2) Liabilities
—(Reference Measurement List): The IntegrityPolicy on the client has to be up-to-date in order to enable

the client to verify the prover. Thus, it has to be ensured that the IntegrityPolicy conforms to the server’s
configuration everytime the server gets updated.

—(Integrity of Measurement List): The prover has to ensure that the measurement list cannot be tampered
with. This requires special care on the prover platform, as well as on the communication channel.

5.7 Known Uses

INTEGRITY ATTESTATION is implemented in many systems in different ways. In [Feng et al. 2011], this pattern is
used to implement access control of devices to computer networks. An application-level implementation, called
Integrity Measurement Architecture (IMA), exits for Linux [Sailer et al. 2004]. Other approaches like DR@FT use
SANDBOX-based methods [Xu et al. 2012].
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6. PATTERN APPLICATION AND SELECTION

The presented patterns solve similar problems. However, based on the actual context and forces, not all solutions
are applicable at any time. Table I shows the differences of application of the two patterns. The integrity of a
software module can be measured and verified at installation time, at execution time (i.e., prior to the execution)
and at runtime. Moreover, these processes can be done by the verified system itself (internal) or by another
entity (external). Depending on the actual implementation (e.g., SANDBOX or SECURE BOOT) the measurement
and verification time for INTEGRITY PROTECTION differs. However, both is done internally by the verified system.
INTEGRITY ATTESTATION uses similar measurement concepts, but the verification is done by a remote entity at
runtime.

Table I. The differences of the presented patterns. Depending on both, the time and executing entity of measurement
and verification, a different pattern can be applied.

Pattern Measurement Time Verification Time Measuring Entity Verifying Entity
INTEGRITY PROTECTION Implementation-Dependent Implementation-Dependent Internal Internal
INTEGRITY ATTESTATION Implementation-Dependent Runtime Internal External

With the help of the presented patterns, the integrity-requirements of the example provided above can be solved.

—The banking server uses INTEGRITY PROTECTION to ensure that no modified module is allowed to be executed.
It uses SECURE BOOT and therefore internally measures and verifies the integrity at execution time.

—The maintenance-terminal has to use INTEGRITY ATTESTATION to prove its integrity to the server. Therefore, it
is not possible for administrators to use compromised terminals. The server (external) verifies the integrity of
the maintenance-terminal at runtime. The measurements are taken internally by the maintenance-terminal at
execution time.

7. CONCLUSION

In this work we presented two patterns: INTEGRITY PROTECTION adds the ability to enforce a policy that protects
the system from behaviour that would violate its integrity. INTEGRITY ATTESTATION is used to prove the system’s
integrity state to a remote system. With the help of an illustrative example we showed how to apply the patterns in
the real world and how the pattern implementation ensures the integrity of the overall system.
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How to Choose Proper Integrity Properties
TOBIAS RAUTER, ANDREA HÖLLER, JOHANNES IBER, CHRISTIAN KREINER, Institute for Technical
Informatics, Graz University of Technology

Integrity, the absence of improper, unauthorized or accidental system manipulation is a critical property of systems and data. Due to natural or
human-made (malicious and non-malicious) faults this property can be violated. Therefore, many methodologies and patterns that check or
verify the integrity of systems or data have been introduced. However, integrity as a property cannot be identified directly. Existing methodologies
tackle this problem by identifying other, computable, properties of the system and use a policy that describes how these properties reflect the
integrity of the overall system. It is thus a critical task to select the right properties that reflect the integrity of a system in such a way that given
integrity requirements are met. To ease this process, we introduce two new patterns, STATIC INTEGRITY PROPERTIES and DYNAMIC INTEGRITY

PROPERTIES to classify the properties. Based on an exemplary embedded control system, we show typical use cases to help the system or
software architect to choose the right class of integrity properties for the targeted system.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architecture—Patterns

1. INTRODUCTION

Integrity, the absence of improper, unauthorized or accidental system manipulation is a critical property of systems
and data. In complex systems, the integrity of the overall system depends on the integrity of all system components
and data that is used by or transmitted between the components.

Within complex systems that are comprised of many components, the occurrence of different types of faults is
very likely. According to commonly used fault taxonomies [Avizienis et al. 2004] different natural and human-caused
faults can lead to integrity violations. Natural faults can be internal faults that are caused by deterioration of the
hardware, or triggered by external events such as radiation that causes an instruction decoder fault in a CPU.
Human-made faults are either malicious or non-malicious. Non-malicious human-made faults are faults introduced
by accident or bad decisions. Malicious faults, in contrast, are faults that originate from malicious behaviour (i.e.,
adversaries with malicious objectives).

Therefore, there already exist patterns that aim to ensure the integrity of such systems [Rauter et al. 2015].
INTEGRITY PROTECTION adds the ability to enforce a policy that protects the system from behaviour that would
violate its integrity. INTEGRITY ATTESTATION is used to prove the system’s integrity state to a remote system.
Additionally, many implementations of this two existing patterns such as SECURE BOOT [Löhr et al. 2010], SANDBOX

[Mouratidis and Giorgini 2003] or VIRTUAL ADDRESS SPACE ACCESS CONTROL [Fernandez 2002] exist. Although
all of these concepts targeting security problems (or malicious human-made faults), they can be used for other
types of faults too. Patterns such as SYSTEM MONITOR [Hanmer 2007] have similar aims but explicitly target the
fault tolerance domain.

All these patterns aim to verify the integrity of the targeted system. However, integrity cannot be directly identified.
Therefore, implementations use specific system properties (e.g., a checksum or a signature) and check these
properties against a policy. The policy defines the ’values’ of the properties that reflect an integer system or data
state. These properties thus have to be identifiable and verifiable. It must be possible to compute these system
properties deterministically and to verify them against a given policy.

However, using such properties is only an approximation because they always only reflect a sub-set of the
overall system integrity. In order to find the right properties for that reflect specific integrity requirements of a given
system, the properties have to be chosen carefully.

In this work, we introduce two patterns that classify such properties regarding their evaluation time. This
classification should help the system or software architect to choose the right class of integrity properties. One can

©2015 Authors. Reprinted, with permission. The definitive version was published in Proceedings of the 21th European Conference
on Pattern Languages of Program (EuroPLoP 16) , July 2016.
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use STATIC INTEGRITY PROPERTIES to select properties that reflect the integrity statically, i.e., properties that do
not change during the use of a component. Such properties are used to verify the integrity of a component prior its
usage. Sometimes, it is not possible to find such properties or it is likely that the integrity may be violated during
the usage/execution of a component. If such behavioural analysis is important the architect should consider to
use DYNAMIC INTEGRITY PROPERTIES. Dynamic properties are used to reflect integrity during the use of data or
system components to identify violations that occur during run-time.

This rest of this work describes the two patterns in Section 3 and Section 4. Section 2 and 5 illustrate a motivating
example and show how the patterns can be used in the scenario and Section 6 conclude the paper.

2. RUNNING EXAMPLE

Figure 1 illustrates an exemplary control system we use to show the application of the presented patterns. Basically,
we have a rudimentary control loop where a control device senses the environment and stimulates the actuator.
The control device is an embedded computing system that runs different types of software components. The basic
software block comprises components for hardware abstraction, the operating system and services and libraries
that are commonly used. The application blocks are the actual functional software components that are used for
the control function. These applications are connected to the sensors via some kind of industrial bus. A message
send over the bus is called Protocol Data Unit (PDU).

In this scenario, we encounter a number of potential integrity problems. Here, we want to consider a small
subset of all possible caveats to explain the different combinations of the presented patterns.

(1) Application
An application component is an executable file that is stored on the Non Volatile Memory (NVM) of the control
device. If this file is altered, the integrity of the application is violated. In real world, not every change of an
executable file results in a functional change of the component [Höller et al. 2015]. However, such functional
equivalence is not trivial to show and therefore we assume that a change in the binary results in a change in
the function. The control system therefore has to ensure, that it does not execute such modified binaries.

(2) Control Device
Even if the application components (or even all software components) of the control device are intact, one
cannot be sure about the integrity of the overall device. As an example, the hardware integrity may be violated
in such a way that the input signal from the sensor is not correctly interpreted. This may lead to a false control
decision even when the software works as expected. Therefore, such types of integrity violations have to be
identified on the system level, where the behaviour of the overall device is observable.

(3) PDUs
An altered PDUs can also lead to a wrong control decision or forges a control value that is sent to an actuator.
The bus system itself is exposed to a possible adverse and harsh environment. Faults at this level are thus
very likely and have to be detected.

Basically, we want to verify and enforce the integrity of the system or, more specific, of the three explained
modules. Therefore, we introduce three mitigation strategies. The control device should be able to check the
integrity of its applications autonomously. This is done by the Application Integrity Verifier . All communication
endpoints should be able to verify the integrity of the PDUs with the help of the PDU Integrity Verifier . Moreover,
we want to introduce a Plausibility Checker that mediates the signal to the actuator. This entity also listens to the
sensor PDUs and is able to decide, whether a control decision is plausible. An implausible control decision hints to
a violation of the control device’s integrity. All three mitigation strategies depend on integrity properties, which are
used to decide whether the integrity is violated. In the next two sections, we describe two patterns that classify
different types of such properties. In Section 5, we show how these patterns are applied to this example.
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Fig. 1. Exemplary Control System

3. STATIC INTEGRITY PROPERTIES

3.1 Intent

The intent of STATIC INTEGRITY PROPERTIES is to reflect the integrity of a system by detection of changes in static
system parts.

3.2 Context

Computing systems compose different components. In order to cooperate, the components have to exchange
data. Within complex systems, the occurrence of different types of faults is very likely. Faults may be of natural
(e.g., hardware faults due to external events or material wearout) or human origin. Human-made faults can
be non-malicious (e.g., accidental) or malicious (i.e., a security violation). All types of faults can result in an
unintended manipulation of a component or data that is exchanged between or used by components. Ultimately,
this manipulation results in an integrity violation of the whole system and may produce a malfunction. Therefore,
many methodologies that check the system integrity and react on integrity violations exist.

3.3 Problem

You want to harden your system against operational faults such as environmental faults or security violations
and therefore have chosen a methodology that monitors or enforces the system integrity. You do not want to use
system components whose integrity is not ensured. This is also true for information (i.e., data) that is used as input
to your system.

3.4 Forces

—(Integrity Properties): A detour via other properties has to be taken. The presence, absence or value of these
properties have to reflect the integrity of the component or data.

—(Offline Identification): Using components or data with violated integrity compromise the overall systems
integrity. Such components should not be executed in the first place and low-integrity data must not be used
since they would also lower the integrity of the using component. The integrity thus has to be ensured prior to
any use.

—(Stable at Run-time): The evaluation of the properties is done prior to execution or usage. However, many
properties change during run-time. In this case, the assertions regarding integrity do not hold during execution.

—(Performance Constraints): The system has strict resource constraints at run-time and additional overhead
should be minimized.
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3.5 Solution

(1) General Solution
Find static integrity properties. These properties have to be identifiable and verifiable. This means that it

has to be possible to deterministically compute these properties with the given data or component as input.
Moreover, it has to be possible to formulate a policy that enables a decision concerning the component’s
integrity based on the presence, absence or values of these properties. The properties have to be examinable
before the component is executed or the information is used productively.
As illustrated in Figure 2, these properties so not change during run-time. Therefore, only one point of
evaluation is needed to gain a representation of the system’s integrity. The evaluation point is prior to the
execution or use of the component. This leads to no additional computing overhead for the identification of
the component’s integrity at run-time. However, the verification of the integrity can be done multiple times by
different entities. Only the previously stored integrity and a policy is needed.
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Static Property 3 = Value3

On Rest
                         

Runtime
                         

Execute/Use

Evaluation Point

Time

Integrity Representation
Property 1: Value1
Property 2: Value2 
Property 3: Value3

Verification Point Verification Point

Integrity Representation
Property 1: Value1
Property 2: Value2 
Property 3: Value3

Integrity Representation
Property 1: Value1
Property 2: Value2 
Property 3: Value3

Fig. 2. Static properties are identified before a component or data is actually used and do not change over time. Therefore, the evaluated
integrity representation is valid during the whole time of execution or use and there is no need for re-evaluation for each verification.

(2) Implementations and Examples
For data integrity, techniques like CHECKSUM [Hanmer 2007] are used in the domain of fault detection. Here,
a checksum represents a computable property that has to match a reference value. In the security domain,
similar results (but with strong properties regarding security) are achieved with DIGITAL SIGNATURE WITH

HASHING [Hashizume et al. 2009].

3.6 Consequences

(1) Benefits
—(Integrity Properties): Assuming a properly crafted policy, the identified properties reflect the integrity state

of the components and data and therefore of the overall system.
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—(Offline Identification), (Stable at Run-time): The selected properties can be computed before execution
and remain during run-time. Therefore, the computation of the properties can be done safely once, prior
run-time.

—(Performance Constraints): Since the properties do not change during run-time, re-evaluation is not
necessary and therefore the identification of these properties do not cause any run-time overhead.

(2) Liabilities
—(Integrity Properties): Even with a very good policy, there exists no property or combination of properties

that can ensure the integrity of the component or data without doubt. However, based on the type of the
property, this remaining uncertainty can be minimized or adjusted to the needs of the actual system.

—(Stable at Run-time): Since the properties do not change during run-time and no additional checks are
performed here, integrity violations during run-time are not detected.

3.7 Known Uses

Many protocols, such as CAN or USB use Cyclic Redundancy Check (CRC) to ensure data integrity. This check is
done before the packet is forwarded to the actual application (i.e., before it is used by the application). In TLS,
during the verification of the message authentication code, the receiver calculates a hash value (static property)
of the received message and compares it with a reference value generated by the sender (policy). Systems that
implement SECURE BOOT [Löhr et al. 2010] are using signatures or hashes to statically ensure the integrity of
software components.

4. DYNAMIC INTEGRITY PROPERTIES

4.1 Intent

The intent of DYNAMIC INTEGRITY PROPERTIES is to reflect the integrity of a system by detection of abnormal
behaviour.

4.2 Context

Computing systems compose different components. In order to cooperate, the components have to exchange
data. Within complex systems, the occurrence of different types of faults is very likely. Faults may be of natural
(e.g., hardware faults due to external events or material wearout) or human origin. Human-made faults can
be non-malicious (e.g., accidental) or malicious (i.e., a security violation). All types of faults can result in an
unintended manipulation of a component or data that is exchanged between or used by components. Ultimately,
this manipulation results in an integrity violation of the whole system and may produce a malfunction. Therefore,
many methodologies that check the system integrity and react on integrity violations exist.

4.3 Problem

You want to harden your system against operational faults such as environmental faults or security violations and
therefore have chosen a methodology that monitors or enforces the system integrity. You want to ensure that the
integrity of single components is not violated during run-time. Therefore, you want to know whether the behaviour
of a system reflects an integer system state.

4.4 Forces

—(Integrity Properties): A detour via other properties has to be taken. The presence, absence or value of these
properties have to reflect the integrity of the component or data.

—(Online Violation): An integrity violation may happen during run-time and result in a behavioral change of a
system component or in forged information.

—(Offline Verification Not Possible): The system is not examinable from outside before it is used.

How to Choose Proper Integrity Properties — Page 5
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—(Dynamic Properties): The properties are present before execution, and change, vanish or appear over time.
Thus, a single evaluation is thus not reasonable.

4.5 Solution

(1) General Solution
Find dynamic integrity properties that reflect the behavior of the system. These properties have to be

identifiable and verifiable. This means that it has to be possible to deterministically compute these properties
with the given data or component as input. Moreover, it has to be possible to formulate a policy, that enables a
decision concerning the component’s integrity based on the presence, absence or values of these properties.
As illustrated in Figure 3, the properties change over time. Therefore, one evaluation prior to each verification
has to be done. With such properties, the integrity can be verified, even when a violation happens during the
execution. Moreover, there is no need for any action prior to the execution.

System/
Data

System/
Data

Dynamic Property 3
 = Value3

Dynamic Property 2
 = Value2

Dynamic Property 1
 = Value1.1

Integrity Policy

Dynamic Property 1 must be present
Dynamic Property 2 = Value2
Dynamic Property 3 must be present

On Rest
                         

Runtime
                         

Execute/Use

System/
Data

Dynamic Property 2
 = Value2

Dynamic Property 1
 = Value1.2

System/Environment 
changes

Evaluation Point Evaluation Point

Time

Verification Point Verification Point (violated Integrity)

Integrity Representation
Property 1: Value1.1
Property 2: Value2
Property 3: Value3

Integrity Representation
Property 1: Value1.2
Property 2: Value2

Fig. 3. Dynamic properties may change over time. Therefore, they have to be re-evaluated prior to each verification.

(2) Implementations and Examples
One method to examine the integrity of system components is to measure latency and set a REALISTIC

THRESHOLD [Hanmer 2007]. Another possibility is to use calls to critical system functions as integrity properties,
as in { Virtual Address Space Access Control} [Fernandez 2002]. In order to detect security violations, the
control flow of a program can be logged and verified with a model of valid control flow transitions. In terms of
data integrity, dynamic properties could depend on different data sources. For example, a difference between
two data sets has to meet a certain criteria. Whenever one data set changes, the property (i.e., the difference)
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is updated and an integrity violation can be revealed, even if the static integrity properties of the data sets are
intact.

4.6 Consequences

(1) Benefits
—(Integrity Properties): Assuming a properly crafted policy, the identified properties reflect the behavior of

the components and data and thus the integrity of overall system is verifiable.
—(Online Violation), (Dynamic Properties): A violation of the system’s integrity or a changed property

during run-time is reflected by the identified properties at the next evaluation point.
(2) Liabilities

—(Integrity Properties): Even with a very good policy, there exists no property or combination of properties
that can ensure the integrity of the component or data without doubt. However, based on the type of the
property, this remaining uncertainty can be minimized or adjusted to the needs of the actual system.

—(Online Violation): The properties may reflect violations of the components/data that occurred prior to
the execution of the component or the data usage. However, especially if this violation is the result of a
malicious fault, it may also mask itself or disable run-time evaluations.

—(Online Violation): Run-time checks require additional resources such as CPU-time and thus may interfere
with the actual function of the observed component.

4.7 Known Uses

Canaries (magic sequences) are widely used to detect hardware faults or malicious faults such as buffer overflows.
Here, a specific value has to be present at a specific address in memory. VOTING [Hanmer 2007] calculates
the correctness of computation results by exploiting redundancy. Many systems use the property of what critical
system functions are accessed to protect the integrity of other software components [Loscocco 2001][Cowan et al.
2000].

5. PATTERN APPLICATION

With the help of the two presented patterns, we can complete the example introduced in Section 2. For each
mitigation strategy, we will discuss the integrity requirements and show what type of integrity properties can be
applied with an exemplary implementation.

(1) Application Integrity Verifier
Basically, we want to verify the integrity of the executables. We consider faults (or malicious changes) on the

non-volatile memory. In the first step, we do not consider run-time faults in RAM or CPU that could change the
execution of the application. We thus should use STATIC INTEGRITY PROPERTIES. For software binaries, hash
values and reference values that are compared prior to the execution are state-of-the-art [Sailer et al. 2004].
During the development of our system, we start to realize that run-time faults in our hardware platform can
occur that could violate the integrity of our applications. Also the risk of potential adverse packets that may
lead to a corruption of the behaviour cannot be neglected. Therefore, we also have to use DYNAMIC INTEGRITY

PROPERTIES to monitor our applications at run-time. In our case, we use a shadow stack. We store the current
program counter value at each function call. After each return, we can check whether the return address
matches the address that called the function. With this measure, we are able to ensure basic control flow
integrity and can thus detect a part of malicious and non-malicious faults at run-time.

(2) PDU Integrity Verifier
The PDUs are generated at one endpoint and used at another. There is no intended modification of PDUs
between these points. Therefore, we can use STATIC INTEGRITY PROPERTIES. We can argue that our
communication channels are protected physically and we do not consider malicious access to the bus. Only
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unintended or spontaneous faults can lead to an integrity violation. Therefore, we can use simple CRC checks
here.

(3) Plausibility Checker
The plausibility checker is used to identify integrity violations of the control device that this device is not

able to identify by itself. However, the plausibility checker only has limited access to the control device. It
is only able to intercept the actuator and sensor PDUs. The plausibility checker is not able to identify any
properties before the control device is used. Therefore, DYNAMIC INTEGRITY PROPERTIES have to be used.
One implementation could be a check whether the actuator value is in a specific range or a check whether a
specific relation between the sensor and actuator value is given.

6. CONCLUSION

In this work we presented two patterns: On one hand, one can use STATIC INTEGRITY PROPERTIES to determine
the intact integrity of a system or data before executing or using it. On the other hand, DYNAMIC INTEGRITY

PROPERTIES determine the system’s integrity based on properties that can be observed during run-time. The
patterns describe the classes of properties, as well as examples for each type. With the help of an exemplary
embedded control system, we showed typical occurrences and use cases of these patterns. Moreover, we referred
to patterns and methodologies that use these properties to actually check the integrity of systems or data.

7. ACKNOWLEDGEMENTS

Thanks to Georg Macher for improving this paper by giving helpful comments during the shepherding process.

REFERENCES

AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. 2004. Basic Concepts and Taxonomy of Dependable and Secure Computing.
IEEE Transactions on Dependable and Secure Computing 1, 1, 11–33.

COWAN, C., BEATTIE, S., KROAH-HARTMAN, G., PU, C., WAGLE, P., AND GLIGOR, V. 2000. {SubDomain}: Parsimonious Server Security. In
USENIX LISA. 1–20.

FERNANDEZ, E. 2002. Patterns for operating systems access control. Proceedings of of PLoP.
HANMER, R. S. 2007. Patterns for Fault Tolerant Software. John Wiley & Sons.
HASHIZUME, K., FERNÁNDEZ, E., AND HUANG, S. 2009. Digital Signature with Hashing and XML Signature patterns. Proceedings of the 14th

Conference on Pattern Languages of Programs (PLoP 2009), 1–21.
HÖLLER, A., KAJTAZOVIC, N., RAUTER, T., KAY, R., AND KREINER, C. 2015. Evaluation of Diverse Compiling for Software-Fault Detection.

531–536.
LÖHR, H., SADEGHI, A.-R., AND WINANDY, M. 2010. Patterns for Secure Boot and Secure Storage in Computer Systems. 2010 International

Conference on Availability, Reliability and Security , 569–573.
LOSCOCCO, N. P. 2001. Integrating flexible support for security policies into the Linux operating system. In USENIX Annual Technical

Conference.
MOURATIDIS, H. AND GIORGINI, P. 2003. Security patterns for Agent systems. 8th European Conference on Pattern Languages of Programs,

1–16.
RAUTER, T., HÖLLER, A., IBER, J., AND KREINER, C. 2015. Patterns for Software Integrtiy Protection. In European Conference on Pattern

Languages of Programs.
SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN, L. 2004. Design and implementation of a TCG-based integrity measurement

architecture. In USENIX Security Symposium.

How to Choose Proper Integrity Properties — Page 8

116



7 Publications

Asset-Centric Security Risk Assessment of Software
Components

Tobias Rauter, Andrea Höller, Nermin Kajtazovic, Christian Kreiner
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

{tobias.rauter, andrea.hoeller, johannes.iber, christian.kreiner}@tugraz.at

ABSTRACT
Risk management is a crucial process for the development of
secure systems. Valuable objects (assets) must be identified
and protected. In order to prioritize the protection mech-
anisms, the values of assets need to be quantified. More
valuable or exposed assets require more powerful protection.
There are many risk assessment approaches that aim to pro-
vide a metric to generate this quantification for different do-
mains. In software systems, these assets are reflected in re-
sources (e.g., a file with important information) or functional
software components (e.g., performing a bank transfer). To
protect the assets from different threats like unauthorized
access, other software components (e.g., an authenticator)
are used. These components are essential for the asset’s
security properties and should therefore be considered for
further investigation such as threat modeling. Evaluating
assets only at system level may hide threats that originate
from vulnerabilities in software components while doing an
extensive threat analysis for all the system’s components
without prioritization is not feasible all the time.

In this work, we propose a metric that quantifies software
components by the assets they are able to access. Based on a
component model of the software architecture, it is possible
to identify trust domains and add filter components that
split these domains. We show how the integration of the
methodology into the development process of a distributed
manufacturing system helped us to identify critical sections
(i.e., components whose vulnerabilities may enable threats
against important assets), to reduce attack surface, to find
isolation domains and to implement security measures at the
right places.

1. INTRODUCTION
The development of secure systems is a difficult and error-
prone task. At business level, security properties (e.g., confi-
dentiality, integrity, availability) of physical or non-physical
valuable objects (assets) must be guaranteed. Many of these
assets are protected and/or used by information systems.

Therefore, it is important to identify the assets in these
systems and build proper protection mechanisms. At the
embedded domain in particular, where valuable informa-
tion like encryption keys often cannot be shielded physically,
building robust software countermeasures that protect the
assets is an essential task.

In the identification context, assessment and mitigation risk
management [1] is a widely used method [7-13]. Basically,
possible risks are identified, rated and prioritized. Based
on the prioritization, it is possible to focus on the protec-
tion of the assets with the highest loss potentials in case of
violation of its security properties. This risk-control step
consists of risk resolution, monitoring of the resolutions and
re-assessment.

In software systems, assets are mainly data (e.g., encryp-
tion key) or a functionality (e.g., a bank transfer function).
Other software components are either accessing or protect-
ing these assets. Threats to assets thus rise through exploits
of possible vulnerabilities in components that are able to ac-
cess the asset. Approaches that generate security require-
ments based on security goals for assets [2] and threat mod-
eling [3, 4] have been proposed. However, to the best of our
knowledge, no investigation into the systematic generation
of the list of software components that have to implement
these requirements for the high-level assets exists at present.
Furthermore the question of which components are crucial
for the system’s security properties and therefore should be
considered for exhaustive threat modeling can also not be
answered systematically.

In this work, we aim to achieve this enumeration and prior-
itization by rating components based on the assets they are
able to access at an architectural level. In particular, we

• identify required privileges of components by analyzing
accessed assets,

• introduce a metric that represents the criticality of the
components in the context of their privileges,

• classify components and component-groups according
to this metric,

• use this quantification as input for risk assessment and
as feedback for the privilege separation process to gen-
erate small trust domains.

©2016 Authors. Reprinted, with permission. The definitive version was published in 2nd International Workshop on MILS: Archi-
tecture and Assurance for Secure Systems EuroMILS 2016, Januar 2016.

117



Paper F - EuroMILS 2016

Finally, we use the proposed method to analyze an exist-
ing software architecture of an embedded control system re-
garding security. Moreover, we adapt it in the development
phase of a distributed manufacturing and automated test
system for these devices. By using this approach, we are
able to reduce the number of critical components and to fo-
cus effort on actual threat modeling and countermeasures
in a prioritized manner. Additionally, the classification of
components and the identification of domains with the same
requirements regarding asset accesses can be used as input
for component isolation-technologies.

The paper is organized as follows. Section 2 discusses related
work. Section 3 describes the proposed methodology and the
metric used to evaluate the components. Section 4 shows
how we use the approach to examine a real case software
architecture. In Section 5, the benefits and the drawbacks
of the system, together with impulses and directions that
can be followed in future are summed up.

2. BACKGROUND AND RELATED WORK
This section provides an overview of a basic risk manage-
ment processes, also a summary of related risk assessment
methodologies.

2.1 Risk Management
Risk management is an important method for identifying,
evaluating and dealing with risks in information systems.
The ISO/IEC 27005 [5] contains guidelines for systematic
and process-oriented risk management. Basically, stakehold-
ers (e.g., owners) want to protect objects with some kind of
value. These objects are referred to as assets.

However, actual or assumed ’threat agents’ (e.g., malicious
users, hackers) may also place value on these assets and try
to abuse them. Threat agents therefore rise threats that also
increase the risks of an asset. The ’good’ stakeholders try
to implement countermeasures intended to reduce this risk
to an acceptable level [6].

Risk management is used to identify and prioritize these se-
curity risks. Various implementations and instructions have
been published for easing the integration process [7, 8]. The
left part of Figure 1 illustrates a simplified version of the
process according to ISO/IEC 27005:

First, the borders and criteria for risk evaluation are defined
(Context Establishment). Subsequently, risks are collected
by identifying all assets and threats their threats (Risk Iden-
tification). In this process, an asset is not only hardware
or software, but could also be a business process or infor-
mation. The next step is to estimate or rate the identified
risks (Risk Estimation). This can be done qualitatively (e.g.,
low to high) or quantitatively (e.g., amount of cash losses).
Based on the risk level identified in the estimation, risks can
be assessed and prioritized (Risk Evaluation). The decision
about how to handle the risk can now be made (Risk Treat-
ment). A risk can be accepted (e.g., the risk level is very
low), reduced (e.g., by a specific measure), avoided (e.g.,
the cause is eliminated) or transferred (e.g., an insurance).
When all risks are treated satisfactorily, an iteration of the
process is carried out (Risk Acceptance)

2.2 Risk Assessment
Generally, it is important to rate security risks of a system
regarding their criticality in order to prioritize them. Some
risks may need in-depth investigation, while others do not
need to be considered at all because of their small probabil-
ity. As a result of this range many frameworks and metrics
have been introduced for different domains [9, 10, 11, 12,
13]. In essence they all follow a similar risk assessment pro-
cess but vary with respect to the estimation criteria to fit
the specific domain. In general, they express risk as product
of probability and the possible impact of a threat. While
probability is often hard to calculate (QUIRC [10], for ex-
ample, uses statistics of common attacks in the internet), the
impact can be calculated by assigning relative values to secu-
rity properties for every asset. Such ’standard’ properties as
confidentiality, integrity and availability are commonly used.
Depending on the domain, some approaches add additional
properties such as legal aspects or safety impacts. Addi-
tionally, some methodologies extend the quantification by
taking into account asset dependencies to refine the metrics
[14] [15]. However, all presented approaches target either
the system or the organizational level. While some methods
(e.g., [16] with ’asset containers’) take the asset environment
into account, none of them systematically targets software
vulnerabilities in a specific component.

In the domain of software development different methodolo-
gies such as Microsoft’s DREAD [4], Common Vulnerabil-
ity Scoring System (CVSS) [17] and OWASP Risk Rating
Methodology [18] have been introduced. These focus on
quantifying threats to software components that may arise
by exploiting possible vulnerabilities. Similar to other risk
assessment methods, all these methods generate a rating by
combining (i.e., add or multiply) different weighted factors.
Here, these factors may also contain properties such as the
level of difficulty in finding a vulnerability or how many users
would be affected after a successful exploit. These methods
are suitable for in-depth analysis of critical components.

This work uses the output of the system wide risk assessment
methods to identify software components that are crucial for
important assets. Software/security engineers are able to
perform threat analysis on these components and the results
are integrated in the overall risk assessment process.

2.3 Component Isolation
As a general rule, components should not be allowed to
access assets that are not needed for the component func-
tion. Therefore, different technologies have been introduced
that enforce this so called principle of least privilege [19].
Isolation-based access control methods provide each confined
application with its own set of resources [20, 21]. Similar
results can be achieved by using virtualization [22]. Rule-
based access control methods do not rely on an own copy
of resources, but confine the access directly based on a pol-
icy (e.g., SeLinux [23] or AppArmor [24]). Architectural
approaches such as Multiple Independent Levels of Security
(MILS) use similar separation techniques together with con-
trolled information flows to form architectures that target
composable assurance [25]. Our work supports such tech-
nologies by the systematic identification of trust domains
and the assets each domain needs to access and protect.
Moreover, the information flows needed between these do-
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mains are revealed.

3. ASSET-BASED COMPONENT RATING
The aim of this work is to classify single software compo-
nents or sets of software components with regards to their
privileges or permissions as input for further risk assessment
or threat modeling tools. This section provides an overview
of the proposed metric and rating methodology and how its
integrated into a risk assessment process.

3.1 Process Overview
In order to illustrate how our methodology could be inte-
grated into a systems-engineering process, we use a sim-
plified system development model that consists of system-
architecture, software architecture, implementation and sub-
sequently test and verification stages for all previous levels.

Context Establishment

Risk Identification

Risk Estimation

Risk Evaluation

Risk Treatment

Risk Acceptance

Risk Assessment Software Risk Assessment

Software
Risk Assessment

High-Level
Risk Managment

according to ISO/IEC 27005

Asset Transformation

Component Classification

Threat Modeling
and Component Risk

Assessment

Assets

Additional 
Threats

to Assets

Trust Domain 
Reduction

Figure 1: A simplified risk management process ac-
cording to ISO/IEC 27005 [5] (left), and how our
approach is used to generate additional possible
threats to assets that may originate from vulner-
abilities in software components.

Using the system model, it is possible to identify and quan-
tify all assets at this level by applying one of the method-
ologies described above. Figure 1 illustrates, how our ap-
proach fits into the standard risk management process. Af-
ter all assets and their risk ratings are identified, the assets
are mapped to the software architectural model. Here, the
components are classified and optimizations regarding trust
domains (or trust boundaries) can be performed. Based on
the classification, additional assessment methodologies such
as threat modeling can be prioritized. The output of this
sub-process comprises additional threats to the assets that
can be used for further evaluation.

3.2 Asset Mapping
The upper part of Figure 2 shows an exemplary output of
the risk estimation step: A rated list of dependent assets.
When generating the software architectural model(s), either
a subset or all of these assets are mapped to resources or
software components. An information asset, for example,
maps into a data resource (e.g., a file or a database), while
a critical business function maps into a software component
(e.g., a bank transfer). This mapping is illustrated in the

lower part of Figure 2. To enable the rating of all com-
ponents, we use a metric that basically quantifies software
components by accumulating the risk ratings of the assets
they are able to access directly or indirectly. Cohering parts
of the architecture that share the same rating are referred
to as trust domains. The edges of these domains are called
trust borders.
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Figure 2: The risk assessment process generated a
list of assets, their dependencies and their risk rat-
ing. Some of the assets have a counterpart in the
different software architectural models. Based on
this mapping, the rating of all software components
can be calculated.

3.3 Component Classification
3.3.1 System Composition

The metric that is used to quantify components is based on
their privileges. Here, a privilege is the possibility of a com-
ponent to access (i.e., read or modify) an asset. This clas-
sification enables an early assessment about the criticality
of a component regarding the system’s security properties.
Components with a higher criticality classification should be
considered for a more in-depth analysis. To introduce auto-
mated calculations and analysis, a software architecture is
modeled as illustrated in Figure 3.

Components. A system is composed of a set of software
components. These components may be different processes,
libraries or components of one process. Each component
accesses a set of assets (by owning specific privileges) and
possesses explicit information flow connections to other com-
ponents. Based on the accessed assets, there may be other,
implicit, information flows (e.g., two components are access-
ing the same file). Each asset represents a resource that has
to be protected in some way (e.g., a privacy-sensitive infor-
mation). A component thus has to have a certain privilege
to access the asset.

Privileges. A privilege is the possibility of a component to
access a resource and is composed of a resource type and
an access mode. Currently, we distinguish between Data,
Network and Service privileges. However, depending on the
system, there may be many other privilege types for access-
ing shared resources or hardware like sensors or actuators.
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Figure 3: The basic view on software systems: Dif-
ferent components are interacting with each other
and have access to different assets. To enable these
accesses, privileges are needed. Moreover, there ex-
ist special components that are in charge of protect-
ing security properties of critical assets.

A set of access modes exists for each type. For example Data
privileges may enable access to different type of data (like
privacy-sensitive or system) in different modes (read, write).

Assets. Each asset represents a critical resource that has
to be protected. The accessCriticality reflects the relative
’value’ that has been identified at a higher level. Currently,
we are using a scalar value that represents the impact of a
violation of security properties. However, for a more fine-
grained view on the system, it would be easily possible to
use a vector with different properties here. Different types
of assets requires different types of protection mechanisms.
Therefore, there exists an accessPrivilege, accessing compo-
nents have to own. Moreover, there may exist privilege-
combinations that raise the criticality of the component that
accesses an asset. A component that accesses sensitive infor-
mation requires more care if it also has access to the inter-
net. In order to represent this increased level of criticality,
an asset contains a set of riskFactors that map additional
privileges by weightings.

Filter Components. A filter component is a special type
of component that does not propagate specific or any privi-
leges. Formally, a filter component is a transformation of a
set of assets to another set of assets. An authenticator, for
example, transforms the asset ’all data’ to ’data of a specific
user’. Cipher components transform the assets ’confidential
data’ and ’encryption key’ to ’encrypted data’.

3.3.2 Privilege Rating
In order to generate an early estimation of the possible risks
of vulnerabilities in one component, we calculate a privilege
rating (PR) for each component. In this work, we use the
commonly used risk model that expresses risk as product of
probability and impact. A vulnerability of a component that
accesses a more critical asset may generally have a higher
impact on the system’s overall security properties. There-
fore, the privilege rating is used as a factor for the impact
and is thus directly proportional to the risk. Probabilities of
successful attacks have to be examined in a later step with
methodologies such as threat modeling.

Component Rating. Each privilege P enables a compo-
nent C access to an asset A. Since similar privileges may
enable access to different assets, we do not directly rate the
privileges but use the accessCriticality (Crit(A)) property
of the accessed asset. This property is a numeric value,
where higher value means a more critical or more ’impor-
tant’ asset. Moreover, each asset contains weighted riskFac-
tors. For each of the component’s privileges that is con-
tained in this list, the risk factor is increased by the weight
(RF (A,P )). Therefore, the overall privilege rating of a com-
ponent PR(C) is generated by Crit(A) of all accessed assets
and the sum of all active risk factors.

PR(C) =
∑

A=Assets(C)

(
Crit(A) +

∑
P=Priv(C)

RF (A,P )
)

Component Compositions. Whenever two components A
and B are connected via an information flow, the privileges
of the components are merged. This is a rough generaliza-
tion only, however, due to of the following problems:

1. A directed information flow may not allow the sharing
of privileges in both directions.

2. Some components may not allow access to their privi-
leges at all or only in a restricted manner.

Problem (1) is not faced in this work, because it requires a
more detailed model of information flows and privilege types
and is part of ongoing work. Problem (2) is solved with filter
components.

3.4 Trust Domain Reduction
Components that share their privileges are part of the same
trust domain. In order to reduce the attack surface, the
size of trust domains with a high risk should be minimized.
Therefore, the software and/or security architect is able to
introduce filter components, which are able to transform as-
sets regarding their criticality. An authenticator in the ’DB
System’ in Figure 2, for example, may reduce the asset ’all
private data’ to ’data of a specific user’. A filter compo-
nent thus separates these domains and introduces a trust
border. By re-applying the metric, the effect is reflected in-
stantaneously in the architectural model and the software
architect is able to iterate this step until the trust domains
are acceptable in terms of size and risk.

3.5 Threat Modeling
Now, a list of software components with high criticality, as
well as components that are in charge of protecting high
risk assets (i.e., filter components on trust borders) can be
generated. Based on this list, it is possible to prioritize
components that should be taken into account for in-deep
risk analysis and threat modeling. This analysis identifies
new threats (or threat-tree-branches) for assets that can be
integrated into the high-level risk management process.

4. USE CASE AND EVALUATION
In order to examine the feasibility of the privilege rating,
we are using the methodology to analyze an actual soft-
ware architecture. We also implemented the tools needed
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to describe and visualize a software architecture in the way
described in Section 3, also the algorithms that calculate
the privilege rating and trust borders. Based on a high level
risk assessment on the system assets, we apply the privilege
rating metric to identify critical domains in the architec-
ture that need further investigation. Moreover, based on the
classification, we identify component interconnections that
should be filtered to provide privilege separation.

4.1 Evaluated System
A manufacturing system is used by a company that de-
veloped and sells an embedded control system (vendor) to
manage the production process. This process is distributed
among different manufacturing companies (manufacturers).
Each manufacturer receives a test equipment unit, an em-
bedded device that is used to lead the manufacturing pro-
cess. This process includes product assembling and integra-
tion tests. All manufacturing entities are connected to a
central database (server), where test and production results
are stored. The vendor is able to place orders and review
the production data, for example to generate statistics of
calibration data. Since critical information like encryption
keys are generated and distributed during the process, secu-
rity is a key concern here. In this section, the central server
is evaluated.

In order to evaluate the system, we implemented a tool that
uses textual representation of the system to generate its
model and visualization. Figure 4 shows the overall sys-
tem: A web-application provides a service that enables the
vendor access to all test data. Each test equipment accesses
the database by using the test interface. However, this inter-
face only provides the sub-set of the information for Digital
Rights Management (DRM) reasons. For the sake of sim-
plicity, we designate all manufacturers, as well as the vendor
’users’ here. Each user is only allowed to access its own data.
Therefore, credential-based authentication is used. More-
over, the vendor is backing up all data to a physically sepa-
rated backup server via a private network connection.

4.2 Asset Mapping
Based on high-level risk assessment, three data assets (Cre-
dentials, Manufacturing data and Common data), as well as
two network assets (WAN and LAN) have been identified
and evaluated (Table 2). In order to access these assets, two
privilege types must be defined (shown in Table 1) and the
privileges must be assigned to the direct connected compo-
nents. The resulting privilege rating of all components is
shown in Table 3. The assets and their criticality have to
be added to the model manually to enable further compu-
tations.

Table 1: Privilege types and their corresponding ac-
cess modes

Name Access Mode
Network WAN, LAN

Data
Credentials, Manufacturing, Specific,

Test Data, Common

4.3 Component Classification
The architecture shown in Figure 4 is the first draft that
is used as input for the risk assessment. By analyzing the

Credentials
100

Man. Data
20

Common
0

LAN
5

WAN
10

Webserver

Backup 
Server

Backup 
Service

Application

DB Access

Test Data
Interface [Asset Name]

criticality

Component
Name

Server

Figure 4: Use-Case: The central database of a dis-
tributed manufacturing and test system. One user
is able to place orders and to access test data via a
web application. Test entities from different manu-
facturing companies are accessing the server via the
more restrictive test interface. To improve readabil-
ity, the privilege rating (criticality) of the different
components is encoded in colors (green: <=5; yel-
low: <=50; red: >50). The actual values are shown
in Table 2 and 3.

Table 2: Use-Case assets
Name Crit(A) Risk Factors

Credentials 100 Network(WAN), 10
Manufacturing 10 Network(WAN), 5

Common 0
LAN 10 Network(WAN), 2
WAN 10

User-Specific Data 5 Network(WAN), 2
Test Data 5 Network(WAN), 2

information flows, our tool calculates the privilege ratings
of all components. Currently, there is only one privilege do-
main (there is an implicit information flow between backup
service and database access). Therefore, all privileges are
shared among all components (in the figure, the rating is en-
coded as color; numeric values are shown in Table 3). This
does not mean that every component is able to access all as-
sets per-se, but vulnerabilities in any component may have
a critical impact. In order to obtain useful information, the
architecture must thus be refined with filter components to
separate the privilege domains.

4.4 Trust Domain Reduction
In order to achieve the separation into smaller privilege do-
mains, two virtual assets are introduced: User-Specific Data
and Test Data. Moreover, three filters must be added to the
model manually:

• User-Specific Filter: This filter component imple-
ments methods that prevents access to all user data
that is not owned by the currently authenticated
user. It therefore reduces a Data(User) privilege to
a Data(User-Specific) privilege.

• Test-Data Filter: This filter blinds all data that is not
intended to be provided via the test interface. Here the
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reduction is from Data(User-Specific) to Data(Test-
Data).

• Authenticator: This filter implements authentication.
The filter prevents other components from reading cre-
dential information. It only returns whether the au-
thentication succeeded. For simplification, here this
information is considered harmless and no privileges
are needed to access it.

• Network Filter: This filter prevents the internal com-
ponents (Domain 1) from accessing the WAN-Port.
Moreover, it protects the LAN domain from access of
external components. This filter could be implemented
with a firewall.

4.5 Evaluation
Figure 5 shows the system after adding these filters. The
recalculation is done automatically and the resulting system
contains three trust domains with different privileges. The
numerical values of the privilege ratings are shown in Table
3.

• Domain 1: This domain has full access to the under-
lying data. Therefore, special care should be taken for
these components in the threat analysis process. The
backup-part should not be accessible for anyone and
the authenticator and the filter for user-specific data
should be designed and reviewed carefully.

• Domain 2: This part handles user-specific data and
is accessible through the internet. Although it is not
as critical as the components of Domain 1, in-depth
thread modeling should be considered.

• Domain 3: The test interface has relatively few privi-
leges. It is only able to handle a subset of the currently
authenticated user data. Therefore, this component
has the weakest requirements regarding security.

In general, the overall criticality of the components is re-
duced drastically. Of course, this reduction mainly origi-
nates from our asset ratings and relatively high weights for
risk factors. However, we can see that the number of crit-
ical components is reduced and we are able to focus effort
for actual threat modeling and countermeasures in a prior-
itized manner. Based on the results of the threat modeling
process, new threats to assets that originate in vulnerabili-
ties of specific software modules are revealed in a systematic
manner. This information supports the overall risk manage-
ment process (e.g., by completing a threat tree for an asset)
and eases decision regarding resource allocation for threat
treatment strategies.

5. CONCLUSION AND FUTURE WORK
In this work, we introduced a risk assessment method for
software components based on assets they are able to access.
These assets are identified on a system or organizational
level and mapped into the software domain. The classifica-
tion is based on the architectural component model and its
dataflow relations. This enables the possibility to connect
the risks of these high-level assets to software components.
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Interface [Asset Name]
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Name

Authenticator User-Specific
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Test-Data

Domain 3

Domain 2
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Network

Figure 5: Trust domains after inclusion of filter com-
ponents.

Table 3: Component criticality before and after the
introduction of filter components

Component Name w/o Filter with Filter
Domain Criticality Domain Crit.

Webserver 0 1120 2 10
Application 0 1120 2 10
DB Access 0 1120 2 10

Test Interface 0 1120 3 8
Backup Service 0 1120 1 125
Backup Server 0 1120 1 125
Authenticator - - 1 125
User-Specific - - 1 125
Test-Filter - - 2 10

Network-Filter - - 2 10

Therefore, critical components that are in charge of protect-
ing the assets can be easily identified. Moreover, architec-
tural regions with similar risk (trust domains) are identified
and the impact of implementation of filter components is
instantaneously reflected in the model. We showed how the
approach is adapted in a real-world scenario and helped us
to identify critical sections of an architecture, to reduce the
attack surface and to implement security measures at all the
right places.

Some tasks remain to be done future work. One major goal
is the automated insertion of filters to optimize trust do-
mains based on their size and risk rating. To achieve this,
additional information such as the users of the system and
the assets they need to access will need to be reflected in
the model. Based on a comprehensive data flow model and
parameters that describe desirable results (e.g., small trust
domains), different optimization strategies could be used to
identify optimal filter placement. This automation is also
desirable because it would be a step towards an automated
generation of information flow- and isolation-policies based
on the model of a software architecture and the system-level
assessment of assets.

The prototype implementation of the model description lan-
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guage is sound enough to evaluate the approach and inves-
tigate different architectures. However, in order to simplify
the integration into existing processes, we are considering
implementing the risk assessment and metric approach into
existing model-driven security UML-extensions for software
architecture. Other possible extensions are concerning the
metric. Basically, not all components in one trust domain
should be rated with the same risk. Components on edges
between different trust domains (i.e., filters) should be given
more attention, because these are the components potential
adversaries are able to interface with. Moreover, the risk
rating is currently only represented by one scalar impact
factor. In order to enable a simpler adoption for other do-
mains, we are planning to work out this gap and allow the
usage of a dynamic set of security properties.
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Abstract— Implementing integration tests into to the manu-
facturing process of embedded devices is a crucial development
for dealing with component deviations and production flaws.
Especially control devices that interact with the physical world
demand on a functional verification since malfunctions have a
potentially enormous impact. In this domain, devices are often
configured based on the customer needs during the production
process. Different sub-components of the same product family
are thus assembled into one single device. The high number of
possible product configurations requires complex manufacturing
processes. In this work, we use Model-Based Test (MBT) concepts
to implement a manufacturing and test system that generates
executable assembly- and test- procedures from an abstract
test procedure model and a model of the actual manufactured
device. We demonstrate how our approach helps in handling the
complexity of the manufacturing process with an actual imple-
mentation in a productive manufacturing system for embedded
control devices.

I. INTRODUCTION

Functional tests and integration tests on component or
system level are very important steps during the manufactur-
ing process of embedded devices. Deviations of component
properties or production flaws may lead to faults in the manu-
factured product. Modern devices rely on complex interaction
between hardware and software, as well as on communication
with the physical world[1]. Therefore, different components or
sub-systems have to be integrated. Deviations that are accept-
able for a single component may interfere constructively and
lead to a broken system. To tackle these potential problems,
integration tests have to be implemented throughout the whole
production process.

Devices in the domain of distributed control systems are
composed of a variety of sub-components. Since these devices
are used to control the physical world, a verification of a
safe function is even more important. For example, a control
device may comprise a main computing board, as well as some
digital I/O extensions. All of these sub-components share a
similar basic structure (e.g., CPU, software images), but differ
in specific details and extensions. They are thus part of the
same product family. Moreover, the compound of these sub-
modules (i.e., the control device) is configured based on the
customer needs.

Both, product families and customization leads to a high
number of possible configurations, each of these requiring a
different integration test. This leads to complex manufactur-
ing processes, especially when different component revisions
come into play. Similar problems are tackled in the domain of

software product lines [2]. However, these approaches cannot
be applied directly to production systems, since they do not
take into account hardware-harnesses such as additional test
beds or automated test environments.

In this work, we show how Model-Based Testing (MBT)
techniques can be used throughout the production process
to generate assembly- and test-steps for different product
configurations in an automated manner. Essentially, we use
a generic production- or test-procedure model and combine
these with test case templates, together with a model of the
actual device or component. Based on these artifacts, we create
an executable production- and test-procedure. Additionally,
we built a tool that implements our method and demonstrate
how it is used in a real productive manufacturing process
for embedded control devices. With this implementation, we
show how our approach is able to reduce the complexity
of the configuration of the manufacturing process for both,
product families and customization. Moreover, we show how
our models apply to UML Testing Profile (UTP) 1.2 artifacts,
in order to enable the integration of UTP tools in our future
work.

The paper is organized as follows. Section II discusses
related work and Section III describes the proposed system.
Section IV and V discuss the feasibility of the approach based
on an actual productive system implementation. In Section VI,
the benefits and the drawbacks of the system, as well as future
directions are summed up.

II. BACKGROUND AND RELATED WORK

A. Model-Based Testing and UTP

Basically, MBT methodologies aim to generate tests at
different levels (e.g., unit or system tests) from a model of
the System Under Test (SUT) instead of implementing them
manually. In the literature, the process of MBT is divided
into five steps [3]: Generate a model (1) of the SUT and/or
its environment; Generate abstract tests (2) from the model
and concretize them to make them executable (3); Execute
the tests on the SUT (4) and analyze (5) the results. Various
methodologies and tools have been proposed that implement
a subset or all of these steps in order tackle common test
challenges in specific domains (e.g., [4], [5], [6]).

With the introduction of the UTP [7], MBT concepts are
added to UML. In order to simplify different aspects of
black-box testing, UTP defines some common artifacts in four
concept groups: Test architecture, test behavior, test data and

©2016 IEEE. Reprinted, with permission.
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test time. The entire set of stereotypes is documented in [7].
Here we will focus on artifacts, that will be used in our work.

A «SUT» represents the actual tested system. It is modeled
as a black-box with a public interface. «TestComponents» are
parts of the test environment and are able to communicate with
other test components or with the SUT. A «TestCase» refers
to a behavioral description of a specific test. They are grouped
within a «TestContext», that may also include a TestControl,
which schedules the execution order of the test cases. As a
composite structure, a «TestContext» is also referred to as a
TestConfiguration. This artifact defines the test components
and their interconnections for the current test environment.

In this work, we generate the «TestContext» with its ex-
ecutable «TestCases» by specifying a generic «TestControl»,
the «SUT» and artifacts that implement test case behavior, as
also interface components to instrument the SUT.

B. Manufacturing Tests and Variability Management

Manufacturing tests gained a big focus in integrated circuits
[8]. In this context, however, they usually target single prod-
ucts in mass-production. In [9], aspect-oriented programming
is used to improve maintenance and re-use in the context
of testing product-families. However, the authors state that
especially in the embedded domain, tool support is crucial.
While this is not necessarily the case for aspect-orientation,
model-based technologies are widely used here. Concerning
testing, variants in product families relate to variants in soft-
ware product lines. Here, MBT technologies are widely used
[2]. In this context, different technologies such as feature
models [10], decision models [11] or orthogonal variability
management [12] are used to model variability. In our work,
we use a feature model as a specific view on the SUT model
to identify components that are required to execute a test case.

III. MANUFACTURING AND TEST ENVIRONMENT

This section describes our approach to use model-based
methodologies for system test and production. Section IV
describes how the approach is implemented in an actual man-
ufacturing system to present the application. A generic man-
ufacturing process is refined to enable both, product families
and customization. The overall manufacturing process consists
of manual and automated assembly steps (e.g., installation
of a software module or composition of different hardware
parts), as well as functional test steps (e.g., functional test
of the composed system). For simplicity, we denote both
types of production steps as ’test steps’ in this paper. This
process is implemented in our tool, called Manufacturing and
Test Environment (MaTE). The user provides a model that is
able to describe all components of the SUT. For every single
component, a set of test case templates can be defined. Based
on a structural model of the SUT, the test case templates and
a generic model of the test procedure, MaTE then generates
and performs the actual executable test.

A. Production Process

As shown in Fig.1, MaTE builds upon a generic production
process [13]: An operation is basically performed on a set of

(sub-)components. The output of one production step is a new
component. In our process, the output is a ’new’ component C ′

even if the input only consists of a single component C. The
operation may have changed the component’s configuration
or, at least, retrieved some information from it (e.g., the
component C has passed all functional tests). The resulting
component C ′ may be a completely manufactured device, as
also an input for a following production step.

Input Component
C

1

Input Component
C

N

Output Component
C'

Operation
System Under

Test Model

Test Procedure
Model

Component
Assembly

Component
Test

Fig. 1. In a basic manufacturing process, an operation procedure (e.g.,
assembly or test) is performed on one or multiple components. The result
is a (new) component that may be the input for the next production step.

Since MaTE focuses on the production-test, the compound
of the input components C1..Cn are termed SUT at the time
the operations are executed. An input component may be
• a basic module, such as a single Printed Curcuit Board

(PCB) or a software module that must be installed on a
device,

• a composition of components,
• a complete system or device.

Different manufacturing steps must be carried out for all
types of input components. An exemplary step that applies
to (almost) all devices, is the ’mount on testbed’-step. Prior
to any further test- or production-step, the device must be
connected with MaTE. Basically, this is a manual step (i.e.,
the operator has to act), which must be acknowledged. This
acknowledgement can be interpreted as the ’result’ of the
production step and MaTE is only allowed to continue the
procedure if the result is positive. The production steps can be
thus interpreted as test steps with operator interaction. There-
fore, MaTE does not need to distinguish between production
and test steps in MaTE.

Different types of tests (component test, integration tests
and system-level tests) have to be executed based on the type
of the input components. In order to handle variability, MaTE
uses a test procedure model and a structural model of the SUT
to configure the procedure to fit the instances of the processed
components.

B. Test Environment Architecture

Fig.2 illustrates the architectural structure of MaTE. The
overall test environment consists of the system under test
(upper part) and the test framework (lower part). Basically, we
have three stakeholders in this setup. The framework (MaTE)
generates and executes the tests supervised by the operator.
This is the person who actually performs the production steps.
In order to use the framework for a specific set of produced
systems, the user (i.e., the Original Equipment Manufacturer
(OEM)) must provide a minimum configuration for MaTE.
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This configuration consists of the test procedure and SUT
models, as well as libraries that can be loaded to execute
specific tests and interface with the actual devices.

As discussed below, the SUT is described as a hierarchical
component model. Each Component Under Test holds a set
of properties and refers to a «SUT» in the UTP context.
Moreover, a Component Under Test may provide an interface
(i.e., a serial connection) and contain other components. Since
the Components Under Test always need some kind of instru-
mentation, the top-level component is always a Testbed that
contains the actual tested device, as well as optional pure Inter-
face components or Test Data Generators (e.g., a configurable
signal generator). These components are used to communicate
with devices that do not provide a communication interface by
themselves (e.g., to flash a bootloader onto a new device).

The test framework contains a set of testing- and utility
components. A Test Result Database is used to store test
results, while the Test Data Database and the Test procedure
Database store information that is used to generate the actual
test for the target platform. Each test case in the behavioral
test model (i.e., the test procedure) may refer to a specific
Test Case Implementation. The Test Generator and the Test
Case Executor are in charge to configure and execute the
Test Case Implementations based on the current test procedure
and SUT. In order to communicate with the SUT, a Test
Case Implementation uses Interface Components. Currently,
these components may form compositions to provide different
types of communication channels: A command line interface
of the SUT can be opened via a serial connection or a
Secure Shell (SSH) on top of a network connection. On the
other hand, a network connection may provide a basic TCP
socket, as well as an XML-RPC interface on application-level.
In a UTP-perspective, Interface Components and Test Case
Implementations are «Test Components».
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Component Under Test N

Component Under Test 1

Test Data
Database
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GUI

Test Procedure
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Test Case
Implementation 1

Test Case
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Fig. 2. The building blocks for the test environment used in MaTE.

C. System Under Test Model

As mentioned above, the SUT is represented by a hierar-
chical component model. Similar to other approaches [13], we
identified a tree structure as a suitable system representation
during the manufacturing process. The overall device consists
of different sub-systems, which comprise different types of
modules down to atomic components. These components rep-
resent completely different types of objects. A basic hardware
part like a flash memory must be tested with the same
infrastructure as a software module stored on this hardware,
or a complete device. Therefore, the SUT-model must be able
to serve this diversity. However, in our approach, many details
of the components and their thorough interconnections are
negligible: The framework itself only needs to know what type
of component it is communicating with and what features and
interfaces this components offers. Based on the component
type and type specific features, the proper test case can be
loaded and executed. Specific information about the tested
component is hidden in the implementation of this test-case.
Moreover, information about the communication internals are
encapsulated by the feature-specific interface component. As
a consequence, the SUT model does not need to provide in-
depth information about the components and a list of provided
features and properties is sufficient.

In our use case, we either create this model manually
for each product or generate it with the help of reflection
mechanisms of the devices. However, it would also be possible
to automatically generate it from system models used in the
development phase.

Fig. 3. The artifacts used to model the system under test. Basically, the SUT
is described as hierarchical composition of different components.

Fig.3 shows the basic blocks used to build the SUT model.
Each ComponentUnderTest has a ComponentType and a name.
Based on the type, a component may have different properties
(e.g., start address and size of a software image). These
properties are typed name-value pairs that may have additional
constraints (e.g., a property is mandatory or should be within
a fixed range). Each ComponentType thus represents spe-
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cialization of ComponentUnderTest. Components can define
parent-child relationship with other components. In order to
represent globally usable functions or interfaces, a component
can provide a list of Features. Again, a Feature comprises a
FeatureType, a name and type-specific properties. Features are
used by test case implementations or interface components to
communicate with the SUT or to instrument specific events on
the device. Examples for features are a SSH-server, a digital
I/O interface of a control device or a signal generator of the
test-bed.

In order to use MaTE, the first step is to define the types
of components and features, as well as the corresponding
properties for the current product-family. This is done by the
OEM that wishes to adapt the framework for the specific
products. Basically, ComponentTypes and FeatureTypes, as
well as their properties and associations have to be defined.
Currently, MaTE supports a JSON-representation for this
configuration. In Section IV, we will show this configu-
ration for an exemplary and simplified system. With this
configuration, the framework user (i.e., the OEM) is able to
instantiate the SUT model. Again, this is done with a JSON-
representation. Moreover, in the event that the SUT has some
kind of reflection mechanism. MaTE can create the SUT
model instance at runtime. This is useful when a lot of different
configurations are possible. In this case the operator assembles
the components and the SUT provides information about its
configuration (i.e., which components used to are form the
SUT) to MaTE. With this feature, MaTE is able to test systems
without a priori knowledge of their configuration.

D. Test Procedure Model

The artifacts used for the test procedure model are shown
in Fig.4. A TestProcedureTemplate represents the test control
in UTP context. It contains a sequence of TestSteps that
should be executed in order to complete the test procedure.
The TestProcedureTemplate and TestSteps are very high-level
concepts and do not have any connection to the tested device.
An exemplary test procedure is the sequence of Test Steps,
which are referred to as ’Assemble Device’, ’Initialize Device’
and ’Integration Test of all Modules’. The procedure can be
thus used for many types of devices, while the actual device-
specific information is added by TestCases.

A TestStep consists of a name, a TestStepType and con-
straints. While the TestStepType is used to find proper Test-
Cases, constraints are used to verify the generation of the test
procedure. A trivial constraint, for example, is that there has
to be a TestCase that executes the TestStep. The overall test
should thus fail when the system is not able to find components
that are suitable for the TestStep.

With this architecture, it is also possible to generate multiple
TestCases for one TestStep. One TestStep may be executed for
different components or a set of TestCases may be required to
perform one TestStep for a specific component.

A TestCase represents a unit test case for one or more
specific components. In order to enable the connection of
TestSteps and components, a TestCase contains a list of
supported component types, as well as the TestStepType, the

test case is implementing. To execute a test case, normally
a reference to a TestCaseImplementation is needed. Different
test cases may use the same implementation, but with different
configurations. Within a TestCase, it is possible to set some
of the properties of the implementation. However, another
possibility is to set a template value that will be replaced by
a property of the component under test at test-generation- or
execution-time. TestCaseImplementations, as well as other test
components, contain a list of required features. For example,
a serial connection to a specific software component is needed
to execute the test. Again, the system has to check and satisfy
these features before executing the test.

Similar to the SUT model, the OEM has to provide config-
urations and implementations for the test procedure model. He
has to define the test step types and TestCaseImplementations.
The TestCaseImplementations have to implement a plugin-
interface, that is resolved by MaTE at runtime. Based on this
configuration, the OEM is able to define actual TestSteps and
TestCases for specific components. Again, this information is
provided in a JSON-representation.

Fig. 4. The artifacts used to model the test procedure. An abstract test
procedure with generic test steps is refined with component-specific test cases.

E. Test Generation

Based on the SUT model and the test procedure model,
MaTE generates the executable test. To achieve this, the
following algorithm has to be executed:
• Create empty test
• Enumerate features
• For all test steps:

– Find test cases for components
– Check test step constraints

• For all test cases:
– Check feature requirements
– Satisfy feature requirements (configure feature con-

nections)
– Configure property-templates (from SUT and feature

model)
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– Add to test
After the initialization of an empty executable test structure,

the SUT model is loaded and all components are iterated
and their features are extracted. This preparation step is
done to enable a fast look-up later on. The features are
arranged hierarchically by their type. The feature types SSH-
Server and Telnet-Server, for example, share the same base-
type Command-Line Interface. Therefore, both features would
satisfy a test case implementation that requires the base
feature. In addition to these OR relationships, MaTE supports
’requires’ relations between features. Feature A may require
the presence of Feature B in order to be usable.

The actual test generation starts with the iteration of all test
steps in the test procedure model. In a first stage, all test cases
that execute the defined test steps for any of the components
in the SUT model are collected. Subsequently, all test step
constraints are checked. Currently, two combinable types of
constraints are supported:
• Min/Max N test cases of a specific test step must exist

for each component (N ∈ N). The trivial, hard-coded
form of this requirement is that at least one TestCase
that executes a given TestStep must exist.

• Test cases of a specific test step should exist for min/max
M components (0 ≤ M ≤ #componentsintheSUT ).
This constraint is used for tests, where the existence of
M components of a specific type has to be ensured.

The generator is now able to iterate the test cases and
instantiate all test case implementations. First, the required fea-
tures are checked. The feature tree is traversed until a feature
that satisfies the requirement is found. Here, some additional
configuration steps take place: Based on the component linked
to the feature (i.e., the component that implements the feature
in the SUT model), some test data may need to be adjusted
or additional test components (e.g., interface components that
connect to a remote service) have to be loaded and configured.
When all feature-requirements are satisfied, the configuration
of property-templates is performed. As mentioned above, some
properties may be set to template values in the test case
specification. Here, this templates are resolved to actual values
of the tested component. After the configuration of all test
cases, the overall test is ready for execution.

F. Test Execution

The test executor sequentially executes all test cases ac-
cording to the test procedure. At this stage, the greater part
of the test cases are already completely configured. However,
some test cases may require additional data depending on the
current environment or specific features of the SUT. Therefore,
the test executor is able to refine the test oracle of the given
test cases. Technically, this is done by an additional iteration
of the test-generator. Based on the result (test verdict) of each
test case, the executor decides whether the overall test can be
continued or should be aborted.

IV. IMPLEMENTATION AND USE CASES

We implemented the system described in Section III for
a distributed manufacturing system for Programmable Logic

Controller (PLC) devices in order to examine the feasibility of
our approach. These devices consist of different submodules
that are in charge of providing I/O connections or specific
computations. In order to simplify the use case description,
we focus on the following sub-systems here:
• A central board (Controller) that is in charge for com-

munication and control calculations,
• a digital I/O board (DIO) that is used to read and set

digital channels,
• a analogous I/O board (AIO) that is able to measure

electric currents and provide voltage in a continuous
range,

• as also a base plate that contains a number of sockets to
hold the previously introduced modules.

Every module has some similar components. For example,
each module has some kind of CPU that runs a software image.
However, the actual CPU and images, as also peripherals
differ from device to device. Moreover, for each device, there
exist different revisions with minor changes. Additionally, the
configuration of the complete device (i.e., the presence and
number of specific boards and their sockets) varies from device
to device.

Therefore, this use case requires support for both, product
families and customized devices. For a simplified use case,
we show how MaTE handles these challenges and how model
based testing techniques simplify the definition and adaption
of production processes in the Cyber Physical Systems (CPS)
domain.

A. Product Family

The first use case shows how MaTE is used to assemble
and test product families using the example of the controller
board. As mentioned before, all modules contain a basic set
of components like the bootloader, the system image and
peripheral hardware such as flash modules.

TABLE I
THE MODEL CONFIGURATION FOR THE GIVEN TEST SETUP. IN ORDER TO

INSTANTIATE THE SUT MODEL, FIVE ComponentUnderTest-TYPES ARE
NEEDED. FOR THE TEST PROCEDURE GENERATION, THE TestCases AND

TestSteps NEED TO BE DEFINED.

Element Type Element Name Properties
ComponentUnderTest TestBed
ComponentUnderTest Controller
ComponentUnderTest Bootloader imgName, startAddr
ComponentUnderTest SystemImage imgName, startAddr
ComponentUnderTest SpiFlash addr, size

TestCase MountBoard text
TestCase FlashImage imgName
TestCase FlashTest address
TestStep MountDevice
TestStep Install
TestStep MemTest

1) User-Specific Model Configuration: In order to enable
modeling of these components and devices, all component
types, features and corresponding properties must be provided
by the OEM. Moreover, the TestSteps and TestCases, as
well as the TestCaseImplementations have to be defined and
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implemented. Table I provides an overview of the element
types which are required to define the tests for the current
use-case.

2) System Under Test and Test Procedure Model: Based on
this configuration, the user is able to instantiate the model for
the test cases and the SUT. An example for this configuration
is the definition of the component type ’Bootloader’, which
is used in the SUT model in Fig.5. The type contains two
properties: The startAddress of the bootloader on the device,
as well as the file path (imgName) of the image file. Moreover,
components of this type provide a command line interface that
enables the installation of system images. This is represented
by a feature blTelnetServer which is a sub-type of the feature-
type InstallInterface. In our current implementation, all of this
configuration work, as also the instantiation of the models is
handled via a JSON-description. However, in our future work
we want to build the transformations needed to enable the
use of common UML or UTP tools for these tasks. Fig.5
shows this instance for a reduced system setup process. The
SUT model comprises the test bed with a J-TAG-Interface,
as well as the controller board. Moreover, the user defined
some test cases and provided their implementation. For system
integration, we use a simple test procedure, illustrated in the
upper part of Fig.5, that asks the operator to mount the system,
installs the software images and executes tests for external
memory modules.

3) Test Generation: Technically, the user provided a JSON
representation of the configuration, the SUT model and the test
procedure model. Based on this information, MaTE generates
the actual executable test shown in Table II. For each TestStep
in the test procedure model, the TestCases are loaded and
configured according to the SUT model. This results in five
executable test steps. Note that the Install and Memtest steps
in the test procedure model result in two tests steps in the
resulting executed test since each of them can be applied to
two ComponentUnderTests. In order to actually execute the
test steps, MaTE has to ensure that the interfaces required
for communication exist. This is done with the resolution of
the feature requirements. To apply the same test procedure to
another SUT that consists of the same type of components one
has to update the SUT model, but there is no need to change
anything else.

B. Customization

The second important use case in our system is customiza-
tion. A completely manufactured device consists of a base
plate, one controller board and an arbitrary number of digital
or analogous I/O boards. Based on the customer needs, the
devices are configured on demand.

1) User-Specific Model Configuration: In this use case, we
use a similar SUT configuration since all boards consist of a
controller, a bootloader and a firmware-image. However, they
all have different firmware images and additional hardware
components.

2) System Under Test and Test Procedure Model: Since
the detailed configuration is not known before the actual test
execution, the SUT model only contains the main controller

component that is able to run the reflection service. The test
procedure for this use case, consists of three test steps:
• Assembly: Similar to the first use case, this test step asks

the operator to assemble the components. At this time,
the SUT model consists only of the controller board (and
the test bed).

• Read Configuration: This test step triggers a special
test case that reads the component configuration (i.e.,
the connected components such as DIO or AIO boards)
of the connected device. The SUT model is updated
with the received information. All additional peripheral
components are added on the fly.

• Integration Test: The test case that is in charge for inte-
gration testing is loaded for each component connected
on the base plate. Since the SUT model changed in the
last step, the calculation of the executable test is re-
triggered and the integration test cases for all supported
components are added.

3) Test Generation: Similar to the first use-case, the ini-
tially generated tests consists of an assembly step and the
’Read Configuration’ step. For the ’Integration Test’ step,
no TestCase is loaded, because at this moment no supported
component exists in the SUT model. During the execution of
the ’Read Configuration’ step, however, the model is updated
and all existing components are added dynamically. Based on
this updated SUT model, the test-generation is re-triggered
and the integration tests for all components are loaded and
executed. With a test-procedure that consists of three steps,
MaTE is thus able to generate integration tests for all possible
product configurations.

V. DISCUSSION AND EVALUATION

In our real production system, MaTE handles 28 different
components (including the controller board and I/O boards
mentioned in the use case) and a variety of customized control
devices based on these components (the base plate consists
of 21 sockets). For each component, there exist up to four
different tests (setup, test, calibration and integration).

A. Framework Overview

In the configuration of our industrial partner, the framework
itself (including storage, GUI, test generator and test executor)
is relatively small (23% of the overall codes base, which is
about 19000 Line of Code (LOC)). 60% of the software are
test components for different interfaces and automated test
devices that are used to calibrate the different components,
as also for test case implementations. The former 17% are
used for SUT, test procedure and test case models which are
currently stored in JSON-format. Although the storage format
for the models is very inefficient in terms of LOC, we see that
the majority (60%) of the produced software consists of test
components and test case implementations.

B. Dynamic Test Generation

In order to evaluate the feasibility of the dynamic test
generation approach, we analyzed the system after a first
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Fig. 5. An exemplar test environment for the presented use case. MaTE uses the SUT model to find proper test cases that implement the test procedure for
the given device.

TABLE II
THE TEST STEPS OF THE RESULTING EXECUTABLE TEST FOR THE GIVEN SYSTEM MODEL.

Test Step Test Case Test Case Implementation Feature Resolution (Components) Description
MountDevice MountBoard UserInteraction Asks the operator to mount the system

Install FlashImage FlashImage InstallInterface=jtag Install bootloader via JTag
Install FlashImage FlashImage InstallInterface=bl Install system image via bootloader

MemTest FlashTest SpiFlashTest sshInterface=sysImg Run test for SPI-flash module 1
MemTest FlashTest SpiFlashTest sshInterface=sysImg Run test for SPI-flash module 2

batch of devices has been produced. We provided the plain
framework to our industrial partner and they provided the
model configurations, instances and test case implementations
needed for their manufacturing process. At the moment of the
analysis several thousand entities of 19 different product types
had been produced. We do not consider dynamic SUT models
here, but only devices with a fixed configuration (e.g., the
components that compromise a complete control device and
fixed-configuration control devices). For each device type, one
up to three different test procedures are performed.

Table III shows the implementation effort required by the
OEM to configure MaTE for its needs: One SUT model is
required for each device class. 11 out of 18 TestProcedures
have been re-used at least once. Only 7 TestProcedures are
thus completely device-specific.

However, the separation of TestSteps, TestCases and TestCa-
seImplementations needs to be re-evaluated. While there are

indeed cases where this segregation is useful (e.g., calibration
of different types of signals), many TestStep-TestCase con-
nections turned out to be one-to-one relations. In such cases,
the separation introduces overhead only. Here, more efficient
solutions have to be investigated. Moreover, it turned out that
the OEM only provided 14 TestCaseImplementations for 59
TestCases. On a first sight, this significant difference indicates
complex TestCaseImplementations that perform varying tasks
and thus violate the principle of single responsibility. However,
only one implementation violates this principle (a component
that is in charge for calibration of different types of I/O ports).
All other TestCaseImplementations focus on one responsibility
and the variance that is needed for different devices is encap-
sulated in the TestCases.

As discussed earlier, the TestCaseImplementations and cor-
responding interface components represent a majority of the
code base. However, they only provided ’low level’ actions

7
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to the SUT and do not comprise any logic of the test and
production process. While the processes will change over time
with a high probability (e.g, more cost efficient, new devices),
the requirements concerning the TestCaseImplementations are
more stable. Additionally, the small number of TestCaseIm-
plementations suggest a high re-use rate for different test
procedures. Due to this diverse use of the same component
in different test cases, they are reaching higher maturity levels
faster compared to conventional systems.

On the other hand, the actual function (i.e., the definition
of the test procedures) is very lean. Only 17% of the overall
code base is used for this configuration. Especially in early de-
ployment phases, where some components changed relatively
often(e.g., new software or hardware revisions), the simple
configuration of the system model supported quick adoption of
the manufacturing system without changing implementation.

In summary, MaTE generated over 600 test cases based on
48 TestSteps and 19 SUT models. The OEM is thus able to
focus on the quality of the single test steps and the overall
process instead of implementing all test cases.

TABLE III
THE CONFIGURATION AND IMPLEMENTATION EFFORT FOR THE OEM.

BASED ON RELATIVELEY LITTLE TEST CASE DEFINITIONS, MATE
GENERATES 635 TESTS FOR THE 19 DIFFERENT DEVICES.

Type Quantity
SUT Models 19

TestProcedures 18
TestSteps 48
TestCases 59

TestCaseImpl. 12
Generated Test Cases 635

C. Dynamic SUT Models

The support for dynamic SUT models, that change during
the test-procedure enabled a simple system-level test of differ-
ent customizations. The introduced feature-model enabled on-
the-fly configuration of additional test-hardware (e.g., a digital
I/O port is used to feed a signal generator which is used to
test an analog I/O port) without a structural knowledge of
the system at the test-design time. Components that provide
features that are required to execute the test cases are located
and configured for the given test case at run-time.

Dynamic models are not yet evaluated within the man-
ufacturing process of actual products. However, currently
these tests are done manually pre-deployment. Normally, this
integration check consists of many repetitions of one very
simple task (e.g., set I/O port an check output). When done
manually, this task is time-consuming (thus expensive) and
error-prone. In a first evaluation of a subset of these use-cases,
we have seen a significant speedup of the process. Moreover,
the only manual task that remains is a check on whether
the reflection mechanism detected all the components. The
operator thus has to compare the real device with a generated
image of the device based on the model to detect, whether all
sub-comonents are registered properly.

VI. CONCLUSION AND FUTURE WORK

In this work, we use MBT concepts to generate a manufac-
turing and test system for product families and customizable
devices. Our system generates the test configuration and exe-
cutable test cases from generic test procedures and a model of
the actual system. Based on a product family for an embedded
control device, we show that our system is able to improve
maintainability and quality of the overall production process.
This is achieved by a significant reduction of the pre-defined
test case definitions. In our evaluated production batch, the
OEM provided 19 test procedures that overall consist of 49
test steps and MaTE generates test procedures for 19 devices
with more than 600 tests.

Currently, we simply configure our models with JSON-
representations. Since we have already prepared MaTE for
this, the next step would be a generator that enables the
use of common UTP tools for test and system definition.
Moreover, based on the same models, the test and calibration
data gathered in the production process in a unified way can be
used in the system-lifecycle to detect anomalies and defects.
With the help of these common tools, we further plan to
simplify the test procedure generation, especially in the context
of the dynamic SUT models.
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Abstract. Security is a vital property of SCADA systems, especially
in the context of critical infrastructure. In this work, we focus on dis-
tributed control devices for hydro-electric power plants. Much work has
been done for speci�c lifecylce phases of distributed control devices such
as development or operational phase. Our aim here is to consider the
entire product lifecycle and the consequences of security feature imple-
mentations for a single lifecycle stage on other stages. In particular, we
discuss the security concept used to secure our control devices in the
operational stage and show how these concepts result in additional re-
quirements for the development and production stages. We show how we
meet these requirements and focus on a production process that enables
the commissioning of secrets such as private keys during the manufac-
turing phase. We show that this can be done both, securely and with
acceptable overhead even when the manufacturing process is handled by
a contract manufacturer that is not under full control of the OEM.

1 Introduction

The growth of the renewable energy sector has a high impact on the technology
of hydropower plant unit control systems [6]. Today these must react to power
grid changes in time to achieve overall grid stability. As a consequence, control
devices (depending on the provided functionality, they are also referred to as Re-
mote Terminal Unit (RTU) or Programmable Logic Controller (PLC)) in single
power plants, as well as control devices of di�erent power plants have to coop-
erate in order to achieve the system-wide control goal. These requirements lead
to networks of small, embedded control devices and heavyweight Supervisory
Control and Data Acquisition (SCADA) servers and clients. At the same time,
these power plants represent critical infrastructures that have to be protected
against the recently emerging risk of security attacks[7] [1].

Much work in the �eld of security for control systems has already been done
for this reason. However, only very few investigations have so far focused on the
implication of implemented security features for the development and manufac-
turing stages of these control systems.

In this work we examine these requirements and show how we tackled the
challenges in a real product lifecycle:

©2016, Springer International Publishing Switzerland. Reprinted, with permission.
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� We describe the security architecture in an actual SCADA system used in
the �eld of hydroelectric power plants.

� We then focus on the product lifecycle of the distributed control devices.
These devices are part of critical infrastructure and are not produced in
great quantities, but vary in their con�guration for each customer.

� Based on the security features which are actually in place during operation,
we identify requirements for earlier product lifecycle stages, speci�cally in
the development and production phase.

� We show how we implemented an extended risk assessment process that
enables lean privilege separation in the software architecture. This is essential
for handling the complexity of the security architecture at a later stage.

� Moreover, we show how we enable the commissioning of secrets during the
manufacturing process in such a way, that not even the manufacturers them-
selves are able to reveal critical information in a practicable manner. In con-
trast to recent studies[11], we show that for our system it is indeed reasonable
and possible with low management overhead to implement such processes
prior the deployment of control devices. This is also true if the production
process is out-sourced to contractors that are not under control of the Orig-
inal Equipment Manufacturer (OEM).

The rest of this paper is organized as follows: Section 2 describes the ana-
lyzed system, the introduced security concept and highlights the implications
for development and production processes. Section 3 describes how we tackled
these challenges in both lifecycle stages and Section 4 concludes the paper.

2 System Security Concept

This section the actual system that resulted in the requirements that initiated
our security lifecycle processes. We provide a rough overview of the system and
the implemented security enhancing technologies. A detailed description on how
we identi�ed the threats and requirements that led to these design decisions is
beyond the scope of this paper. Here, we focus on the requirements for the earlier
lifecycle stages arising from the introduction of such technologies.

2.1 System Overview

Fig.1 shows an exemplary SCADA system architecture. One central SCADA
client is used to supervise RTUs of di�erent plants at di�erent sites. The RTUs
are the actual control devices that execute the control strategy and interface with
the environment (i.e., communicate with sensors and actuators). Since the con-
trol strategy could be distributed, the RTUs have to communicate directly with
each other. In addition to the normal client that is used to supervise the system,
there exists a maintenance terminal. These terminals are used to con�gure and
deploy the control tasks to the RTUs.
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Fig. 1. Overview of an exemplary SCADA system which is used to control power plants
at di�erent locations

2.2 Security Concept

We were able to determine security and design requirements for the overall sys-
tem with the help of a comprehensive risk and threat analysis based on STRIDE
[14]. On an architectural and design level, the security enhancing technologies
can be split into four groups: communication channels, interactions between de-
vices, user interactions and system integrity veri�cation.

Communication Channels All our communication channels are based on
Ethernet. While communication between di�erent RTUs on the same site is
often protected to a certain degree by the operator's network infrastructure,
connections between di�erent SCADA servers often use public infrastructures.
We thus need to protect con�dentiality and integrity of the sent information. In
our system, we use Transport Layer Security (TLS) to ensure these properties.

Interaction between Devices Ensuring integrity and con�dentiality on the
communication channel alone is not enough. Devices have to be authenticated
to ensure the proper source and destination of data �ows. This can be achieved
with TLS and the use of a Public Key Infrastructure (PKI) for point-to-point
connections. Authentication is also a requirement to enable authorization in the
system.
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In some cases data may be sent via multiple hops. For example, a �rmware
update from the device OEM is sent to the plant operator. This operator uses
the maintenance client to update the �rmware. However, the OEM wants to
ensure, that the operator is not able to run non-licensed or manipulated soft-
ware on a RTU. Therefore, in addition to authentication and integrity checks
on the channel, end-to-end veri�cation is needed. This is achieved by the use of
cryptographic signatures. Again, a PKI is needed as supportive technology.

User Interaction Similar to device-to-device interaction, authentication is
needed whenever a user wishes to interact with the system. We solve this by
password-based and token-based authentication and a central login-server, which
provides access-tokens that are used for authorization later on.

System Integrity Veri�cation The technologies described so far improve the
authentication of devices and the integrity and con�dentiality of their communi-
cation. However, due to software bugs or security design �aws, adversaries may
still be able to compromise parts of the system. We thus need to ensure the
integrity of the devices. Each device has to enforce its own integrity by means
of adequate measures. Additionally, devices need to check the integrity of their
communication partner. Fig.2 shows the basic integrity measures at device level.
To achieve integrity veri�cation, each device uses secure boot and sandboxing
(if applicable). In order to attest integrity to communication partners, we use
remote attestation. We use Integrity Measurement Architecture (IMA) [12] as
a basis for this part. Basically, Device 2 checks the integrity of Device 1 by
analyzing the software components running on Device 1. Traditionally, this is
achieved by comparing the hash values of the running executables to reference
values. However, such an approach is not feasible for networks with many devices
since the reference values have to be updated every time the con�guration of one
device changes. Therefore, we use extensions such as OEM-signatures and the
analysis of software privileges to reduce the size and dynamics of the reference
values [8].

2.3 Security Requirements for Earlier Lifecycle Processes

The proposed approaches raise requirements for the development and produc-
tion phase of the system. The key-based authentication techniques, the secure
channels, the end-to-end veri�cation of �rmware updates as well as the integrity
checks (secure boot and remote attestation) rely on the initial bootstrapping of
security credentials (i.e., private keys and certi�cates).

Sandboxing is only useful when the separated software modules follow the
principle of least privilege. This enables the e�cient separation of software mod-
ules regarding their privileges. Therefore, the software components have to be
designed with this principle in mind. Also our remote attestation concept pro�ts
from components with limited privileges.

Moreover, subsystems with high privileges (especially the security relevant
parts such as authorization modules) have to be considered for rigorous design
and code reviews to minimize the risk of compromises.
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Fig. 2. Overview of the integrity veri�cation at device level. While we can use state-of-
the-art technologies such as Secure Boot and Sandboxing for Integrity Protection,
we had to come up with a feasible ourselves solution for Integrity Attestation.

3 Lifecycle Support

This section shows how the requirements described in the last section are ad-
dressed in our system lifecycle. We show how we addressed the need of privilege
separation in the development process and how we integrated commissioning of
private key material into the manufacturing process.

3.1 System Lifecycle

To describe our processes, we use the basic product lifecycle model illustrated
in Fig.3. The OEM develops a system and outsources the production to a con-
tract manufacturer. In order to build a secure system, the development stage
has to be augmented with security-enhancing processes such as threat analysis
and mitigation. However, as shown in the last section, the integration of secu-
rity measures in the operational phase requires the introduction of additional
processes in earlier stages.

To re�ect this in the development process, risk management processes (e.g.,
ISO/IEC 27005 [4]) propose an iterative approach. We will show how we in-
tegrated the risk management process into the development process to achieve
both, privilege separation and a classi�cation of subsystems regarding their secu-
rity criticality. Based on this classi�cation, we can identify the subsystems that
need in-depth threat analysis and code reviews. Moreover, the process provides
a list of privileges each component requires and thus eases the generation of
sandboxing policies.

The lifecycle of the security credentials typically consists of four steps [2]: As
a �rst step, keys have to be generated (1). In order to bind keys to a platform,
they have to be certi�ed (2). Moreover, they have to be distributed (3) and
stored (4) on the platform. The �rst three steps are necessary to bootstrap trust
of a device. We show how we integrate these processes into the manufacturing
stage of the system lifecycle. We enable an OEM-controlled trust provisioning
process of diverse systems even though the manufacturer is an external entity.
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Fig. 3. The basic product lifecycle model and the stakeholders which are in place at
each stage.

3.2 Asset-Based Component Rating and Privilege Separation
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Fig. 4. A simpli�ed risk management process according to ISO/IEC 27005 [4] (left),
and how our approach is used to generate additional possible threats to assets that
may originate from vulnerabilities in software components.

In order to enable the delineation of trust domains and the identi�cation
of critical software components, we proposed the integration of software risk
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assessment into organizational-level risk assessment processes [10]. Fig.4 illus-
trates, how our approach �ts into the standard risk management process. After
all assets and their risk ratings are identi�ed, the assets are mapped to the soft-
ware architectural model. Here, the privileges of the components are classi�ed
based on the assets they are able to access. Components that share their privi-
leges are part of the same trust domain. In order to reduce the attack surface,
the size of trust domains with high privileges should be minimized. Therefore,
the software and/or security architect is able to introduce �lter components,
which are able to transform assets regarding their criticality. An authenticator,
for example, may reduce the asset 'all private data' to 'data of a speci�c user'.
We plan to automate the positioning of �lter components into the architecture
to optimize trust boundary sizes automatically in future work. Based on the �nal
classi�cation, additional assessment methodologies such as threat modeling can
be prioritized. The output of this sub-process comprises additional threats to
the assets that can be used for further evaluation.

Fig.5 shows how the process is applied to a simpli�ed system architecture of
a control device. We consider two assets: The values of the data points (informa-
tion asset, 'Datapoints') and the function of changing the control program and
data point values (function asset, 'Control Interface'). The system provides a
proprietary interface, which supports authentication. Moreover, legacy commu-
nication partners that do not support such features have to be accepted. In the
original system architecture (upper part of the �gure), all services have access
to both assets and thus all services are in the same (critical) trust domain. The
introduced authentication �lter component maps the original assets to new as-
sets with lower criticality based on the logged on user (lower part of the �gure).
The legacy interface, for example, only has access to a subset of the data points
and does not have write access to any critical component.

With the introduction of �lter components, this process thus supports privi-
lege separation of components, which is needed to set up useful sandboxing poli-
cies. Moreover it provides a classi�cation of the privileges of components (i.e,
which assets a component has to access) that eases the generation of sandboxing
policies. Additionally, the resulting classi�cation is fed back into the overall risk-
management process. This supports the evaluation of which components are of
high risk and should be considered for in-depth evaluation like comprehensive
threat modeling or code review.

3.3 Support for the Provisioning Process

Since all of the proposed methods rely on asymmetric cryptography for authen-
tication and message integrity veri�cation, we have to provide a process that
securely distributes secrets such as private keys to a variety of devices. Here,
two main challenges must be faced: First, even the manufacturer may be (partly)
compromised. We thus have to ensure that the access to private key material is as
di�cult as possible during the production process. Moreover, a large number of
di�erent and customized devices has to be built and provided with key materials:
In our scenario, a RTU consists of a variety of di�erent components which are
in charge for communication, the actual execution of the control task or access
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Fig. 5. Prior to the trust domain reduction (upper part), all services have access to
all assets. The introduction of an authentication �lter reduces the criticality of the
accessible assets and separates the trust domains by their privileges.

to I/O devices. They all have some similarities (e.g., a MCU that is executing a
speci�c �rmware) but vary in features, con�guration and also security require-
ments. Moreover, the con�guration of the RTUs (i.e., which sub-components are
in place) varies depending on the customer's needs. At the same time, the man-
ufacturing process for all these di�erent devices should be as lean and possible.
Moreover, functional integration tests should be performed at manufacturing
time for all possible con�gurations.

In order to tackle all of these challenges, we created a Manufacturing and
Test Environment (MaTE) [9] that is trusted by the OEM and delivered to all
manufacturers as shown in Fig.6. With these entities and a certi�cation authority
located at the device OEM, we are able to generate a distributed production
process that enables secure provisioning of secrets.

Production and Test Entity As shown in Fig.7, MaTE builds upon a generic
production process [5]. Basically, an operation is performed on a set of (sub-
)components. The output of one production step is a new component. In our
process, the output is a 'new' component C ′ even if the input only consists of a
single component C. The operation may have changed the component's con�gu-
ration or, at least, retrieved some information (e.g., the component C has passed
all functional tests). The resulting component C ′ may be completely manufac-
tured device, as well as an input for a following production step. The actual
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Fig. 6. The distributed production process based on OEM-provided manufacturing
and test entities

operation may be a manufacturing step (automated or manual), a functional
test step, a calibration step or a combination of these.

In MaTE, however, the operation is not de�ned directly. The operation is
computed based on a generic model of the test procedure and a model of the
actual system under test, i.e. the actual components which are used. An example
for a test procedure may be 'deploy �rmware and execute memory tests'. How-
ever, the memory, Central Processing Unit (CPU) and �rmware varies based on
the actual component. This is where the strength of the approach comes into
play. The process template needs to be de�ned only once and MaTE generates
the actual manufacturing procedures on the �y. The framework thus also enables
secure provisioning of di�erent types of devices in a uni�ed way.
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Fig. 7. In a basic manufacturing process, a procedure of operations (e.g., assembly or
test) is performed on one to many components. The result is a (new) component that
may be the input of the next production step.
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Secure Provisioning As mentioned above, there are some requirements con-
cerning the secure provisioning process: Since even the manufacturer may be
compromised, the process should protect the key material in a manner that
makes it impractical to reveal it for the manufacturer. Moreover, the device
OEM must have control over which and how many devices he wants to trust.
Again, these requirements should be ful�lled for a variety of devices with di�erent
hardware features. Since our manufacturing tool is able to handle such variances,
we can directly integrate our secure provisioning into the manufacturing process,
as shown in Fig.8.

MaTE itself is a small embedded computer that provides the user interface
for the manufacturing process and all I/O connections required to instrument
the manufactured devices (Device Under Test (DUT)). Since the OEM provides
MaTE, it has full control over its function. To enable the secure provisioning
process, MaTE requires some type of Hardware Security Module (HSM). This
module needs to provide at least a tamper-proof storage for signature keys and
a protected signature module that prevents software from reading the keys. This
functionality is required since MaTE is exposed to a possible adverse environ-
ment. Typically, a Trusted Platform Module (TPM) could be used as HSM.
However, using programmable solutions based on ARM TrustZone could be
bene�cial, because it would enable the integration of production contingents
(e.g., the manufacturer is only allowed to produced 1000 items of product X per
month).

As part of the usual manufacturing process, MaTE initiates the secure provi-
sioning process (1). The DUT generates its own private key pair (2). Depending
on the device type, this is done in software or on a dedicated hardware (typi-
cally a TPM). Using a TPM in the DUT enables tamper resistant storage and,
in case endorsement key certi�cates are provided by the TPM-manufacturer, a
root of trust for the platform identity. As a next step, the DUT sends its public
key to MaTE (3). MaTE checks whether the current manufacturer is allowed to
produce this type of device and signs the DUT's public key with its own private
key. Both, the signature and the key is sent to the OEM's certi�cation authority
(5), which checks and certi�es the request if everything is valid. Subsequently,
the certi�cate is forwarded to the DUT (6 and 7).

With the use of MaTE, we are able to use this uni�ed process for di�erent
types of devices. Moreover, since the device OEM provides the manufacturing
device, it has full control over the process. From a security perspective, this is
enabled by the dedicated HSM that is used for critical checks such as the manu-
facturer's contingents. Moreover, the OEM is able to check whether a certi�cate
signing request is placed by one of its trusted manufacturing devices. Since the
private key material used by the manufactured devices is generated directly on
the device, there is no unnecessary exposure of critical information. Since this
action is part of the production process, the required harnesses (i.e., components
which are used to generate the key) can only be placed temporarily on the de-
vice and can be automatically deleted in the next production step. Whenever IP
protection is important and the manufacturer should not be allowed to produce
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an unlimited amount of devices, TPMs with endorsement key certi�cates can
be used. In this case, the OEM can check whether the device key of the signing
request is generated by a TPM and can thus ensure that only one device is able
to use the signed key 1. Although the end-of-life phase is beyond the scope of
this work, it should be mentioned that a tamper resistant storage also protects
sensitive information at this stage. The proposed approach has the fundamental
disadvantage that the manufacturer requires a permanent network connection
to the OEM's servers. However, since MaTE uses a central database on the
OEM site in any case, the secure provisioning process does not result in new
requirements here.

In [3] di�erent approaches for trust provisioning in the context of industrial
automation are discussed. The conclusion is that a manufacturer-based approach
for bootstrapping is most suitable for this domain. However, the assumption is
made that the OEM and the manufacturer are one and the same company and
thus do not need to take the additional management complexity into account.
Other approaches suggest trust establishment based on physical contact of de-
vices [13] or based on the interaction with an employee of the plant [11]. Both
argue on the basis of the high complexity and costs in manufacturing-based ap-
proaches. Our approach, however, tackles this problem with the provision of the
manufacturing entity by the OEM.
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Fig. 8. Overview of the secure provisioning process.

4 Conclusion

Security features that protect a device during the operational lifecycle raise the
need for additional requirements in earlier product lifecycle phases such as de-
velopment and production. Based on the security concept of distributed control
devices in a SCADA architecture for hydropower plants, we demonstrated typical
candidates for such requirements, such as privilege separation and the presence
of pre-commissioned trust (in the form of secret key material). We showed how

1An adverse manufacturer might otherwise create a 'fake' device that generates a
key-pair and trick the OEM into signing it. Then, he could use this key for an unlimited
number of pirated devices.
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we meet these requirements in our development stage with a previously intro-
duced extension of common risk management technologies. Moreover, we showed
that it is indeed possible to integrate the initial commissioning of trust into the
production process, even if a contract manufacturer is used that is not fully
under control of the OEM.

In future, we plan to automate the process for the introduction of �lter com-
ponents based on the data �ow graph and additional meta-information (e.g.,
what assets are needed by which components) of the software architecture to
optimize the size and quality of trust domains. Moreover, we plan to investigate
additional approaches for the commissioning process to evaluate their impact
on the system's security properties and deployment costs. Based on these exten-
sions, we intend to provide proposals for securing systems that take the complete
product lifecylce into account, instead of the operational phase only.
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Abstract— Application-based access control technologies are
used to protect systems from malicious or compromised software.
Existing rule-based access control systems rely on a compre-
hensive policy, which defines the resources an application is
allowed to access. The generation of these policies is a hard
and error-prone task for system engineers. In this work, we
provide a framework to automate this task and a proof-of-concept
implementation that uses binary analysis to generate a model
of the resource requirements of an application. We use a new
approach to refine the policy by connecting different accesses
to the same resource via their least common ancestor (LCA) in
the call graph. Moreover, we tested the proposed methods with
a commonly used web-server and they show a high potential to
significantly simplify the policy generation process.

I. INTRODUCTION

Traditionally, access control systems have been based on the
logged-on user. The system defines the privileges of a process
based on the executing user’s identity or roles assigned to this
user. This approach relies on the claim that all applications act
in the user’s best interest. Due to programming errors, applica-
tions may be exploitable and do not meet this claim. Moreover,
some applications are malicious by design (malware). Against
this background application specific confinement technologies,
known as sandboxes, have been introduced to enforce the
principle of least privilege [1]. Systems like AppArmor or
SeLinux are available for major operating systems.

While these approaches have the potential to counter pos-
sible problems of malicious or compromised software, they
rely on a comprehensive policy describing the privileges that
should be granted to a software module. Determining these
privileges can be a hard task. Software developers would
usually have the expert knowledge which is necessary to
build the confinement policy. However, they do not benefit
from it and do not necessarily know the targeted system and
intended use. The end user is the person who actually profits
from a secure system, but might not have enough expert
knowledge to understand the requirements of an application
to the underlying system. In many cases there is a third party,
the system developer, who combines different modules to
one system. Automation and abstraction of policy generation
would support all of these stakeholders.

Some approaches to scan applications for resource accesses
and to generate confinement policies have been presented in
the literature. Most of these, however, rely on dynamic tracing
of the application behaviour and excessive test runs are needed

to ensure that all code paths are executed [2], [3], [4]. Other
approaches heavily rely on features of the used programming
language or access to the source code [5], [6].
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Fig. 1. Illustration of an exemplary system development process: Software
modules from different sources are integrated to the system image. The policy
generation takes place in the integration step.

In this work, we aim to provide a generic architecture to
ease the process of policy generation and create a high level
description of the required privileges of software from differ-
ent sources. Fig. 1 shows an excerpt of an exemplary system
development process. Software modules from different sources
are integrated to a system image, which provides an operating
system with sandboxing capabilities and a number of user-
space applications. In this approach, the previously defined
system developer is in charge of collecting and generating
the policies. This person combines knowledge of the software
components used and the targeted application. The system
developer may or may not have access to the full source code
but has access to all binaries and a somewhat comprehensive
documentation.

We introduce a new approach that distinguishes between
resource allocations and accesses on previously allocated
resources to identify the resource requirements of an applica-
tion. Connecting accesses and allocations provides additional
information to refine the policy. Despite the fact that this
connection is currently done in a very simple way by finding
the nearest allocation node of an access node in the program’s
call graph, analysis of widely used open source software shows
good results in many cases.

We also provide a proof-of-concept implementation of the
proposed system. The prototype generates and analyses a call978-1-4673-7468-2/15/$31.00 ©2015 IEEE

©2015 IEEE. Reprinted, with permission.
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graph based on an application’s binary image. In combination
with additional information like constant function parameters
and user input it is able to generate confinement policies.
We analyzed a commonly used web-server and compared
the results to a runtime-trace and a working confinement
policy. While we detected a significant portion of the privilege
requirements, some problems remain for future work.

The paper is organized as follows. Section II discusses
related work and Section III describes the proposed system.
The implemented system is outlined in Section IV and the
results are shown in Section V. In Section VI, the benefits
and the drawbacks of the system, as well as future directions
are summed up.

II. RELATED WORK

A. Application-Oriented Access Control

Basically, there are two different types of application-
oriented access control [7]:

Isolation-based access control methods provide each con-
fined application its own set of resources [8], [9]. Similar
results can be achieved by using virtualization [10]. These
schemes have some limitations which make it hard to use
them for general purpose applications. Based on the design,
each sandbox often needs to have its own copy of resources
and shared libraries [7].

In contrast to isolation-based systems, rule-based access
control methods do not rely on an own copy of resources,
but confine the access directly based on a policy. Common
implementations are Systrace [11], SeLinux [12] or AppArmor
[13]. These systems avoid many problems of isolation-based
methods [7]. However, generating policies for different appli-
cations is still a difficult task. Coarsely grained policies (such
as ’Allow access to file system’ or ’Allow access to network’)
may allow too much and do not prevent possible threats. On
the other hand, fine grained policies (such as ’Allow read
access to file X’ or ’Allow outgoing TCP connections to one
server’) may result in complex policy management.

Usability and policy complexity is one of the biggest
challenges for these systems. As shown in [14], usability has
a high impact on the effectiveness of sandboxes. Automated
generation of policies and policy abstractions help users to
confine an application properly. Such abstractions have been
introduced for Mapbox [15] and Functionality Based Applica-
tion Confinement (FBAC) [16] and significantly improve the
readability of policies by hiding unnecessary complexity.

B. Automation of Privilege Classification

Approaches to automatically generate parts of policies are
widely spread. One method to suggest parts of the policy by
analyzing linked libraries and desktop-entries has been pre-
sented for FBAC [6]. This method uses contextual information
of libraries (an application which links against libogg might
be a music player) and information in .desktop files in Linux
systems, which often contain application categories.

Systems like AppArmor or FBAC provide the functionality
to trace application behaviour in test runs and use this infor-
mation to generate or extend the policy. This method has the
potential to provide a comprehensive policy, but it has to be
ensured that all relevant execution paths have been triggered.
Moreover, the collection of the policy information is usually
carried out in an unconfined environment that might not be
suitable, since the policy generation itself may be a threat to
the test system.

Paid [17], statically generates a call graph and uses graph
inlining, system call inlining and source code injection to
generate system call traces. Paid compares these traces with
run-time traces to detect abnormal behaviour. In contrast to
the approach presented in this paper, systems like Paid do not
take parameters to resource accesses into account. Thus, they
cannot be used to prohibit an application for from accessing
specific files.

Run-Time environments, such as Java and Common Lan-
guage Runtime (CLR) provide stack based access control
where stack inspection ensures that all calling methods are
authorized to make privileged calls. For these systems, static
approaches have been presented to automate policy generation
[18], [19]. One approach [5] uses dynamic analysis to refine
statically generated policy models. The system is able to
automatically generate test cases and asks the user to refine
the statically generated policy stub. All these approaches
use data flow analysis to classify resource requirements for
applications, but rely on support of the underlying program
language.

Recent work is focusing on partition of software into
least privileged components using technologies to detect the
privilege requirements of single modules of the whole system.
ProgramCutter [2] labels functions according to their system
call invocations and uses data dependency to model the weight
of the connection between two functions. It splits up the ap-
plication according to their labels and enables big parts of the
original code to run in a very restricted environment. Passe [3]
is an extension of the Django web framework and uses data-
flow and control-flow relationships to separate the privilege for
so called views. A view is an automatically isolated component
which represents the software module which is needed to serve
one request. Both methods use dynamic learning technologies.
Similar to learning mechanisms described above, they need
excessive test runs which need to be executed unconfined.

III. SYSTEM ARCHITECTURE

A. Overview

We propose a framework to enable the mining of privi-
lege requirements of applications from binary analysis and
the generation of application confinement policies based on
this information. The described framework and its current
implementation is called PolGen.

The overall system architecture is shown in Fig. 2: The
Source Data currently represents the application binary and all
linked libraries. However, PolGen is designed to use different
sources like application source code or functional description
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Verifier

Privilege Mining

Policy Generator

PolGen

Privilege Mining'

Merging

Privilege
Classification

Source Data

Source Data'

Reference Policy

Fig. 2. PolGen: Based on different types of source data, the privilege mining
module generates a partial set of privilege requirements. These partial sets
are merged to the privilege classification which is exported to an application
confinement policy. Currently, this policy is verified by comparing it to a
working reference policy of the given program.

to generate a privilege classification of the inspected appli-
cation. PolGen’s first stage is Privilege Mining. Based on
the type of the Source Data, the corresponding module is
loaded and generates the Privilege Classification or parts of it.
The Privilege Classification is an abstraction for application
privileges. This abstraction enables the use of different mining
and export modules. The Policy Generator generates a policy
for the targeted sandboxing technology. The Verifier compares
the generated policy to a working reference policy which is
created manually or taken from current software distributions
to verify PolGen’s functionality.

B. Privilege Classification

The privilege classification is a high level description of the
resource requirements of the application. PolGen defines it as
a set of Privilege Requirements. Each Privilege Requirement
consists of three elements. A resource type, access types and
additional parameters. The resource type defines the type of
the accessed resource (e.g. file or network). Many resources
may have different access types. Files, for example, may be
accessed in read or write mode. An access type is thus needed.
Moreover, sometimes allowing access to all resources of a type
is not desired. Therefore, additional resource properties are
needed to minimize the granted privileges. These properties
are represented as simple name-value pairs where the property
list depends on the resource type.

C. Privilege Mining

The current version of PolGen provides a module to gener-
ate the privilege classification based on an application binary.
The basic process, shown in Fig. 3, is configured by the Symbol
Configuration that provides the following information:

• Symbol names (function or syscall name) for resource
allocations and accesses, as well as their corresponding
resource type,

• symbol names which may have static parameters that give
additional information of the resource access type, and

• blacklists for non-interesting symbols and syscalls

Call Graph
Generation

Remove non-
syscall Paths

Find Resource
Allocations

Find Resource
Accesses

Connect via
LCA

Privilege Mining

Fill Remaining
Properties

Symbol
Configuration

Fig. 3. Privilege mining in PolGen: Function calls that do not lead to a system
call are removed from the generated call graph. The resource allocations and
accesses are located and connected via their LCA.

The first step is the generation of the call graph. Starting
with main, each function f is represented as a node. Each
possible transition (i.e., function call) T from f1 to f2 is
represented as a directed edge. Self loops are ignored and
multiple calls with the same source and destination node are
merged because they do not provide additional information for
the further analysis. Some function calls may have interesting
static parameters which can be used later in the analysis. In this
case, the edge gets the parameter as property. A good example
is the open function in libc, which expects the access mode
as second parameter. This access mode is often hard-coded.
Thus, the mov instruction that sets the parameter contains a
constant. The parameter can simply be parsed from the last
mov to the parameter’s address based on the compiler’s calling
convention. For performance reasons, PolGen performs this
step on some pre-configured calls only.

Similar to the parameter parsing, we identify system calls by
searching userspace-kernel transitions and parsing the system
call numbers based on the targeted architecture.

The resulting graph contains one node for each called
function, as well as one node for each system call in the
application binary and all linked libraries. Each function call
is represented as a directed edge. It is assumed that resource
access is only possible via the kernel. Thus, all nodes which
do not have a path to a system call are deleted. Additionally,
some symbols and system calls may not be interesting at all.
Thus, PolGen is instrumented with a blacklist which contains
system calls like getpid to simplify the call tree and improve
performance.

To simplify the next steps, the directed graph is converted
to a directed tree. As shown in Fig. 4, we duplicate subtrees
with multiple parents and eliminate cyclic subtrees. After the
expansion, a node does not represent a function, but one call of
this function. Consequently, the path from a node to the main
node represents one possible stack trace for each function.
This is necessary to correctly distinguish different resource
allocations which are done with the same function.

The corresponding tree only contains nodes which ulti-
mately lead to an interesting system call. Moreover, the graph
is expanded to a tree, so each node has a unique path to
the root node (i.e., the main function). As a next step, the
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main

f1 f2

f3

(a)

main

f1

f2

f3

f2

f3

(b)

Fig. 4. The call graph before (4a) and after (4b) the expansion.

symbol names are matched against a pre-configured set to
discover all resource allocations and resource accesses. A
resource allocation is a node which uses a resource and
may return a reference to the resource which can be used
by other nodes. These nodes have a dedicated resource type
and an optional access mode (e.g., extracted from the flags
in the open call). Examples for resource allocations are the
fopen function or the socket system call. Resource access
nodes are accessing resources which have to be allocated
somewhere else. Moreover, they may have multiple resource
types they can work with. As an example, the write system
call cannot operate without a file descriptor and also works on
sockets. Normally, many access modes are not hard-coded in
the application. Therefore, they cannot be decoded by simply
parsing the function parameter as mentioned above. In this
case, the access functions to the resource may hint the access
mode (e.g., if there exists a write function on a file resource,
write access to this file is needed).

The last step that is needed to generate the privilege
classification is the mapping from resource allocations and
access nodes to privilege requirements. For each resource
allocation node, one privilege requirement is created. The type
of the requirement directly reflects the allocation. The access
modes are gathered from the allocation and the corresponding
resource access nodes.

The remaining problem is the connection of the access
nodes with the proper allocation node. Our approach is based
on the idea that in most software, resource allocation and
resource access is somewhat encapsulated and near. Data
exchange between functions is done by argument passing or
return values. We do not cover resource descriptors which
are stored in another way (for example a global variable).
However, this is part of ongoing work.

In the current implementation, the nearest allocation node
corresponding to an access node is found by the LCA. There-
fore, the following algorithm is used: For each allocation node,
the path to the root node is labeled with the hop count to the
allocation. The path from each access node to the root node
is checked for matching resource allocation labels. The node,
where the sum of steps to the allocation node and steps to
the access node is minimized, is the LCA. The access node is
added to the resource allocation corresponding to the LCA.

This approach does not ensure correctness. It may happen
that one access node is connected with the wrong allocation
node what may lead to policies which are both too strict

and too loose. This approach may be sufficient for many
applications, however, as shown in Section V.

As an additional step, we delete all nodes that are neither
on the path between an allocation and an access node nor on
the path between a LCA and the root node. This step is only
done to generate a better visualization of the results.

The result is a list of resource requirements. To complete
the requirements and set the properties, the user is prompted to
fill the properties for each requirement. PolGen thus provides
the LCA and the path to the root node (i.e., the stack trace)
to the user. As shown in Section V, this information often
provides enough context to set the properties properly.

IV. PROTOTYPE SETUP

A. Configuration

We implemented PolGen as proof-of-concept on Linux to
check whether the system is able to generate appropriate
policies and if the LCA approach is sufficient. Since we focus
on file and network I/O in this work, we configured the system
to detect basic file and network calls (fopen, socket, write/read,
etc). The system should properly separate networking and file
accesses and distinct between read/write access for files and
server/client mode for sockets. Additionally, we extract the file
name and access mode from open calls, if the parameter is a
constant. Hence, the configuration covers a meaningful set of
use cases but is relatively simple.

B. Privilege Mining and Policy Generation

On standard distributions, the non-exported function names
are stripped out of the binary. This is not really a problem
to PolGen, but the applications and some additional libraries
(libc and libcrypto) have been recompiled without this step to
improve the readability of the call graph.

The call graph generation and platform-independent instruc-
tion parsing is done in C++ with the help of Dyninst [20].
For static analysis, Dyninst fails to follow function pointers or
virtual functions (for C++). While there are cases where the
called function is not known at compile time, the experiments
suggest that in many cases only one or a small set of possible
functions can be called. At the moment, this information is
added for some important function calls in the configuration
but it will be automated in future work. The remaining part of
the privilege mining is implemented in Python. The resulting
privilege requirements can be stored as AppArmor-policy.

V. EVALUATION

We verified the basic functionality with a simple test-
program. Moreover, a real-world test has been executed with
nginx, a commonly used web-server. Moreover, we evaluated
the execution time of the privilege classification for both tests.

A. Test Program

The test program is a simple network application where a
server stores the information received from the client to a file.
In order to demonstrate the operation of the allocation-access-
connection approach, both, the client and the server, are in the
same binary and run in different threads.
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PolGen is able to successfully separate the different resource
parts in the test application described above. Fig. 5 visualizes
the internal call tree. The library calls are shown with the prefix
libc. The colored edges illustrate the connections generated by
PolGen.

On the server-side, a socket is opened and bound. Whenever
a client connects, the bytes are read and written to a file.
PolGen correctly connects the network resource allocation
(libc_socket) with its accesses (libc_listen and libc_recv) via
their common ancestor (server). The connection of the file
allocation and access is also done correctly. On the client-
side, the program opens a connection to the server and sends
some data with libc_write.

main

server

startServer

libc_socket libc_listen

handleClient

libc_recv writeToFile

libc_fopen libc_fwrite

Fig. 5. The server-part of the test program. A simple client-server application
is successfully classified by PolGen. The client part is not shown here due to
page restrictions..

B. NGINX

Nginx is a widely used web-server and a good candidate
for examining PolGen with real world applications since it
provides a network interface, uses configuration files and a
log.

The logging functionality is a challenge for PolGen. Usually,
a log file is opened once, propagated through the whole
program, and used everywhere. This behaviour conflicts with
the assumption, that resource allocation and access are close in
the call tree. As a consequence, PolGen would connect each
write to a log file to the nearest resource allocation which
can lead to a policy that is too weak if the actual allocation
is read only. However, this problem could be mitigated with
techniques like data flow analysis of the log file descriptor. In
the current solution, we simply blacklisted the logging func-
tions (ngx_log_* and ngx_conf_log_*) as a fully automated
system is not intended anyway.

Another problem results from the generation of the call-
graph. As mentioned above, the static analysis fails to follow
function pointers which are used in nginx very often to select
the proper modules for a request. However, ongoing work
suggests that it should be possible to statically determine
most of the possible function pointers of all dynamic calls.
A better call tree generation is part of a future version of
PolGen. In the current solution, the three missing connections
of the call graph for static web requests have been added to

the configuration manually. The calculated policy is thus not
complete for SSL or dynamic web pages with CGI.

Besides these two problems, the semi-automated approach
shows good results as shown in Table I.

TABLE I
THE RESULTING CLASSIFICATION FOR THE SUBSET OF nginx (ONLY

CONSIDERING STATIC HTTP REQUESTS).

Resource Access
Mode LCA Additional

Parameters
1 Network Server ngx_s_process_cycle port=
2 File Write ngx_c_pidfile file=nginx.pid
3 File Read ngx_signal_process file=nginx.pid
4 File Write ngx_daemon file=/dev/null
5 File Write ngx_init_cycle file=[log]
6 Network Server ngx_m_process_cycle port=
7 File Read ngx_open_file_wrapper file=/var/http/*
8 File Read ngx_conf_parse file=/etc/nginx/*
9 File Write ngx_reopen_files file=[log]

One resource access has been calculated fully automated.
The write access to /dev/null (4) is hard-coded and therefore
PolGen was able to decode it.

PolGen was able to resolve the accesses to the file that
stores the process-id of the main process (2)(3). The file
parameters have not been auto-detected since they are set by
the user. However, PolGen was able to detect that there are
two access modes. The system developer can simply identify
the appropriate file by looking at the LCA. Moreover, the LCA
hints the configuration file access (8).

The two network resources (1)(6) are basically the main
network socket to which the server is bound. This is provided
in double form, because a single-process, as well as a multi-
process functionality exists in nginx. The port is configured
with the configuration file and is also well known to the system
developer.

The name of the LCA does not provide any information
about the actual server content (7). However, the parent path,
which is also provided to the system developer, shows that
the open function is called by ngx_http_static_handler. This
information suggests that the public directory of the web-
server is used here.

The remaining file accesses (5)(6) cannot be identified
statically without access to the source code. However, it is
possible to use dynamic approaches.

We used modified version of systrace [11] to compare
the static calls with the actual program execution. The web
server is executed and all system calls and their stack traces
are monitored. For the test run, nginx has been executed in
multi-process mode with a minimal configuration for a http
server. After start-up, we requested the content via a browser.
Additionally, we sent all possible signals (reopen, reload, stop)
to the main process. We compared the resulting list of system
calls manually with the privilege requirements generated by
PolGen.

Dynamic analysis and source code inspection showed that
the remaining file accesses (5)(9) are opening the log files for
writing. All other accesses to these file descriptors haven been
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previously blacklisted. A comprehensive data flow analysis
would connect the log allocations and writes, what would
solve the problem. Another possibility would be a dynamic
instrumentation of the program to refine the policy.

This information completes the privilege classification gen-
erated by PolGen and covers with the trace of system calls
for the use-case described. Moreover, we compared the clas-
sification to a working AppArmor policy for nginx. The only
parts which are missing in PolGen’s version are the entries
corresponding to dynamic web pages and SSL, which we
ignored in this test.

C. Performance Analysis

The classification is done on an off-the-shelf PC with an
Intel Core i5-2500 (3.3GHz Quad Core) and 8 GB RAM.
The test program is classified very quickly (3.6s). While the
number of edges and nodes of nginx’s call graph is only three
times higher, the classification takes significantly more time as
for the test program (21s). Since the test program only links
against libc while nginx links against 31 libraries, the time to
load and parse the application image is much higher. It thus
takes about ten times longer to generate nginx’s call tree. For
the test program, PolGen considers only about 20 functions
for the tree. All other functions are discarded because they do
not lead to a system call or have been blacklisted. The tree of
nginx contains about 750 nodes that cannot be discarded at the
beginning. A big part of the consumed time could be saved by
skipping the tree-expansion and allow multiple parents. Doing
this in an efficient way without hiding resource accesses is
part of ongoing work.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a framework for automated
and user-aided policy generation for application confinement.
Moreover, we introduced a simple but efficient way to under-
stand where and how resources are used in an application by
finding a common caller for a resource allocation and access.
A proof-of-concept implementation shows the promising re-
sults on a widely used web-server, as well as the shortcomings
of the current version. Some challenges will need to be faced
for the next versions:

The current analysis of the binary is not able to generate
comprehensive call trees, especially for object oriented lan-
guages. Neither function pointers nor virtual methods can be
resolved satisfactorily. In future, methods to statically detect
possible function pointers or compiler extensions and source
code analysis should solve these problems. Additionally, hy-
brid approaches with automated dynamic instrumentation of
the application could be able to refine the generated classifi-
cation and reduce the manual work.

Adding additional mining sources like source code, dynamic
instrumentation, existing policies or the application’s func-
tional description will open additional possibilities such as
verifying functional claims or generating intrusion detection
systems. These possibilities are carried by a robust high level

privilege classification, therefore the current specification of
the privilege requirements should be refined and formalized.

The resulting tool will help developers not only to generate
their confinement policies but also to understand their system
and the resource requirements of the different applications
running on it.
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Since the final typeset of [Paper J] ’Integrating Integrity Reporting into Industrial Con-
trol Systems: A Reality Check’ will be created after the publication of this thesis, it is
not included here. As mentioned before, Chapter 2 uses significant parts of this book
chapter, which appears in Handbook of Research Solutions for Cyber-Physical Systems
Ubiquity edited by Norbert Druml, Andreas Genser, Armin Krieg, Manuel Menghin, An-
drea Hoeller Copyright 2012, IGI Global, www.igi-global.com. Posted by permission of
the publisher.
Beside the overview on intrusion detection systems and trusted computing, this chapter

contains a discussion about how different remote attestation methodologies (namely plain
binary-based attestation, signature-based attestation and privilege-based attestation) can
be integrated into industrial control systems. Moreover, the impact on operational, as well
as earlier product lifecycle stages is compared.
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Abstract— Security is a vital property of SCADA systems,
especially in critical infrastructure. In this work we focus on
the integrity of the overall distributed control system. First, we
classify properties that enable the verification and proof of the
integrity of different subsystems. Based on this classification, we
show how we protect the overall system’s integrity at different
system levels and which implications arise for the development
and manufacturing stage of control devices by applying the
proposed approaches. Based on an exemplary system in the
domain of hydro-electric power plants, we also show practical
examples how we plan to apply our work in real world.

I. INTRODUCTION

The growth of the renewable energy sector has a high impact
on the technology of hydropower plant unit control systems[1].
Nowadays, these have to react on power grid changes in time
to achieve overall grid stability. As a consequence, control
devices (depending on the provided functionality, they are
also referred to as Remote Terminal Unit (RTU) or Pro-
grammable Logic Controller (PLC)) in single power plants,
as well as control devices of different power plants have to
cooperate in order to achieve the system-wide control goal.
These requirements lead to networks of small, embedded
control devices and heavyweight Supervisory Control and Data
Acquisition (SCADA) servers and clients. At the same time,
these power plants represent critical infrastructures that have
to be protected against security attacks that raised lately [2].

Fig.1 shows one exemplary architecture of such systems.
One central SCADA client is used to supervise RTUs of dif-
ferent plants at different sites. The RTUs are the actual control
devices that execute the control strategy and interface with the
environment (i.e., communicate with sensors and actuators).
Since the control strategy could be distributed, the RTUs have
to communicate directly with each other. Technically, RTUs
often comprise different hardware components, where each
one is in charge for a specific functionality. For example, the
device consists of a main controller that executes the control
strategy and communicates with the outer world. However,
in order to access sensors and actuators, an additional I/O
device is connected via an internal bus system. This I/O device
usually contains its own, lightweight CPU and provides the
actual physical interface to connect peripherals.

While recent work in the SCADA field is focusing on the se-
curity properties of the servers (e.g., [3]), we focus on security
properties of the RTUs and their interactions. A lot of research
has been done to improve the authentication of devices and the
integrity and confidentiality of their communication. However,
even if a communication partner is authenticated, how is it
possible to ensure that it can be trusted?

Compound Level 
Control Room

Central
SCADA 
Server Client

SCADA 
Server
Site 1

SCADA 
Server
Site 2

Device Level 
(RTUs, PLCs, ...)

RTU RTU
PLC

Composed of different components

Bus-Level
(Sensors, Actuators, ...)

Site 1 Site 2

Fig. 1. Overview of an exemplary SCADA system which is used to control
power plants at different locations

According to the Trusted Computing Group (TCG), a
trusted system is a ’device that will behave in a particular
manner for a specific purpose’ [4]. Similarly, the integrity
property of a computer system is seen as the guarantee, that the
system will perform as intended by the creator [5]. Therefore,
one can trust a system if we trust the initial system state and
we can ensure that its integrity is not violated.

In this work, we examine the question of how integrity can
be ensured in such distributed systems. Since integrity cannot
be ’measured’ directly, other properties that reflect the integrity
of sub-systems have to be found. These properties have to be
measureable and verifiable. The first part of our contribution
is a classification on how integrity can be verified (locally and
remotely) and what types of properties could be used (static
and dynamic) based on patterns. As a next step, we identify
such properties for distributed control systems on different
system levels, such as bus-level, device-level and compound-
level. On bus-level, we plan to use statistical analysis of
sensor data, which has already been done in previous work.
On device level, we propose a new attestation method that
uses privileges of software components as integrity property
to overcome common problems of integrity attestation. For
compound-level, we plan to exploit the distributed nature of
control devices that work in the same environment to verify
whether specific behaviours of single subsystems reflect an©2015 IEEE

©From Supplementary Volume of the Proceedings of the 46th IEEE/IFIP Dependable Systems and Networks Workshops (DSN), June
2016.
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integer subsystem state. Additionally, we propose methodolo-
gies and tools for the development and manufacturing process
that enable the integrity checks in the further life-cycle. In
order to simplify the integrity checks, the system has to
be carefully designed, especially concerning the principle of
least privilege and privilege separation. Moreover, a unified
production process for all types of devices and components
enables a secure provisioning of secrets like private keys that
have to be in place later on.

Section II describes the pattern-based classification. In Sec-
tion III, how we want to ensure the overalls system integrity
and which properties we use for different system levels. Sec-
tion IV shows supportive methods we propose for earlier parts
of the system lifecycle (development and manufacturing) and
Section V sums up the work and describes future directions.

II. CLASSIFICATION OF INTEGRITY VERIFICATION

There are different attributes to classify integrity checks
in distributed systems. During our research, we investigated
two dimensions concerning the entity of verification and the
frequency of the measurements..

Regarding the verification entity, we identified two patterns
[6]. INTEGRITY PROTECTION adds the ability to enforce a
policy that protects the system from behaviour that would
violate its integrity. INTEGRITY ATTESTATION (also known as
’Remote Attestation’) is used to prove the system’s integrity
state to a remote system. In both cases, the integrity of a sys-
tem A is ’measured’ somehow. For INTEGRITY PROTECTION
implementations, these measurements are checked against a
policy on the same system. The system A thus enforces its
own integrity. On the other hand, INTEGRITY ATTESTATION
implementations send this measurements to a remote system B.
In this case, B verifies the integrity of A by checking whether
the measurements comply to B’s policy for A. In this case, B
verifies the integrity of A. This can be done periodically or
event-based (for example prior to normal communication).

However, integrity cannot be ’measured’ directly. Therefore,
one has to find system properties that reflect the integrity of the
overall system when checked against a policy (e.g., the hash of
an executed software module has to be signed by the software
vendor). In this work, we denote such properties as ’integrity
properties’. Using such properties is only an approximation
because they always only reflect a sub-set of the overall system
integrity. They thus have to be chosen carefully in order to fit
given integrity requirements.

Similarly to the verification entity, we plan to document
two patterns, STATIC INTEGRITY PROPERTIES and DYNAMIC
INTEGRITY PROPERTIES, as classification regarding their
measurement frequency. STATIC INTEGRITY PROPERTIES do
not change during execution of the system and are thus only
measured once (i.e., before the execution of the measured
subsystem). One example would be the hash of an executed
binary that can be verified to detect malicious modifications
of the executable. DYNAMIC INTEGRITY PROPERTIES reflect
the behavior during execution of the system or usage of the
data. Therefore, they have to be measured (and also verified)
continuously. The access to critical system functions is one
example of such properties.

Based on these patterns, we can classify integrity verifica-
tion for distributed systems into 4 segments. Secure Boot, for
example is INTEGRITY PROTECTION based on STATIC IN-
TEGRITY PROPERTIES. Another example is remote attestation
with Integrity Measurement Architecture (IMA) [7]. Here, IN-
TEGRITY ATTESTATION based on STATIC INTEGRITY PROP-
ERTIES is used.

This classification is used as foundation for further discus-
sions of integrity properties in our work. The pattern-based
description enables a common language and also supports
decisions whether specific properties with specific verification
points fulfill our integrity requirements.

III. INTEGRITY PROPERTIES

As illustrated in Fig.1, we consider three different levels:
The bus level consist of sensors and actuators, as well as the
physical world. The second level is the device level. Here, the
interaction of different RTUs and components inside one RTU
are considered. We thus consider point-to-point connections
between devices at one side and connections between different
sites. However, at the compound-level, additional examinations
are required. Even if the direct communication partner of the
other site is trusted, the system has to ensure that the complete
remote network of systems is acting on behalf of the common
control strategy.

In common systems, an attacker may be able to gain limited
physical access to sensors and actuators, since the facilities are
spaciously. Moreover, he may have logical access to the device
network but no physical access to the RTUs or SCADA server,
since they are protected physically.

We neither consider authentication of the different devices
nor security measures on the channels (such as integrity
and confidentiality protection) here. We assume that proper
measures are in place. Therefore we have to ensure that the
required secrets (such as private keys and certificates) are
distributed securely. Moreover, we do not consider the bus
level in this work. A lot of research has been done in the field
of data veracity [8]. Here, the trustworthiness of sensor data is
ensured based on the correlation entropy in a cluster of related
sensors. In our work we thus focus on device and compound
level.

A. Device Level

As mentioned before, in our real world scenario we have
to consider component compositions that form one RTU, as
well as the connection between devices at this level. From
a security point of view, both types are basically computing
platforms that are connected via a network bus (e.g., Ether-
net). Therefore, we only consider inter-device communication
because the same technologies can be used for the internal
components. Fig.2 shows the basic integrity measures at device
level. To achieve INTEGRITY PROTECTION, each device uses
secure boot and sandboxing (if applicable). We thus use static
(i.e., hash values of the executables) and dynamic (i.e., the be-
haviour) properties to ensure the integrity. These technologies
are well known and state of the art.

However, RTUs also have to verify the integrity of potential
communication partners. In today’s systems, remote attestation
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Fig. 2. Overview of the integrity verification at device level. While we can use
stat-of-the-art technologies like Secure Boot and Sandboxing for INTEGRITY
PROTECTION, we had to come up with a feasible solution for INTEGRITY
ATTESTATION.

is used to achieve such a verification. One device (prover)
proves its integrity by sending a signed representative mea-
surement to another entity (challenger). Similar to secure boot,
common methods use hash values (binary measurements) of
all files that comprise a device’s configuration (e.g., executed
programs and their configuration files) to represent the overall
integrity (e.g., IMA [7]). The challenger thus has to know a
reference hash value of all ’good’ executables. Due to the high
amount of possible RTU configurations and different versions
of single programs, this method is not feasible in distributed
control systems. Every time one device is updated, all other
devices would have to update their references too.

In order to tackle this problem, we proposed PRIvilege-
Based remote Attestation (PRIBA) [9]: The prover may exe-
cute many services that are not of interest for the challenger
(e.g., Service 1.1 in Fig.2). When such a service does not
have the privileges or permissions to harm the integrity of
the targeted service, the challenger does not have to know a
reference measurement. The list of binary measurements is
thus reduced to the number of targeted services. Additionally,
the prover has to provide a ’measurement’ of the privileges
of all other services. The challenger checks this measurement
against a policy and decides whether the prover’s integrity
is intact. We have investigated different methods of privilege
measurements and propose a simple check for library calls as
most efficient way.

However, the implementation of PRIBA raises some chal-
lenges. In order to identify and analyze them, we integrated
PRIBA into IoTivity, an existing Internet of Things (IoT)
communication stack. IoTivity offers a flexibility and multiple
platform support, which enables different experiments with
low effort. The integration of our method into the actual RTUs
is planned later.

In order to implement PRIBA, we had to build a framework
[10]: First, the privilege measurement unit requires ‘measure-
able’ accesses to privileged system functions. Therefore, we
introduced an API with appropriate access granularity (API
calls have to reflect privileges, e.g., access to system files).
Furthermore, the system has to ensure, that these measured
accesses are not circumvented at runtime. This is ensured by
a sandbox. In order to enable a simple integration, we designed
the introduced API in a way that enables automated gen-
eration of sandbox-policies at service-startup. The privilege-

measurement unit is the Root of Trust for Measurement
(RTM) for this type of measurements. However, privilege
measurements of this component as well as other low-level
components cannot be taken. Therefore, we integrated the
existing IMA [7] implementation for Linux into our framework
to enable binary-measurements.

For verification, we introduced a simple policy that enables
the decision whether the communication partner’s integrity is
intact. However, through the IMA-based measurements, the
reference configuration lists may be too big and too dynamic to
be handled in a network of constrained devices. Therefore, we
also implemented a property-based attestation scheme, where
measurement lists are signed by Trusted Third Parties (TPP).
Additionally, we use the authentication mechanisms of the
underlying communication protocol to integrate authentication
of the device hardware.

To recap, we combined concepts from binary-, property-
and privilege- remote attestation and integrated it into IoTivity.
The architecture is transparent and hides the complexity of
remote attestation from the overlying application. Addition-
ally, we provide a testbed that enables the investigation of
further attestable properties for future devices and systems.
We showed that the architecture enables a simplified bootstrap-
ping of trusted environments. Compared to traditional remote
attestation systems, the maintainability and scalability of the
trusted relations is improved. This is achieved by reducing
the complexity of configuration measurements. This reduces
the memory and communication overhead significantly for
systems with a high number of services or devices.
B. Compound Level

While the checks on device level verify the integrity of the
device’s configuration, we also have to ensure the integrity of
control decisions. Recent studies have shown that one effective
attack vector is to get logical access to the control clients and
perform malicious actions[11]. While such attacks have to be
prevented in the infrastructure of the plant operators, we plan
to exploit the distributed nature of the system to verify at least
some integrity properties of control commands.

One example in the domain of hydro-electric power plants is
shown in Fig.3: An adversary has access to the SCADA client
and tries to perform a command with potentially enormous
impact (e.g., open the gates to flood a valley). However,
before executing the command, the control system gathers
information from a third party. In this case, it may ask other
downstream plants about their water level. Only if their level
is low enough to compensate the released water, the command
is executed and the gates are opened.

In contrast to other security protections, such a system has
to be configured by domain experts, not security experts. They
map domain properties to DYNAMIC INTEGRITY PROPERTIES
that are used for INTEGRITY ATTESTATION. Therefore, we
plan to introduce a Domain Specific Language (DSL) that
enables domain experts to formulate and analyze different
policies for their specific use-cases.

IV. LIFECYCLE SUPPORT

The proposed approaches raise requirements for the devel-
opment and production phase of the system. In order to ensure
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Fig. 3. One exemplary verification of the integrity of control decisions
based on domain specific properties. The plant at site 1 gathers additional
information from other plants and denies the execution of a command that
may harm system’s safety.

their feasibility, we have to provide supportive methodologies
and tools for these lifecyle phases.
A. Support Separation of Privilege

An efficient implementation of PRIBA is only possible,
when the different components and services running on a
system are separated as strictly as possible. Therefore we plan
to help to automate the process of privilege separation in early
system design phases.

As a first step, we proposed a metric that quantifies software
components by the assets they are able to access [12]. Based
on a component model of the software architecture, it is
possible to identify trust domains and add filter components
that split these domains. We show how the integration of the
methodology into the development process of a distributed
manufacturing system helped us to identify critical sections
(i.e., components whose vulnerabilities may enable threats
against important assets), to reduce attack surface, to find
isolation domains and to implement security measures at the
right places.

Based the data-flow flow graph and the information, which
components have to access which assets, we plan to automated
the process of finding the optimal position of filter components
and thus minimizing the size of high-privilege trust domains.
B. Support for the Provisioning Process

Since all of the proposed methods rely on asymmetric
cryptography for authentication and message integrity veri-
fication, we have to provide a process that securely distributes
secrets such as private keys to a variety of devices. Here,
two main challenges exist: First, even the manufacturer may
be (partly) compromised. We thus have to ensure that the
access to private key material is as hard as possible during
the production process. Moreover, a high number of different
and customized devices has to be built and provided with
key materials. Therefore, we plan to introduce a model-based
production and test system that enables an easy adoption of a
secure provisioning process to the variety of produced devices.

V. ONGOING ACTIVITIES AND FUTURE WORK

In summary, we plan to investigate properties that reflect
the integrity of distributed control systems at different system

levels. Moreover, we want to use the identified properties to
integrate integrity verification into actual control devices used
in hydro-electric power plants. We already finished a clas-
sification scheme for such properties and identified software
privileges as property that enables remote attestation in our
system.

As a next step, we want to finish the automated privi-
lege separation process and investigate how to find optimal
positions of filter components based on the dataflow graph.
Moreover, based on the already finished implementation of
our production tool, we have to analyze different approaches
for the provisioning-approach.

The second big workpackage is the analysis of the
compound-level integrity properties. Here, we have to
investigate what kind of policies have to be formulated and
provide a DSL that enables their generation. Moreover, we
have to provide a framework that enforces the policies and
examine whether the proposed approach is feasible in terms
of communication and time overhead.

Finally, we plan to integrate a proof-of-concept implemen-
tation into a demonstrator for next-generation control systems
that enables run-time reconfiguration of the system based on
the identified integrity violations [13].
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