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Abstract

The aim of this thesis was the investigation of new pathways leading to long-wavelength ab-
sorbing phosphorescent metalloporphyrins suitable for oxygen sensing. In this work a new
phthalocyanine dye based on a carbazole precursor was synthesized. This dye showed a
significantly red shifted absorption as well as emission spectra compared to the reference Zinc-
tetra-tert-butyl-phthalocyanine (Zn-TtBu-Pc). Furthermore, two new benzoporphyrin dyes
could be synthesized via Friedel-Crafts acylation of platinum(II)/palladium(II) meso-tetra(4-
fluorophenyl)-tetrabenzoporphyrin (Pt/Pd-TPTBPF). These two dyes show similar luminescent
lifetimes and increased quantum yields compared to the references platinum(II)/palladium(II)
meso-tetraphenyl-tetrabenzoporphyrine (Pt/Pd-TPTBP). Additionally, platinum(II) meso-
tetra(4-tert-butyl-phenyl)-tetrabromobenzoporphyrin (Pt-TPTtBuBPBr) was modified by Sono-
gashira coupling at the β-position leading to a new Pt(II) porphyrin complex. For the formation
of J-aggregates the synthesis of highly soluble porphyrin and phthalocyanine dyes was attempted.
Moreover the modification of a phenanthroline based chelate complex (Pt(Ph2N2O2)dpp) was
attempted by the introduction of a push-pull moiety at the N2O2 chelate ligand, which was
expected to lead to a bathochromic shift of absorption spectra and an increased brightness.
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Kurzfassung

Das Hauptziel dieser Arbeit war die Erschließung neuer Synthesestrategien von langwellig-
absorbierenden und phosphoreszierenden Metalloporphyrinen, welche für Sauerstoffmessungen
anwendbar sind. Im Zuge dieser Arbeit wurde ein neuer Phthalocyanin Farbstoff, welcher ein
modifiziertes Carbazol als Hauptbaustein besitzt, synthetisiert. Im Vergleich zu Zink-tetra-
tert-butyl-phthalocyanin (Zn-TtBu-Pc) verfügt dieser Farbstoff über ein signifikant langwellig
verschobenes Absorptions- sowie Emissionsspektrum. Mittels Friedel-Crafts Acylierung von
Platin(II)/Palladium(II) meso-tetra(4-fluorophenyl)-tetrabenzoporphyrin (Pt/Pd-TPTBPF)
konnten zwei neue Benzoporphyrin-Farbstoffe synthetisiert werden. Diese zeigen im Vergleich mit
den jeweiligen Platin(II)/Palladium(II) meso-tetraphenyl-tetrabenzoporphyrin (Pt/Pd-TPTBP)
Referenzen ähnliche Phosphoreszenz-Lebenszeiten, sowie erhöhte Quantenausbeuten. Zusätzlich
wurde Platin(II) meso-tetra(4-tert-butyl-phenyl)-tetrabromobenzoporphyrin (Pt-TPTtBuBPBr)
via Sonogashira Kupplungsreaktion an den β-Positionen des Porphyrinkerns erweitert. Für die
Bildung von J-Aggregaten wären gut lösliche Porphyrin- und Phthalocyanin-Farbstoffe getestet
worden. Zuletzt wurde versucht ein Phenanthrolin basierter Chelat Komplex (Pt(Ph2N2O2)dpp)
mittels der Einführung einer Donor-Akzeptor Gruppe am N2O2 Chelat Liganden zu erweitern.
Diese Modifikation soll das Absorptionsmaximum des Komplexes weiter in Richtung des roten
Bereichs verschieben, sowie dessen Helligkeit erhöhen.
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1 Introduction

Oxygen is an essential agent for life on our planet. Thus measurements of this chemical species
are very important in many fields of our daily life.
On one hand, there are some classical methods: Winkler titration [1] and amperometric mea-
surement [2]. But also measurement via thermoluminescence [3] or via chemiluminescence [4]
are possible.
The Clark electrode, for example, is robust and commonly used. Nevertheless it has some
disadvantages. It is bulky and the traditional methods are limited by oxygen consumption
during the utilization time, comparatively long response times and electrical interferences. The
electrode can also be poisoned by sample constituents.
On the other hand, oxygen concentration can also be measured optically with the help of
sensors. On the contrary optical oxygen sensors do not suffer from electrical interferences, have
the advantages of selectivity, are stable against ambient or scattered light, mostly inexpensive
and easy to miniaturize, minimally invasive or non-invasive [5], can be used as films, fibers
and even nanoparticles. Nanoparticles have usually an improved photostability and have less
toxicity than molecular dyes [6].
Nanoparticles furthermore have very small dimensions so that they can enter cells [7] to measure
e.g. the oxygen concentration in a living cell [8]. Another application for an optical oxygen
sensor in the clinical field can be the analysis of gas in the bloodstream and the vascular system
of a patient [9, 10]. Furthermore oxygen sensing in breath gas (respiratory diagnosis) and
imaging of oxygen in skin can be performed [11]. Further fields of application can be found in
environmental and marine analysis, molecular biotechnology, bioprocess control (contactless
sensing in a bioreactor), food packaging and industrial production monitoring like the brewing
industry or wine production [12]. Additionally, optical oxygen sensors can be used for difficult
applications where other systems like the electrochemical sensors are not suitable. Here one has
to mention fiber optic sensors which can measure over large distances and in spite of strong
electromagnetic fields. Optical oxygen sensors are also suitable for sensing over large areas
(skin, aerodynamics, marine ground profiles) [11].

The most common class of optical oxygen sensors is based on Pt(II) or Pd(II) metalloporphyrin
macrocycles. These have some advantages such as good sensitivity and strong phosphores-
cence which will be described later. Furthermore different classes of porphyrins exist such as
metalloporphyrins, benzoporphyrins, naphthoporphyrins and even hybrid classes, which have
very promising optical properties such as strong phosphorescence, large Stoke’s shift and high
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1 Introduction

molar absorption coefficients [12]. Due to many different synthetic modifications properties like
solubility, photostability, absorption wavelength, etc can be tuned, enabling various fields of
application. Some examples are photovoltaic and solar-cells[13], technology, medicine [14] and
catalysis [15].

Phthalocyanines have a similar ground structure as porphyrins and are also very variable in
their design. Additionally they show high chemical and thermal stability and are even more
photostable than benzoporphyrins [12] [16]. Their spectral properties make them interesting
for certain application fields in industry and biomedicine. Some of them are already applied
in nonlinear optics [17, 18], gas sensing [19], catalysis [20], liquid crystals [21] and photo-
sensitization [22, 23]. Phthalocyanine derivatives have also several applications as sensitizers in
photodynamic therapy (PDT).
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2 Theoretical Background

This chapter is mostly based on references [24–27]. Other references will be cited separately.

2.1 Luminescence

Luminescence is the emission of photons (ultraviolet, visible or infrared) which is based on
relaxation of electronically excited molecules. By a source of energy an electron is excited
from its ground state (S0) to an electronically higher level (excited state, e.g. S1). After this
it relaxes from its excited state to its ground state. Due to this the electron loses energy
either by electromagnetic radiation or by heat. This generated radiation is called luminescence.
The most important type of luminescence is photoluminescence which occurs after excitation
with light. It is one possible effect emerging from the interplay of light and matter. Specific
cases of photoluminescence are either called fluorescence if the relaxation is spin-allowed or
phosphorescence, a spin-forbidden process (described in section 2.1.5 on page 7). These two
cases are not the only pathways of de-excitation processes after the absorption of a photon by a
molecule. Also internal conversion (IC), intersystem crossing (ISC) and intramolecular charge
transfer or conformational changes are potential pathways. A molecule that absorbs a photon
from the VIS range is usually called dye or luminophore.

2.1.1 Absorption of light

A molecule in its ground state can absorb a photon of discrete energy (very fast process takes
about 10−15 s). This energy is equal to the energy difference between its ground state and its
excited states. Both orbitals involved are the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO). Thus an electron from the LUMO is lifted
to the energetically higher HOMO. Generally this excitation can happen from a sigma (σ), pi
(π) or non-bonding orbital (n) to their appropriate antibonding orbitals σ∗ or π∗. This is the
common order for these electronic transitions:

n→ π∗ < π → π∗ < n→ σ∗ < σ → π∗ < σ → σ∗ (2.1)

Usually the raise of a sigma electron needs plenty of energy (light from the far UV) so these
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2 Theoretical Background

transitions are less important in spectrometric analysis. For transitions from n or π to π∗

generally energy from light in the UV-visible light is needed. The absorbane at a specific
wavelength can be expressed with the Beer-Lambert Law:

A = log

(
I0
I

)
= ε · c · d (2.2)

A absorbance
I0/I intensity of light entering/leaving the absorbing medium
ε molar absorption coefficient

[
l

mol∗cm

]
c concentration of absorbing species

[
mol
l

]
d thickness of absorbing medium [cm]

In a fully occupied orbital there are two electrons with opposite spins (+1
2 and −1

2). If one
of these electrons is transferred to an energetically higher molecular orbital (MO), the spin of
this electron is not changed in principle, so that the sum of the spins is still zero.

Whether the multiplicities (M = 2S + 1) of the ground and the excited state are 1, both are
named as singlet state (e.g. S0, S1). If it occurs that the spin of an electron changes within the
conversion so that in the energetically higher state are two electrons with the same spin. Due
to this, the total spin quantum number is now 1 and the multiplicity 3. Such state is called
triplet state (T0) because it corresponds to three states of equal energy.

2.1.2 Franck-Condon principle

In addition to the named references in section 2.1 sections 2.1.2 - 2.1.4 are also based on
reference [28]. Corresponding to the Born-Oppenheimer approximation the movement of the
nuclei is very low compared to the fluctuation of electrons. The promotion of an electron from
its ground state to its excited state takes about 10−15 s, whereas molecular vibrations require
10−10 − 10−12 s.

Therefore electronic transition nuclei do not change their position, so that the atoms have the
same interspace between each other in both states. According to the Boltzmann distribution,
most of the molecules are in the lowest energy-level of the ground state at room temperature.
As figure 2.1 on page 5 shows, the energy curve (y-axes) as function of nuclear configuration
(x-axes). This function describes a vertical transition from ground to excited state.
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Figure 2.1: Franck-Condon Principle

2.1.3 Characteristics of fluorescence emission

Selection rules

There are two major selection rules for electron transitions: Transitions can be spin-forbidden and
symmetry-forbidden which decreases their probability of occurrence. Spin-forbidden transitions
are between states of different multiplicities (e.g. from singlet to triplet state and vice versa).
Transitions can, in addition to that, be forbidden for symmetry reasons. Here it depends on
the overlap and the symmetry of the involved orbitals. Based on molecular vibrations some
symmetry forbidden transitions can become possible.

Perrin-Jablonski diagram

The Perrin-Jablonski diagram (see figure 2.2 on page 6) shows possible processes. Absorption
and the so called intrinsic pathways of de-excitation which are intersystem crossing, internal
conversion, fluorescence, phosphorescence, delayed phosphorescence and triplet-triplet transi-
tions.
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Figure 2.2: Jablonski diagram

The ground state is titled as S0, excited singlet state as S1, or S2, excited triplet state as T1.
According to Hunds rule, the triplet state has a lower energy than the singlet state. Each
state has its own vibrational levels. As mentioned before, absorption is a transition of an
electron from S0 to S1/S2. After the absorption of a photon the electron can undergo several
de-excitation processes. These can either be radiative or non-radiative.

2.1.4 Non-radiative processes

Internal Conversion (IC)

IC occurs between states of the same multiplicity (spin-allowed) and from a higher to a lower
vibrational level (e.g. S1 to S0). This action can be followed by a vibrational relaxation for the
lowest vibrational level of the particular lower electronic state. IC from S2 to S1 is observed
with a time-scale of about 10−13 − 10−11 s. The energy gap between S1 and S0 is higher and
therefore IC between these two states is slower so other transitions like fluorescence and ISC
with following phosphorescence can be observed.

Intersystem Crossing (ISC)

ISC is a transition between two isoenergetic vibrational levels of electronic states with various
multiplicities (e.g. S1 to T1). Subsequent vibrational relaxation brings a molecule to its lowest
vibrational level of T1. As mentioned in 2.1.3, a change of multiplicity is a change of spin and
therefore this transition is spin-forbidden. Spin-orbit coupling can be large enough to allow
ISC. This is favored at the presence of heavy atoms like Br or Pb. ISC can compete with other
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phenomena like fluorescence and internal conversion because its time-rate is with 10−7 − 10−9 s

fast enough.

reverse Intersystem Crossing (rISC)

If the energy gap between T1 and S1 is small, another process can occur besides IC and
phosphorescence. This process is called reverse intersystem crossing. Due to the fact that this
transition is thermally activated its occurrence increases with increasing temperature. But for
reaching the S1 level there is another possibility; the triplet-triplet annihilation (see delayed
fluorescence).

2.1.5 Radiative processes

Fluorescence

The emission of a photon during the transition from S1 to any vibrational level of S0 is called
fluorescence. Its characteristics do not depend on the excitation wavelength as this process
results from the emission of S1. Usually emitted light has a lower energy than the light which was
needed for absorption so that the fluorescence spectrum is shifted bathochromically comparing
to the absorption spectrum. This difference between absorption and fluorescence is called Stokes
shift. The emission of a photon takes about 10−9 s.

Phosphorescence

Phosphorescence is a radiative de-excitation process, which can only occur after ISC. This
requires a transition from T1 to S0. During the transition there is a change of multiplicity;
therefore it is a spin-forbidden process and a slow one (10−6 − 1 s). Nevertheless it is often
observed at low temperatures and in a rigid matrix. Due to spin-orbit coupling which is favored
by heavy atoms, this transition can be observed. For the specific compounds at RT or 77K the
spectrum of phosphorescence is located at longer wavelengths than the fluorescence spectrum.
This is due to the fact, that the energy of the lowest vibrational level of T1 is lower than the
energy of S1 (Hunds rule).

Delayed Fluorescence

There are diffrent types of delayed fluorescence. Similar to fluorescence the E-type of delayed
fluorescence is also from S1 to S0, but it can only happen after ISC (S1 to T1) and afterwards
reverse ISC (rISC, T1 to S1). The spectrum is identical to that of fluorescence but the lifetime
of the luminescence is significantly longer than in normal fluorescence. The efficiency of rISC
rises with increasing temperature. Also the energy gap between S1 and T1 has to be very small.
Another type of delayed fluorescence is triplet-triplet annihilation (P-type, spin-allowed). For
this two excited molecules (T1) have to collide and thereby one of them is transferred to the S1

state while the other molecule relaxes to its ground state.
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2.1.6 Lifetime

If a molecule absorbs a photon, it rises from S0 to an excited state like S1. After that it can
undergo radiative (e.g. fluorescence) or non-radiative deactivation processes (IC or ISC). This
happens not immediately, so that the molecule remains a specific time in its excited state
(e.g. S1 or T1). This time is called lifetime of the excited state τ . The rate constant k of this
deactivation processes can be described by kinetics of the first order.

k = knon−radiative + kradiative (2.3)

−d[A∗]
dt

= k

[A∗] (2.4)

[A∗] concentration of species A in excited state
[
mol
l

]
t time [s]
kradiative/kr rate constant for radiative deactivation from S1 to S0

τs = t

k
(2.5)

τs lifetime of excited state

The integration of the differential equation (2.4) leads to the resulting equation (2.6).

[A∗
t ] = [A∗

0] · e− t
τ (2.6)

From the last equation we can deflect that the fluorescence intensity decreases exponentially
if there is no excitation anymore. Usual lifetimes are for S1 10−10 − 10−7 s and for T1 about
10−6 − 1 s.

2.1.7 Quantum yield

In reality not every excited molecule emits a corresponding photon by a radiative transition
due to the fact that non-radiative deactivation processes compete with fluorescence and phos-
phorescence. This is defined by the fluorescence quantum yield ΦF . The quantum yield of
fluorescence is the quotient of emitted photons to absorbed photons. ΦF can be described with
the following equation:

ΦF = kr · τs = τs
τr

(2.7)

ΦF quantum yield
τr radiative lifetime
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If the temperature increases, the fluorescence quantum yield usually decreases because non-
radiative transitions occur easier with increasing temperature (thermal agitation).

2.1.8 Luminescence quenching

Quenching is a bimolecular radiationless de-excitation process involving an excited molecule
(M∗) and a quencher (Q). Possible photophysical interactions are collision with a heavy atom
or paramagnetic species, excimer/exciplex formation, proton, electron or energy transfer. Two
main quenching types will be described in the following. These two are called static quenching
and dynamic quenching.

Q

no emission

emission

static quenching

Q

Q

no emission

emission
no emission

Sphere of effective quenching

Figure 2.3: Dynamic and static quenching mechanism

Static quenching

For static quenching a non-fluorescence complex MQ has to be formed. This can happen on two
main pathways.Either this complex is formed by M and Q in their ground states or it occurs
because of the existence of a sphere for efficient quenching. The second process is possible if
the distance between Q and M∗ is small enough for quenching (see figure 2.3). Nevertheless
these two pathways decrease the concentration of the luminophore. Static quenching does not
affect the lifetime of the uncomplexed fluorophore M by quencher in contrast to the dynamic
quenching.
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Dynamic quenching

Here the quencher Q collides with the luminophore in its excited state M∗ and, due to an
energy transfer from M* to Q, the luminescence is quenched. Dynamic quenching is a diffusion
controlled non-radiative process. A longer lifetime of the excited state increases the probability
of quenching. The rate constant is lifetime-dependent and the lifetime of the luminophore is
reduced in presence of a quencher molecule. If Q and M* are identical molecules, the process is
called self-quenching.

2.1.9 Stern-Volmer kinetics

The kinetics of dynamic quenching can be described by the Stern-Volmer-equation (see equation
2.8) where the I0

I and τ0
τ are both described by the Stern-Volmer equation. These two quotients

increase, in an optimal case, linear to the concentration of Q and KSV describes the slope of
the curve. This equation is almost always valid for measurements in solution.

I0
I

= τ0
τ

= 1 + kq · τ0 · [Q] = 1 +KSV · [Q] (2.8)

I0, τ0 fluorescence intensity and decay time in absence of Q
I, τ fluorescence intensity and decay time in presence of Q
[Q] concentration of quencher molecule
KSV Stern-Volmer constant

2.1.10 Two-Site Model

Equation 2.8 is suitable for solutions but for further applications it is mostly necessary to
embed the dye into a matrix. Here, not all dye molecules are identical accessible and therefore
there are different domains in a sensor matrix. Due to this fact there are different quenching
coefficients. Therefore Stern-Volmer plots show superimposed non-linear curves. For these
systems it is necessary to include a second Stern-Volmer constant K2

SV as well as a factor f
which describes the dye distribution between the different sections (see 2.9).

I

I0
= f

1 +K1
SV · pO2

+ 1− f
1 +K2

SV · pO2
(2.9)

Here f is the fraction of the total emission for the first site and K1
SV and K2

SV are the Stern-
Volmer quenching constants (equal to KSV in equation 2.8) for the two sites. The two sites are
representing two different environments in the sensor matrix [29].
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2.2 Optical sensors and optical oxygen sensors

Figure 2.4: Functional principle of a sensor

In 1990 Wolfbeis defined the term chem-
ical sensor as the following: “Chemical
sensors are small-sized devices compris-
ing a recognition element, a transduction
element, and a signal processor capable of
continuously and reversibly reporting a chemical concentration.” [30] Basically a sensor consists
of the transduction platform and a following signal processing which yields the measured analyte
concentration (see figure 2.4). In optical sensors the transducer has typically its specific optical
transduction (e.g. absorption, fluorescence or phosphorescence) [31].
Optical sensors can be divided roughly into two categories: intrinsic and extrinsic sensors.

Intrinsic sensors monitor the optical characteristics of the analyte. Extrinsic optical sensors
operate differently; here the sensors have to produce a signal resulting of an interaction between
analyte and indicator because the analyte itself does not provide an optical signal which can
be detected. This interaction can either be of physically or chemically nature. The signal is
translated from a chemical/physical one to an electric one. Optical oxygen sensors do work
by the principle of dynamic quenching which can be described by Stern-Volmer kinetics. Here
the luminescence of the dye (fluorescence or phosphorescence) is quenched by molecular triplet
oxygen. The oxygen concentration can be measured by intensity or lifetime based measurement
techniques. To avoid cross-sensitivity to other analytes, the sensing material is dissolved in a
polymer (matrix, permeable for oxygen) [5], so that the thin polymer layer acts as a barrier for
ions or metals. Because of this there is less contamination by disturbing compounds. Moreover,
(nano)particles can be used instead of a polymer film.

2.2.1 Advantages of optical oxygen sensors

As mentioned in the introduction, there are some other techniques to measure oxygen-
concentration (e.g. Winkler tiration, Clark electrode). There are various reasons why optical
oxygen sensors have advantages on other systems; on one hand it is not a diffusion-controlled
technique such as the Clark electrode [2]. On the other hand e.g. a titration (Winkler titration)
[1] is very slow and time-consuming; this is not the case with optical oxygen sensors. Neverthe-
less the Clark electrode is the conventional method but is more and more replaced by optical
oxygen sensors. Also the classical Clark electrode is not suitable for measurement in very low
oxygen concentrations. The most important advantage of an optical oxygen sensor is that they
do not consume oxygen which makes them applicable for trace oxygen measurements [12] and
are not affected by electric interferences [32]. Also they are inexpensive and can be miniaturized
easily. This extends their fields of application to noninvasive and remote measurements. The
sensitivity of optical oxygen sensors can be tuned by variation of dye and corresponding polymer
[33].
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2.2.2 Principle of an optical oxygen sensor

resulting

Signal

quencher molecule

luminophore

Figure 2.5: Principle of an optical oxygen sensor

The principle of optical oxygen sensors is based on a process of dynamic quenching (see 2.3
on page 9) of the used luminophore with oxygen (see figure 2.5). Generally the efficiency of
dynamic quenching is depending on the lifetime of the excited state (see section 2.1.6 on page
8). Usually the luminophore is dissolved in a polymer matrix which is permeable to oxygen
(see section 2.3.1 on page 14), so oxygen- and dye-molecules are able to interact.

Moreover the matrix serves as a permeation-selective barrier; thereby no other undesirable
species can permeate inside to affect. As explained above, quenching results in a decrease of the
luminescent lifetime. The mathematical interrelationship between lifetime and concentration
is described with the Stern-Volmer-equation (see equation 2.8 on page 10). This equation is
valid for the ideal case with totally homogeneous environment (dye solution). In most polymers,
this is not the case. For this scenario another equation (two-site model, see 2.9 on page 10) is
suitable which includes the effects of a heterogeneous environment.

Sensitivity of an optical oxygen sensor

Another important factor is the sensitivity of a sensor. Two main factors are very important
for the development of a new oxygen sensor. First, the luminophore itself is very fundamental
because the lifetime and the luminescence depend on its structure and type of this molecule.
Generally longer τ leads to higher sensitivity. In addition to this, the gas permeability of the
chosen matrix (see section 2.3.1 on page 14) is also important to determine the characteristics
of the sensor. According to the desired properties of the sensor these two building blocks can
be tuned so that the sensitivity is optimal for a specific application.
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2.2.3 Measuring methods

Different methods of read out exist to measure oxygen concentrations. The first method
is measuring of the luminescence intensity. This technique suffers from several drawbacks.
Photobleaching of the dye, different dye concentrations or scattering and light source fluctuations
affect the results. To overcome these drawbacks luminescence lifetime based read out methods
are used. This can either be performed in time or in frequency domain. Here no special
ratiometric fluorophores are necessary and the measurement is independent of intensity or
fluorophore amount. By using the first method the dye is excited by a pulse of light. Then
the time dependent decay is measured whereby the lifetime can be calculated. As example of
frequency domain measurement method phase-fluorimetry (schematically shown in figure 2.6)
is the most important measurement method. The used light for excitation is modulated at a
specific frequency. The emitted light of the dye shows the same frequency but with a certain
delay compared to the excitation light. This phase difference can be measured and is called
phase shift φ.

time

in
te

n
s
it
y phase shift

Figure 2.6: Principle of phase-fluorimetry

Equation 2.10 shows the relationship between τ , φ and f:

τ = tan(φ)
2πf (2.10)

φ phase shift [°]
τ phase shift lifetime [s]
f excitation frequency [Hz]
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2.3 Matrices

A main assignment of a matrix is to prevent the luminophore of leaching. This can either be
attained by covalent binding of the dye to the matrix or just by dissolution of a hydrophobic
dye in a hydrophobic matrix. Another important function is to act as a solvent for luminophore
and additives which allows diffusion. Also the selectivity and sensitivity of the sensor can be
regulated by choosing different matrices.
A matrix prevents the luminophore against light interferences [34]. The speed of bleaching

of the luminophore can be slowed down by using different matrices/solvents. In many cases
the sensor, is fixed at the end of an optical fiber but also planar foils for imaging with a CCD
camera are common. Usually these are either sol-gel glasses [35] like SiO2 or TiO2 or polymers
like PS, PMMA and as plasticizer PVC.

The response time for sol-gel matrices are significantly lower [24]. Nevertheless other groups
of polymers have also a very important role in this field. Silicone polymers, organic glassy
polymers, fluoropolymers and cellulose derivative polymers can act as well as matrices in optical
oxygen sensing [36].

2.3.1 Matrix permeability

In any case the chosen matrix must be permeable to oxygen to tune sensitivity of a sensor.
This property is given by the oxygen permeability coefficient P [cm3 (STP) cm−2 scmHg] (see
equation 2.11).

P = S ·D (2.11)

P is the product of diffusion constant D [cm2s−1] and solubility S [cm3 (STP) cm−3 cmHg] [5].
These data for some usual matrices are given in table 2.1.

Table 2.1: Different properties of polymers for optical oxygen sensing
Polymer P · (10 13) D · (10 6) S · (10 6) reference
poly(1-trimethylsily-1-propyne) 7700 47 170 [37]
poly(dimethylsiloxane) 695 40 24 [38]
poly(2,2,2-trifluoroethylmethacrylate) 32 15 0.27 [39]
poly(isobutylmethacrylate) 20 - - [5]
ethylcellulose 11.0 0.64 1.73 [40]
poly(methylmethacrylate) 0.116 1.4 - [40]
cellulose acetate 0.585 - - [40]
cellulose acetobutyrate 3.56 - - [38]
polystyrene 2.63 - - [38]
poly(vinyl chloride) 0.034 - - [40]
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2.3.2 Classification and requirements of polymers

As mentioned in the previous part of this section, the dye and its additives should dissolve in
the polymer very well. The polymer should be chemically and physically/mechanically stable
and, for biological applications, non-toxic. Furthermore a polymer has to be stable at higher
temperatures and against ambient light. There should not be an intrinsic color/luminescence.
For measurements it has to be transparent in the dispositive spectral range [34].

Silicon rubbers

These polymers are very usual especially for highly sensitive sensors because of their high P and
chemical stability [5, 41]. For some poly(dimethyl siloxane)s it is reported that here oxygen has
a very high P and S (see table 2.1) [38] but most dyes tend to aggregate inside these silicone
rubbers.

Organic glassy polymers

Polystyrene, poly(methyl methacrylate), poly(isobutyl methacrylate) and poly(vinyl chloride)
belong to this group. Polystyrene is often used with metalloporphyrins and Ru(dpp)3+ [42].
The oxygen permeability coefficient and the solubility of oxygen is lower than in fluoropolymers
and silicon polymers but this group provides mechanical strength even at thin layers [5].

Fluoropolymers

This group of polymers has two significant advantages; on the one hand P for oxygen is high and
on the other hand these polymers are very resistant against irradiation and are also chemically
resistant. That is due to their strong and short C-F bonds within the molecules [5]. Also
aggregation can be prevented by fluorinated dyes.

Cellulose derivative polymers

Two main representatives are ethyl cellulose and cellulose acetate. These show usually high
mechanical strength in thin films [5]. Their properties are also described in table 2.1. Another
polymer to be mentioned here is a derivative of cellulose with tributyl phosphate (TBP) as
plasticizer because this species has a high oxygen permeability coefficient. That is why cellulose
acetate with TBP films is popular at optical oxygen sensing applications. Examples for this are
very sensitive optical oxygen sensors based on Pd2+ or Pt2+ porphyrin complexes which were
reported by Mills 1997 [33].
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2.4 Indicators for oxygen sensors

2.4.1 Characteristics of an optimal indicator

Primarily reference [12] is used for this section, all other references are provided separately.
In this chapter some important parameters an indicator should have are listed up:

• An indicator should have a large Stokes shift so that excitation and emission light can
easily be separated.

• Responsible for the brightness of an indicator are a high molar absorption coefficient and
high quantum yield. The higher the brightness of an indicator the less amount is needed
to build up a sensor. This allows the preparation of thin layers leading to short response
times, while simultaneously minimizing the risk of aggregation.

• For the sensitivity of a sensor the lifetime of an indicator dye is essential. This corresponds
to the fact that a longer lifetime of a dye molecule increases the chance of a collision with
a quencher molecule.

• The dye should have high solubility in a polymer matrix so that the luminophore is
distributed nearly homogeneously. Usually the solubility of a dye in apolar matrices can
be improved by insertion of bulky substituents like long alkyl chains.

• Another important point is the chemical and the photostability of the luminophore; e.g.
Pt(II) and Pd(II) with highly fluorinated tetra(pentafluorophenyl)porphyrin ligand are
known as one of the most photostable (due to electron withdrawing fluorine groups)
indicators reported so far [43]. This is necessary to get constant data even at high light
intensities or long measurement times.

• For biological and medical applications it is very important to use species which are
non-toxic. The toxicity of an indicator can be significantly reduced by encapsulation in a
polymer but the phototoxicity caused by singlet oxygen cannot be eliminated only partly.

• Besides these parameters shown above, an indicator should be cheap and the sensor
assembling as simple as possible.
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2.4.2 Classification of commonly used indicators

In the following two chapters several dye classes are explained which exist for oxygen sensing
applications.

Absroption-based indicators

In this class there are two groups of indicators; reversible and irreversible probes.
Irreversible setups are used e.g. in food packaging. Here the species produces a visible color

change to indicate a change in the composition of the head-space gas. For example methylene
blue is one used molecule for an irreversible application [44]. Commonly known and used
reversible systems consist of several organometallic compounds [45]. Another molecule which
can bind reversibly to oxygen is a very important one in our human body: hemoglobin is
responsible for the oxygen transport from blood to muscle cells.

Luminescent-based indicators: Polycyclic aromatic hydrocarbons

O

O

O

O

(a) perylene dibutyrate

N

N

N
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N

Ru
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2+

(b) Ru(dpp)3
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Figure 2.7: Representative
dyes for polycyclic aro-
matic hydrocarbons
and transistion metal
polypyridyl complexes

The most popular class of indicators is luminescence-based and
includes several groups. The oldest group, which should be men-
tioned here, are the polycyclic aromatic hydrocarbons (PAHs).
It consists of pyrene and its derivatives, decacyclene and other
PAHs (e.g. perylene dibutyrate see 2.7 [46]).

This group of indicators has usually short luminescent lifetimes
wherefore they should be dissolved in a very gas permeable matrix.
The disadvantage here is that the luminophore is often badly
soluble in the matrix. Nevertheless they have high quantum
yields but also low molar absorption coefficients. That is why
their brightness is relatively low and this group of indicators is
not so significant anymore.

Transistion metal polypyridyl complexes

The second group contains transition metal polypyridyl com-
plexes. Their central metal ions are usually Ru(II), Os(II) or
Re(II). Generally the indicators of this group suffer from the
fact that they are very easily influenced by temperature, that
they have just a moderate molar absorption coefficient and also
a relatively short lifetime of several microseconds.

Another problem is that the absorption wavelength of Ru(II)-
complexes is in the blue part of the spectrum, wherefore this
group of indicators cannot be used for many applications. However, Ru-polypyridyl complexes
(e.g. [Ru(dpp)3]2+ see figure 2.7) have a very high Stokes shift and are photostable.
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In addition to this, they can be tuned, but spectral variations are limited. Nevertheless these
indicators are very popular in oxygen sensing. The last problem to be mentioned with this
species is that usually the complexes are ionic molecules and the counter ion is inorganic. Due
to this, the inorganic counter ion for the complex has to be exchanged with an organic ion to
be soluble in hydrophobic matrices [47, 48].

2.5 Porphyrins and phthalocyanines

porphyrin phthalocyanine

N

N

N

NH

N

N

N

HN

HN

N
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N
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beta

Figure 2.8: Structure of an un-
substituted porphyrin (l) and
phthalocyanine (r)

The most important group of luminescent indicators are
metalloporphyrins with Pt(II) or Pd(II) as central ions. They
have some advantages such as strong phosphorescence at
room temperature, moderate to high molar molar absorption
coefficients and large Stokes shifts.

But what are porphyrins? These macrocyclic compounds
(see figure 2.8) are of natural origin and probably one of the
most important pigments in nature. Four pyrroles and four
methine carbons build up a square planar 18 π-aromatic
ring structure [49]. These compounds are involved in many
different processes occurring in nature like oxygen transport,
fatty acid oxidation, cell respiration and even in light har-
vesting reactions [14, 50, 51]. Another interesting group
are phthalocyanines (Pc, see figure 2.8). This group has the same ground structure as a
benzoporphyrins (see figure 2.9 on page 20) but here nitrogen atoms act as bridging atoms.
Both groups have the advantages of being structurally robust and showing chemical stability as
well as intense absorption and emission behavior. Also their optical properties can be tuned
over a wide range by extending their electronic π-system. For specific applications the ground
structure can be modified via different substitutions at the ring system and choosing other
central metals (like platinum, palladium, zinc, iridium,...) [12, 49]. Phthalocyanines have
diverse application fields in industry, biomedicine and are important colorants. Some of them
are applied in nonlinear optics [17, 18], gas sensing [19], catalysis [20], liquid crystals [21] and
photo-sensitization [22, 23]. Here one has to mention that phthalocyanine derivatives have
several applications as sensitizers in photodynamic therapy (PDT) as well. This method is a
suitable tool to indicate cancer cell death. The sensitizer molecules are activated with a light
of certain wavelength and generate free radicals like singlet oxygen[52, 53]. Besides this some
unsymmetrically substituted phthalocyanine complexes show cell penetrating properties [54].
To sum up one can say that porphyrins are one of the most popular dye classes. Metallo-

porphyrins have very strong phosphorescence even at room (M=Pt(II), Pd(II)), large Stoke’s
shifts and also high molar absorption coefficients [12]. As mentioned in table 2.1 on page 14,
polystyrene, polyvinyl chloride and ethyl cellulose derivatives are common polymeric matrices
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for oxygen measurement applications with this dye class. Porphyrins have been studied over a
long time and it has been shown that their properties can be tuned via different modifications.
First, the porphyrin core unit can be modified by attaching different aromatic fragments

which leads to an extension of the electronic π system resulting in a bathochromic shift of
absorption/emission spectra [33]. Second, if there are solubility problems one can attach bulky
substituents to the core so that the pophyrins planarity is manipulated [55]. Third, for further
modification one can introduce good leaving groups like chlorine or bromine. Besides the use of
these groups for further substitution they alter the electronic and optical properties of the dyes
[14].
Due to this variety of tuning possibilities there are several applications in various areas for

porphyrin based complexes. Some examples are solar energy conversion [56], catalysis [15],
photovoltaic cells [57], thin-film transistors [58], light emitting diodes [59] and not to forget the
big field of optical sensors [12, 14]. Like phthalocyanines porphyrins are important in medicine
in PDT to act as sensitizers [60, 61].

A typical absorption spectrum of a metalloporphyrin shows two significant areas: the Soret-
band at lower wavelength (higher energy of excitation) and the Q-bands at longer wavelength
(lower energy of excitation). Due to lower efficiency of spin-orbit coupling, Pd(II)-complexes
have longer lifetimes (microsecond to millisecond) than Pt(II)-species [62, 63]. Pt(II) complexes
have lifetimes up to tens of µs and about 2-3 times higher quantum yields compared to
the corresponding Pd(II) complexes. Nevertheless Pd(II) complexes show rather intense
phosphorescence which is red shifted compared to the corresponding Pt(II) species [64]. Besides
this the metallation step in synthesis for a Pd(II) dye is much easier than for the Pt(II) structural
analog, due to its smaller atomic radius [13]. PtTFPP has to be mentioned as one of the most
important dye for oxygen measurements in the last century. This dye replaced others such
as PtOEP due to its higher photostability. The fluorinated phenyl substituents decrease the
electron density at the ring system (electron withdrawing effect, EWG) reducing the reactivity
of the dye with singlet oxygen [43] leading to a significant increase of the photostability.
Furthermore several Ir(III) metalloporphyrin systems for oxygen sensing were published

[65]. But most of these indicators show absorption and emission in the UV-Vis region and
therefore suffer from mainly three drawbacks limiting their field of applications. First, if there
is excitation in the UV-Vis region a high background signal in biological tissue is created due to
the autofluorescence of several fluorescent compounds as NAD, chlorophyll and FAD. Second, in
scattering probes like in marine applications these UV-Vis dyes are hardly suitable for oxygen
measurements. Third, they can not be taken for implantable sensors because blood absorbs in
the visible region very efficiently [12].

To eliminate these influences the π-system of the porphyrin can be extended. So tetrabenzo-
porphyrin (TBP, see section 2.5.1 on page 21) compounds are created which can be excitated
with red light and emit in the NIR [66, 67]. Due to the bathochromic shift of the absorption-
and emission spectra, measurements in scattering probes are also possible (e.g. in tissues).
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2 Theoretical Background

2.5.1 Near infrared indicators

Infrared light (IR) is the electromagnetic radiation which has a wavelength of 700 nm up to
1mm. This part of the spectrum is divided into three sub areas; near-IR, mid- and far-IR.
Besides the above named advantages for biological applications this region of the spectrum
is also very interesting for photovoltaic and solar-cell applications. Nearly 50% of the sun’s
energy arriving on our planet is located in the NIR region [13]. So it is clear that more effective
light harvesting applications have to be a goal for the future of organic solar cells [68]. Due to
minimal autofluorescence of biological probes in the range of the optical window (700-900 nm)
indicators which absorb and emit in this area are an important issue [13, 68]. The third big
advantage of having red light excitable indicators is that they are compatible with red laser
diodes over 600 nm [69]. These are less expensive compared to other light sources.
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Figure 2.9: Overview NIR indicators

In the following chapters an overview of the indicators shown in figure 2.9 is given. How can
a bathochromic shift be achieved by tuning the porphyrin dyes? This question was of much
importance for the research in the last years, wherefore many different strategies have been
explored. Some expamples are listed in the following.
Oxidation of the porphyrin macrocycle to lactone [70] or ketone groups [64], manipulation

of the porphyrin core so that the electronic system and the solubility changes [71], reduction
of the tetrapyrol macrocycle (e.g. to chlorine) [72], also introducing meso-alkynyl groups [73].
Another possibility is to extend the core of the porphyrin unit by aromatic fragments [74]. This
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2.5 Porphyrins and phthalocyanines

can be done via different synthetic methods [14, 75, 76]. It seems that the most important
synthetic modification of the porphyrin to gain a bathochromically shift is the attachment of
aromatic moieties at the β-pyrrole position [71, 77, 78]. This leads for example to tetrabenzo-
(TBP) or tetranaphthoporphyrins (TNP, see compounds a and c figure 2.9 on page 20). Adding
aromatic species to the meso position (see figure 2.8 on page 18) was also investigated. However
this did not lead to the desired bathochromical shift due to the fact that the phenyl rings do
not strongly influence the π-system of the porphyrin [13].

The rigid dye suffers from low solubility and aggregation problems but these can be overcome
by adding phenyl groups at the meso position [13, 78] or bulky-groups like tert-butyl groups
[71]. This results in a non-planar system of the substituents whereas the macrocycle remains
planar. Adding fluorinated groups (EWG, fluorophenyl derivatives) as well as phenyl gropus at
the meso position does not only increase the solubility but shows also higher photostability and
furthermore shifts the absorption- and emission spectra to higher wavelengths [67, 69].
The bathochromic shift depends on the HOMO-LUMO energy gap. It is an essential

parameter for optical and electronic properties of the dye [13, 79]. Therefore a closer look on
the substituents is important. EWG (e.g. –CF3) stabilize the HOMO, resulting in less electron
density at the center leading to a bathochromic shift. EDG like –OMe do show the opposite
effect [13]. Further examples leading to a bathochromic shift are the introduction of polarizable
heteroatoms (e.g. O, S) [80] or the extension of the π-system of the ligands. Here one has to be
careful because increasing chain length can lead to a decrease of the phosphorescence [6].

Within the last years many different applications of π-extended porhyrin dyes where published.
They find use as optical oxygen sensors, NIR OLEDs and also in bioimaging [13].

Benzo- and naphthoporphyrins

This dye class was first synthesized in 1938 by the group of Helberger [81] and after around 10
years also Linstead and co-workers presented a route for this synthesis [82]. These compounds
are applied in a wide range including technology, medicine [14] and catalysis [15] to name a
few of them. Benzoporphyrins have the same ground structure as porphyrins but with fused
benzene rings on the pyrrole position (see figure 2.10 on page 22). The absorption spectrum
looks similar to that of porphyrins but is shifted bathochromically so that especially the Q-band
has a wide range of its maximum (600-650 nm). As a representative of this dye class one can
choose tetraphenyltetrabenzoporphyrins (e.g. PtTPTBP, see compound a in figure 2.9 on page
20). These dyes are bright have high quantum yields (50% for Pt(II) and 18% for Pd(II)) and a
red shifted emission (770 nm). Additionally, they have excellent photostability even though it is
not as good as PtTFPP [67, 83].

For applications in long term measurements or when high light intensity are an issue photo-
stability is an important parameter one has to consider [84]. Photo-degeneration is in most
cases induced by singlet oxygen which is produced via quenching. These dyes may also gen-
erate cytotoxic free radicals caused by radiation with light of a specific wavelength [85]. The
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2 Theoretical Background

fluorination of the meso positioned phenyl rings (with EWGs) leads to higher photostability
[69]. A drawback of this dye class is their moderate solubility of their ground structure. To
overcome this drawback attachment of bulky substituents in meso position and/or phenyl rings
can be done [86]. This leads to a better solubility whereby aggregation can be prevented [55].
After introduction of the benzoporphyrin dye into a suitable matrix (e.g. polystyrene) Pt(II)
complexes are suitable for oxygen measurements up to 100% air saturation. The corresponding
Pd(II) derivatives find applications in oxygen trace measurements [12].

NH N

HNN

(a) benzoporphyrin

NH

N HN

N

(b) naphthoporphyrin

Figure 2.10: Represen-
tative ground struc-
tures of benzo- and
naphthoporphyrins

Tetraphenyltetrabenzoporphyrin (TPTBP) dyes can be excited
with red light, show emission in the near-infrared and are able to
produce singlet oxygen. Therefore they have several applications in
medicine like for treatment of cancer cells with PDT (see section
2.5 on page 18) [14]. For further specific biological applications like
oxygen measurements in tissue the dye have to be either permeable
or impermeable for biological membranes. Red and NIR emission is
necessary as the excitation light has to penetrate biological tissue.
Also they must not be toxic/phototoxic [87]. To achieve the desired
modification/encapsulation of the dye for specific applications different
methods exist.

First, metalloporphyrins can be encapsulated into poly(arylglycine)
dendrimers. These compounds can fold in aqueous medium and
therefore tune the sensitivity and dynamic range of a sensor. For
reducing the toxicity PEG residues are used. An important example
for this method is oxyphor G2 (in vivo measurement in rat brains)
[12, 87]. Second, also very popular is an encapsulation of the dye in
nanoparticles, PEBBLEs (probes encapsulated by biologically localized
embedding) [88]. These nanoparticles have a very small radius com-
pared to the volume of a biological cell and can therefore be used in
minimally invasive sensing applications [12, 89].

Other applications for TBPs can be found in material science. Some
examples are optical limiters [90], liquid crystals [91], or sensitizers
in photovoltaic cells [92].

As one can see in figure 2.10 naphthoporphyrins have the same ground structure as benzo-
porphyrins but have an additional benzene ring fused at the β-pyrrole position (called naphtha
moiety). With these moieties a bathochromic shift of the Q-band over about 20 nm is achieved
for each naphtha building block [12, 84], the Soret band nearly stays the same. Tetranaph-
thaporphyrins (TNPs) do show intense and narrow transitions which are in the NIR window
of tissue [71, 77]. Besides this effect adding naphtha moieties also decreases significantly the
photostability and the quantum yields [59, 66]. Due to these drawbacks and also their low
solubility and high tendency for aggregation their applications are limited [71, 84]. To overcome
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the drawback of low solubility tetraarylation at the meso position is a common solution. This
forces the dye into a non-planar structure [77].

Hybrid porphyrin dyes

In this section a short overview about hybrid porphyrin complexes will be given. First, there are
hybrid benzo- and naphthoporphyrin complexes to mention (see compounds d figure 2.9 on page
20). These species should combine the advantages of both classes; benzo- and naphthoporphyrins.
The tailor-made NIR absorbing complexes are synthesized via condensation of external aromatic
moieties. The new dyes have absorption bands in the red region (around 630-690 nm) and their
emission range from 815 to 882 nm. If they are modified by extension of their π-system the
lifetimes and quantum yields decrease as well as their oxygen sensitivity and photobleaching
increases. One possible application for these hybrid species is a simultaneous measurement of
glucose and oxygen [84]. To prevent photobleaching introduction of halogen substituents at the
ligands can be a solution [12].

Second, hybrid azatetrabenzoporphyrins have to be mentioned. This class is a hybrid between
phthalocyanines and tetrabenzoporphyrins (see compounds e figure 2.9 on page 20). These
dyes should again combine the advantages of both origin classes, TBPs and Pcs. Pcs are stable
(chemically, thermally and photostable), compounds but they do not have high quantum yields
(QYw1%) concerning their Pt(II) and Pd(II) derivatives [12, 16, 93]. That makes them not
suitable for many applications in oxygen sensing [86]. With their phenyl rings attached at the
meso position the hybrid complexes have better solubility as Pcs and TBPs. As in the former
explained classes also the solubility of these dyes can be increased by introduction of bulky
groups at the meso position [94]. Azatetrabenzoporphyrins have a comparable photostability
as PtTFPP and a better one compared to TPTBP. Their luminescent properties show a red
shifted emission of about 80 nm also the Q-band is shifted bathochromically whereas the Soret
band has a hypsochromic shift [86] (all compared to TPTBP). Recently, Huang et al published
that Pt(II) azatetrabenzoporphyrin dyes are suitable for applications as NIR-OLED (organic
light emitting diode) [95].

2.6 J-aggregates

What are J-aggregates? Such structures are ordered clusters of organic molecules which are
coherently coupled to each other. These clusters have different spectral properties compared to
their monomers [96–98]. How can J-aggregates be characterized? First, they have very narrow
absorption spectra which are usually drastically red shifted compared to the monomer spectra
(up to 100 nm) [99]. Second, due to different packing types two or more narrow absorption
bands can be observed [96]. Third, their absorbance is drastically increased compared to the
monomers, whereas the fluorescence spectra have small Stoke’s shifts (around 10 nm) [98].
Emission quantum yields are very high but the lifetimes are usually shorter (picoseconds)
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compared to the monomers [100]. J-aggregates are self-organized one dimensional formations of
several molecules which are aligned parallel to the line through their centers in a head-to-tail or
shifted plates formation. This arrangement model is called staircase-type conformation and here
the transition dipoles are ordered in one line leading to stronger electronic coupling of emitting
monomers [101]. Corresponding to inhomogeneous distribution of energies the absorption and
fluorescence bands of J-aggregates are narrower compared to the monomers [99].

C2H5

S

N

C2H5

S

N

n

(a) Example of a cyanine dye

(b) Absorption dependency of amphi-PIC
with different dye concentration, adopted
from [102]

Figure 2.11: Example of a cyanine
dye and the concentration depen-
dency of J-aggregates for amphi-PIC

The most famous class which is reported to form
J-aggregates are cyanine dyes. They have two main
groups in their structure. On the one side they have
a donor and on the other side an acceptor moiety.
These are coupled via polymethine chains (see a in
figure 2.11). Nevertheless J-aggregates can also be
formed by other molecules like squaraine, merocya-
nine and also tetrapyrole dyes [98]. meso-Tetrakis(p-
sulfonatphenyl)porphyrin (TSPP) is a famous example
for a porphyrin dye to form J-aggregates [103]). Cor-
responding to this and the fact that J-aggregates can
shift very wide to the red part of the spectrum it may
also be possible for benzoporphyrin or phthalocyanine
complexes to form J-aggregates which fit for applica-
tions concerning the optical window (see section 2.5.1
on page 20).

Which parameters affect the self-assembly of J-
aggregates? Studies have been done which investigated
different parameters in solution like solvent polarity,
salinity and temperature [104, 105]. First, the self-
assembly process can be indicated by changing the dye
solution from organic to aqueous medium [106]. Second,
an higher salinity supports also aggregation [107]. The
third parameter is pH, increasing the pH value leads
to the formation of regularly structured J-aggregates
[108]. Also the dye concentration has a big influence
on J-aggregates formation (see sharp bond formation
b in figure 2.11)

There are many applications already existing for J-
aggregates. One of them is the field of light-harvesting devices. An example for these are
photovoltaic cells based on organic sensitizer dyes. Here the dye is absorbed at nanoporous
TiO2 (electrode). Li et al. have already shown that a formation of J-aggregates is possible
using porphyrins [109]. Synthesis of benzoporphyrins forming J-aggregates with a respective
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bathochromic shift would enable application of those indicators as sensitizer dyes in light-
harvesting devices.

2.7 Organic reactions

In this section two main reactions will be described which were used within this masterthesis
for modification of existing porphyrin dyes. These reactions should lead to a bathochromic shift
of the dyes.

2.7.1 Sonogashira reaction

Pd(PPh3)4

cat CuI, Et3N

HC R

(PPh3)2Pd
0

R'X

(PPh3)2Pd

R'

X

HC R

(PPh3)2Pd

R'

R

X=leaving group e.g. Br, I, Cl, OTf

R=H, C6H5

R'=aryl, alkenyl, pyridyl
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trans-metalation

reductive 
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RCu

RCu

Et3N

CuI

+

Et3NHI

R'

desired product

R

Figure 2.12: Schematic overview of the mechanism of
the Sonogashira cross-coupling reaction

This reaction is a convenient cross-
coupling reaction which was first
published by Sonogashira et al. in
1975. It is used to form carbon-
carbon bonds between a terminal
alkine and a vinyl- or aryl-halide
[110]. As shown in figure 2.12 a pal-
ladium catalyst, a copper(I) catalyst
and an amine base (e.g. Et3N) are
necessary. The mechanism can be
described as the following. First,
in situ generation of Pd(0) catalyst
and generation of coordination space
via loss of two ligands. Followed by
an oxidative addition reaction (R’X).
Third, trans-metallation step, leads
to substitution of X by the second
building block. Fourth, after cis/-
trans isomerization, generation of
desired product via reductive elimination and regeneration of palladium catalyst [110, 111].
Already in the late 1990s different groups studied the electronic modulation of porphyrins

with arylethynyl groups in meso position. They coupled the arylethynyl moieties at position
5 and 15 to existing Zn(II) porphyrin dyes. This modification leads to a significant red shift
of the spectra compared to the unsubstituted complex [112]. Shultz and his group published
a Sonogashira based modification for coupling of two porphyrin complexes to a bisporphyrin
species. Here again the meso position of the porphyrin core was used as linking position [113].
Aim of this master thesis was to investigate the influence of the substitution of alkine groups
(e.g. phenylacetylene) at the β position of an existing porphyrin dye and if this also results in a
significant change in the spectral properties or if this hardly affects the π-system of the dye.
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2.7.2 Friedel-Crafts reaction

This acylation reaction can be used to synthesize an aromatic ketone via reaction of an aromatic
substrate molecule with an acyl containing secondary building block. It was first published in
1877 by Friedel and Crafts [114]. This reaction is catalyzed by strong Lewis acids (e.g. FeCl3,
AlCl3, TiCl4) or strong protic acids (e.g. HF or H2SO4) [115]. In figure 2.13 the reaction
mechanism of such an acylation reaction is shown schematically. After activation of the acyl
building block (R––Cl, RCOO; see I) the aromatic substrate can attack the electrophilic carbon.
After loss of the hydrogen atom and the addition of the Lewis acid (in this case AlCl3, see II)
the product is generated by quenching with water (see III).
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Figure 2.13: Schematic overview of the mechanism of Friedel-Crafts acylation reaction

In this mastethesis we wanted to take a closer look on the impact of a coupled aromatic acyl
component to an existing porphyrin dye at the beta position (see figure 2.5 on page 18) and if
such a substitution alters the spectral properties of the dye significantly.
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3 Materials and Methods

3.1 Chemicals

Table 3.1: List of used chemicals
Chemical Supplier CAS-Number
Pottasium carbonate Merck 584-08-7
Iodomethane Acros organics 74-88-4
Sodium hydride Sigma-Aldrich 7646-69-7
3-(Dibutylamino)phenol TCI Europe 43141-69-1
Bromine Sigma-Aldrich 7726-95-6
Sodium thiosulfate pentahydrate Sigma-Aldrich 10102-17-7
2-(Chloromethyl)benzoyl chloride Sigma-Aldrich 42908-86-1
Aluminum chloride Fluka Analytical 7446-70-0
2-Bromobenzoylchloride Alfa Aesar 7154-66-7
α, ά-Dibromo-o-xylene TCI 91-13-4
2,3-Dichloro-5,6-dicyano-p-benzoquinone Sigma-Aldrich 84-58-2
1-Dodecylamine Fluka Analytical 124-22-1
α, α, ά, ά-Tetrabromo-o-xylene Alfa Aesar 13209-15-9
Phthaldialdehyde Alfa Aesar 643-79-8
Propionic acid Sigma-Aldrich 79-09-4
Ethyl pyruvate Alfa Aesar 617-35-6
Iron(II)-sulfate heptahydrate Roth 7782-63-0
Sulfuric acid Roth 7664-93-9
Hydrogen peroxide Roth 7722-84-1
Ammonia solution, 7 N in methanol Arcos Organics 7664-41-7
Pottasium cyanide Merck 151-50-8
Phosphorous(V)oxychloride Sigma-Aldrich 10025-87
Thionyl chloride Fluka 7719-09-7
Palladium(II)acetate Sigma-Aldrich 3375-31-3
Palladium(II)chloride ABCR 7647-10-1
Sodium iodide Sigma-Aldrich 7681-82-5
Pottasium iodide Roth 7681-11-0

Continued on next page
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Table 3.1 – continued from previous page
Chemical Supplier CAS-Number
Sodium tert-butoxide Sigma-Aldrich 865-48-5
Diisobutylaluminum hydride solution Sigma-Aldrich 1191-15-7
Iodine ABCR 7553-56-2
Ammonium hydroxide solution Merck 1336-21-6
Benzamide Acros organics 55-21-0
Indole TCI 120-72-9
1-Iodobutane ABCR 542-69-8
4-Bromo-3-methoxyaniline Acros organics 19056-40-7
4,7-Diphenyl-1,10-phenanthroline ABCR 1662-01-7
Lithium Acros organics 7439-93-2
Manganese (IV) oxide Sigma-Aldrich 1313-13-9
Zinc acetate dihydrate Sigma-Aldrich 5970-45-6
1,8-Diazabicyclo[5.4.0]undec-7-en Sigma-Aldrich 6674-22-2
n-Butyllithium solution Sigma-Aldrich 109-72-8
2,3-Dichloro-5,6-dicyano-p-benzoquinone Sigma-Aldrich 84-58-2
Triethylamine Sigma-Aldrich 121-44-8
Copper(I) iodide Sigma-Aldrich 7681-65-4
Tetrakis(triphenylphosphine)palladium(0) TCI 14221-01-3
2-Ethylhexane-1-thiol Sigma-Aldrich 7341-17-5
4,5-Dichlorophthalonitrile TCI 139152-08-2
2-(4-Fluorophenyl)acetic acid ABCR 405-50-5
3-Chloroperbenzoic acid Sigma-Aldrich 937-14-4
tert-Butyllithium Sigma-Aldrich 594-19-4

3.2 Chromatography

3.2.1 Thin layer chromatography

The reaction progress was monitored via thin layer chromatography. TLC silica gel plates from
Merck (silica gel 60 F254 aluminum sheets 20 · 20 cm) were utilized. For detection of the signals
(spots) UV light with wavelength λ either 254 or 366 nm was used.

3.2.2 Flash column chromatography

Further purification of the products was done via flash column chromatography. Silica gel from
Acros Organics (0.035–0.070 mm, 60Å) or aluminum oxide 90 (neutral, Macherey-Nagel) was
used. Depending on the separation problem amount of silica gel or aluminum oxide ranged
between the 100 fold of the amount of product up to the 200 fold. Solvents for eluting of the
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3.3 Photophysical measurements

desired product were chosen by having a look to the Rf -value. This value ranged between 0.20
and 0.35. The used solvent mixtures are given in the experimental sections.

3.3 Photophysical measurements

3.3.1 Absorption

The absorption spectra were recorded on a VARIAN CARY 50 conc. UV-Vis spectrophotometer
by Varian (Palo Alto, United States). A fast scan mode with baseline correction (blank sample
of used solvent) was used for the measurements. Spectra were recorded either in chloroform or
toluene. For these measurements Hellma 100-QS 10 mm precision cuvettes were used.

3.3.2 Emission and excitation spectra

Emission and excitation measurements were recorded on a Fluorolog® 3 spetrofluorometer (by
Horiba Scientific). This was equipped with a cooled R2658 photomultiplier (NIR sensitive, by
Hamamazu). Hellma 100-QS 10 mm precision cuvettes with screw-caps were used. As software
FluorEssenceTM was used.

3.4 Structural measurements

3.4.1 Nuclear Magnetic Resonance Spectroscopy (NMR)
1H, APT and HH-COSY NMR were recorded on a Bruker AVANCE III instrument (300.36MHz
for 1H-NMR and 75.53MHz for 13C-NMR) which was coupled to an autosampler. In all spectra
the residual signal of the deuterated solvent (eg. CDCl3, DMSO-d6) was used as an internal
standard for the interpretation of the chemical shifts δ (in ppm, parts per million).
The coupling constant is indicated in Hz (hertz) and for signal multiplicities abbreviations are
used: singlet (s), doublet (d), triplet (t), quartet (q), pentett (p), doublet of a doublet (dd),
multiplet (m). For analysis of the data MestraNova NMR software was used.

3.4.2 High Resolution Mass Spectrometry (HR-MS)

The mass spectrometry measurements were performed with a Micromass TofSpec 2E (positive
reflector) on a MALDI-TOF/TOF (Bruker Ultraflex Extreme). For external calibration a
suitable mixture of poly(ethylenglycol)s (PEG) was used. For analysis of spectra MassLynx-
Software V4.1 from Waters was used. This analysis was done by Prof. Dr. Saf’s group at the
Institute for Chemistry and Technology of Materials at Graz University of Technology.
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4 Experimental

4.1 Carbazole based Phthalocyanine: Zn-Tbut-indole-Pc (6)

N

N

N

NPt

N

N

N

N
CN

CN

N

9-butyl-9H-carbazole-2,3-dicarbonitrile

Figure 4.1: Chemical structure of desired Pt-Porphyrin (left) based on the carbazole precursor
(right)

4.1.1 diethyl pyridazine-4,5-dicarboxylate (1)
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Figure 4.2: Synthesis of compound 1

This synthesis was performed analogously to [116]
1.53ml of 30% aqueous H2O2 (14.98mmol, 3.00 eq) were added dropwise to stirring ethyl
pyruvate (2.54ml, 22.97mmol, 4.60 eq) at -10 °C. This solution was then (after 15min) added
dropwise at -5 °C to a stirring mixture of pyridazine (400mg, 4.99mmol,1.00 eq), Fe2SO4 · 7H2O
(4.19 g, 15.00mmol, 3.00 eq), concentrated H2SO4 (0.79ml, 14.98mmol, 3.00 eq), H2O (8ml)
and DCM (15ml). After 15min stirring the reaction mixture was poured on ice and extracted
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4.1 Carbazole based Phthalocyanine: Zn-Tbut-indole-Pc (6)

with DCM (3 · 15 ml). The organic layer was washed with H2O (2 · 20 ml) and dried over
Na2SO4. After removal of the solvent under reduced pressure the crude product was purified
via flash column chromatography (silica-gel, cond. CH:DCM 10+1, DCM:EtOAc 10+1) to yield
a yellow liquid (1).

Yield: 280mg (25%), yellow liquid

TLC: Rf= 0.55 (silica-gel, DCM:EtOAc 5+1)

NMR spectra in the appendix 10.1 page 87:
1H-NMR (300MHz, Chloroform-d): δ 9.49 (s, 2H), 4.45 (q, J = 7.1Hz, 4H), 1.40 (t, J = 7.1Hz,
6H)

APT-NMR (76MHz, Chloroform-d): δ 163.93, 149.32, 128.10, 63.17, 14.11

4.1.2 pyridazine-4,5-dicarboxamide (2)

N

N

CO2Et

CO2Et

NH3 in MeOH

N

N

O

NH2

O

NH2

50°C

68%

Ar

96h

1 2

Figure 4.3: Synthesis of compound 2

This synthesis was performed analogously to [116]
Compound 1 (1.00 g, 4.46mmol, 1.00 eq) was added to a methanolic 7N NH3 solution (80ml).
The solution was stirred at 50 °C for 96 h. Precipitated product was washed with cold MeOH,
yielding a white solid (2).

Yield: 488mg (68%)

NMR spectra in the appendix 10.3 page 88:
1H-NMR (300MHz, DMSO-d6): δ 9.34 (s, 2H), 8.19 (s, 2H), 7.88 (s, 2H)

APT-NMR (76MHz, DMSO-d6): δ 165.80, 149.25, 131.86
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4.1.3 pyridazine-4,5-dicarbonitrile (3)
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Figure 4.4: Synthesis of compound 3

This synthesis was performed analogously to [116, 117]
Compound 2 (100mg, 602 µmol, 1.00 eq) was added to 1.5ml (16.3mmol, 27.0 eq) of POCl3 in
a Schlenk flask with reflux condenser, heated to 110 °C and stirred for 5 h (color change from
cloudy colorless to green). To remove the in situ generated HCl N2 was bubbled continuously
through the solution during the reaction. The conversion of the reaction was controlled via TLC
(silica-gel, DCM:EtOAc 5+1) and the excess of POCl3 was quenched with saturated NaHCO3

(20ml). The product was extracted with DCM (3 · 100 ml). The organic layer was dried over
Na2SO4 and solvent removed under reduced pressure.

Yield: 62mg (79%), yellow solid (3)

TLC: Rf= 0.72 (silica-gel, DCM:EtOAc 5+1)

NMR spectra in the appendix 10.5 page 89:
1H-NMR (300MHz, Chloroform-d): δ 9.63 (s, 2H)

APT-NMR (76MHz, Chloroform-d): δ 150.38, 114.47, 111.55

4.1.4 1-butyl-1H-indole (4)

H
N N

I
+

NaH

abs. THF

Ar, 60°C

15h, 72%

4

Figure 4.5: Synthesis of compound 4

This synthesis was performed analogously to [118]
Indole (1.60 g, 13.7mmol, 1.00 eq) was dissolved in 25ml abs. THF in a Schlenk flask under Ar
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4.1 Carbazole based Phthalocyanine: Zn-Tbut-indole-Pc (6)

atmosphere at RT. 765mg (19.1mmol, 1.40 eq) of a 60% NaH dispersion in mineral oil were
added in portions (gas evolution, cloudy colorless solution). When no more gas evolution was
observed 1-iodobutan (1.87ml, 16.4mmol, 1.20 eq) was added. The reaction was heated to 60°C
and stirred for 15 h. After conversion control via TLC (silica-gel, CH:DCM 10+1) the excess
of NaH was quenched with 100ml H2O. The product was extracted with EtOAc (4 · 400 ml)
and dried over Na2SO4. After removal of the solvent under reduced pressure the yellow oil
was further purified via flash column chromatography (silica-gel, cond. CH, CH:DCM 15+1)
yielding a pale yellow oil (4).

Yield: 1.56 g (72%)

TLC: Rf= 0.40 (silica-gel, CH:DCM 10+1)

NMR spectra in the appendix 10.7 page 90:
1H-NMR (300MHz, Chloroform-d): δ 7.69 (d, J = 7.8 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.32 –
7.22 (m, 1H), 7.20 – 7.10 (m, 2H), 6.54 (d, J = 2.8 Hz, 1H), 4.17 (t, J = 7.1 Hz, 2H), 1.88 (p, J
= 7.3 Hz, 2H), 1.40 (h, J = 7.4 Hz, 2H), 1.00 (t, J = 7.3 Hz, 3H)

APT-NMR (76MHz, Chloroform-d): δ 127.91, 121.40, 121.05, 119.26, 109.50, 100.95, 46.25,
32.48, 20.34, 13.85

4.1.5 9-butyl-9H-carbazole-2,3-dicarbonitrile (5)

N N

N

CN

CN

+ CN

CN

N

CHCl3

110°C

120h, 35%

4 3 5

Figure 4.6: Synthesis of compound 5

This synthesis was performed analogously to [119–121]
This reaction was performed in an Ace pressure tube. Compound 3 (25.1mg, 193µmol, 1.00 eq)
and 4 (100mg, 5773 µmol, 3.00 eq) were dissolved in 1.5ml CHCl3. The reaction was heated
to 110 °C and stirred for 120 h. Conversion control was done by TLC (silica-gel, CH:EE 7+2).
After removal of the solvent under reduced pressure the oil was purified via flash column
chromatography (silica-gel, cond. CH, CH:EE 7+1), yielding a yellow solid (5).
Yield: 19mg (35%)
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TLC: Rf= 0.36 (silica-gel, CH:EE 7+1)

NMR spectra in the appendix 10.9 page 91:
1H-NMR (300MHz, Chloroform-d): δ 8.49 (s, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.81 (s, 1H), 7.66
(t, J = 7.5 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 4.38 (t, J = 7.2 Hz, 2H),
1.95 – 1.81 (m, 2H), 1.42 (t, J = 7.4 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H)

APT-NMR (76MHz, Chloroform-d): δ 140.57, 129.21, 126.46, 125.80, 121.69, 121.30, 117.27,
117.04, 114.59, 111.07, 110.14, 104.39, 43.75, 31.19, 20.66, 13.90

4.1.6 Zinc(II)-tetra(1-butyl-1H-indole)-phthalocyanine
Zn-Tbut-indole-Pc (6)

N

N

N

N

N

N

N

N

N N

N

N

ZnN

CN

CN

155°C
Ar 16h
abs. DMF, 12%+

cat. DBU

 Zn(CH3COO)2 · 2H2O

5

6

Figure 4.7: Synthesis of compound 6

This synthesis was performed analogously to [122]
Zn(CH3COO)2 ·H2O (12.0mg, 65.4µmol, 2.50 eq) and compound 5 (53.6mg, 196µmol, 3.00 eq)
were dissolved in a Schlenk flaks under Ar atmosphere in 2ml abs. DMF (orange solution).
After adding catalytic amounts of DBU (100 µl) a color change occurred (dark red solution).
The reaction was heated to 155 °C and stirred for 16 h. The dark green solution was cooled to
RT and precipitated into a 3+2 mixture of H2O:MeOH. The green precipitate was separated by
filtration an washed with cold MeOH (orange solution). The crude solid product was further
purified via flash column chromatography (aluminum oxide, cond. CH, gradient elution start-
ing from CH:EE 3+1 ending with EE:THF 5+1) yielding two fractions of solid green product (6).

Yield (fraction one): 5mg (7%)
Yield (fraction two): 4mg (5%)
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4.2 Porphyrin Modification by Sonogashira coupling

MALDI-TOF (10.24, 10.25 page 100): m
z : [M+]: calc. 1156.44, found: 1156.30 (F1), 1156.46 (F2)

λmax(toluene): 333 nm (0.23) 663 nm (0.33), 742 nm (1.00)

4.2 Porphyrin Modification by Sonogashira coupling

4.2.1 Pt(II)-tetra(phenylacetylen)-tetra(tert-butyl)BP: Pt-TPhacetTtBuBP
(7)

N

N

N

NPt
+

N

N

N

NPt

Ar
abs. THF
abs. Et3N
75°C, 18h
28%

Pd(PPh3)4

CuI
BrBr

Br

Br

7

Figure 4.8: Synthesis of compound 7

This synthesis was performed analogously to [123, 124]
Pt-TPTtBuBPBr (15.0mg, 9.70 µmol, 1.00 eq) and catalytic CuI (0.20 eq) was dissolved in
1.5ml abs. THF and 0.7ml abs. Et3N in a Schlenk flask under Ar atmosphere. To the green
solution catalytic Pd(PPh3)4 (0.10 eq) and phenylacetylen (4.95mg, 48.5µmol, 5.00 eq) were
added. The solution was stirred for 18 h at 75 °C. Conversion control of the reaction were done
via TLC (silica-gel, CH:DCM 3+1). The green solution was first washed several times with 10%
CuSO4 to remove the excess of Et3N (until the solution was clear). The product was extracted
with DCM, the organic layer was dried over Na2SO4. The solvent was removed under reduced
pressure. Further purification was conducted via flash column chromatography (silica-gel, cond.
CH, CH:DCM 5+1) yielding different fractions of product. The product (7) containing fractions
were determined via absorption spectra.

Yield: overall 2mg (12%)

TLC: Rf= 0.50-0.70 (silica-gel, CH:DCM 5+1)
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MALDI-TOF (10.26 page 102): m
z : [M+]: calc. 1631.63, found: 1631.67

λmax(toluene): 446 nm (1.00), 577 nm (0.08) 630 nm (0.63)

4.3 Porphyrin Modification by Friedel-Crafts reaction

4.3.1 Pt-TPTBPF-benzoyl-Cl (8)

N

N

N

N

F

F F

F

Cl
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ClPt
N

N

N

N

F

F F

F

Pt O

Cl

O

Cl

O

Cl

O

Cl

130°C, 30min

1,2-dichlorobenzene

Ar, 33%

AlCl3
+

+

8

Figure 4.9: Synthesis of compound 8

In a Schlenk flask Pt-TPTBPF (20.0mg, 18.5 µmol, 1.00 eq) was dissolved in 1,2-dichlorobenzene
(8ml) under Ar atmosphere (green solution). 4-Chlorobenzoyl chloride (0.12mL, 0.93mmol,
50.0 eq) and AlCl3 (40.0mg, 0.30mmol, 16.2 eq) were added to the solution. The reaction
mixture was heated to 130 °C and stirred for 30min. The reaction progress was monitored
via absorption spectroscopy (solvent: CHCl3, 50µl of EtOH). After complete conversion the
reaction mixture (green dark color) was cooled down to RT. In the work-up reaction mixture
was treated with EtOH:H2O (1+1, each 40ml) and stirred for 10 minutes to neutralize the
excess of AlCl3. After addition of DCM, the organic layer was washed with dest. H2O and
dried over Na2SO4 and the solvent was removed under reduced pressure. Finally the crude
product was purified via flash column chromatography (silica-gel, cond. toluene, DCM:Tol,
7+1), yielding a dark green solid (8).

Yield: 26.0mg (33%)

TLC: Rf= 0.44 (silica-gel, DCM:Tol 4+1)

NMR spectra in the appendix 10.11 page 92:
1H-NMR (300 MHz, Methylene Chloride-d2) δ 8.33 – 8.18 (m, 2H), 8.18 – 8.07 (m, 3H), 8.06 –

36 Porphyrin Based Complexes with Enhanced Spectral Properties for Oxygen Sensing



4.3 Porphyrin Modification by Friedel-Crafts reaction

7.92 (m, 2H), 7.80 (dt, J = 13.5, 7.5 Hz, 4H), 7.66 (d, J = 7.4 Hz, 2H), 7.53 (dd, J = 11.8, 5.4
Hz, 16H), 7.44 – 7.32 (m, 5H), 7.31 – 7.19 (m, 2H), 7.19 – 7.02 (m, 4H)

λmax(toluene), ε: 448
epsilon,nm (218,000), 579 nm (17,400), 631 nm (121,000)

MALDI-TOF (10.29 page 105): m
z : [M+]: calc. 1634.17, found: 1634.17

4.3.2 Pd-TPTBPF-benzoyl-Cl (9)

N

N

N

N
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Ar, 30%

AlCl3
+

+
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Figure 4.10: Synthesis of compound 9

In a Schlenk flask Pd-TPTBPF (10.0mg, 10.1 µmol, 1.00 eq) was dissolved in 1,2-dichlorobenzene
(6ml) under Ar atmosphere (green solution). 4-Chlorobenzoyl chloride (0.064ml, 0.50mmol,
50.0 eq) and AlCl3 (30.0mg, 0.23mmol, 22.3 eq) were added to the solution. The reaction
mixture was heated to 140 °C and stirred for 45min. The reaction progress was monitored
via absorption spectroscopy (solvent: CHCl3, 50µl of EtOH). After complete conversion the
reaction mixture (green dark color) was cooled down to RT. In the work-up reaction mixture was
treated with EtOH:H2O (1+1, each 20ml) and stirred for 10 minutes to neutralize the excess
of AlCl3. After addition of DCM, the organic layer was washed with dest. H2O, dried over
Na2SO4 and the solvent was removed under reduced pressure. Finally the crude product was
purified via flash column chromatography (silica-gel, cond. toluene, DCM:Tol, 7+1), yielding a
dark green solid (9).

Yield: 30%

TLC: Rf= 0.52 (silica-gel, DCM:Tol 4+1)

NMR spectra in the appendix 10.13 page 93:
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1H-NMR (300 MHz, Methylene Chloride-d2) δ 8.25 (dq, J = 9.6, 4.7 Hz, 2H), 8.18 – 8.07 (m,
3H), 7.98 (dt, J = 10.7, 5.4 Hz, 2H), 7.80 (dt, J = 14.0, 7.7 Hz, 4H), 7.72 – 7.61 (m, 2H), 7.60 –
7.43 (m, 16H), 7.38 (t, J = 6.8 Hz, 5H), 7.32 – 7.23 (m, 2H), 7.21 – 7.13 (m, 2H), 7.09 (dq, J =
8.3, 5.4, 4.5 Hz, 2H)

λmax(toluene), ε: 461 nm (282,300), 595 nm (15,800), 647 nm (107,400)

MALDI-TOF (10.30 page 106 f.): m
z : [M+]: calc. 1544.11, found: 1543.96

4.4 Highly soluble Porphyrin and Phthalocyanine dyes for
J-aggregates

4.4.1 target compounds: Pt–TBPFbEHS2 andZn–bEHS2 –Pc
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Figure 4.11: Target compounds for formation of J-aggregates: Pt–TBPbEHS2 (left) and
Zn–bEHS2 –Pc (right)

4.4.2 4,5-bis((2-ethylhexyl)thio)phthalonitrile: bEHTPn (10)

CN

CN

Cl

Cl

HS

S

S

CN

CN
K2CO3

abs. DMA 

Ar, 90°C

+
16h, 99%

10

Figure 4.12: Synthesis of compound 10

This synthesis was performed analogously to [125]
4,5-Dichlorophthalonitrile (1.20 g, 6.09mmol, 1.00 eq) was first dissolved in 14ml abs. DMA in a
round bottom flask under Ar atmosphere. K2CO3 (2.40 g, 17.4mmol, 2.85 eq) was homogenized
with a ceramic pestle in a motar and then added to the solution and stirred for 10min (color

38 Porphyrin Based Complexes with Enhanced Spectral Properties for Oxygen Sensing



4.4 Highly soluble Porphyrin and Phthalocyanine dyes for J-aggregates

change to red). 2-Ethylhexane-1-thiol (2.33ml, 13.4mmol, 2.20 eq) was added and the reaction
mixture was heated to 90 °C and stirred for 16 h. The reaction progress was monitored via TLC
(silica-gel, CH:EE, 3+1). The dark red solution was cooled to RT and poured onto an ice bath
(100ml H2O). The product was extracted with DCM (3 · 150 ml), the organic layer was dried
over Na2SO4. The solvent was removed under reduced pressure yielding a red-brown solid 10.

Yield: 2.53 g (99%)

TLC: Rf= 0.80 (silica-gel, CH:EE, 3+1)

NMR spectra in the appendix 10.15 page 94:
1H-NMR (300MHz, Chloroform-d): δ 7.41 (s, 2H), 2.97 (d, J = 6.1 Hz, 4H), 1.71 (dt, J = 12.3,
6.1 Hz, 2H), 1.51 (m, J = 13.4, 6.8 Hz, 8H), 1.38 – 1.26 (m, 8H), 0.94 (t, J = 6.7 Hz, 12H)

APT-NMR (76MHz, Chloroform-d): δ 144.96, 128.28, 115.85, 111.06, 38.60, 37.34, 32.71,
28.89, 25.96, 23.03, 14.18, 10.90

4.4.3 4,5-bis((2-ethylhexyl)sulfonyl)phthalonitrile: bEHSPn (11)

S

S

CN

CN

S

S

CN

CN

O
O

O
O

abs. DCM

RT, Ar

19h, 75%

mCPBA

10 11

Figure 4.13: Synthesis of compound 11

This synthesis was performed analogously to [125]
Compound 10 (200mg, 480 µmol, 1.00 eq) was dissolved in 5ml abs. DCM in a Schlenk flask
under Ar atmosphere. mCPBA (533mg, 3.09mmol, 6.44 eq, 77% pure) was added with a plastic
spatula in portions to the stirring solution (color change red to orange). The solution was
stirred at RT for 19 h (color change orange to yellow) and the reaction progress was monitored
via TLC (silica-gel, CH:EE, 3+1). The reaction mixture was then quenched with aq. NaHCO3

(20ml) solution. The product was extracted with Et2O (3 · 100 ml), the organic layer was dried
over Na2SO4. The solvent was removed under reduced pressure. Finally the crude product was
purified via flash column chromatography (silica-gel, cond. CH, CH:EE, 5+1) yielding a yellow
oil (11).

Yield: 173mg (75%)
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TLC: Rf= 0.70 (silica-gel, CH:EE, 3+1)

NMR spectra in the appendix 10.17 page 95:
1H-NMR (300MHz, Chloroform-d): δ 8.69 (s, 2H), 3.57 (d, J = 5.6 Hz, 4H), 2.24 – 2.09 (m,
2H), 1.49 (dt, J = 27.0, 8.1 Hz, 8H), 1.27 (d, J = 6.9 Hz, 8H), 0.89 (t, J = 7.1 Hz, 12H)

APT-NMR (76MHz, Chloroform-d): δ 145.36, 137.21, 121.21, 113.22, 60.91, 34.67, 32.59,
28.15, 25.98, 22.80, 14.10, 10.22

4.4.4 zinc(II)-di(4,5-bis((2-ethylhexyl)thio)-phthalocyanine:
Zn–bEHT2 –Pc (12)
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Ar 16h
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+

+
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Figure 4.14: Synthesis of compound 12; different isomers and substitutions are possible

This synthesis was performed analogously to [122]
Zn(CH3COO)2 ·H2O (65.9mg, 300µmol, 5.00 eq) and compound 10 (50.0mg, 120 µmol, 1.00 eq)
and phthalonitrile (15.4mg, 120µmol, 1.00 eq) were dissolved in a Schlenk flaks under Ar atmo-
sphere in 5ml abs. DMF giving a red solution. After adding catalytic amounts of DBU (100 µl)
a color change occurred (brown solution). The reaction was heated to 155 °C and stirred for
16 h. The reaction progress was monitored via TLC (silica-gel, CH:DCM, 3+1, 1% MeOH)
and absorption spectroscopy (solvent: toluene). The dark green solution was cooled to RT
and precipitated into a 3+1 mixture of H2O:MeOH. The green precipitate was separated by
filtration an washed with cold MeOH. The crude solid product was further purified via flash
column chromatography (silica-gel, cond. CH, CH:DCM 3+1, 1% MeOH) yielding no pure
fraction of the desired product (12).
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4.5 Pt(II) complexes supported by tetradentate N2O2 chelates: Diphenyphenanthroline system

Yield (F6-13): 17.0mg (22%)

TLC: Rf on silica-gel could not be detected, too many different spots

λmax(CHCl3): 344 nm (0.25), 627 nm (0.20), 696 nm (1.00)

4.5 Pt(II) complexes supported by tetradentate N2O2 chelates:
Diphenyphenanthroline system

N N

N N

Pt

O O

N N

Pt

O O

Figure 4.15: Published complex Pt(Ph2N2O2)dpp [126] (left) and target complex
Pt(dBAN2O2)dpp (right)

4.5.1 Attempted synthesis of Br-dbutMeOA (14)

O NH2

I
ON

H

+

Br Br

0°C         60°C

abs. THF

Ar, 18h 

NaH, 66%

13

Figure 4.16: Synthesis of compound 13

This synthesis was performed analogously to [118]
4-Bromo-3-methoxyaniline (100mg, 495 µmol, 1.00 eq) was dissolved in 5ml abs. THF in a
Schlenk flask under Ar atmosphere. The solution was stirred at 0 °C and 60% NaH dispersion
in mineral oil (50.0mg, 1.24mmol, 2.50 eq) was added in portions. The reaction mixture was
stirred for 15min. When no more gas evolution was observed 1-iodobutan (141 µl, 1.24mmol,
2.50 eq) was added via a syringe to the brown solution. The reaction was heated carefully first
to RT, then to 60 °C and stirred for 16 h. Reaction progress was monitored via TLC (silica-gel,
CH:EE, 5+1). The reaction was poured into H2O (20ml) to neutralize the excess of NaH. The
product was extracted with EtOAc (3 · 100 ml), the organic layer was dried over Na2SO4. The
solvent was removed under reduced pressure. Finally the crude product was purified via flash
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column chromatography (silcia-gel, cond. CH, CH:EE, 7+1) yielding a yellow oil (13).

Yield: 85mg (66%)

TLC: Rf= 0.47 (silica-gel, CH:EE, 5+1)

NMR spectra in the appendix 10.19 page 96:
1H-NMR (300MHz, Chloroform-d): δ 7.25 (d, J = 8.4 Hz, 1H), 6.15 (d, J = 2.2 Hz, 1H), 6.10
(dd, J = 8.5, 2.4 Hz, 1H), 3.84 (s, 3H), 3.66 (s, 1H), 3.08 (t, J = 7.0 Hz, 2H), 1.60 (dt, J = 14.1,
6.9 Hz, 2H), 1.42 (dq, J = 14.2, 7.1 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H)

APT-NMR (76MHz, Chloroform-d): δ 156.58, 149.41, 133.40, 106.11, 98.11, 97.47, 56.12,
43.88, 31.68, 20.41, 14.03

4.5.2 4-bromo-N,N-dibutyl-3-methoxyaniline: Br-dbutMeOA (14)

O NH2

I
O N

+

Br Br

110°C

abs. toluene

Ar, 13h 

NaH, 62%

14

Figure 4.17: Synthesis of compound 14

This synthesis was performed analogously to [118]
4-Bromo-3-methoxyaniline (1.00 g, 4.95mmol, 1.00 eq) was dissolved in 15ml abs. toluene in a
Schlenk flask under Ar atmosphere. The solution was stirred at 0 °C and 60% NaH dispersion
in mineral oil (500mg, 12.4mmol, 2.50 eq) was added in portions. The reaction mixture was
stirred for 30min. When no more gas evolution was observed 1-iodobutan (1.41ml, 12.4mmol,
2.50 eq) was added via a syringe to the brown solution. The reaction was heated carefully first
to RT, then to 110 °C and stirred for 13 h (addition of another 2.00 eq of NaH and 1-iodobutan
after 6 h). Reaction progress was monitored via TLC (silica-gel, CH:EE, 5+1). The reaction
was poured into H2O (50ml) to neutralize the excess of NaH. The product was extracted with
EtOAc (3 · 200 ml), the organic layer was dried over Na2SO4. The solvent was removed under
reduced pressure. Finally the crude product was purified via flash column chromatography
(silcia-gel, cond. CH, CH:EE, 15+1) yielding an orange oil (14).

Yield: 955mg (62%)

TLC: Rf= 0.50 (silica-gel, CH:EE, 10+1)
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4.5 Pt(II) complexes supported by tetradentate N2O2 chelates: Diphenyphenanthroline system

NMR spectra in the appendix 10.21 page 97:
1H-NMR (300MHz, Chloroform-d): δ 7.39 – 7.22 (m, 1H), 6.25 – 6.12 (m, 2H), 3.84 (d, J =
21.9 Hz, 3H), 3.34 – 3.21 (m, 4H), 1.58 (p, J = 9.3, 8.2 Hz, 4H), 1.37 (dq, J = 14.6, 7.3 Hz,
4H), 0.97 (t, J = 7.2 Hz, 6H)

APT-NMR (76MHz, Chloroform-d): δ 156.58, 149.07, 133.18, 105.84, 96.87, 56.10, 51.14,
29.47, 20.48, 14.13

4.5.3 4-lithium-N,N-dibutyl-3-methoxyaniline: Li-dbutMeOA (15)

O N

Br

O N

Li

Li+

abs.THF

-78°C

1h, 90%

15

Figure 4.18: Synthesis of compound 15

This synthesis was performed analogously to [127, 128]
Compound 14 (82.3mg, 261 µmol, 1.00 eq) was dissolved in 1ml abs. THF in a Schlenk flask
under Ar atmosphere. The soltuion was cooled to -75 °C. n-Butyllithium solution (108µl
270µmol, 1.05 eq, 2.5M in hexanes solution) was added drop-wise via a syringe (color change
yellow to orange). The reaction mixture was stirred for 30min. In the work-up NH4Cl solution
was added to the reaction mixture to quench the remaining lithium. The product (15) was
extracted with DCM, the organic layer was dried over Na2SO4. To confirm the metal-halogen
exchange the solution was measured via GC-MS.

Yield: estimated from the GC-MS spectra 90%
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4.5.4 Attempted synthesis of Br-dbutMeOA via 3-(dibutylamino)phenol
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Figure 4.19: Estimated synthesis of compound 14

This synthesis was performed analogously to [129]
3-(Dibutylamino)phenol (1.00 g, 4.52mmol, 1.00 eq) was dissolved in 10ml abs. THF in a
Schlenk flask under Ar atmosphere. The solution was stirred at 0 °C and 60% NaH dispersion
in mineral oil (198mg, 4.97mmol, 1.10 eq) was added in portions. The reaction mixture was
stirred for 20min. When no more gas evolution was observed iodomethane (310 µl, 4.97mmol,
1.10 eq) was added via a syringe to the solution. The reaction was heated carefully first to RT,
then to 50 °C and stirred for 18 h. Reaction progress was monitored via TLC (silica-gel, CH:EE,
5+1). The reaction mixture was poured into H2O (250ml) to neutralize the excess of NaH. The
product was extracted with DCM (3 · 300 ml), the organic layer was dried over Na2SO4. The
solvent was removed under reduced pressure. Finally the crude product was purified twice via
flash column chromatography (silcia-gel, cond. CH, CH:EE, 7+1 (first), CH:EE, 12+1 (second))
yielding a brown oil (16).

Yield: 350mg (33%)

TLC: Rf= 0.65 (silica-gel, CH:EE, 10+1)

NMR spectra in the appendix 10.23 page 98:
1H-NMR (300MHz, Chloroform-d): δ 7.13 (t, J = 8.2 Hz, 1H), 6.30 (d, J = 9.2 Hz, 1H), 6.23
(d, J = 6.5 Hz, 2H), 3.81 (s, 3H), 3.31 – 3.22 (t, 4H), 1.59 (p, J = 7.5 Hz, 4H), 1.45 – 1.30 (m,
4H), 0.97 (t, J = 7.3 Hz, 6H)
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4.5 Pt(II) complexes supported by tetradentate N2O2 chelates: Diphenyphenanthroline system

For the bromination reaction N,N-Dibutyl-3-methoxyaniline (100mg, 425 µmol, 1.00 eq) was
dissolved in 2ml CHCl3 in a round bottom flask. Via a dropping funnel 2ml of a Br2 solution
(637 µmol, 1.50 eq) in CHCl3 were added drop-wise to the stirring solution at 0 °C. The reaction
mixture was heated to RT and stirred for 4 h. Reaction progress was monitored via TLC
(silica-gel, CH:EE, 10+1). For neutralizing the excess of Br2 3% aq. Na2S2O3 · 5H2O was
added to the red solution (color change to grey, green). The organic layer was washed with H2O
(3 · 100 ml) and the solvent was removed under reduced pressure. Finally the crude product
was purified via flash column chromatography (silica-gel, cond, CH, CH:EE, 10+1) yielding a
red-brown liquid. After taking NMR measurements one can see that the red-brown liquid is
not the desired product.
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5 Results and Discussion

In the following all experiments will be discussed and the photophysical properties of the dyes
will be shown.

5.1 Synthetic considerations

The synthetic experiments for each reaction will be discussed in this section. The aim of
this thesis was to synthesize new phthalocyanine and porphyrin based dyes with red shifted
absorption. First, a new phthalocyanine dye based on a carbazole precursor (see figure
5.1 compound 5) was synthesized. Second, existing porphyrin dyes (e.g. Pt-TPTBPF or
Pt-TPTtBuBPBr) should be modified via Friedel-Crafts acylation reaction. Here two new
dyes were synthesized. Next, Pt-TPTtBuBPBr (see figure 5.4 on page 49) was modified by
Sonogashira coupling. Also synthesis of a new porphyrin dye based on a thiadiazole (TDA, see
figure 5.9 on page 54) was attempted. This reaction was not successful. Moreover two other
experiments were conducted.Synthesis of highly soluble porphyrin and phthalocyanine dyes was
attempted which was expected to form J-aggregates (see figure 5.11 on page 55). On the other
hand an existing system based on Pt(II) complexes supported by tetradentate N2O2-chelates
(see figure 5.13 on page 57, [126]) was attempted to be modified to achieve longer wavelengths
and improve brightness.

5.1.1 Carbazole based Phthalocyanine: compound 6
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Figure 5.1: Overview of the route of synthesis for compound 6

46 Porphyrin Based Complexes with Enhanced Spectral Properties for Oxygen Sensing



5.1 Synthetic considerations

The synthetic pathway for the synthesis of compound 6 is shown in figure 5.1. For the synthesis
of the carbazole precursor 5 several reaction steps were necessary, whereby some appeared to
be challenging. The according literature is given in the experimental part at each reaction
separately.
Pyridazine is the starting material. Compound 1 is the corresponding dicarboxylate which

is then modified to amide 2. These steps worked without a problem and with similar yields
according to the literature [116]. Corresponding to the fact that compound 2 precipitates, no
further work-up was needed and the product could be isolated as a white solid. On the contrary,
the synthesis of 3 was challenging. Here several reaction conditions (see figure 5.2) had to
be tested before the desired product could be synthesized within a reaction of POCl3 in an
open system (see 4.4 on page 32). Within these reactions in situ generated acid decreases the
pH value of the solution drastically. Therefore the formed product is destroyed. To solve this
problem the synthesis had to be conducted in an open system and not in a closed Schlenk flask.
Additionally, one has to bubble N2 through the solution to remove the formed acid immediately.
With this modification of the synthetic procedure the desired product 3 could be synthesized in
sufficient yield. The exact experimental procedures for each reaction shown in the figure below
can be found in the appendix (see section 10.5.1 on page 109).
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Figure 5.2: Screening of different synthetic routes for the synthesis of compound 3
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5 Results and Discussion

Besides these reactions also another synthetic route was investigated [130]. In figure 5.3 the
direct reaction from 1 into compound 3 is shown. This reaction did not lead to the desired
product. The 1H-NMR did mainly show the educt so the reaction did not take place at all.

NN

CO2EtEtO2C

Na+

O-
NN

NC CN

abs. THF

Ar, 8h

I2

NH3

0°C

DIBAl-H+ + +

RT

1 3

Figure 5.3: Attempted synthesis of compound 3 via direct conversion of compound 1

For the second building block of compound 5 indole was alkylated with a butyl group by
a straight forward synthesis according to literature [118] (see figure 5.1). To synthesize 5 the
compounds 3 and 4 had to react under harsh conditions [119–121]. For this reaction an Ace
pressure tube was needed. The problem with this reaction was not only its low yield but also
the solvent (CHCl3) attacking the sealing of the pressure tube. One had to find the right
reaction time which was limited by the following two factors. It should be long enough for good
yields but short enough that the solvent did not destroy the sealing. A better system for this
reaction may be an autoclave or the usage of a Teflon based sealing.
Also the synthesis of compound 6 was challenging because the choice of the solvent was

here very crucial. Finally the recation could be successfully performed by using abs. DMF as
solvent, catalytic amounts of DBU, zinc acetate, Ar atmosphere and 16 h reaction time. After
purification via flash column chromatography the desired green Zn-complex 6 could be isolated
in two fractions with significantly different Rf values. After interpretation of the corresponding
MS spectra which were identical (see appendix 10.4.1 on page 100) it could be conducted that
these two spectra show two different isomers of compound 6. Reaction 4.1.6 was not only
conducted in the working system with abs. DMF but also in abs. N-methyl-2-pyrrolidone
(200 °C), abs. N,N-dimehtylacetamide (165 °C) and abs. diphenyl ether (200 °C). None of
these other solvents nor reaction conditions led to the desired product 6. One approach was
performed under the same reaction conditions as in reaction 4.1.6 not in a Schlenk flask but in
an Ace pressure tube (same tube as used in reaction 4.1.5) at 180 °C. This reaction did only
lead to traces of the desired product which could not be isolated.
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5.1 Synthetic considerations

5.1.2 Porphyrin Modification by Sonogashira coupling

For the modification of existing porphyrin dyes by Sonogashira coupling or under Friedel-Crafts
reaction conditions Pt-TPTtBuBPBr and Pt-TPTBPF were used. These two dyes can be
obtained in high yields via convenient template synthesis.

7

N

N

N

NPt BrBr

Br

Br

NN

N N

Pt

THF, Et3N
CuI, Pd(PPH3)4

28%

Figure 5.4: Synthesis of compound 7 under Sonogashira conditions

Phenylacetylene was coupled at the β position to Pt-TPTtBuBPBr by Sonogashira coupling
(see figure 5.4) [123, 124]. The aim of this reaction was to introduce alkine substituents at the β
positions by replacing the Br atoms. We wanted to investigate whether the substitution of the
Br atoms by phenylacetylene results in a significant change in the spectral properties or if this
hardly affects the π-system of the dye. The reaction could be successfully performed by using
abs. THF, abs. Et3N, Ar atmosphere, Pd(PPh3)4 and CuI the two catalysts and a reaction time
of 18 h at 75 °C. After work-up and purification via flash column chromatography two different
fractions with a tetra- and two three-substituted products (see MS spectra in the appendix
10.4.2 on page 102) could be isolated as green solid (compound 7). One three-substituted
product had a remaining Br atom the other one had no substitution at this position. Due to
the challenging purification no pure fraction of the different products could be isolated.
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5 Results and Discussion

5.1.3 Porphyrin Modification by Friedel-Crafts reaction

4-Chlorobenzoyl-chloride was coupled under Friedel-Crafts conditions at the β positions to
M(II)-TPTBPF (see figure 5.5). As central metal ion platinum(II) or palladium(II) were used
to achieve the desired products (8, 9). The aim of this synthetic modification was to investigate
the impact of the new substituents on the π-system resulting in a bathochromic shift of the
dye. These reactions are not time consuming (reaction time of 30-40min) which allows a broad
range of screenings in an appropriate time. The reaction could be successfully conducted by
using abs. 1,2-dichlorobenzene, Ar atmosphere and AlCl3 at 130 °C. After purification via flash
column chromatography the green products 8 or 9 could be isolated as green solid (see MS
spectra in the appendix 10.29 on page 105-107).
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Figure 5.5: Synthesis of compounds 8 and 9 under Friedel-Crafts acylation conditions

After the success of the mentioned reactions above three other reagents were screened for the
modification of Pt-TPTBPF by Friedel-Crafts acylation. For these screening reactions only
the reagent was changed all other parameters stayed the same as in the reactions for 8 and 9.
The three used reagents for the screening were 2-(chloromethyl)benzoyl-chloride (see a in figure
5.6), α, α, ά, ά-tetrabromo-o-xylene (see b in figure 5.6) and 2-bromobenzoyl-chloride (see first
reaction step in figure 5.7). The aim of the specific modification of the dye by using α, α, ά,
ά-tetrabromo-o-xylene was to introduce Br atoms for further aromatization via dehalogenation.
Additionally, the Br substituents give new opportunities of further functional modifications.
Due to the fact that products formed in figure 5.5 are shifted bathochromically compared to
their corresponding M-TPTBPF we wanted to investigate whether a further red shift could be
achieved by introducing 2-(chloromethyl)benzoyl-chloride moieties. This substitution would
lead to an even more rigid system of the dye due to further extension of the π-system.
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Figure 5.6: Two reactions of the screening for modification of Pt-TPTBPF by Friedel-Crafts
alkylation with different reagents

The progress of both reactions shown in figure 5.6 was monitored by absorption spectroscopy.
After a significant change in the spectra the solution was quenched as described in the appendix
(see section 10.5.2 on page 111). Whereas in reaction a a dark green solid could be isolated,
this was not possible for reaction b. The absorption spectra after the work-up and purification
showed the educt Pt-TPTBPF. A specific reason for this result could not be found yet but
obviously the formed product gets degraded within the work-up procedure.

The next investigated experiment was the synthesis of Pt-TPTAPF (see figure 5.7). Therefore
two reaction steps would be necessary. First, the addition of α, ά-dibromo-o-xylene under
Friedel-Crafts alkylation conditions and second, the oxidation of the ring system. This would
lead to an extended and rigid π-system which would result in a bathochromical shift even more
significant than for that observed for tetranaphthaporphyrin.

Masterthesis by Maximilian Maierhofer, BSc, March, 2017 51



5 Results and Discussion

N

N

N

N

F

F F

F

Pt

N

N

N

N

F

F F

F

Pt+
AlCl3

130°C

1,2-dichlorobenzene

Ar, 45min

N

N

N

N

F

F F

F

Pt

110°C, 1h

abs. toluene

Ar

DDQ

Br

Br

Figure 5.7: Attempted synthesis for Pt-TPTAPF under Friedel-Crafts alkylation conditions
(first step) and oxidation with DDQ (second step)

The first reaction step was monitored via absorption spectroscopy and TLC. After the work-up
a dark green solid could be isolated which was attempted to be oxidized in the second reaction
step by DDQ (see experimental procedure in the appendix 10.5.2 on page 112). For the first
reaction step a lower Rf value compared to the educt could be detected. Therefore it was
assumed that the reaction did take place. Due to no significant change in the absorption spectra
it was concluded that the oxidation reaction did not work. As mentioned above the oxidation
of the ring system should lead to an rigid molecule with extended π-system.

As different dye for the modification via Friedel-Crafts acylation with 2-bromobenzoyl-chloride
Pt-TPTtBuBPBr was used. A second reaction step with an alkyl amine should then result in a
porphyrin dye with four attached acridone moieties (see figure 5.8). The aim of this synthesis
was again to modify an existing porphyrin dye by introduction of aromatic substituents to
achieve a bathochromic shift. The introduction of the acridone moieties would result in a
more rigid complex which decreases the solubility but should also shift the absorption/emission
spectra to longer wavelengths. To counteract this effect long alkyl chains at the nitrogen atoms
were introduced, resulting in an increased solubility of this new compound.
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Figure 5.8: Attempted synthesis of Pt-TPTtBuBPBr-2-benzoyl-Br under Friedel-Crafts acyla-
tion conditions

For the first reaction step again the same reaction conditions were applied. 2-Bromobenzoyl
chloride was used as reagent to couple to the porphyrin core. Conversion control was performed
by using absorption spectroscopy and TLC. After work-up and flash column chromatography
a dark green solid could be isolated (see experimental procedure in the appendix 10.5.2 on
page 112) which was added to react with 1-dodecylamine leading to a new porphyrin dye with
attached acridone moieties. The reaction progress was monitored via absorption spectroscopy
and TLC. For the second step no product formation could be observed. Since no structural
analysis were performed after the first reaction, one can not be sure which reaction step did not
work properly.

5.1.4 New Porphyrin with thiadiazole as main building block

A new porphyrin dye based on a benzothiadiazole (BTD) as main building block was attempted
and the electronic influence of such moieties on the porphyrin core unit investigated. Due to the
fact that these are EWGs a red shift was expected. After the synthesis, this compound should
be characterized and its photophysical properties compared to the corresponding Pt-TPTBPF.
The first two reaction steps to achieve the precursor were performed by Matthias Schwar
according to literature [131, 132]. Here starting material was 1,2-diamino-4,5-dibromobenzene
which yielded after treatment with SOCl2 the corresponding thiadiazole.

Masterthesis by Maximilian Maierhofer, BSc, March, 2017 53



5 Results and Discussion

N

SN

NC

NC

OH

O

+

O

O

2

Zn
2

+

N

N

N

N
N

S

NN

S

N

N
S

N

N
S

N

Zn

F
F

F F

FF

I) 280°C up to 320°C
II) 320°C up to 340°C
III) 320°C up to 340°C, Ar

Br

Br

NH2

NH2

Et3N
SOCl2N

SN

Br

Br

CuCN
CuI
FeCl3
DMF
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The template method was used for the screening shown in figure 5.9. Due to the fact that
the precursor was just available in small amounts a very small scale of a few milligrams
for this synthesis was necessary. Therefore a pre-screening with a reference porphyrin dye
was successfully conducted (5.10). For the screening for the new porphyrin dye different
starting temperatures as well as different reaction times and atmospheres were investigated (see
experimental procedure in the appendix 10.5.3 on page 113). In the monitoring of the reaction
progress no specific porphyrin signals (Soret- and Q-band) could ne detected. Due to the fact,
that the color of the reaction mixture changed to brown instead of green, it was assumed that
this precursor is not suitable for the template method and degrades at higher temperatures.
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Figure 5.10: Synthesis of Pt-TPTBP as reference for this small template synthesis in a sealed
200 µl capillary

5.1.5 Highly soluble Porphyrin and Phthalocyanine dyes for J-aggregates

As mentioned in section 2.6 on page 23 f porphyrin and phthalocyanine dyes can be used for
the formation of J-aggregates. The synthetic pathway for the synthesis of suitable complexes is
shown in figure 5.11. For the synthesis of the precursor compounds 10 and 11 only one or two
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5.1 Synthetic considerations

synthetic steps were necessary. These reactions were performed according to literature [125]
(see experimental procedure in section 4.12 on page 38 and 39). Since within the synthesis of
porphyrins many different substitution patterns and also side products like aza-benzoporphyrins
are formed, leading to a very challenging separation process. Therefore we decided to first
investigate this phenomenon with phthalocyanines, due to their comparable behavior in forming
J-aggregates like their corresponding porphyrins.
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Figure 5.11: Synthetic route for the synthesis of compound 12 and other phthalocyanine or
porphyrin dyes with compound 10 or 11 as main building block

Here 4,5-Dichlorophthalonitrile is the starting material. Compound 10 could be isolated after
substitution of the chloride atoms by 2-ethylhexane-1-thiol groups. Oxidation of compound
10 by m-CPBA results in the formation of compound 11. Both reactions worked without
any problems. The synthesis of the phthalocyanine 12 was challenging. Even though the
equivalents of the used building blocks can be adapted different substitution patterns were
expected. Besides the in figure 5.11 shown 2/2 trans substitution also a cis configuration as
well as 3/1 or 1/3 patterns are possible. This reaction could be performed by using abs. DMF,
precursor 10, zinc acetate, phthalonitrile, DBU as a catalyst, and Ar atmosphere at 155 °C for
16 h. Nevertheless the purification was very challenging and even after precipitation into a 3+1
mixture of H2O:MeOH and several purification attempts with flash column chromatography no
pure fraction of the product could be isolated (see experimental procedure section 4.14 on page
40).

Due to this very challenging reaction another attempt for the synthesis of a phthalocyanine
dye with this type of precursor was performed (see figure 5.12). For this reaction the oxidized
precursor 11 was used. Besides that, abs. DMF, zinc acetate, DBU as a catalyst and
phthalonitrile under Ar atmosphere at 155 °C for 16 h were necessary. After conversion control

Masterthesis by Maximilian Maierhofer, BSc, March, 2017 55



5 Results and Discussion

via absorption spectroscopy, the work-up and purification, a green solid could be isolated.
However, the MS spectra did not show any signals which could be estimated as a phthalocyanine
dye (see appendix 5.12 on page 108). The calculated exact mass of this disubstituted complex
should be 1308.46, a monosubstituted complex should have an exact mass of 956.29 but non
of these values could be observed in the MALDI-TOF spectra. Due to the fact that the main
signal is located at 574.16 it is confirmed that no phthalocyanine dye with compound 11 as
main building block was formed.
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Figure 5.12: Attempted synthesis of Zn–bEHS2 –Pc; different isomers possible

5.1.6 Pt(II) complexes supported by tetradentate N2O2 chelates:
Diphenyphenanthroline system

An overview of a completely different system for an oxygen sensitive Pt(II) complex is given in
figure 5.13. This system is based on a tetradentate N2O2 chelate ligand. Thereby the ground
structure is 4,7-diphenyl-1,10-phenanthroline, where at the α positions besides the nitrogen
atoms N,N-dibutyl-3-methoxyaniline groups are attached. After deprotection of the methoxy
groups Pt(II) should coordinate at the two oxygen and the two nitrogen atoms. This synthesis
was inspired by the work of Lin et al. [126]. This group already published a similar system
which is shown in figure 4.15 on page 41. The idea for the new synthesis was to modify their
Pt(Ph2N2O2)dpp system by adding an electron donating substituent in the para position which
results in a push-pull system. The according literature is given in the experimental part at each
reaction step separately.
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Figure 5.13: Theoretical synthetic overview for the synthesis of Pt(II) complexes with tetraden-
tate N2O2 chelates

4-Bromo-3-methoxyaniline is the starting material. The first step was the di-alkylation by
1-iodobutane of this molecule leading to compound 14. The mono substituted product 13
is also shown in figure 5.13. The alkyl chains should increase the solubility of the desired
complex in the end. Although this reaction looks quiet easy it was challenging to get the
di-substituted product. Different reaction conditions had to be investigated. When the reaction
was conducted in abs. THF at 60 °C, only the mono-substituted product could be achieved. For
the introduction of the second alkyl chain another solvent at harsher conditions was necessary.
The successful synthesis of 14 could be achieved in sufficient yield by using abs. toluene as
solvent at 110 °C. Besides this synthetic route for the desired building block 14 an alternative
route was investigated (see figure 4.19 on page 44). Therefore 3-(dibutylamino)phenol was
methylated and after specific bromination at the para position according to the nitrogen the
reaction was expected to lead compound 14. However only the methylation was successful.
The bromination reaction could not be performed in a specific way. This was proven by NMR
measurements. Compound 15 was in situ formed. Therefore different reagents and reaction
conditions were conducted (see figure 5.14). First, the reaction was performed according to
Lin et al. by using lithium metal in abs. Et2O under reflux (a in figure 5.14). After 2 h the
reaction was quenched with NH4Cl and conversion control was performed by GC-MS. Here no
product formation could be established.
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Figure 5.14: Different attempted synthesis for the reaction of 14 with 4,7-diphenyl-1,10-
phenanthroline

Therefore another method for the metal-halogen exchange was investigated by using n-BuLi
in abs. THF at -78 °C (b in figure 5.14). This reaction shows complete conversion after
1 h as visible from GC-MS analysis. Nevertheless the next reaction steps did not work. 15
was expected to react with 4,7-diphenyl-1,10-phenanthroline to form the desired ligand. The
reaction conditions are given in figure 5.14. After the work-up, NMR measurements as well
as HPLC-MS measurements were performed. None of these showed the desired product. The
HPLC measurement, however showed traces of two other products. After the interpretation of
the masses it was confirmed that these signals result from mono and di alkylated 4,7-diphenyl-
1,10-phenanthroline species whereby the butyl chains instead of precursor 15 were substituted
at the ring system. For the metal-halogen exchange 1.2 eq of n-BuLi were used, wherefore it was
conducted that the unreacted n-BuLi may have reacted with 4,7-diphenyl-1,10-phenanthroline to
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5.1 Synthetic considerations

form these side products. In another attempt 2 eq of tert-BuLi were used for the metal-halogen
exchange. Thereby the first equivalent reacted as desired to exchange the Br atom at the phenyl
ring. The second equivalent was involved in the dehydrohalogenation of tert-BuBr leading to
LiBr, isobutene and isobutane (two volatile compounds). Because of this, the equilibrium of the
reaction is shifted towards the product side. However, this reaction did not show any product
formation. The exact experimental procedures of these different attempts for the formation of
the ligand molecule can be looked up in the appendix 10.5.5 on page 114f.
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5 Results and Discussion

5.2 Dye characterization

For photophysical characterization of the synthesized dyes absorption and emission spectra
were measured. All measurements were performed in solution (toluene). For compound 8 and
9 further photophysical properties were investigated by Peter Zach.

5.2.1 Photophysical properties
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Figure 5.15: Absorption and emission spectra of different isomers of compound 6 compared
to a reference dye in anoxic toluene

Aim of this experiment was the synthesis of a new porphyrin dye based on the carbazole
precursor 5 with red shifted absorption spectrum. Unfortunately this could not be achieved
due to the very challenging synthesis and thus very small amount of precursor, not sufficient for
the template synthesis. Nevertheless compound 6, a new phthalocyanine dye could be isolated.
In figure 5.15 the absorption and emission spectra of two different isomers of compound 6 are
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5.2 Dye characterization

shown (red and black curves). The significant peaks of both fractions have the same shift
in absorption as well as in the emission spectra. Just the intensities of the specific signals
vary in their heights. Comparing absorption and emission spectra one can see that these
dyes have a very small Stoke’s shift which is typical for phthalocyanine dyes. The absorption
maximum is located at 742 nm whereas the emission maximum is just shifted 11 nm so that
the two spectra have a high overlap. The blue curve represents the absorption spectrum of the
reference dye Zn-TtBu-Pc. Compared to this reference the absorption spectrum of the new dye
6 is bathochromically shifted by over 60 nm. According to this result it would be interesting
to synthesize the corresponding porphyrin dye, which would be interesting in NIR sensing
applications. For instance the absorption of such a Pt(II) porphyrin complex is expected to be
at around 675 nm which would compete with Pt(II) complexes of tetranaphthaporphyrin.

Compound 7
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Figure 5.16: Absorption (pure) and emission (dotted) spectra of compound 7 compared to
the substrate in anoxic toluene

The aim of this synthesis was to investigate the influence of substituting a Br atom by an
aromatic alkine moiety at the β position of the porphyrin core on the spectral properties of

Masterthesis by Maximilian Maierhofer, BSc, March, 2017 61



5 Results and Discussion

the dye. Figure 5.16 shows the absorption and emission spectra of the substrate (Pt-TPTBP,
red curve) and compound 7 (black curve). Neither the absorption nor the emission maxima
are significantly shifted bathochromically compared to the substrate. Therefore it is assumed
that the substitution at the β position of the porphyrin dye only slightly affects the π-system.
One reason for this could be that the angle of the orbitals does not fit so that the π-system
cannot be further extended. Nevertheless, even this shift (10 nm) races the new Pt(II) complex
compatible with the emission of 635 nm laser diode.
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Figure 5.17: Absorption and emission spectra of different substituted products involved in
the synthesis of compound 7 in anoxic toluene

In figure 5.17 the absorption and emission spectra of different substituted side products of this
synthesis are shown (see a). According to the MS data (see appendix section 10.4.2 on page
102f) a trisubstituted product (blue curve) as well as a trisubstituted product with a remaining
Br atom attached at the last β position (black curve) could be isolated. The proposed structures
of these complexes are shown in b and c in figure 5.17. The curves show no significant change
concerning their maxima compared to compound 7. This result supports the theory that the
π-system of the complex cannot be extended significantly by linkage of an aromatic group over
an alkine moiety at the β position of a porphyrin dye.
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5.2 Dye characterization

Porphyrin Modification by Friedel-Crafts acylation

As mentioned above (see 5.1.3) different porphyrin dyes as well as different reagents were
screened for this reaction type to investigate the influence of these substitutions at the β
position of the porphyrin core on the photophysical properties of the dyes.
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Figure 5.18: Absorption (pure) and emission (dotted) spectra of compound 8 compared to
Pt-TPTBPF in anoxic toluene

Figure 5.18 shows the absorption and emission spectra of compound 8 (black curve) com-
pared to the educt (Pt-TPTBPF, red curve). Here, one can see that the substitution of
4-chlorobenzoyl chloride at the β positions of the porphyrin core extended the π-system result-
ing in a bathochromic shift. Compared to the reference dye the Soret (430/449 nm) and Q-band
(614/633) of the new dye are shifted by approximately 20 nn, whereas the emission maxima are
just slightly red shifted (769/773 nm). Similar results could be achieved with the corresponding
Pd(II) dye (see figure 5.19, black curve). Here, also the Soret (443/461 nm) as well as the
Q-band (628/647 nm) were bathochromically shifted by approximately 20 nm compared to the
substrate (Pd-TPTBPF, red curve). The emission spectra are almost identical (797/799 nm).
A lower energy gap between the singlet and the triplet state of these new dyes compared to the
educts could be an explanation for this behavior. 8 and 9 are now compatible with blue LEDs
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and red laser diodes which makes them more attractive for new applications.
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Figure 5.19: Absorption (pure) and emission (dotted) spectra of compound 9 compared to
Pd-TPTBPF in anoxic toluene

For further dye characterization relative quantum yield and lifetime measurements in solution
(toluene) were performed at RT for compound 8 and 9. As reference dyes Pt- and Pd-TPTBP
were used (see table 5.1). These results show that the new dyes have higher QY’s and similar
lifetimes compared to the corresponding reference dyes.

Table 5.1: Quantum yield and lifetime measurements of compound 8 and 9 in anoxic toluene
at 23 °C compared to references [83]

Data Compound 8 Pt-TPTBP Compound 9 Pd-TPTBP
Excitation λ [nm] 619 619 633 633

QY [%] 70 51 31 21
τ [µ] in solution 47 47 313 289

Figure 5.20 shows the absorption spectrum of a fraction after purification via flash column
chromatography of the attempted synthesis of Pt-TPTBPF-naphthalen-1(4H)-one (black curve)
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5.2 Dye characterization

compared to the substrate (Pt-TPTBPF). Here, one can see a bathochromical shift of the
Soret and the Q-band. Nevertheless, this spectrum shows very broad bands, wherefore it is
likely assumed that no pure product could be isolated. One explanation for this could be that
the reagent and the porphyrin core unit just reacted at one position so that no ring closure
occurred resulting in a free rotation of the new substituents. Also alkylation of meso-phenyl
rings restricting their rotation and improving of the conjugation is possible. Furthermore
various isomers would be formed if there was no ring closure at all four β positions.
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Figure 5.20: Absorption spectrum of product of attempted synthesis of Pt-TPTBPF-
naphthalen-1(4H)-one and Pt-TPTBPF in toluene

Figure 5.21 shows the absorption spectrum of Pt-TPTtBuBPBr-2-benzoyl-Br (black curve)
compared to the substrate (Pt-TPTtBuBPBr, red curve). The Soret and the Q-band of these
two dyes just vary slightly. This result was expected due to the fact that the substitution
by 2-bromobenzoyl-chloride at the β position did not create an extension of the π-system. A
significant red shift was only expected after the second reaction step (see figure 5.8 on page 53)
but as mentioned before this reaction could not be performed successfully. Nevertheless, the
Q-band maximum is broader than the reference signal which indicates that this spectrum does
not show a pure substance.
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Compound 12
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Figure 5.22: Absorption spectrum of a mixture of possible isomers of compound 12 in toluene
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5.2 Dye characterization

Figure 5.22 shows an absorption spectrum of a possible isomer or isomer mixture of compound
12. The maxima of the significant peaks are located at around 344 nm, 627 nm and the Q-band
at 696 nm. The shifts of these maxima are comparable to those of Zn-TtBu-Pc (see figure 5.15
on page 60). This result proofed that a phthalocyanine with compound 10 as building block is
not shifted bathochromically. Here, just the formation of J-aggregates would lead to a sharp
and significantly bathochromically shifted signal. Without being sure if the isolated product is
pure, the formation of J-aggregates could not be performed.
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6 Conclusion and Outlook

One aim of this thesis was the synthesis of new benzoporphyrin and phthalocyanine dyes with
red shifted absorption and emission spectra. This was attempted via different strategies. First,
the synthesis of a new Pt(II) porphyrin dye based on the carbazole precursor 5 was attempted.
For this synthesis five reaction steps were necessary, whereby some appeared to be challenging
and time consuming. However, very small amount of compound 5 were isolated and thus could
not be used as precursor for the well established template synthesis for benzoporphyrin dyes.
Hereby, a new phthalocyanine dye 6 could be synthesized. This dye showed a significant red
shifted absorption maximum (742 nm) as well as emission maximum of ∼60 nm compared to
Zn-TtBu-Pc (678 nm). The absorption maximum of the Q-band of a Pt(II) benzoporphyrin dye
with this carbazole precursor as building block could therefore be expected to appear at ∼675 nm.
Consequently, this complex would be interesting for biomedical applications due to the fact
that at this part of the spectrum the autofluorescence of the biological tissue is minimized. Also
this complex would be compatible with red laser diodes. Second, different modifications of the
existing porphyrin dyes Pt/Pd-TPTBPF and Pt-TPTtBuBPBr were conducted. Compound 7
could be synthesized in a one step synthesis by Sonogashira coupling of Pt-TPTtBuBPBr with
phenylacetylene. This complex shows a slightly bathochromically shifted absorption spectrum.
Nevertheless, this shift allows the Pt(II) complex to be compatible with a red laser diode
(635 nm). Pt/Pd-TPTBPF were modified in a one step synthesis by addition of 4-chlorobenzoyl
chloride at the β position of the porphyrin core under Friedel-Crafts conditions. Compound
8 and 9 show a bathochromically shifted absorption spectrum by ∼ 20 nm. Additionally,
quantum yield and lifetime measurements were performed. Compared to the corresponding
Pt/Pd-TPTBP dyes, the new dyes show comparable lifetime and increased quantum yield.
Further modifications of Pt/Pd-TPTBPF by e.g. formylation, Friedel-Crafts reaction with
fluorinated species like 2,3,4,5,6-pentafluorobenzoyl chloride or even dimer coupling by using
the specific acid chloride species are interesting possibilities in future.

Another aim of this thesis was the synthesis of highly soluble porphyrin and phthalocyanine
dyes compatible for the formation of J-aggregates. A phthalocyanine, compound 12, based on
the unoxidized precursor 10 could be synthesized. Unfortunately, due to the very challenging
purification, this complex could not be isolated as a pure substance. Therefore compound
10 was oxidized yielding 11. Unfortunately, also the synthesis of a phthalocyanine dye with
compound 11 as main building block could not be performed successfully which was proven by
MALDI-TOF spectra.
The last aim of this thesis was the synthesis of a Pt(II) complex supported by tetradentate

68 Porphyrin Based Complexes with Enhanced Spectral Properties for Oxygen Sensing



N2O2 chelate ligands. Therefore an existing Pt(Ph2N2O2)dpp system [126] was modified by
adding an electron donating substituent in the para position which should then result in
a push-pull system. A suitable precursor with these properties is compound 14. Also the
metal-halogen exchange could be successfully conducted. However, no further reaction could
be performed with this precursor. Changing reaction conditions as well as reactants for the
metal-halogen exchange and further reaction steps did not result in a successful reaction for the
synthesis of the desired modified chelate ligand.
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10 Appendix

10 Appendix

10.1 Abbreviations

Table 10.1: List of used abbreviations
Abbreviation Name
QY Quantum yield
abs. absoulte
av. average
CAS Chemical Abstracts Service
CH Cyclohexane
DCM Dichloromethane
EE Etyhl acetate
DCB 1,2-Dichlorobenzene
NMP N-Methyl-2-pyrrolidone
DMA N,N-Dimethylacetamide
Et2O Diethylether
THF Tetrahydrofuran
Tol Toluene
t-BuLi tert-Butyllithium
n-BuLi n-Butyllithium
DMF N,N-Dimethylformamide
MeOH Methanol
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
MO Molecular orbital
NIR Near-infrared
IC Internal conversion
ISC Intersystem crossing
HRMS High Resolution Mass Spectrometry
Ksv Stern-Volmer constant
MS Molecular sieve
RT Room temperature
TLC Thin-layer chromatography
Rf Retention factor
UV Ultraviolet
TTA Triplet-triplet annihilation
DBU 1,8-Diazabicyclo[5.4.0]undec-7-en
DDQ 2,3-Dichloro-5,6-dicyano-p-benzoquinone
Et3N Triethylamine
K2CO3 Pottasium carbonate
H2SO4 Sulfuric acid
AlCl3 Aluminum chloride
Ar Argon
N2 Nitrogen
Pd(PPh3)4 Tetrakis(triphenylphosphine)palladium(0)

86 Porphyrin Based Complexes with Enhanced Spectral Properties for Oxygen Sensing



10.2 List of used solvents

10.2 List of used solvents

Table 10.2: List of Solvents
Solvent Supplier CAS-Number
Tetrahydrofuran Roth 109-99-9
Chloroform VWR Chemicals 67-66-3
1,2-Dichlorobenzene Sigma-Aldrich 95-50-1
Toluene Sigma-Aldrich 108-88-3
N-Methyl-2-pyrrolidone ABCR 872-50-4
N,N-Dimethylformamide Sigma-Aldrich 68-12-2
Acetonitrile Roth 75-05-8
Diethylether VWR 60-29-7
N,N-Dimethylacetamide Sigma-Aldrich 127-19-5
Dichloromethane Fisher Scientific 75-09-2
1,2-Dicyanobenzene Sigma-Aldrich 91-15-6
Novec 7200 3M 163702-06-5
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Figure 10.1: 1H-NMR spectrum of compound 1
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Figure 10.7: 1H-NMR spectrum of compound 4
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Figure 10.8: APT-NMR spectrum of compound 4

10.3.5 compound 5
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Figure 10.9: 1H-NMR spectrum of compound 5
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Figure 10.10: APT-NMR spectrum of compound 5
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Figure 10.11: 1H-NMR spectrum of compound 8
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10.3 NMR Data
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Figure 10.12: APT-NMR spectrum of compound 8
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Figure 10.13: 1H-NMR spectrum of compound 9
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Figure 10.14: APT-NMR spectrum of compound 9

10.3.8 compound 10
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Figure 10.15: 1H-NMR spectrum of compound 10
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10.3 NMR Data

DClC�C�C�C�C�C	C
CDCCDDCDlCD�CD�CD�CD�CD�CD	CD
ClCClDC
�D2f��� 

)l�CC

)lCCC

)D�CC

)DCCC

)�CC

C

�CC

DCCC

D�CC

lCCC

l�CC

�CCC

��CCD
C
-


C

D
�
-D

	

l
�
-C

�
l
�
-


�
l
	
-	



�
l
-�

D

�
�-
�
�

�
	
-�

C

�
�-
D
�
2�

�
�
��

D
D
D
-C

�

D
D
�
-	

�

D
l
	
-l

	

D
�
�
-


�

�

�

�

�

�

��
�

	




��

��

��

��
��

�
��

��

��

��

�	

�


��
��

��

��
��

��

��
��

��

�
��

��

�
�	

�����
���

���

���

	���


���
�����

�����

�����

����	

����


�����

-δ�C���CH29C���lC����������o�zC�C

-44r59ClC-)8r)8ClC--.r8.ClC---rm9ClCδ8r9mClC

δ2rδ4ClCδ)r2-ClC)8r85ClC).r59ClC)δrmδClC-4r-8ClC

-mr5mCr

Figure 10.16: APT-NMR spectrum of compound 10

10.3.9 compound 11
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Figure 10.17: 1H-NMR spectrum of compound 11
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Figure 10.18: APT-NMR spectrum of compound 11

10.3.10 compound 13
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Figure 10.19: 1H-NMR spectrum of compound 13
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10.3 NMR Data
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Figure 10.20: APT-NMR spectrum of compound 13

10.3.11 compound 14
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Figure 10.21: 1H-NMR spectrum of compound 14
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Figure 10.22: APT-NMR spectrum of compound 14

10.3.12 compound 16
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Figure 10.23: 1H-NMR spectrum of compound 16
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10.4 MS Data

10.4.1 compound 6
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Figure 10.24: MALDI-TOF spectrum of compound 6 (fraction one, picture 2/4) in a alpha
matrix with the corresponding isotope pattern (picture 1/3)
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Figure 10.25: MALDI-TOF spectrum of compound 6 (fraction two, picture 2/4) in a alpha
matrix with the corresponding isotope pattern (picture 1/3)
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10.4.2 compound 7
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Figure 10.26: MALDI-TOF spectrum of compound 7 in a DCTB matrix with the correspond-
ing isotope pattern (upper pictures)
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Figure 10.27: MALDI-TOF spectrum of Pt-triPhacetTtBuBP in a DCTB matrix with the
corresponding isotope pattern (upper pictures)
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Figure 10.28: MALDI-TOF spectrum of Pt-BrtriPhacetTtBuBP in a DCTB matrix (picture
2/4) with the corresponding isotope pattern (picture 1/3)
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10.4 MS Data

10.4.3 compound 8
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Figure 10.29: MALDI-TOF spectrum of Pt-TPTBPF-benzoyl-Cl in a alpha matrix with the
corresponding isotope pattern (upper pictures)
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10.4.4 compound 9
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Figure 10.30: MALDI-TOF spectrum of Pd-TPTBPF-benzoyl-Cl in a DCTB matrix with
the corresponding isotope pattern (upper pictures)
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Figure 10.31: Detailed MALDI-TOF spectrum of Pd-TPTBPF-benzoyl-Cl in a DCTB matrix
with the corresponding isotope pattern (upper 3 pictures)
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10.4.5 Attempted synthesis of Zn–bEHS2 –Pc
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Figure 10.32: MALDI-TOF spectrum of attempted synthesis of Zn–bEHS2 –Pc in a DCTB
matrix with the corresponding isotope pattern (upper 3 pictures) for different substitution
possibilities
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10.5 Supporting information: synthetic considerations

In this section the detailed experimental procedures for each unsuccessful experiment can be
looked up.

10.5.1 Compound 3

Here are the different synthetic approaches for the synthesis of compound 3 which are shown in
figure 5.2 on page 47 listed. Also the direct synthesis of the nitrile 3 from the ester 1 was tried
(see figure 5.3 on page 48).

Reaction A

This synthesis was performed analogously to [116]
Pyridazine-4,5-dicarboxamide (100mg, 602µmol, 1.00 eq) was added to 1.5ml (16.3mmol,
27.0 eq) of POCl3 in a Schlenk flask under Ar atmosphere and stirred for 5 h at 110 °C. The
reaction turned to a green-brown color. A mini-workup was conducted. The excess of POCl3
was quenched with saturated NaHCO3. The red-brown solid was indissoluble in DCM, THF,
EtOAc or Et2O. The 1H-NMR data did not show any expected product signals.

Reaction B

This synthesis was performed analogously to [133]
Pyridazine-4,5-dicarboxamide (60.0mg, 360 µmol, 1.00 eq) was dissolved in 4ml of a 1+1 mixture
of H2O and acetonitrile in a Schlenk flask. Pd(OAc)2 (4.05mg, 18.1µmol, 0.05 eq) was added
as catalyst. Due to solubility problems 1ml of DMF was added after 1 h of stirring at RT. The
reaction mixture was heated to 82 °C and stirred for 24 h. After mini-workup which is descried
in Reaction A (10.5.1) no product spot could be observed with TLC (silica-gel, DCM:EtOAc
5+1).

Reaction C

This synthesis was performed analogously to [133]
Reaction C is the same one as B (10.5.1) with one difference: as catalyst PdCl2 was used. This
reaction does not lead to the desired product.

Reaction D

This synthesis was performed analogously to [134]
AlCl3 (80.3mg, 602µmol, 2.00 eq) and NaI (270mg, 1.81mmol, 6.00 eq) were stirred in 8ml of
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abs. acetonitrile in a Schlenk flask under Ar atmosphere at RT (yellow solution). After 30min
of stirring pyridazine-4,5-dicarboxamide (50.0mg, 300 µmol, 1.00 eq) was added. The reaction
mixture was heated to 84 °C. This caused a color change to orange. The solution was stirred
for 1.5 h at this temperature. After mini-workup which is descried in Reaction A (10.5.1) no
product spot could be observed with TLC (silica-gel, DCM:EtOAc 5+1).

Reaction E

This synthesis was performed analogously to [135, 136]
Pyridazine-4,5-dicarboxamide (50.0mg, 300 µmol, 1.00 eq) was dissolved in 3ml abs. DMF
in a Schlenk flask under Ar atmosphere. Cyanuric chloride (138mg, 750µmol, 2.50 eq) was
added at 0 °C. The solution was stirred for 15 h at RT. The reaction turned to a yellow color.
After mini-workup which is descried in Reaction A (10.5.1) the 1H-NMR data did not show any
expected product signals.

Reaction F

This synthesis was performed analogously to [137]
AlCl3 (45.0mg, 338 µmol, 1.12 eq) and KI (151mg, 910µmol, 3.02 eq) were stirred in 7.5ml of a
5+1 mixture of H2O and acetonitrile in a Schlenk flask at RT. Before adding pyridazine-4,5-
dicarboxamide (50.0mg, 300 µmol, 1.00 eq) the solution was stirred for 30min at RT. Then the
reaction was heated to 80 °C and stirred for 7 h (yellow solution). After removal of the solvent
under reduced pressure the residue was diluted with 10ml H2O and the product extracted
with DCM (3 · 20 ml). The red organic layer was treated with 5% aq. NH3 (color change to
light yellow). The organic layer was washed with 20ml H2O, dried over Na2SO4. The solvent
was removed under reduced pressure. The 1H-NMR data did not show any expected product
signals.

Reaction G

This synthesis was performed analogously to [138]
Pyridazine-4,5-dicarboxamide (50.0mg, 300 µmol, 1.00 eq) was dissolved in 3ml abs. DMF in
a Schlenk flask under Ar atmosphere. SOCl2 (55µl, 750 µmol, 2.50 eq) was added dropwise
at 0 °C. The solution was stirred for 15 h at RT. The reaction turned to a yellow color. After
mini-workup which is descried in Reaction A (10.5.1) the 1H-NMR data did not show any
expected product signals.
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Compound 3: direct synthesis ester to nitrile

This synthesis was performed analogously to [130]
NaOtBu (77.2mg, 803 µmol, 1.80 eq) was dried in a Schlenk flask under Ar atmosphere. After
drying 2ml abs. THF and DIBAl-H (760µl, 760µmol, 1.70 eq) were added at 0 °C and the
reaction mixture was stirred for 1 h at RT. Then diethyl pyridazine-4,5-dicarboxylate (100mg,
446µmol, 1.00 eq) predissolved in 3ml of abs. THF were added dropwise at 0 °C to the solution
(color change to red). The reaction was stirred for 4 h. 3ml of 25% aq. NH3 and I2 (453mg,
1.78mmol, 4.00 eq) were added at 0 °C (color change to orange). The reaction mixture was
stirred for 3 h at RT. The reaction was poured onto 20ml of a saturated solution of Na2SO3 and
the product was extracted with EtOAc (3*100ml). The organic layer was dried over Na2SO4.
The solvent was removed under reduced pressure. The 1H-NMR data did mainly show signals
of the substrate and not of the desired dinitrile.

10.5.2 Porphyrin modification by Friedel-Crafts acylation

target compound: Pt-TPTBPF-naphthalen-1(4H)-one

In a Schlenk flask Pt-TPTBPF (10.0mg, 9.40 µmol, 1.00 eq) was dissolved in 1,2-dichlorobenzene
(5ml) under Ar atmosphere (green solution). 2-(Chloromethyl)benzoyl chloride (27.0 µl,
185 µmol, 20.0 eq) and AlCl3 (20.0mg, 150 µmol, 16.2 eq) were added to the solution. The
reaction mixture was heated to 130 °C and stirred for 30min. The reaction progress was
monitored via absorption spectroscopy (solvent: CHCl3, 1 drop of EtOH). After 30min, another
20 eq 2-(chloromethyl)benzoyl chloride and 16.2 eq AlCl3 were added. The reaction mixture was
heated to 160 °C for 30min. The reaction progress was detected via absorption spectroscopy.
The green soltuion was cooled down to RT. In the work-up reaction mixture was treated with
EtOH:H2O (1+1, each 20ml) and stirred for 10 minutes to neutralize the excess of AlCl3. After
addition of DCM, the organic layer was washed with dest. H2O, dried over Na2SO4 and the
solvent was removed under reduced pressure. Finally the crude product was purified via flash
column chromatography (silica-gel, cond. toluene, gradient elution starting from DCM:Tol
1+10 ending with DCM:THF 3+1), yielding a dark green solid.

target compound: Pt-TPTBPF-DBr-naphthalene

In a Schlenk flask Pt-TPTBPF (10.0mg, 9.40 µmol, 1.00 eq) was dissolved in 1,2-dichlorobenzene
(5ml) under Ar atmosphere (green solution). α, α, ά, ά-Tetrabromo-o-xylene (78.0mg, 185 µmol,
20.0 eq) and AlCl3 (40.0mg, 300 µmol, 32.4 eq) were added to the solution. The reaction mixture
was heated to 130 °C and stirred for 30min. The reaction progress was monitored via absorption
spectroscopy (solvent: CHCl3, 1 drop of EtOH). A significant change in the absorption spectrum
was observable. The reaction mixture was cooled to RT. In the work-up reaction mixture
was treated with EtOH:H2O (1+1, each 20ml) and stirred for 10 minutes to neutralize the
excess of AlCl3. DCM was added, the organic layer was washed with dest. H2O, dried over
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Na2SO4 and the solvent was removed under reduced pressure. A new absorption spectrum
shows that Pt-TPTBPF is partly reformed. Finally the raw product was purified via flash
column chromatography (silica-gel, cond. CH, gradient elution starting from CH:DCM 12+1
ending with THF:MeOH 5+1), yielding no desired product, only Pt-TPTBPF could be observed.
Absorption spectra were measured in toluene.

target compound: Pt-TPTAPF

In a Schlenk flask Pt-TPTBPF (10.0mg, 9.40 µmol, 1.00 eq) was dissolved in 1,2-dichlorobenzene
(5ml) under Ar atmosphere (green solution). α, ά-Dibromo-o-xylene (97.0mg, 370 µmol, 40.0 eq)
and AlCl3 (40.0mg, 300µmol, 32.4 eq) were added to the solution. The reaction mixture was
heated to 130 °C and stirred for 45min. The reaction progress was monitored via absorption
spectroscopy (solvent: CHCl3, 50µmol of EtOH). The green soltuion was cooled down to RT.
In the work-up reaction mixture was treated with EtOH:H2O (1+1, each 20ml) and stirred for
10 minutes to neutralize the excess of AlCl3. After addition of DCM, the organic layer was
washed with dest. H2O, dried over Na2SO4 and the solvent was removed under reduced pressure.

TLC: Rf= 0.18 (silica-gel, CH:DCM 15+1)

For the second step the green solid (14.0mg, 9.27µmol, 1.00 eq) of step one was dissolved in
6ml abs. toluene in a Schlenk flask. DDQ (34.0mg, 148µmol, 16.0 eq) was dissolved in 2ml
abs. toluene and added dropwise to the stirring solution. The reaction mixture was heated
to 105 °C and stirred for 1 h. Reaction progress was monitored via absorption spectroscopy
(solvent: toluene).

target compound: Pt-TPTtBuBPBr-2-benzoyl-Br

In a Schlenk flask Pt-TPTtBuBPBr (5.00mg, 3.23 µmol, 1.00 eq) was dissolved in 1,2-dichloro-
benzene (5ml) under Ar atmosphere (green solution). 2-Bromobenzoyl-chloride (9.00 µl,
64.0 µmol, 20.0 eq) and AlCl3 (10.0mg, 75 µmol, 23.0 eq) were added to the solution. The
reaction mixture was heated to 130 °C and stirred for 30min. The reaction progress was
monitored via absorption spectroscopy (solvent: CHCl3, 50 µl of EtOH). After 30min another
20.0 eq of 2-bromobenzoyl-chloride and 23.0 eq of AlCl3 were added. The reaction mixture was
again stirred for 30min. Then the reaction mixture was cooled to RT. Reaction mixture was
treated with EtOH:H2O (1+1, each 20ml) and stirred for 10 minutes to neutralize the excess
of AlCl3. After addition of DCM, the organic layer was washed with dest. H2O, dried over
Na2SO4 and the solvent was removed under reduced pressure. Finally the crude product was
purified via flash column chromatography (silica-gel, cond. CH, gradient elution starting from
CH:DCM 15+1 ending with EE:MeOH 10+1) yielding a dark green solid.

Yield: 5.00mg (40%)
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TLC: Rf= 0.59 (silica-gel, CH:EE 20+1)

λmax(CHCl3): 441 nm (1.00), 573 nm (0.08), 613 nm (0.44), 625 nm (0.46)

For the second step the green solid (5.00mg, 2.19µmol, 1.00 eq) of step one was dissolved in
5ml abs. NMP in a Schlenk flask under Ar atmosphere. 1-Dodecylamine (8.13mg, 44 µmol,
20.0 eq) was added to the green solution. The reaction mixture was heated to 130 °C and stirred
for 2 h. For monitoring the reaction progress absoprtion spectra (solvent: toluene) as well as
TLC (silica-gel, CH:EE, 7+1) were investigated but no product could be observed.

10.5.3 New Porphyrin with thiadiazole as main building block

target compound: Pt-TPTBPF-(1,2,5-thiadiazole)

5,6-Dicyanobenzo[c]-1,2,5-thiadiazole (1.60mg, 8.61 µmol, 4.00 eq), 2-(4-fluorophenyl)acetic acid
(1.99mg, 12.9 µmol, 6.00 eq) and zinc-4-fluorophenylacetate (800 µg, 2.15 µmol, 1.00 eq) were
mixed together and sealed in a small capillary. The capillary was put onto a 280 °C heating
block and heated to 320 °C. After 30min absorption spectrum was taken (solvent: toluene).
No specific porphyrin signals could be observed. This reaction was also conducted with two
other reaction conditions. First the starting temperature was increased to 320 °C and ending at
340 °C. Another approach was conducted with Ar atmosphere. Also the reaction time screening
was investigated (20, 30 and 40min). None of the described reaction conditions worked for this
type of precursor.

10.5.4 Highly soluble Porphyrin and Phthalocyanine dyes for J-aggregates

zinc(II)-di(4,5-bis((2-ethylhexyl)sulfonyl)-phthalocyanine: Zn–bEHS2 –Pc

This synthesis was performed analogously to [122]
Zn(CH3COO)2 ·H2O (57.1mg, 260 µmol, 5.00 eq) and 4,5-bis((2-ethylhexyl)sulfonyl)phthalonitrile
(50.0mg, 104 µmol, 1.00 eq) and phthalonitrile (13.3mg, 104 µmol, 1.00 eq) were dissolved in a
Schlenk flaks under Ar atmosphere in 5ml abs. DMF giving an orange solution. After adding
3 drops of DBU as catalyst a color change occurred (red solution). The reaction was heated
to 155 °C and stirred for 16 h. The reaction progress was monitored absorption spectroscopy
(solvent: toluene). The dark green solution was cooled to RT and precipitated into a 3+2
mixture of H2O:MeOH. The product was extracted with DCM:EtOAc 1+1 (3 · 100 ml), the
organic layer was dried over Na2SO4 and the solvent was removed under reduced pressure. The
crude solid product was further purified via flash column chromatography (silica-gel, cond.
CH, CH:EE 3+1) yielding no pure fraction of solid green product. The MS spectra showed no
desired product.
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10.5.5 Pt(II) complexes supported by tetradentate N2O2 chelates:
Diphenyphenanthroline system

dBAN2O2 –dpp: published method for bipyridyl system

This synthesis was performed analogously to [126]
4-Bromo-N,N-dibutyl-3-methoxyaniline (82.3mg, 261 µmol, 5.80 eq) was dissolved in 1ml abs.
Et2O in a Schlenk flask under Ar atmosphere. The solution was stirred at RT. 7.00mg Li metal
pieces (1.01mmol, 22.0 eq) were added and the reaction (yellow solution) was heated to 40 °C
for 2 h. In a second Schlenk flask 4,7-diphenyl-1,10-phenanthroline (15.0mg, 45.1µmol, 1.00 eq)
was dissolved in abs. toluene (1.5ml) under Ar atmosphere. The in situ generated Li-species
was added with a syringe to the 4,7-diphenyl-1,10-phenanthroline solution and the reaction
mixture was heated first to 50 °C (remove the Et2O) then to 110 ° for 24 h. The reaction was
poured into H2O (10ml) to hydrolyze the products. The organic layer was separated and stirred
with MnO2 (161mg, 1.85mmol, 41.0 eq) for 24 h at RT. After filtration the organic orange layer
was dried over Na2SO4, the solvent was removed under reduced pressure. Absorption spectra
were taken in toluene and TLC (silica-gel, CH:EE, 5+1) was conducted but no product could
be observed.

dBAN2O2 –dpp: metal-halogen exchange with nBuLi

This synthesis was performed analogously to [126]
4-Bromo-N,N-dibutyl-3-methoxyaniline (82.3mg, 261 µmol, 5.80 eq) was dissolved in 1ml abs.
THF in a Schlenk flask under Ar atmosphere. The soltuion was cooled to -75 °C. n-Butyllithium
solution (108µl 270 µmol, 6.00 eq, 2.5M in hexanes) was added drop-wise via a syringe (color
change yellow to orange). The reaction mixture was stirred for 30min. To confirm that the
metal-halogen exchange was successful a mini work-up was conducted. A sample of the orange
solution (20µl) was added to a NH4Cl solution for exchanging the lithium atom by a hydrogen
atom. The product was extracted with DCM, the organic layer was dried over Na2SO4. To
confirm the metal-halogen exchange the solution was measured via GC-MS.

In a second Schlenk flask 4,7-diphenyl-1,10-phenanthroline (15.0mg, 45.1µmol, 1.00 eq) was
dissolved in abs. toluene (1.5ml) under Ar atmosphere (colorless solution). The in situ
generated Li-dbutMeOA was added drop-wise with a syringe at 0 °C to the 4,7-diphenyl-1,10-
phenanthroline solution. The reaction mixture was first heated to 70 °C (to remove the THF)
and then to 110 °C. The reaction was stirred for 24 h (green solution). In the work-up the
reaction was poured into H2O (10ml) to hydrolyze the products.
The organic layer was divided into two vials (A and B). Solution A was stirred with MnO2

(161mg, 1.85mmol, 41.0 eq) for 24 h at RT. After filtration the organic orange layer was dried
over Na2SO4, the solvent was removed under reduced pressure. To solution B DDQ (9.70 µl,
72.2µmol, 3.00 eq) was added and stirred in the dark at RT for 24 h. Absorption spectra were
taken in toluene and TLC (silica-gel, CH:EE, 5+1) was conducted but no product could be
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observed. NMR measurements also showed no product formation.

dBAN2O2 –dpp: metal-halogen exchange with tert-BuLi

This synthesis was performed analogously to [126, 139]
4-Bromo-N,N-dibutyl-3-methoxyaniline (54.8mg, 175 µmol, 5.80 eq) was dissolved in 1ml abs.
THF in a Schlenk flask under Ar atmosphere. The soltuion was cooled to -78 °C. tert-
Butyllithium solution (241µl 349 µmol, 11.6 eq, 1.45M in pentane) was added drop-wise via a
syringe (color change yellow to orange). The reaction mixture was stirred for 30min. The in situ
generated isobutan/isobuten was removed from the system via a gas bubbler and Ar counterflow.
To confirm that the metal-halogen exchange was successful a mini work-up was conducted. A
sample of the orange solution (20 µl) was added to a NH4Cl solution for exchanging the lithium
atom by a hydrogen atom. The product was extracted with DCM, the organic layer was dried
over Na2SO4. To confirm the metal-halogen exchange the solution was measured via GC-MS.

In a second Schlenk flask 4,7-diphenyl-1,10-phenanthroline (10.0mg, 30.1µmol, 1.00 eq) was
dissolved in abs. toluene (1.5ml) under Ar atmosphere (colorless solution). The in situ generated
Li-dbutMeOA was added drop-wise via a cannula system with N2 gas pressure at 0 °C to the
4,7-diphenyl-1,10-phenanthroline solution. The reaction mixture was first heated to 70 °C (to
remove the THF) and then to 110 °C. The reaction was stirred for 24 h (yellow solution). In the
work-up the reaction was poured into H2O (10ml) to hydrolyze the products. The organic layer
was separated and for oxidation MnO2 (107mg, 1.23mmol, 41.0 eq) was added to the solution.
The reaction mixture was stirred at RT for 24 h. After filtration the solvent was removed under
reduced pressure. TLC (silica-gel, CH:EE, 5+1/1+1/1+5) showed no product formation.
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