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Abstract

In this work a specific δf Monte Carlo method for the computation of neo-
classical transport coefficients related to the bootstrap current, the radial
particle transport and the parallel conductivity in stellarators has been
developed. Those three mono-energetic transport coefficients, which are
flux-surface-averaged moments of solutions to the linearized drift kinetic
equation, are needed for a complete neoclassical description of stellarator
plasmas. The bootstrap current can affect the equilibrium, the stability
and the confinement properties of a stellarator and therefore the devel-
opment of an improved method for its evaluation is of special interest.
Existing methods either have big statistical errors in the computations or
introduce a bias in the results if they use filtering techniques (limitation
of the radial test particle motion by an annulus). Usually, these meth-
ods only have a good convergence for tokamaks where the variance of all
transport coefficients has no strong dependence on the plasma collision-
ality. In stellarators the varying magnetic field strength along the field
lines causes a fraction of the particles to be trapped in helical ripples of
the magnetic field due to the magnetic mirror effect. These particles can
be displaced far from their original flux surfaces between collisions and
give rise to plasma currents as well as to enhanced particle and energy
transport. The minimization of this so-called neoclassical transport is a
requirement for the optimization of stellarators. The method developed
in this work allows to compute transport coefficients with low statisti-
cal errors and without introducing a bias due to the usage of filtering
techniques. This is achieved by combining a standard δf method with
an algorithm employing constant particle weights and re-discretizations
of the test particle distribution in phase space. The developed method
allows for simultaneous computations of bootstrap and diffusion coeffi-
cients which is not possible with existing methods if they use filtering
techniques. Results of computations stay in good agreement with results
from other codes in various non-axisymmetric magnetic field configura-
tions and new results have been obtained for confinement regimes which
have hardly or not at all been accessible with existing methods.





Kurzfassung

In dieser Arbeit wurde eine spezielle δf Monte Carlo Methode für die
Berechnung neoklassischer Transportkoeffizienten (Bootstrapstromkoef-
fizient, Diffusionskoeffizient und Leitfähigkeitskoeffizient) in Stellarato-
ren entwickelt. Diese drei mono-energetischen Transportkoeffizienten sind
über die Flussflächen gemittelte Momente von Lösungen der linearisierten
Driftkinetischen Gleichung und deren Berechnung ist eine Voraussetzung
für eine vollständige neoklassische Beschreibung von Stellarator Plasmen.
Der Bootstrapstrom beeinflusst die Gleichgewichts-, Stabilitäts- und Ein-
schlusseigenschaften einer Konfiguration, daher ist die Entwicklung einer
leistungsfähigen Methode für seine Berechnung von großem Interesse für
die Optimierung von Stellaratoren. Existierende Methoden weisen entwe-
der große statistische Fehler in den Resultaten auf oder führen systemati-
sche Fehler in die Berechnungen ein wenn Filtertechniken (Einschränkung
der Testteilchenbewegung auf einen radial begrenzten Bereich) verwen-
det werden. Diese Methoden haben gewöhnlich nur für Tokamaks ein
gutes Konvergenzverhalten, weil dort die Varianz aller Transportkoef-
fizienten keine starke Abhängigkeit vom Kollisionsparameter aufweist.
Durch die entlang der Feldlinien variierende magnetische Feldstärke wird
in Stellaratoren ein Teil der Teilchen in helikalen Rippeln des magneti-
schen Feldes aufgrund des magnetischen Spiegeleffektes gefangen. Diese
Teilchen können sich zwischen den Stößen weit von den ursprünglichen
Flussflächen entfernen und verursachen sowohl Ströme im Plasma als
auch erhöhten Teilchen- und Energietransport. Die Minimierung dieses
sogenannten neoklassischen Transportes ist eine Voraussetzung für die
Optimierung von Stellaratoren. Die in dieser Arbeit entwickelte Metho-
de ermöglicht die numerische Berechnung von Transportkoeffizienten mit
kleinen statistischen Fehlern und ohne systematische Fehler von Filter-
techniken. Dabei wird eine Standard δf Methode mit einem Algorithmus
kombiniert, der auf der Verwendung von konstanten Teilchengewichten
und Re-Diskretisierungen der Testteilchenverteilung im Phasenraum be-
ruht. Die Methode erlaubt die gleichzeitige Berechnung von Bootstrap-
und Diffusionskoeffizienten, dies ist mit herkömmlichen Methoden die



Filtertechniken verwenden nicht möglich. Die Ergebnisse der Berechnun-
gen für verschiedene nicht-axisymmetrische magnetische Konfigurationen
stimmen mit den Resultaten anderer Methoden gut überein und neue Er-
gebnisse wurden für Einschlussregime erhalten, die mit herkömmlichen
Methoden nur unter großem numerischen Aufwand oder überhaupt nicht
berechenbar waren.



Chaos often breeds life,
when order breeds habit

Henry Brooks Adams, 1838-1918
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Chapter 1

Introduction

Stellarators are devices which aim to confine hot plasmas with non-
axisymmetric magnetic fields in order to sustain controlled nuclear fusion
reactions. The magnetic fields necessary to confine the plasma are com-
pletely generated by external coils but can be modified by internal equi-
librium currents such as the so-called bootstrap current. The evaluation
of transport coefficients associated to this current has been a key issue of
this work. Also, the computation of transport coefficients related to the
radial particle transport and to the parallel conductivity for various mag-
netic configurations has been a goal of this thesis. The main task of this
PhD work has been the development of the code NEO-MC which com-
putes the normalized mono-energetic bootstrap current coefficient, the
mono-energetic radial diffusion coefficient and the mono-energetic par-
allel conductivity coefficient in various confinement regimes relevant for
fusion experiments. Parts of this thesis have been published in Ref. [1].

The toroidal curvature of the confining magnetic fields in stellarators
gives rise to plasma currents as well as to enhanced particle and energy
transport (the so-called neoclassical transport). In order to analyse mea-
surements and experimental results, to carry out predictive simulations
and to improve the confinement behaviour of a device it is essential to
evaluate the neoclassical transport properties of a configuration. The
minimization of this transport is a requirement for the optimization of
stellarators. Typically, a large number of toroidal and poloidal modes
contribute to the magnetic field spectrum in stellarators and causes com-
plicated magnetic field geometries. Particles trapped in local magnetic

15



16 CHAPTER 1. INTRODUCTION

field ripples give rise to enhanced neoclassical transport. The three-
dimensional geometry in stellarators allows for sophisticated construc-
tions and various possibilities for optimizations of the configurations, on
the other hand the analytical and numerical modeling becomes more dif-
ficult due to the missing symmetry. Kinetic processes in plasmas can be
modeled with particle simulations where the distribution function is de-
fined as the particle density in phase space. Following the orbits of plasma
particles allows to compute the distribution function itself as well as a
variety of macroscopic parameters of the plasma. Usually, this can be
achieved with a relatively small number of test particles. Nevertheless,
this number has to be big enough to make sure that each “elementary”
volume of phase space is covered with an adequate number of test par-
ticles. The elementary volumes should be small compared to the scale
of the distribution function but not too small in order to keep the total
number of simulation particles within a reasonable range [2].
Full f Monte Carlo codes typically have a low efficiency when calcu-
lating plasma currents as they compute the total distribution function
rather than computing just the part of the distribution function which
is relevant for the currents. A variety of so-called δf Monte Carlo meth-
ods [3–10] which directly address to the computation of the perturbation
of the distribution function is used for the numerical modeling in stel-
larators (as well as in tokamaks where the modeling is considerably facili-
tated due to symmetries in the magnetic field geometry). These methods
solve the linearized drift-kinetic equation and compute the evolution of
the particles in a series of subsequent time steps by changing the pitch
parameters in accordance with a Monte Carlo model of the Lorentz col-
lision operator and by integrating the particle drift equations over time
in order to update the positions and momenta of the particles. In toka-
maks the variance of all transport coefficients including the bootstrap
coefficient does not strongly depend on the plasma collisionality. There,
the original δf method [3] (this method is named below “standard δf
method”) has a good convergence for the computation of all transport
coefficients. However, if this method is applied to stellarators, the vari-
ance of the bootstrap coefficient increases as a square of the mean free
path because large random contributions to the test particle weights are
accumulated in phase space regions occupied by trapped particles. In the
standard δf method the test particle weight is defined by the test parti-
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cle displacement from the magnetic surface where transport coefficients
are computed. Particles with large weights are trapped particles with
a finite bounce averaged radial drift velocity. These particles can make
large radial displacements far away from their original flux surfaces in the
long mean free path regime. In order to avoid the problem of large noise
in the bootstrap coefficient there have been methods developed (see e.g.
Ref. [7]) which filter out those particles which acquire large weights and
replace them by particles with zero weight. In these computations parti-
cles with large deviations from the magnetic surface are put back to this
original surface. In order to do so an annulus is introduced which limits
the radial movement of the particles. The radial size of this annulus has
to be much smaller than the displacement of a trapped particle during
a collision time. Although this procedure improves the convergence in
computations of the bootstrap coefficient significantly it is unsatisfactory
because it introduces a bias in the results which has to be checked addi-
tionally.
In this work a method with reduced variance which overcomes this prob-
lem has been developed. The standard δf method is combined with
an algorithm employing constant particle weights and re-discretizations
of the test particle distribution in phase space. This method is for-
mally free of bias introduced by particle filters and allows to compute
bootstrap coefficients and diffusion coefficients simultaneously which is
not possible with methods which use filtering techniques. Results for
various confinement regimes are presented for different stellarator con-
figurations. A part of the results and results from benchmarking with
other methods have been published in Ref. [11–23]. For the numerical
computations the Fortran code NEO-MC has been developed which can
be run on batch systems, e.g. Condor, as well as on parallel clusters,
e.g. MPI (Message Passing Interface). NEO-MC is an effective tool
for computations in new fusion experiments (e.g. W7-X [24] which is
currently in the start-up phase at Greifswald, Germany) as well as for
existing experiments where other methods did not provide satisfying re-
sults (e.g. TJ-II [25], in operation at Madrid, Spain). Research activities
in plasma physics with regard to fusion are basically not stand-alone
projects. The numerical simulation of various aspects of plasma con-
finement in toroidal devices is of wide interest for stellarator research in
universities and research centers within Europe and worldwide. Several
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collaborations exist between the plasma physics group of the Institut für
Theoretische Physik – Computational Physics at TU Graz and institu-
tions such as, e.g., the IPP in Germany or the research center CIEMAT
in Spain. The last one employs the code NEO-MC for the creation of a
neoclassical database.
The structure of the thesis is as follows. In chapter 2 a brief introduc-
tion to stellarators is given. The most common stellarator confinement
concepts as well as the advantages and difficulties of stellarators are pre-
sented. In chapter 3 an introduction to neoclassical transport theory is
given and the drift kinetic equation, which is one of the fundamental
equations in neoclassical transport theory, as well as thermodynamical
forces, neoclassical fluxes and neoclassical transport coefficients are pre-
sented. In chapter 4 a brief description of a full f method is given which
has been tested at the beginning of this work and shown to give un-
satisfactory results with huge error bars. In chapter 5 the standard δf
method is discussed and some drawbacks of its application in stellarators
are outlined. It is shown how to formulate the δf method in the form of
an integral equation. This is equivalent to the usual formulation of the
δf Monte Carlo method and provides the advantage for a direct use of
various variance reduction methods which are usually applied to integral
equations. In chapter 6 an advanced δf method is described which uses a
new algorithm. This method achieves a considerable reduction of statisti-
cal errors by employing constant particle weights and re-discretizations of
the particle distribution function. In chapter 7 the code NEO-MC is pre-
sented and results of computations for general confinement regimes are
shown for different types of stellarators. In the Appendices an outlook on
further possibilities of the method developed in this work can be found.
An overview of the steps necessary to implement a linearized Coulomb
collision operator in the procedure is given. For a further improvement
of the computation efficiency of neoclassical transport coefficients a δf
method for the implementation in the Stochastic Mapping Technique [2]
is outlined. A conclusion and a summary of the work can be found in
chapter 8.
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1.2 Preamble

In this thesis parts of the publication [1]

K. Allmaier, S. V. Kasilov, W. Kernbichler and G. O. Leitold, Variance
reduction in computations of neoclassical transport in stellarators using
a δf method, Phys. Plasmas 15, 072512–1–072512–8 (2008)

have been included in chapter 5, chapter 6 and chapter 7. Contribu-
tions of the author and the co-authors to this publication are listed below.

The author K. Allmaier has drafted and written the manuscript, has
developed the physical model and the computational method (analytical
calculations, development of the numerical scheme, implementation
of the code, testing, running of the simulations, analyzing of the
computational results and development of visualizations).

Co-author S. V. Kasilov has contributed to analytical calculations,
has written a subroutine which computes the movement of particles in
the magnetic fields, has revised the manuscript and has contributed
expertise and advice in all stages of the development of the method.

Co-author W. Kernbichler has contributed computational results from
the NEO-2 code which have been used for benchmarking, has revised the
manuscript and has contributed to discussions during the development
of the method.

Co-author G. O. Leitold has contributed to discussions in certain phases
in the analytical calculations and to the interpretation of the results.



Chapter 2

Confinement in Stellarators

The stellarator is one of the oldest confinement concepts in fusion research
and has been invented by Lyman Spitzer in Princeton in 1951 [26, 27].
The word stellarator means ‘star generator’ and is a term for non-
axisymmetric toroidal devices. In stellarators fusion plasmas are confined
by magnetic fields which are completely generated by external coils (but
they can be modified by currents which flow in the plasma itself). Unlike
tokamaks stellarators do not need toroidal currents for confinement and
the vacuum magnetic field in a stellarator (the magnetic configuration
without the plasma) has already confinement properties [28].

As there exist no large plasma currents in stellarators there is the pos-
sibility of steady state operation and there are no problems due to cur-
rent driven instabilities like current disruptions. Stellarators are usually
heated by electron cyclotron resonance heating (ECRH), ion cyclotron
resonance heating (ICRH) and neutral beam injection (NBI) [29]. The
helically wound field lines in a stellarator are created by external coils
which are fixed around the plasma torus as shown in figure 2.1. These ex-
ternal currents make the plasma shape non circular. Figures 2.1 and 2.2
show so-called “classical” stellarators (see section 2.1) which combine
planar coils and helical coils. An advanced type of stellarator is the
“modular” stellarator (see section 2.3) shown in figure 2.3 where com-
plex non-planar coils replace the planar toroidal coils and the helical
coils. One advantage of the non-planar coils is that the specific coil ge-
ometry can be used to shape the magnetic field geometry which makes
an optimization of the magnetic field possible [31].

23
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Figure 2.1: Schematic drawing of a classical stellarator with planar coils
(red) and four helical coils (green) wound around the vacuum vessel
(blue). The plasma is depicted in orange. Figure taken from [30].

Figure 2.2: Schematic view of a classical stellarator. The magnetic field
coils are indicated in brown. The plasma is colored in magenta. The
helically twisted magnetic field lines are indicated by green arrows. The
red arrows represent the currents in the planar toroidal coils, the blue
arrows indicate the currents in the helical coils. Figure taken from [32].
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Figure 2.3: Schematic view of the plasma (yellow) and a part of the
modular magnetic field coils (blue) of the stellarator Wendelstein 7-X.
Figure taken from [33].

Due to the helicity, in helical devices the magnetic field strength depends
on both the poloidal and the toroidal angle [34,35]. In helical configura-
tions the magnetic field strength can be approximated by

B

B0

= 1− εt(r) cosϑ− εh(r) cos (lϑ−mϕ) , (2.1)

where r, ϑ and ϕ are the radius, poloidal and toroidal angle of flux
coordinates, respectively, εt = r/R0 is the inverse aspect ratio, R0 is
the major radius of the device, εh is the magnitude of the stellarators
helical ripple, l is the multipolarity and m denotes the number of field
periods. The magnetic field in helical devices can be expressed as the
superposition of the helical ripple and the toroidal field component. The
equations which are satisfied by the magnetic field B in equilibrium are
given by

∇ ·B = 0 , (2.2)

∇×B = µ0 j , (2.3)

j×B = ∇p , (2.4)

where µ0 is the vacuum permeability, j is the current density and p is the
plasma pressure. Equation (2.4) says that the plasma pressure gradient is
balanced by the Lorentz force, it follows that B · ∇p = 0 and j · ∇p = 0,



26 CHAPTER 2. CONFINEMENT IN STELLARATORS

which means that the magnetic flux surfaces are surfaces of constant
pressure and that currents flow in these flux surfaces. In the case of
axisymmetry as in a tokamak a system of cylindrical coordinates (R,ϕ, z)
can be used and all quantities do not depend on ϕ. This is not true for
stellarators where no axisymmetry is present. There, so-called magnetic
coordinates may be used, which are defined to conform to the shape of
the magnetic flux surfaces. The magnetic field is given by [36–39]

B = ∇ψ ×∇ϑ+∇ϕ×∇χ , (2.5)

where ϕ is a toroidal angle and ϑ is a poloidal angle, respectively. The
quantity ψ is called flux surface label and is given by the toroidal mag-
netic flux 2πψ that goes through a poloidal cross-section (ϕ = constant)
between a surface ψ = constant and the magnetic axis. Accordingly, the
poloidal magnetic flux 2πχ goes through a surface of ϑ = constant be-
tween a certain flux surface ψ and the magnetic axis. This magnetic
coordinate system has the property that χ is only a function of ψ. The
quantity ι measuring the number of poloidal turns of a field line during
a toroidal turn is given by [39,40]

ι =
dϑ

dϕ
=

B · ∇ϑ
B · ∇ϕ

(2.6)

=
1

2π

1

N
lim
N→∞

N∑
i=1

∆ϑi . (2.7)

The quantity ι is called rotational transform and is given by the rotational
transform angle divided by 2π. Here, i counts the number of toroidal
turns and ∆ϑi is the difference in the poloidal angle after each toroidal
turn. Using χ and ψ the rotational transform can be rewritten as [39]

ι(ψ) =
dχ

dψ
. (2.8)

Using ι the relationship between ϑ and ϕ on a given field line is

ϑ− ιϕ = k , (2.9)

where k is a constant. In the (ϑ, ϕ) plane the magnetic field lines are
straight lines in this coordinate system. The quantity s which is used in
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Figure 2.4: Module of the magnetic field B along the path s. There exist
different classes of trapped particles. The movement of trapped particles
(red) is limited due to reflections caused by the magnetic mirror effect.
Locally trapped particles (red) bounce in one (single trapped) or several
(multiply trapped) ripples of the magnetic field. Passing particles (blue)
are located above the absolute maximum of the magnetic field and travel
around the torus.

the following to indicate the flux surfaces is called flux surface label. It is
defined by the ratio of the normalized toroidal flux ψ and the normalized
toroidal flux ψ0 at the edge (outermost flux surface)

s =
ψ

ψ0

. (2.10)

The quantity s ranges from zero at the magnetic axes to one at the
outermost flux surface.
The 3D magnetic field configuration in stellarators has consequences for
the particle confinement [28]. Due to the modulation of the magnetic field
strength along the magnetic field lines plasma particles can be trapped in
local ripples of the magnetic field because of the magnetic mirror effect
(see figure 2.4). These trapped particles can drift outwards across the
magnetic surfaces which leads to increased particle losses in stellarators
due to the so-called neoclassical transport (see chapter 3 and [41–46]).
Some of the advantages of stellarator confinement concepts are summa-
rized below [47,48]:
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- Stellarators have an intrinsically steady-state magnetic field, as
there is no need to drive a plasma current.

- Due to the absence of a plasma current there are no current driven
instabilities.

- External coils (and not currents in the plasma) are responsible for
the position and the rotational transform of the plasma. Also, in
stellarators no violent disruptions show up. This makes the design
of the plasma facing components (e.g. breeding blankets) more
easy.

- ”Sawteeth”, neoclassical tearing modes or edge-localised modes do
not show up in stellarators.

- There are much more possibilities for designs in stellarators than
in tokamaks, this gives more chances for optimisations.

- As the plasma density is not limited by a current profile instability
(Greenwald density limit) operation at very high densities can take
place.

- Due to the 3D shape of the magnetic configuration, there is a
greater degree of control over the plasma.

There are not only advantages but also several difficulties with stellara-
tors [47, 48] :

- Stellarators are generally more difficult to build and to understand.

- The coils are very complicated, difficult to design and expensive to
build. They must be very precise, withstand huge forces and carry
currents in the order of Mega-Amperes.

- Experimentation becomes more difficult because stellarator config-
urations cannot be varied so much as tokamaks can.

- Due to the lack of symmetry good particle confinement is more
difficult to achieve in stellarators than in tokamaks.



29

- Up to now, stellarators have not reached the same pressures and
densities as tokamaks.

- The engineering becomes more difficult because the geometry of
the divertor, heat-handling regions and other plasma facing com-
ponents is more complicated than in tokamaks.

- Especially in classical stellarators there are problems such as bad
α-particle confinement, low equilibrium beta limit (large Shafranov-
shift) and large neoclassical transport.

In order to improve the stellarator confinement so-called advanced stel-
larators have been constructed. The first first step was the construc-
tion of the stellarator Wendelstein 7-AS. The next experiment will be
Wendelstein 7-X which is currently in the start-up phase in Greifswald,
Germany, and should give a proof of the reactor potential of advanced
stellarators. The design criteria of advanced stellarators are according to
H. Wobig [49, p. A160–A161]:

- “A coil system which is technically feasible. The coil system should
consist of components which are small enough to be manufactured
and tested separately. The concept of modular coils fulfills these
conditions.

- Good magnetic surfaces of the vacuum field. This means nested
magnetic surfaces without islands and stochastic regions in the in-
terior. Magnetic islands at the edge, which can be used for divertor
action, should be somewhat immune against field perturbations.

- Favourable equilibrium properties. With rising plasma pressure
modification of the vacuum field should be as small as possible. In
particular, the Shafranov shift should be minimized.

- Magnetohydrodynamic stability up to an average beta of 5%. In
a fusion reactor the power output grows roughly with the square
of beta. This value of 5% is sufficient to achieve a fusion power
of 3000 MW in a Helias reactor [50] (Helias = helical advanced
stellarator).
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- Sufficiently low neoclassical losses of the plasma. Neoclassical losses
must be small enough to allow for ignition of the fusion plasma.

- Small or zero bootstrap currents. Bootstrap currents depend on
the plasma pressure and change the topology of magnetic surfaces
during the start-up phase. Furthermore, they provide a source for
tearing mode instabilities as does the induced toroidal current in
tokamaks.

- Good confinement of alpha-particles. The loss of highly energetic
alpha particles reduces the heating power and provides a risk to the
ignition capability. Furthermore, the impact of these α-particles
may cause severe damage on the first wall. This issue deter-
mines the number of modular coils per period since alpha parti-
cles trapped in the modular ripple may rapidly escape from the
confinement region.”

Here, beta is the plasma pressure p = nkBT normalized by the magnetic
pressure pmag = B2/(2µ0) averaged over the total plasma volume where
B is the module of the magnetic field, µ0 is the vacuum permeability,
n is the particle density, kB is the Boltzmann constant and T is the
temperature [31].
Using the above design criteria for advanced stellarators, the magnetic
field and plasma geometry of Wendelstein 7-X has been obtained. The
modulus of the magnetic field at the last closed flux surface can be seen
in figure 2.5 together with the 50 non-planar coils of the magnetic field
coil system. There exist five different coil geometries and the coils are
mounted in a five- fold symmetry. Each coil type can be controlled
separately, which makes it possible to obtain various magnetic field con-
figurations. A set of 20 planar coils create an additional toroidal field,
which makes the device even more flexible.
Additional objectives for the stellarator Wendelstein 7-X are according
to R. Wolf [52, p. 88]:

- “Steady state operation including particle and energy exhaust with
island divertor concept.

- Superconducting coils.
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Figure 2.5: Modular stellarator Wendelstein 7-X with non-planar mag-
netic field coils (light blue). The multicolored area shows the plasma
surface. Regions where the module of the magnetic field is high are indi-
cated with red color and regions where the module of the magnetic field
is low are indicated with magenta and blue color. Figure taken from [51].
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- Actively cooled divertor and first wall components.

- Low magnetic shear with large islands at the plasma boundary.

- ι as much as possible independent of beta.

→ Plasma and magnetic field are as much as possible decoupled.

→ Other optimization criteria are thinkable (e.g. NCSX: tokamak-
stellarator hybrid with maximum bootstrap current).”

One of the next steps in the line of stellarator devices would be the
construction of a stellarator reactor. The main features of a stellarator
reactor according to C. Beidler [53, p. 1] are listed below:

- “Steady-state magnetic fields. No induced eddy currents. No en-
hanced fatigue of the structure due to pulsed thermal load.

- Steady-state operation at high Q, where Q is the ratio of fusion
power to heating power.

- No energy storage and low recirculating power requirements.

- Moderate plasma aspect ratio (8-12) which offers good access to
the reactor core.

- Start-up on existing magnetic surfaces with good confinement at
all instances.

- No positioning or field shaping coils necessary.

- No major disruptions that could lead to an energy dump on the
first wall or on the divertor target plates.

- Several potential methods for impurity control and ash removal
exist. Magnetic islands at the plasma edge can be used for divertor
action.

- No toroidal current drive is required.”

Sections 2.1 – 2.3 give an overview of different types of stellarator con-
cepts following F. Wagner and H. Wobig in reference [34, p. 157–160].
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Figure 2.6: The classical stellarator Wendelstein 7-A with helical wind-
ings and plain coils. Figure taken from [54].

2.1 The Classical Stellarator

The surfaces of a straight helical system are invariant surfaces
(B · ∇ψ = 0). If the coil system goes away from helical symmetry de-
struction of the surfaces and stochasticity occur [34]. If a straight helical
stellarator is bent into a torus undesired perturbations occur. Magnetic
surfaces with stochastic regions and islands appear because the helical
symmetry is destroyed by the torus curvature. The axial field B0ez is
created by circular coils, in order to be flexible in the experiments these
coils are detached from the helical windings. The dominating helical
harmonic in the equation for a scalar potential Φ satisfying the Laplace
equation ∆Φ = 0 determines the notation of the helical windings. There
are l = 1, l = 2 and l = 3-systems. In a l = 1-system the cross sections
of the magnetic surfaces roughly are shifted circles, in l = 2-systems the
shapes are ellipses and in l = 3-systems the cross sections of the magnetic
surfaces are nearly triangular. The currents in the main field coils and
in the helical windings can be varied independently, therefore the cross
sections of the magnetic surfaces and the rotational transform can be
modified in the experiment. A l = 2 stellarator can be seen in figure 2.6.
It has plain coils as well as two pairs of helical coils with currents in
opposite directions.
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2.2 The Torsatron

In the torsatron configuration [55] there are unidirectional currents in
the helical windings (see figure 2.7) [34]. In the torsatron some of the
problems of the classical stellarator are reduced. l helical windings with
currents in the same direction create a field with l-fold poloidal sym-
metry. Thus both toroidal and poloidal field components are created,
in principle further coils are not needed. Problems associated with the
two sets of interwoven windings are avoided. Because of the toroidal
continuity of the helical coils complications related to maintenance and
disassembly still are there but they are less severe. There is a better
access in torsatrons because one set of l-windings is used (instead of the
2 l windings of a classical stellarator).
An average vertical field is typically established by the torsatron coils,
this field may open the vacuum flux surfaces. Therefore, additional ver-
tical field coils are needed which compensate this effect. As there is used
only a single set of windings, the experimental flexibility of the basic
torsatron configuration is limited (i.e. well depth, variation of rotational
transform, etc.). By using an additional small toroidal field, an addi-
tional small vertical field or by variation in the helical harmonic content
more flexibility can be obtained.
Achieving a reduction of the forces acting on the helical windings is one
advantage of the torsatron configuration. The support structure is no
longer a big problem because the forces are directed radially outward.
The average outward forces can be directed onto external Helmholtz-
type coils far away from the plasma. The radial force averaged over a
field period for a torsatron with a particular winding law of the helical
coils even may be reduced to zero. Big forces act on the compensation
coils in this case, but these forces can be located in regions with enough
space for support structure.

2.3 The Modular Stellarator

The helical windings concept provides much flexibility and is therefore
useful for experiments, but it presents technical problems because of the
interaction between the main field coils and the helical windings in large
experiments or in a stellarator reactor [34]. The modular coils concept,
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Figure 2.7: Helical windings with parallel currents and plain coils which
compensate the vertical field of the helical coils in a torsatron. Figure
taken from [56].

which has been realized somehow already in the figure-8 stellarators, over-
comes these problems and opens the possibility to build coils with feasible
size for larger devices or for a stellarator reactor. Modular coils [57] result
from the idea that a current sheath on a surface can produce a toroidal
vacuum field in a domain Ω and tangential to the surface ∂Ω. A set of
modular and poloidally closed coils which reproduce with high accuracy
the magnetic field in the domain Ω can be obtained by discretizing this
current sheath to current lines. In order to model these twisted coils
and to create the desired magnetic field and the rotational transform by
an adequate arrangement of these coils analytic winding laws are used.
This concept has been put into reality in the Wendelstein 7-AS stellarator
which is shown in figure 2.8. Summarizing this method, on can first op-
timize the magnetic field configuration according to the requirements of
optimum plasma confinement and then, when the result is satisfactory,
compute the coil system. In this sense so-called advanced stellarators
have been developed [58,59].
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Figure 2.8: Coil system of the first optimized stellarator
Wendelstein 7-AS. Figure taken from [60].



Chapter 3

Neoclassical transport
coefficients

Transport theory allows to calculate transport coefficients in a collisional
plasma which is close to equilibrium by investigating flows corresponding
to so-called thermodynamic forces. These forces are generated when the
plasma slightly deviates from the equilibrium state. For example, the
heating of a plasma which is in thermodynamic equilibrium (same tem-
perature everywhere) in a restricted area causes the plasma to depart
from its equilibrium state. In this case, the corresponding thermody-
namic force is the temperature gradient. This driving force gives rise
to a heat flux which is related to the temperature gradient by the ther-
mal conductivity coefficient. In a general case, a set of driving forces
generates a corresponding set of fluxes. These fluxes are linked to the
thermodynamic forces by the so-called transport matrix which is com-
posed of the entire set of transport coefficients [41,42,61–64].
Neoclassical transport can be described as a diffusive process taking into
account a random walk model. In a homogeneous magnetic field the step
size of the random walk is determined by the Larmor radius and the whole
process is called classical diffusion. If an inhomogeneous toroidal field is
present the particles experience drifts which are caused by the magnetic
field gradient, by the curvature of the magnetic field and by electric fields.
In this case the step size of the random walk is given by the distance that
a particle can move away from a magnetic flux surface between collisions.
In the low collisionality regime this quantity becomes much larger than

37
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the Larmor radius. The associated transport process is called neoclas-
sical diffusion. In tokamaks as well as in stellarators the magnetic field
strength B is higher at the inner side (smaller major radius R) than at
the outer side (larger major radius R) of the torus. This causes the ver-
tical (B×∇B) drift and a variation of the magnetic field strength along
the field lines. Particles following the magnetic field lines therefore may
be trapped in magnetic ripples due to the magnetic mirror effect. Parti-
cles with large parallel momentum follow the helical trajectories around
the torus and are called passing particles. Particles with small parallel
momentum may bounce between reflection points and are called trapped
particles (see figure 2.4). If no collisions occur trapped particles as well
as passing particles are ideally confined in axisymmetric systems because
the outward directed drifts are averaged and do not cause net displace-
ments. In collisional regimes trapped particles can move far away from
the original flux surfaces (the typical distance is given by the “banana
width”) and are no longer ideally confined. Due to the 3-dimensional
geometry and the complex structure of the magnetic fields in stellarators
additional ripples exist (helical ripples) which are responsible for the ex-
istence of various classes of trapped particles. If particles are trapped in
a single ripple they are called single-trapped particles, if they are trapped
in more than one ripple they are called multiply-trapped particles. For
particles trapped in the ripples of the magnetic field the vertical drifts
do not cancel and these particles may be lost if the collisionality is low.
The consequence is a regime in stellarators which does not exist in toka-
maks, the so-called 1/ν-regime where diffusion coefficients increase as
lower the collisionality gets (see figure 3.1). The collisional transport
generated by a relatively small number of trapped particles can become
much larger than the transport caused by the majority of untrapped
particles. The other regimes in figure 3.1 are the Pfirsch-Schlüter-regime
where the bounce frequency of trapped particles is much smaller than the
collision frequency, therefore the particles can not complete their orbits
before they experience collisions. In this regime the diffusion is enhanced
with increasing collision frequency depending on a factor related to the
geometry of the magnetic configuration. In the so-called plateau-regime
the diffusion of particles is almost independent of the collisionality.
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Figure 3.1: Normalized radial transport coefficient D⊥/Dplateau

depicted as a function of the normalized collision frequency
ν̄ = Lc/lc = 2πRν/(ιvT ), with the collision frequency ν, the major ra-

dius of the torus R, the rotational transform ι and the thermal velocity
vT for tokamaks and stellarators (see e.g. [63]) The radial transport co-
efficient is independent of the collision frequency in the plateau regime
and proportional to the collision frequency in the Pfirsch-Schlüter (PS)
regime. At low collisionalities (banana regime) the radial transport co-
efficient is proportional to ν in tokamaks while in stellarators (red) the
1/ν regime arises. The two axes are depicted in logarithmic scale.
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3.1 Drift kinetic equation

The linearized drift kinetic equation (LDKE) determines the evolution of
the first-order guiding center (averaged over the gyro motion) distribution
function f̃ = f − fM

Vg0 · ∇f̃ + vd · ∇fM −
ev‖E‖
T

fM = Cf̃ , (3.1)

where the total energy and the perpendicular adiabatic invariant are used
as velocity space variables and

Vg0 = v‖n +
c

B2
E×B . (3.2)

The guiding center drift velocity Vg is given by

Vg = Vg0 + vd , (3.3)

where vd is the magnetic drift velocity (see e.g. [65,66]). Equation (3.1)
is linearized with respect to the Larmor radius ρL according to

vd ∼
ρL
L
� 1 , (3.4)

where L is a macroscopic length. In equation (3.1) C is the linearized
Coulomb collision operator, f is the particle distribution function, fM is
a Maxwellian

fM(ψ, v) = n(ψ)

(
m

2πT (ψ)

)3/2

exp

(
−W − eΦ(ψ)

T (ψ)

)
, (3.5)

B is the module of the magnetic field B, n = B/B is the unit vector along
the magnetic field line, E is the electric field, ψ denotes the flux surface
label, e is the particle charge, T is the temperature, n denotes the particle
density, W is the energy, Φ is the electrostatic potential, v denotes the
module of the test particle velocity and v‖ is the parallel velocity. The
contra-variant ψ-component of the guiding center drift velocity is given
by

ψ̇ = Vg · ∇ψ = vd · ∇ψ =
1

2ωc
(v2 + v2

‖)kG|∇ψ| , (3.6)
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where ωc = eB/(mc) is the cyclotron frequency, m is the particle mass,
c is the velocity of light and kG is the geodesic curvature

kG = nψ · (n× (n · ∇)n) , (3.7)

where nψ = ∇ψ/|∇ψ| (see App. A). Below a simplified version of (3.1) is
introduced which is used in the NEO-2 code limited to the case of weak
radial electric field (this code is used for benchmarking the results of the
NEO-MC code). Neglecting the E×B drift equation (3.1) is reduced to

v‖n · ∇f̃ + vd · ∇fM −
ev‖E‖
T

fM = Cf̃ , (3.8)

Note that this simplification effects only the kinetic equation but does
not effect the thermodynamic forces, neoclassical fluxes and transport
coefficients in the following sections. The second term in equation (3.8)
represents a driving term related to the cross-field drift and the third
term is associated to the drive by a parallel electric field E‖. Introducing
a Lorentz collision model

L =
1

2

∂

∂λ
(1− λ2)

∂

∂λ
, (3.9)

the drift kinetic equation is given by

v‖
∂f̃

∂s
+ ψ̇

∂fM
∂ψ
−
ev‖E‖
T

fM = νdLf̃ , (3.10)

where s is the distance along the magnetic field line and νd is the deflec-
tion collision frequency. If no parallel electric field is taken into account
equation (3.10) takes the form

v‖
∂f̃G
∂s

+ ψ̇
∂fM
∂ψ

= νdLf̃G , (3.11)

If parallel electric field is present but no radial gradients are taken into
account the drift kinetic equation (3.10) becomes

v‖
∂f̃E
∂s
−
ev‖E‖
T

fM = νdLf̃E . (3.12)
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In neoclassical theory the parallel electric field E‖ may be replaced in
good approximation by the modified parallel electric field B〈E‖B〉/〈B2〉
(see e.g. [67]). The lower indices at the distribution functions in equations
(3.11) and (3.12), respectively, indicate the driving forces radial gradient
(index G) and parallel electric field (index E). The normalized quantity
η is introduced as

η =
1− λ2

B̂
, (3.13)

where λ = v‖/v is the pitch angle variable and B̂ = B/B0 with B0 being
the reference magnetic field. Using η the Lorentz collision operator (3.9)
can be written as

L = 2λ
∂

∂η

(
λη

B̂

∂

∂η

)
, (3.14)

and the radial component of the drift velocity (3.6) is given by

ψ̇ = − v2

ωc0
λ
∂

∂η

(
λ

B̂
V̂G

)
, (3.15)

where

V̂G =
1

3

(
4

B̂
− η
)
|∇ψ|kG , (3.16)

and

ωc0 =
ωc

B̂
=
eB0

mc
. (3.17)

Defining normalized perturbed distribution functions f̂G and f̂E

f̂G =
ωc0
v

(
∂fM
∂ψ

)−1

f̃G , (3.18)

and

f̂E =
TB̂

eE‖
(fM)−1f̃E , (3.19)

equations (3.11) and (3.12) take the form

σ
∂f̂G
∂s
− νd

2

v

∂

∂η

(
|λ|η
B̂

∂f̂G
∂η

)
= − ωc0

v2|λ|
ψ̇ , (3.20)



3.1. DRIFT KINETIC EQUATION 43

and

σ
∂f̂E
∂s
− νd

2

v

∂

∂η

(
|λ|η
B̂

∂f̂E
∂η

)
= σB̂ , (3.21)

respectively, where σ denotes the sign of v‖. Introducing the sources qσG
and qσE according to

qσG =
∂

∂η

(
|λ|
B̂
V̂G

)
= − ωc0

v2|λ|
ψ̇ , (3.22)

and

qσE = σB̂ , (3.23)

these equations can be written as

σ
∂f̂G
∂s
− νd
|v‖|
Lf̂G = qσG , (3.24)

and

σ
∂f̂E
∂s
− νd
|v‖|
Lf̂E = qσE , (3.25)

respectively. Multiplying equations (3.20) and (3.21) with v‖ and intro-
ducing

fG = − v

ωc0
f̂G , (3.26)

and

fE = B0f̂E , (3.27)

the kinetic equation taking into account the drive by radial gradients can
be written as

v‖
∂fG
∂s
− νdLfG = ψ̇ , (3.28)

and the kinetic equation taking into account the drive by parallel electric
fields is given by

v‖
∂fE
∂s
− νdLfE = v‖B , (3.29)

respectively.
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3.2 Flux surface average

Flux surface averages (averages over the volume δV between two neigh-
bouring flux surfaces) can be represented as

〈A(ψ0)〉 ≡ lim
δV→0

1

δV

∫
δV

d3rA(r) (3.30)

=

(∫
d3rδ (ψ(r)− ψ0)

)−1 ∫
d3r δ (ψ(r)− ψ0)A (3.31)

=

 ψ0+δψ∫
ψ0−δψ

dψ

2π∫
0

dϑ

2π∫
0

dϕ
√
gδ (ψ − ψ0)

−1

×
ψ0+δψ∫
ψ0−δψ

dψ

2π∫
0

dϑ

2π∫
0

dϕ
√
g Aδ (ψ − ψ0) (3.32)

=

 2π∫
0

dϑ

2π∫
0

dϕ
√
g

−1 2π∫
0

dϑ

2π∫
0

dϕ
√
g A (3.33)

=
1

4π2
(√

g
)

00

2π∫
0

dϑ

2π∫
0

dϕ
√
g A (3.34)

= lim
L→∞

 L∫
0

ds

B

−1 L∫
0

ds

B
A , (3.35)

where ϑ and ϕ are the poloidal and toroidal angles of flux coordinates,
respectively, s denotes the distance along the magnetic field line,

√
g is

the metric determinant of flux coordinates (ψ, ϑ, ϕ)

√
g =

1

∇ψ · ∇ϑ×∇ϕ
(3.36)

=
∂r

∂ψ
· ∂r

∂ϑ
× ∂r

∂ϕ
, (3.37)
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and

(
√
g)00 =

1

4π2

2π∫
0

dϑ

2π∫
0

dϕ
√
g . (3.38)

Surface averages can be represented as

1

S

∫
dS ·A =

1

〈|∇ψ|〉
〈∇ψ ·A〉 , (3.39)

and the flux surface S is given by

S = 〈|∇ψ|〉 dV

dψ
(3.40)

=

∫
d3r δ(ψ(r)− ψ0) |∇ψ| (3.41)

=

2π∫
0

dϑ′
2π∫

0

dϕ′
∫

dψ′
√
g|∇ψ|δ(ψ′ − ψ) (3.42)

=

2π∫
0

dϑ

2π∫
0

dϕ
√
g|∇ψ| (3.43)

= 4π2 (
√
g)00 〈|∇ψ|〉 . (3.44)

The surface element dS can be represented as

dS =
∂r

∂ϑ
× ∂r

∂ϕ
dϑdϕ (3.45)

=
∂r

∂ψ
· ∂r

∂ϑ
× ∂r

∂ϕ
∇ψ dϑ dϕ (3.46)

= ∇ψ√g dϑ dϕ . (3.47)

3.3 Thermodynamic forces

The radial derivation of the Maxwellian at constant total energy can be
represented as

∂fM
∂ψ

=
∂r

∂ψ

∂fM
∂r

=
1

〈|∇ψ|〉
∂fM
∂r

, (3.48)



46 CHAPTER 3. NEOCLASSICAL TRANSPORT COEFFICIENTS

and equation (3.5) yields

∂fM
∂r

= fM

(
1

n

∂n

∂r
− 3

2T

∂T

∂r
+
e

T

∂Φ

∂r
+

1

T

∂T

∂r
x

)
. (3.49)

Introducing the thermodynamic forces A1, A2 and A3

A1 =
1

n

∂n

∂r
− 3

2T

∂T

∂r
+
e

T

∂Φ

∂r
, (3.50)

A2 =
1

T

∂T

∂r
, (3.51)

A3 =
eE‖

TB̂
=
e

T

〈E‖B̂〉
〈B̂2〉

=
eB0

T

〈E ·B〉
〈B2〉

, (3.52)

equation (3.49) can be represented as

∂fM
∂r

= fM(A1 + A2 x) , (3.53)

where x = mv2/(2T ) = v2/v2
T and vT =

√
2T/m. The drift kinetic

equation (3.10) can be written as

v‖
∂f̃

∂s
− νdLf̃ = Qσ , (3.54)

where the source Qσ can be represented in terms of the thermodynamic
forces (3.50) – (3.52) as

Qσ = − ψ̇

〈|∇ψ|〉
∂fM
∂r

+
ev‖E‖
T

fM (3.55)

= − ψ̇

〈|∇ψ|〉
(A1 + A2 x)fM + A3v‖B̂fM (3.56)

= −fM
3∑
I=1

Qσ
IAI . (3.57)

The sources QI in equation (3.57) are given by

Qσ
1 =

ψ̇

〈|∇ψ|〉
, (3.58)

Qσ
2 = Qσ

1 x , (3.59)

Qσ
3 = −v‖B̂ = −σ|v‖|B̂ . (3.60)
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Theses sources may be expressed as

Qσ
I = αIq

σ
I |v‖| , (3.61)

where the index I = 1 . . . 3. Normalized sources qσI have been introduced
according to

qσ1 =
ψ̇

|v‖|ρL
, (3.62)

qσ2 = qσ1 , (3.63)

qσ3 = −σB̂ , (3.64)

and the quantities αI are defined as

α1 =
ρL
〈|∇ψ|〉

=
v

ωc0 〈|∇ψ|〉
, (3.65)

α2 = α1 x , (3.66)

α3 = 1 . (3.67)

Using (3.61) the source (3.57) is given by

Qσ = −|v‖|fM
3∑
I=1

αIq
σ
IAI , (3.68)

and the drift kinetic equation (3.54) can be written as

σ|v‖|
∂f̃

∂s
− νdLf̃ = −|v‖|fM

3∑
I=1

αIq
σ
IAI . (3.69)

Introducing the normalized perturbed distribution functions f̂σI via

f̃ = −fM
3∑
I=1

αIAI f̂
σ
I , (3.70)

single drive problems can be represented as

σ
∂f̂σI
∂s
− νd
|v‖|
Lf̂σI = qσI . (3.71)

In terms of the sources Qσ
I (3.61) this equation can be written as

αIv‖
∂f̂σI
∂s
− αIνdLf̂σI = Qσ

I . (3.72)
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3.4 Neoclassical fluxes

Using equations (3.39), (3.58), (3.59) and (3.61) the neoclassical flux
densities of particles Fn and energy FW can be expressed as

Fn =
1

S

∫
dS ·

∫
d3vVgf̃ (3.73)

=
1

〈|∇ψ|〉

〈∫
d3v ψ̇f̃

〉
(3.74)

=

〈∫
d3v Qσ

1 f̃

〉
(3.75)

= α1

〈∫
d3v |v‖| qσ1 f̃

〉
(3.76)

= −α1

3∑
I′=1

αI′

〈∫
d3v fM |v‖| qσ1 f̂σI′

〉
AI′ , (3.77)

and

FW =
1

S

∫
dS ·

∫
d3v

mv2

2
Vgf̃ (3.78)

=
1

〈|∇ψ|〉

〈∫
d3v

mv2
T

2
x ψ̇f̃

〉
(3.79)

= T

〈∫
d3v Qσ

2 f̃

〉
(3.80)

= T α2

〈∫
d3v |v‖|qσ2 f̃

〉
(3.81)

= −T α2

3∑
I′=1

αI′

〈∫
d3v fM |v‖| qσ2 f̂σI′

〉
AI′ , (3.82)

respectively, where equation (3.70) has been substituted in the last equal-
ities. Using equations (3.60) and (3.61) the flux surface average of the
parallel current density j‖ multiplied by the module of the magnetic field
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B can be represented as

〈j‖B〉 = e

〈
B

∫
d3v v‖f̃

〉
(3.83)

= eB0

〈∫
d3v Q−σ3 f̃

〉
(3.84)

= eB0α3

〈∫
d3v |v‖|q−σ3 f̃

〉
(3.85)

= −eB0 α3

3∑
I′=1

αI′

〈∫
d3v fM |v‖| q−σ3 f̂σI′

〉
AI′ , (3.86)

where equation (3.70) has been substituted in the last step. Note, that
the sources Qσ

1 , Qσ
2 , qσ1 and qσ2 , respectively, do not depend on σ and the

index σ is only formal here. The flux densities (3.75), (3.80) and (3.84)
can be written in a general form as

II =

〈∫
d3v Q−σI f̃

〉
, (3.87)

where the fluxes II have been defined as

I1 = Fn (3.88)

I2 =
FW
T

(3.89)

I3 =

〈
j‖B

〉
eB0

. (3.90)

3.5 Transport Coefficients

From equations (3.77), (3.82) and (3.86) it follows that the fluxes II can
be expressed as

II = −αI
3∑

I′=1

αI′

〈∫
d3v fM |v‖| q−σI f̂σI′

〉
AI′ (3.91)

= −n
3∑

I′=1

LII′ AI′ , (3.92)
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where the transport coefficients LII′ are given by

LII′ = αIαI′

〈∫
d3v

fM
n
|v‖| q−σI f̂σI′

〉
(3.93)

= αI′

〈∫
d3v

fM
n
Q−σI f̂σI′

〉
, (3.94)

and the sources Qσ
I are defined by (3.58) – (3.60). Equation (3.92) sum-

marizes the relations between fluxes, transport coefficients and thermo-
dynamic forces and can be written with the transport matrix as 〈Fn〉

〈FW 〉 / T
−〈j‖B̂〉 /e

 = −n

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 A1

A2

A3

 . (3.95)

Taking into account that the velocity space integration can be expressed
as ∫

d3v = 2π

∞∫
0

dv v2

π∫
0

dχ sinχ (3.96)

= 2π

∞∫
0

dv v2

1∫
−1

dλ , (3.97)

where χ is the pitch angle, the transport coefficients LII′ can be repre-
sented as

LII′ =
1√
2π

(m
T

)3/2

αIαI′

×

〈 ∞∫
0

dv v2 exp

(
−mv

2

2T

) 1∫
−1

dλ |v‖|q−σI f̂σI′

〉
(3.98)

=
1√
π

∞∫
0

dx
√
x exp (−x)αIαI′

〈 1∫
−1

dλ |v‖|q−σI f̂σI′

〉
(3.99)

=
2√
π

∞∫
0

dx
√
x exp (−x) DII′ , (3.100)
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where x = mv2/(2T ). Mono-energetic transport coefficients DII′ can be
obtained by replacing fM in (3.93) by the mono-energetic distribution
function fmono

fmono =
1

4πv2
0

n δ(v − v0) , (3.101)

and integrating over velocity yields

DII′ = vαIαI′

〈
1

2

1∫
−1

dλ |λ| q−σI f̂σI′

〉
. (3.102)

Substituting the sources QI (3.61) this quantity can be represented as

DII′ = αI′

〈
1

2

1∫
−1

dλQ−σI f̂σI′

〉
. (3.103)

In terms of η which has been introduced in equation (3.13) the mono-
energetic transport coefficients can be expressed as

DII′ = vαIαI′
∑
σ=±1

〈
B̂

4

1/B̂∫
0

dη q−σI f̂σI′

〉
. (3.104)

Using (3.35) the mono-energetic transport coefficients may be also pre-
sented as field line averages according to

DII′ =
1

4
vαIαI′ lim

L→∞

 L∫
0

ds

B̂

−1 L∫
0

ds
∑
σ=±1

1/B̂∫
0

dη q−σI f̂σI′ . (3.105)

In order to define the mono-energetic diffusion coefficient Dmono and the
normalized bootstrap current coefficient λbb the drift kinetic equation is
rewritten as follows

V i ∂f̃

∂Zi
− νdLf̃ = −V i∂fM

∂Zi
, (3.106)
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where f = fM + f̃ and Zi is a set of phase space variables and V i is a
drift motion velocity. Introducing the sources Q and Q̂ according to

Q = −V i∂fM
∂Zi

= −ψ̇ ∂fM
∂ψ

(3.107)

= −Q̂v
2

v2
0

1

〈|∇ψ|〉
∂fM
∂r

(3.108)

Q̂ =
v2

0

v2
ψ̇ , (3.109)

equation (3.106) can be written as

v0λ
∂f̂

∂s
− v0

v
νdLf̂ = Q̂ , (3.110)

where f̂ is given by

f̂ = −f̃ v0

v
〈|∇ψ|〉

(
∂fM
∂r

)−1

. (3.111)

3.5.1 Diffusion coefficient

The radial diffusion coefficient D relates the gradient of the density n to
the particle flux density Fn according to

Fn = −D∂n
∂r

. (3.112)

Using equation (3.74) the radial diffusion coefficient can be written as

D = − 1

〈|∇ψ|〉

〈∫
d3v ψ̇f̃

〉(
∂n

∂r

)−1

(3.113)

= − 2π

〈|∇ψ|〉2

〈 ∞∫
0

dv
v3

v0

1∫
−1

dλ ψ̇f̂
fM
n

〉
, (3.114)

(3.115)

where f̃ has been substituted from (3.111)

f̃ = f̂
v

v0

1

〈|∇ψ|〉
∂n

∂r

fM
n
. (3.116)
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Replacing the Maxwellian by a mono-energetic distribution function
(3.101) yields for the mono-energetic radial diffusion coefficient Dmono

Dmono = − 1

2 〈|∇ψ|〉2

〈 1∫
−1

dλ

∞∫
0

dv
v3

v3
0

δ(v − v0)ψ̇f̂

〉
(3.117)

= − 1

〈|∇ψ|〉2

〈
1

2

1∫
−1

dλ ψ̇ f̂

〉
. (3.118)

In chapter 7.4.1 mono-energetic radial diffusion coefficients Dmono nor-
malized to the plateau diffusion coefficient

Dplateau =
πvρ2

L

8
√

2 ιR
, (3.119)

are plotted for a variety of magnetic configurations and confinement
regimes versus the collisionality parameter Lc/lc where Lc = 2πR/ι is
the connection length, R is the major radius of the configuration, ι is the
rotational transform and lc is the mean free path.

3.5.2 Bootstrap coefficient

The existence of the bootstrap current in Tokamaks has been first pre-
dicted by Bickerton, Connor and Taylor [68] and Galeev [69] in 1971. In
experiments the bootstrap current has been first detected by Zarnstorff
and Prager in 1984 [70]. In helical geometry neoclassical theory predicts
the bootstrap current particularly in collisionless plasmas, first calcula-
tions were done by Shaing and Callen [46] applying the Hirshman-Sigmar
moment method [41]. Further calculations of the bootstrap current in
non-symmetric toroidal devices can be found in e.g. references [44,71–77].
The bootstrap current can affect the transport, the equilibrium and the
stability characteristics of toroidal plasmas [78]. In tokamaks it can
become a significant part of the total plasma current and is therefore
aimed to be maximized in order to reduce the effort for external
current drive. In stellarators the confining magnetic fields are generated
by external helical coils. There, currents in the plasma may be a
disadvantage because they can modify the desired topology. Therefore
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in stellarators one tries to minimize the bootstrap current because it
is responsible for a shift in the rotational transform ι (it can either
increase or reduce ι) which might be unfavorable for the confinement
properties of the device. It is possible to decrease the bootstrap current
in stellarators to zero (it is even possible to reverse its direction [79]). It
has been shown by Boozer and Gardner [80] that the bootstrap current
in stellarators depends on the magnetic configuration only through the
magnetic field strength on each flux surface B(ψ, ϑ, ϕ) and through the
rotational transform ι(ψ). In case of a small fraction of trapped particles
the dependence of the bootstrap current on the device geometry is
defined by a constant which can be computed by integration along the
field line [81,82]. The bootstrap current causes a net toroidal current in
contrast to the Pfirsch Schlüter current. The Pfirsch Schlüter current
jPS evolves in response to a pressure gradient and the flux surface
average of the Pfirsch Schlüter current multiplied with the magnetic
field is zero 〈jPSB〉 = 0, whereas the flux surface average of the Pfirsch
Schlüter current itself 〈jPS〉 does not vanish.
The physical mechanism driving the bootstrap current can be described
in a simplified picture as follows. On the high field side of the torus
particles with higher values of the pitch parameter can be reflected
and the poloidal orbits of these particles are not closed. The poloidal
projections of the trajectories of such particles are shaped like bananas
and therefore called banana orbits (see figure 3.2). Regarding two
adjacent banana orbits in the poloidal projection co-moving (moving
in the direction of the toroidal current) and counter-moving (moving
against the direction of the toroidal current) particles are passing by at
a flux surface intersecting this orbits. There may be more co-moving
than counter-moving particles on this flux surface due to the existence
of a density gradient. The particles are charged and therefore a current
is generated at this intersection. Due to collisions particles from the
more populated inner orbits are transferred to the outer orbits and give
rise to a net outward diffusion of particles and finally the current is
transferred from the trapped to the passing particles by collisions. The
current which is now carried by the passing particles is called bootstrap
current. However, no net current is produced by the trapped particles
themselves because their only net toroidal movement is the toroidal drift
which is usually small compared to the bootstrap current. In summary,
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Figure 3.2: Adjacent trapped particle orbits giving rise to the bootstrap
current in a tokamak. The plasma boundary is shown as a pink surface
and the trajectory of a trapped particle is indicated as a dark blue line.
The projection of this orbit on the poloidal plane is banana shaped and
called banana orbit. Another banana orbit is depicted in green to show
that the particles move in opposite directions (indicated by arrows) where
the bananas touch. Due to a density gradient and momentum exchange
between trapped and passing particles the bootstrap current is produced.
Figure taken from [83].
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the bootstrap current arises due to the curvature of the magnetic field,
particles moving along banana orbits, the presence of a density gradient
and momentum transfer between trapped and untrapped particles [84].

Estimation of the parallel current density

The width δb of a banana shaped particle orbit is given by (see e.g. [85])

δb ≈
qρL√
εt
, (3.120)

where q = 1/ι is the safety factor, ι is the rotational transform, ρL is
the Larmor radius and εt = a/R is the inverse aspect ratio where a and
R are minor and major radius of the torus, respectively. The parallel
current density j‖ is given by

j‖ = e∆n v‖ , (3.121)

where n is the particle density and ∆n can be approximated by

∆n = δb
dn

dr
. (3.122)

Substituting (3.122) and (3.120) into (3.121) one gets

j‖ = evT
qρL√
εt

dn

dr
, (3.123)

where v‖ ≈ vT =
√

2T/m is the thermal velocity, T is the temperature
and m is the particle mass. Substituting ωc = vT/ρL = eB/(mc), the
equation for the parallel current density j‖ is given by

j‖ = 2
q
√
εt

c T

B

dn

dr
, (3.124)

and contains a factor q/
√
εt which depends on the geometry of the con-

figuration.
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Bootstrap current coefficient

According to (3.83) the flux surface average of the parallel current den-
sity j‖ multiplied by the absolute value of the magnetic field B can be
represented as

〈j‖B〉 = e

〈
B

∫
d3v v‖f̃

〉
. (3.125)

Substituting (3.116) leads to

〈j‖B〉 =
2πe

〈|∇ψ|〉

〈
B

1∫
−1

dλλ
1

v0

f̂
∂

∂r

∞∫
0

dv v4fM

〉
. (3.126)

The integral over the Maxwellian is given by

∞∫
0

dv v4 fM =

∞∫
0

dv v4 n

π
3
2

1

v3
0

exp

{
−v

2

v2
0

}
(3.127)

=
n

π
3
2

v2
0

∞∫
0

duu4 exp
{
−u2

}
︸ ︷︷ ︸

3
√
π/8

(3.128)

=
3

4π

nT

m
, (3.129)

where v0 =
√

2T/m and equation (3.126) can be written as

〈j‖B〉 =
3e

2mv0

1

〈|∇ψ|〉
∂p

∂r

〈 1∫
−1

dλλBf̂

〉
. (3.130)

If no temperature gradient and no radial electric field is present the
gradient of the pressure p is linked to the parallel current density j‖
according to (see e.g. [86], where λbb = λ‖ 〈B2〉 / 〈B2

max〉)

〈j‖B〉 = −λbb c 〈|∇ψ|〉
∂p

∂ψ
, (3.131)
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where c is the speed of light. Using equations (3.130) and (3.131) the
normalized mono-energetic bootstrap coefficient λbb can be expressed as

λbb = − 3

ρLB0 〈|∇ψ|〉

〈
1

2

1∫
−1

dλλBf̂

〉
, (3.132)

where the Larmor radius ρL = v0mc/(eB0) in the reference magnetic field
B0 has been substituted in the last step.

In chapter 7.4.2 normalized mono-energetic bootstrap current coefficients
λbb are plotted for a variety of magnetic configurations and confinement
regimes versus the collisionality parameter Lc/lc where Lc = 2πR/ι is
the connection length, R is the major radius of the configuration, ι is the
rotational transform and lc is the mean free path.

3.5.3 Conductivity coefficient

For computations of mono-energetic transport coefficients with meth-
ods based on [3] in many cases pitch-angle scattering collision models
are used. For the calculation of a variety of plasma quantities there-
fore it might be necessary to use momentum correction techniques (see
e.g. [87–89]). In order to apply these methods the evaluation of the
mono-energetic parallel conductivity coefficient is essential.

This coefficient is related to the response of particles to a parallel electric
field. The drift kinetic equation (3.72) for the distribution function f̂σ3 is
given by

v‖
∂f̂σ3
∂s
− νdLf̂σ3 = Qσ

3 , (3.133)

where

Qσ
3 = −v‖ B̂ . (3.134)

Substituting equations (3.64) and (3.67) into equation (3.102) the mono-
energetic parallel conductivity coefficient D33 can be written as

D33 = −v

〈
1

2

1∫
−1

dλλ B̂ f̂σ3

〉
. (3.135)
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In chapter 7.4.3 normalized mono-energetic parallel conductivity coeffi-
cients Dco = −D33 Lc/lc are plotted for a variety of magnetic configura-
tions and confinement regimes versus the collisionality parameter Lc/lc
where Lc = 2πR/ι is the connection length, R is the major radius of the
configuration, ι is the rotational transform and lc is the mean free path.





Chapter 4

Full f method

In this chapter a so-called box counting scheme for the computation of
transport coefficients related to the bootstrap current is presented. The
parallel current density j‖ normalized by the module of the magnetic field
B is represented as〈

j‖
B

〉
=

e

∆V

∫
∆V

d3r

∫
R

d3v
1

B(r)
v‖(r,v)f(r,v) . (4.1)

where e is the elementary charge and the distribution function f is ap-
proximated by

f(r,v) =
1

Ns

Ns∑
i=1

δ(r− ri)δ(v − vi) , (4.2)

where ri and vi are particle positions and velocities after the ith numerical
step and Ns denotes the total number of numerical steps. In flux surface
coordinates (ψ, ϑ, ϕ) and velocity space variables (λ, v) the normalized
parallel current density j‖ can be written as

〈
j‖
B

〉
=

e

∆V

ψ+δψ∫
ψ

dψ

ϑ+δϑ∫
ϑ

dϑ

ϕ+δϕ∫
ϕ

dϕ
√
g

∞∫
0

dv

1∫
−1

dλ 2πv2

× 1

B(ψ, ϑ, ϕ)
v‖(ψ, ϑ, ϕ, v, λ) f(ψ, ϑ, ϕ, v, λ) , (4.3)

61
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and the distribution function can be represented as

f(ψ, ϑ, ϕ, v, λ) =
1

Ns

Ns∑
i=1

1
√
g

1

2πv2

× δ(ψ − ψi)δ(ϑ− ϑi)δ(ϕ− ϕi)δ(v − vi)δ(λ− λi),(4.4)

where ψ denotes the flux surface label, ϑ and ϕ are the poloidal and
toroidal angles of flux coordinates, respectively, λ = v‖/v is the pitch
angle variable and v is the particle velocity. The Jacobian

√
g and the

volume element ∆V are defined as

√
g =

∂(x, y, z)

∂(ψ, ϑ, ϕ)
, (4.5)

∆V =

ψ+δψ∫
ψ

dψ

ϑ+δϑ∫
ϑ

dϑ

ϕ+δϕ∫
ϕ

dϕ
√
g . (4.6)

In order to develop a numerical scheme the particle step density 〈n〉k and
the normalized current density 〈j‖/B〉k associated to a subannulus in ψ
are introduced as

〈n〉k =
1

∆V

ψmax∫
0

dψ

2π∫
0

dϑ

2π∫
0

dϕ
√
g

∞∫
0

dv

1∫
−1

dλ 2πv2

× f(ψ, ϑ, ϕ, v, λ) Θk(ψi) (4.7)

=
1

∆V

1

Ns

Ns∑
i=1

Θk(ψi) , (4.8)

〈
j‖
B

〉k
=

e

∆V

ψmax∫
0

dψ

2π∫
0

dϑ

2π∫
0

dϕ
√
g

∞∫
0

dv

1∫
−1

dλ 2πv2

× 1

B(ψ, ϑ, ϕ)
v‖(ψ, ϑ, ϕ, v, λ)f(ψ, ϑ, ϕ, v, λ) Θk(ψi) (4.9)

=
e

∆V

1

Ns

Ns∑
i=1

1

B(ψi, ϑi, ϕi)
v‖(ψi, ϑi, ϕi, vi, λi) Θk(ψi), (4.10)
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where k is the index of a subannulus limited by the flux surfaces ψka and
ψkb and the step function Θk is defined as

Θk(ψi)

{
= 0 ψi < ψka ; ψkb < ψi
= 1 ψka < ψi < ψkb .

(4.11)

The density gradient (∂n/∂ψ)k in the kth subannulus can be approxi-
mated by (

∂n

∂ψ

)k
=
〈n〉k+1 − 〈n〉k−1

2∆ψ
, (4.12)

where ∆ψ denotes the width of the equidistant subannuli. The bootstrap
current coefficient λ̂kb in the kth subannulus can be calculated from

λ̂kb =

〈
j‖
B

〉k/ (
∂n

∂ψ

)k
. (4.13)

For a total number of particles Np the particle step density 〈n〉k,Np , the
current density 〈j‖/B〉k,Np , the gradient (∂n/∂ψ)k,Np and the bootstrap

current coefficient λ̂
k,Np

b in the kth subannulus are given by

〈n〉k,Np =
1

∆V

1

NT

Np∑
j=1

Nj
s∑

i=1

Θk(ψji ) , (4.14)

〈
j‖
B

〉k,Np

=
e

∆V

1

NT

×
Np∑
j=1

Nj
s∑

i=1

1

B(ψji , ϑ
j
i , ϕ

j
i )
v‖(ψ

j
i , ϑ

j
i , ϕ

j
i , v

j
i , λ

j
i )Θ

k(ψji )(4.15)

(
∂n

∂ψ

)k,Np

=
1

2∆ψ

(
〈n〉k+1,Np − 〈n〉k−1,Np

)
, (4.16)

λ̂
k,Np

b =

〈
j‖
B

〉k,Np
/ (

∂n

∂ψ

)k,Np

, (4.17)

where j is the particle index and the total number of steps NT is given
by

NT =

Np∑
j=1

N j
s . (4.18)



64 CHAPTER 4. FULL F METHOD

Θk(ψji )

{
= 0 ψji < ψka ; ψkb < ψji
= 1 ψka < ψji < ψkb .

(4.19)

The number of steps N j
s of an individual particle j depends on when

the particle leaves the annulus. NT is the total number of steps of all
particles. It can be seen from (4.14) and (4.15) that the quantities
〈n〉k,Np and 〈j‖/B〉k,Np are obtained by summing up contributions from
all steps of all particles in the respective subannulus and then by dividing
these quantities by the total number of steps NT of all particles.



Chapter 5

δf method

The efficiency of standard Monte Carlo (MC) techniques is rather low
when calculating plasma currents. In these methods not only the part
of the distribution function which determines the plasma currents is in-
volved, instead the total distribution function is computed. Numerical
calculations of neoclassical transport coefficients in fusion plasmas can be
made much more efficient by using so-called δf methods (see e.g. [90–98]).
There the equilibrium part of the distribution function f0 (which may be
mono-energetic or Maxwellian) is expressed analytically, and particle sim-
ulations are used to model only the deviation from the equilibrium δf .
The principle of these methods is that the particle distribution function is
represented as f = f0 +δf and weights are associated to so-called marker
particles which evolve in time in such a way that the modification of the
equilibrium distribution is correctly reproduced [84]. In the simulations
the evolution of the particles is computed in a series of subsequent time
steps by changing the pitch parameters in accordance with a Monte Carlo
model of the Lorentz collision operator and by integrating the particle
drift equations over time in order to update the positions and momenta
of the particles [3].

5.1 Basic equations

Mono-energetic transport coefficients are determined by the steady state
solution of the linearized drift kinetic equation for the normalized per-
turbation of the distribution function f̂ (which is also named “marker”).
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If the total energy and the perpendicular adiabatic invariant are used as
velocity space variables this equation takes the following form

LDf̂ ≡
(
∂

∂t
+ Vg · ∇ − LC

)
f̂ = ψ̇ ≡ Vg · ∇ψ, (5.1)

where Vg, and ψ̇ are guiding center drift velocity and its contra-variant
ψ-component, respectively, ψ is a flux surface label, LC is the Lorentz col-
lision operator, and the marker f̂ is defined through the local Maxwellian
distribution function fM and the total distribution function f via

f = fM − f̂
∂fM
∂ψ

. (5.2)

Eq. (5.1) is solved using the orbits in the limit B →∞ with E/B = const
so that Vg → Vg0 which means that magnetic drifts disappear on the
l.h.s. but stay finite on the r.h.s when solving the equations of motion.
In the following it is convenient to use instead of the total energy and the
perpendicular invariant the velocity module v and the pitch parameter
λ = v‖/v as velocity space variables. In these variables the collision
operator is given as

LC =
v

lc

∂

∂λ

(
1− λ2

) ∂

∂λ
, (5.3)

where lc is the mean free path, and the mono-energetic radial diffusion co-
efficient and the normalized bootstrap coefficient, respectively, are given
by (see equations (3.118) and (3.132))

Dmono = − 1

〈|∇ψ|〉2

〈
1

2

1∫
−1

dλf̂ψ̇

〉
, (5.4)

λbb = − 3

ρLB0 〈|∇ψ|〉

〈
1

2

1∫
−1

dλf̂λB

〉
. (5.5)

Here, ρL is the Larmor radius in the reference magnetic field B0, B is the
magnetic field module and

〈A〉 =

∫
dϑ
∫

dϕ
√
gA∫

dϑ
∫

dϕ
√
g

(5.6)
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denotes the average over the volume between neighboring flux surfaces
with ϑ and ϕ being the poloidal and the toroidal angles of flux coordinates
and g is the metric determinant of flux coordinates (ψ, ϑ, ϕ). In absence
of a temperature gradient and a radial electric field the quantity λbb is
linked to the equilibrium (bootstrap) current density j‖ and the gradient
of the pressure p by

λbb = −
〈
j‖B

〉(
c 〈|∇ψ|〉 dp

dψ

)−1

(5.7)

if lc is put to a constant during the energy convolution. In the following
Dmono is normalized by the plateau diffusion coefficient

Dplateau =
πvρ2

L

8
√

2 ιR
, (5.8)

where ι is the rotational transform and R is the major radius.
It should be noted that the drift motion of test particles is described
exactly by the operator LD (which includes also the radial motion) in
Eq. (5.1). As a result, LD conserves the total energy but not the kinetic
energy alone. Therefore, strictly speaking, f̂ is not mono-energetic if a
radial electric field is present. However, the typical change of the kinetic
energy of the test particle during a couple of collision times needed to
model f̂ is small compared to the original test particle energy if the am-
plitude of the magnetic field modulation on the magnetic surface is small
(a usual argument justifying the mono-energetic approach). Therefore
this change of the kinetic energy of test particles is ignored in the fol-
lowing and v is treated there as a parameter but not as an independent
phase space coordinate. Also, the local approach of neoclassical theory
assumes that change of the radial variable ψ during test particle mo-
tion is negligible small and, therefore, ψ plays the role of a parameter.
This limit can be realized with any accuracy by scaling both, the mag-
netic field and radial electric field with the same sufficiently large factor.
Thus, despite the fact that test particle trajectories are integrated in the
full (ψ, θ, ϕ, v, λ) phase space, the dependence of the perturbed distri-
bution function f̂ on ψ and v is treated as parametric and the set of
independent variables z is reduced to (ϑ, ϕ, λ) for the solutions of kinetic
equation (5.1) in the following.
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5.2 Integral formulation of the Monte

Carlo procedure

Traditionally [99], the Monte Carlo procedure for the solution of the drift
kinetic equation is introduced directly for equation (5.1) by defining a
random step over test particle phase space coordinates for a small time
interval ∆t and by verifying that the Fokker-Planck equation describing
test particle orbits advanced by such steps coincides with the original
drift kinetic equation. At the same time, a variety of variance reduction
methods developed mainly for Monte Carlo solutions of integral equations
need some re-formulation in order to develop an algorithm. In order to
enable a direct use of these methods, it is convenient to re-write (5.1) in
the integral form using a Green’s function G defined by

LD G(t, z, z0) = 0, (5.9)

G(0, z, z0) = (g(z0))−1/2 δ(z− z0), (5.10)

where z = (ϑ, ϕ, λ). This Green’s function is normalized to 1,∫
d3z (g(z))1/2G(t, z, z0) = 1. (5.11)

Thus, a formal solution to Eq. (5.1) is

f̂(t, z) =

∫
d3z0 (g(z0))1/2

(
G(t− t0, z, z0)f̂(t0, z0) +

+

t∫
t0

dt′G(t− t′, z, z0)ψ̇(z0)

)
. (5.12)

If a steady state solution is looked for,

f̂(t, z) = f̂(z) , (5.13)

Eq. (5.12) becomes an integral equation for

F (z) = (g(z))1/2 f̂(z) , (5.14)
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which is given below also in operator form,

F (z) =

∫
d3z0K(z, z0)F (z0) +Q(z) ≡ KF +Q, (5.15)

where
K(z, z0) = (g(z))1/2G(∆t, z, z0) , (5.16)

∆t is the integration time step and

Q(z) =

∫
d3z0 (g(z)g(z0))1/2

∆t∫
0

dt′G(t′, z, z0)ψ̇(z0)

≡ (g(z))1/2 ∆ψ(z) ≈ (g(z))1/2 ψ̇(z)∆t. (5.17)

The Monte Carlo operator, Z(∆t, z0), is introduced as a random posi-
tion of a test particle starting at z0 after a single time step modeled in
a standard way [99]. First, the particle pitch is changed randomly in
accordance with LC ,

λ′ = λ0 (1−∆C) +
(
∆C

(
1− λ2

0

))1/2
ξ , (5.18)

where

∆C =
v∆t

lc
, (5.19)

and ξ is a random number which takes the values ±1 with equal prob-
abilities. Then an integration step of particle drift equations over the
time interval ∆t is performed. Thus, the kernel of the integral equation
is given by an expectation value

K(z, z0) = δ (z− Z(∆t, z0)) . (5.20)

More precisely, Eq. (5.20) can be viewed as a definition of the random
process Z(∆t, z0) via the transition probability density K(z, z0) while
the algorithm described in (5.18) defines a linear approximation in ∆t
of this random process. At this point, in addition to Z(∆t, z0), random
numbers z(k) ≡ (ϑ(k), ϕ(k), λ(k)) where k = 0, 1, 2, . . . are introduced via
the recurrence relation (5.22) and the probability density (5.25). Various
overlined quantities below are the expectation values with respect to
these random numbers.
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The solution of (5.15) by direct iterations is given by an expectation
value of an integral along the stochastic orbit,

F =
∞∑
k=0

KkQ = C0

∞∑
k=0

w(0) δ
(
z− z(k)

)
, (5.21)

z(k) = Z(∆t, z(k−1)), (5.22)

w(0) = ∆ψ(z(0)), (5.23)

where

C0 =

∫
d3z (g(z))1/2 , (5.24)

and the random starting point z(0) is chosen with the probability density

δ
(
z− z(0)

)
= C−1

0 (g(z))1/2 . (5.25)

The averages (5.4) and (5.5) are given by expectation values as

Dmono = − 1

〈|∇ψ|〉2
∞∑
k=0

w(0)ψ̇(z(k)), (5.26)

λbb = − 3

ρLB0 〈|∇ψ|〉

∞∑
k=0

w(0)λ(k)B(z(k)). (5.27)

When k∆t exceeds a few collision times, the correlation between z(k) and
w(0) is lost and, therefore, such terms in (5.26) and (5.27) tend to zero,
e.g.,

w(0)ψ̇(z(k))→ w(0) ψ̇(z(k)) = 0 , (5.28)

because

λ(k)B(z(k)) =
1

C0

∫
d3z (g(z))1/2 λB(z) = 0, (5.29)

ψ̇(z(k)) =
1

C0

∫
d3z (g(z))1/2 ψ̇(z) = 0 , (5.30)

due to Liouville’s theorem. The same is true also for w(0). Thus, a finite
sum over k in (5.26) and (5.27) is sufficient.
The method of constant test particle weights described by (5.26)
and (5.27) has rather low variance for computations of Dmono, however,
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variance of λbb has a very unfavorable scaling with collisionality. Indeed,
only the orbits originating in the boundary layer located in the velocity
space around the trapped-passing boundary λt−p which is determined by
the absolute maximum of the magnetic field on the flux surface contribute
to λbb. The boundary layer has the width

∆λ ∼ (Lc/lc)
1/2 , (5.31)

where Lc = 2πR/ι is the connection length. The test particle weight
w(0) depends on the coordinates of the starting point of the orbit but is
independent of the sign of the starting pitch parameter λ(0). Noticeable
contributions to λbb are produced by test particles only when they are
traveling in the passing phase space region because in the trapped region
rapid oscillations of the pitch parameter λ are compensated in the time
integral (5.27). Test particles starting deeply in the trapped particle re-
gion produce almost no contribution to λbb because when they reach the
passing region after many oscillations in the magnetic well, probabilities
to be detrapped to the co-passing region with λ > 0 and to the counter-
passing region with λ < 0 become weakly dependent on the starting
point (and, therefore, on w(0)) and are almost the same. Thus, contri-
butions from such particles compensate each other statistically. Similar
compensation takes place also for particles starting deeply in the passing
region because correlation between the sign of the pitch parameter and
the starting position (and, therefore, the weight w(0)) is quickly lost for
them after passing the distance

l ∼ l1/3c L2/3
c � lc , (5.32)

while the amounts of particles starting from the same spatial point with
±λ(0) are the same in average. Therefore, in the long mean free path
regime only trapped particles starting from the boundary layer whose
detrapping probabilities essentially depend on the starting position
and passing particles from this layer whose trapping probabilities
also depend on the starting position can produce in average essential
contribution to λbb (see Fig. 5.1). Actually, this manifests the fact
that asymmetry in the passing particle distribution function is driven
by the asymmetry of the boundary condition for this function at the
trapped-passing boundary. Note that the contribution of a particle
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from the boundary layer is ∆λ times smaller than of a normal passing
particle because of a higher trapping probability. Therefore, the variance
of λbb scales for this method as (lc/Lc)

2 in the long mean free path regime.

For the computation of the mono-energetic parallel conductivity coeffi-
cient a formal solution to (3.133) is given by

f̂σ3 (t, z) =

∫
d3z0 [g(z0)]1/2

(
G(t− t0, z, z0)f̂σ3 (t0, z0) +

+

t∫
t0

dt′G(t− t′, z, z0)Qσ
3 (z0)

)
, (5.33)

where z = (ϑ, ϕ, λ). If a steady state solution is looked for,

f̂σ3 (t, z) = f̂σ3 (z) , (5.34)

equation (5.33) becomes an integral equation for

F σ
3 (z) = [g(z)]1/2 f̂σ3 (z) , (5.35)

which can be written in operator form as

F σ
3 (z) =

∫
d3z0K(z, z0)F σ

3 (z0) + Q̂σ
3 (z) ≡ KF σ

3 + Q̂σ
3 , (5.36)

where

K(z, z0) = [g(z)]1/2G(∆t, z, z0) , (5.37)

∆t is the integration time step and

Q̂σ
3 (z) =

∫
d3z0[g(z)]1/2[g(z0)]1/2

∆t∫
0

dt′G(t′, z, z0)Qσ
3 (z0) (5.38)

≈ [g(z)]1/2 ∆tQσ
3 (z) . (5.39)

The Monte Carlo procedure is the same as described after equation (5.17).
The solution of (5.36) by direct iterations is given by an expectation value
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Figure 5.1: Distribution dλbb/dη0 of test particle contributions to λbb
(Eq. (5.27)) over the starting values of the normalized perpendicular
invariant η0 = (1− λ2

0)B0/B(z0) for a tokamak with aspect ratio R/r =
10, where B0 is a reference magnetic field. Collisionality parameters Lc/lc
are 1 ·10−2 (circles), 3 ·10−3 (triangles) and 1 ·10−3 (squares). The width
of the boundary layer for each curve is indicated by a horizontal bar. The
position of the trapped-passing boundary is shown by the solid vertical
line.



74 CHAPTER 5. δF METHOD

of an integral along the stochastic orbit,

F σ
3 =

∞∑
k=0

KkQ̂σ
3 (5.40)

= C0

∞∑
k=0

wσ(0) δ
(
z− z(k)

)
, (5.41)

z(k) = Z(∆t, z(k−1)) , (5.42)

wσ(0) = ∆tQσ
3 (z(0)) (5.43)

= −∆t v‖(z(0)) B̂(z(0)) , (5.44)

where

C0 =

∫
d3z[g(z)]1/2 , (5.45)

and the random starting point z(0) is chosen with the probability density

δ
(
z− z(0)

)
= C−1

0 [g(z)]1/2 . (5.46)

Substituting the definition of the flux surface average (3.33) into equa-
tion (3.135) the mono-energetic parallel conductivity coefficient can be
written as

D33 = − 1

C0

∫
d3z F σ

3 v‖B̂ (5.47)

= − 1

B0

∞∑
k=0

wσ(0) v‖(z(k)) B(z(k)) , (5.48)

where F σ
3 has been substituted from (5.41) and integration over z has

been performed in the second equality.

5.3 Standard δf method

The distribution of the test particles at each step remains to be the
equilibrium distribution,

δ
(
z− z(k)

)
= C−1

0 (g(z))1/2 , (5.49)
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which is independent of the pitch parameter λ (dependence of the metric
determinant g on the full set of phase space variables z is only formal
here). Therefore, the correlation between any function of z(k) and any
other function of z(j) depends only on the time interval needed for test
particle to travel from the point z(k) to z(j), i.e. on the difference k − j,

w(0)λ(k−j)B(z(k−j)) = w(j)λ(k)B(z(k)) , (5.50)

where

w(j) = ∆ψ(z(j)) ≈ ψ̇(z(j))∆t . (5.51)

Thus the averages (5.26) and (5.27) can be presented as

Dmono = − 1

〈|∇ψ|〉2
lim
k→∞

W(k)ψ̇(z(k)) (5.52)

= − 1

〈|∇ψ|〉2
lim
K→∞

1

K

K∑
k=0

W(k)ψ̇(z(k)), (5.53)

λbb = − 3

ρLB0 〈|∇ψ|〉
lim
k→∞

W(k)λ(k)B(z(k)) (5.54)

= − 3

ρLB0 〈|∇ψ|〉
lim
K→∞

1

K

K∑
k=0

W(k)λ(k)B(z(k)), (5.55)

where

W(k) =
k∑
j=0

w(j) = ψ(z(k))− ψ(z(0)) (5.56)

is an integral of ψ̇ along a stochastic orbit (total test particle displace-
ment over ψ). The sum in (5.56) actually represents the integration
formula which is linear in ∆t for the linearized radial equation of motion
(see the algorithm below (5.19) and the recurrence relation (5.22)). For
simplicity, the proof that W(k) corresponds to the radial displacement
modeled exactly is omitted here in favor of the above argument.
Nevertheless, in the computations W(k) is calculated integrating the
radial equation of motion in the same manner as the rest of drift
equations, i.e. using a high order Runge–Kutta algorithm (see Sec-
tion 5.1). Such a procedure of evaluating averages corresponds to a
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standard δf method [3, 6, 7]. For a tokamak, the variance of λbb for
this method does not scale with the collisionality, and the required
CPU time scales linearly with lc/Lc. However, for stellarators the
variance of λbb again recovers the scaling (lc/Lc)

2 because due to the
non-zero bounce-averaged drift of trapped particles large contributions
to W(k) are acquired, which scale as ψ̇lc/v. These contributions are
weakly correlated with the values of λ(k) which test particles have after
detrapping. This is due to the fact that detrapping probabilities to the
co-passing and to the counter-passing phase space regions weakly depend
on test particle position in the magnetic well and are almost equal as
long as this particle is deeply trapped. Therefore, weight generated in
the phase space regions of deeply trapped particles reaches co-passing
or counter-passing phase space regions with almost equal probabilities
and therefore in average is compensated statistically in λbb. Numerically
this results in statistical compensation of large random numbers which
introduces large variance in the computation. To overcome this problem
in a standard δf method, the test particle motion is limited to an
annulus, ψ0 − δψ < ψ < ψ0 + δψ, so that test particles which leave the
annulus (particles with large W(k)) are replaced with particles from the
equilibrium distribution (5.49) with W(k) = 0 (new particles are placed
at the middle of the annulus). This means that large weights are filtered
out. In order to reduce the noise effectively, the size of this annulus, δψ,
should be small enough to avoid systematic errors (bias) in the result,
and the annulus width should be larger than the particle displacement
during a collision time. If the second condition is properly satisfied,
practically no noise reduction for the bootstrap coefficient λbb will be
achieved. If it is not satisfied, the simultaneously computed transport
coefficient Dmono becomes biased, although for the computation of Dmono

filtering would not be necessary at all. In Ref. 7 this condition has been
violated for sake of good convergence of the bootstrap coefficient where
the bias still remained small. A procedure which is formally free of such
bias and which does not need additional calculations for the control of
the bias is therefore of interest.



Chapter 6

Variance reduction

6.1 Splitting of the source

For a formally “unbiased” method it is convenient to split the source
in (5.15) into “passing” and “trapped” sources Qp = χQ and Qt = Q−Qp

using

χ =
1

2

[
1 + tanh

(
|λ| − λt−p

∆λ

)]
, (6.1)

where λt−p is the pertinent trapped-passing boundary (see Fig. 6.1), and
solve the problem with each source independently. Results for transport
coefficients for these two sources are added up at the end. The problem
with Qp is solved with the standard method without using an annulus
limiting the test particle motion. Since accumulation of large weights is
avoided for this source, the convergence of the bootstrap coefficient is
similar to that in a tokamak.

6.2 Algorithm for the “trapped” problem

For the treatment of the problem with Qt one should notice the following.
In both formulas for the bootstrap coefficient, Eq. (5.27) and Eq. (5.55),
this coefficient is defined by a time average of a test particle weight multi-
plied with λ. As long as a test particle is trapped it produces practically
no contribution to λbb due to this averaging and the change of sign of λ
at the reflection points. Therefore, trapped particles with large weights
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λ t−p0−1 1 λ

trapped−passing boundary

δλ

χ

1

in the "passing" problemin the "trapped" problem
weighting of the source weighting of the source 

splitting boundary

Figure 6.1: Separation of the source in “trapped” and “passing” prob-
lems. The “splitting boundary” is located at a distance δλ = 2∆λ away
from the trapped-passing boundary, where ∆λ is the width of the bound-
ary layer.

start to produce the noise in λbb only after detrapping. On the other
hand, the total weight generated by Qt in the phase space is zero. This
is obvious in the case of stellarator symmetry because of Q(−z) = −Q(z),
but this is also true in a general case for the total source Q. In the general
case the average of Qt can be made zero also by re-defining the function
χ in terms of invariants of motion instead of λ. Particles with different
signs of the weight detrapped from different magnetic wells quickly mix
up in the close vicinity of the boundary layer so that each phase space
volume element in this region contains both, particles with positive and
negative weights if the number of test particles is large enough. The
total weight in such a volume element which actually determines the dis-
tribution function being of relevance for the averages is smaller than the
sum of the modulus of test particle weights contained in this element.
Therefore a periodic re-discretization procedure which replaces all parti-
cles in the phase space volume element (“cell”) with fewer particles with
equal weights which carry the total weight in this element would lead to
a significant reduction in the test particle number. It should be noted
however, that the number of cells needed for re-discretization in the 3D
phase space without significant bias from the finite size of the cells must
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be large and usually exceeds the number of test particles. Therefore, cer-
tain time averaging is needed for an effective re-discretization procedure.
In order to introduce such a procedure, the formal solution to (5.15) can
be presented as

F = FM + ∆FM , (6.2)

where FM satisfies an equation which differs from (5.15) only by a source
term

FM = KFM +QM , (6.3)

where

QM =
1

M

M−1∑
k=0

KkQ = QM(Q) , (6.4)

∆FM =
M−1∑
k=0

(
1− k + 1

M

)
KkQ = ∆FM(Q) . (6.5)

In order to derive this form of integral equation the original equation is
re-written according to

F = Q+KF (6.6)

= Q+KQ+K2F (6.7)

= . . . (6.8)

=
m−1∑
k=0

KkQ+KmF , (6.9)

where m is an arbitrary natural number. Averaging the right hand side
over 1 ≤ m ≤M yields

F =
1

M

M∑
m=1

m−1∑
k=0

KkQ+
1

M

M∑
m=1

KmF (6.10)

= ∆FM +
1

M

M−1∑
m=0

KmQ+
1

M

M∑
m=1

KmF . (6.11)

Denoting the last two terms in (6.11) with FM and substituting there F
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in the form of the series (5.21) one obtains

FM ≡ 1

M

(
M−1∑
m=0

KmQ+
M∑
m=1

KmF

)
(6.12)

=
1

M

(
M−1∑
m=0

KmQ+
M∑
m=1

Km
∞∑
k=0

KkQ

)
(6.13)

=
1

M

(
M−1∑
m=0

KmQ+K
∞∑
k=0

Kk
M−1∑
m=0

KmQ

)
(6.14)

=
∞∑
k=0

Kk 1

M

M−1∑
m=0

KmQ (6.15)

=
∞∑
k=0

KkQM . (6.16)

The last expression is a series solution to equation (6.3). Equation (6.3)
describes one iteration of the solution procedure which results in

F =
∞∑
i=1

∆F
(i)
M , (6.17)

with

∆F
(i)
M = ∆FM

(
Q(i)

)
, (6.18)

and

Q(i) = QM

(
Q(i−1)

)
, (6.19)

where

Q(1) = Qt . (6.20)

In accordance to (6.17), the averages are given by

Dmono = lim
Nit→∞

Nit∑
i=1

D(i)
mono , (6.21)

λbb = lim
Nit→∞

Nit∑
i=1

λ
(i)
bb , (6.22)
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where D
(i)
mono and λ

(i)
bb are given by Eqs. (5.4) and (5.5), respectively, with

the substitution
f̂ = g−1/2F

(i)
M , (6.23)

and Nit is the number of iterations. The first iteration is performed using
a standard δf method advancing N test particles initially distributed ac-
cording to (5.25) by M−1 steps so that each of them gains the (random)
weight

W(M−1) =
M−1∑
j=0

(
1− χ(z(j))

)
ψ̇(z(j))∆t (6.24)

and the averages are estimated as an ensemble average

D(1)
mono ≈ − 1

〈|∇ψ|〉2
1

N

∑
particles

W(M−1)ψ̇(z(M−1)), (6.25)

λ
(1)
bb ≈ − 3

ρLB0 〈|∇ψ|〉
1

N

∑
particles

W(M−1)λ(M−1)B(z(M−1)).(6.26)

Starting from the second iteration the algorithm with constant weights
is used. For this purpose, in accordance with (6.4), the weight of each
test particle is changed to

w = W(M−1)/M , (6.27)

where W(M−1) is its weight after the first iteration, and these particles
are again advanced by M − 1 steps with these fixed weights. During
each such step their weights are counted on the 3D grid in phase space
producing in this way a source term Q(3) for the next iteration while the
contribution to the averages is computed directly as

D(i)
mono ≈ − 1

〈|∇ψ|〉2
1

N

∑
particles

w

M−1∑
k=0

ψ̇(z(k)), (6.28)

λ
(i)
bb ≈ − 3

ρLB0 〈|∇ψ|〉
1

N

∑
particles

w

M−1∑
k=0

λ(k)B(z(k)), (6.29)

where i = 2 and starting positions z(0) are the final positions z(M−1) of
the first iteration. Finally, for the third and all further iterations test
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particles are generated from the source determined on the grid. Namely,
in accordance with (6.4), the weight scored in each grid cell during a
previous iteration is divided by M thus giving wcell. Then test particles
with a prescribed weight modulus w(0) are generated in grid cell centers
with a probability proportional to |wcell| /w(0) and signs of their weights
w given by the sign of the pertinent wcell.
Note that in computations of the parallel conductivity coefficient the
variance does not show up a strong dependence on the collisionality pa-
rameter, therefore variance reduction techniques are not applied in com-
putations of this coefficient and the procedure described in chapter 5 can
be directly used for the calculations.

6.3 Splitting of particles in the passing re-

gion

The prescribed weight w(0) is different in the “trapped” and “passing”
regions of the phase space separated by a splitting boundary as shown in
Fig. 6.1. These weights are prescribed after the second iteration as

wt(0) =
1

N

∑
cells

|wcell| , (6.30)

wp(0) = wt(0)/nsplit , (6.31)

where t denotes trapped, p denotes passing and nsplit is chosen in order
to make the number of test particles in both phase space regions roughly
the same. In the long mean free path regime, the weight contained in the
“trapped” region is large compared to the weight in the “passing” region.
In addition, test particles with wt(0) which cross the splitting boundary
and enter the passing region during the iteration are also split into nsplit
particles. Since prescribed weights stay further unchanged, the total
number of test particles is decreasing with iterations due to annihilation
of their weights on the grid (see Fig. 6.2). Despite the decreasing number
of test particles, contributions to the averages from iterations i ≥ 3 are
also determined by (6.28) and (6.29) with the same value of N as for the
first iteration.
The number of steps M for a single iteration is chosen to be much smaller
than collision time and large enough in order to fill the grid using a limited
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Figure 6.2: Number of simulation particles N for four sub-runs (left axis,
dashed lines) and final value of the bootstrap coefficient λbb computed
from 40 sub-runs (right axis, solid line) versus number of iterations Nit.
Here, 150 iterations approximately correspond to five collision times.
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number of test particles. Since the filtering (limitation of test particle
motion by the annulus) is not used in the procedure described above, the
main source of the bias besides the negligible small error in the Monte
Carlo operator may come from the re-discretization procedure. In order
to keep this error within predefined limits, a rather large size of the grid
over ϑ and ϕ was chosen, 100x100, while the size of the grid over the
pitch parameter λ is chosen so that the grid cell width over λ is smaller
with a certain tolerance than the diffusive change in pitch after a re-
discretization time iM∆t. Iterations are continued until no particles are
left for the next iteration. Typically, this corresponds to iM∆t equal
to a few collision times (see Fig. 6.2). At this point the result is fully
converged, the convergence with iteration number is exponential.

6.4 Physical parameters

6.4.1 Width of the boundary layer

The width of the boundary layer ∆λbl is determined by the diffusive
change of the particle pitch parameter λ due to collisions during a bounce
time tb according to

νc =
(∆λbl)

2

2tb
, (6.32)

where νc is the collision frequency. In terms of the mean free path
lc = v/νc and the connection length Lc ≈ v tb this quantity can be written
as

∆λbl ∼
√
Lc
lc

=
√
ν̄ , (6.33)

where v is the particle velocity and ν̄ = Lc/lc is the collisionality param-
eter.

6.4.2 Re-discretization length

The re-discretization length in the trapped region τ trrd is given by

τ trrd =
√
Lclc = Lc

1√
ν̄
, (6.34)
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and the re-discretization length in the passing region τ pard is given by

τ pard = lc = Lc
1

ν̄
. (6.35)

6.4.3 Change in pitch parameter during a re-
discretization step

The change of the pitch parameter ∆λ during a re-discretization time trd
is related to the collision frequency according to

νc =
(∆λ)2

2trd
, (6.36)

and can be expressed as

∆λ ∼
√
trd
tc

=

√
τrd
lc
, (6.37)

where tc is the collision time and τrd is the distance associated to trd. In
the trapped region this quantity becomes with equation (6.34)

∆λ ∼

√
Lc√
ν̄

1

lc
= ν̄1/4 . (6.38)

6.4.4 De-correlation length – passing region

A passing particle with a velocity v‖ travels a distance l = v‖t during a
time t. The change of distance ∆l due to the change in parallel velocity
v‖ is then given by

∆l = ∆v‖t , (6.39)

where

∆v‖ =
√
νc t vT . (6.40)

The correlation to the starting point is assumed to be lost if ∆l is of the
order of the connection length Lc

∆l ≥ Lc . (6.41)
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From the criterion (6.41) one gets with equations (6.39) and (6.40)

√
νc vT t

3/2 ≥ Lc . (6.42)

Substituting the mean free path lc = vT/νc, the de-correlation length
LD = vT t can be expressed as

LD ≥ l1/3c L2/3
c = Lcν̄

−1/3 . (6.43)

6.4.5 Re-discretization length adjusted to grid
mesh size

Particles trapped in one and the same ripple of the magnetic field carry
either positive or negative weights (determined by the sign of their radial
velocities). Therefore the particle distribution has to evolve for a defined
time in order to ensure that positive and negative weights mix up on the
grid and allow for an efficient re-discretization procedure. This minimum
re-discretization length τminrd is given by

τminrd = Lc

(
Lc
lc

)−1/3

. (6.44)

The change in pitch parameter of particles which have passed this dis-
tance is

∆λ = ε

√
τrd
lc
, (6.45)

and the associated number of grid cells Nλ is given by

Nλ =
1

ε

√
lc
τrd

, (6.46)

where ε is an accuracy parameter and τrd is the re-discretization length.
In order to ensure that on average each cell of the grid contains at least
one count the following condition has to hold

Npart
τrd
hs

> NϕNϑNλ , (6.47)

where Nϕ, Nϑ and Nλ are the number of grid cells in ϕ, ϑ and λ, respec-
tively. Here, hs is the step size of numerical integration and Npart is the
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number of particles. Substituting equation (6.46) into equation (6.47)
yields

τrd > h2/3
s

(
NϕNϑ

ε

)2/3(
1

Npart

)2/3

l1/3c . (6.48)

Substituting equation (6.44) into equation (6.48) the re-discretization
length can be written as

τrd > h2/3
s

(
NϕNϑ

ε

)2/3(
1

Npart

)2/3

τminrd L−2/3
c . (6.49)

6.4.6 Relaxation due to parallel diffusion

The diffusion coefficient D‖ for a diffusion process characterized by the
mean free path lc = vT tc can be written as

D‖ ∼
l2c
2tc
∼ v2

T

νc
. (6.50)

The relaxation time trcon associated to relaxation processes characterized
by a multiple number nrcon of connection lengths Lc is given by

trcon ∼
(nrconLc)

2

4D‖
∼ n2

rconL
2
cνc

v2
T

. (6.51)

The associated distance τrcon becomes

τrcon = vT trcon ∼ n2
rconLc

νc
νb
∼ n2

rconLcν̄ , (6.52)

where Lc = vT/νb has been substituted and νb is the bounce frequency.

6.4.7 Relaxation during multiple collision times

The relaxation time trcol associated to a multiple number nrcol of collision
times tc is given by

trcol = nrcoltc = nrcol
1

νc
. (6.53)

The corresponding length scale τrcol can be represented as

τrcol = vT trcol ∼ nrcolLc
νb
νc
∼ nrcolLc

1

ν̄
, (6.54)

where tb is the bounce time and νb is the bounce frequency.





Chapter 7

Computations

Transport coefficients are computed by summing the results of two sepa-
rate computations, one where the source is placed in the “trapped” region
and one where the source is placed in the “passing” region (see equation
(6.1) and Fig. 6.1). “Trapped” and “passing” regions in phase space are
defined by the trapped-passing boundary λt−p =

√
1−B/Bmax which

is determined by the module of the local magnetic field B and by the
absolute maximum of the magnetic field on the flux surface Bmax. The
splitting boundary is located in a distance two times the width of the
boundary layer away from the trapped-passing boundary. In the prob-
lem with the source in the “trapped” region cells are assigned to the
“trapped” region if the absolute value of their pitch parameter λ is big-
ger than the absolute value of the pitch parameter λ associated to the
splitting boundary. In the problem with the source in the “trapped”
region cells are assigned to the “passing” region if the absolute value of
their pitch parameter λ is smaller than the absolute value of the pitch
parameter λ associated to the splitting boundary. In the problem with
the source in the “passing” region cells are assigned to the “trapped”
region if the absolute value of their pitch parameter λ is bigger than the
absolute value of the pitch parameter λ associated to the trapped-passing
boundary. In the problem with the source in the “passing” region cells
are assigned to the “passing” region if the absolute value of their pitch
parameter λ is smaller than the absolute value of the pitch parameter λ
associated to the trapped-passing boundary.

The density distribution on the flux surface is initialized with the normal-

89
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ized value of
√
g at the center of each cell according to equation (5.25). At

the beginning of the simulation as well as after each re-discretization step
cells are assigned to categories (see Fig. 7.1) and probability densities d
are introduced

sign of density
trapped/passingd

sign of pitch variable
cell index (3−dim) . (7.1)

These categories take into account the sign of the density in each cell
and whether the cell is assigned to the “trapped” or to the “passing”
region in phase space. Also, the sign of the pitch variable and the 3-
dim index of the cell are taken into account. The weight of a cell which
will be simulated with single test particles is evaluated as well as the
weight which will be simulated with with pairs of test particles. For this
purpose the density in cells with a positive value of the pitch variable and
the density in cells with a negative value of the pitch variable is evaluated
at each location (cell position) on the flux surface and quantities p are
introduced

sign of density
trapped/passingp

single/pair
cell index (1−dim) . (7.2)

The density which is the same in both cells is simulated with pairs of
test particles, which means that two particles are started with different
signs of the pitch variable and the same sequence of random numbers is
used for the computation of their orbits. These densities are given by

+
trp

p
l = 2 ·MIN

(
+
trd

λ+
ijk ,

+
trd

λ−
ijk

)
(7.3)

+
pap

p
l = 2 ·MIN

(
+
pad

λ+
ijk ,

+
pad

λ−
ijk

)
(7.4)

−
trp

p
l = 2 ·MIN

( −
trd

λ+
ijk ,

−
trd

λ−
ijk

)
(7.5)

−
pap

p
l = 2 ·MIN

( −
pad

λ+
ijk ,

−
pad

λ−
ijk

)
. (7.6)

The residual density is simulated with particles with a pitch parameter
carrying the sign of the pertinent cell. These densities are given by

+
trp

s
l = +

trd
λ+
ijk −

+
trd

λ−
ijk (7.7)

+
pap

s
l = +

pad
λ+
ijk −

+
pad

λ−
ijk (7.8)

−
trp

s
l = −

trd
λ+
ijk −

−
trd

λ−
ijk (7.9)

−
pap

s
l = −

pad
λ+
ijk −

−
pad

λ−
ijk , (7.10)

where l = i · j · k. Finally there exist eight categories which are assigned
to the individual cells on the grid: “trapped” region - positive density
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- single +
trp

s
l , “trapped” region - positive density - pair +

trp
p
l , “trapped”

region - negative density - single −trp
s
l , “trapped” region - negative density

- pair −
trp

p
l , “passing” region - positive density - single +

pap
s
l , “passing”

region - positive density - pair +
pap

p
l , “passing” region - negative density

- single −
pap

s
l , “passing” region - negative density - pair −

pap
p
l .

The probability densities p are stored as cumulative probability densities
which means that the above categorizations are done subsequently for all
cells and the probability density associated to a certain cell and category
is stored as the sum of the contribution from the respective cell plus the
contributions from the preceding cells. This is done for all categories of
cells and the location of each contribution is recorded.

The total probability density is given by the sum of the probability densi-
ties of all cells. With this total probability density and the total number
of simulation particles which has been chosen at beginning of the com-
putation the total weight in the simulation can be fixed. The number of
particles which has to be simulated for each category is related to the
ratio of the pertinent probability density to the total weight. Weights of
particles of each category are computed by dividing the respective prob-
ability density by the number of particles associated to this category.

Test particles are started to simulate the weight carried by the cells sub-
sequently for the individual categories. For each test particle started,
a random number is created and multiplied with the total probability
density of the category under investigation. This random probability
density corresponds to a certain cell on the grid which can be localized
by scanning the cumulative probability densities with the help of a binary
search algorithm. This procedure transforms the (uniformly distributed)
pseudo random numbers to (non-uniformly distributed) probability den-
sities where cells which have delivered bigger contributions to the cumu-
lative probability densities will be selected more frequently than those
with smaller contributions.

The locations of cells selected that way serve as the starting points of
test particle orbits which are modeled stepwise in time. One time step
consists of advancing a particle along its drift orbit in phase space using
an adaptive Runge-Kutta integration followed by a random displacement
of the particle pitch parameter modeling the collisions. The number
of steps between re-discretizations is chosen in accordance with the re-
discretization length (see section 6.4.5). For the first set of steps the
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standard δf method is applied where particle weights are increasing and
defined by the normalized value of the distance between the particles ψ
value and the starting flux surface. For the next set of steps particle
weights are fixed and the same number of steps is performed once more
with constant weights. At this point the total weight of the computation
is fixed and the number of particles which has to be run for each category
is evaluated. Contributions to the densities as well as to the transport
coefficients are computed as described in section 6.2 while running the
particles. In the following the re-discretizations of the probability density
distributions are continued until no more particles are left which can be
run in the simulation.

7.1 NEO-MC

For numerical computations the Fortran 90/95 code NEO-MC has been
developed. In order to speed up the computations the batch systems
Condor and HTCondor [100], respectively, have been used which allow to
run subsets of particles on different CPUs at the same time. Each random
number generator on each CPU has to be initialized with a different seed
number. In a single subsetN = 104 particles are started for computations
with the source in the “trapped” region and N = 103 particles are started
for computations with the source in the “passing” region. Typically,
K = 80 to K = 160 subsets have been computed depending on the
desired accuracy. Each of these sub-runs delivers results for the transport
coefficients which have to be joined appropriately to get the final value
(see Fig. 7.2). The results of the sub-runs are used to estimate the
variance of these final values according to

σ2
K ≈

1

K − 1

K∑
k=1

(Ak − 〈A〉K)2 , (7.11)

where Ak are the results computed by the individual sub-runs and σK is
the standard error of the average over sub-runs

〈A〉K =
1

K

K∑
k=1

Ak . (7.12)
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Figure 7.1: Sketch of the grid for the discretization of the probability
densities d and p. Explanations are given in the text.
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Figure 7.2: Bootstrap coefficient λbb for each of K = 40 sub-runs (thin
lines) and the average value (thick line) plotted over the number of it-
erations Nit. The estimated standard deviation σK of the final value is
shown with an error bar.



7.2. SCALING OF VARIANCE AND COMPUTATION TIME 95

In Fig. 6.2 together with the number of test particles the sum entering
the limit for λbb in Eq. (6.22) is plotted over the number of iterations
Nit for a couple of sub-runs. The change of each λbb value towards the
end of the computation is small due to the fact that at the end of the
integration path there are only few test particles remaining which deliver
contributions to λbb. In NEO-MC collisionless drift motion is computed
using an adaptive integrator (see Section 5.3). Splitting of the orbits
into time steps is necessary for modeling the collisions. For most of
the computations, it was sufficient to use step size corresponding to less
than 30 steps per magnetic field period by a strictly passing particle.
Nevertheless, for high values of the electric field parameter this number
of integration steps ns had to be increased in computations of the mono-
energetic diffusion coefficient up to several hundreds in the optimized
configurations (Fig. 7.3). In the high collisionality regime even higher
values of ns had to be used in computations of the conductivity coefficient
(Fig. 7.4).

7.2 Scaling of variance and computation

time

As a result of the described improvements of the δf method, the variance
of this method is reduced to the scaling lc/Lc as compared to the scaling
(lc/Lc)

2 of the standard δf method without filtering for the same number
of test particles N at the start of the computation. In addition, due to
the decay of test particle numbers with iterations, the CPU time needed
for the same number of starting particles is also reduced from the usual
linear scaling, lc/Lc, to the scaling (lc/Lc)

1/2. As a result, the CPU time
needed to achieve a given accuracy by the improved method scales as
(lc/Lc)

3/2. This can be seen from Fig. 7.5 where normalized run times
are shown as functions of collisionality Lc/lc. The deviations at the higher
collisionalities from the expected scaling are caused by the time needed
for the precomputation of the magnetic field data which makes up the
major part of the total computation time there. For low collisionalities
this precomputation time is negligible compared to the time needed for
running the particles. Such a scaling is much better than the scaling
(lc/Lc)

3 of the standard δf method without a filter.
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Figure 7.3: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for QIPC vs. collisionality parameter Lc/lc at half
plasma radius computed with different values of the integration step
parameter ns for Er/(vB) = 3 · 10−3.
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lisionality parameter Lc/lc at half plasma radius for zero radial electric
field parameter computed with ns = 120 (a), 480 (b), 1920 (c), 8 · 103

(d), 8 · 104 (e), 8 · 105 (f).
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Figure 7.5: CPU-time multiplied with the variance of the bootstrap coef-
ficient σ2 plotted over the collisionality parameter (circles). The solid line
shows the scaling (lc/Lc)

3/2, the dashed line shows the scaling (lc/Lc)
3.
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Figure 7.6: Squares of relative statistical errors σ2
r of Dmono/Dplateau (cir-

cles) and λbb (squares) for LHD with R=375cm vs. collisionality param-
eter Lc/lc at half plasma radius.

In Fig. 7.6 and Fig. 7.7 squares of relative statistical errors σ2
r , i.e.

variances of Dmono/Dplateau (circles) and λbb (squares) normalized by
the squares of the respective average values are shown for LHD with
R=375cm and W7-X standard configuration. These quantities scale in-
versely with the number of test particles and, respectively, with CPU
time. Normalized variances of Dmono/Dplateau have weak dependence on
collisionality while normalized variances of λbb scale approximately lin-
early with the mean free path. This scaling leads to a much larger amount
of CPU time needed in the long mean free path regime for computations
of λbb with given accuracy as compared to Dmono/Dplateau computations.
Nevertheless, this scaling is much better than quadratic scaling with the
mean free path of the variance of the standard delta-f method.



100 CHAPTER 7. COMPUTATIONS

10
−4

10
−3

10
−5

10
−4

10
−3

10
−2

L
c
/ l

c

σ r2

Figure 7.7: Squares of relative statistical errors σ2
r of Dmono/Dplateau (cir-

cles) and λbb (squares) for W7-X standard configuration vs. collisionality
parameter Lc/lc at half plasma radius.
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It should be noted, that from the viewpoint of re-discretization it would
be most effective to start all particles in a single run instead of distribut-
ing them to subsets, but from a practical point of view the usage of a
computer cluster as for the computations in this work is advantageous
for the total computing times as well as for the estimation of variances.

7.3 Magnetic configurations

The magnetic configurations for which the computations have been per-
formed are the Large Helical Device (LHD) [101, 102], a heliotron lo-
cated at Toki, Japan, (beside the standard configuration also two in-
ward shifted configurations of this device have been investigated); the
advanced stellarator Wendelstein 7-X (W7-X) [24, 59, 103, 104], a he-
lias which is in the start-up phase at Greifswald, Germany; the quasi-
axisymmetric National Compact Stellarator Experiment (NCSX) [105],
designed at Princeton, New Jersey, USA; the Helically Symmetric Ex-
periment (HSX) [106], operating at Madison, Wisconsin, USA; a quasi-
isodynamic stellarator [107] with poloidally closed contours of the mag-
netic field strength (QIPC) [108], taken from the literature; and the heliac
TJ-II [25], operating at Madrid, Spain.

7.4 Computational results

Results of computations of the mono-energetic transport coefficients for
the magnetic configurations listed in section 7.3 for various values of the
collisionality parameter and the electric field parameter can be found in
Figs. 7.8 – 7.26. Some of the curves in these figures have been published
in [11–23]. The results for regimes with negligible electric fields have been
benchmarked with computations by NEO-2 [12, 18, 109] which are also
shown in these figures. NEO-2 solves the linearized drift kinetic equa-
tion for three-dimensional toroidal magnetic fields and is able to compute,
besides various other plasma quantities of interest, mono-energetic neo-
classical transport coefficients for regimes with weak plasma rotation. It
does not introduce any simplifications on the device geometry or on the
Coulomb collision model and is especially efficient in the long mean free
path regime. It uses the field line integration technique together with
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a multiple domain decomposition approach and introduces an adaptive
phase space discretization. This allows for an effective resolution of the
boundary layers between various classes of trapped and passing particles.
Results of benchmarking of computations with finite values of the ra-
dial electric field parameter with other methods can be found in Ref. 21.
There it is shown that the results of NEO-MC stay in good agreement
with computations by other methods such as different δf schemes [7],
full-f Monte Carlo simulations [110,111], the variational approach of the
Drift Kinetic Equation Solver (DKES) [66,112] and a numerical solution
of the ripple-averaged kinetic equation (GSRAKE) [113]. Also, an exten-
sive discussion of the results of this benchmarking can be found in this
reference.
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7.4.1 Diffusion coefficient

The following figures show results of computations of normalized mono-
energetic radial diffusion coefficients at half plasma radius for the config-
urations listed in section 7.3 for confinement regimes with various values
of the collisionality parameter and the electric field parameter.
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Figure 7.8: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for LHD with R=375cm vs. collisionality parame-
ter Lc/lc at half plasma radius computed by NEO-MC (solid lines) and
NEO-2 (dashed line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4

(squares), 3 · 10−4 (diamonds), 1 · 10−3 (upper curve with triangles),
3 · 10−3 (lower curve with triangles).
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Figure 7.9: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for LHD with R=360cm vs. collisionality parame-
ter Lc/lc at half plasma radius computed by NEO-MC (solid lines) and
NEO-2 (dashed line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4

(squares), 3 · 10−4 (diamonds), 1 · 10−3 (triangles).
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Figure 7.10: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for LHD with R=353cm vs. collisionality parame-
ter Lc/lc at half plasma radius computed by NEO-MC (solid lines) and
NEO-2 (dashed line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4

(squares), 3 · 10−4 (diamonds), 1 · 10−3 (triangles).
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Figure 7.11: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for W7-X standard configuration vs. collisionality
parameter Lc/lc at half plasma radius computed by NEO-MC (solid
lines) and NEO-2 (dashed line) for Er/(vB) = 0 (circles), 3 · 10−5

(stars), 1 · 10−4 (squares), 3 · 10−4 (diamonds), 1 · 10−3 (upper curve with
triangles), 3 · 10−3 (lower curve with triangles).
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Figure 7.12: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for NCSX vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (solid lines) and NEO-2 (dashed
line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4

(diamonds), 1 · 10−3 (upwards triangles), 3 · 10−3 (downwards triangles).
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Figure 7.13: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for HSX vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (solid lines) and NEO-2 (dashed
line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4

(diamonds), 1 · 10−3 (upwards triangles), 3 · 10−3 (downwards triangles).
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Figure 7.14: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for QIPC vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (solid lines) and NEO-2 (dashed
line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4

(diamonds), 1 · 10−3 (upwards triangles), 3 · 10−3 (downwards triangles).
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Figure 7.15: Normalized mono-energetic diffusion coefficient
Dmono/Dplateau for TJ-II vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (solid lines) and NEO-2 (dashed
line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4

(diamonds), 1 · 10−3 (upwards triangles), 3 · 10−3 (downwards triangles).
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7.4.2 Bootstrap coefficient

The following figures show results of computations of normalized mono-
energetic bootstrap current coefficients at half plasma radius for the con-
figurations listed in section 7.3 for confinement regimes with various val-
ues of the collisionality parameter and the electric field parameter.
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Figure 7.16: Normalized mono-energetic bootstrap coefficient λbb for
LHD with R=375cm vs. collisionality parameter Lc/lc at half plasma
radius computed by NEO-MC (solid lines) and NEO-2 (dashed line) for
Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4 (dia-
monds), 1 · 10−3 (upper curve with triangles), 3 · 10−3 (lower curve with
triangles).
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Figure 7.17: Normalized mono-energetic bootstrap coefficient λbb for
LHD with R=360cm vs. collisionality parameter Lc/lc at half plasma
radius computed by NEO-MC (solid lines) and NEO-2 (dashed line) for
Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4 (dia-
monds), 1 · 10−3 (triangles).
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Figure 7.18: Normalized mono-energetic bootstrap coefficient λbb for
LHD with R=353cm vs. collisionality parameter Lc/lc at half plasma
radius computed by NEO-MC (solid lines) and NEO-2 (dashed line) for
Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4 (dia-
monds), 1 · 10−3 (triangles).
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Figure 7.19: Normalized mono-energetic bootstrap coefficient λbb for
W7-X standard configuration vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (solid lines) and NEO-2 (dashed
line) for Er/(vB) = 0 (circles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4

(diamonds), 1 · 10−3 (upwards triangles), 3 · 10−3 (downwards triangles).
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Figure 7.20: Normalized mono-energetic bootstrap coefficient λbb for
NCSX vs. collisionality parameter Lc/lc at half plasma radius computed
by NEO-MC (solid lines) and NEO-2 (dashed line) for Er/(vB) = 0 (cir-
cles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4 (diamonds), 1 · 10−3

(upwards triangles), 3 · 10−3 (downwards triangles).
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Figure 7.21: Normalized mono-energetic bootstrap coefficient λbb for HSX
vs. collisionality parameter Lc/lc at half plasma radius computed by
NEO-MC (solid lines) and NEO-2 (dashed line) for Er/(vB) = 0 (circles),
3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4 (diamonds), 1 · 10−3 (upwards
triangles), 3 · 10−3 (downwards triangles).
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Figure 7.22: Normalized mono-energetic bootstrap coefficient λbb for
QIPC vs. collisionality parameter Lc/lc at half plasma radius computed
by NEO-MC (solid lines) and NEO-2 (dashed line) for Er/(vB) = 0 (cir-
cles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4 (diamonds), 1 · 10−3

(upwards triangles), 3 · 10−3 (downwards triangles).
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Figure 7.23: Normalized mono-energetic bootstrap coefficient λbb for
TJ-II vs. collisionality parameter Lc/lc at half plasma radius computed
by NEO-MC (solid lines) and NEO-2 (dashed line) for Er/(vB) = 0 (cir-
cles), 3 · 10−5 (stars), 1 · 10−4 (squares), 3 · 10−4 (diamonds), 1 · 10−3

(upwards triangles), 3 · 10−3 (downwards triangles).
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7.4.3 Conductivity coefficient

The following figures show results of computations of normalized mono-
energetic parallel conductivity coefficients at half plasma radius for the
configurations listed in section 7.3 for confinement regimes with various
values of the collisionality parameter and the electric field parameter.
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Figure 7.24: Normalized mono-energetic parallel conductivity coefficient
Dco for LHD with R=375cm vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-2 (line) and NEO-MC (points) for
Er/(vB) = 0 (red), 1 · 10−4 (green), 1 · 10−3 (blue).
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Figure 7.25: Normalized mono-energetic parallel conductivity coefficient
Dco for LHD with R=360cm vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (points) for Er/(vB) = 0 (red),
1 · 10−4 (green), 1 · 10−3 (blue).
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Figure 7.26: Normalized mono-energetic parallel conductivity coefficient
Dco for LHD with R=353cm vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (points) for Er/(vB) = 0 (red),
1 · 10−4 (green), 1 · 10−3 (blue).
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Figure 7.27: Normalized mono-energetic parallel conductivity coefficient
Dco for W7-X standard configuration vs. collisionality parameter Lc/lc
at half plasma radius computed by NEO-MC (solid lines) and NEO-2
(dashed line) for Er/(vB) = 0 (red), 1 · 10−4 (green), 1 · 10−3 (blue).
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Figure 7.28: Normalized mono-energetic parallel conductivity coefficient
Dco for NCSX vs. collisionality parameter Lc/lc at half plasma radius
computed by NEO-2 (line) and NEO-MC (points) for Er/(vB) = 0 (red),
1 · 10−4 (green), 1 · 10−3 (blue).
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Figure 7.29: Normalized mono-energetic parallel conductivity coefficient
Dco for HSX vs. collisionality parameter Lc/lc at half plasma radius
computed by NEO-MC (points) for Er/(vB) = 0 (red), 1 · 10−4 (green),
1 · 10−3 (blue).
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Figure 7.30: Normalized mono-energetic parallel conductivity coefficient
Dco for QIPC vs. collisionality parameter Lc/lc at half plasma radius
computed by NEO-MC (points) for Er/(vB) = 0 (red), 1 · 10−4 (green),
1 · 10−3 (blue).
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Figure 7.31: Normalized mono-energetic parallel conductivity coefficient
Dco for TJ-II standard configuration vs. collisionality parameter Lc/lc
at half plasma radius computed by NEO-2 (line) and NEO-MC (points)
for Er/(vB) = 0 (red), 1 · 10−4 (green), 1 · 10−3 (blue).
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Conclusion

In this work, a specific δf Monte Carlo method for the computation of
mono-energetic neoclassical transport coefficients in stellarators has been
developed. One of these quantities, the bootstrap current, is of special
interest because it can strongly influence the confinement properties of
a stellarator. Transport coefficients associated to the bootstrap current
are determined by small regions in phase space. Conventional meth-
ods usually don’t identify this regions and apply an overall treatment
which causes huge statistical errors in the computational results. The
method developed in this work, NEO-MC, outperforms existing meth-
ods by weighting different phase space regions appropriately and by a
sophisticated modeling of the physical processes in the trapped-passing
boundary. In order to do so a re-discretization procedure and an impor-
tance sampling algorithm are employed. The method allows for highly
efficient computations of plasma transport coefficients in confinement
regimes which have hardly or not at all been accessible with existing
methods. NEO-MC can be run on batch systems (e.g. Condor) as well
as on parallel clusters (e.g. MPI). The computing time required for a
given accuracy of the bootstrap coefficient scales as a mean free path
in power of 3/2. The bias introduced by this method can be limited to
very low values with small cost in terms of computing time. The method
allows for simultaneous computations of the bootstrap coefficient and
the diffusion coefficient. Also, the parallel conductivity coefficient can
be computed. These three mono-energetic transport coefficients allow
for a complete neoclassical description of stellarator plasmas. The re-
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sults of computations for various stellarators and confinement regimes
have been benchmarked with computations by other methods and stay
in good agreement with these calculations and new results have been ob-
tained for various stellarator configurations such as LHD, W7-X, NCSX,
HSX, QIPC and TJ-II. At the research center CIEMAT in Spain the
code NEO-MC is employed for the creation of a neoclassical database.
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Appendix A

Drift velocity

The equations of drift particle motion in stationary electric and magnetic
fields are given by [2]

d

dt
xi =

d

dt
zi = V i

g , (A.1)

d

dt
p =

d

dt
z4 = −em0

γ

p
V i
g

∂Φ

∂xi
, (A.2)

d

dt
λ =

d

dt
z5 = −1− λ2

λ

(
em0

γ

p2
V i
g

∂Φ

∂xi
+

1

2
V i
g

∂lnB

∂xi

)
, (A.3)

d

dt
t =

d

dt
z6 = 1, (A.4)

where i = 1 . . . 3 and the variables z include the guiding center coordi-
nates in a general curvilinear coordinate system, zi = xi, and the mo-
mentum space variables z4 = |p| and z5 = λ = p‖/|p| which are the
momentum modulus and pitch parameter, respectively, and z6 = t is the
time. The contravariant components of the guiding center drift veloc-
ity V i

g in coordinate-momentum-time space (phase-time space) are given
by [114,115]

V i
g =

1

B∗‖

(
v‖B

∗i + εijk
cBj

B
√
g

(
∂Φ

∂xk
+

µ

eγ

∂B

∂xk

))
, (A.5)
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where

B∗‖(z) = niB
∗i, (A.6)

B∗i = Bi +
c

e

pλ
√
g
εijk

∂nk
∂xj

. (A.7)

Here, e is the particle charge, c denotes the speed of light,
√
g is the metric

determinant of the spatial coordinate system x, Φ is the electrostatic
potential, Bi are the contravariant components of the magnetic field,
ni are the covariant components of the unit vector along the magnetic
field n = B/B and εijk is the completely anti-symmetric unit tensor
(Levi-Civita symbol). The relativistic factor γ, the cyclotron frequency
ωc, the parallel velocity v‖ and the magnetic moment µ are given by

γ =

√
1 +

p2

m2
0c

2
, (A.8)

ωc =
eB

m0cγ
, (A.9)

v‖ =
λp

m0γ
, (A.10)

µ =
p2(1− λ2)

2m0B
, (A.11)

where m0 is the mass of a particle at rest and v‖ as well as µ are expressed
through p and λ according to equations (A.10) and (A.11), respectively.
Using

1

B∗‖
≈ 1

B

(
1−

B∗‖ −B
B

)
, (A.12)

equation (A.5) can be expanded up to the linear order in Larmor radius

V i
g =

1

B

[
v‖B

∗i − v‖Bi
B∗‖ −B
B

+ εijk
cBj

B
√
g

(
∂Φ

∂xk
+

µ

eγ

∂B

∂xk

)]
, (A.13)

which is in vector form

Vg =
1

B

[
v‖B

∗ − v‖B
B∗‖ −B
B

+
c

B
B×

(
∇Φ +

µ

eγ
∇B

)]
, (A.14)
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where

B∗‖ = n ·B∗ = B[1 + ρ‖ n · (∇× n)] , (A.15)

and

B∗ = B + ρ‖B ∇× n , (A.16)

with n = B/B and

ρ‖ =
mcv‖
eB

. (A.17)

Equation (A.14) is equivalent to the form of the the guiding center drift
velocity given by [115,116]

Vg = v‖
B

B
+
eρ‖
mc

(
∇× (ρ‖B)−

B
[
B · ∇ × (ρ‖B)

]
B2

)
. (A.18)

Multiplying equation (A.18) with ∇ψ and taking into account that
B · ∇ψ = 0 yields

ψ̇ = Vg · ∇ψ =
v‖
ωc

(
∇× v‖

B

B

)
· ∇ψ , (A.19)

where ωc = eB/(mc) is the cyclotron frequency. Using the vector identity
∇× (aA) = a∇×A−A×∇a equation (A.19) becomes

ψ̇ =
v‖
ωc
∇ψ ·

[
v‖

(
∇× B

B

)
−
(

B

B
×∇v‖

)]
(A.20)

=
v‖
ωc
∇ψ ·

[
v‖

1

B
(∇×B) + v‖

(
B× 1

B2
∇B

)
(A.21)

−
(

B

B
×∇v‖

)]
. (A.22)

The first term vanishes because the current j

∇×B =
4π

c
j (A.23)

is perpendicular to ∇ψ. The gradient of the parallel velocity v‖

v‖ = σ
√
v2 − J⊥B (A.24)
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is given by

∇v‖ = − J⊥
2v‖
∇B = − v2

⊥
2v‖B

∇B , (A.25)

therefore equation (A.22) can be expressed as

ψ̇ =
v‖
ωc
∇ψ ·

[
v‖
B2

(B×∇B) +
v2
⊥

2v‖B2
(B×∇B)

]
(A.26)

=
1

2ωc
(v2
‖ + v2)

1

B2
(B×∇B) · ∇ψ . (A.27)

Introducing the geodesic curvature kG of the magnetic field line and
nψ = ∇ψ/|∇ψ|

kG = nψ · (n× (n · ∇)n) (A.28)

=
∇ψ
|∇ψ|

1

B2

[
B× (B · ∇)

B

B

]
(A.29)

=
∇ψ
|∇ψ|

1

B2

{
B×

[
1

B
(B · ∇)B +B(B · ∇)

1

B

]}
(A.30)

=
∇ψ
|∇ψ|

1

B2
(B×∇B) , (A.31)

the contravariant ψ-component of the guiding center drift velocity (A.27)
can be represented as (see also [117,118])

ψ̇ =
1

2ωc
(v2 + v2

‖)kG|∇ψ| . (A.32)



Appendix B

Solution to the integral
equation

An integral equation is given by (see equation (5.15)

F (z) = KF (z) +Q(z) . (B.1)

One can check by substitution that F (z) can be expressed as an infinite
sum

F (z) =
∞∑
k=0

KkQ(z) , (B.2)

and F (z) can be presented as

F (z) = K [KF (z) +Q(z)] +Q(z) (B.3)

= K2 F (z) +KQ(z) +Q(z) (B.4)

= K3 F (z) +K2Q(z) +KQ(z) +Q(z) (B.5)

= . . . . . . (B.6)

= KMF (z) +
M−1∑
k=0

KkQ(z) . (B.7)

Introducing the notation KM = K(M) and

q(M)(z) =
M−1∑
k=0

KkQ(z) , (B.8)
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one gets from (B.7), (B.1) and (B.2)

F (z) =
∞∑
k=0

Kk(M) q(M)(z) (B.9)

=
∞∑
k=0

KM ·k q(M)(z) . (B.10)

Arithmetic averaging of F (z) given by (B.7)

F (z) = K(1) F (z) + q(1)(z) (B.11)

= K(2) F (z) + q(2)(z) (B.12)

= . . . . . . (B.13)

= K(M) F (z) + q(M)(z) , (B.14)

one finds

F (z) =
1

M

M∑
j=1

K(j) F (z) +QM(z) , (B.15)

where QM(z) is defined as

QM(z) =
1

M

M∑
j=1

q(j)(z) . (B.16)

Using (B.10) the quantity F (z) can be written as

F (z) =
1

M

M∑
j=1

∞∑
k=0

Kj+M ·k q(M)(z) +QM(z) . (B.17)

The summation in (B.17) can be simplified according to

F (z) =
1

M

∞∑
l=1

Kl q(M)(z) +QM(z) (B.18)

=
1

M

∞∑
l=0

Kl q(M)(z) + ∆FM(z) , (B.19)

where

∆FM(z) = QM(z)−
q(M)(z)

M
. (B.20)
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Using (B.16) and (B.8) one gets

∆FM(z) =
1

M

(
M∑
j=1

q(j)(z)− q(M)(z)

)
(B.21)

=
1

M

M−1∑
j=1

q(j)(z) (B.22)

=
1

M

M−1∑
j=1

j−1∑
k=0

KkQ(z) . (B.23)

The summation in (B.23) can be rewritten according to

M−1∑
j=1

j−1∑
k=0

=
M−2∑
k=0

M−1∑
j=k+1

, (B.24)

and the quantity ∆FM(z) can be written as

∆FM(z) =
1

M

M−2∑
k=0

Kk
M−1∑
j=k+1

Q(z) (B.25)

=
M−2∑
k=0

(
1− k + 1

M

)
KkQ(z) (B.26)

=
M−1∑
k=0

(
1− k + 1

M

)
KkQ(z) . (B.27)

Using equation (B.8) and introducing QM(z) according to

QM(z) =
1

M
q(M)(z) =

1

M

M−1∑
k=0

KkQ(z) , (B.28)

it follows from (B.19)

F (z) =
∞∑
l=0

KlQM(z) + ∆FM(z) . (B.29)



138 APPENDIX B. SOLUTION TO THE INTEGRAL EQUATION

The first term in this equation can be defined as

FM(z) =
∞∑
l=0

KlQM(z) , (B.30)

and is a series solution to

FM(z) = KFM(z) +QM(z) . (B.31)

Using (B.30), equation (B.29) can be written as

F (z) = FM(z) + ∆FM(z) . (B.32)



Appendix C

Coulomb collision operator

As an outlook, a short overview of the steps necessary to implement
a linearized Coulomb collision operator in the procedure is given. The
kinetic equation in [1] is given by

LDf̂ = ψ̇ , (C.1)

where

LD =
∂

∂t
+ Vg · ∇ − LC , (C.2)

and LC is a Lorentz operator. For the full collision operator one has to
replace

LC → LCD + LCI , (C.3)

where LCD is the diffusion part (scattering by a Maxwellian background),
which includes also diffusion over energy. LCI is the integral part of
the collision operator (scattering of the background by test particles).
Including the differential part into the dynamic operator

LD → LD =
∂

∂t
+ Vg · ∇ − LCD , (C.4)

the kinetic equation (C.1) becomes

LDf̂ = ψ̇ + LCI f̂ . (C.5)

The procedure in [1] in the paper describes the inversion of LD. Only

moments are retained and the function f̂ itself is not computed. However,
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by scoring weights on the grid one can define

f̂ = L−1
D Q , (C.6)

where Q is an arbitrary steady (∂Q/∂t = 0) source (Q = ψ̇ in Ref. [1]).
Thus one can write an integral equation

f̂ = L−1
D ψ + L−1

D LCI f̂ , (C.7)

where L−1
D is known. A solution can be obtained by direct iterations

f̂ =
∞∑
k=0

f̂k (C.8)

f̂0 = L−1
D ψ (C.9)

f̂k+1 = L−1
D LCI f̂k . (C.10)

Thus, the algorithm is like this:

1. Find L−1
D ψ with the same algorithm as in [1] , but with :

(a) In addition to Lorentz diffusion, diffusion over energy is con-
sidered.

(b) Re-discretization is done using a 4D grid (energy is an addi-
tional dimension).

(c) The distribution function is also scored, one gets f̂0.

2. From the known f̂0 on the grid the new source term

Q1 = LCI f̂0 (C.11)

on the same 4D grid can be computed (using Laguerre-Legendre
expansion).

3. Repeating step 1 with the source Q1 and one can find

f̂1 = L−1
D Q1 (C.12)

≡ L−1
D LCI f̂0 , (C.13)

by scoring weights on the grid (as done for f̂0).
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4. Repeating step 2 with f̂1 instead of f̂0 one gets

Q2 = LCI f̂1 . (C.14)

5. Repeat step 3 with Q2 instead of Q1.

6. Steps 4 and 5 have to be repeated until convergence is reached.





Appendix D

δf method for SMT

The efficiency in computations of neoclassical transport coefficients in
stellarators can be further improved by implementing a δf scheme in the
Stochastic Mapping Technique [2]. The Stochastic Mapping Technique
(SMT) is a highly efficient method to solve the five-dimensional Drift
Kinetic Equation in the long-mean-free-path regime. It can be used for
any problem where conventional Monte Carlo methods are applied and
weighting schemes developed for conventional Monte Carlo methods are
fully applicable to SMT. The dimensionality of the problem is reduced
to four dimensions through a discretization in one dimension. Instead
of tracing test particles in the whole phase space test particles are fol-
lowed on particular Poincaré cuts. Precomputed maps for the magnetic
field and for drift orbits are used to represent the continuous particle
motion with a sequence of mappings of particle footprints and Coulomb
collisions are modeled with random changes of velocity space variables.
The computation time is reduced significantly compared to direct Monte-
Carlo methods and the method is applicable to stellarators with arbitrary
magnetic field geometries [2]. In this method the drift kinetic equation
is represented as

V i ∂f

∂Zi
= L̂cf , (D.1)

where f is the particle distribution function which depends on the coordi-
nate space variables Zi and on the velocity space variables V i and L̂c is a
collision operator. The distribution function f is split into a background
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part f0 which is taken to be a Maxwellian fM

fM(ψ, p) = n(ψ)
1

(2πmT (ψ))3/2
exp

{
−W − eΦ(ψ)

T (ψ)

}
, (D.2)

and a deviation δf from the background. Here p, W , Φ, ψ, e, m, T and
n are the particle momentum, total energy, electrostatic potential, flux
surface label, elementary charge, mass, temperature and particle density,
respectively.
Substituting f = f0 + δf into (D.1), taking into account that the part of
the collision operator acting on the Maxwellian vanishes and multiplying
the equation with δ(ψ − ψ0) gives

V i∂δf δ(ψ − ψ0)

∂Zi
− V i δf

∂

∂Zi
δ(ψ − ψ0) =

= δ(ψ − ψ0) L̂cδf − V i ∂ψ

∂Zi

∂fM
∂ψ

δ(ψ − ψ0) . (D.3)

Introducing the distribution function δf1 which is defined as

δf1 = δf δ(ψ − ψ0) , (D.4)

one gets

V i∂δf1

∂Zi
= L̂c δf1 − V i ∂ψ

∂Zi

∂fM
∂ψ

δ(ψ − ψ0) . (D.5)

The second term on the left hand side of (D.3) has been neglected, the
last term defines a source Q

Q = −V i ∂ψ

∂Zi

∂fM
∂ψ

δ(ψ − ψ0) . (D.6)

The equation for the particle flux perpendicular to the flux surface is
given by

Γn⊥ =

∫
d3r

∫
d3p δf δ(ψ − ψ0)vg · ∇ψ (D.7)

=

∫
d3r

∫
d3p δf1 V

i ∂ψ

∂Zi
(D.8)

= 2π
∑
m

∫
d4uΓm(u)V i

∂ψ

∂Zi
, (D.9)
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where the formalism of the Stochastic Mapping Technique [2] has been
introduced in the last step. The measure element d4u is given by
du1du2du3du4 = dx1dx2dpdλ, where xi, p and λ are spatial coordinates,
momentum and pitch angle cosine at Poincaré cuts which are placed at
toroidal angles ϕ = x3 where the magnetic field has a minimum along the
field line. The cuts are numbered by vector indices m = (m,n) where m
is the index of the field period and n is the index of the cut within the
period. The quantity Γm = Jmf is a pseudo scalar flux density and is
related to the distribution function f by the Jacobian (D.13). The bar
in equation (D.9) denotes an average over a bounce time τbm which is
defined by the time that a particle needs to transit from a cut with the
index m to a cut with the index m′. This can be either the next (previ-
ous) cut for a particle running in co (counter) direction or the same cut
if the particle is trapped (details are given in the reference above)

V i
∂ψ

∂Zi
=

τbm∫
0

dτ V i ∂ψ

∂Zi
=

τbm∫
0

dτ
dψ

dτ
= δψbm ≈ ∆xim

∂ψ

∂xi
. (D.10)

With the average (D.10) the source term (D.6) can be written as

Q̄m = −δ(ψ − ψ0)
∂fM
∂ψ

τbm∫
0

dτ V i ∂ψ

∂Zi
(D.11)

= −δ(ψ − ψ0)
∂fM
∂ψ

∆xim
∂ψ

∂xi
. (D.12)

Multiplying this equation with the Jacobian Jm which is given by

Jm = |v‖|p2 B̂ϕ(x1, x2, ϕn)

Bminm(x1, x2)
, (D.13)

according to [2] defines the source term Qm

Qm(u) = JmQ̄m(u) , (D.14)

where B̂ϕ is the physical component of the magnetic field in toroidal
direction and Bminm is the module of the magnetic field at the minimum-
B cut. From (D.12), (D.13) and (D.14) follows

Qm = −∆xim
∂ψ

∂xi
|λ|B̂ϕ(x1, x2, ϕn)

Bminm(x1, x2)

p3

m

∂fM
∂ψ

δ(ψ − ψ0) . (D.15)
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The source particles have to be uniformly distributed over the poloidal
angle ϑ on the flux surface ψ0. Using cylindrical coordinates R(ψ, ϑ) and
Z(ψ, ϑ) the distribution δ(ψ(x)− ψ0) can be written as an average over
the poloidal angle ϑ

δ(ψ(x)− ψ0) = (D.16)

=

π∫
−π

dϑ′ δ(ψ(x)− ψ0) δ(ϑ(x)− ϑ′) (D.17)

=

π∫
−π

dϑ′ δ(x1 −R(ψ0, ϑ
′)) δ(x2 − Z(ψ0, ϑ

′))

(
∂(ψ, ϑ)

∂(R,Z)

)−1

(D.18)

= 2π δ(x1 −R(ψ0, ϑ′)) δ(x2 − Z(ψ0, ϑ′))
∂(R,Z)

∂(ψ, ϑ)
, (D.19)

where

(. . .) =
1

2π

π∫
−π

dϑ′ (. . .) . (D.20)

The Jacobian
√
g is given by

√
g = R

∂(R,Z, ϕ)

∂(ψ, ϑ, ϕ)
= R

∂(R,Z)

∂(ψ, ϑ)
, (D.21)

where R, Z, ϕ are cylindrical coordinates and ψ, ϑ, ϕ are straight field
line coordinates. Keeping the flux surface label ψ constant one gets from
divB = 0 (

∂

∂ϑ

√
gBϑ +

∂

∂ϕ

√
gBϕ

)
ψ

= 0 (D.22)(
ι
∂

∂ϑ

√
gBϕ +

∂

∂ϕ

√
gBϕ

)
ψ

= 0 , (D.23)

where
dϑ

dϕ
=
Bϑ

Bϕ
=

B · ∇ϑ
B · ∇ϕ

= ι(ψ) (D.24)
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has been used in the second step. Here, ι is the rotational transform.
Equation (D.23) can be written as a total derivative along the field line

d

dϕ

√
gBϕ = 0 , (D.25)

which suggests √
gBϕ = C(ψ) . (D.26)

The quantity C(ψ) is constant on the flux surface and can be written as

C =
∆2Φt

∆ψ∆ϑ
=

1

2π

∆Φt

∆ψ
, (D.27)

using (D.21), (D.26) and (D.27) one gets

∂(R,Z)

∂(ψ, ϑ)
=

1

2πB̂ϕ(x1, x2, ϕn)

dΦt

dψ
, (D.28)

where B̂ϕ = RBϕ. The source term (D.15) becomes with (D.19) and
(D.28)

Qm = −∆xim
∂ψ

∂xi
|λ|

Bminm(x1, x2)

× δ(x1 −R(ψ, ϑ))δ(x2 − Z(ψ, ϑ))
p3

m

∂fM
∂ψ

dΦt

dψ
. (D.29)

Assuming that the Maxwellian is depending on ψ only through the par-
ticle density n suggests

∂fM
∂ψ

=
∂n

∂ψ

∂fM
∂n

=
∂n

∂r

dr

dψ

fM
n
. (D.30)

The effective radius r associated to a flux surface ψ can be defined ac-
cording to [119] with the relation between the volume dV enclosed by
the flux surface and the area of the flux surface S

dr =
dV

S
=

dψ

〈|∇ψ|〉
, (D.31)
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where angular brackets denote averages along the field line

〈A〉 = lim
L→∞

 L∫
0

dl

B

−1 L∫
0

dl

B
A . (D.32)

For the following considerations a mono-energetic particle distribution
function

fmono =
1

4π

n

p2
0

δ(p− p0) (D.33)

is used instead of a Maxwellian fM

p3fM
n
→ p0δ(p− p0)

4π
. (D.34)

Using the mono-energetic particle distribution the source term (D.29)
becomes with (D.30), (D.31) and (D.34)

Qm = −Q̂m
p0

4πm
δ(p− p0)

1

〈|∇ψ|〉
dΦt

dψ

∂n

∂r
, (D.35)

where the quantity Q̂m is defined as

Q̂m = ∆xim
∂ψ

∂xi

|λ|
Bminm(x1, x2)

δ(x1 −R(ψ, ϑ))δ(x2 − Z(ψ, ϑ)) , (D.36)

and the pseudo scalar flux density Γm can be written as

Γm = −Γ̂m
p0

4πm
δ(p− p0)

1

〈|∇ψ|〉
dΦt

dψ

∂n

∂r
. (D.37)

Diffusion coefficient

The particle flux density Fn perpendicular to a flux surface is given by
the total particle flux (D.9) divided by the area S of the flux surface

Fn =
1

S
Γn⊥ (D.38)

=
2π

S

∑
m

∫
d4uΓm(u)∆xim

∂ψ

∂xi
. (D.39)
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The diffusion coefficient D can be written as

D = −Fn
(
∂n

∂r

)−1

(D.40)

= −
(
∂n

∂r

)−1
2π

S

∑
m

∫
d4uΓm(u)∆xim

∂ψ

∂xi
. (D.41)

Following [116] the area S of a flux surface ψ within one period is given
by

S =
2π

Np

〈|∇ψ|〉
〈B · ∇ϕ〉

dΦt

dψ
, (D.42)

where Φt =
∫

dS · B is the toroidal flux and Np denotes the number of
field periods. Using dl/B = dϕ/Bϕ one can write the average in the
denominator of (D.42) as

〈B · ∇ϕ〉 = lim
L→∞

∫ L
0

dl
B
Bϕ∫ L

0
dl
B

=

∫
dϕ∫
dϕ
Bϕ

. (D.43)

For a mono-energetic particle distribution one gets with (D.37) and
(D.41)

Dmono =
2π

S

p0

4πm

1

〈|∇ψ|〉
dΦt

dψ

×
∑
m

∫
dp δ(p− p0)

∫
d3uΓ̂m(u)∆xim

∂ψ

∂xi
. (D.44)

After integration over p and substitution of (D.42) one gets

Dmono =
p0Np

4πm

(
1

〈|∇ψ|〉

)2

〈B · ∇ϕ〉
∑
m

∫
d3uΓ̂m(u)∆xim

∂ψ

∂xi
. (D.45)

The diffusion coefficient of the plateau collisionality regime is defined as

Dplateau =
πv3

0

8
√

2 ι R0ω2
c0

=
πp0ρ

2
L

8
√

2 ι R0m
, (D.46)

where the reference velocity v0, reference momentum p0, cyclotron fre-
quency ωc0 for the reference magnetic field B0 and Larmor radius ρL are
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given by

v0 =

√
2T

m
(D.47)

p0 =
√

2mT (D.48)

ωc0 =
v0

ρL
(D.49)

ρL = v0
mc

eB0

=
p0c

eB0

. (D.50)

Using (D.45) and (D.46) the ratio of the mono-energetic and the plateau
diffusion coefficient can be written as

Dmono

Dplateau

=
2
√

2

π2
Np

ι-R0

ρ2
L

(
1

〈|∇ψ|〉

)2

× 〈B · ∇ϕ〉
∑
m

∫
d3uΓ̂m(u)∆xim

∂ψ

∂xi
. (D.51)

Bootstrap coefficient

According to [86], an equation relating the parallel current density j‖ to
the gradient of the pressure p is given by〈

j‖B
〉

〈B2〉
= −λb

c

B2
0

∂p

∂r
, (D.52)

where B is the module of the magnetic field, B0 is some reference mag-
netic field and c is the velocity of light. The quantity λb is a geometrical
factor which is of interest for the investigation of the confinement prop-
erties of magnetic field configurations. The brackets denote an average
over a spatial volume ∆V which is bounded by the flux surfaces ψ and
ψ+ ∆ψ. The numerator of the left hand side of (D.52) can be written as〈

j‖B
〉

=
1

∆V

∫
∆V

d3r j‖B (D.53)

=
1∫

∆V
d3r δ(ψ(r)− ψ0)

∫
∆V

d3r δ(ψ(r)− ψ0) j‖B , (D.54)
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where the integration
∫

∆V
d3r of a quantity A over the volume ∆V

∆V =

2π∫
0

dϑ

2π∫
0

dϕ

ψ+∆ψ∫
ψ

dψ
√
g (D.55)

is defined as

∫
∆V

d3r A =

2π∫
0

dϑ

2π∫
0

dϕ

ψ+∆ψ∫
ψ

dψ
√
g A . (D.56)

The parallel current density is given by

j‖ = e

∫
d3p v‖ δf . (D.57)

Substituting δf1 from (D.4) and j‖ from (D.57) into (D.54) one gets

〈
j‖B

〉
=

e∫
d3r δ(ψ(r)− ψ0)

∫
d3r

∫
d3p δf1Bv‖ (D.58)

= 2πe

(
dV

dψ

)−1∑
m

∫
dp

∫
d3uΓm(u) (Bv‖)m , (D.59)

where ∫
d3r δ(ψ(r)− ψ0) =

dV

dψ
, (D.60)

has been substituted into (D.58). The quantities used in (D.59) are
explained in the text after (D.9). The average in (D.59) is given by

(Bv‖)m =

τbm∫
0

dτ Bv‖ ≈

 δl(λ)∫
0

dl B


m

. (D.61)

According to (D.29), (D.30), (D.31) and (D.36) the source and the pseudo
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scalar flux density can be written as

Qm = −Q̂m
1

m

p4

p0

fM
n

1

〈|∇ψ|〉
dΦt

dψ

∂n

∂r
(D.62)

Q̂m =
p0

p
∆xim

dψ

dxi

|λ|
Bminm(x1, x2)

× δ(x1 −R(ψ, ϑ))δ(x2 − Z(ψ, ϑ)) (D.63)

Γm

Γ̂m

=
1

m

p4

p0

fM
n

1

〈|∇ψ|〉
dΦt

dψ

∂n

∂r
. (D.64)

Substituting (D.64) into (D.59) leads to

〈
j‖B

〉
= 2πe

(
dV

dψ

)−1∑
m

∫
d3uΓ̂m(u) (Bv‖)m

×
∫

dp
1

mp0

p4fM
n

1

〈|∇ψ|〉
dΦt

dψ

∂n

∂r
(D.65)

= eNp 〈B · ∇ϕ〉
1

〈|∇ψ|〉

×
∑
m

∫
d3uΓ̂m(u) (Bv‖)m

∫
dp

1

mp0

p4∂fM
∂r

(D.66)

= eNp 〈B · ∇ϕ〉
1

〈|∇ψ|〉

×
∑
m

∫
d3uΓ̂m(u) (Bv‖)m

1

2πp0

∂

∂r

∫
d3p

p2

2m
fM︸ ︷︷ ︸

3
2
nT

. (D.67)

From (D.65) to (D.66) the relation

dV

dψ
=

2π

Np

1

〈B · ∇ϕ〉
dΦt

dψ
, (D.68)

has been used which has been obtained from (D.42) and (D.31). The
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current coefficient λb can be calculated with (D.52) and (D.67)

λb =
e

c

B2
0

〈B2〉
Np 〈B · ∇ϕ〉

× 1

〈|∇ψ|〉
3

4πp0

∑
m

∫
d3uΓ̂m(u) (Bv‖)m (D.69)

=
3

4π

B0Np

ρL

〈B · ∇ϕ〉
〈B2〉

1

〈|∇ψ|〉
∑
m

∫
d3uΓ̂m(u) (Bv‖)m .(D.70)

Making use of dl/B = dϕ/Bϕ, the flux surface averages in this equation
can be written as

〈B · ∇ϕ〉
〈B2〉

= lim
L→∞

∫ L
0

dl
B
Bϕ∫ L

0
dl
B

∫ L
0

dl
B∫ L

0
dlB

=

∫ L
0

dϕ∫ L
0

dlB
. (D.71)

Note, that the quantity λb is related to the mono-energetic bootstrap
current coefficient λbb according to

λbb = λb
〈B2〉
B2

0

. (D.72)
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