
 

 

 

Hrvoje Cvitkušić, BSc 

 

Monitoring System for Existing 

Retaining Structures 

 

MASTER'S THESIS 

to achieve the university degree of 

Diplom - Ingenieur 

Master's degree programme: Information and Computer Engineering 

 

Submitted to 

Graz University of Technology 

 

Supervisor: Univ.-Prof. Mag.rer.nat. Dr.rer.nat. Alexander Bergmann 

Co-Supervisor: Dipl.-Ing. BSc Reinhard Klambauer 

Institute of Electronic Sensor Systems 

 

 

Graz, March 2017 



 

 

EIDESSTATTLICHE ERKLÄRUNG  

AFFIDAVIT 

 

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, 

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den 

benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich 

gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der 

vorliegenden Masterarbeit / Diplomarbeit / Dissertation identisch. 

 

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all 

material which has been quoted either literally or by content from the sources used. 

The text document uploaded to TUGRAZonline is identical to the present master‘s 

thesis/diploma thesis/doctoral dissertation. 

 

………………………………………………………         ………………………………………………………    

    Datum / Date        Unterschrift / Signature 

 
 

 

 

 

- 2 - 

 



 

Acknowledgments 

The Monitoring System presented in this work was made under request from 

Dipl.-Ing. BSc Matthias Rebhan from Institute of Soil Mechanics and Foundation 

Engineering, TU Graz. In the behalf of the Institute, he opted for a system that could 

perform measurements using certain sensors controlled by Raspberry Pi. I applied for 

that theme since I had some experience in that field, soon we found the mutual 

language and our cooperation was blissful during the work on the thesis.  

This Master’s Thesis was entirely done at the Institute of Electronic Sensors 

Systems, TU Graz. There, all the equipment and materials needed for the work were 

at my disposal as well as budget to order the needed parts, thanks to my supervisor 

Univ.-Prof. Mag.rer.nat. Dr.rer.nat. Alexander Bergmann. He led me through this 

thesis with his extensive knowledge and experience in projects of this scope.  

My special thanks go to my co-supervisor, Dipl.-Ing. BSc Reinhard Klambauer, 

a person who had an answer to every question I asked. Moreover, he is an expert and 

enthusiast in electronics and I really enjoyed having him by my side.   

And above all, I would like to express my deepest thanks to my parents, 

Đurđica and Željko and my brother Bruno for an unconditional love, support and 

encouragement during my study. My parents provided me the financial and human 

assistance whenever I needed one and these kind words are just one drop in the sea 

of what they deserve for their sacrifice and support.  

 

Graz, …………………………………                                                    ………………………………………    

          Hrvoje Cvitkušić 

 

 

 

 

- 3 - 

 



 

Zusammenfassung 

Stützkonstruktionen werden eingesetzt um verschiedene Bodenanpassungen 

zu sichern. Sie sollten in der Lage sein dem lateralen Druck des Bodens, dem des 

Gesteins oder anderen Substanzen Stand zu halten. Soll die Neigung eines Hanges 

höher als der innere Reibungswinkel des Bodens, ist eine Stützkonstruktion 

notwendig, die den Boden davon abhält sich zu bewegen (zu gleiten oder kriechen), 

da er sich nur bis zu einem gewissen Punkt senkrecht halten kann. Um 

sicherzustellen, dass die eingesetzten Stützkonstruktionen ihre Eigenschaften 

beibehalten und sich nicht auf Grund von umgebungsbedingten und geologischen 

Einflüssen verändern, sollten diese wiederholt überprüft werden. Viele 

Überwachungssysteme befinden sich heutzutage auf dem Markt aber ihre Preise sind 

normalerweise über dem Budget vieler Bildungseinrichtungen. 

In dieser Masterarbeit präsentieren wir ein kleines, günstiges und verlässliches 

Überwachungssystem, welches im Sekundentakt diverse Umgebungsdaten und 

geologische Daten der Stützkonstruktion sammelt. Diese Daten werden von dem 

System über das mobile Netzwerk mit Hilfe von PubNub Cloud Serivces an den 

gewünschten Standort übermittelt, der normalerweise ein leistungsstarker Client-PC 

für die Nachbearbeitung ist. Das Hauptsteuerungsteil des Überwachungssystems ist 

ein Allzweckrechner in der Größe einer Kreditkarte namens Raspberry Pi, welcher 

mit allen angeschlossenen Sensoren kommuniziert. Raspberry Pi sammelt, bereitet 

auf und transportiert die Daten an den gewünschten Standort, PubNub Colud Service. 

Das Design des Systems wird sicherlich mit mehreren Herausforderungen 

verbunden sein, insbesondere der Problematik bezüglich den Umweltbedingungen. 

Aufgrund der Tatsache, dass das System auf der Stützkonstruktion montiert werden 

soll, muss es robust genug sein um etliche Wettersituationen standzuhalten, 

besonders im Winter. 

Außerdem, muss das ganze System in einem robusten Gehäuse untergebracht 

werden, da die Spitzentemperaturen von ca. -40°C, während der kalten Wintertage, 

bis zu ca. +60°C in der direkten Sonne im Sommer, variieren. Damit das gewährleistet 

- 4 - 

 



 

ist, wird ein System entworfen welches zusammen mit einer Vorrichtung für die 

Regelung der Temperatur in ein gemeinsames Gehäuse passt. Sensoren, Leitungen 

und andere Komponenten, die sich außerhalb des Gehäuse befinden werden viel 

hochwertig sein da sie automotive Standards unterliegen und UV-beständig sein 

müssen. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 5 - 

 



 

Abstract 

Retaining structures are installed to enable certain adjustments in the terrain. 

Therefore, they need to be able to resist the lateral pressure of the soil, rocks, and 

other materials. During the construction work we might need to change the shape of 

some ground elevation beyond the internal friction angle of the soil. In order to do 

that we must construct a proper retaining structure to keep the soil from moving 

(sliding or creeping) since the soil cannot stand vertical above a certain limit. Once 

installed, the retaining structure should be monitored from time to time to ensure 

that its properties do not change due to environmental and geological effects.  

There are many monitoring tools and systems on the market nowadays. 

However, those tools and systems are hardly affordable for many educational 

institutions considering their tight budget. In this paper, we will present a small, 

cheap, and reliable Monitoring System, which will collect various environmental data 

as well as the geotechnical data of the retaining structure every couple of minutes. 

The device will then transmit it over mobile network using PubNub cloud services to 

a desired location – usually a powerful client PC for post processing. The central 

control unit of the Monitoring Tool will be Raspberry Pi, an all-purpose credit card-

sized computer that operates together with all the attached sensors and other 

electronic components. The main purpose of the Raspberry Pi is to collect, pre-

process and transmit data to a desired location, i.e. PubNub cloud service.  

Many challenges will arise during the design of the system with environmental 

effects being among the most problematic ones. Due to the fact that the system will 

be installed “on” the retaining structure, it must be robust enough to overcome 

severe weather conditions. As the peak temperature varies from -40°C in the winter 

up to +60°C under direct sun radiation, we must introduce a proper shield for the 

entire system. Consequently, a system is designed to fit into the steel box alongside 

the heating devices to maintain a stable temperature of approximately +25°C inside 

the box. Sensors, cables and other components used outside the box will be of higher 

quality since they are regulated by automotive standards and must be UV resistant. 

- 6 - 

 



 

Contents 
 

Introduction ................................................................ - 11 - 

1.1. Thesis outline ................................................................. - 12 - 

Theoretical Background .................................................. - 14 - 

2.1.  Retaining structures ............................................................. - 14 - 

2.2.  Inertial Measurement Unit ...................................................... - 16 - 

2.2.1.  Accelerometer .............................................................. - 17 - 

2.2.2.  Gyroscope .................................................................... - 19 - 

2.2.3.  Fusing the IMU data ........................................................ - 21 - 

2.3.  Rain Gauge ........................................................................ - 23 - 

Hardware & Components ................................................ - 25 - 

3.1.  Overview .......................................................................... - 25 - 

3.2. Cost Analysis ....................................................................... - 29 - 

3.3.  Raspberry Pi ...................................................................... - 30 - 

3.4.  Inertial Measurement Unit ...................................................... - 32 - 

3.5.  Temperature Sensor ............................................................. - 34 - 

3.6.  Temperature and Humidity Sensors ........................................... - 35 - 

3.6.1.  AM2302 Sensor .............................................................. - 35 - 

3.6.2.  HIH6130 Sensor .............................................................. - 36 - 

3.7.  Pressure Sensor ................................................................... - 37 - 

3.8.  USB 3g Mobile Internet Dongle ................................................. - 38 - 

3.9. Other components ................................................................ - 40 - 

3.10.  PCB Design ....................................................................... - 42 - 

3.11.  Rain Gauge ...................................................................... - 46 - 

Software Implementation ................................................ - 51 - 

4.1.  Setting up Raspberry Pi ......................................................... - 51 - 

4.2.  Mobile Internet using 3G USB Dongle ......................................... - 57 - 

4.3.  PubNub IoT ........................................................................ - 61 - 

4.4.  Subsystems implementation .................................................... - 65 - 

4.4.1.  Inertial Measurement Unit ................................................. - 65 - 

4.4.2.  Internal Heat Control....................................................... - 67 - 

4.4.3.  Rain Gauge Heat Control .................................................. - 67 - 

- 7 - 

 



 

4.4.4.  Rain Gauge Precipitation Measurement ................................. - 68 - 

4.4.5.  Environmental Temperature Measurement ............................. - 69 - 

4.4.6.  Environmental Relative Humidity Measurement ....................... - 70 - 

4.4.7.  Pressure Measurement ..................................................... - 70 - 

4.4.8.  Internet Connection Monitor .............................................. - 71 - 

Testing and Results ....................................................... - 72 - 

5.1.  Issues During Testing & Solutions .............................................. - 73 - 

5.2.  Testing Period Results ........................................................... - 76 - 

Conclusion .................................................................. - 79 - 

6.1.  Future Work ...................................................................... - 80 - 

Appendix .................................................................... - 82 - 

Internal Heat Control .................................................................. - 82 - 

Inertial Measurement Unit ............................................................ - 84 - 

Internet Connection Monitor .......................................................... - 88 - 

Humidity Measurement ................................................................ - 90 - 

Temperature Measurement ........................................................... - 92 - 

Pressure Measurement ................................................................. - 94 - 

Rain Gauge Precipitation Measurement ............................................. - 96 - 

Rain Gauge Heat Control .............................................................. - 99 - 

Subscriber or Client Side ............................................................. - 102 - 

Glossary .................................................................... - 104 - 

Bibliography ............................................................... - 106 - 

  
 

 

 

  

  

- 8 - 

 



 

List of figures 

Figure 1: Pitch, Roll and Yaw example [5] ............................................ - 16 - 

Figure 2: 3D Model of Accelerometer [2] .............................................. - 17 - 

Figure 3: 3D Accelerometer and Gyroscope Model [2] ............................... - 19 - 

Figure 4: Model of the Complementary Filter ........................................ - 21 - 

Figure 5: Top view of the box with all components, once opened ................ - 28 - 

Figure 6: Bottom part of the box, without PCB mounted ........................... - 28 - 

Figure 7: Raspberry Pi 2 Model B Top and Bottom view [9] ......................... - 31 - 

Figure 8: Raspberry Pi 2 Model B GPIO Pin Configuration [10] ..................... - 31 - 

Figure 9: LSM9DS0 IMU with three 3D axis explanation[11] ......................... - 32 - 

Figure 10: LSM9DS0 on the Breakout Board[12] ...................................... - 33 - 

Figure 11: Waterproof and pre-wired DS18B20 [14] ................................. - 34 - 

Figure 12: AM2302 on the left and HIH6130 on the right [16][17] ................. - 36 - 

Figure 13: SSCMANT006BA2A3 Absolute Pressure Sensor [18] ...................... - 37 - 

Figure 14: Huawei E3131 USB 3g dongle with CRC9 antenna extender cable .... - 39 - 

Figure 15: Schematic of the Monitoring Tool made in Cadsoft Eagle 7.6.0....... - 43 - 

Figure 16: PCB in 1:1 ratio. Red lines represent voltage and signalling lines from Top 

layer and blue are lines from Bottom layer ........................................... - 44 - 

Figure 17: PCB Top layer ................................................................. - 45 - 

Figure 18: PCB Bottom layer ............................................................ - 45 - 

Figure 19: Rain Gauge principle of operation [22] ................................... - 48 - 

Figure 20: Funnel ......................................................................... - 49 - 

Figure 21: Stand ........................................................................... - 49 - 

Figure 22: Lever ........................................................................... - 50 - 

- 9 - 

 



 

Figure 23: Rain Gauge .................................................................... - 50 - 

Figure 24: Changes in relative humidity [26] ......................................... - 74 - 

Figure 25: Relative Humidity measurement, in [%] .................................. - 76 - 

Figure 26: Precipitation measurement, scaled to litres per square meter per hour ..- 

76 - 

Figure 27: Atmospheric or Barometric Pressure measurement, in [bar] .......... - 77 - 

Figure 28: Temperature measurement, in [degC] .................................... - 77 - 

Figure 29: Comparison of IMU's X axis angle by Accelerometer and Complementary 

filter, in [deg] ............................................................................. - 78 - 

Figure 30: Comparison of IMU's Y axis angle by Accelerometer and Complementary 

filter, in [deg] ............................................................................. - 78 - 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 10 - 

 



 

 

Chapter 1 

Introduction 

 Monitoring System for existing retaining structures is a system made for 

measuring and retrieving retaining structure’s inclination and acceleration together 

with certain environmental data in order to monitor and explain its behaviour. It 

consists of two parts: the Monitoring Tool and Client or Subscriber.  

The Monitoring Tool is a standalone device made for measuring and 

transmitting the required retaining structure’s and environmental data. It is designed 

to be “plug and play”, i.e. just plug it into 230 VAC electrical power grid and data 

will be received on the Client side as long as it is powered, every 2 minutes. The 

Monitoring Tool comes encased in the steel protecting box together with the Rain 

Gauge. There are four mounting panels in each corner with M10 holes. Electronic 

sensors measure various data, data is collected by the Raspberry Pi which is a central 

processing unit of the system and later it is transmitted over PubNub cloud service 

using mobile Internet connection. On the other side, there is a Client or Subscriber. 

Client is any kind of application that receives the data using valid PubNub’s keys for 

communication. In this project, Python application collects the data and stores it 

into .csv files. The collected data is later processed by soil engineers.   

The system was funded and made under requirements of Institute of Soil 

Mechanics and Foundation Engineering, TU Graz. The entire development process, 

from initial idea to delivery of the final product, was done under Institute of 

Electronics Sensor Systems, TU Graz. 

- 11 - 

 



 

1.1. Thesis outline 

 

This master’s thesis explains in detail the whole idea behind the Monitoring 

System; from the initial idea, through development, testing and implementation. 

After the short introduction chapter which gives us basic overview of the whole 

system, we go straight to theoretical background in chapter 2.   

Theoretical background is important for later understanding of the work as we 

dig deeper into the engineering and scientific material with each chapter following. 

In the first subchapter, retaining structures and their properties are discussed from 

the civil engineer point of view. After that, Inertial Measurement Unit or simply put 

“IMU” is described. As this is an essential part of the whole system, it requires a 

detailed explanation – together with the measuring principle, filters for post 

processing are presented as well, i.e. Kalman Filter and Complementary Filter. The 

last but not the least to mention is Rain Gauge. Different approaches and techniques 

of precipitation measurement are described in this subchapter.    

Chapter 3 tells us more about the whole Monitoring System from the hardware 

perspective. It starts with the basic overview. Later on, every major part is 

thoroughly described and the auxiliary parts are just mentioned. Cost analysis is also 

provided in this chapter. Schematic of the whole system is given, together with the 

PCB idea and design. The Rain Gauge design and principle of operation is explained 

in detail.  

Chapter 4 presents the software implementation of the whole system and 

auxiliary subsystems. It can be considered as an application layer. Before doing any 

work of this kind, programing and working environment should be made accordingly. 

Each software application is described, together with its role in the overall system. 

After that, all scripts and modules created are given together with detailed 

explanation of each coding part which might be of interest. The full code is given in 

the Appendix at the end of thesis. And to make everything easier to observe, a 

flowchart of the application layer is given. 

- 12 - 

 



 

Chapter 5 is focused on testing and retrieving results. The Monitoring System 

is already implemented and data is gathered approximately every 2 minutes. Results 

of the measurement are presented on 2D charts, with respect to the time. However, 

results will be only provided, they will not be discussed together with any time 

derivative functions, i.e. raw data does not make any sense without proper post 

processing from a civil engineer but it was not part of the work. Additionally, some 

minor problems which arose during the testing period will be explained together with 

the solution to the problem. Namely, as system was designed in the lab, it was hard 

to predict all possible issues that might occur in different environmental conditions. 

And that is what testing phase helped to discover.  

In chapter 6, a brief conclusion is summarizing the whole work together with 

possible improvements and upgrades in future work.  

 An Appendix comes at the end, together with a glossary and bibliography.  

 

 

 

 

 

 

 

 

 

 

 

- 13 - 

 



 

 

Chapter 2 

Theoretical Background 

2.1.  Retaining structures 

 “Material is retained if it is kept at a slope steeper than it would eventually 

adopt if no structure were present. Retaining structures include all types of walls 

and support systems in which structural elements have forces imposed by the 

retained material.” The definition is taken from Eurocode 7 (EC7) standard. 

Furthermore, three main types of retaining structures can be defined by EC7: Gravity 

walls, Embedded walls and Composite Walls. The exact definitions will be taken from 

the book in [33] as it is the main literature for this subchapter. 

 “Gravity walls are walls of stone or of plain or reinforced concrete having a 

base footing with or without a heel, ledge or buttress. The weight of the wall itself, 

sometimes including stabilizing masses of soil, rock or backfill, plays a significant 

role in the support of retained material.” [33] 

 “Embedded walls are relatively thin walls of steel, reinforced concrete or 

timber, supported by anchorages, struts and/or passive earth pressure. The bending 

capacity of such walls plays a significant role in the support of the retained 

material, while the role of the weight of the wall is insignificant.” [33] 

 “Composite retaining structures are walls composed of elements from the 

above two types of wall.” [33]  

- 14 - 

 



 

 Having defined the principle retaining structures, let’s move on to the 

geotechnical measurement procedures. Namely, that is in the focus of this whole 

work. Due to some later uncertainties in ground conditions, there is a number of 

geotechnical parameters which cannot be pre-calculated with high accuracy. They 

are subject of interactions between structure and the soil and therefore can be 

measured only after the deployment of retaining structure. Nowadays, geotechnical 

measurements are an emerging field, with constant improvements in calculation and 

measuring methods. The objectives of geotechnical measurements are: 

Instrumentation during soil exploration, Safety, Quality control, Instrumentation 

using the observational method and Assessment of calculations and predictions.   

 To get an insight in interaction between retaining structure and soil, certain 

parameters have to be measured and judged later in the overall analysis. Stresses in 

retaining structure can be determined using material laws and can be evaluated by 

measuring the strain. Main parameters are: Strain, Curvature(rotation), Deflection 

curve, Slope change, Displacement of complete structure, Temperature, Anchor load 

and Strut load. But to get the proper insight, multiple parameters measured with 

high degree of accuracy have to be fused together. For instance, the measurement 

of strain in concrete and steel requires high accuracy due to high elasticity of 

material. Moreover, the temperature has to be measured simultaneously to 

compensate its influences on both structure and transducer itself.  

 Measuring instruments and techniques are various, with tendency on emerging 

automatic measuring systems. An automatic measuring system is operated by 

microcontroller and PC. It should be as modular as possible, with many different 

sensors attached. Important features of such system include registration of data 

online, online calculation and compensation of data, an alarm in case of exceeding 

limits, a self-monitoring system(i.e. a watchdog), etc. However, manual 

measurements will always precede the deployment of automatic systems to get the 

initial calibration settings.  

- 15 - 

 



 

 2.2.  Inertial Measurement Unit 

An Inertial Measurement Unit or simply IMU is an electronic device or sensor 

that reports linear and angular motion and sometimes even the magnetic field around 

the body. It is a self-contained system; with combination of accelerometer, 

gyroscope and sometimes magnetometer. Although mainly used in aircrafts and 

spacecraft, with recent development they successfully penetrated into daily used 

devices, like mobile phones. [1][2] 

Nowadays, term IMU is usually referring to a boxed device which contains 

three accelerometers with their measuring axis placed orthogonal to each other, 

three gyroscopes in similar orthogonal order and three magnetometers. They are 

mainly used as inertial guidance, navigation and orientation systems.  

Principle of operation is quite sophisticated and requires combined data of all 

subunits to get valid measurements. With accelerometers, current rate of 

acceleration is detected. Pitch, Roll and Yaw are rotational attributes an their 

change is detected by gyroscopes. However, to get the stable values for Pitch and 

Roll, gyroscope and accelerometer reading should be fused. If there is magnetometer 

inside IMU, it is used in calibration against drift in orientation. To get stable Yaw 

value, gyroscope and magnetometer reading are fused. Considering the fact that 

measurement is done in three axis by two devices, we can talk about 6 DoF or 9 DoF 

if there is magnetometer installed. DoF stands for Degrees of Freedom. It is sum of 

axis and sensors from which we retrieve the data. It could go even up to 11 DoF, in 

combination with barometric pressure sensor and GPS module.  

Figure 1: Pitch, Roll and Yaw example [5] 

- 16 - 

 



 

2.2.1.  Accelerometer  

An accelerometer is an electromechanical device used to measure static and 

dynamic acceleration. Static acceleration is nothing but a galaxy proper acceleration 

which must be deferred from “rate of change velocity” acceleration; proper 

acceleration on Earth is gravity and it measures g  ≈ 9.81 m/s2. Dynamic acceleration 

is product of body’s movement or vibrations. Vast majority of the accelerometers on 

the market measure acceleration in all three axes using capacitive sensing 

technique. As the device vibrates, the plates move accordingly thus changing the 

capacitance. Acceleration can be extracted from the changes in capacitance. Other 

sensing techniques, like piezoresistive and piezoelectric, are less frequently used. 

The first micro machined accelerometer was designed in 1979 at Stanford University, 

yet it took almost two decades before such devices entered large volume 

applications. Nowadays, accelerometers are widespread in all sorts of commercial 

devices, with more than 100 million MEMS accelerometers being sold every year all 

over the world with the average price of about 4 $ per single package device. [1]  

Basic principle of operation of modern day accelerometers is best described 

and illustrated in [2]. Here, a brief summary of [2] will be given, to understand how 

accelerometer works.  

    

 

 

 

 

 

 

 

 

 
Figure 2: 3D Model of Accelerometer [2] 

- 17 - 

 



 

The 3D Model from the Figure 2  will illustrate how an accelerometer works. 

The coordinate system is fixed to the axes of accelerometer. The force vector is 

rotating around. The measured force vector is the vector R. It could be either static 

or dynamic acceleration, or both, it does not matter. Rx, Ry, Rz are the projection of 

vector R on the X, Y, Z axes. Using Pythagorean 3D theorem, a relation between R 

and Rx, Ry, Rz can be established. The values of Rx, Ry, Rz are the values that 

accelerometer will output, linearly scaled by some factor. From the information 

delivery point of view, accelerometers can be either digital or analog. Digital ones 

use I2C or SPI communication protocol and Rx, Ry, Rz can be taken as is if it is not 

defined different by datasheet. Analog ones should go through ADC module and 

getting Rx, Ry, Rz requires couple of additional operations.  

At the moment, we have all three components with whom our inertial force 

vector is defined with. Inclination can be calculated in two directions. To calculate 

the inclination with respect to the ground, angle between vector and Z axis should 

be calculated. To calculate the inclination on specific axis, i.e. on X and Y axis, we 

must calculate the angle between that axis and gravitation vector. Inclination angles 

are marked with Axr, Ayr and Azr on the Figure 2. Looking at the triangle formed on 

the right hand side, inclination angle can be calculated by using arccos() function on 

force projection on axis vector over force vector; i.e. Axr is calculated by applying 

arccos() on Rx over R. Another handy way to convert the accelerometer values to 

usable angles is via atan2() function, thoroughly described later in this work. 

The main difference between accelerometer and gyroscope is that 

accelerometer measures the current angle at any time. It does not have to be 

monitored over time like gyroscope. Still, accelerometer is very noisy and optimal 

usage is when measuring angles over longer period of time. Another minus is that 

accelerometer cannot measure yaw. Yaw is the rotational attribute where device is 

placed on flat surface in level with ground and rotated clock wise(or anti clock wise). 

The Z axis readings do not change, thus there is nothing to measure. However, with 

combination of gyroscope and magnetometer, yaw can be measured.  

 

 

- 18 - 

 



 

2.2.2.  Gyroscope  

Gyroscope is a device that measures rotational motion or angular velocity. 

Angular velocity is rate of change of angular position of rotating body, or simply put, 

it is measurement of speed of rotation. Unit of measurement is degrees per second 

or dps, or revolutions per second or RPS. In this work, dsp unit is used. To calculate 

the current angle, speed of rotation has to be monitored over time. The minus is 

that this monitoring over time causes gyroscope to drift. Nevertheless, gyroscopes 

are good at measuring sharp quick movements, instead of fast spinning objects. 

Linear velocity and acceleration of object do not affect the gyroscope measurement. 

Nowadays, a typical 3 axis MEMS gyroscope has a small resonating mass inside that is 

shifted as the gyroscope is rotating; based on Foucault pendulum “principle”. This 

movement is converted to electrical signal and outputted to microcontroller. 

Communication interface is either digital or analog. SPI and I2C protocols are used 

for digital communication and ADC from microcontroller reads the input from analog 

interface. [1]  

A basic guide on how to handle the readings from modern day MEMS gyroscope 

is thoroughly described in [2]. Here, a part of [2] will be summarized, continuing on 

the Figure 2, given in the accelerometer subchapter.  

 

 

 

 

 

 

 

 

 

 
Figure 3: 3D Accelerometer and Gyroscope Model [2] 

- 19 - 

 



 

The 3D Model in the Figure 3 includes the 3 axis accelerometer model and we 

will try to describe what is gyroscope measuring according to that model. A 3 axis 

gyroscope will have three orthogonally placed gyroscopes, thus outputting on three 

different channels. Each channel measures the rotation around single axis. In the 

Figure 3, we can define Rxz and Ryz as the projection of the force vector R on the X-

Z plane or Y-Z plane, respectively. Angles between Rxz and Z axis or Ryz and Z axis 

are defined as Axz and Ayz, respectively. The gyroscope will output an value that is 

linearly related to the rate of change of these angles. For instance, if we want to 

measure the rotation angle around X axis, we must calculate the Ayz angle. We will 

record the Ayz angle at the starting time t0 and at some time later t1. The rate of 

change will be calculated using the following equation, expressed in dps: 

RateAyz = (Ayzt1 – Ayzt0) / (t1 – t0)  [dps] 

 Vast majority of the MEMS gyroscopes, even the digital ones, will not output 

the value already converted to dps. Many of them offer the customization options 

allowing the user to set by himself the sensitivity of the reading, frequency and gain 

as a product of the former and latter one. Also, for the sake of precision, the period 

between two readings must be calculated each time between two reading to avoid 

unnecessary drift. So, if we want to read the rotation angle from the typical 

customizable MEMS gyroscope, first we must set the sensitivity and frequency of the 

reading. Gain value is provided in the datasheet, fusing the sensitivity and frequency 

values. To get the rotation angle, raw reading of the gyroscope must be multiplied 

by gain value and summed to the gyroscope angle of that axis. 

 

 

 

 

 

 

 

 

- 20 - 

 



 

2.2.3.  Fusing the IMU data 

 To estimate the attitude of a body, it is not enough to use only accelerometer 

data or only gyroscope data. Namely, the accelerometer can be trusted only when 

the acceleration is progressive, without any vibrations which will result in corrupted 

results. On the other hand, gyroscope has a drift when tracking over some period of 

time because it is designed to track quick sharp moves. To get the best possible body 

attitude estimation, the readings from both devices should be fused. Accelerometer 

is good for orientation in static conditions. Gyroscope is good for tilting in dynamic 

conditions. Data is fused(merged) using a mathematic filter. There are two major 

filters for this purpose: Complementary filter and Kalman filter. As the 

Complementary filter is used in this work, it will be thoroughly explained. The 

Kalman filter will be only briefly explained. Pros and cons of each are discussed in 

[31] and [32] and a short overview will be given later in this subchapter.  

  The Complementary filter is merging the data in a way that it passes the 

accelerometer data through low pass filter and gyroscope data through high pass 

filter and the outputs are summed. They are emerging nowadays, especially in hobby 

world, because they are simple and not much processor intensive. Filter discussed 

here will consider only first order filter. Of course, the deeper we go, i.e. second 

order, third order etc.; the better are the results. But it is questionable whether the 

additional increase in complexity brings any obvious gains to justify itself.  

 

 

Figure 4: Model of the Complementary Filter 

- 21 - 

 



 

In the Figure 4, the Complementary filter principle of operation is illustrated. 

Low pass filter passes only long term changes and filter outs short term oscillations. 

High pass filter does totally the opposite, it passes only short term fluctuations and 

filter outs the ones that are steady over time. Integration means nothing but a 

summing the change in amount of time to a previous state. For instance, we have a 

body that travels with a known velocity and a clock that ticks at exact rate. To 

calculate the new position of a body after each tick, we add the velocity multiplied 

by tick(time) to previous position. And that is what integration does. The two filters 

are complementary to each other, thus the name “Complementary”. 

Now, let’s dig a bit deeper in the Complementary filter. To do so, we will use 

the work presented in [2] and extract only the main observations. The 

Complementary filter is defined by the following formula: 

CF_angle = CFC x (CF_angle + Gyro_rotation_rate) + ((1-CFC) * Accelerometer_angle) 

CF_angle is the final angle to be used. It can be either in X or Y axis. CFC stands for 

Complementary Filter Constant. It is user defined, but there are some rules on how 

to choose the proper CFC. It is related to time constant and determines the boundary 

after which the accelerometer readings stop and gyroscope readings are considered. 

If we want to be more precise, CFC should be the fraction of time constant over 

sampling frequency. Gyroscope rotation rate must be multiplied by loop time. It is 

advised to measure loop time every time we read the gyroscope to get the accurate 

results. To get the accelerometer angle in degrees, raw values must be converted 

accordingly. The simplest way is to use atan2() function on Accy and Accz value to get 

X angle or on Accz and Accx to get Y angle. Atan2() function returns principle value of 

the tangent of other angles in radians so π must be added to get result between 0 

and 2. To convert the radians to degrees, the value must be multiplied by (180/π). 

Kalman filter uses a series of measurements observed over time to estimate 

the attitude of body, minimizing the mean squared error. It consists of two stages: 

prediction and correction. From theoretical point of view, it is the best possible filter 

but it is cumbersome to implement and processor intensive to use. As it can be seen 

in [31] and [32], there is no real need to implement the Kalman filter for the needs 

of this project because the (eventual) gains will not justify its complexity. 

- 22 - 

 



 

2.3.  Rain Gauge 

In this subchapter, I will give a basic overview of precipitation measuring 

techniques and used devices. The subchapter is made following the book in [4]. 

Definition of the rain gauge can be summarized as a device that collects the rain in 

a funnel and then measures it in some way. Precipitation is any kind of condensed 

atmospheric water vapour falling to the ground. It includes rain, dew, drizzle, 

blizzard, snow and hail. 

Precipitation is a significant part of the climate system, almost important as 

temperature, for instance. But to measure precipitation, first we must know what 

precipitation really is. The first requirement is to understand the whole hydrological 

cycle, and that includes evaporation, water vapour, convection, condensation, 

clouds, soil moisture, groundwater and the origin of rivers. As of various religious 

dogmas, legends and superstitions, very few hypotheses about hydrological cycle 

were formed during history. Together with the uprising secularity among the 

scientists, the most notable progress in this field was made between year 1600 and 

1900, in the period known as Renaissance. In 1662, Sir Christopher Wren invented 

the tipping bucket rain gauge. It was self-emptying mechanical device which was run 

by weight-driven pendulum clock. It recorded barometric pressure, temperature, 

rain, relative humidity and wind direction. Measurements were marked on paper 

tape, punching holes every 15 minutes. This is known as first Automatic Weather 

Station, built almost four centuries ago. 

 There were many different rain gauges built in the following era, with most 

of them being manual or mechanic. The real revolution started with electronic rain 

gauges. The precision of electronic rain gauges is (almost) impeccable and 

unattainable for their mechanic competitors. From 1960s onward, in so called 

“modern era”, electronic rain gauges took over the prime. Tipping bucket rain 

gauges are the most common nowadays. Sir Christopher Wren’s device was a 

forerunner for the modern day devices. The major difference is that modern devices 

are all symmetrical though the shape of the bucket may vary. Precision of the rain 

gauge is not continuous, especially during heavy rains or bad positioning. Sometimes 

- 23 - 

 



 

it measures more precise, sometimes less. However, some things have to be 

respected in order to get the better precision:  

• The minimum size of the tip should be 10 mm, meaning that at least 10 ml 

per tip should be collected by the funnel 

• To measure 0.2 mm of rainfall reliably, a funnel of at least 500 square cm 

is required 

• Tip intervals should be 0.1, 0.2, 0.25, 0.5 and 1 mm 

• Not installing near object for at least twice the size of the object 

• Wind shield installation  

As the water goes down the funnel, it tips in the compartment of the lever. The lever 

has two compartments. In the centre weight point of the lever fulcrum is located. 

The lever is pivoting around fulcrum once the water in the compartment over-weighs 

the other side of the lever. Pivoting means “switching sides” or states. There can be 

only two states, top left and top right. On top of the lever, a magnet is attached. 

Above the fulcrum point reed switch is attached. Once the lever switches 

sides(states), the magnet passes near reed switch and closes it. That event is 

recorded by microcontroller that is in charge of the whole system.  

 Capacitance rain gauge is also a form of tipping bucket rain gauge. The water 

is collected in a cylinder. Inside are electrodes which act as capacitor plates. Water 

acts as dielectric. Dielectric constant of water and air is known. Depth of water is 

measured by including the capacitor in a tuned circuit. The water should be drained 

periodically.  

Tipping bucket is very simple device, consumes no power and very little can 

go wrong. A way to optimize measuring is to respect the above stated rules. There 

are some other things that might affect the accuracy of the measurement, and they 

are: evaporative loss, out splash, levelling, siting of gauge, wind effect, etc. 

 Other forms of electronic rain gauges include radar, optical and drop-counting 

rain gauges. Radar rain gauges include very small Doppler radars working at 11 GHz. 

They measure the spectrum of backscatter from falling rain drops, indicate their fall 

velocity and size and fuse those data into rainfall intensity. Optical rain gauges sense 

drops passing through a light beam and convert the signal into rainfall intensity.  

- 24 - 

 



 

 

Chapter 3 

Hardware & Components 

3.1.  Overview 

 The Monitoring System is a complete system for monitoring the behaviour of 

retaining structures remotely. It measures retaining structure’s linear acceleration 

and angular rate, combining both data using the Complementary filter. Additionally, 

it measures environmental conditions, such as air temperature, relative humidity, 

absolute barometric pressure and precipitation. There are two main parts of the 

system. One is Host part or also called the Monitoring Tool and the other part is 

Client or Subscriber. Host part collects and transmits data over PubNub cloud channel 

using mobile data. Client is subscribed to the channel and retrieves the data for 

storage and post processing. 

 The Monitoring Tool or Host part is a standalone, “plug and play” device. It 

comes enclosed in steel box together with the Rain Gauge, connected by wire. Once 

properly fixed on the retaining structure, plugging it into 230 VAC Type F female 

socket or Schuko socket is enough for it to start working. Looking from bird's-eye 

view on the closed box, there are four cables going out of it. Left one is for 

temperature sensor DS18B20, thick middle one is for the Rain Gauge, right one is 230 

VAC plug and the one on the right side is from relative humidity sensor AM2302. On 

the corners, there are four L-shaped steel panels with mounting spots for fixing the 

box on the retaining structure, using M10 screw. Green LED, placed on the bottom, 

- 25 - 

 



 

signifies if the Monitoring Tool is connected to the Internet. Once plugged in, the 

Monitoring Tool should start working approximately 90 seconds after, thus 

illuminating the LED. On the right side of the box is female antenna connector on 

which UMTS/GSM omnidirectional antenna is connected.  

 The situation inside the box looks a bit complicated and fuzzy, so let’s 

demystify it. On the bottom left side, grounding cable is connecting the lid with the 

box. There are several wire bundles on top, all ending up in different connectors on 

the PCB. White nylon male connectors located on the bottom of PCB, named S1, T1, 

T2 and T3 are for the Rain Gauge’s reed switch, DS18B20 environmental air 

temperature sensor, DS18B20 Rain Gauge grid heating control temperature sensor 

and AM2302 relative humidity sensor, respectively. Robust 2-pin male green 

connectors named LOAD1 and LOAD2 are for the Rain Gauge grid heating and inside 

box heating, respectively. White nylon 2-pin male connector on the top left side is 

for Internet control LED light. Robust 3-pin male green connector on the top right 

side is for 12 VDC input, coming from AC/DC converter. Black twisted cable going 

from USB mobile Internet dongle to the connector on the right side of the box is 

antenna cable; connecting the external antenna with mobile Internet dongle.  

 Once all those cables are removed, PCB can be clearly seen. On the left and 

right side, it is fixed to the steel box using L-shaped aluminium panels. DC/DC 

converter is a little black cuboid, soldered on the top with label RECON - 625. Going 

down, the Raspberry Pi together with USB mobile Internet dongle follows. However, 

the Raspberry Pi is not soldered to the PCB, it is just plugged with its GPIO pins into 

a 40 Pin female header and additionally fixed with screws on the corners. Later on, 

other parts are soldered with the following labels: 

• J1 - Inertial Measurement Unit LSM9DS0 with breakout board 

• T4 SSC – Absolute pressure sensor SSCMANT006BA2A3 

• U1 HIH6130 – Temperature and relative humidity sensor HIH6130 

• Q1, Q2 – Low side switches VNN3NV04PTR-E 

• Q3 – N-Channel transistor BSS138 

• F1, F2 – 3 Amps fuses 

- 26 - 

 



 

Aside of the main parts, there are lots of other electronic components important for 

the functionality of the whole system, like various resistors, capacitors and control 

LEDs.  

 PCB is located in the middle of the box, with respect to the height. There are 

several other components under, but first the PCB should be removed. In order to 

remove the PCB, all cable bundles must be unplugged. Internet control LED and 

external antenna connector have to be removed. Later on, L-shaped aluminium 

panels must be unscrewed from the steel box and the PCB can be taken out now. On 

the lower side, there are three chassis mount resistors which are working as heat 

emitters for heating the inside of the steel box in order to maintain the constant 

temperature of approximately 25°C. AC/DC Converter is fixed on the bottom and on 

the side of the box. Cables which enter the box are also located in this bottom part 

and are bend in the corner so they can reach connectors on the PCB without pulling 

them with too much force.  

 The Rain Gauge is also part of the Monitoring Tool. It is connected with the 

box using a thick black cable with 10 wires, out of which 9 are used. Although it’s 

called “Rain Gauge”, it actually measures all kind of precipitation, including snow, 

sleet, blizzard etc. On top of the Rain Gauge is protective heated steel grid which 

heats once the temperature drops below 2°C. Temperature sensor DS18B20 is located 

on the grid in order to measure the temperature and switch the heating if necessary. 

Once the water passes through the Funnel, it fills the container which is pivoting 

around a central point. Container is the Lever with magnet on it and each position 

change is sensed by the reed switch. Knowing the volume of the container, it is rather 

easy to measure how much precipitation is there per unit of time. More detailed 

information about the Rain Gauge will follow in the upcoming chapters. 

 Client or Subscriber side of the Monitoring System is not a specific device. It 

can be any kind of device, provided it has a proper made application with subscriber 

key and Internet connection. For the requirements of this project, a rather simple 

script in Python is made and run from the PC. All it does is just connect to the PubNub 

channel to which the Monitoring Tool is broadcasting data, retrieve that data and 

store it in specific textual files for post processing. No doubt that any future upgrade 

of the whole system will include a mobile application for client or subscriber side.  

- 27 - 

 



 

  

Figure 6: Bottom part of the box, without PCB mounted 

Figure 5: Top view of the box with all components, once opened 

- 28 - 

 



 

3.2. Cost Analysis 

When making a project such as this one, total cost analysis must be made in 

the planning stage. As it was stated in the introduction chapter, there are many 

devices already available in the shops, but they are above education institution’s 

budget. Moreover, they are not customizable, once bought. The Monitoring System 

should have as close as possible accuracy comparing to its competitors on the market 

but it must outperform them in price and customization options after. The maximum 

budget was set to 800,00 Euros. However, the whole system costs around 700,00 

Euros which is in the budget and every single component was compared to its 

competition on the market and the best one was chosen with respect to system 

requirements, shipping costs and price-to-value ratio. The budget was entirely spent 

on physical components of the Monitoring Tool and the Rain Gauge. Tools, equipment 

and spare electronic material needed for the project were already available in the 

lab so no money was spent in that direction. All the applications, software and 

libraries used are either open-source or available for free for public use which also 

reduces the costs significantly.  

Mobile Internet cost is not included in the budget calculation, it depends 

solely on the final user of the system and it is a rather minor cost. To the best of my 

knowledge, that cost should not go above 10 Euros per month, using services from 

Austrian mobile provider inside Austria. USB 3g mobile Internet dongle is unlocked, 

thus available for all mobile Internet providers with normal sized SIM card. Any 

mobile Internet option with package of approximately 1 Gb or above is more than 

enough to cover the needs of mobile Internet data usage made by the Monitoring 

System. However, it is advised to use reliable provider with good 3g network 

coverage in the remote area where the Monitoring Tool will be mounted to avoid 

connection malfunctions or sudden drops. For the needs of this project, SIM card 

from Hofer Telekom is used. Network coverage is pretty good in Austria and mobile 

Internet package of 3 Gb costs 6,49 Euros.   

 

 

- 29 - 

 



 

3.3.  Raspberry Pi 

 The Raspberry Pi is a series of all-purpose credit card-sized computers 

developed by the Raspberry Pi Foundation in the United Kingdom, introduced in 

2012. With its low cost of around 35 Euros, it was primarily designed to promote 

STEM academic discipline in pre-university level, especially hardware understanding 

and programming. However, due to the small size, accessible price and high 

computing power, it soon became popular among electronic enthusiasts as a proper 

replacement for basic microcontroller. [7][8] 

 In this project, the Raspberry Pi 2 Model B was used as central control unit of 

the Monitoring Tool, paired with the 16 GB micro SD card from SanDisk. It features 

the BCM2836 System on Chip with 32-bit quad-core ARMv7 processor which is multi-

thread-coding friendly option. Other notable properties include 1 GB of RAM, 4 USB 

ports, HDMI and A/V connector, micro USB connector and RJ45 Ethernet port. On the 

side, there are 40 GPIO pins which are used to connect sensors and other peripheral 

electronics and communication can be done using I2C, SPI or 1-Wire protocol. 

 In the stage of planning the project, various other platforms emerged together 

with the Raspberry Pi, like the Arduino Uno and the BeagleBone Black. However, the 

Raspberry Pi was chosen and advantages which support the decision will be 

summarized in this chapter. Once an Operating system is installed, it’s enough to 

plug in the keyboard and mouse through USB ports, monitor through HDMI connector 

and 5 Volts 2 Amps power supply through micro USB port and programming can start. 

It doesn’t require separate host and client developing environment like its 

competitive platforms. Memory is expendable up to 64 GB, it depends on the SD card 

solely. It costs roughly as much as the Arduino Uno, but is cheaper than the 

BeagleBone Black. Current on USB port can be up to 1.2 Amps which is sufficient for 

power hungry devices, like the USB 3g mobile Internet dongle used in the project. 

Many operating systems are supported by the Raspberry Pi, with Raspbian and Ubuntu 

being among the most important ones. Regarding the programming languages, C, 

C++, Java and Python are supported which is also enough to outperform the Arduino 

programing language supported by the competitive platforms. There are also some 

disadvantages like no battery powered real-time clock, no BIOS so it boots from the 

- 30 - 

 



 

SD card every time and only one 1-Wire bus, but those are minor things which didn’t 

affect the decision. One more thing to be careful with are GPIO pins. Namely, 

physical pins on the board are not numbered equally to the Broadcom chip-specific 

pins. From this point on, all GPIO pins will be  enumerated using Broadcom chip-

specific pins numbering, i.e. GPIO pin 4 means Broadcom chip-specific pin 4 but 

physically, it is the Raspberry Pi’s pin 7. 

 The Raspberry Pi is a part of the Monitoring Tool and it is located inside the 

steel box. On the PCB, two 40 Pin headers are stacked in order to overcome the 

height of the Raspberry Pi’s USB and RJ45 connectors. The Raspberry Pi is then 

plugged upside-down in the 40 pin connector using its GPIO pins and additionally 

fixed to PCB with four screws in the corner for better fixation. Distance holders of 2 

cm in respect to the PCB are used to keep the Raspberry Pi well fixed and connected 

via GPIO pins.  

 

 

 

 

 

 

Figure 8: Raspberry Pi 2 Model B GPIO Pin Configuration [10] 

Figure 7: Raspberry Pi 2 Model B Top and Bottom view [9] 

- 31 - 

 



 

3.4.  Inertial Measurement Unit  

 The Inertial Measurement Unit used in this project is LSM9DS0 from 

STMicroelectronics producer. In the beginning, just the device itself was ordered but 

as it is rather small with only 4x4 millimetre of surface and 24 Pins on it, it was hard 

to solder it. At some point later, a device already soldered on a small breakout board 

was ordered from Adafruit Industries LLC manufacturer, for the sake of simplicity. 

Together with the breakout board, the IMU dimensions are 33mm x 20mm. And it is 

quite cheap with the price of around 25 Euros, but yet very powerful and sufficient 

for the needs of this project. Moreover, the power consumption is only 6.5 mA in 

normal operation mode with all sensors turned on. System is powered with 3.3 Volts. 

LSM9DS0 IMU features 3D acceleration sensor, 3D gyroscope or angular rate 

sensor and 3D magnetic sensor which makes it a 9 DoF device. All sensors are digital. 

Inside of it, there are actually two IC’s. One is L3G4200D gyroscope and other is 

LSM303DLMTR accelerometer and magnetometer. That’s why there are two pins for 

chip select, CSG for gyroscope and CSXM for accelerometer and magnetometer. 

Measurement full scales are as following[11]: 

• Linear acceleration ±2/±4/±6/±8/±16 g 

• Gyroscope or angular rate ±245/±500/±2000 dps  

• Magnetic field ±2/±4/±8/±12 gauss 

Although magnetic sensor is available, it is not used in this project. Only gyroscope 

and accelerometer are used, combined with the Complementary filter.  

Figure 9: LSM9DS0 IMU with three 3D axis explanation[11] 

- 32 - 

 



 

Communication protocols I2C and SPI are included which makes it easier for 

communication with any microcontroller. Although SPI protocol is easier to 

implement, only I2C protocol is used in this project because it is already used for 

communication with some other electronic devices. And I2C requires only 2 

bidirectional open drain lines for communication which is easier for later PCB design. 

Voltage used is +3.3 Volts. Both Raspberry Pi’s and LSM9DS0’s communication pins 

are not tolerant to higher voltage. Serial Data Line SDA and Serial Clock Line SCL are 

pulled up to +3.3 Volts with 2.2 kOhm resistors.  

IMU came already soldered to a small breakout board. Out of 14 Pins available, 

only four are soldered to the PCB and are needed for this project: Vin, GND, SCL and 

SDA. Vin is connected to input voltage of 3.3 Volts, GND is connected to ground, SDA 

is connected to I2C SDA line and SCL is connected to I2C SCL line.  

Accelerometer, with I2C address 0x1D, is used with the following settings: 

• 6.25 Hz data rate 

• X, Y, Z axis enabled  

• Antialiasing filter bandwidth is 773 Hz 

• +/- 2G full scale 

Gyroscope, with I2C address 0x6B, is used with the following settings: 

• 95 Hz output data rate with 12.5 cut-off 

• X, Y, Z axis enabled 

• 245 dps full scale 

 

 

 

 

 

 

 
Figure 10: LSM9DS0 on the Breakout Board[12] 

- 33 - 

 



 

3.5.  Temperature Sensor 

 Temperature sensors used in this project are two DS18B20, digital 

temperature sensors from Maxim Integrated Products.[13] Both came in already pre-

wired and waterproof version, since they are used outdoor. One is attached on the 

Rain Gauge and measures temperature on the protective and heating grid and other 

is mounted outside the box to measure environmental air temperature. 

 DS18B20 sensor is fairly precise with +/- 0.5 °C accuracy in range from -10°C 

to 85°C. Operating temperature range is from -55°C to +125°C. On the tip of the 

sensor is a stainless tube, 30 mm long and 6 mm in diameter. Sensor is digital so 

there will not be any signal degradation even on longer distances. This is important 

for the one mounted on the Rain Gauge protective and heating grid – the cable is 

around 2 meters long with one interconnection point in the middle.  Reading 

resolution is selectable, in the range from 9 to 12 bit. Communication protocol is 1-

Wire Maxim which requires only one pin for communication. Multiple devices can be 

connected to the same digital pin because each device has an unique 64 bit ID.  

Sensor has three wires. Red one is connected to 3.3 Volts, Black is connected 

to the ground and Yellow is Data, connected to physical pin 7 of the Raspberry Pi or 

Broadcom chip-specific GPIO pin 4. A 4.7 kOhm resistor is used as a pull up from the 

Data to VCC or Positive Supply Voltage line. Although each DS18B20 sensor connector 

is connected to its own data pin on the Raspberry Pi, only GPIO pin 4 is used because 

Broadcom chip supports only one 1-Wire bus. Once the PCB is turned, it can be seen 

that data pins are in short-cut to GPIO pin 4 and line to GPIO pin 17 is scratched. 

 

  

 

 

 

 

 
Figure 11: Waterproof and pre-wired DS18B20 [14] 

- 34 - 

 



 

3.6.  Temperature and Humidity Sensors 

 For the measurement of temperature and relative humidity, two different 

sensors were used in this project. One is AM2302, which is used for environmental 

relative humidity measurement and the other one is HIH6130 which is used for 

temperature and relative humidity measurement inside the steel box in which the 

Monitoring Tool is packed.  

 

3.6.1.  AM2302 Sensor 

 Temperature and humidity sensor AM2302 is a slightly modified version of 

DHT22 sensor. Compared to the latter one, it is encased and pre-wired, produced by 

Adafruit Industries LLC manufacturer. [15] With price of around 15 Euros, it is a good 

bargain considering the fact that is made for outdoor usage with wide operating 

temperature and humidity, in range from -40°C to +80°C and from 0% to 100% RH.  

It features a capacitive humidity sensor and temperature dependent resistor 

or thermistor. It is temperature compensated and already calibrated, with the digital 

output signal. Measurement accuracy is +/-0.5°C and +/-2% RH. Sensitivity or 

resolution is 0.1 °C and 0.1% RH. Communication protocol is 1-Wire which requires 

only one wire and one microprocessor’s digital pin for communication. It’s different 

from Maxim/Dallas 1-Wire bus and thus incompatible so it must be used on different 

Broadcom’s GPIO pin.  

For connection, there are three wires available. Red one is connected to 3.3 

Volts, Black is connected to the ground and Yellow is Data, connected to the physical 

pin 13 of the Raspberry Pi or Broadcom chip-specific GPIO pin 27. A 1 kOhm resistor 

is used as a pull up from the Data to VCC or Positive Supply Voltage line. As mentioned 

in previous chapter, Broadcom chip supports only one 1-Wire bus of its kind so new 

GPIO pin was introduced to operate with AM2302. It’s pin 27.  

The sensor is positioned on the side of the steel box, hitched with M4 screw. 

It is used only for environmental relative humidity measurement. Environmental 

temperature measurement is discarded and considered corrupted because the steel 

- 35 - 

 



 

box is heated from the inside and thus it makes temperature reading incorrect. For 

outside environmental temperature, DS18B20 from the previous chapter is relevant. 

 

 

 

 

3.6.2.  HIH6130 Sensor 

 Temperature and relative humidity sensor HIH6130 is a digital output-type 

sensor produced by Honeywell manufacturer. Energy efficiency and small SMD 

Surface Mount Device package combined with the price of approximately 13 Euros 

makes it an optimum choice for the needs of this project. Package is only 6 mm long 

and 5 mm wide with 8 legs later soldered to the PCB. [17] 

With 14 bit ADC, resolution is 0.04% RH and 0.025°C. Accuracy is +/-4% RH and 

+/- 1°C over a compensated range from 5°C to 50°C and from 10% RH to 90% RH. 

This compensated range is of interest because sensor is used inside the heated steel 

box which protects the whole Monitoring Tool and has a stable temperature of around 

25°C and significantly lower RH than environment. Main purpose of this sensor is to 

control temperature and relative humidity level inside the steel box and depending 

on the temperature level, inside-box heating is switched. It’s powered with 3.3 Volts 

and drains only 650 µA in full operation. I2C protocol is used for communication and 

address is 0x27. SDA and SCL lines are pulled high with 2.2 kOhm resistors. Alarm 

outputs are not used. Voltage line is decoupled with capacitors. 

Figure 12: AM2302 on the left and HIH6130 on the right [16][17] 

- 36 - 

 



 

3.7.  Pressure Sensor 

 Pressure sensor used in this project is SSCMANT006BA2A3, a board mount 

sensor produced by Honeywell manufacturer. It is part of TruStability SSC Standard 

Accuracy Silicone Ceramic series, already pre calibrated on the temperature range 

from  -20°C to +85°C. As it works as absolute pressure sensor, an internal vacuum 

reference is built inside and output value is proportional to the absolute pressure. 

[18] With the price of around 40 Euros, it definitely beats the competitive sensors in 

price-to-value ratio although is a bit above the initial planned budget for this type 

of sensor. It comes in the SMT package, with 8 legs later soldered to the PCB but 

only four of them are important for proper sensor operation. Length is 10 mm and 

width is 13,3 mm. Communication protocol is I2C with SDA and SCL lines pulled high 

using 2.2 kOhm resistors. A decoupling capacitor is added to VCC line. From the name 

label, it is easy to extract the properties of the sensor: 

• SSC – Standard Accuracy, Compensated/Amplified 

• M – SMT package 

• AN – Pressure port is single axial barbed port 

• T – Optionally: liquid media on Port 1, no diagnostics 

• 006BA – Absolute pressure, in range from 0 to 6 bar 

• 2 – I2C communication protocol, address is 0x28 

• A – Transfer function with respect to the input voltage and pressure, 10% to 

90% of VCC, 214 counts (digital) 

• 3 – Supply voltage is 3.3 VDC 

 

 

 

 

 

 

 
Figure 13: SSCMANT006BA2A3 Absolute Pressure Sensor [18] 

- 37 - 

 



 

3.8.  USB 3g Mobile Internet Dongle 

 In order to access the Internet over mobile network, many possible options 

were considered, from various modems which should be soldered to PCB to USB 

dongles. Important requirements were low power consumption, low or none current 

bursts in some operation modes, SIM card friendly and option for external antenna. 

Huawei E3131 HiLink 3g USB dongle was chosen as optimal solution. It’s paired with 

external UMTS antenna and cable with small CRC9 connector. All three parts cost 

approximately 35 Euros.  

Comparing to the competitive options, it is rather simple to use, just insert 

SIM card inside, plug it in the USB port of the Raspberry Pi and configure the 

necessary software to make it operational. Possible disadvantage was a rather big 

size of 85.40 mm in height, 27.00 mm in width and 12.45 mm in depth because the 

Monitoring Tool’s protective box size was still unknown. But as a box of 20x20 cm 

was chosen, dongle size was not an issue any more. Second very important thing to 

concern was power consumption. As the Monitoring Tool will be placed on a remote 

location, (possibly) far from the mobile provider’s transceiver station, power 

consumption will rise as system is trying to maintain stable connection with the 

mobile Internet provider transceiver station. It is known fact that 

transmitting/receiving power is proportional with distance between communicating 

sides. Thus, USB dongle’s power consumption will be greater with distance from the 

mobile provider transceiver station. Maximum allowed power consumption by device 

plugged in the USB port of the Raspberry Pi is 500 mA. As USB dongles tend to pull a 

bit more in bursts when starting up and establishing connection, let’s reduce that 

level to 400 mA, just out of precaution. The selected USB dongle fits that 

requirement as well. From power consumption measurements done in [19], we can 

clearly see that maximum power consumption is 258 mA in heavy upload using 2g 

network or 188 mA in heavy upload using 3g network.  

Additional safety mechanism to avoid current bursts when powering on the 

USB 3g dongle is added, in simple form of Raspberry Pi’s delayed boot. As it was 

mentioned before, the Monitoring Tool is made to be “plug and play”. Once it is 

connected to the power grid, all components are powered. It means that Raspberry 

- 38 - 

 



 

Pi and USB dongle will start at almost same time, with latter one being powered by 

the first one. An unwanted situation that might easily happen is that Raspberry Pi 

enters into “continuous reboot mode”. If the Raspberry Pi gets sudden current drops 

while booting, i.e. by USB dongle from USB port, it will stop the booting process and 

restart it. But when restarting the Raspberry Pi, its USB port will also experience the 

power drop thus the USB dongle will restart as well. And that is a continuous reboot 

loop which might happen if both devices start at the same time. To avoid that, a 

simple software fix was made in the Raspberry Pi’s kernel to delay the operating 

system boot for 20 seconds. Now, once the Monitoring Tool is powered on, the 

current will rush through the Raspberry Pi and power on the USB dongle. After 

approximately 20 seconds, USB dongle will already be in idle state and Raspberry Pi’s 

operating system will start the boot process. The exact steps are explained in later 

chapters, together with “free space problem” which is addressed in software 

chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Huawei E3131 USB 3g dongle with CRC9 antenna 

extender cable 

- 39 - 

 



 

3.9. Other components 

 Main components of the Monitoring System were described in previous 

chapters. Now, let’s go through the other used components, equally important for 

the overall system functionality as the previous ones.  

Electronic components include various capacitor, resistors, switches, diodes 

etc. Capacitors, tantalum and electrolytic, were mostly used for decoupling. They 

are attached between VCC and GND line to try keeping the voltage as constant as 

possible, i.e. to “smooth” the sudden changes in voltage or simply called noise. In a 

DC circuit, there is no problem of short circuit since capacitor functions like an open 

circuit. They must be soldered as close as possible to the element they are 

“protecting”. Tantalum capacitors must be soldered with caution because polarity is 

important. Resistors are mainly used as pull up or pull down or together with LED as 

current protectors. Here is the full list of electronic components used on the 

Monitoring Tool: 

• Tantalum capacitors, 1206 SMD package:  22µF x3,  100µF x1  

• Electrolytic capacitors, 1206 SMD package:  100nF x8, 220nF  x1 

• Resistors, 1206 SMD package:  100 Ohm  x2, 200 Ohm  x2, 680 Ohm  x1, 

1kOhm  x3, 2.2kOhm  x2, 2.4kOhm  x2, 4.7kOhm  x3, 100kOhm  x3 

• Chassis mount heat emitting resistors:  7.5 Ohm  x2,  10 Ohm  x1   

• DC/DC converter R-625.0P by Recom Power,  x1 

• AC/DC converter PMT-12V50W1AA by Delta Electronics PMT,  x1 

• LED control lights, 1206 SMD package,  x2 

• LED control light, wired with thread,  x1 

• Fuses 3 Amps with fuse holders 5x20 mm,  x2 

• Zener diode 5.6 V, 1206 SMD package,  x1 

• BSS138LT1G N-channel MOSFET, SOT 23 package,   x1 

• Low side switch VNN3NV04PTR-E by STMicroelectronics, SOT 223,  x2  

• 40 pins header, 2.54 mm pitch,  x2 

• 2 and 3 pin nylon connectors, male and female, 2.54 mm pitch,  x5 sets 

• 2 and 3 pin connectors, male and female, 7.62 mm pitch,  x3 sets 

- 40 - 

 



 

Other components used on the Monitoring Tool, apart from above stated 

electronic ones, are following: 

• UV resistant 3-wire cable for 230 VAC,  5m 

• UV resistant 10-wire cable,  3m 

• UV resistant Schuko male plug,  x1 

• Steel box with lock, 20 x 20 x 12 cm,  GL 66 by Hofmann,  x1 

• Aluminium L profile 15 x 15 x 200 mm,  x2 

• Steel L profile with M4 and M10 holes,  x4 

• Cable glands, M12  x3,  M16  x1 

• Universal 10A connector strip,  x8 

• Distance holders of 25 mm with M3 thread,  x4 

• Plastic tie strips, 3mm wide,  x4 

• Screws, nuts and washers, M2, M3, M4, M5  

 

Components used for the Rain Gauge and their function will be explained later, 

here is just the list of them: 

• Custom designed and 3D printed Funnel, Stand and Lever 

• Plexiglas plates,  x4 

• Reed Switch  x1, with NdFeB magnets  x2 

• Temperature sensor DS18B20,  x1 

• Heating pad, 12V 10W,  x1 

• Universal 10A connector strip,  x8 

• Cable gland, M16,  x1 

• Protective steel mesh,  x1 

• Threaded rod, M5, 18 cm long,  x4 

• Bolt screw, M4, 6 cm long,  x1 

• M4 lock nuts,  x2 

• M5 lock nuts,  x8 

• M5 nuts,  x8 

• M3 screws and nuts sets,  x6 

- 41 - 

 



 

3.10.  PCB Design  

 In the early stage of the project, electronic components were connected using 

prototyping board. After all the components were made to work together on the 

prototyping board, it was time to switch to the PCB. PCB design, including schematic, 

was done in CadSoft Eagle 7.6.0 software. First, a schematic of the whole electronic 

circuitry was done. Later on, steel box was selected and PCB dimensions had to 

match the size of the box with some extra place in the corners for wires and better 

air flow inside. PCB dimensions are 180x165 mm, with four rectangle shaped gaps in 

the corner. On the edges, there are several M3 holes to fix the PCB on the L shaped 

aluminium panel which is later fixed to the steel box. PCB costs around 85 Euros 

which is a bit over planed budget. Truth to be said, all the electronic components 

used could be fitted to a smaller and thus cheaper PCB. However, for the sake of 

simplicity, a PCB of this dimensions was designed to match the dimensions of the 

steel box and thus be properly fixed. Looking at the opened box from the bird-eye 

view, PCB and box look like an unity and it is pleasing to the eye. 

PCB is made out of two copper layers, the top and the bottom one. On the top 

one, main voltage and signalling lines are passing and all surface mount components 

are soldered there. The bottom layer is serving as auxiliary route for voltage and 

signalling lines which cannot be connected in one piece due to some obstructions 

along their way, i.e. other lines. Both copper layers are grounded and tracks that 

can be seen are signalling and voltage lines. Private library was created for most of 

the components, including Device, Package and Symbol attributes. Some components 

already have open source library from [20] and [21] and they were just “moved” into 

Private library for easier manipulation. Design grid is set to 0.25 mm. Voltage lines 

are 1.016 mm thick and signalling lines are 0.4064 mm thick. Top and bottom layers 

are connected with vias. Two cooling rectangles under low side switches were not 

named accordingly so they were not recognized thus not made by machine. Instead, 

that area was manually scratched to separate it from top grounding copper layer. 

Additionally, improvised passive copper cooling was soldered on those rectangles to 

better dissipate the unwanted heat. 

- 42 - 

 



 

 

Figure 15: Schematic of the Monitoring Tool made in Cadsoft Eagle 7.6.0 

- 43 - 

 



 

 

 

 

 

Figure 16: PCB in 1:1 ratio. Red lines represent voltage and signalling lines from Top 

layer and blue are lines from Bottom layer 

- 44 - 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: PCB Bottom layer 

Figure 17: PCB Top layer 

- 45 - 

 



 

3.11.  Rain Gauge 

 The Rain Gauge is a device for measuring precipitation. It measures all kinds 

of precipitation, i.e. any kind of condensed atmospheric water vapour falling to the 

ground. Various different approaches were already described in previous chapter. 

Now, we will focus on the one that was custom made for the needs of this project. 

It is a slightly modified version of the tipping bucket rain gauge. Water is not stored, 

it flushes out through a drain holes on the bottom. Another difference is the shape, 

it is cuboid instead of cylindrical shaped bucket.  

 The device is fully custom made, following the examples of the ones made for 

the market and the ideas described in [4], [22] and [23]. It measures 160 mm in 

width, 90 mm in length and approximately 180 mm in height. Height measurement 

is not exact, it depends on how much the top and the bottom nut are tight with 

respect to the threaded rod. It can oscillate up to 5 mm. The device consists of three 

main parts and several auxiliary ones.  

Main parts are the Funnel, the Lever and the Stand. All parts are custom 

designed and printed in 3D printer using UV resistant all-weather polymer ASA. Design 

was done using Autodesk Tinkercad, an easy-to-use and intuitive online 3D CAD 

design tool for simple projects like this one. Funnel is top part of the Rain Gauge, 

measuring 160 mm in width, 90 mm in length and 63 mm in height. It looks like 

flipped 4-sided pyramid with rectangular base. Inside, it is “empty” and that empty 

space works as a funnel. Rectangular top of the Funnel measures area of 75.64 square 

cm and narrow cylindrical drain measures 4 mm in diameter. The Stand is 160 mm 

wide, 90 mm long and 60 mm high. As the name suggests, it is a bottom part of the 

Rain Gauge and serves as a stand for the whole Rain Gauge, drain for the water and 

fulcrum around which the Lever is pivoting. It has two vertical stands which are 

holding the fulcrum, i.e. M4 threaded rod. The Lever is “middle” part of the Rain 

Gauge. It measures 105 mm in width, 30 mm in length and 40 mm in height. It has a 

5 mm in diameter cylindrical hole in the central weight distribution point and it is 

pivoting around that point over fulcrum. There is no “middle” state, it can stay only 

in one position, i.e. top left or top right. On the both sides, there are two 

compartments with volume of 14.5 cubic cm. Considering the weight of the whole 

- 46 - 

 



 

Lever together with water and pivoting angle, only 7.94 cubic cm of water is enough 

to out-weight the counterpart and turn the Lever to another side. As mentioned 

before, it can end up only in one side, there is no middle state.  

 Other auxiliary parts are protective grid, heater, temperature sensor, 

magnets, reed switch, universal 10A connector strip, Plexiglas housing, threaded 

rods, calibration screws, fulcrum screw and nuts. Protective grid is on top of the 

Funnel. It is steel mesh which protects the Funnel entrance from various types of 

dirt that might choke it. Heater is a 10W heating pad, fixed to the protective grid. 

It heats the grid once the temperature drops below 2°C and melts the snow which 

might block the Funnel entrance. And snow is also a kind of precipitation so once it 

is melted, it can be measured by the Rain Gauge. Temperature sensor DS18B20 is 

fixed to the protective grid. It is connected to the Broadcom chip-specific GPIO pin 

4 and measures the temperature to determine whether it is necessary to switch on 

the heater. Magnets are glued to the Lever. As the Lever is pivoting, they move 

together and excite(close) the reed switch once they pass nearby. The reed switch 

is connected to the Broadcom chip-specific GPIO pin 22. Inside the Rain Gauge, it is 

fixed to the Plexiglas housing in the height level which is maximum to the magnets 

on the Lever. Maximum height that magnets on the Lever can achieve is when the 

Lever is in the “middle” position between two sides(states). But as there are only 

two finite states for the Lever, that middle point is just a quick pass. Each time the 

magnets pass near the reed switch, the reed switch closes and software interrupt 

routine from the Raspberry Pi records that event. One pass equals to the one 

compartment full of water, i.e. to 7.94 cubic cm of water. Plexiglas housing sits 

between the Funnel and the Stand. It is protecting the interior of the Rain Gauge but 

as it is transparent, it allows us to see what is going on inside the Rain Gauge. On 

the front and the back are two plates, 150 mm wide, 130 mm high and 4 mm thick. 

On the sides are two plates, 72 mm wide, 130 mm high and 4 mm thick. The Funnel 

and the Stand have 4 mm wide and 5 mm deep channel shaped bearings on all four 

sides so Plexiglas plates can fit perfectly and form a nice unity. Universal connector 

strip with 8 positions is fixed on the housing plate from the inside. It serves as 

interconnection point between electric/electronic devices of Rain Gauge and the 

Monitoring Tool. All Rain Gauge’s device wires meet at that connector strip. Their 

- 47 - 

 



 

counter part is an UV resistant, 3 m long cable bundle which leads to the Monitoring 

Tool. Reed Switch has 2 wires, DS18B20 has 3 wires and heater has 4 wires or 2 per 

pole. Inside the Monitoring Tool, these wires are plugged in the appropriate 

connectors on the PCB. Four threaded rods, M5, with length of 180 mm are holding 

the whole Rain Gauge united. They pass through the M5 cylindrical holes in the 

corners of the Stand and the Funnel and are fixed with nuts under the Stand and 

above the protective grid. Calibration screws are M5 screws located on the Stand. 

They control the pivoting angle of the Lever. Fulcrum screw, M4, goes from one side 

of the vertical stand to the another side, passing through the Lever’s central weight 

distribution point. Around the fulcrum screw, the Lever pivots.  

 Principle of operation is rather easy to understand. Precipitation water is 

passing through the Funnel and tipping down. Right under the Funnel is the Lever. 

The Lever can stand only in two sides, top right or top left. That means that other 

part of the Lever is standing above the fulcrum and water is tipping inside it. Once 

the water inside that compartment reaches the volume of 7.94 cubic cm, it out-

weights the other side of the Lever, the Lever turns and water of the compartment 

drains through holes of the stand. In the meantime, the other compartment is already 

standing above the fulcrum and water is tipping inside of it. Once the Lever switches 

sides(states), magnets pass near the reed switch and excite(close) it. That event is 

recorded by software implemented interrupt routine. One event means 7.94 cubic 

cm of precipitation per 75.64 square cm of area. The measurement is expressed in 

litres per square meter of area in one hour. One compartment equals 1.2516 l/m3. 

 

 

 

 

 

 

 

 Figure 19: Rain Gauge principle of operation [22] 

- 48 - 

 



 

 

Figure 21: Stand 

Figure 20: Funnel 

- 49 - 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Lever 

Figure 23: Rain Gauge 

- 50 - 

 



 

 

Chapter 4 

Software Implementation 

 In the stage of planning the project, analysis of possible hardware and 

software solutions was done. Two main “software tools” had to be chosen in 

advance: the programing tool and the data stream network.  

 A programing tool used in this project is Python 27. It is a high level, general 

purpose programming language. As the author of this project, I had the right to use 

any programing tool. Python 27 was the optimal choice considering the fact that I 

already poses considerable knowledge and experience in Python 27, there are plenty 

available libraries and scripts which already interact with most of the components 

used in this project and moreover, it has a huge online community willing to help 

and support with tips and advices if something goes wrong. In addition, Raspberry Pi 

Foundation recommends Python, although any language which will compile for 

ARMv6 (Pi 1) or ARMv7 (Pi 2) can be used, like C, C++, Java, Scratch, and Ruby. [34] 

Data stream network used in this project is Pubnub. The service such as this 

one provides a real-time network and stream of data. A huge advantage in IoT is that 

the user can focus on the core “interest”, one does not have to think on how to 

exchange the data between communicating parties. Pubnub can be easily integrated 

in Python 27 applications and other platforms, it has a large base of use cases [35], 

network and stream are stable and free package of 300 000 messages per month is 

enough for the needs of this project. Moreover, I had some previous experience with 

Pubnub and considering everything mentioned here, Pubnub is the optimal solution.  

- 51 - 

 



 

4.1.  Setting up Raspberry Pi 

 Central processing unit of the Monitoring Tool is the Raspberry Pi 2 Model B. 

The device itself was already explained thoroughly, but now an insight in how to set 

it up will be given. The chapter is following the work in [27], since the scope of this 

project and the one in [27] are similar in some manner.  

Once ordered, the device arrived totally empty. First step was to write the 

operating system to the micro SD card. Raspbian Jessie was chosen as the optimal 

operating system. It is a version or distribution of Debian Linux Operating system, 

optimized for the Raspberry Pi. Operating system was downloaded as an Image file 

from the official Raspberry Pi site, at http://www.raspberrypi.org/downloads/. 

Later on, it was written or installed as disk image to the micro SD card using 

Win32DiskImager, an open source application.  

With a Raspbian disk image on a micro SD card, it is time to power on the 

Raspberry Pi. Software Configuration Tool appears first and there we configure that 

all the micro SD card storage is available to the operating system. It requires a reboot 

and after that we have to insert the default credentials to log in. The default 

credentials are still in use, they were not changed during the development and after 

the delivery of the whole Monitoring System.  

Username: pi 

Password: raspberry 

 At this moment, we have full access to the operating system and all of its 

features. There are several applications and software packages already preinstalled 

so they should be updated to the latest version. Of course, Internet connection is 

required for this step. To establish Internet connection, the Ethernet port should be 

connected to the router(or any other socket) using RJ45 connector.  

Find the latest available software versions: sudo apt-get update 

Upgrade current software to that version:  sudo apt-get upgrade 

 Now, we have an operating system updated to the latest version and Internet 

connection. The next step is to connect the PC and the Raspberry Pi to enable the 

- 52 - 

 



 

remote access. The PC, with Windows 7 operating system,  is used as a development 

or host computer and the Raspberry Pi as a client. From the remote access 

application’s perspective, PC is client and the Raspberry Pi is server. Important 

benefit of this way of working is that only one keyboard, mouse and monitor would 

be enough for both devices. The current IP address given by the network 

administrator should be static with some other minor updates to the file 

/etc/network/interfaces, so the final version looks like this: 

iface eth0 inet static 

address 129.27.131.22 

netmask 255.255.0.0 

gateway 129.27.131.1 

One mode of remote access is already preinstalled on the Raspberry Pi and 

runs on start up. It is SSH or Secure Socket Shell protocol which is used for secure 

operation of network services over an unsecure network. From the SSH point of view, 

the Raspberry Pi acts as a server and PC as a client. To communicate using SSH, an 

open source applications named Putty.exe and WinSCP.exe are installed on the PC. 

With Putty, we have a command line connection via SSH and we can do (almost) 

everything just like we are working directly on the Raspberry Pi. WinSCP or Windows 

Secure Copy Protocol lets us transfer the files between the PC and the Raspberry Pi 

securely. For remote login to the Raspberry Pi, the default credentials previously 

mentioned are used.  

 The third and most used way of remote access in this project is TightVNC. It 

is software for Virtual Network Computing, free for personal use. What makes it 

better than Puttty is remote GUI environment. Putty lets us use only remote 

command line from the Raspberry Pi, but with TightVNC we have a remote GUI 

environment which is quite easier to use and navigate. It is a bit more power 

demanding than basic SSH but the Raspberry Pi is fine with that since we haven’t 

done any cumbersome (graphical) operations. TightVNC does not have a file transfer 

feature so WinSCP is still the only option for that operation. TightVNC must be 

installed on both platforms, with the PC being client and the Raspberry Pi being 

- 53 - 

 



 

server. For the PC, there is an installation package on the official website and for 

the Raspberry Pi, a simple command should be executed:  

sudo apt-get install tightvncserver.  

Now, we must ensure that TightVNC starts at the boot of the Raspberry Pi, 

otherwise there is no full remote access. In the file /etc/rc.local, commands that 

run with the start-up are stored so we must append the following line to that file:  

su - pi -c '/usr/bin/tightvncserver :1' 

From this point on, every time we power on the Raspberry Pi, TightVNC is run. To 

connect from the PC, we must run the TightVNC Viewer and the address of the 

Raspberry Pi should be appended with :1, which means that we want to start the 

desktop session. Password is raspberr.  The password does look a bit awkward(or at 

least unfinished), but TightVNC allows only 8 character password so that is the best 

we could do. To sum it up, the credentials for TightVNC Viewer are the following: 

Remote Host: 129.27.131.22:1 

Password: raspberry 

Communication with PC and with Internet is working. Now, we must enable 

other communication protocols, mainly for communication with sensors. 1-Wire 

communication over 1-Wire Bus is enabled by default. However, it is not fully 

configured since there is no BIOS that checks the hardware upon boot. That being 

said, we must append the /boot/config.txt which does the “BIOS job”: 

dtoverlay=w1-gpio 

Once there is a device connected to the GPIO, with a simple command LKM or 

Loadable Kernel Module is added or removed to the Linux kernel. On the example of 

the DS18B20 temperature sensor used in this project, it looks like this: 

sudo modprobe w1-gpio 

sudo modprobe w1-therm 

Now, when we enter the /sys/bus/w1/devices directory, DS18B20 temperature 

sensor is listed with ID looking like this: cd 28-xxxx, where “xxxx” matches the 

unique serial number of the device. Namely, all the 1-Wire devices connect to the 

- 54 - 

 



 

same GPIO and 1-Wire bus. To distinct between them, each has a hard coded, unique 

serial number from the manufacturer to avoid the collision.  

SPI and I2C protocols are disabled by default. SPI is not used in this project so 

it is not of interest. To enable I2C, first we need to load the necessary kernel support 

modules. In the Advanced Options section of the Raspberry Pi Software Configuration 

Tool, we must enable the ARM I2C interface and also set the I2C Kernel Module 

to load by default. After the changes, reboot is necessary. Later on, in the file 

/boot/config.txt, we append the following lines:  

dtparam=i2c1=on 

dtparam=i2c_arm=on  

Now, we load the tools to work with the I2C devices with the following command:  

sudo apt-get install i2c-tools 

At this moment, I2C communication is enabled and fully configured. Provided that 

all the I2C devices are powered and connected accordingly, we can see the devices 

and the hexadecimal addresses they are using. With the following command, we get 

the I2C addresses map:  

sudo i2cdetect -y 1 

 

     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f 

00:          -- -- -- -- -- -- -- -- -- -- -- -- -- 

10: -- -- -- -- -- -- -- -- -- -- -- -- -- 1d -- -- 

20: -- -- -- -- -- -- -- 27 -- -- -- -- -- -- -- -- 

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

60: -- -- -- -- -- -- -- -- -- -- -- 6b -- -- -- -- 

70: -- -- -- -- -- -- -- 77 

 

- 55 - 

 



 

As we can see from the I2C address “table”, the occupied addresses are 0x1d 

which is the address of the accelerometer of IMU LSM9DDS0, 0x27 is the HIH6130 

temperature and humidity sensor, 0x6b is the gyroscope of IMU LSM9DS0 and 0x77 is 

the SSCMANT006BA2A3 pressure sensor. As we are using Python for programming, we 

need to install the appropriate modules to work with I2C communication using the 

following line: 

sudo apt-get install python-dev python-smbus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 56 - 

 



 

4.2.  Mobile Internet using 3G USB Dongle 

Internet connection is a must, in order to transmit the data from the remote 

location. As there would be no cable Internet option in the remote operating areas, 

the optimal solution was to implement the Internet connection using options from 

the Mobile Internet provider. Looking retrospectively, enabling the Mobile Internet 

feature was one of the main challenges of this whole project. Huawei E3131 HiLink 

3g USB dongle together with Hofer Telekom SIM card was used to establish the 

Internet connection. Reading the online articles, forums and blogs, it was soon 

concluded that this is a quite challenging task. The only similar works were the ones 

in [28] and [29] so this chapter is closely leaned to those blog articles. 

Once the USB dongle is plugged in the USB port, Rasbian Operating system is 

immediately asking for the authentication to mount the USB device. This is a good 

security feature from the Operating system’s point of view, but it is annoying and 

time consuming to always enter the credentials, especially when only one USB device 

will be used, totally monitored by the end owner, like in our case. In order to mount 

the arbitrary USB device automatically, without authentication, the mounting policy 

file /usr/share/polkit-1/actions/org.freedesktop.udisks2.policy must be 

edited in the following way: 

<action id="org.freedesktop.udisks2.filesystem-unmount-others"> 

<defaults> 

      <allow_any>yes</allow_any> 

      <allow_inactive>yes</allow_inactive> 

      <allow_active>yes</allow_active> 

</defaults> 

 From this point onward, our USB dongle will mount automatically, without any 

authentication needed. The other problem which emerged is the considerable free 

memory space on the Huawei E3131 HiLink 3g USB dongle. In the datasheet of the 

dongle, it is noted that it comes together with the Windows driver on the hidden disk 

partition. Although its primary use is to be the Mobile Internet dongle, Operating 

- 57 - 

 



 

system does not know that. It mounts the dongle as the storage device since there is 

some amount of free memory on the dongle. To avoid this scenario, we must install 

the usb-modeswitch program, using the following command:  

sudo apt-get install usb-modeswitch  

The program works automatically for most of the Huawei devices so we do not have 

to do anything more, it will mount the device as USB Internet modem. 

 Now, the USB dongle mounts as Internet modem, without authentication 

needed so the next step is to connect it to the Internet. For this task, a shell script 

called Sakis3g will be used. It came as a result of a project, run by Sakis Dimopoulos, 

to make an easy all-round solution for establishing a Mobile Internet connection using 

any kind of modem and operator combination. Although the author abandoned the 

project some years ago, the script still works like a charm and it saved a whole bunch 

of time then manually creating an Internet establishing script would. To make it 

work, first we need to download it from some online repository and convert it to 

executable using the following command: 

chmod +x sakis3g 

Later on, we must make it run automatically, without authentication needed. In 

other words, it must act as a system default application with super user rights. To 

do so, it must be moved to /opt directory and executable file to /usr/bin directory:  

sudo mkdir -p /opt/sakis3g/ 

sudo mv sakis3g /opt/sakis3g 

sudo chown root:root /opt/sakis3g/sakis3g 

sudo ln -s /opt/sakis3g/sakis3g /usr/bin 

In the visudo script, no authentication property must be appended in this way: 

pi ALL = NOPASSWD: /opt/sakis3g/sakis3g 

In this step, the ppp program must be installed to enable data connection: 

sudo apt-get install ppp 

- 58 - 

 



 

Now, we are ready to connect to the Internet. All we have to do is to provide the 

appropriate attributes needed by the Sakis3g program. That can be extracted from 

the mobile Internet provider’s instruction manual. In the project, Mobile Internet 

provider is Hofer Telekom. On their website, all the necessary data is available for 

the users. Sakis3g can be run in two modes: interactive mode or by providing the 

necessary attributes when called from the console. For the first use, the simplest 

way is the interactive mode. It is user friendly with nice GUI. There, we do the 

following steps to connect to the Internet, already knowing from the provider’s 

manual that our APN is webaut and credentials for authentication are empty: 

sudo sakis3g –-interactive 

Connect with 3g -> Custom APN -> webaut -> (blank) -> (blank) 

If it all worked well, a notification that Internet connection is established pops out 

on the screen. And our USB dongle’s LED light is either green or blue, meaning that 

we are connected to the 2g or 3g network, respectively. The next step would be to 

automatize this. First we generate the sakis3g success report. There we can see 

all the attributes needed to establish a connection and we simply copy the necessary 

parts of that report to the Sakis3g configuration file /etc/sakis3g.conf:  

USBDRIVER=”option”  

USBINTERFACE=”0” 

APN=”CUSTOM_APN”  

CUSTOM_APN=”webaut” 

APN_USER=””  

APN_PASS=””  

MODEM=”12d1:1506"  

From now on, every time we want to establish an Internet connection, all we have 

to do is to type the following command: 

/opt/sakis3g/sakis3g --sudo "connect" 

 Sakis3g is truly an amazing program. It does all the Internet connecting job 

by itself. However, it comes with a big oversight – it is not possible to establish the 

- 59 - 

 



 

connection again, once it is lost. Namely, Sakis3g establishes the Internet 

connection with ease, once it is run. But if the connection breaks at some point, it 

does not re-establish it again. And that is a big issue. Luckily, there is an another 

program, named UMTSkeeper which does exactly that job, in cooperation with 

Saksis3g. It is a free software under the terms of the GNU General Public License 

and HESSLA Hacktivismo Enhanced-Source Software License Agreement. First idea of 

solving the “re-establishing connection” issue was to run the Sakis3g on the start-

up. That would establish the Internet connection once the Monitoring Tool is powered 

on. It would be paired with the script that would constantly check the Internet 

connection and once it is down, it would reboot the Raspberry Pi so the Internet 

connection would be re-established using Sakis3g on the start-up. But this idea was 

abandoned once the UMTSkeeper was discovered. The program tries to re-establish 

the Internet connection once it is down by constantly calling Sakis3g. No matter 

whether connection breaks due to our fault, i.e. dongle disconnected, or due to the 

mobile Internet provider’s error, i.e. traffic congestion, it will try to re-establish the 

connection anyway. Installation procedure is straightforward, just download it from 

the online repository and place in the same folder where Sakis3g is, i.e. in 

/opt/sakis3g. It should run automatically after the boot and run constantly in the 

background to use its full potential. To enable that, we must append the following 

command to the /etc/rc.local file: 

sleep 20 

sudo /opt/sakis3g/umtskeeper --sakisoperators "USBDRIVER='option' 

USBINTERFACE='0' APN='CUSTOM_APN' CUSTOM_APN='webaut' APN_USER='user' 

APN_PASS='pass' MODEM='12d1:1506'" --sakisswitches "--sudo --console" 

--devicename 'Huawei' --log --silent --monthstart 8 --nat 'no' --

httpserver &>> /opt/sakis3g/error.log) & 

Delay of 20 seconds after the boot is necessary to avoid the possible “constant 

reboot” issue. It was thoroughly explained in previous chapters.  

 

 

- 60 - 

 



 

4.3.  PubNub IoT 

 Internet of Things or IoT is a rapidly emerging field in the IT world. IoT 

products are deployed massively in personal and commercial domains. A definition 

of IoT, simply put, is an array of network connected physical devices embedded with 

electronic sensors and actuators working on collecting and exchanging data in 

between. This project can be considered as an IoT project. The Monitoring Tool is 

equipped with various electronic sensors which collect the data and stream it over 

Mobile Internet connection to an end user. In this subchapter, data stream network 

PubNub will be explained.  

 PubNub set out in 2009 to develop a DSN or Data Stream Network for 

developers to build real-time apps as easily as building a web page. The PubNub Data 

Stream Network provides global cloud infrastructure and key building blocks for real-

time interactivity.[30] From our point of view, all we have to do to transmit and 

receive the data is to have the adequate publishing and subscribing applications built 

using PubNub’s SDK and proper Internet connection. PubNub will handle the data 

format, traffic and other possible issues. On the Monitoring Tool, there are 8 

independent python 27 scripts that transmit the data over PubNub. On our PC there 

is one python 27 script that is subscribed to the PubNub channel and collects the 

incoming data from the Monitoring Tool.  

 To start working with the PubNub Iot, first we have to sign up for their service. 

For the needs of this project, we will use the non-commercial, free user option. It 

allows us to transmit up to 300 000 messages per month which should be enough. As 

mentioned before, 8 scripts are publishing the data, out of which 5 publish the 

message each 120 seconds, one publishes 4 messages each 120 seconds, one publishes 

message each 90 seconds and the last one publishes the message each hour. On 

average, that would be 7464 messages daily and that does not exceed the monthly 

limit. The messages are short, ranging from 20 to 90 characters per message so they 

do not generate a significant data traffic and the basic Mobile Internet package of 3 

Gb from Hofer Telekom is more than sufficient for this task. Once we signed up, we 

got the unique publish and subscribe keys of our account.  

- 61 - 

 



 

The next step is to install the PubNub on our machines. Python 27 is the 

programing language used in this project so we chose the PubNub Python SDK to be 

installed. The version of Python SDK used in this project is V3.x.x. As PubNub releases 

new SDK versions from time to time, this should be updated in order to function 

properly. To install the PubNub Python SDK on PC and on Raspberry Pi, Python 27 

should be installed first together with pip package. And later, we just type the 

following command and it is all set: 

pip install pubnub 

 On the PubNub website, there are many tutorials on how to publish and 

receive the messages. In this project, all the messages will be published by Raspberry 

Pi and received by an application running on PC. As it can be seen in the codes 

provided in Appendix, publishing “routine” is always the same. The only different 

thing is the Channel. PubNub lets us define many channels on the same account, 

using the same publish and subscribe keys. In this project, 8 channels are used to 

differ the messages. In the Flowchart Diagram, it can be seen which channel 

corresponds to which script. Publishing “routine” algorithm goes like this: 1) import 

PubNub library to the Python script, 2) provide the adequate publish and subscribe 

keys, 3) select the channel for communication, 4) define the calback function and 5) 

call the callback function on message you want to publish on the channel. For the 

example of Python code, let’s take the “Internet_connection_LED.py” script to see 

how it looks like(of course, keys are hidden): 

1. from pubnub import Pubnub  
2.   
3. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
4.  
5. channel = 'Internet_LED' 
6.  
7. def callback(message, channel):   
8.     print(message)   
9.    
10. pubnub.publish(channel, message)   

 

Once the message is published, it is taken over by the PubNub’s streaming 

service and it “floats” in the channel. To read the message, an application using 

adequate subscribe and publish keys paired with the proper channel should be made. 

- 62 - 

 



 

The message is nothing but a string of characters and it can be received by any other 

application, not necessarily a Python application. Having said that, in the future, any 

kind of mobile or any other application can be made to read the streamed messages. 

In this project, a simple application to retrieve the messages and store them was 

made in Python 27. Application is subscribed to the PubNub account and to all of the 

8 channels. It fetches the messages and stores them in proper log files, based by 

their content and channel. The full code can be found in the Appendix part, but the 

subscription “routine” is the same for all. Here is an example on how to subscribe to 

one of the channels and store the messages in the log file; the subscription “routine” 

will match the publishing “routine” from the previous paragraph: 

1. from pubnub import Pubnub   
2.    
3. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
4.  
5. channel6 = 'Internet_LED'   
6.  
7. def callback_channel6(message, channel):   
8.     print(message)   
9.     with open('Internet_LED.txt', 'a') as logfile:   
10.         logfile.write(message)   

 

 

 

 

 

 

 

 

 

- 63 - 

 



 

 - 64 - 

 



 

4.4.  Subsystems implementation  

 The Monitoring System consists of several, so called, subsystems. Subsystem 

can be defined as a Python script which controls a specific electronic sensor or some 

other electronic element of the whole system. Apart of some specific function, each 

subsystem generates a message(or report) of its actions together with timestamp. 

The message is stored in the appropriate log file on the Raspberry Pi and also 

published using specific PubNub channel. Every subsystem starts with the boot of 

Raspberry Pi, delayed by 90 seconds in order to let the operating system stabilize 

itself and establish the Internet connection. All subsystem’s Python scripts and their 

log files are located in the /home/pi/Monitor_Tool directory, together with 

Monitor_Tool.sh bash script which starts them with the boot, delayed by 90 

seconds. The purpose of the delay is to let the operating system stabilize itself and 

establish the Internet connection. Once started, they operate in the background all 

the time. This was done by appending the following lines to the /etc/rc.local file: 

sleep 90 

sudo /home/pi/Monitor_Tool/Monitor_Tool.sh) & 

There are 8 various subsystems implemented. On the Flowchart Diagram on 

the previous page, it can be seen what is the purpose of each of them. Here, 

functionality of each subsystem will be explained and the full Python code is located 

in the Appendix part.  

 

4.4.1.  Inertial Measurement Unit 

As the title suggests, this subsystem deals with Inertial Measurement Unit 

LSM9DS0. It retrieves the data from the IMU’s accelerometer and gyroscope, 

implements the Complementary Filter, publishes the data over PubNub, stores the 

data to the log file and sleeps for 120 seconds. Before coding anything, first we have 

to install Python modules smbus.py and LSM9DS0.py. First one is for I2C 

communication and the latter one maps the IMU’s registers. Having that installed, 

- 65 - 

 



 

we can proceed with coding. PubNub publishing “routines” does not require any 

additional explanation since they were thoroughly explained in previous subchapter.  

Now, we must initialise accelerometer and gyroscope with proper settings. 

For accelerometer, the following settings are used: 6.25 Hz data rate, X, Y, Z axis 

enabled, antialiasing filter bandwidth is 773 Hz, +/- 2G full scale. For gyroscope, the 

following settings are used: 95 Hz output data rate with 12.5 cut-off, X, Y, Z axis 

enabled, 245 dps full scale. Before entering the loop, all angle values must be set to 

zero. After we enter the loop, first we read the registers. Then we deal with 

gyroscope and accelerometer reading before combining them with the 

Complementary filter. For gyroscope, first we calculate the loop time or how much 

time passed between two readings, then convert the readings to degrees per second 

and calculate the angles from the gyroscope. For the accelerometer, first we convert 

the readings to degrees and scale them in -180 to 180 degrees range. Then we 

implement the Complementary filter by fusing the final readings of gyroscope and 

accelerometer in order to filter out the gyroscope’s drift and accelerometer’s noise. 

For the output, there are four messages generated. The messages express 

accelerometer’s X angle, accelerometer’s Y angle, Complementary filter’s X angle 

and Complementary filter’s Y angle, respectively. Each message is published over 

PubNub and stored in the log file.  

Pyhon Script: Inertial_measurement_unit_LSM9DS0.py 

Log File: Inertial_measurement_unit.txt 

PubNub Channel: Inertial_measurement_unit 

Message Example:  

2017-02-07 00:50:29.828843   -93.1468221879 deg Acc_X angle 

2017-02-07 00:50:29.915175   149.264512802 deg Acc_Y angle 

2017-02-07 00:50:29.995041   -91.8014598064 deg CF_X angle 

2017-02-07 00:50:30.065213   152.519593957 deg CF_Y angle 

 

 

- 66 - 

 



 

4.4.2.  Internal Heat Control 

In this subsystem, the title is also quite suggestive. This subsystem controls 

the temperature and humidity inside the Monitoring Tool steel box and switches the 

heaters if necessary. Temperature and relative humidity sensor HIH 6130 is used to 

monitor the conditions inside the box. Once the temperature drops below 25°C, the 

heating is switched on. Three heat emitting chassis mount resistors are installed on 

the lower side of the steel box, with 24 Watts of power all together. Python module 

smbus.py is necessary because HIH 6130 uses I2C communication protocol. 

Additionally, Adafruit’s library containing HIH6130.io is also needed. It maps the 

registers of the sensor together with already implemented functions.  

Algorithm is quite straight forward – read the temperature, switch the heaters 

on if temperature is below 25°C, publish the report message, sleep for 120 seconds 

and repeat. In python script, first we set the GPIO pin 23 to output mode because it 

controls the low side switch on which heaters are connected. Then we read the 

temperature and relative humidity and set the GPIO pin 23 high if temperature is 

below 25°C. Message containing current temperature, relative humidity and heaters 

state is published over PubNub and stored in the log file.  

Pyhon Script: Inside_box_heating_control_HIH6130.py 

Log File: Inside_box_heating_control.txt 

PubNub Channel: Inside_box_heating_control 

Message Example:  2017-02-17 13:11:12.837960   RH: 20.19 %  

Temperature: 26.1 degC   Inside box heating OFF 

 

4.4.3.  Rain Gauge Heat Control 

On top of the Rain Gauge, there is a steel grid installed, together with heating 

pad and DS18B20 temperature sensor. Steel grid serves as a protection from dirt and 

other things that may block the Funnel. Snow and ice might collect on the grid and 

also block the Funnel and that is why 10 Watts heating pad is installed on the grid. 

Algorithm is simple, almost the same as in the previous subchapter. Read the 

- 67 - 

 



 

temperature, switch the heater on if temperature is below 2°C, publish the report 

message, sleep for 120 seconds and repeat. Python script is also quite similar to the 

one in previous chapter, just the temperature sensor and GPIO pin are different, 

here is pin 24 used. Temperature sensor is DS18B20. To read its value, first we must 

enable the 1-Wire communication in Raspbian and read the data from the sensor’s 

location in /sys/bus/w1/devices.  

In the sensor’s datasheet, the format of the reading is explained. It takes 

couple of operations to convert the reading to decimal temperature in degrees 

Celsius. Reading is in 16-bit “LSB MSB” format. First we rotate the data and drop the 

space in between so we get the “MSBLSB” format. The last 4 bits tell us the value of 

temperature after decimal point or fractions. The least possible fraction is 1/16 or 

0.0625°C. First 4 bits of the reading are the sign bit, they should be omitted. Inner 

8 bits give the temperature. If the reading in decimal is below 128, it means that 

temperature is positive or above 0°C and we take it as is, adding the fraction part. 

If the reading in decimal is above 128, it means that temperature is negative or 

below 0°C. In this case, we must drop the MSB and convert the other 7 bits to decimal 

format. To that number, we add the complement of fractions part of the reading. 

And a “minus” in front because this is the negative or below 0°C temperature. If the 

temperature drops below 2°C, the heater is switched on. 

Pyhon Script: Rain_gauge_heating_control_DS18B20.py 

Log File: Rain_gauge_heating_control.txt 

PubNub Channel: Rain_gauge_heating_control 

Message Example: 2017-02-11 14:40:25.138906   Rain gauge DS18B20 

reporting: 2.9375 degC   Rain gauge heating is ON. 

 

4.4.4.  Rain Gauge Precipitation Measurement 

 Precipitation is measured using the Rain Gauge. The principle of operation is 

explained in detail in “hardware” chapter. Basically, there are two compartments 

on the Lever. And there are only two states in which it can be, meaning that only 

one compartment can be on top. Once the compartment on top is full enough with 

- 68 - 

 



 

water to overweight its bottom part, it switches to other side. During that move, a 

magnet mounted on the Lever closes the reed switch. The reed switch is connected 

to GPIO pin 22 and controlled by interrupt subroutine. Each closing of the reed switch 

adds 0.00794 litres of water to the precipitation count.  0.00794 litres is the volume 

of one compartment. At the start of the full hour, a message containing the volume 

of precipitation scaled to litres per square meter is published over PubNub and stored 

in log file.  

In python script, first we define the volume of the compartment, area of the 

Funnel and scale it to square meter. Then we set the GPIO pin 22 to input, activate 

the internal pull up resistors and turn off the annoying GPIO warnings. Interrupt 

routine is activated on a falling edge, i.e. the move from +3.3V to GND, and calls the 

interrupt event function. All the function does is adding one compartment volume to 

the precipitation counter. Additionally, bounce time of 600 ms is added to avoid the 

possible switch de-bouncing effect. Every full hour, a message containing timestamp 

and volume of the precipitation in litres per square meter is published and rain 

counters are set to zero.  

Pyhon Script: Rain_gauge.py 

Log File: Rain_gauge.txt 

PubNub Channel: Rain_gauge 

Message Example: 2017-02-04 22:00:01.216782    5.00630517024 litres of 

precipitation per square m in last hour 

 

4.4.5.  Environmental Temperature Measurement 

Environmental temperature is measured using DS18B20 temperature sensor. 

Sensor’s principle of operation is already explained in paragraph 4.4.3. All this 

subsystem does is it measures the environmental temperature, publishes the reading 

on the PubNub channel, stores the message in the log file, sleeps for 120 seconds 

and repeat. 

Pyhon Script: Outside_temperature_DS18B20.py 

- 69 - 

 



 

Log File: Outside_temperature_DS18B20.txt 

PubNub Channel: Outside_temperature_DS18B20 

Message Example: 2017-01-19 13:23:17.961958   7.4375 degC 

 

4.4.6.  Environmental Relative Humidity Measurement 

Relative humidity is measured using AM2302 sensor. It is an encased version 

of DHT22 sensor so the same python libraries can be used for this sensor. Although 

this sensor reads temperature as well, this reading is not used because it is 

corrupted. As it was explained before, the sensor is placed on the steel box which is 

heated so the temperature reading is always couple of degrees Celsius above the real 

environmental temperature. The function of this subsystem is as simple as it can be 

– read the relative humidity, publish the reading on the PubNub channel, store the 

message in the log file, sleep for 120 seconds and repeat. Python library 

Adafruit_DHT provides the functions for reading the sensor data.  

Pyhon Script: Outside_humidity_AM2302.py 

Log File: Outside_humidity.txt 

PubNub Channel: Outside_humidity 

Message Example: 2017-02-11 05:08:20.498793   65.4 % RH 

 

4.4.7.  Pressure Measurement 

Absolute pressure is measured using SSCMANT006BA2A3 sensor. Same as for 

temperature and humidity reporting subsystems, this subsystem also has a simple 

function – read the absolute pressure, publish the reading over PubNub channel, store 

the message in the log file, sleep for 120 seconds and repeat. As this sensor uses I2C 

communication protocol, python library Adafruit_GPIO.I2C is used as it has already 

implemented I2C reading functions. The reading format is explained in detail in 

sensor’s datasheet. Couple of operations have to be done to turn the raw reading 

into pressure in bars.  

- 70 - 

 



 

In python script, first we define the basic sensor properties. Reading is stored 

in 14 bit format, which is 16384 decimal counts. 10% of this number is 1638 and 90% 

of this number is 14746. Raw reading should be in between those boundaries. 

Sensor’s maximum pressure is 6 bars and minimum is 0 bars. Using 

Adafruit_GPIO.I2C function, we get the sensor reading in unsigned 16 bit little 

endian format. First 2 MSB are neglected to get 14 bit reading and using pressure 

function from datasheet, we get the absolute pressure in bar.  

Pyhon Script: Pressure.py 

Log File: Pressure.txt 

PubNub Channel: Pressure 

Message Example: 2017-01-20 16:26:53.266635   0.985047299359 bar 

 

4.4.8.  Internet Connection Monitor 

This subsystem controls if the Internet connection is active. Every 90 seconds 

Internet connection is checked by pinging www.google.com, status of the connection 

is published on the PubNub channel and message is stored in the log file. Moreover, 

LED placed on the Monitoring Tool steel box is illuminated green if there is an active 

Internet connection. LED is connected to BSS138 N-channel transistor which is 

controlled by GPIO pin 18. During the testing period of four weeks, Internet 

connection was active for more than 99% of time, with couple of connection drops 

not longer than couple of minutes each. That can be considered as a very good result, 

meaning that more than 99% of the messages will be streamed over PubNub. The 

missing ones will be still saved to log file so they can be extracted from there if 

necessary.    

Pyhon Script: Internet_connection_LED.py 

Log File: Internet_LED.txt 

PubNub Channel: Internet_LED 

Message Example: 2017-01-16 13:58:38.547480   Internet connection is 

ON. Outside LED is GREEN. 

- 71 - 

 



 

 

Chapter 5 

Testing and Results 

The whole Monitoring System was planned, designed, made and initially tested 

inside the lab, enjoying comfort conditions. Once it was working properly, it was 

time to test it in the real outdoor conditions. Inside the lab, it was not possible to 

simulate the outdoor weather conditions, precipitation, etc. Testing was done during 

winter time, January-February 2017 in Graz, Austria. In the first week of outdoor 

testing, all flaws and errors that were concealed in the lab testing conditions,  came 

to light. Once fixed, the device operated properly for the next 4 weeks, earning itself 

a “green light”, meaning that all the problems are solved, device is fully operational 

and it is ready to be delivered to the final user.   

In the following subchapters, testing results will be presented together with 

previously mentioned issues and their fix. Results will not be commented, they will 

be given as it is. The idea behind this project was to design a standalone system for 

collecting and delivering certain sensor data. Post processing of the data and drawing 

conclusion is a job of a civil engineers.   

 

 

 

 

 

- 72 - 

 



 

5.1.  Issues During Testing & Solutions  

 The Rain Gauge is made to measure precipitation. Water is passing through 

the Funnel and tipping into one of the compartments of the Lever. Once the 

compartment is full enough to over-weight the other part of the Lever, the Lever 

pivots around the fulcrum and switches side(state). Meanwhile, magnets on it excite 

the reed switch and software interrupt routine marks the event. But how much 

exactly is “full enough”? In the design phase, the Lever’s mass was unknown. It 

depends upon the material, magnets and quality of printing. It was estimated to 

weigh about 40g, but just as precaution, the compartment volume was made to over-

weight the Lever even if it weighs 60g. Therefore, each compartment has a volume 

of exactly 14.5 cubic cm. Additionally, two calibration screws were added under 

each side of the Lever to adjust the pivoting angle. Once the Rain Gauge was 

assembled, calibrating screws were adjusted and volume to over-weight was exactly 

measured. Volume of the compartment to over-weight the other part of the Lever is 

exactly 7.94 cubic cm. This was used later in the software implementation, so each 

interrupt event of the Rain Gauge is expressed as 7.94 cubic cm of precipitation.  

 In the PCB design phase, heat dissipation rectangles for low side switches were 

not labelled accordingly and machine did not make them. Therefore, they were made 

by hand, simply by scratching a rectangle on the top layer around low side switch 

and disconnecting it from the whole top layer. Low side switches are controlling the 

inside box heat resistors and the Rain Gauge heating pad. They feature a thermal 

shutdown option. If their inner temperature goes above 150°C [25], shutdown occurs 

and there is no other way to switch them on except repowering the whole system, 

i.e. unplugging from the electrical power grid and plugging back again. During 

testing, they were ON for longer period of time as it was winter time and that 

resulted in often shutdowns. Obviously, the heat dissipation rectangles were not big 

enough. Therefore, an improvised copper-made heat sinks with good ventilating 

properties were soldered above the heat dissipating rectangles to enhance the heat 

dissipation. That was the solution for thermal shutdown.  

 In the planning phase, it was decided that part of the system that will operate 

outdoors, i.e. the Monitoring Tool, has to be encased in airtight steel box. It will 

- 73 - 

 



 

protect the system against humidity, dirt, corrosion, insects and other unwanted 

stuff. According to that, an IP66 standard steel box was ordered. System was placed 

inside and during test phase, it was noticed that considerable amount of water is 

collected on the bottom of the box. That was totally unwanted state. Why was that 

so? As mentioned previously, system inside the box incorporates heat emitting 

resistor in order to maintain the stable temperature of approximately 25°C inside. 

But as outdoor temperature during testing phase was way below 25°C, there was 

always a significant difference between inside box temperature and outdoor 

temperature. And there was no air exchange between. That resulted in higher 

pressure inside the box which lead to higher relative humidity comparing to the 

environmental temperature. And the final result was condensed water on the sides 

of the box. In order to overcome this problem, isobaric heating solution was 

introduced. On the bottom of the box, two M5 holes are drilled to enable air flow 

between environment and inside box. Therefore, the inside-box and environmental 

pressure are the same but as it is warmer inside the box, the relative humidity inside 

the box is significantly lower. The results from testing also confirm that – comparing 

the environmental relative humidity measurement with the one inside the box. That 

means that no water is condensed inside the box any more. This solution is well 

explained in the Figure 24.   

Figure 24: Changes in relative humidity [26] 

- 74 - 

 



 

 Optimal heating power for inside box heating was hard to calculate or 

estimate. As it was mentioned in the previous paragraph, the box is not airtight any 

more. Now it exchanges air with the environment. That means that additional 

heating power is needed in order to maintain the stable temperature of 

approximately 25°C inside the box. The raw calculation of the required heating 

power considered only air inside the box. Density of air multiplied with box volume 

gives us air mass in kg. Air mass multiplied with specific heat capacity of air 

multiplied with temperature differential gives us required energy in kJ. Power in 

Watts can be considered as Joules per second. Applying the proper values for all 

variables in the previous equation, result for worst case scenario is following – with 

10W of heating power air inside the box should be heated by 25°C in 29 seconds. But 

that turned out to be totally wrong. First of all, the steel box is more heat conducting 

than isolating. Therefore, it is hard to keep it on the stable temperature because it 

exchanges heat with environment thus getting cooler. And the heat dissipating 

chassis mount resistors were mounted on the steel box so significant heat was also 

exchanged with environment instead with inside box. Additionally, there are holes 

in the bottom for air exchange with environment. Trials and errors method during 

testing phase was the only solution to find optimal heating power. First, two chassis 

mount resistors of 7.5 Ohm in series were placed on the bottom of the box. Powered 

by 12 Volts, the dissipated heat was 9.6 Watts or 4.8 Watts per resistor. But as that 

wasn’t enough, another 10 Ohm chassis mount resistor was added in parallel with 

the previous ones. Powered by 12 Volts, the dissipated heat on the latter resistor is 

14.4 Watts. All together that is 24 Watts of heating. And from the testing results, we 

can conclude that it is enough even in cold winter nights.  

  During the testing phase, it was noticed that Raspberry Pi is working slower 

from time to time, becoming more sluggish. A lot of data is processed, the buffers 

are not properly cleaned and RAM is filling up. SD card maybe keeps corrupting. An 

easy solution was to give fresh start to the system from time to time. Every day at 

00:05, Raspberry Pi is rebooted. In order to do that, /etc/crontab file must be 

edited. The following line is appended to the file: 

5 0 * * *  root  reboot 

- 75 - 

 



 

5.2.  Testing Period Results 

 

Figure 25: Relative Humidity measurement, in [%] 

Figure 26: Precipitation measurement, scaled to litres per square meter per hour 

- 76 - 

 



 

 

Figure 28: Temperature measurement, in [degC] 

Figure 27: Atmospheric or Barometric Pressure measurement, in [bar] 

- 77 - 

 



 

 

Figure 29: Comparison of IMU's X axis angle by Accelerometer and Complementary filter, in [deg] 

Figure 30: Comparison of IMU's Y axis angle by Accelerometer and Complementary filter, in [deg] 

- 78 - 

 



 

 

Chapter 6 

Conclusion 

The Monitoring System is standalone system made for observing the behaviour 

of retaining structure. Once the Monitoring Tool is mounted on the retaining 

structure and plugged to the 230 VAC power grid, it immediately starts with 

collecting the various sensor data and transmitting it to the final user over mobile 

Internet connection using PubNub stream service. Sensor data can be split into 

retaining structure’s properties, i.e. inclination, and environmental properties. 

Proper fusion of those data will give us an insight in retaining structure’s behaviour. 

 To the best of my knowledge, no similar work has been done yet and published 

in some form since the devices of this type are mainly for commercial use. One of 

the main ideas behind this system is to make it cheaper than its rivals. It is still 

unknown if the Monitoring System can outperform its commercial rivals in precision 

and reliability, but it surely outperforms them in price and customization options.  

 The project was very challenging, yet interesting. Considering the fact that 

this is my very first time to do a whole project of this scope, the Monitoring System 

can be considered a job-well-done, in my humble opinion. 

In this Thesis all the stages of the Monitoring System development were 

thoroughly explained, together with all the encountered challenges, issues and their 

solutions. Just by following the work presented in this thesis, one should be able to 

understand the idea behind every part of the system and reproduce the fully 

operational version by himself with credits to the author.  

- 79 - 

 



 

6.1.  Future Work 

 The Monitoring System is far from a finished project. Although it works well 

and meets all the requirements set prior to the execution, there are many possible 

improvements in all directions.  

From the hardware perspective, the Monitoring Tool behaves well as a 

standalone device. Possible upgrade should go in direction of mobility, i.e. battery 

pack. Solar panel system together with rechargeable battery pack would be a huge 

improvement to the system because it could be installed in the remote places where 

electrical grid is not available. But that would require significant reduction in power 

consumption of certain devices inside the Monitoring Tool, especially heaters and 

USB mobile Internet dongle.  

 From the software perspective, potential improvements are countless. The 

ones that ought be done from time to time are software updates. For instance, 

PubNub issues a new SDK or Software Development Kit every little while. Current 

version for Python is V3. Software subsystems which use the services from PubNub 

should be updated to the newest version once it is issued in order to function 

properly. Automatic update is not a solution since new SDK requires certain 

adjustments in the programming code.  

Subscriber or Client options and platforms are numerous. The one which is 

made as a part of the Monitoring System is simple Python27 script for Windows. All 

it takes to read data with some other device, like mobile phone, is a proper mobile 

application with PubNub publisher and subscriber key from the Monitoring System.  

 The Inertial Measurement Unit is quite precise in its measurements. Maybe 

even “too much” precise, e.g. it senses every little vibration even though it is set to 

the lowest possible sampling rate. What might be done in a future work is some kind 

of filter for “false” vibrations. Additionally, inertial measurement unit might be more 

precisely calibrated in certain angle range. For instance, if the retaining structure is 

leaned by 30°, the inertial measurement unit should be as precise as possible in the 

angle range of 25° to 35°, it does not have to be precise in the full angle spectrum.  

- 80 - 

 



 

 The Monitoring Tool is made to be a standalone, plug-and-play device. It is 

just enough to mount it and plug it into electric power grid and it will do all the job 

by itself. From the testing results, it can be seen that Internet connection is ON for 

more than 98% of the time. As the Monitoring Tool was planned to collect sensor data 

and transmit it over PubNub and Internet connection is ON for majority of the time, 

it was concluded that some minor non-transmitted and internally stored data can be 

neglected. Therefore, no SSH tunnel over mobile Internet network was made to 

communicate with the Monitoring Tool because there was no need for that. And it is 

rather complicated to achieve since it mostly depends upon the security permissions 

from the mobile network provider. That being said, the only way to communicate 

with the device is to have physical access, but SSH tunnel would really be useful 

considering the fact that device will be mounted on some (far) remote place. 

The Rain Gauge’s accuracy can be improved as well. Currently, the Rain Gauge 

measures litres per hour and then resets the counter every full hour. Therefore, it is 

unable to represent the small-scale precipitation with temporal variability. Solution 

to this would be higher sampling rate and dynamic Rain Gauge precision. That 

problem, together with plausible solution, is addressed in [24].  

Another issue should be addressed to the Rain Gauge and that is its size. The 

Rain Gauge made in this project is rather small with insufficient funnel area to reach 

proper accuracy. As it is stated in [4], to measure 0.2 mm of rainfall reliably it 

requires a funnel of at least 500 cm2 with tipping intervals of 0.1, 0.2, 0.25, 0.5 and 

1 mm. The area here is way smaller and tipping intervals are unknown because they 

were not measured. This Rain Gauge was made to match the size of the box so they 

could be mounted together. But if it is considered not accurate enough, then a new 

rain gauge should be made following the observations in [4] and error correction in 

[24]. 

  

 

 

 

- 81 - 

 



 

Appendix 

Internal Heat Control  

1. #!/usr/bin/python   
2.    
3. #Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
4.    
5. import sys   
6. import RPi.GPIO as GPIO   
7. from HIH6130.io import HIH6130   
8. import time   
9. import datetime   
10. from pubnub import Pubnub   
11.    
12. #GPIO pin which is used to activate the heat emitting resistors over low side switch

   
13. heater_pin = 23 #Broadcom pin 23 (On board soldered pin 16)   
14.    
15. #neglect the warning from GPIO   
16. GPIO.setwarnings(False)   
17.    
18. #use the GPIO notaion from RPi's Broadcom processor   
19. GPIO.setmode(GPIO.BCM)   
20.    
21. #set the controlling GPIO pin to output   
22. GPIO.setup(heater_pin, GPIO.OUT)   
23.    
24. #Setting up the initial settings for Pubnub communication   
25. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
26. channel = 'Inside_box_heating_control'   
27. def callback(message, channel):   
28.     print(message)   
29.    
30. #loop that will perform the heating control   
31. while True:   
32.     #read the values from the HIH6130 humidity and temperature sensor located inside

 the Monitor Tool box   
33.     try:       
34.         rht = HIH6130()   
35.         rht.read()   
36.     except:   
37.         pass   
38.        
39.     #if the device is not connected i.e. there is not such device on the i2c bus.   
40.     if rht.fault is 2:   
41.         #turn OFF the heating   
42.         GPIO.output(heater_pin, GPIO.LOW)   
43.            
44.         #report output format   
45.         measurement = '\n {0:} \t Inside box HIH6130 reporting: Something is wrong..

. Could not find i2c device. Inside box heating OFF'.format(datetime.datetime.now())
   

46.         print measurement   
47.         message = measurement   

- 82 - 

 



 

48.            
49.         #save output to the log file   
50.         with open('/home/pi/Monitor_Tool/Inside_box_heating_control.txt', 'a') as lo

gfile:   
51.             logfile.write(message)   
52.            
53.         #publish the output on the pubnub channel   
54.         pubnub.publish(channel, message)   
55.         sys.exit(0)   
56.        
57.     #if the device is visible on the i2c bus but for some reason, we can't read the 

data from it   
58.     if rht.fault is 3:   
59.         #turn OFF the heating   
60.         GPIO.output(heater_pin, GPIO.LOW)   
61.            
62.         #report output format   
63.         measurement = '\n {0:} \t Inside box HIH6130 reporting: Something is wrong..

.  Could not read from i2c device located at 0x27. Inside box heating OFF'.format(da
tetime.datetime.now())   

64.         print measurement   
65.         message = measurement   
66.            
67.         #save output to the log file   
68.         with open('/home/pi/Monitor_Tool/Inside_box_heating_control.txt', 'a') as lo

gfile:   
69.             logfile.write(message)   
70.            
71.         #publish the output on the pubnub channel   
72.         pubnub.publish(channel, message)   
73.         sys.exit(0)   
74.        
75.     #if inside box temperature is below 25 degC, activate the inside box heating   
76.     if rht.t < 25:   
77.         #turn ON the heating   
78.         GPIO.output(heater_pin, GPIO.HIGH)   
79.         #report output format   
80.         measurement = '\n {2:} \t RH: {0} %\t Temperature: {1} degC \t Inside box he

ating ON'.format(rht.rh, rht.t, datetime.datetime.now())   
81.     else:   
82.         #turn OFF the heating   
83.         GPIO.output(heater_pin, GPIO.LOW)   
84.         #report output format   
85.         measurement = '\n {2:} \t RH: {0} %\t Temperature: {1} degC \t Inside box he

ating OFF'.format(rht.rh, rht.t, datetime.datetime.now())   
86.            
87.     print measurement   
88.     message = measurement   
89.        
90.     #save output to the log file   
91.     with open('/home/pi/Monitor_Tool/Inside_box_heating_control.txt', 'a') as logfil

e:   
92.             logfile.write(message)   
93.                
94.     #publish the output on the pubnub channel   
95.     pubnub.publish(channel, message)   
96.        
97.     #get some rest   
98.     time.sleep(120)   

 

 

- 83 - 

 



 

Inertial Measurement Unit 

1. #!/usr/bin/python   
2.    
3. #   Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
4. #   Followed the example of BerryIMU guide of ozzmaker.com    
5. #   Getting usable angles using a Complementary filter.   
6.    
7. import smbus   
8. import time   
9. import math   
10. from LSM9DS0 import *   
11. import datetime   
12. from pubnub import Pubnub   
13. bus = smbus.SMBus(1)   
14.    
15. #Setting up the initial settings for Pubnub communication   
16. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
17. channel = 'Inertial_measurement_unit'   
18. def callback(message, channel):   
19.     print(message)   
20.    
21. #initial values which are subject to change, with respect to our needs   
22. RAD_TO_DEG = 57.29578   
23. M_PI = 3.14159265358979323846   
24. G_GAIN = 0.00875  # [dps/LSB]  +-245 dps   
25. CFC =  0.4      # Complementary filter constant   
26.    
27. #functions to write data to accelerometer, magnetometer and gyroscope   
28. def writeACC(register,value):   
29.     bus.write_byte_data(ACC_ADDRESS , register, value)   
30.     return -1   
31.    
32. def writeMAG(register,value):   
33.     bus.write_byte_data(MAG_ADDRESS, register, value)   
34.     return -1   
35.    
36. def writeGRY(register,value):   
37.     bus.write_byte_data(GYR_ADDRESS, register, value)   
38.     return -1   
39.    
40. #functions to read data from XYZ axis of accelerometer   
41. def readACCx():   
42.     acc_l = bus.read_byte_data(ACC_ADDRESS, OUT_X_L_A)   
43.     acc_h = bus.read_byte_data(ACC_ADDRESS, OUT_X_H_A)   
44.     acc_combined = (acc_l | acc_h <<8)   
45.     return acc_combined  if acc_combined < 32768 else acc_combined - 65536   
46.    
47. def readACCy():   
48.     acc_l = bus.read_byte_data(ACC_ADDRESS, OUT_Y_L_A)   
49.     acc_h = bus.read_byte_data(ACC_ADDRESS, OUT_Y_H_A)   
50.     acc_combined = (acc_l | acc_h <<8)   
51.     return acc_combined  if acc_combined < 32768 else acc_combined - 65536   
52.    
53. def readACCz():   
54.     acc_l = bus.read_byte_data(ACC_ADDRESS, OUT_Z_L_A)   
55.     acc_h = bus.read_byte_data(ACC_ADDRESS, OUT_Z_H_A)   
56.     acc_combined = (acc_l | acc_h <<8)   
57.     return acc_combined  if acc_combined < 32768 else acc_combined - 65536   
58.    

- 84 - 

 



 

59. #functions to read data from XYZ axis of magnetometer   
60. def readMAGx():   
61.     mag_l = bus.read_byte_data(MAG_ADDRESS, OUT_X_L_M)   
62.     mag_h = bus.read_byte_data(MAG_ADDRESS, OUT_X_H_M)   
63.     mag_combined = (mag_l | mag_h <<8)   
64.     return mag_combined  if mag_combined < 32768 else mag_combined - 65536   
65.    
66. def readMAGy():   
67.     mag_l = bus.read_byte_data(MAG_ADDRESS, OUT_Y_L_M)   
68.     mag_h = bus.read_byte_data(MAG_ADDRESS, OUT_Y_H_M)   
69.     mag_combined = (mag_l | mag_h <<8)   
70.     return mag_combined  if mag_combined < 32768 else mag_combined - 65536   
71.    
72. def readMAGz():   
73.     mag_l = bus.read_byte_data(MAG_ADDRESS, OUT_Z_L_M)   
74.     mag_h = bus.read_byte_data(MAG_ADDRESS, OUT_Z_H_M)   
75.     mag_combined = (mag_l | mag_h <<8)   
76.     return mag_combined  if mag_combined < 32768 else mag_combined - 65536   
77.    
78. #functions to read data from XYZ axis of gyroscope   
79. def readGYRx():   
80.     gyr_l = bus.read_byte_data(GYR_ADDRESS, OUT_X_L_G)   
81.     gyr_h = bus.read_byte_data(GYR_ADDRESS, OUT_X_H_G)   
82.     gyr_combined = (gyr_l | gyr_h <<8)   
83.     return gyr_combined  if gyr_combined < 32768 else gyr_combined - 65536   
84.      
85. def readGYRy():   
86.     gyr_l = bus.read_byte_data(GYR_ADDRESS, OUT_Y_L_G)   
87.     gyr_h = bus.read_byte_data(GYR_ADDRESS, OUT_Y_H_G)   
88.     gyr_combined = (gyr_l | gyr_h <<8)   
89.     return gyr_combined  if gyr_combined < 32768 else gyr_combined - 65536   
90.    
91. def readGYRz():   
92.     gyr_l = bus.read_byte_data(GYR_ADDRESS, OUT_Z_L_G)   
93.     gyr_h = bus.read_byte_data(GYR_ADDRESS, OUT_Z_H_G)   
94.     gyr_combined = (gyr_l | gyr_h <<8)   
95.     return gyr_combined  if gyr_combined < 32768 else gyr_combined - 65536   
96.    
97. #initialise the accelerometer    
98. writeACC(CTRL_REG1_XM, 0b00100111) # "0010" 6.25 Hz data rate, "0" Continuous update

, "111" z,y,x axis enabled   
99. writeACC(CTRL_REG2_XM, 0b00100000) # "00" Anti aliasing filter default 773 Hz, "100"

 +/- 2G full scale, "00" Self test disable, "0" SPI not important   
100.    
101. #initialise the magnetometer   
102. writeMAG(CTRL_REG5_XM, 0b01110000) # "0" Temp disable, "11" high resolution, 

"100" Data rate 50 Hz, "00" no interrupt   
103. writeMAG(CTRL_REG6_XM, 0b01100000) # "0" nothing, "11" +/-

12 gauss full scale, "00000" noting   
104. writeMAG(CTRL_REG7_XM, 0b00000000) # "00" Normal default mode with xyz reset,

 "0" internal filter bypassed, "00" nothing, "0" Low power off, "00" Continuous-
conversion mode   

105.    
106. #initialise the gyroscope    
107. writeGRY(CTRL_REG1_G, 0b00001111) # "0000" Data rate and Bandwidth 95 Hz 12.5

 Cutoff, "1" Normal power mode, "111" all axis enabled   
108. writeGRY(CTRL_REG4_G, 0b00000000) # "0" Continuos update, "0" LSB lower addre

ss, "00" 245 dps, "0" nothing, "00" Self test disable, "0" SPI not important    
109.    
110. gyroXangle = 0.0   
111. gyroYangle = 0.0   
112. gyroZangle = 0.0   
113. CFangleX = 0.0   
114. CFangleY = 0.0   

- 85 - 

 



 

115.    
116. a = datetime.datetime.now()   
117.    
118. while True:   
119.            
120.     #Read the accelerometer, gyroscope and magnetometer values   
121.     ACCx = readACCx()   
122.     ACCy = readACCy()   
123.     ACCz = readACCz()   
124.     GYRx = readGYRx()   
125.     GYRy = readGYRy()   
126.     GYRz = readGYRz()   
127.     MAGx = readMAGx()   
128.     MAGy = readMAGy()   
129.     MAGz = readMAGz()   
130.    
131.     #calculate looptime(LT). How long have passed between gyro reads   
132.     b = datetime.datetime.now() - a   
133.     LT = b.microseconds/(1000000*1.0)   
134.     a = datetime.datetime.now()   
135.        
136.     #convert gyro raw reading to degrees per second   
137.     #raw reading times sensitivity gives us dps value or how fast it is rotat

ing in degrees per second. sensitivity is in dps   
138.     rate_gyr_x =  GYRx * G_GAIN   
139.     rate_gyr_y =  GYRy * G_GAIN   
140.     rate_gyr_z =  GYRz * G_GAIN   
141.    
142.     #calculate the angles from the gyro.    
143.     gyroXangle+=rate_gyr_x*LT   
144.     gyroYangle+=rate_gyr_y*LT   
145.     gyroZangle+=rate_gyr_z*LT   
146.    
147.     #convert accelerometer values to degrees   
148.     #with atan2 we get the principal value of the tangent of the other angles

, expressed in radians 
149.     #atan2 is similar to atan, except it returns values in range of (-PI,PI) 

as opposed to (-PI/2,PI/2) that is returned by atan. also, it takes 2 arguments 
instead of one. two values are converted to angles in the full range of 360 degrees. 
     #adding PI to the radians gives us result from 0 to 2. And that times (18
0/Pi) are degrees   

150.     AccXangle =  (math.atan2(ACCy,ACCz)+M_PI)*RAD_TO_DEG   
151.     AccYangle =  (math.atan2(ACCz,ACCx)+M_PI)*RAD_TO_DEG   
152.    
153.     #convert the values to -180 and +180   
154.     AccXangle -= 180.0   
155.     if AccYangle > 90:   
156.         AccYangle -= 270.0   
157.     else:   
158.         AccYangle += 90.0   
159.    
160.     #complementary filter used to combine the accelerometer and gyro values   
161.     #somehow we must get rid of gyro drift and accelrometers noise   
162.     CFangleX=CFC*(CFangleX+rate_gyr_x*LT) +(1 - CFC) * AccXangle   
163.     CFangleY=CFC*(CFangleY+rate_gyr_y*LT) +(1 - CFC) * AccYangle   
164.    
165.     #output the X angle from the accelerometer   
166.     measurement = '\n {0:} \t {1} deg Acc_X angle'.format(datetime.datetime.n

ow(), AccXangle)   
167.     print measurement   
168.     message = measurement   
169.     #save the output to the log file   
170.     with open('/home/pi/Monitor_Tool/Inertial_measurement_unit.txt', 'a') as 

logfile:   

- 86 - 

 



 

171.         logfile.write(message)   
172.     #publish the output on the pubnub channel   
173.     pubnub.publish(channel, message)   
174.    
175.     #output the Y angle from the accelerometer   
176.     measurement = '\n {0:} \t {1} deg Acc_Y angle'.format(datetime.datetime.n

ow(), AccYangle)   
177.     print measurement   
178.     message = measurement   
179.     #save the output to the log file   
180.     with open('/home/pi/Monitor_Tool/Inertial_measurement_unit.txt', 'a') as 

logfile:   
181.         logfile.write(message)   
182.     #publish the output on the pubnub channel   
183.     pubnub.publish(channel, message)   
184.    
185.     #output the X angle from the complementary filter   
186.     measurement = '\n {0:} \t {1} deg CF_X angle'.format(datetime.datetime.no

w(), CFangleX)   
187.     print measurement   
188.     message = measurement   
189.     #save the output to the log file   
190.     with open('/home/pi/Monitor_Tool/Inertial_measurement_unit.txt', 'a') as 

logfile:   
191.         logfile.write(message)   
192.     #publish the output on the pubnub channel   
193.     pubnub.publish(channel, message)   
194.    
195.     #output the Y angle from the complementary filter   
196.     measurement = '\n {0:} \t {1} deg CF_Y angle'.format(datetime.datetime.no

w(), CFangleY)   
197.     print measurement   
198.     message = measurement   
199.     #save the output to the log file   
200.     with open('/home/pi/Monitor_Tool/Inertial_measurement_unit.txt', 'a') as 

logfile:   
201.         logfile.write(message)   
202.     #publish the output on the pubnub channel   
203.     pubnub.publish(channel, message)   
204.    
205.     #get some rest. and it also makes the output more readable   
206.     time.sleep(120)   

 

 

 

 

 

 

 

 

- 87 - 

 



 

Internet Connection Monitor 

11. #!/usr/bin/python   
12.    
13. #Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
14.    
15. import sys   
16. import RPi.GPIO as GPIO   
17. import time   
18. import datetime   
19. import socket   
20. from pubnub import Pubnub   
21.    
22. #remote server which will be our reference point to determine whether internet conne

ction works   
23. remote_server = "www.google.com"   
24.    
25. #GPIO pin which controls the LED   
26. LED_pin = 18 #Broadcom pin 18 (On board soldered pin 12)   
27.    
28. #neglect the warning from GPIO   
29. GPIO.setwarnings(False)   
30.    
31. #use the GPIO notaion from RPi's Broadcom processor   
32. GPIO.setmode(GPIO.BCM)   
33.    
34. #set the LED controlling pin to output   
35. GPIO.setup(LED_pin, GPIO.OUT)   
36.    
37. #Setting up the initial settings for Pubnub communication   
38. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
39. channel = 'Internet_LED'   
40. def callback(message, channel):   
41.     print(message)   
42.    
43. #function which tests if there is an active internet connection and returns us True 

or False,    
44. def is_connected_to_internet():   
45.     try:   
46.         host = socket.gethostbyname(remote_server)   
47.         s = socket.create_connection((host, 80), 2)   
48.         return True   
49.     except:   
50.         pass   
51.     return False   
52.    
53.    
54. while True:   
55.        
56.     if is_connected_to_internet() is True:             
57.         #report the output   
58.         message = '\n {0:} \t Internet connection is ON. Outside LED is GREEN.'.form

at(datetime.datetime.now())   
59.            
60.         #switch the LED ON   
61.         GPIO.output(LED_pin, GPIO.HIGH)   
62.        
63.     else:   
64.         #report the output   

- 88 - 

 



 

65.         message = '\n {0:} \t Internet connection is OFF. Outside LED is OFF.'.forma
t(datetime.datetime.now())   

66.            
67.         #switch the LED OFF   
68.         GPIO.output(LED_pin, GPIO.LOW)   
69.        
70.     print message      
71.        
72.     #save the output to the log file   
73.     with open('/home/pi/Monitor_Tool/Internet_LED.txt', 'a') as logfile:   
74.             logfile.write(message)   
75.        
76.     #publish the report on the pubnub channel   
77.     pubnub.publish(channel, message)   
78.        
79.     #get some rest   
80.     time.sleep(90)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 89 - 

 



 

Humidity Measurement 

1. #!/usr/bin/python   
2.    
3. #Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
4.    
5. import sys   
6. import io   
7. import Adafruit_DHT as dht #nalazi se u /home/pi/Adafruit_Python_DHT/Adafruit_DHT/co

mmon.py   
8. import time   
9. import datetime   
10. from pubnub import Pubnub   
11.    
12. #Setting up the initial settings for Pubnub communication   
13. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
14. channel = 'Outside_humidity'   
15. def callback(message, channel):   
16.     print(message)   
17.    
18. #pin on which data bus is connected to   
19. pin = '27'   
20.    
21. #continuous loop for collecting and publishing data   
22. while True:   
23.     #read the humidity and temperature data from the AM2302 sensor   
24.     #we will consider only the humidity value. the temperature sensor we already hav

e and the temperature value of this sensor    
25.     #might be questionable due to the fact that the sensor is hard mounted on the me

tal casing of Monitor Tool. and the metal    
26.     #casing is heated from the inside so the temperature values might not match the 

real temperature values.    
27.     humidity, temperature = dht.read_retry(dht.AM2302, pin)   
28.    
29.     timestamp = 'Timestamp: ', datetime.datetime.now()   
30.    
31.     #if the received values are good   
32.     if humidity is not None and temperature is not None:   
33.         #output the report   
34.         measurement = '\n {1:} \t {0:0.1f} % RH'.format(humidity, datetime.datetime.

now())   
35.         print measurement   
36.         message = measurement   
37.            
38.         #save the output to the log file   
39.         with open('/home/pi/Monitor_Tool/Outside_humidity.txt', 'a') as logfile:   
40.             logfile.write(message)   
41.            
42.         #publish the output on the pubnub channel   
43.         pubnub.publish(channel, message)   
44.        
45.     #if the received values are corrupted   
46.     else:   
47.         #output the report   
48.         measurement = '\n {0:} \t Something is wrong... '.format(datetime.datetime.n

ow())   
49.         print measurement   
50.         message = measurement   
51.            
52.         #save the output to the log file   

- 90 - 

 



 

53.         with open('/home/pi/Monitor_Tool/Outside_humidity.txt', 'a') as logfile:   
54.             logfile.write(message)   
55.            
56.         #publish the output on the pubnub channel   
57.         pubnub.publish(channel, message)   
58.        
59.     #get some rest   
60.     time.sleep(120)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 91 - 

 



 

Temperature Measurement 

1. #!/usr/bin/python   
2.    
3. #Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
4.    
5. import os   
6. import sys   
7. import time   
8. import datetime   
9. from pubnub import Pubnub   
10.    
11. #Setting up the initial settings for Pubnub communication   
12. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
13. channel = 'Outside_temperature_DS18B20'   
14. def callback(message, channel):   
15.     print(message)   
16.    
17. os.system('modprobe w1-gpio')   
18. os.system('modprobe w1-therm')   
19.    
20. temperature_sensor = '/sys/bus/w1/devices/28-000007c6bc2b/w1_slave'   
21.    
22. while True:   
23.        
24.     def raw_read():   
25.         if os.path.exists(temperature_sensor) == False:   
26.             measurement = '\n {0:} \t Something is wrong... '.format(datetime.dateti

me.now())   
27.             print measurement   
28.             message = measurement   
29.             with open('/home/pi/Monitor_Tool/Outside_temperature_DS18B20.txt', 'a') 

as logfile:   
30.                 logfile.write(message)   
31.             pubnub.publish(channel, message)   
32.             sys.exit(0)   
33.            
34.         file = open(temperature_sensor, 'r')   
35.         lines = file.readlines()   
36.         file.close()   
37.         return lines   
38.                
39.     def read_temperature():   
40.         lines = raw_read()   
41.         if lines[0].strip()[:-4] == '00 00 00 00 00 00 00 00 00 : crc=00':   
42.             measurement = '\n {0:} \t Something is wrong... '.format(datetime.dateti

me.now())   
43.             print measurement   
44.             message = measurement   
45.             with open('/home/pi/Monitor_Tool/Outside_temperature_DS18B20.txt', 'a') 

as logfile:   
46.                 logfile.write(message)   
47.             pubnub.publish(channel, message)   
48.             sys.exit(0)   
49.            
50.         time.sleep(0.5)   
51.         temp_output = lines[1].find('t=')   
52.         if temp_output != -1:   
53.             #get the LSB and MSB from raw data. count also one sign for the space in

 between   

- 92 - 

 



 

54.             temperature_hex_inverted = lines[0][:5]   
55.                
56.             #rotate it properly, so now we have MSBLSB format. and also drop the spa

ce in between   
57.             temperature_hex_proper = temperature_hex_inverted[3:] + temperature_hex_

inverted[:2]   
58.    
59.             #get the last hex sign, it tells us the value of temperature after decim

al point. or simply said fractions.   
60.             temperature_dec_fractions = int(temperature_hex_proper[3:].strip(), 16) 

  
61.                
62.             #4 bits are decimal fractions, so the least possible value is 0.0625. di

vide 1/16.   
63.             fractions = temperature_dec_fractions * 0.0625   
64.                
65.             #strip the sign hex bit and fractions hex bit. two inner hex bits gives 

us the temperature. convert them to decimal.   
66.             temperature_inner_hex = temperature_hex_proper[:3]   
67.             temperature_inner_hex = temperature_inner_hex[1:]   
68.             temperature_inner_dec = int(temperature_inner_hex, 16)   
69.                
70.             if temperature_inner_dec < 128:   
71.                 #above zero degC temperature   
72.                 #temperature is sum of decimal part and fraction. expressed in degC.

   
73.                 temperature_final = temperature_inner_dec + fractions   
74.                
75.             else:   
76.                 #below zero degC temperature   
77.                 #convert inner decimal number to binary   
78.                 temperature_inner_bin = bin(temperature_inner_dec)   
79.                    
80.                 #cut the MSB. we have to cut first three bits to cut MSB because dat

a format is "0bxxxxx"   
81.                 temperature_dec = int(temperature_inner_bin[3:], 2)   
82.                    
83.                 #final temeperature in degC with complement of temperature and fract

ions.    
84.                 #and multiply with (-1) to get negative values   
85.                 temperature_final = (float)((127 - temperature_dec) + (1.0 - fractio

ns)) * (-1)   
86.                
87.             measurement = '\n {0:} \t {1} degC'.format(datetime.datetime.now(), temp

erature_final)   
88.             print measurement   
89.    
90.             message = measurement   
91.             #save the output to the log file   
92.             with open('/home/pi/Monitor_Tool/Outside_temperature_DS18B20.txt', 'a') 

as logfile:   
93.                 logfile.write(message)   
94.             #publish the output on the pubnub channel   
95.             pubnub.publish(channel, message)   
96.    
97.     read_temperature()   
98.     time.sleep(120)   

 

 

- 93 - 

 



 

Pressure Measurement 

1. #!/usr/bin/python   
2.    
3. #Made by: Hrvoje Cvitkusic. December, 2016. hrvoje.cvitkusic@gmail.com   
4.    
5. import time   
6. import Adafruit_GPIO.I2C as I2C   
7. import datetime   
8. from pubnub import Pubnub   
9.    
10. #Setting up the initial settings for Pubnub communication   
11. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
12. channel = 'Pressure'   
13. def callback(message, channel):   
14.     print(message)   
15.    
16. #sensor data is stored in 14 bits, for later calculation, 2 to the power of 14 is 16

384 decimal counts. 2**14 = 16384   
17.    
18. #Minimum raw data reading of the sensor is 10% of the full raw data reading - 14 bit

 decimal counts - according to the datasheet   
19. raw_reading_min = 1638  #it's 10% of 2**14   
20.    
21. #Maximum raw data reading of the sensor is 90% of the full raw data reading - 14 bit

 decimal counts - according to the datasheet     
22. raw_reading_max = 14746 #it's 90% of 2**14   
23.    
24. #Minimum pressure reading of the sensor expressed in bars - according to the datashe

et   
25. pressure_bar_min = 0.0   
26.    
27. #Maximum pressure reading of the sensor expressed in bars - according to the datashe

et   
28. pressure_bar_max = 6.0   
29.    
30. #Pressure sensor is located on the hex address (0x28)   
31. sensor = I2C.get_i2c_device(0x28)   
32.    
33. while True:   
34.        
35.     #read 16 bit data in decimal counts   
36.     reading_16bit_decimal = sensor.readU16BE(0)   
37.     time.sleep(1)   
38.        
39.     #we are reading a 16 bit value. the reading sometimes (in less than 10% cases) r

eturns wrong values which are always lower    
40.     #than 4500 decimal counts so that value we simply neglect and move forward to th

e next reading.   
41.     if reading_16bit_decimal > 4500:   
42.            
43.         #convert 16 bit value in decimal counts to 16 bit value in binary   
44.         reading_16bit_binary = bin(reading_16bit_decimal)   
45.            
46.         #neglect first 2 MSB and convert it to 14 bit binary value - according to th

e datasheet. first two MSB are just status    
47.         #bits and they are not important to us. the pressure data is stored in other

 14 bits.   
48.         #because of python's notaion, we neglect first 4 binary counts. two of them 

are "0b" or "1b" and other two are MSB.    

- 94 - 

 



 

49.         #for instance, from 16 bit binary value "0b1011011100011010", we neglect fir
st 4 counts and we get the 14 bit value    

50.         #"11011100011010" which we later convert to pressure. that is our pressure d
ata.   

51.         reading_14bit_binary = reading_16bit_binary[4:]   
52.            
53.         #convert 14 bit binary value to decimal value   
54.         reading_14bit_decimal = int(reading_14bit_binary, 2)   
55.                    
56.         #get pressure value in bars using the equation from the sensor's datasheet   
57.         pressure = (((reading_14bit_decimal - raw_reading_min) * (pressure_bar_max -

 pressure_bar_min)) / (raw_reading_max - raw_reading_min)) + pressure_bar_min    
58.            
59.         #this is the final output. pressure is expressed in bar.   
60.         measurement = '\n {0:} \t {1:} bar'.format(datetime.datetime.now(), pressure

)   
61.            
62.         print measurement   
63.            
64.         message = measurement   
65.            
66.         #save reading to a log file   
67.         with open('/home/pi/Monitor_Tool/Pressure.txt', 'a') as logfile:   
68.                 logfile.write(message)   
69.            
70.         #publish the reading on the pubnub channel   
71.         pubnub.publish(channel, message)   
72.            
73.         time.sleep(120)   

 

 

 

 

 

 

 

 

 

 

 

 

- 95 - 

 



 

Rain Gauge Precipitation Measurement 

1. #!/usr/bin/python   
2.    
3. #Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
4. #Followed the example of Fred Sonnenwald from January, 2014.    
5.    
6. import RPi.GPIO as GPIO   
7. import time   
8. import datetime   
9. from pubnub import Pubnub   
10.    
11. #although I am always mixing the words "rainfall" and "precipitation" in the comment

s, the true measured object is    
12. #PRECIPITATION i.e. any kind of condensed atmospheric water vapor, in forms of drizz

le, rain, sleet, snow, graupel, hail...   
13.    
14. #volume of one compartment of the lever in litres   
15. compartment_volume = 0.00794   
16.    
17. #area of the funnel expressed in square meters. area in square mm divided by 10 to t

he power of 6 to get square m   
18. funnel_area = (52.0 * 122.0) / 1000000.0   
19.    
20. #ratio between funnel area in square m and one whole square m. just to see how many 

"funnel areas" can fit into one square m.   
21. #when using the same ratio for rain volume, we get the following - one compartment o

f the lever equals 1.2516 litres of    
22. #precipitation per square m   
23. ratio = 1.0 / funnel_area   
24.     
25. #GPIO pin on which one side of the reed switch is connected to   
26. control_pin = 22 #GIPO22   
27.    
28. #neglect the warning from GPIO   
29. GPIO.setwarnings(False)   
30.    
31. #use the GPIO notaion from RPi's Broadcom processor   
32. GPIO.setmode(GPIO.BCM)   
33.    
34. #set the control pin as input and activate the internal pull up resistors. now, the 

pin is connected to +3.3V over the internal    
35. #pull up resistor. the other part of the reed switch is connected to the ground (GND

). when the lever goes from one side to the    
36. #other, the magnet attached to it passes near the reed switch and activates it. reed

 switch closes the circuit to the GND and    
37. #our GPIO pin senses that there has been a change.   
38. GPIO.setup(control_pin, GPIO.IN, pull_up_down = GPIO.PUD_UP)   
39.    
40. #Setting up the initial settings for Pubnub communication   
41. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
42. channel_used = 'Rain_gauge'   
43. def callback(message, channel):   
44.     print(message)   
45.    
46. #set the initial values   
47. rain = 0   
48. first_enter = 0   
49.    

- 96 - 

 



 

50. #function to which we will refer after the "rain event" is detected on the GPIO pin 
   

51. def rain_event(channel):   
52.     #global variable rain which measures the amount of percipitation   
53.     global rain   
54.        
55.     #volume of the rain is increased by the volume of the compartment   
56.     rain = rain + compartment_volume   
57.        
58.     #output of the function that indicates us that there is some precipitation   
59.     measurement = '\n Rain gauge reporting: Timestamp: {0:} \t  It is raining! ' .fo

rmat(datetime.datetime.now())   
60.     print measurement   
61.    
62. #this is a GPIO interrupt routine, taken from the Adafruit GPIO library. other possi

ble solution is to use continuous loop but    
63. #that's too demanding for the whole system and unnecessary for something that doesn'

t occur for a longer period of time.   
64. #as our pin is in pull up mode, we are waiting for a falling edge i.e. the move from

 +3.3V to 0V. after that happend, we call the    
65. #function refered as callback function. the bouncetime prevents switch debounce effe

ct - a fast shift between two states in the    
66. #event of closing/opening the switch. so, once the switch is detected, it won't rais

e any event for the next 600 ms.   
67. GPIO.add_event_detect(control_pin, GPIO.FALLING, callback = rain_event, bouncetime =

 600)   
68.    
69. #loop that will perform the rain reporting   
70. while True:   
71.        
72.     #get the current time   
73.     timestamp_current = datetime.datetime.now()   
74.        
75.     #first enter to the loop after powering on the whole system   
76.     if first_enter is 0:   
77.            
78.         #the hour which is ending and in which we are monitoring the rainfall   
79.         time_monitored = timestamp_current   
80.            
81.         #increased hour so that we now when the monitored hour has expired   
82.         #loop is here to protect us from switching to an hour chart of the new day i

.e. transition from 23.59 to 00.00   
83.         if time_monitored.hour is 23:   
84.             time_increased = 0   
85.         else:   
86.             time_increased = time_monitored.hour + 1   
87.            
88.         #after this, we will never enter into this first "if". it's here just for th

e initial powering on of the whole system.   
89.         first_enter = 1   
90.        
91.     #the main if of the whole loop. it compares if we entered in the next hour. once

 we entered i.e. when the current timestamp    
92.     #matches with the last hour increased by one, then we report the rainfall for th

e previous hour, reset the rain meter to 0,    
93.     #publish the message over pubnub and increase the time for comparison by one hou

r.   
94.     if timestamp_current.hour is time_increased:   
95.            
96.         #rain ratio   
97.         rain = rain * ratio   
98.            
99.         #output the amount of rain for the previous hour. liters per square m2 in la

st hour.   

- 97 - 

 



 

100.         measurement = '\n {0:} \t {1: } litres of precipitation per square m 
in last hour' .format(datetime.datetime.now(), rain)   

101.            
102.         #reset the rain counter to zero   
103.         rain = 0   
104.            
105.         print measurement   
106.            
107.         message = measurement   
108.            
109.         #publish the reading on the pubnub channel   
110.         pubnub.publish(channel_used, message)   
111.            
112.         #save reading to a log file   
113.         with open('/home/pi/Monitor_Tool/Rain_gauge.txt', 'a') as logfile:   
114.                 logfile.write(message)   
115.            
116.         #publish the reading on the pubnub channel   
117.         pubnub.publish(channel_used, message)   
118.            
119.         #increased hour so that we now when the monitored hour has expired   
120.         #loop is here to protect us from switching to an hour chart of the ne

w day i.e. transition from 23.59 to 00.00   
121.         if time_increased is 23:   
122.             time_increased = 0   
123.         else:      
124.             time_increased = time_increased + 1   
125.        
126.     #this loop should return a value each full hour so a bit of sleep won't d

o any harm    
127.     time.sleep(20)   

 

 

 

 

 

 

 

 

 

 

 

- 98 - 

 



 

Rain Gauge Heat Control 

1. #!/usr/bin/python   
2.    
3. #Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
4.    
5. import os   
6. import sys   
7. import RPi.GPIO as GPIO   
8. import time   
9. import datetime   
10. from pubnub import Pubnub   
11.    
12. heater_pin = 24 #Broadcom pin 24 (On board soldered pin 18)   
13. GPIO.setwarnings(False)   
14. GPIO.setmode(GPIO.BCM)   
15. GPIO.setup(heater_pin, GPIO.OUT)   
16.    
17. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
18. channel = 'Rain_gauge_heating_control'   
19. def callback(message, channel):   
20.     print(message)   
21.    
22. os.system('modprobe w1-gpio')   
23. os.system('modprobe w1-therm')   
24.    
25. temperature_sensor = '/sys/bus/w1/devices/28-000007c69025/w1_slave'   
26.    
27. while True:   
28.    
29.     def raw_read():   
30.         if os.path.exists(temperature_sensor) == False:   
31.             GPIO.output(heater_pin, GPIO.LOW)   
32.             measurement = '\n {0:} \t Rain gauge DS18B20 reporting: Something is wro

ng... Rain gauge heating is OFF'.format(datetime.datetime.now())   
33.             print measurement   
34.             message = measurement   
35.             with open('/home/pi/Monitor_Tool/Rain_gauge_heating_control.txt', 'a') a

s logfile:   
36.                 logfile.write(message)   
37.             pubnub.publish(channel, message)   
38.             sys.exit(0)   
39.            
40.         file = open(temperature_sensor, 'r')   
41.         lines = file.readlines()   
42.         file.close()   
43.         return lines   
44.                
45.     def read_temperature():   
46.         lines = raw_read()   
47.         if lines[0].strip()[:-4] == '00 00 00 00 00 00 00 00 00 : crc=00':   
48.             GPIO.output(heater_pin, GPIO.LOW)   
49.             measurement = '\n {0:} \t Rain gauge DS18B20 reporting: Something is wro

ng... Rain gaguge heating is OFF'.format(datetime.datetime.now())   
50.             print measurement   
51.             message = measurement   
52.             with open('/home/pi/Monitor_Tool/Rain_gauge_heating_control.txt', 'a') a

s logfile:   
53.                 logfile.write(message)   
54.             pubnub.publish(channel, message)   

- 99 - 

 



 

55.             sys.exit(0)   
56.            
57.         time.sleep(0.5)   
58.         temp_output = lines[1].find('t=')   
59.         if temp_output != -1:   
60.             #get the LSB and MSB from raw data. count also one sign for the space in

 between   
61.             temperature_hex_inverted = lines[0][:5]   
62.                
63.             #rotate it properly, so now we have MSBLSB format. and also drop the spa

ce in between   
64.             temperature_hex_proper = temperature_hex_inverted[3:] + temperature_hex_

inverted[:2]   
65.    
66.             #get the last hex sign, it tells us the value of temperature after decim

al point. or simply said fractions.   
67.             temperature_dec_fractions = int(temperature_hex_proper[3:].strip(), 16) 

  
68.                
69.             #4 bits are decimal fractions, so the least possible value is 0.0625. di

vide 1/16.   
70.             fractions = temperature_dec_fractions * 0.0625   
71.                
72.             #strip the sign hex bit and fractions hex bit. two inner hex bits gives 

us the temperature. convert them to decimal.   
73.             temperature_inner_hex = temperature_hex_proper[:3]   
74.             temperature_inner_hex = temperature_inner_hex[1:]   
75.             temperature_inner_dec = int(temperature_inner_hex, 16)   
76.                            
77.             if temperature_inner_dec < 128:   
78.                 #above zero degC temperature   
79.                 #temperature is sum of decimal part and fraction. expressed in degC.

   
80.                 temperature_final = temperature_inner_dec + fractions   
81.                
82.             else:   
83.                 #below zero degC temperature   
84.                 #convert inner decimal number to binary   
85.                 temperature_inner_bin = bin(temperature_inner_dec)   
86.                    
87.                 #cut the MSB. we have to cut first three bits to cut MSB because dat

a format is "0bxxxxx"   
88.                 temperature_dec = int(temperature_inner_bin[3:], 2)   
89.                    
90.                 #final temeperature in degC with complement of fractions and tempera

ture   
91.                 temperature_final = (float)((127 - temperature_dec) + (1.0 - fractio

ns)) * (-1)   
92.                
93.             if temperature_final < 2:   
94.                 GPIO.output(heater_pin, GPIO.HIGH)   
95.                 measurement = '\n {0:} \t Rain gauge DS18B20 reporting: {1} degC \t 

Rain gauge heating is ON.'.format(datetime.datetime.now(), temperature_final)   
96.             else:   
97.                 GPIO.output(heater_pin, GPIO.LOW)   
98.                 measurement = '\n {0:} \t Rain gauge DS18B20 reporting: {1} degC \t 

Rain gauge heating is OFF.'.format(datetime.datetime.now(), temperature_final)   
99.                
100.             print measurement   
101.    
102.             message = measurement   
103.             #save the output to the log file   
104.             with open('/home/pi/Monitor_Tool/Rain_gauge_heating_control.txt',

 'a') as logfile:   

- 100 - 

 



 

105.                 logfile.write(message)   
106.             #publish the output on the pubnub channel   
107.             pubnub.publish(channel, message)   
108.    
109.     read_temperature()   
110.     time.sleep(120)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 101 - 

 



 

Subscriber or Client Side 

11. #!/usr/bin/python   
12.    
13. # Made by: Hrvoje Cvitkusic. January, 2017. hrvoje.cvitkusic@gmail.com   
14.    
15. import sys   
16. import time   
17. from pubnub import Pubnub   
18.    
19. pubnub = Pubnub(publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx", subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx")   
20. channel1 = 'Outside_temperature_DS18B20'   
21. channel2 = 'Outside_humidity'   
22. channel3 = 'Inside_box_heating_control'   
23. channel4 = 'Pressure'   
24. channel5 = 'Inertial_measurement_unit'   
25. channel6 = 'Internet_LED'   
26. channel7 = 'Rain_gauge_heating_control'   
27. channel8 = 'Rain_gauge'   
28.    
29. def callback_channel1(message, channel):   
30.     print(message)   
31.     with open('Outside_temperature_DS18B20.txt', 'a') as logfile:   
32.         logfile.write(message)   
33.    
34. def callback_channel2(message, channel):   
35.     print(message)   
36.     with open('Outside_humidity.txt', 'a') as logfile:   
37.         logfile.write(message)   
38.            
39. def callback_channel3(message, channel):   
40.     print(message)   
41.     with open('Inside_box_heating_control.txt', 'a') as logfile:   
42.         logfile.write(message)   
43.            
44. def callback_channel4(message, channel):   
45.     print(message)   
46.     with open('Pressure.txt', 'a') as logfile:   
47.         logfile.write(message)   
48.            
49. def callback_channel5(message, channel):   
50.     print(message)   
51.     with open('Inertial_measurement_unit.txt', 'a') as logfile:   
52.         logfile.write(message)   
53.            
54. def callback_channel6(message, channel):   
55.     print(message)   
56.     with open('Internet_LED.txt', 'a') as logfile:   
57.         logfile.write(message)   
58.            
59. def callback_channel7(message, channel):   
60.     print(message)   
61.     with open('Rain_gauge_heating_control.txt', 'a') as logfile:   
62.         logfile.write(message)   
63.            
64. def callback_channel8(message, channel):   
65.     print(message)   
66.     with open('Rain_gauge.txt', 'a') as logfile:   
67.         logfile.write(message)   
68.    

- 102 - 

 



 

69. pubnub.subscribe(channel1, callback_channel1)   
70. pubnub.subscribe(channel2, callback_channel2)   
71. pubnub.subscribe(channel3, callback_channel3)   
72. pubnub.subscribe(channel4, callback_channel4)   
73. pubnub.subscribe(channel5, callback_channel5)   
74. pubnub.subscribe(channel6, callback_channel6)   
75. pubnub.subscribe(channel7, callback_channel7)   
76. pubnub.subscribe(channel8, callback_channel8)   
77.    
78. #dummy loop   
79. counter = 0   
80.    
81. while True:   
82.     #do nothing   
83.     counter = counter + 1   
84.     counter = 0   
85.     time.sleep(20)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 103 - 

 



 

Glossary 

Abbreviation  Description 

AC/DC Converter  Alternating Current to Direct Current Converter 

ADC    Analog to Digital Converter 

ASA    Acrylonitirle Styrene Acrylate polymer 

BE    Big Endian 

BIOS    Basic Input Output System 

CAD    Computer Aided design 

DC/DC  Converter  Direct Current to Direct Current Converter   

DoF    Degree of Freedom 

dps    Degrees per Second 

DSN    Data Stream Network    

GB    Gigabyte 

GND    Ground  

GPIO    General Purpose Input Output 

HDMI    High Definition Multimedia Interface 

I2C    Inter-Integrated Circuit 

IC    Integrated Circuit 

IMU    Inertial Measurement Unit 

IoT    Internet of Things 

LE    Little Endian 

LED    Light emitting diode 

LKM    Loadable Kernel Module 

LSB    Least Significant Bit 

MEMS    Micro-Electro-Mechanical System 

MSB    Most Significant Bit 

PC    Personal Computer 

PCB    Printed Circuit Board 

RAM    Random-access Memory 

RH    Relative Humidity 

RPS    Revolutions per second 

- 104 - 

 



 

SCL    Serial Clock Line in I2C communication 

SCP     Secure Copy Protocol 

SD Card   Secure Digital Card 

SDA    Serial Data Line in I2C communication 

SDK    Software Development Kit 

SMD     Surface Mount Device 

SMT    Surface Mount Technology 

SPI    Serial Peripheral Interface 

SSH    Secure Socket Shell protocol 

STEM    Science, Technology, Engineering, Mathematics 

UMTS    Universal Mobile Telecommunications System 

USB    Universal Serial Bus 

VAC    Voltage Alternating Current 

VCC     Positive Supply Voltage 

VDC    Voltage Direct Current 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 105 - 

 



 

Bibliography  

[1]    Franck Chollet and Haobing Liu. A (not so) short Introduction to Micro 

Electromechanical Systems. Version 5.3, 2016. 

http://memscyclopedia.org/introMEMS.html  

[2] Starlino article - guide. A Guide to using IMU(Accelerometer and Gyroscope 

Devices) in Embedded Applications. December, 2009. 

http://www.starlino.com/imu_guide.html  

[3]    Dieter Uckelmann, Mark Harrison, Florian Michahelles. Architecting the    

Internet of Things. Springer 2011. ISBN 978-3-642-19156-5 

[4] Ian Strangeways. Precipitation: Theory, Measurement and Distribution. 

Cambridge University Press, 2007. 

[5]    Picture taken from: The quadcopter: control the orientation. May, 2012. 

http://theboredengineers.com/2012/05/the-quadcopter-basics/ 

[7]    Mirjana Maksimović, Vladimir Vujović, Nikola Davidović, Vladimir Milošević 

and Branko Perišić. Raspberry Pi as Internet of Things hardware: 

Performances and Constraints. IcETRAN, June 2014.  

[8]    Ultimate guide to Raspberry Pi. Computer Shopper, Issue 324. Pages 104 – 

119, February 2015. http://micklord.com/foru/Raspberry%20Pi%20Pages -  

%20from%20Computer%20Shopper%202015-02.pdf  

[9]    Picture taken from: Introducing the Raspberry Pi 2 - Model B. Adafruit 

Industries LLC. https://learn.adafruit.com/introducing-the-raspberry-pi-2-

model-b 

[10]   Picture taken from: https://element14.com/community  

[11]   LSM9DS0 iNEMO inertial module. Datasheet by STMicroelectronics, 2013.  

http://www.st.com/resource/en/datasheet/lsm9ds0.pdf  

[12]   Picture taken from: Adafruit 9-DoF LSM9DS0 Breakout Board. Adafruit 

Industries LLC. https://www.adafruit.com/product/2021  

- 106 - 

 



 

[13]   DS18B20 datasheet. Maxim Integrated Products, 2008.                     

https://cdn-shop.adafruit.com/datasheets/DS18B20.pdf  

[14]   Picture taken from: Waterproof DS18B20 Digital temperature sensor. Adafruit 

Industries LLC. https://www.adafruit.com/product/381  

[15]   AM2302 datasheet. Adafruit Industries LLC. https://cdn-shop.adafruit.com/- 

datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf  

[16]   Picture taken from: AM2302 temperature and humidity sensor. 

https://www.adafruit.com/product/393 

[17]   HIH6130 datasheet. Honeywell, May 2015. https://sensing.honeywell.com/h -

oneywell-sensing-humidicon-hih6100-series-product-sheet-009059-6-en.pdf  

[18] SSC Series Pressure Sensors datasheet. Honeywell, August 2014. 

http://www.mouser.com/ds/2/187/honeywell-sensing-trustability-ssc-series-

standard-740340.pdf 

[19] Josef Gajdusek. Modem power consumption. Atx Blog, September 2016. 

http://blog.atx.name/modem-power-consumption/ 

[20]   Cadsoft Eagle library, Element14 Community.  

https://www.element14.com/community/  

[21]   Cadsoft Eagle library, Adafruit Eagle Library. December 2015. 

 https://github.com/adafruit/Adafruit-Eagle-Library  

[22]   Tipping Bucket Rain Gauge. WeatherShack Education Center, 2002-2017. 

 https://www.weathershack.com/static/ed-tipping-bucket-rain-gauge.html  

[23] G. Bastin, B. Lorent, C. Duque, M. Gevers. Optimal Estimation of the Average 

Areal Rainfall and Optimal Selection of Rain Gauge Locations. Water 

Resources Research, Vol. 20, No. 4, Pages 463-470, April 1984. 

[24]  Emad Habib, Witold F. Krajewski, Anton Kruger. Sampling Errors of Tipping-

bucket Rain Gauge Measurements. Journal of Hydrologic Engineering. 

March/April 2001. 

- 107 - 

 



 

[25]  VNN3NV04P-E Power MOSFET datasheet. STMicroelectronics, 2013. Doc ID 

15626 Rev. 5.  

[26]  Picture taken from Wikipedia. Changes in Relative Humidity.png. Author: 

Darryl Wolanski, May 2008. https://en.wikipedia.org/wiki/Relative_humid - 

ity#/media/File:Changes_in_Relative_Humidity.png  

[27]  Malcolm Maclean. Raspberry Pi: Measure, Record, Explore. May, 2016. 

https://leanpub.com/RPiMRE/read#leanpub-auto-measure  

[28] Matthew Lawrence. Connect Raspberry Pi to a 3g network automatically 

during its boot. August, 2013. 

https://lawrencematthew.wordpress.com/2013/08/07/connect-raspberry-pi-

to-a-3g-network-automatically-during-its-boot/ 

[29] Terence Eden. 3g Internet on Raspberry Pi – Success!. July, 2012. 

https://shkspr.mobi/blog/2012/07/3g-internet-on-raspberry-pi-success/  

[30] PubNub. January 2017. https://www.pubnub.com/company/  

[31] Robottini Article. Kalman Filter vs Complementary Filter. September, 2011. 

http://robottini.altervista.org/kalman-filter-vs-complementary-filter  

[32]  G. Perez Paina, D. Gaydou, J. Redolfi, C. Paz, and L. Canali. Experimental 

comparison of Kalman and Complementary filter for attitude estimation. 

August, 2011.  

[33] Ulrich Smoltczyk. Geotechnical Engineering Handbook: Elements and 

Structures. Volume 3ed. May, 2003.  Wilhelm Ernst & Sohn Verlag fur 

Architektur und technische Wissenschaften, Berlin, Germany. 

[34]  Raspberry Pi Foundation. FAQ and recommendations.  

https://www.raspberrypi.org/help/faqs/  

[35]  Pubnub. Solutions and Use cases. https://www.pubnub.com/solutions/ 

 

 

 

- 108 - 

 


	Acknowledgments
	Zusammenfassung
	Abstract
	List of figures
	Introduction
	1.1. Thesis outline

	Theoretical Background
	2.1.  Retaining structures
	2.2.  Inertial Measurement Unit
	2.2.1.  Accelerometer
	2.2.2.  Gyroscope
	2.2.3.  Fusing the IMU data

	2.3.  Rain Gauge

	Hardware & Components
	3.1.  Overview
	3.2. Cost Analysis
	3.3.  Raspberry Pi
	3.4.  Inertial Measurement Unit
	3.5.  Temperature Sensor
	3.6.  Temperature and Humidity Sensors
	3.6.1.  AM2302 Sensor
	3.6.2.  HIH6130 Sensor

	3.7.  Pressure Sensor
	3.8.  USB 3g Mobile Internet Dongle
	3.9. Other components
	3.10.  PCB Design
	3.11.  Rain Gauge

	Software Implementation
	4.1.  Setting up Raspberry Pi
	4.2.  Mobile Internet using 3G USB Dongle
	4.3.  PubNub IoT
	4.4.  Subsystems implementation
	4.4.1.  Inertial Measurement Unit
	4.4.2.  Internal Heat Control
	4.4.3.  Rain Gauge Heat Control
	4.4.4.  Rain Gauge Precipitation Measurement
	4.4.5.  Environmental Temperature Measurement
	4.4.6.  Environmental Relative Humidity Measurement
	4.4.7.  Pressure Measurement
	4.4.8.  Internet Connection Monitor


	Testing and Results
	5.1.  Issues During Testing & Solutions
	5.2.  Testing Period Results

	Conclusion
	6.1.  Future Work

	Appendix
	Internal Heat Control
	Inertial Measurement Unit
	Internet Connection Monitor
	Humidity Measurement
	Temperature Measurement
	Pressure Measurement
	Rain Gauge Precipitation Measurement
	Rain Gauge Heat Control
	Subscriber or Client Side

	Glossary
	Bibliography

