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Abstract

The major motivation for small scale forest spectral discrimination and mapping
covering large areas is to provide fundamentals for reporting and policy decision-
making. The challenge, therefore, is to produce accurate, complete and reliable
forest information on a variety of spatial scales over large extents. The aim of this
master’s thesis is to develop methods for the classification of the forest attributes
tree cover density and forest type using Sentinel-2A image data and randomly
sampled plots as trainings data. The new launched Sentinel-2 Mission provides
users with high spatial resolution multispectral image data with an acquisition
rate of 5 to 10 days. Additionally, four new red edge bands are introduced to
improve vegetation status and types differentiations. The continuous tree cover
density prediction is performed with regression models, whereas the discrete
forest types are classified into the specific classes ’broadleaved’, ’coniferous’ and
’mixed’. Regarding both classifications automated machine learning methods
like Random Forest and K-Nearest Neighbours are applied and compared. To
allow cost effective large area applicability visually interpreted sample plots
are used, which are already available at European level. Independent validation
is performed to access the accuracy. The tree cover density prediction shows
moderate better results than the forest type differentiation, indicating that the
sampled plots used as training data are not perfectly suited for forest type
classification.
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Kurzfassung

Die Erfassung von forstlichen Parametern dient als Grundlagen für politische
Entscheidungsprozesse. Die Herausforderung liegt darin, genaue Informationen
mit einem hohen Automatisierungsgrad erzeugen zu können. Ziel dieser Ar-
beit ist es die Möglichkeiten der Klassifikation von forstlichen Parametern, wie
Waldtyp und Walddichte mithilfe von Sentinel-2A Szenen und zufallsgenerierten
Stichprobenpunkten zu testen. Die vor kurzem gestartete Sentinel-2 Erdbeobach-
tungsmission bietet den Nutzern hochauflösende multispektrale Bilder in einem
Akquirierungszeitraum von 5 bis 10 Tagen, mit zusätzlichen Red Edge Bändern,
welche vor allem im Bereich der Vegetationsanalyse Verbesserungen bringen
sollen. Für die Klassifikation der Baumdichte werden Vorhersagemodelle über
Regressionsverfahren trainiert. Die Klassifikation der Waldtypen erfolgt über
das Training von Klassifikationsmodellen. Bei beiden Klassifikationsmethoden
werden europaweit zufällig generierte Stichprobenpunkten als Trainingsdaten
verwendet. Innerhalb der Klassifikationen werden automatisierte machine-learning
Methoden, wie Random Forest und k-Nearest Neighbour getestet und verglichen.
Für die Klassifikation der Baumdichte können moderat bessere Ergebnisse als
bei den Waldtypen erzeugt werden. Die Klassifikation der Waldtypen weist noch
Verbesserungspotential auf, da sich die heterogenen Trainingsdaten nicht gut
für die Differenzierung der Waldtypen eignen. Die Reduktion der Trainings-
datensätze auf homogene Gebiete erzielt bereits bessere Klassifikationsergeb-
nisse.
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from: Büttner et al., 2015 . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5. FAO Forest Definition, Source: FAO, Food and Agriculture Organ-
isation of the United Nations, 2015 . . . . . . . . . . . . . . . . . . 24

5.1. Used SENTINEL-2A scenes . . . . . . . . . . . . . . . . . . . . . . . 30

6.1. Corresponding bands regarding each spectral region across MSI,
OLI and MODIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2. Regression statistics regarding all TCD training samples . . . . . . 54

6.3. Regression statistics regarding TCD training samples within forest
areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4. Separability analysis regarding each individual band with Jefferies-
Matusita distance measure . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5. Separability analysis regarding different band combinations with
Jefferies-Matusita distance measure . . . . . . . . . . . . . . . . . . 67

6.6. Separability measure with all bands . . . . . . . . . . . . . . . . . . 68

6.7. Random forest parameter tests using TCD samples. Default values
for each parameter: t = 100, n =

p
N, s = 10, d = 5; where N is the

number of training samples . . . . . . . . . . . . . . . . . . . . . . . 69

6.8. Random forest parameter tests using FTY samples. Default values
for each parameter: t = 100, n =

p
N, s = 10, d = 5; where N is the

number of training samples . . . . . . . . . . . . . . . . . . . . . . . 70

6.9. K Nearest Neighbours parameter tests with TCD training samples 75

6.10. K Nearest Neighbours parameter tests with FTY training samples 76

6.11. Random forest (t = 100, n = 5, s = 10, d = 5 ) band combination
tests using TCD samples. Band combination abbreviations can be
found in table 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



List of Tables

6.12. K Nearest Neighbours (k = 10) band combination tests using TCD
samples. Band combination abbreviations can be found in table 6.5 77

6.13. Random forest (t = 300, n = 20, s = 5) band combination tests using
FTY samples. Band combination abbreviations can be found in
table 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.14. KNN (k = 20) band combination tests using FTY samples. Band
combination abbreviations can be found in table 6.5 . . . . . . . . . 79

7.1. Comparison between 100 m and 20 m products regarding the TCD
results with 95 validation samples. . . . . . . . . . . . . . . . . . . . 81

7.2. TCD Error Matrix: Random forest classifier applied on all bands. . 84

7.3. TCD prediction results comparison before and after calibration. . . 86

7.4. TCD overall accuracy - no-tree / tree product without forest mask. 90

7.5. Comparison with Copernicus HRL 2012 TCD product. . . . . . . . 90

7.6. FTY Overall Accuracies 20 m product comparison between weighted
and not weighted overall accuracies . . . . . . . . . . . . . . . . . . 92

7.7. Best FTY results regarding both classifiers based on the 20 m
product. Comparison between user and producer accuracies. . . . 93

7.8. Confusion matrix: Random forest classifier trained with the ’corine’
data set and applied on all bands. . . . . . . . . . . . . . . . . . . . 94

7.9. Confusion matrix: knn classifier trained with the ’corine’ data set
and applied on the 3LD band mosaic. . . . . . . . . . . . . . . . . . 94

A.1. Confusion matrix - classifier: knn, training samples: all, band com-
bination: 3LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2. Confusion matrix - classifier: knn, training samples: full, band
combination: 3LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3. Confusion matrix - classifier: knn, training samples: tcd, band
combination: 3LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.4. Confusion matrix - classifier: knn, training samples: corine, band
combination: 3LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.5. Confusion matrix - classifier: rf, training samples: all, band combi-
nation: all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.6. Confusion matrix - classifier: rf, training samples: full, band com-
bination: all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.7. Confusion matrix - classifier: rf, training samples: tcd, band combi-
nation: all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.8. Confusion matrix - classifier: rf, training samples: corine, band
combination: all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.9. Error matrix based on inclusion probabilities - classifier: knn, train-
ing samples: all, band combination: 3LD . . . . . . . . . . . . . . . 110

A.10.Error matrix based on inclusion probabilities - classifier: knn, train-
ing samples: full, band combination: 3LD . . . . . . . . . . . . . . . 111

viii



List of Tables

A.11.Error matrix based on inclusion probabilities - classifier: knn, train-
ing samples: tcd, band combination: 3LD . . . . . . . . . . . . . . . 111

A.12.Error matrix based on inclusion probabilities - classifier: knn, train-
ing samples: corine, band combination: 3LD . . . . . . . . . . . . . 111

A.13.Error matrix based on inclusion probabilities - classifier: rf, training
samples: all, band combination: all . . . . . . . . . . . . . . . . . . . 111

A.14.Error matrix based on inclusion probabilities - classifier: rf, training
samples: all, band combination: all . . . . . . . . . . . . . . . . . . . 112

A.15.Error matrix based on inclusion probabilities - classifier: rf, training
samples: tcd, band combination: all . . . . . . . . . . . . . . . . . . 112

A.16.Error matrix based on inclusion probabilities - classifier: rf, training
samples: corine, band combination: all . . . . . . . . . . . . . . . . . 112

B.1. TCD Confusion Matrix: knn classifier, band combination 4LD . . . 114

B.2. TCD Confusion Matrix: knn classifier, band combination 7LD . . . 114

B.3. TCD Confusion Matrix: knn classifier, band combination allD . . . 114

B.4. TCD Confusion Matrix: knn classifier, band combination wbD . . . 115

B.5. TCD Confusion Matrix: random forest classifier, band combination
4L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.6. TCD Confusion Matrix: random forest classifier, band combination
7L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.7. TCD Confusion Matrix: random forest classifier, band combination
all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.8. TCD Confusion Matrix: random forest classifier, band combination
wb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



List of Acronyms

EEA . . . . . . . . . . European Environment Agency

LAEA . . . . . . . . . Lambert Azimuthal Equal Area

FAO . . . . . . . . . . Food and Agriculture Organization of the United Nations

LUCAS . . . . . . . Land use and land cover survey

EEAVAL . . . . . . Validation Services for the geospatial products of the Copernicus

. . . . . . . . . . . . . . . land Continental and local components including in-situ data

HR . . . . . . . . . . . High Resolution

VHR . . . . . . . . . . Very High Resolution

HRL . . . . . . . . . . High Resolution Layer

TCD . . . . . . . . . . Tree Cover Density

FTY . . . . . . . . . . . Forest Type

BOA . . . . . . . . . . Bottom of Atmosphere

TOA . . . . . . . . . . Top of Atmosphere

BRDF . . . . . . . . . Bidirectional reflectance distribution function

AOT . . . . . . . . . . Aerosol Optical Thickness

WV . . . . . . . . . . . Water Vapour

APDA . . . . . . . . Atmospheric Pre-corrected Differential Absorption

NDVI . . . . . . . . . Normalized Difference Vegetation Index

NDSI . . . . . . . . . Normalized-Difference Snow Index

SSA . . . . . . . . . . Single scattering albedo

LUT . . . . . . . . . . Look up table

SAFE . . . . . . . . . Standard Archive Format for Europe

OLI . . . . . . . . . . . Operational Land Imager

1



List of Tables

MSI . . . . . . . . . . Multi Spectral Instrument

MODIS . . . . . . . Moderate-resolution Imaging Spectroradiometer

DU . . . . . . . . . . . Dobson Unit

GR . . . . . . . . . . . Ground resolution

VRE . . . . . . . . . . Vegetation Red Edge

MMU . . . . . . . . . Minimum Mapping Unit

MMW . . . . . . . . Minimum Mapping Width

BC . . . . . . . . . . . . Band combination

CL . . . . . . . . . . . . Classifier

TS . . . . . . . . . . . . Training Samples

RF . . . . . . . . . . . . Random Forest

kNN . . . . . . . . . . k Nearest Neighbours

m10 . . . . . . . . . . . Mosaic with 10 m ground resolution

m20 . . . . . . . . . . . Mosaic with 20 m ground resolution

t . . . . . . . . . . . . . . tree parameter

n . . . . . . . . . . . . . . node parameter

s . . . . . . . . . . . . . . sample parameter

d . . . . . . . . . . . . . . depth parameter

N . . . . . . . . . . . . . number of training samples

NP . . . . . . . . . . . . non-parametric

NM . . . . . . . . . . . non-metric

PA . . . . . . . . . . . . parametric

P . . . . . . . . . . . . . . Producer Accuracy

U . . . . . . . . . . . . . User Accuracy

B . . . . . . . . . . . . . Broadleaved Forest

C . . . . . . . . . . . . . Coniferous Forest

M . . . . . . . . . . . . . Mixed Forest

2



1. Introduction to European Forest
Mapping

Information on spatial forest distribution provided by forest mapping is needed
as fundamentals for climate change related agreements, reporting duties, forest
policy-making as well as forest ecosystem management and other forest related
applications (Laurin et al., 2016; Baffetta et al., 2012). ”Forest policy and manage-
ment in Europe are under the direct or indirect influence of a significant number
of processes and organisations. Within the EU, forestry matters are addressed,
for instance, within the council Working Party on the Forestry and the Standing
Forestry Committee of the European Commission”(Michalak, 2014). Those organ-
isations benefit from the most up-to-date forestry information as fundamental
for their recommendation. Furthermore most of the international forest-related
agreements are depended upon the reporting. The first forest international and
European forest agreements have laid focus on the relationship between forest
and economy. With time, various information on other forest related function
and variables (e. g. forest health, biodiversity) are gathered to support the forest
management process (Michalak, 2014).

In the same way K. Jia et al. (2014), X. Zhu and Liu (2014), Moreno et al. (2016),
and Masek et al. (2015) highlight the importance of better understanding of forest
ecosystem processes for economy, environment and society. After all forests play
a major role in global ecosystems, affecting biodiversity, air pollution, water
availability as well as quality, energy balance, carbon dynamics and climate regu-
lations. Besides forest have suffered from large scale disturbances and mortality
due to climate change, forest pest, forest fires and anthropogenic influences
like clear-cuts. Therefore forestry aims for a sustainable management of forest
resources. In order to be able to optimally exploit forest resources, accurate infor-
mation regarding extent, condition and productivity over large areas is required
constantly by forest industry and policy (Baffetta et al., 2012; Hyyppä et al.,
2000).

There are several efforts of forests mapping at different scales, differentiating be-
tween monitoring forest resources at small scale, covering large areas, to estimate
spatial and temporal variations and economic planning for smaller homoge-
neous forest areas or forest ecosystems to search for cause-effect relationships
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1. Introduction to European Forest Mapping

(Hyyppä et al., 2000; Michalak, 2014). Since regional and small scale mapping
products vary in spatial resolution, input data and forest definition, the impor-
tance of forest observation and information providing at European scale has been
pointed out by Probeck et al. (2014):

“Consistent, accurate, reliable and up-to-date information on the state of
forests in Europe is required by European countries for reporting and policy
making in the frame of several European countries and international forest-
and environment-relate policies, action plans and international agreements in
the fields of environmental protection, protection of biodiversity and ecosys-
tems, conservation planning, sustainable use of natural resources, climate
change mitigation actions and environmental modelling [...]” (Probeck et al.,
2014).

1.1. European Forest Products

Developments in recent years provide several forest-related information on global
and European scale, varying in detail, source of information and target groups.
One of the major products is CORINE Land Cover from 1990, 2000, 2006 or 2012

representing, among other land cover types, forest cover information. Within the
forest class following forest types are differentiated: Coniferous, broadleaved and
mixed forests along with agroforestry and transitional woodland. Forest areas
smaller than 25 ha are not included (Probeck et al., 2014; Moreno et al., 2016).

A global Remote Sensing Digital Map derived from AVHRR images has been
produced in 1992. Images with 1 km spatial resolution are classified into 17

classes, including the five forest classes, evergreen coniferous forests, evergreen
broadleaved forest, deciduous coniferous forests, deciduous broadleaved forests
and mixed forests. The map has been updated for the years 1997 / 1998 (Probeck
et al., 2014; Schuck et al., 2002).

Moreover, the manually derived European Community Forest Map of 1987 has
been updated using Corine Land Cover and a Non-Forest / Forest map of 1992

derived from the ESA AVHRR forest map, which has been completed in 1997

(Probeck et al., 2014; Schuck et al., 2002).

Furthermore, the ESA has produced a global land cover classification within the
Glob Cover project for two periods: December 2004 - June 2006 and January -
December 2009. The product is based on 300 m MERIS data representing 20 land
cover classes independent of national borders. Within those land cover classes
broadleaved and coniferous forest information is spread over 12 classes (Probeck
et al., 2014; ESA, 2016).
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1. Introduction to European Forest Mapping

Additionally, the Forest Cover Map 2000, 2006 and 20011/12 and the Forest Type
Map 2006 are provided by the forest group of the Joint Research Centre. The
forest/non-forest information is derived from LANDSAT ETM+ imagery and
CORINE Land Cover 2000, provided with 25 m raster resolution and validated
with independent survey points. The first map from 2000 provides the user
with forest / non-forest informations covering EU25 countries. Updated versions
differentiate between broadleaved and coniferous forest types. Automatic classifi-
cation techniques based on clustering algorithms are used as mapping approach
(Probeck et al., 2014; JRC, 2015).

Finally, the most recent product published from the ESA is the GIO high resolution
(HR) Forest Layer from 2012, created from automated classification methods. The
objective of the HR forest layer product is to map forest cover characteristics such
as tree cover density and forest type, for reporting. Both mapping characteristics
are provided with 20 x 20 m pixel resolution and aggregated to 100 x 100 m
product, with a minimum mapping unit from 0.5 or 1 ha (Probeck et al., 2014;
Langanke et al., 2015).

1.2. Forest Mapping Approaches based on sampling

Many studies focus on the integration of remotely sensed data and forest in-
ventory plots for mapping forests over large areas due to the fact that the most
frequent forest information providers are the national inventory organisations.
The forest inventories provide details like tree type, diameter at breast height,
height, age, and damage, gathered from field measurements. Through detailed
forest inventories, information about the state and dynamics of forests and for
forest ecosystem management can be derived (Gjertsen, 2007; Thessler et al., 2008;
Pippuri et al., 2016; Laurin et al., 2016; Baffetta et al., 2012; Ohmann et al., 2014).

Accordingly, forest inventories can be exploited as ground truth data for the
classification process, representing trainings or validation samples. Nevertheless,
Moreno et al. (2016) state that consistent inventory plots at the European scale
are not openly available as by now. Furthermore, national forest inventory plots
are suboptimal regarding large area forest mapping approaches, as they are the-
matically, spatially and temporally inconsistent (Probeck et al., 2014; K. Jia et al.,
2014; Michalak, 2014). Researchers have to obtain the plots from each country in-
dividually and subsequently aggregate them to the required spatial and thematic
level. To meet the demand for coherent forest information, the production of
harmonised data from mapping approaches beyond national borders is necessary
(Michalak, 2014). Even, Moreno et al. (2016) argue that by combining remotely
sensed image data with inventory plots, factors like spatial variability, sampling
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techniques and time, need to be considered. Those factors affect the confidence in
the plot data, thus leads to reduce the reliability of the produced information.

As an alternative to forest inventory data independent survey points could be con-
sidered for forest mapping applications. The European Union Land Use/Cover
Area frame Survey (LUCAS) provides statistics on land cover across EU-28 coun-
tries based on ground observations. The sample data collected between March
and September 2012 provides harmonised information for many applications,
including forestry. The three forest classes differentiated are broadleaved, conif-
erous and mixed forest (EUROSTAT, 2015). LUCAS points do not provide as
detailed information on forests as national forest inventory plots, but serve land
use and land cover information purposes. Aside from field measurements inde-
pendent survey points can be gathered by visual interpretation, providing an
opportunity for forest cover characteristics classification. Moreno et al. (2016)
mention that with exactly located plots high resolution satellite data, such as
LANDSAT, SENTINEL, SPOT or LIDAR information, can be considered within
the training process as ground truth, in order to create products with higher
spatial resolution.

1.3. Forest Mapping Expectations with SENTINEL

The existing pan-European mapping approaches are based on moderate or coarse
resolution data representing the major data source for mapping forests at global
or regional scale. Those products do not fulfil the requirements for local and
inter-regional forest applications (Masek et al., 2015). However, Laurin et al. (2016)
point out the need of more detailed information with high geometric resolutions,
concerning the forest characteristics, forest type, tree cover density, productivity
and health conditions. Recent studies focus on receiving a more detailed char-
acterization of forests. With high spatial resolution satellite data covering large
areas, forest information with a high thematic accuracy can be produced, suitable
for repeated monitoring over large areas. Furthermore, remotely sensed data can
be used to derive information on forest productivity, cover type and deforestation
(Probeck et al., 2014; Bruzzone and Demir, 2014; Moreno et al., 2016).

In respect of the demand to generate reproducible, accurate, complete and reliable
forest information at large scale, high resolution satellite images covering large
areas are necessary (Musaoglu and Örmeci, 2000; Probeck et al., 2014). At this
point it needs to be mentioned that the use of high spatial resolution images
decreases the mixed pixel problem, while the class intern variability increases,
resulting in a lower spectral variability between different classes. Accordingly,
the classes are statistically worse separable in the spectral feature space, which
may results in lower classification accuracies (Bruzzone and Demir, 2014). On
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the other hand, using satellite images with high geometric resolution to identify
forest attributes, allows the usage of textural information to increase the mapping
accuracy (X. Zhu and Liu, 2014).

The launch of the Multispectral Image Sensor (MIS) on-board SENTINEL-2 with
10 m spatial resolution and three new bands in the red edge region, provided by
the Copernicus initiative represents new opportunities to overcome limitations of
coarse resolution data. (Hirschmugl et al., 2017; Laurin et al., 2016). Better com-
pensation of atmospheric influences and cloud masking could be accomplished
by the 13 bands available (Probeck et al., 2014). ”The three S2 red edge bands
are especially promising for their ability to detect fine differences in chlorophyll
pigments; higher chlorophyll content can indicate higher canopy density [...]”
(Laurin et al., 2016). In addition, SENTINEL-1 supplements forest management
with the ability for ”clear-cut and partial-cut detection, forest type classification,
biomass estimation and disturbance detection” (ESA, 2015).

1.4. Study Objectives

The aim of this thesis is to introduce a methodological framework regarding
forest type and tree cover density classification methods using SENTINEL-2A
data and already available sampling plots as trainings data. The random sam-
pling plots, provided by Joanneum Research, are collected through visual image
interpretation carried out in the frame of the EEAVAL (Validation Services for the
geospatial products of the Copernicus land Continental and local components
including in-situ data) project. The HR Forest Layers provided by Copernicus
are produced ”through a combination of automatic processing and interactive
rule based classification” (Sannier et al., 2015) for the reference year 2012 mainly
based on 2011/2012 with 20 m resolution satellite images (Langanke et al., 2015).
The validation process is based on a stratified random sampling process and a
visual interpretation of 100 by 100 m plots with high resolution images (Sannier
et al., 2015).

The major aim of this thesis is to investigate to what extent the provided plots
reused as training areas are suitable for a pan-European classification approach
based on SENTINEL-2. In this case the major advantage will be that the pro-
posed method avoids time-consuming efforts to collect training areas within each
satellite image and thus reaching a higher automation degree. Concerning the
study objective following aspects will be considered and analysed. Regarding the
SENTINEL-2 image data preprocessing, the recommended Sen2Cor processor
presents a combined approach for atmospheric and topographic corrections. It
will be investigated to what extent the Sen2Cor processor will provide satisfac-
tory results regarding the SENTINEL-2 preprocessing. The resulting Level-2A
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products will be compared to two sensors with similar spectral resolution to
check the consistency. Furthermore, the potential of the new introduced red-edge
bands will be examined regarding the forest type discrimination and the tree
cover density estimation using signature and separability analysis. Additionally,
the effects of several different band combinations on the classification accuracy
will be investigated within the classification process to find the most suitable
band combination. Moreover, the role of the two automated machine learning
classifiers Random Forest and K-Nearest Neighbours will be examined, com-
paring the classification accuracies. Therefore, the continuous tree cover density
prediction will be performed with regression models. Whereas the discrete forest
types will be classified into three specific classes ’broadleaved’, ’coniferous’ and
’mixed’. With regards to both classifiers the impact of the parameters used within
the training process on the classification accuracy will be assessed.
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2. Automated Image Classification
Methods

Image classification provides the basis for image analysis and pattern recogni-
tion considering various remote sensing applications including forest mapping
(Lillesand et al., 2014; Campbell, 2002; Al-Doski et al., 2013; Rees, 2001). A wide
range of automatic image classification algorithms has been developed for many
different purposes most of them, suited for remote sensing applications. These
algorithms for automatic image classification procedures are called classifiers and
can be applied to single band images or to multispectral images (Mountrakis
et al., 2011; Rees, 2001). They range from supervised to unsupervised, parametric
to non-parametric, hard to soft, pixel-based to subpixel-based or object-based
approaches as shown in table 2.1. The appropriate classifier must be selected for
each specific task, considering image characteristics and the analysis purpose
(Liaw and Wiener, 2002; Campbell, 2002; Al-Doski et al., 2013).

2.1. Supervised, Unsupervised and Hybrid
Classification Logic

As mentioned in the previous chapter, classification methods can be distinguished
by several characteristics. Generally they are based on either supervised or
unsupervised classification logic (Rees, 2001; Kasischke et al., 2004).

In case of unsupervised classification methods prior knowledge of the region
is not required. Pixels sharing spectral reflectance characteristics are associated
with spectral clusters. The basic premise is that values of the same class are
closer together in the feature space. Accordingly, they share similar reflectance
values (Lillesand et al., 2014; Jensen et al., 2009; Al-Doski et al., 2013; Kasischke
et al., 2004; Mather and Magaly, 1999). Rees (2001) and Campbell (2002) state
that the major advantage of unsupervised methods is the minimization of human
error through full automatic procedures, thus the user only has to specify the
number of classes. The limited user control can be seen as disadvantage, due
to homogeneous spectral classes within the data, which do not correspond to
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Table 2.1.: Satellite image classification methods
Pixel-based / Object-based
classifiers

Sub-pixel-based
classifiers

Segmentation
algorithms

Supervised Maximum Likelihood PA fuzzy classification NP

Minimum Distance-to-Means PA Spectral Mixture
Analysis NP

Mahalanobis Distance PA Neural Networks NP
Paralellepiped PA Regression Modeling NP

k-Nearest Neighbour NP Regression Tree
Analysis NP

Artificial Neural Networks NP Fuzzy-spectral Mixture
Analysis NP

Decision Tree NM
Support Vector Machine NP
Random Forest NM
Linear Discriminant Analysis PA

Unsupervised k-means Region-Growing
Iterative Self-Organizing
Data Analysis (ISODATA) Markovian Methods

Self-Organizing Maps (SOM) Watershed Methods
Hierarchical
Algorithms

NP = non-parametric PA = parametric NM = non - metric

thematic classes (Rees, 2001; Campbell, 2002). The clustering process results only
in spectral clusters without thematic labels. Consequently, the analyst needs to
label and combine the clusters into thematic classes. Therefore, the human error
is still an issue to be considered (Lillesand et al., 2014).

Unlike the unsupervised classification methods the supervised techniques re-
quire prior information about the thematic classes. These samples of known
identity are defined by the analyst and should be homogeneous and represen-
tative for each feature type of interest. These representative training sites may
be derived from fieldwork, visual interpretation of aerial photos / VHR satellite
images or relevant maps (Mather and Magaly, 1999; Rees, 2001; Lillesand et al.,
2014). The trainings data preparation can be time-consuming and expensive. Nev-
ertheless, the advantage of supervised classification processes are the resulting
thematic classes. The method is often used for quantitative analysis and a variety
of algorithms are available (Campbell, 2002).

Hybrid classifiers share characteristics from both unsupervised and supervised
classification methods. The advantage of combining the methods is that spectral
clusters can be efficiently determined with unsupervised classification methods
and with available ground truth data these spectral classes can be compared to the
training data. After the clustering supervised methods perform the classification
(Richards and X. Jia, 1999; Rees, 2001; Jensen et al., 2009; Al-Doski et al., 2013).
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Considering the independent survey points as trainings data, which are already
available at European level, supervised classification methods are taken into
account regarding the forest mapping approach in this thesis.

2.2. Pixel-based and Object-based Methods

Another kind of distinction in image classification differentiates between object-
based and pixel-based classification methods. Generally, classification methods
can make use of spectral or spatial pattern recognition approaches. The basis
for the pixel-based spectral pattern recognition is the spectral information of
the pixel itself. The spectral information of surrounding pixels are not taken
into consideration. Pixel-based classifiers automatically associate each pixel with
a thematic class using the spectral pattern recognition (Lillesand et al., 2014;
Campbell, 2002; Mather and Magaly, 1999).

Spatial pattern recognition approaches categorize pixels or groups of pixels on
basis of their spatial relationship. Parameters like texture, shape, size and context
are taken into account. Object-based classifiers combine both spectral and spa-
tial reflectance pattern recognition methods, assuming that the image contains
homogeneous segments, which are larger than the pixel size (Lillesand et al., 2014;
Jensen et al., 2009). ”With object-based models, geographical objects, instead of
individual pixels, are considered as the basic unit” (M. Li et al., 2014). First, image
segmentation is used to create homogeneous objects using the spatial, spectral,
textural and contextual information from the input data. Second, these objects
are classified into thematic classes. Object-based image classification techniques
are embedded in various algorithms like Region Growing, Markovian methods,
Watershed methods and Hierarchical methods. The majority of researcher con-
sider these methods more appropriate with high-spatial resolution image data
compared to pixel-based classifiers (M. Li et al., 2014; Lillesand et al., 2014; Jensen
et al., 2009; Campbell, 2002). Considering the spatial resolution of Sentinel-2a
image data with 10 or 20 m and the mapping subjects, represented by tree patches
which are larger than pixel size, object-based methods are suboptimal regarding
large area forest mapping applications.

2.3. Hard and Soft Classifiers

Pixel-based classifiers are further classified into two categories: Hard- and soft
classifiers. Hard classifiers assume that only one thematic class exists within
each pixel and each individual pixel is given a single label. This assumption
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is often wrong for data with mixed pixels. Such pixels occur when the feature
target scale is smaller than the pixel size (Lillesand et al., 2014; Al-Doski et al.,
2013; Mather and Magaly, 1999). M. Li et al. (2014) and Al-Doski et al. (2013)
pointed out that the most commonly used unsupervised pixel-wise classifiers
are k-means, Self-Organizing Data Analysis technique and the Self-Organizing
Maps method. Furthermore, large variations of supervised pixel-based classifi-
cation methods have been developed including Gaussian Maximum Likelihood,
Minimum Distance-to-Means, Mahalanobis Distance, Parallelepiped, K-Nearest
Neighbours, Artificial Neural Network, Decision Tree, Random Forests, Support
Vector Machine, and Genetic Algorithms (Mather and Magaly, 1999; Abburu
and Golla, 2015; Al-Doski et al., 2013; Grinand et al., 2013; Lillesand et al., 2014;
Hassanat et al., 2014; Liaw and Wiener, 2002).

As for the classification process mixed pixels represent a significant problem, soft
classifiers are developed. These classifiers assign each pixel with a measure of
probability for each thematic class and work on sub-pixel scale. Consequently, it
leaves the decision for the final class to the analyst (Mather and Magaly, 1999;
Al-Doski et al., 2013). Furthermore, it should be considered that a thematic class
decision is not required if a proportional or fractional evaluation is appropriate.
Several major sub-pixel classification techniques are available such as Fuzzy
Classification, Neural Networks, Regression Modelling, Regression Tree Analysis,
and Spectral Mixture Analysis (Al-Doski et al., 2013; Lillesand et al., 2014; Abburu
and Golla, 2015; Al-Doski et al., 2013). Soft classifiers are often used for mapping
approaches at finer resolution than the pixel size of a sensor. With hard classifiers
such sub-pixel targets, for example fractions of land cover classes within one
pixel, remain undetected (Radoux et al., 2016).

2.4. Parametric, Non-metric and Non-parametric
Methods

Another kind of distinction in image classification is defined by the statistics they
are based on. For most of the classifiers assumptions are made ”concerning the
shape and distribution of decision volumes in multispectral space” (Kasischke
et al., 2004). Algorithms based on parametric statistics, assume image data to be
normally distributed, like Maximum Likelihood, Mahalanobis Distance and vari-
ous others as summarized in table 2.1. However the training data for supervised
image classification do not always fulfil these assumptions (Jensen et al., 2009;
Kasischke et al., 2004). Therefore, non-parametric algorithms are needed, which
are not based on any data distribution premise. Most common non-parametric
algorithms are artificial neural networks, support vector machine and various
sub-pixel based classifiers (Jensen et al., 2009; Al-Doski et al., 2013). Alternatives
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are Non-metric algorithms which combine both approaches and can operate
on real valued data and nominal scaled data. The most common non-metric
algorithms are based on decision tree approaches also including the random
forest algorithm (Jensen et al., 2009; Kasischke et al., 2004).

Within this thesis forest mapping approach the usual parametric classification
algorithm like maximum likelihood may not be appropriate regarding the forest
type and tree cover density differentiation. The ground truth data is primarily
assessed for validation purposes, consequently, the 100 by 100 m plots are charac-
terised by heterogeneous signatures of non-forest and forest areas. Additionally,
the Non-Forest areas are more frequent within the original ground truth data
set, representing an unbalanced trainings data set. Accordingly, Non-parametric
and non-metric classifiers, operating on real valued data and nominal scaled
data, are more suitable for the problem statement of this work, than parametric
approaches. Thus, to overcome problem of heterogeneous trainings data machine
learning techniques are considered within this thesis as they do not rely on
data distribution assumptions, can handle noisy observations and can easily be
applied to large datasets.

13



3. Automated Forest Mapping
Approaches

As mentioned in chapter 1, remotely sensed imagery can be exploited to estimate
forest characteristics like type or density and detailed forest attributes like heigh,
volume or biomass, producing maps for large regions of interest (Laurin et al.,
2016). Lately, several different approaches for forest mapping have been developed
that are based on different scale, classifiers, forest attributes as well as forest
definitions, ancillary data and a wide variety of sensor data. The choice of a
suitable approach depends on the study objectives and the conditions mentioned
above, as well on, the level-of-detail in training data, if available (Campbell,
2002).

For the selection of the appropriate classification method, mapping scale respec-
tively the geometric resolution of the data should be taken into consideration, as
object-based approaches work better with high-spatial resolution data, due to the
visibility of meaningful objects in high resolution images. Consequently, in this
case the use of pixel-based classification concepts are suboptimal. To overcome
this problem segments are created and classified instead of pixels (Ohmann et al.,
2014; Lillesand et al., 2014; Campbell, 2002; Rees, 2001).

Ohmann et al. (2014) tested a canopy cover estimation with LANDSAT imagery
and inventory plot data using the k Nearest Neighbours classifier. The Canopy
Cover defined as percentage of all living trees is mapped considering different
aspects of spatial scale like the k value or the mapping unit. Across all scaling
options a map accuracy for canopy cover with an average RMSE of 0.24 could
be achieved (Ohmann et al., 2014). Furthermore, the eleven discrete vegetation
classes sparse, open, broadleaf (small, medium/large), mixed conifer-broadleaf
(small, medium, large/very large) and conifer forest (small, medium, large, very
large) are classified with an overall accuracy ranging from 39 - 52 % across
the scaling options. Ohmann et al. (2014) propose that the accuracy assessment
resolution strongly influenced the map accuracy. In other words, map reliability
assessed on larger areas is more accurate than on plot-level. Furthermore, the
value of k strongly influenced the map accuracy. Nevertheless, the optimal k
value is depended on the objective of the study. On the contrary, the effects of
the spatial resolution and heterogeneous plots on the overall accuracies are small,
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however, the exclusion of heterogeneous plots from the training data slightly
improved the map accuracies (Ohmann et al., 2014).

Furthermore, with high resolution data using textural information within the
classification process can be taken into account. Several studies have proven that
adding spatio-contextual information in the classification process can improve the
accuracy for forest mapping approaches (M. Li et al., 2014; Ferreira et al., 2016).
The supervised machine learning classifiers, Linear Discriminant Analysis, Sup-
port Vector Machine and Random Forest are compared by Ferreira et al. (2016),
using hyperspectral and simulated multispectral data from the WorldView-3 sen-
sor to map tree species in Brazil. The authors claim that the Linear Discriminant
Analysis outperformed the other methods and produced the best result with
the inclusion of the SWIR bands, providing an accuracy of 74,8 %. Moreover, an
object-based approach was tested to identify the crowns, providing an accuracy
of 84,9 % based on the multispectral data. Therefore, it seems that for tree species
mapping at small scale with high resolution data object-based approaches work
better than pixel-based approaches (Ferreira et al., 2016).

In contrast other studies have proven that object-based approaches applied on
coarse resolution data, do not increase the accuracy results (Thessler et al., 2008;
Dorren et al., 2003). Forest type mapping in rain forest regions, achieving good
results, is demonstrated by Thessler et al. (2008), applying k-nearest-neighbour
and Linear Discriminant Analysis approaches on LANDSAT TM and SRTM
elevation model. 104 field observation plots are used to classify three different
forest types with an overall accuracy ranging from 82 - 91 %. However, the
discrimination of old growth forests does not work adequately and results in low
kappa values. One of the more significant findings to emerge from this study is
that a prior segmentation process does not increase the classification accuracy
significantly (Thessler et al., 2008).

Nevertheless, pixel-based classifiers still play a major role due to the fact that
they are almost fully automatic, easy to apply and widely available in remote
sensing image processing software programs or packages. Several studies focused
on the integration of coarse resolution satellite data with forest inventory plots,
achieving good results for forest attribute mapping at small scale (Xiao et al.,
2002; Baffetta et al., 2012; Dorren et al., 2003; Ohmann et al., 2014; X. Zhu and
Liu, 2014). The potential of SPOT-4 VEGETATION data for forest mapping,
using temporal composite data datasets is demonstrated by Xiao et al. (2002)
using 1 km spatial resolution SPOT data regarding forest type discrimination
in Northeaster China. The unsupervised Iterative Isodata Clustering classifier
and cluster labelling through experts are used to estimate forest types ”including
evergreen needleleaf forest, deciduous needleleaf forest, deciduous broadleaf
forest, and mixed forests” (Xiao et al., 2002). Between derived forest maps and
a national land cover dataset used as reference, a spatial agreement in forest
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pixels about 70 % (Error of omission: 30 %, Error of Commission: 10 %) is
achieved. This study has shown that automated unsupervised techniques also
produce moderate results and should be taken into account regarding forest
mapping approaches. Furthermore, Immitzer et al. (2016) have observed a clear
trend between accuracy and spatial resolution. The model based on spatial high
resolution data achieved with 74 % the best accuracy results in a tree species
classification process. In high resolution image data the mixed-pixel problem
decreases and furthermore, textural information is available to supplement the
classification process (Immitzer et al., 2016).

Besides, the spectral resolution is one factor to be considered regarding forest
mapping approaches. Hyperspectral data allows the retrieval of biophysical
parameters which can be associated with vegetation functions for detailed forest
type mapping (Laurin et al., 2016; Masek et al., 2015). Maximum likelihood
and Support Vector Machine approaches are compared by Laurin et al. (2016)
regarding tree species discrimination in tropical forest using simulated Sentinel-2
data. They conclude that the forest type discrimination works well with the
simulated Sentinel-2 data, adding texture information to the classification process.
The overall accuracy could slightly be improved by using the Support Vector
Machine approach (92.34 %) over the Maximum Likelihood approach (90,73 %).
Another dominant tree species mapping is performed by Gjertsen (2007), using
field plots, land cover maps and LANDSAT TM images. The inventory plots are
used to train the non-parametric Knn-classifier, weighting the plots according
to their similarity of spectral pixels values in the inventory area. The accuracy
of the dominant tree species classification has been tested on two different data
sets at municipal scale, with five trials resulting in a accuracy ranging from 58,3
% to 63,1 %. Gjertsen (2007) implies that an accuracy improvement could be
achieved by using different band ratios and correction for terrain illuminations.
The spectral resolution of remotely sensed image data should be considered,
since various studies used multispectral and hyperspectral data for vegetation
mapping achieving good results (Gjertsen, 2007).

Beside the spatial and spectral resolution it is worthwhile to consider ancillary
data as a factor to improve the classification process. Various studies have shown
that adding vertical information can improve forest mapping results (Pippuri
et al., 2016; Gjertsen, 2007; Dorren et al., 2003). Forest attribute mapping using
laser scanning (Optech ALTM), satellite images (LANDSAT 5 TM) and sample
plot data to estimate forest types and forest land attributes like volume, mean
height and diameter is tested by Pippuri et al. (2016). Multinomial Logistic
Regression Analyses is used for the classification process resulting in an overall
accuracy of 0.90 % (Kappa: 0.37) for the main forest type classification. These
findings suggest that in general forest attributes can be accurately classified using
Lidar Data, remotely sensed images and forest inventory plots and results can
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be improved by additional vertical information. Object-based and pixel-based
approaches for forest cover mapping are compared by Dorren et al. (2003), using
winter and summer LANDSAT TM 5 scenes and inventory plots. The main aim
of the study is to compare Maximum Likelihood as pixel-based approach with
Region Growing as segmentation method for a object-based approach. Another
aim of the study is to estimate the impact on topographic normalisation and
the usage of a digital elevation model on the mapping accuracy. Including a
digital elevation model produced the highest overall accuracy with 73 %. ”The
importance of the DEM for forest mapping in steep mountainous terrain could
be explained by the fact that the distribution of forest stand types on regional
scale is mainly determined by altitude” (Dorren et al., 2003). The input inventory
plots differentiate between following forest types: open coniferous forest, dense
coniferous forest, broadleaved coniferous forest and mixed forest. The object
based method achieved the best results (Overall accuracy: 70 %) with the usage of
the digital elevation model, whereas the pixel-based methods achieved an overall
accuracy of 73 %. The slightly higher accuracies for the object-based approach
imply that there is no significant improvement through the prior segmentation
process (Dorren et al., 2003).

Moreover, with large and free accessible archives like LANDSAT time series can be
build up. There is evidence that time series have a positive effect on classification
accuracy due to the fact that considering phenological information of forests can
improve the discrimination of forest types sharing similar spectral behaviour over
time (X. Zhu and Liu, 2014). The authors demonstrate a method for forest type
discrimination based on LANDSAT time series and topographic information.
The forest types pine forest, oak forest and mixed forest are discriminated.
For the training and validation process ground plot data is used. The forest
type discrimination works with an overall accuracy of 90,52 %, using Support
Vector Machine approach. To improve the accuracy a Digital Elevation Model is
integrated achieving an accuracy of 92,63 %. This study has shown that with the
usage of the digital elevation model the accuracy can be slightly improved for
mono-temporal image data, whereas the usage of dense seasonal time series can
largely improve the accuracy (X. Zhu and Liu, 2014).

With the newly launched Sentinel missions another free data source is available.
Considerably more work will have to be done to determine the potential of
Sentinel data regarding detailed forest attribute mapping and large area forest
characteristics mapping. Further research might explore the potential of the new
red edge band of Sentinel-2 for forest mapping approaches.

17



4. Data Source

4.1. SENTINEL-2A

SENTINEL-2A images obtained from the Copernicus Scientific Data Hub are
used in this thesis. The SENTINEL-2 Missions is part of the European environ-
mental monitoring system COPERNICUS and will provide two passive optical
earth observation satellites. SENTINEL-2A has been launched in June 2015 and
SENTINEL-2B has been launched in March 2017 (ESA Earth Online, 2016; Pflug
et al., 2016; Malenovsky et al., 2012). The satellites are equipped with the high
resolution Multispectral Instrument (MSI) with 13 spectral bands in visible, near-
infra-red (VNIR) and short waved infra-red (SWIR). Furthermore, three new
bands in the red edge region located in the transition between red and near infra
red, B5 (698 - 713 nm), B6 (733 - 748 nm) and B7 (773 – 793 nm), are introduced.
The mission aim is to support different land monitoring services with a high
revisit frequency, a systematic global land surface coverage of satellite images
with high spatial resolution and enhanced spectral range (Fletcher K., 2012; Main-
Knorn et al., 2015; Suhet, 2015; Gatti A., 2013; Delegido et al., 2011; P. Martimort
et al., 2007; Drusch et al., 2012).

4.1.1. Characteristics

Both satellites, SENTINEL-2A and B operate in a sun-synchronous polar orbit at
786 km altitude. Radiances are detected at the Multispectral Instrument (MSI),

Table 4.1.: SENTINEL-2 characteristics
Characteristics SENTINEL 2

Temporal resolution 10 days one satellite
5 days two satellites

Radiometric resolution 12 bit
Spectral resolution 13 bands
Spatial resolution 10, 20, 60 m

18



4. Data Source

Figure 4.1.: SENTINEL-2 bands. Reprinted from: ESA, European Space Agency, 2015

as the satellite moves along path (P. Martimort et al., 2007; Suhet, 2015; Drusch
et al., 2012). The characteristics for both satellites are summarised in table 4.1.

With both satellites on track each area will be revisited every five days under the
same viewing conditions. For the time period only SENTINEL-2A is operational
optical images are generated for the same area every 10 days. With different
viewing conditions, such as overlap between swaths and rolling or tilting the
satellite, the revisit frequency can be increased to 1 to 3 days (P. Martimort et al.,
2007; Suhet, 2015; Drusch et al., 2012; Main-Knorn et al., 2015; Malenovsky et al.,
2012).

The sensors radiometric resolution represents the level of reflectance that can
be distinguished. A high radiometric resolution allows the sensor to distinguish
more reflectance differences. The SENTINEL-2 sensor with 12-bit radiometric
resolution enables the image to store 4096 (212) potential light intensity values
(Suhet, 2015; Drusch et al., 2012; Main-Knorn et al., 2015).

Figure 4.1 shows the spectral and the spatial resolution from SENTINEL 2. The
latter depends on the spectral band. SENTINEL-2A is provided with four bands
extend from Visible to NIR with a spatial resolution of 10 m (B2, B3, B4, B8). Six
bands are available with 20 m spatial resolution, four in the vegetation red edge
domain and two large SWIR bands (B11, B12). The red edge bands, centred at 705

(B5), 740 (B6) and 783 (B7) nm, can be used for assessing vegetation status and
types through monitoring parameters like green leaf area index and chlorophyll
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content. Three bands at 60 m are provided, which are dedicated to improve the
atmospheric correction and cloud screening. One is for the water vapour retrieval
(B9), one for aerosol screening (B1) and one for cirrus cloud detection (B10) (P.
Martimort et al., 2007; Fletcher K., 2012; Delegido et al., 2011; Main-Knorn et al.,
2015).

4.1.2. Product Overview

The data itself is characterized by granules and tiles. “A granules is a mini-
mum indivisible partition of a user product (containing all possible spectral
bands)”(Suhet, 2015). The granule size is fixed and depends on the different
product levels provided. The granules for the Level-0, Level-1A and the Level-1B
products have a size of 25 km across track and 23 km along track. The granule
size for the provided orthorectified products, such as Level-1C and Level-2A, is
100 by 100 km. All scenes are distributed to users as SAFE (Standard Archive
Format for Europe) format (Suhet, 2015; Main-Knorn et al., 2015).

The Level-1C product is the first product level available in cartographic geometry.
The ortho-images are represented in UTM/WGS84 projection. The product is
derived from the Level-1B products, using a Digital Elevation Model to project
the image in cartographic coordinates. Pixels represent the Top-of-Atmosphere
reflectance and parameters for the radiance transformation are provided. Fur-
thermore, cloud, land and water masks are provided. Pixel coordinates no longer
refer to the pixel center, but to the upper left corner (Suhet, 2015; Drusch et al.,
2012).

The Level-2a product represents the Bottom Of Atmosphere reflectance values,
which are derived from the Level-1C product through an absolute calibration.
The tiles have the same size and cartographic geometry as the associated Level-1C
product. These products are not systematically generated at the ground segment.
The generation is performed by users, supported through the Sen2Cor processor
included in the SENTINEL-toolbox, using the downloaded Level-1C data as
input (Suhet, 2015). Additional outputs are Scene Classifications, Aerosol Optical
Thickness Map and a Water Vapor Map. All output images will be resampled to
one resolution for all bands, which can be chosen by the user (Main-Knorn et al.,
2015; Suhet, 2015; Muller-Wilm et al., 2013).

4.2. Forest Validation Plots

The Pan-European High Resolution (HR) Forest Layers from 2011 are provided
by the Copernicus program formerly Global Monitoring for Environment and
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Table 4.2.: Overview of the main forest HRLs. Reprinted from: Büttner et al., 2015

Forest
Tree cover density (20m and
100m)

Tree cover density values
from 1-100 %

Forest Type (20m)
consisting of two grids

Dominant leaf type. Binary product: coniferous
and broadleaved, MMU of 0.5 ha and 10 %
tree cover density threshold applied
Support layer: Maps trees under agricultural
use and in urban context from CLC
2012 and imperviousness 2012

Forest Type (100m x 100m)
Coniferous, broadleaved and mixed. Trees
under agricultural use and urban context
from additional support grid removed

Security (GMES), apart from other HR Layers such as water bodies and wetlands.
The HR layers are produced ”through a combination of automatic processing
and interactive rule based classification” (Sannier et al., 2015) for the reference
year 2012 mainly based on 2011/2012 20 m geometric resolution satellite images,
covering 39 European countries (Langanke et al., 2015). The HR forest layers are
provided as original 20 m product and validated 100 m product consisting of two
different layers. Both the tree cover density layer and the forest type layer, are
available on the Copernicus Land Portal and described in table 4.2 (Büttner et al.,
2015; Bruzzone and Demir, 2014; Sannier et al., 2015).

For the forest HR validation process a blind approach has been applied. In
other words, the validation has been undertaken without considering the map
information. In addition to the high resolution reference data the production data
is used in the validation process to ensure the geometrical quality and reference
period (Sannier et al., 2015).

Production Data:

• HR Image 2012 Coverage 1 CIR (25m)
• HR Image 2012 Coverage 2 RGB (20m)
• VHR Image 2012 CIR (2.5m)
• VHR Image 2012 RGB (2.5m)

(Sannier et al., 2015)
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Table 4.3.: TCD and FTY omission and commission substrata. Source: (Sannier et al., 2015)
Stratification TCD FTY
Commission Low
Probability

tree cover density 1-100 %
& CLC tree cover classes

Forest Type 1-2-3
& CLC forest classes

Commission High
Probability

tree cover density 1-100 %
& CLC non tree cover classes

Forest Type 1-2-3
& CLC non forest classes

Omission Low
Probability

tree cover density 0 %
& CLC tree cover classes

Forest Type 0

& CLC forest classes
Omission High
Probability Rest of the area Rest of the area

Reference Data:

• Bing maps (ArcGIS Basemap layer, RGB imagery)
• Arc2Earth imagery (Google commercial ArcGIS plugin, RGB imagery)
• National and regional web map services (RGB and/or CIR imagery)
• LUCAS field survey photos

(Sannier et al., 2015)

The stratified systematic validation sampling approach is conducted in two levels
based on the LUCAS (Land Use Area frame statistical survey) points, which are
located every 2 km on a regular grid covering Europe. With in the validation
framework 23 strata are formed, defining a single country or groups of countries
with an area greater than 90 000 km2. A minimum number of 50 sample points
per stratum has been defined to ensure that also small strata are represented
in the sample. Regarding those strata the LUCAS samples are densified by
creating every 200 m one point. Additionally, sample points have been added
representing difficult classes. Therefore, sample points are stratified according on
omission/commission strata, to get more samples for problematic areas, which
are difficult to map and have a higher probability that errors will be found
(substrata: Commission and Omission High). The Commission and Omission
strata are created based on the differences between the HRL (High resolution
Layer) 2012 product and Corine Land Cover (CLC). Consequently, sampling plots
within those strata are weighted higher. The differences between FTY and TCD
omission and commission strata are represented in table 4.3. Overall 23 390 plots
are prepared across 39 European countries (FTY: 12 152, TCD 12 152). Those
points are interpreted based on available image data listed above (Sannier et al.,
2015).
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Table 4.4.: Including and excluding decisions in TCD products. Reprinted from: Büttner et al.,
2015

Included Features
Evergreen/non-evergreen broadleaved,
sclerophyllous and coniferous trees
Orchards, olive groves, fruit and other
tree plantations, agro-forestry areas,
forest nurseries, regeneration and
transitional woodlands
Alleys, wooded parks and gardens
Groups of trees within urban areas
Forest management/usefeatures
inside forests (forest roads,
fire-breaks, thinning, etc.)

Included if tree cover can
be detected from the 20m imagery

Forest damage features inside forests
(partially burnt areas, storm damage,
insect-infested damage, etc.)
Excluded Features
Open areas within forests (roads,
permanently open vegetated areas,
clear cuts, fully burnt areas, other
severe forest damage areas, etc.)

Excluded if no tree cover
can be detected from the 20m imagery

Shrub land
Mediterranean bush land
(macchia, guarrigue, etc.)
Dwarf pine/green alder in
high/mountainous areas

4.2.1. Copernicus Tree Cover Density High resolution layer
(TCD)

The tree cover density layer is a binary product containing values from 1 – 100

%. Only tree patches with a minimum width of 20 m are considered but no
minimum mapping unit for the tree patches is given. The product is provided
with 20 m square pixels and as 100 m aggregated product (Sannier et al., 2015;
Büttner et al., 2015).

Regarding the validation process the same aggregation rule as mentioned above
is used. Additionally the classes 1 to 10 % are interpreted depending on the
visual estimation of trees in the HR 20 m satellite imagery. The definitions for the
tree cover density validation are given in table 4.4 (Sannier et al., 2015).
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Table 4.5.: FAO Forest Definition, Source: FAO, Food and Agriculture Organisation of the United
Nations, 2015

FAO Forest Definition

includes forest nurseries and seed orchards that constitute an integral
part of the forest
forest roads, cleared tracts, firebreaks and other small open
areas
forest in national parks, nature reserves and other protected
areas such as those of specific scientific, historical, cultural
or spiritual interest
windbreaks and shelterbelts of trees with an area of more
than 0.5 ha and width of more than 20 m
plantations primarily used for forestry purposes, including
rubber wood plantations and cork oak stands

excludes Land predominantly used for agricultural practices

In regard to the validation purpose the Tree Cover Density 100 m by 100 m
product in European projection LAEA is used. The interpreter has to check
whether the centre points of the 25 cell gird are located above tree crowns and
then assign the tree cover density values of each 20 by 20 cell represented in
figure 4.2a. Each plot is flagged, regarding the quality of the reference data. If
no significant interpretation reference is available, due to clouds ect., the plot
is flagged ”LOW”. Those plots are excluded from the validation process. The
same procedure is valid for plots with a significant geometry difference between
production and reference data (Sannier et al., 2015).

4.2.2. Copernicus Forest Type High resolution layer (FTY)

The forest definition for the Forest Type layer is as closely following the forest
definition from the FAO, Food and Agriculture Organisation of the United
Nations (2015) shown in table 4.5.

The Forest Type 20 by 20 m Layer is produced based on the tree cover density
layer and consists of two sub-products, one representing dominant leaf types
excluding patches smaller than 0.5 ha and with a tree cover density above 10 %,
the other one representing dominant leaf type for the excluded features like trees
under agricultural use and in urban context. Regarding the aggregated 100 x 100

m product trees under agricultural and urban context are excluded, additionally
containing the mixed forest class despite to the 20 x 20 layer (Sannier et al., 2015;
Langanke et al., 2015).
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The 100 by 100 m product is validated according to the forest definition shown
in table 4.5. Furthermore, aggregation rules are considered within the validation
process. Forest patches are only considered in a 4-cell connectivity mode. In
this context it has to be mentioned that only vertical and horizontal connected
pixels are accounted. The minimum number of pixels to form a patch is 0,5 ha
(MMU), corresponding to 13 cells in the 25 cell array. If more than one forest
patch is located in the cell array tree stocked cells belonging to a patch with
less than 0.5 ha (including the surrounding) are excluded from forest cover. The
same is true for plots with less than 10 % tree cover. Further, the Minimum
Mapping Width of 20 m has to be considered. Summarizing, if a plot has 13

cells of trees in a 4 cell connectivity mode and each patch has more than 0,5
ha including the surroundings and is at least 20 m wide, then FTY is assessed
represented in figures 4.2b, 4.2c and 4.2d. Regarding the validation process the
classes non-forest, broadleaved, coniferous and mixed forest are assigned by the
interpreter as follows (Sannier et al., 2015; Langanke et al., 2015):

• non-forest
• Broadleaved Forest (0 - 25 % coniferous)
• Coniferous Forest (75 - 100 % coniferous)
• Mixed Forest (26 - 74 % coniferous)

(Sannier et al., 2015)

4.3. Digital Elevation Model

Important ancillary information is provided by a digital elevation model repre-
senting altitude information based the bare ground surface without vegetation or
buildings. The digital elevation model used within the classification approach is
derived from several local elevation models and the SRTM 1 arc-second model
(U.S. Department of the Interior, U.S. Geological Survey, 2016) as well as the
EU-DEM (European Environment Agency (EEA), 2017).

”SRTM 1 Arc-Second Global elevation data offer worldwide coverage of
void filled data at a resolution of 1 arc-second (30 meters) and provide open
distribution of this high-resolution global data set. Some tiles may still contain
voids. [...] Please note that tiles above 50� north and below 50� south latitude
are sampled at a resolution of 2 arc-second by 1 arc-second.”(U.S. Department
of the Interior, U.S. Geological Survey, 2016)

After the downloaded SRTM model is visually inspected still some small gaps are
found within alpine areas, consequently additionally the EU-DEM with a ground
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(a) TCD validation example (b) FTY validation example 2

(c) FTY validation example 1 (d) FTY validation example 3

Figure 4.2.: TCD and FTY sampling plot data according to above definitions are provided by
Joanneum Research.
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resolution of 25 m in ETRS89-LAEA has been used to fill those gaps (European
Environment Agency (EEA), 2017).

Considering the ground resolution of the SENTINEL-2A image data with 10 m
or 20 m, local DEM’s with similar ground resolution are used to provide more
detailed altitude information. The first local DEM covers north Italy and provided
by Tarquini et al. (2012) with 10 m ground resolution in UTM WGS 84 zone 32

projection system. The second local DEM covers the Austrian country and is
provided by Geoland (2017) with 10 m ground resolution derived from airborne
laser scanner data in UTM WGS 84 zone 32 projection system.

All derived elevation models are projected to ETRS89-LAEA and resampled to
10 m ground resolution. Furthermore, the models are mosaicked and filtered to
smooth edges.

4.4. Corine Land Cover

The Corine Land Cover database 2012 obtained from the Copernicus website
(Copernicus Land Monitoring Service, 2017) is used within this thesis to derive a
current forest mask.

”The CORINE Land Cover (CLC) inventory was initiated in 1985 (reference
year 1990). Updates have been produced in 2000, 2006, and 2012. It consists
of an inventory of land cover in 44 classes. CLC uses a Minimum Mapping
Unit (MMU) of 25 hectares (ha) for areal phenomena and a minimum width
of 100 m for linear phenomena. [...] CLC is produced by the majority of
countries by visual interpretation of high resolution satellite imagery. In a
few countries semi-automatic solutions are applied, using national in-situ
data, satellite image processing, GIS integration and generalisation. [...]
”(Copernicus Land Monitoring Service, 2017)

Three different forest classes are represented with in the Corine Land Cover
database in vector format listed below. Those classes are used to derive a current
Forest/Non-Forest mask with 100 x 100 m pixel size to exclude Non-Forest pixel
for analysis and classification purposes.

”

• 3.1.1 Broad-leaved forest
• 3.1.2 Coniferous forest
• 3.1.3 Mixed forest

” (Copernicus Land Monitoring Service, 2017)
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In order to test the effectiveness of an independent survey points based classifi-
cation a study case located in central Europe has been chosen. The study area
covers about 33.000 square kilometres and the landscape is characterised by the
presence of temperate forests, large plains, mountainous regions and hilly and
lake regions.

Rigo et al. (2016) and the authors of the Motive Project (2016) differentiate be-
tween five ecological zones in Europe depending on the average temperature and
rainfall. The boreal zone located in the northern part of Europe and characterised
by short summers and long and cold winters resulting in dense coniferous forests
dominated by spruce and fir. ”The Atlantic climate in the western part turns to a
continental climate with decreasing humidity and higher temperature variation
in the eastern part of Europe” (Spiecker, 2003), therefore temperate forests located
in the mid-latitude area of Europe vary from oceanic to continental influenced
forests covering ”[...] floodplain to mountain forests up to the alpine timber-
line.”(Spiecker, 2003). As a result to the different climatic conditions resulting
in 4 - 6 months growing season, temperate forests vary within the continent.
Temperate forests are further differentiated between oceanic temperate forests,
occurring in regions with high rainfall and high winter temperatures and tem-
perate continental forest in regions with constant moderate rainfall which are
mainly dominated by a variety of broadleaved and conifer tree species (Lindner
et al., 2010; Spiecker, 2003, qtd. in: Mitscherlich, 1978). Europe is further char-
acterized by sclerophyllous evergreen forests, occurring in the Mediterranean
regions, which is characterized by hot and dry summers and mild winters (Motive
Project, 2016; Rigo et al., 2016). The test site region ranges in altitude from 10 m
above sea level in the Po Valley up to 4500 m above sea level in the Swiss Alps,
containing approximately two third from the Alps. Accordingly, forest are widely
distributed over mountainous terrain, reaching up to about 1800 m above sea
level and having large variations in species across the elevation gradients. The
canopy density generally decreases with increasing altitude due to the changing
climate conditions (Spiecker, 2003, qtd. in: Reichle, 2013).

The conifer species are dominated in countries like Austria, while in Croatia,
France, Hungary more than 60 % of the forest area are broadleaved dominated. In
other central European countries like France and the Principality of Liechtenstein
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Figure 5.1.: Study area for TCD and FTY mapping. Sampling plot locations are shown as red dots.
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Table 5.1.: Used SENTINEL-2A scenes
Date Scene Initials
04.07.2015 S2A OPER PRD MSIL1C PDMC 20160315T070646 R008 V20150822T104654 20150822T104654 Sa1

10.08.2015 S2A OPER PRD MSIL1C PDMC 20160514T142737 R122 V20150810T100716 20150810T100716 Sa2

13.08.2015 S2A OPER PRD MSIL1C PDMC 20160309T041851 R022 V20150813T101657 20150813T101657 Sa3

22.08.2015 S2A OPER PRD MSIL1C PDMC 20160408T105430 R108 V20150829T103705 20150829T103705 Sa4

26.08.2015 S2A OPER PRD MSIL1C PDMC 20160315T115050 R065 V20150826T102655 20150826T102655 Sa5

29.08.2015 S2A OPER PRD MSIL1C PDMC 20160408T105430 R108 V20150829T103705 20150829T103705 Sa6

30.08.2015 S2A OPER PRD MSIL1C PDMC 20160309T032233 R122 V20150830T100547 20150830T100547 Sa7

coppice contributes to more than 40 % to the forest area and countries like Croatia,
Germany, Principality of Liechtenstein, Slovakia, Slovenia and Switzerland have
more than 15 % unevenly aged forests. Information on the spatial coverage of the
three main forest types broadleaved forest, coniferous forest and mixed forest are
needed for multifunctional sustainable forest management (Spiecker, 2003).

The spatial extent of the study area is shown in figure 5.1 covering various
parts of ten different European countries including France, Switzerland, Italy,
Slovenia, Austria, Croatia, Hungary, Slovakia, Czech Republic, Germany and the
Principality of Liechtenstein. The test site is represented by seven SENTINEL-2a
scenes from July 2015 till August 2015 see table 5.1. Those scenes are chosen
because they cover a latitudinal gradient throughout the continent. Accordingly,
the test site area covers only three of the five ecological zones, with similar forest
types. The size of the study case is chosen depending on the number of available
plots within the SENTINEL-2A scene mosaic. After combining five scenes in east
or west direction 1556 forest type and 1482 tree cover density plots are available
within those scenes, represented by the red points in figure 5.1. Two more scenes
covering the same area are included for gap-filling reasons (Sa1, Sa2).
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This chapter provides a brief overview of the thesis workflow, the single processes
will be explained in detail in the flowing chapters. Figure 6.1 represents a overview
of all processes required within the classification framework.

In this thesis the thematic class definitions are adopted from the validation
framework for the GIO HR Forest Layers, differentiating between continuous tree
cover density classes and discrete forest type classes described in chapter 4.2.1
(TCD) and 4.2.2 (FTY). The SENTINEL-2A scenes are downloaded from the
Copernicus Data Hub and exported into tiff format with the SENTINEL Toolbox
including all layer with surface information and the scene classification. The image
preprocessing is done with the Sen2Cor package and the use of the ARCGIS
and ERDAS software including the following four steps: Cloud and shadow
masking, terrain correction, atmospheric correction and no data handling. The
corrected images are mosaicked to provide consistent coverage over a large region.
Cloud and shadow masks are adopted from the scene classification and extracted
from the image data. Afterwards the preprocessed mosaic is re-projected in the
Lambert Azimuthal Equal Area (LAEA) coordinate system suitable for European
data requiring true area representations.

The validation samples used as training areas need to be prepared for the classifi-
cation process including a visual interpretation of changes between plot validation
date and image acquisition date. Within the classification process only sample
plots inside the study area are extracted and divided into trainings samples
(85 %) and validation samples (15 %) or (20 %). To find the most suitable band
combinations regarding the classification process signature analysis including
regression analysis and separability analysis based on the Jefferies-Matusita dis-
tance measure have been evaluated. As mentioned in chapter 2 metric supervised
hard classifiers are considered to be valuable for both continuous tree cover
density and categorical forest type classification. Accordingly random forest and
k-nearest-neighbours classifiers are applied and evaluated.

As represented the first section of figure 6.1 the data preparation steps for
both classifications are identical, whereas within the classification process, post-
processing process and the validation process continuous and discrete data are
handled differently.
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In regards to the tree cover density prediction regression models are trained
with both classifiers and applied to predict the tree cover density over the whole
mosaic. The regression models are characterized by using the mean value as
decision rule within the random forest and the knn classifier training process.
Fitting parameters are estimated if necessary with regression analysis within
the post-processing stage. Those are applied if the resulting classified product
is strongly underestimated to achieve continuous values from 0 to 100. After
the calibration step the classification result is evaluated with scatter plots and
regression coefficients to get a general overview about commission and omission
errors. Thresholds are applied to group the density values in order to compute
confusion matrices. The thematic accuracy for each product is determined by
confusion matrices calculated to estimate the users and producers accuracies as
well as the overall accuracy. As represented in the yellow section of figure 6.1
the tree cover density prediction is performed twice. The first approach includes
also Non-Forest samples in comparison to the second approach which uses a
forest mask to exclude Non-Forest areas. According to the tree cover density
definition given by HR TCD Layer each tree without restrictions is considered.
Consequently, it makes sense to include Non-Forest areas because trees also occur
outside of forest areas. Nevertheless, forest applications have particular interest
in tree cover density values inside forest areas. Therefore, both approaches are
examined within this thesis.

In the case of the forest type distinction only one approach is examined, differ-
entiating between three forest types within forest areas. The forest definition
of the FAO excludes areas under urban and agricultural use. Accordingly, only
forest areas can be considered as it does not make sense to classify Non-Forest
areas within a forest product differentiating between forest types. Regarding the
forest type distinction classification models are trained with both classifiers and
applied on the whole mosaic. The classification models are characterized by using
the majority vote as decision rule within the random forest or the knn classifier
training process. The majority vote is used to deal with categorical data values
and picks the most common class among all considered possibilities. In the post-
processing stage the Minimum Mapping Unit of 0,5 ha needs to be considered,
due to forest type definition given by the FAO. After the aggregation process
using the majority vote over all forest types confusion matrices are calculated.
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Figure 6.1.: Workflow regarding the TCD and FTY classification process
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6.1. SENTINEL-2A Preprocessing

For SENTINEL-2 data product preprocessing the Sen2Cor processor is recom-
mended, which can be installed in the SENTINEL-2 toolbox. It performs several
tasks from cloud screening, scene classification to the Bottom of Atmosphere
(BOA) reflectance calculation including terrain correction, adjacency correction
and an empirical bidirectional reflectance distribution function (BRDF) correction.
As input Level-1C products are required. The output product is identified as Level-
2A product and includes the orthorectified bottom of atmosphere reflectance,
aerosol optical thickness map, water vapour map, a scene classification map and
various quality indicators like probabilistic cloud or snow masks (Main-Knorn
et al., 2015; Muller-Wilm et al., 2013).

6.1.1. Atmospheric and Terrain Correction with Sen2Cor

In this thesis, SENTINEL-2A scenes with different acquisition dates are used,
therefore an atmospheric correction of the image data is necessary, since the state
of the atmosphere varies with time. The image preprocessing is done with the
Sen2Cor package, thus it is compatible with the provided SAFE format, can be
operated in batch mode and is compatible to the SENTINEL-2 toolbox. All bands
are corrected and resampled with 10 m resolution. In order to the classification
process the four 10 m bands are aggregated to 20 m and stacked to the six bands
with 20 m spatial resolution.

How the processor works in detail will be explained in the following section.
Sen2Cor is composed of several state-of-the-art techniques performing the task of
correcting the reflectance values (Muller-Wilm et al., 2013).

”The [atmospheric correction] AC processing consists of a set of four different
subtasks, (AOT, WV and terrain retrieval (optional with terrain and cirrus
correction, having three different user products as output: AOT and WV
tables on pixel level and the BOA corrected reflectance images for all bands
measured”(Müller-Wilm, 2015)

Parameters like atmospheric visual transparency, aerosol type and the water
vapour column are needed for the atmospheric correction process and derived
through the associated bands (Muller-Wilm et al., 2013). The Dense Dark Vegeta-
tion algorithm performs the task of the Optical Aerosol Thickness detection and
aerosol type estimation, requiring areas of known reflectance behaviour. How the
process works in detail is explained by R Richter et al. (2006):
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”The method is based on a stable relationship between surface reflectance
r in the short-wave infrared (SWIR; 2100–2200nm) and reflectance in the
blue (480 nm) and red (660 nm) wavelengths. It starts with the approxi-
mation rSWIR = rTOA

SWIR where rTOA is the top-of-atmosphere reflectance.
This approximation is fairly accurate, because of the small path radiance and
high atmospheric transmittance t > 0.9 in the SWIR region [..]. Then, the
relationships rblue = rSWIR/4 and rred = rSWIR/2 are employed and the
differences between the TOA apparent reflectance and the reflectance from the
above relationships are used to calculate the path radiance and corresponding
aerosol optical depth. The spectral reflectance correlation between the red and
SWIR wavelengths is sufficiently stable for an aerosol retrieval.”(R Richter
et al., 2006)

Pflug et al. (2016) states after a first validation process comparing with AERONET
sunphotometer measurements, that the algorithm only works with dark dense
vegetation pixels within each granule.

Furthermore, the Water Vapour information is required in order to the correc-
tion of the reflectance values, gathered through the Atmospheric Pre-corrected
Differential Absorption (APDA) algorithm, using the bands B8a and B9. Band
8a provides reflection values in an atmospheric window region, whose values
can be seen as reference for the water vapour. Band 9 presents reflectance values
in a absorption region. The offset between those two bands is a measure for
absorption depth, which dominates the lower atmosphere, assuming that the
surface reflectance for B9 is the same as for the B8a. In this case the absorption
depth represents water vapour column content (Muller-Wilm et al., 2013). Pflug
et al. (2016) observes after a first validation process with AERONET sunphotome-
ter measurements that the algorithm is less influenced by clouds and missing
dark vegetation pixels in order to the water vapour retrieval than for the aerosol
thickness detection. Since the water vapour column in the upper atmosphere
and the ozone absorption content cannot be estimated from image data, sea-
sonal climatological values are taken, differentiating between summer and winter
atmosphere (Pflug et al., 2016).

Optionally a cirrus correction can be performed using Band 10, which is located
in the 1380 nm spectral region, where ground reflected signal is totally absorbed
receiving only scattered cirrus signal at the sensor (Rudolf Richter et al., 2011). The
Correlation between cirrus Band (B10) and other bands in NIR and SWIR leads to
the cirrus contribution, which can be removed from the radiance signal (Muller-
Wilm et al., 2013; Pflug et al., 2016). An established cirrus removal methods exists
for visible and near infra-red bands. The Sen2Cor processor uses an extended
technique removing cirrus during the atmospheric reflectance calculation to avoid
reflectance artefacts and improving the accuracy of surface reflectance retrievals.
Rudolf Richter et al. (2011) describes the standard cirrus removal method:
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”A ’virtual’ surface is defined consisting of the earth’s surface and atmo-
sphere beneath cirrus clouds. It includes the effects of surface reflection and
atmospheric scattering and absorption processes. Above cirrus there is the
remaining part of the atmosphere with a residual water vapour column. [...]
The cirrus reflectance in the VNIR (from 0.4 to 1 µm) is linearly related to
the cirrus reflectance at 1.38 µm [and] [...] the cirrus single scattering albedo
(SSA) is close to 1 in this part of the spectrum which means that scattering
dominates. It does not hold in the SWIR spectrum (1.6 µm, 2.2 µm) where
cirrus absorption is higher [...] (Rudolf Richter et al., 2011).”

This means that standard cirrus removal method only considers channels in NIR
window regions, excluding the 0.94 m water vapour region. Hence, an enhanced
cirrus removal method is introduced by Rudolf Richter et al. (2011), accounting
for the water vapour absorption above cirrus clouds, during the atmospheric
correction process using the B10 band. ”For instruments with similar channels
as SENTINEL-2 the water vapour is retrieved with a band in a window region
(around 0.87 µm) and one in the 0.94 µm absorption region (Rudolf Richter et
al., 2011).” The transmittance between sun-cirrus and cirrus-satellite is initially
unknown, therefore radiative transfer codes using climatological atmosphere
profiles for different seasons and areas adopted from MODTRAN models are
used (Rudolf Richter et al., 2011).

Sen2Cor uses a combined approach for the atmospheric and topographic correc-
tion, eliminating the topographic effects during the BOA reflectance calculation.
In order to the terrain correction processing a digital elevation model can auto-
matically be downloaded by the processor using the SRTM 3 arcs model. The 90

m SRTM Digital Elevation Database required by the algorithm for rugged terrain,
will be downloaded from CGIAR-CSI. In order to the topographic correction
processing parameters like slope, aspect and hill shadow are calculated. The
digital elevation model will be automatically resampled and referenced to the
SENTINEL scene (Main-Knorn et al., 2015; Muller-Wilm et al., 2013).

In this thesis the SENTINEL-2A scenes are processed with 90 m resolution
SRTM Digital Elevation Model (DEM) provided by CGIAR-CSI. The look-up table
selections are set within the user configuration file L2A GIPP.xml provided by
the Sen2Cor processor. In the configuration file the three entries Aerosol Type,
Mid Latitude and Ozone Content can be set (Müller-Wilm, 2015).

”The atmospheric model of SEN2COR (L2A AtmCorr) is dependent on
the calculation of radiative transfer functions for different sensor and solar
geometries, ground elevations, and atmospheric parameters. [...] The processor
reads the parameter in form of Look Up Tables (LUTs) pertaining to this
parameter space and interpolates, if required. The LUTs have been generated
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via libRadtran, a library for the calculation of solar and thermal radiation in
the Earth’s atmosphere.”(Müller-Wilm, 2015)

There are 24 different look-up tables provided by the processor including ta-
bles regarding rural and maritime aerosols, mid latitude summer and winter
atmosphere profiles and various types of ozone concentration, which can be
configured in the L2A GIPP.xml file (Pflug et al., 2016).

The Aerosol type is selected depending on the climatology from the scene ac-
quisition area and time, using built-in MODTRAN aerosols for example rural
or maritime aerosol types are differentiated. The ozone content is provided by
ancillary data for each scene individually (R Richter et al., 2006; Muller-Wilm
et al., 2013). Regarding the test site location in mid Europe extending from France
to Hungary the rural aerosol type is chosen. All used SENTINEL 2A scenes
are acquired between July 2015 and August 2015 therefore look-up tables for
atmospheric summer conditions are chosen.

The ozone content concentration, measured in Dobson Units (DU), should be
chosen depending on the season (summer or winter). The standard ozone content
for a latitude summer atmosphere is 331 DU and in winter it is about 330 DU
(Müller-Wilm, 2015). Therefore a value of 331 is chosen for the atmospheric
correction process.

After all required parameters regarding the atmospheric correction are estimated
the BOA reflectance calculation is performed using a set of the available and
calculated LUTs, chosen by the user according to geographic location and cli-
matology (Main-Knorn et al., 2015; Muller-Wilm et al., 2013). Output images
are automatically resampled to a user defined spatial resolution based on the
three resolutions available in the input image. The three bands with 60 m spatial
resolution (Band 1,9 and 10) will be omitted in the level-2a output, since they
are not needed for land cover applications (Pflug et al., 2016; Muller-Wilm et al.,
2013; Fletcher K., 2012). In a first validation process again using AERONET as
reference data Pflug et al. (2016) observed a high spectral agreement between
several example spectra like forest, bright soil ect. and the SENTINEL image
data. The reference image is calculated running the atmospheric correction on the
SENTINEL scene with an AOT constant measured by the AERONET instrument
(Pflug et al., 2016).

Another major performance of the processor is the scene classification, which
detects 12 different land cover classes (Muller-Wilm et al., 2013). ”The algorithm is
based on a series of threshold tests that use as input top-of-atmosphere reflectance
from the SENTINEL-2 spectral bands. In addition, thresholds are applied on band
ratios and indexes like the Normalized Difference Vegetation - and Snow Index
(NDVI, NDSI)” (Muller-Wilm et al., 2013). In a first validation approach the scene
classification reached an overall accuracy of 78 %. As reference random stratified
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Table 6.1.: Corresponding bands regarding each spectral region across MSI, OLI and MODIS

MSI MODIS OLI

RED B4 B1 B4

NIR B8a B2 B5

SWIR B11 B6 B6

Resolution 20 m 463 m 30 m

sampling points are visually interpreted, with at least 50 points per class (Pflug
et al., 2016).

6.1.2. MSI Comparison with OLI and MODIS

To check the consistency of the SENTINEL Level-2a products derived from the
Sen2Cor processor (Version 2.2.1), SENTINEL-2 MSI is compared with two other
sensors with similar spectral resolution (LANDSAT 8 OLI and TERRA/AQUA
MODIS). Figure 6.2 highlights the different bands for all three sensors and also
the differences in bandwidths for corresponding spectral bands of each sensor. It
also shows which bands are comparable with each other over all three sensors.
With regards to OLI the spatial resolution of MSI is finer except regarding the
bands used for the atmospheric correction. These bands have been discarded
from the analysis because B10 do not contain any surface information and the
B9 and B10 are not useful for land cover analysis. The major spectral difference
between OLI and MSI is the presence of red-edge bands in MSI and the thermal
bands in OLI. Regarding MODIS the spatial resolution of MSI and OLI is much
finer. In order to compare the sensors following bands are chosen and resampled
to 920 m representing almost twice the MODIS resolution (see table 6.1).

MODIS and OLI sensors products adopted for this analysis are downloaded
already containing reflectance values. The SENTINEL-2a scenes are processed
with the Sen2Cor processor as explained in chapter 6.1.
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Figure 6.3.: Atmospheric correction evaluation
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For the comparison, first, regions of interest are defined for the thematic classes
water bodies, broadleaved forest, coniferous forest and urban area in the overlap
area of all images to be compared including SENTINEL-2A MSI 26.08.2015,
SENTINEL-2A MSI 29.08.2015, TERRA/AQUA MODIS, LANDSAT 8 OLI. Several
example spectra are extracted within the reference images and in the images to be
compared, represented in figure 6.3. One region of interest for each class is defined
containing homogeneous pixels in the resampled products, and centered in the
land cover feature to avoid adjacent land cover pixels influencing the comparison.
The chosen classes can be considered as steady and therefore changes during
short time intervals can be neglected.

Figure 6.4 shows the differences between the mean reflectance values of each
region in the RED channel, showing similar results over all three sensors systems
for each example area. Especially between MODIS and OLI nearly no differences
is observed. In relation to the other sensors the reflectance values for OLI within
the water body area are twice as high. Those differences can be explained with
the presents of thin cirrus clouds. Nevertheless, it should be considered that
in relation to the other classes or in absolute terms the differences are minor.
Regarding broadleaved and coniferous forests the MSI sensor shows slightly
lower reflectance values in both scenes, indicating a minor under correction for
the Sen2Cor processor reflectance values. However, as shown in the statistics the
reflectance differences in the red region are less than one percent.

Figure 6.5 represents the differences between the mean reflectance values of each
region in the NIR channel, again showing similar results across all three sensors
systems with one exception. In the case of the broadleaved region the MSI sensor
(29.08.2015) shows extreme low reflectance values in relation to the other sensors
and the MSI scene acquired on the 26.08.2015. A visual inspection of the images
shows a difference between the processed granules within the SENTINEL scenes.
The test sites are located in two different granules. The reflectance values of the
upper granule, including the broadleaved and coniferous forest test sites are
under-corrected due to haze. Since broadleaved and coniferous forest are located
in the same granule, it would be expected that the coniferous forest reflectance
values would also be underestimated. Nevertheless, the reflectance values of
coniferous forest are at least 20 % lower than the broadleaved reflectance values,
accordingly the differences are smaller.

Figure 6.6 shows the differences between the mean reflectance values for the SWIR
channel showing more and higher differences over all three sensors systems. In
comparison with the RED and NIR channels the SENTINEL scenes also seem over-
corrected in relation to the other two sensors. Regarding all example spectra the
SENTINEL scenes appear slightly over corrected expect for the broadleaved forest
area, whereas the LANDSAT scene seems slightly under-corrected. Nevertheless,
it should be noted that the absolute reflectance differences are less than 2 %.
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Figure 6.4.: Mean reflectance - RED band

Figure 6.5.: Mean reflectance - NIR band

42



6. Forest Mapping Workflow

Figure 6.6.: Mean reflectance - SWIR bands

In general it appears that the example spectra for coniferous forest, broadleaved
forest, water and urban area show the expected spectral agreement between
reference spectra and images spectra to be compared. For the most part it seems
that atmospheric correction with Sen2Cor works consistent like Pflug et al. (2016)
have shown in their early validation approach of the Sen2Cor processor. Never-
theless, difficulties arise, when no dark dense vegetation pixels are within the
granule. Small overcorrection in comparison with the AERONET sunphotometer
measurements are observed by Pflug et al. (2016), which may result from false
aerosol parameters, because Sen2Cor estimated higher aerosol optical thickness
compared to the reference data. Nevertheless, it should be noted that there is still
a possibility that the reference data obtained from AERONET sunphotometer
measurements can be under-corrected. The major problem is the granule wise
processing of Sen2Cor, which results in granule borders within the scenes in cases
of missing dark dense vegetation pixels. The differences between two correspond-
ing granules are shown in figure 6.7, indicating that the differences are higher for
bands in the red-edge and NIR region. To get statistically more relevant results,
more test sites within different overlap regions, additionally in scenes without
dark dense vegetation should be extracted.

6.1.3. Cloud and Shadow Masking with SENTINEL Scene
Classification Map

The identification and exclusion of clouds and clouds shadows is necessary due
to their influence on spectral reflectance values and characteristics of the thematic
classes. Two main cloud types are differentiated: Opaque clouds which block
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Figure 6.7.: Mean reflectance comparison between two granules for broadleaved forests

almost all information from the surface and cirrus clouds which are partially
transparent and share spectral signatures with the land cover beneath. Since
with SENTINEL-2 no bands in the thermal spectrum are available, a cirrus
band (B10 (1375 nm) is introduced in order to the cloud detection, which is
most suitable regarding thin cirrus detection. Cloud pixels are characterized by
lower temperature and higher reflectance than land cover pixels, therefore many
cloud detection algorithms depend on the thermal band (Z. Zhu et al., 2015;
Hagolle et al., 2010). Z. Zhu et al. (2015) demonstrate that the cirrus band is even
more important than the thermal band for cloud detection processes, comparing
LANDAT 4-7, LANDSAT 8 and simulated SENTINEL 2 images with the Fmask
cloud detection algorithm.

Cloud Mask

SENTINEL-2a products are provided with different already available cloud
masks depending on the product level. Within the Level-2A product the scene
classification algorithms generates a classification map based on spectral threshold
tests applied on the cirrus band and band ratios like NDVI and NDSI. The scene
classification map provides four different classes of clouds (thin cirrus clouds,
high, medium and low probability clouds), four land cover classes (vegetation,
soil/deserts, water and snow) and two extra classes for shadows (differentiating
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Figure 6.8.: Cloud mask: Comparison between Level 1C and Level 2A product
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between cloud shadows and terrain shadows) (Fletcher K., 2012; Muller-Wilm
et al., 2013). Furthermore, Level 1C products are provided with spatial filtered
cloud masks differentiating between opaque and cirrus clouds based on the scene
classification map with 60 m spatial resolution.

Apart from the scene classification map a probabilistic cloud map and a snow
probability map, are produced during the processing with Sen2Cor. Within several
iterations with different thresholds, the cloud probability map is updated during
the Sen2Cor processing. The refined threshold values for the cloud detection
algorithm are derived from LANDSAT 7 Automatic Cloud Cover Assessment. The
opaque cloud detection algorithm uses the water vapour band (B1) and blue band
(B2) in combination with two SWIR bands (B11, B12) to differentiate between snow
and clouds. The algorithm first defines potential cloudy pixels within the red part
of the spectrum through a certain threshold. Further, on those pixels undergo
a filtering process based on spectra thresholds, band ratios and the indices
normalized difference snow index (NDSI), normalized difference vegetation
index (NDVI). Pixels with values under -0,1 in the NDSI are representing snow
and are excluded as potential clouds. Vegetation pixels are excluded from the
cloud map deriving information from NDVI and a NIR/Green ratio. Bare soil and
water is also excluded through threshold with a blue/NIR ratio. A median filter
(3x3 or 5x5) is applied on the three cloud classes to reduces false classifications
occurring on border region with high contrast like river contours or shorelines
(Louis et al., 2010).

Further, the cirrus band (B10) is used to detect ice high-altitude clouds, which
are represented by high reflectance values in B10 and low reflectance values in
B1 and B2 (Fletcher K., 2012; Muller-Wilm et al., 2013). The strength of the cloud
band lies in the strong water vapour absorption within the mentioned spectral
region. Thresholds are used for separating clear sky pixels from cloud pixels
(Louis et al., 2010).

If a correlation of the cirrus signal in the cirrus band and the other wavelengths
in the NIR region can be found, then the cirrus contribution can be removed.
Rudolf Richter et al. (2011) introduced an enhanced cirrus removal method for
multispectral images including channels in in the NIR and SWIR region as well
as a water vapour band and a cirrus band. During the water vapour and surface
reflectance calculation within the atmospheric correction process water vapour
above cirrus clouds derived from the cirrus channel is considered, leading to
more accurate assessments of the water vapour map. Hence, cirrus artefacts on
the SWIR region can be avoided. As mentioned in chapter 6.1.1 radiative transfer
look-up tables are used for the water vapour and reflectance retrieval. Regarding
the cirrus correction further look-up tables containing above cirrus transmittances
for different solar and viewing conditions are used (Rudolf Richter et al., 2011).
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Figure 6.8 shows the different cloud classes provided by the Level-1C and Level-
2A masks. The mask quality is subjectively examined by visual inspection and
not statistically assessed. Level-1C cloud mask contributes cirrus and opaque
clouds. In the Level-1C product the mask is already further processed to reduce
misclassification and fill gaps. The Level 1C product opaque cloud mask does not
cover the full cloud extent. Level-2A scene classification presents three different
classes for opaque clouds based on probabilities (High, Medium, Low). Affecting
all three probabilities classes misclassification are observed in urban areas and
dry mountainous terrain. The high probabilities cloud class is calculated with a
high threshold applied on cloud probability mask missing some thin cirrus clouds
but reducing misclassification. With higher thresholds only the cloud centres
are detected, missing cloudy pixels at the borders. The lower the probability
cloud class calculated with a low threshold suffers from false detection for bright
surfaces in dry environments in urban areas or on mountainous terrain.
In addition Level-1C and Level-2A products contribute thin cirrus cloud classes
taking advantage of the new cirrus band B10. In the Level-1C product the mask is
already further processed to reduce misclassification and fill gaps (Muller-Wilm
et al., 2013). Both masks are screened reasonably well, but some thin clouds
(mostly thinner plane contrails) are missed by the detection in Sen2Cor.

Finally, the cirrus clouds are adopted from the Level-1C product adding some
missing contrails. Although Sen2Cor cloud mask tends to over detect clouds,
high, medium and low probability clouds and the cirrus are adopted and further
processed, due to the fact the low probabilities cloud mask are best at detecting
the actual clouds. Clouds with an area less than 400 m2 (corresponding to four
10 x 10 m pixels) are excluded to reduce the amount of false detections. Due
to the too small cloud area a buffer of 200 m was assigned to the clouds. The
misclassification in the urban and high altitude areas, can be neglected for forest
mapping purposes.

Cloud Shadow and Terrain Shadow Mask

The classes cloud and terrain shadows are only provided by the Level-2A product
represented in figure 6.9. Cloud shadows are often misclassified because they
share similar spectral signatures with topographic shadows, water and wetlands
(Z. Zhu et al., 2015). The cloud and mountainous shadows in the scene classifica-
tion are classified too small, therefore a buffer of 200 m is applied to enlarge the
shadow areas. Some water pixels with low reflectance area are masked as cloud
shadow pixels due to similar reflectance values in the NIR and SWIR bands. To
reduce the misclassification in the shadow mask patches with a size less than 400

m (corresponding to four 10 x 10 m pixels) are eliminated automatically.
In most cases cloud and cloud shadows are located next to each other depending
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Figure 6.9.: Shadow mask: Comparison between terrain and cloud shadows.
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on the sun location and image acquisition time and the shadow size should
be nearly the same size as the cloud. To reduce the cloud shadow misclassi-
fication geometric relationships between clouds and cloud shadows could be
used (Jin et al., 2013). Nevertheless, those misclassification can be neglected for
the forest mapping purpose. Generally it should be considered that the used
Sen2Cor version has been in a early tuning phase, and will be enhanced with
next versions.

Finally, clouds, cloud shadows and terrain shadows are merged and excluded
from the mosaic. The final product is represented in figure 6.9. Afterwards the
gaps are restored with clean pixel values from overlapping regions or redundant
scenes (sa1, sa2). Due to overlapping cloud regions and regions without second
data source there are still no data values within the mosaic. Nevertheless, au-
tomated cloud screening is important to spend less time on data preparation
especially regarding time series.

6.2. Trainings Data Preparation

As mentioned at the beginning the trainings data is collected through visual
image interpretation at European scale for 2012 in the frame of the EEAVAL
project provided by Joanneum Research. Since image data and plot data have
different acquisition years, see chapter 4.2, it has been necessary in a first step
to identify and relabel plots with changes between validation date and image
acquisition date. All plots are screened for disturbances occurring when the
spectral signal is no longer representing the actual label regarding changes due to
clear cuts or partial clear cuts changes. Very few of these changes are found due
to the close time and stable forest conditions. Those plots are updated according
to the SENTINEL 2015 image data, consequently 1482 tree cover density and 1556

forest type plots are available within the whole mosaic. Furthermore, plots lying
within cloudy or shadow areas are excluded, leaving 1013 tree cover density and
1108 forest type plots.

Figure 6.10 shows the final tree cover density value distribution within the
trainings data set, showing that the non-forest class is overrepresented in relation
to other tree cover density values. Consequently, another approach is tested
only including tree cover density samples extracted by the forest mask obtained
from Corine Land Cover. Figure 6.11 represents the distribution of the derived
training samples, showing a more balanced trainings data set. It should be noted
that the number of plots is decreased from 1013 to 475, if only plots within the
Corine Land Cover forest mask are considered. This can be explained by the
high percentage of Non-Forest plots within the EEA HR Layer validation data set.
Moreover, 20 % of the plots are excluded due to accuracy assessment purposes
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leaving only 380 points for the training process. Another interesting point is that
according to figure 6.11 the tree cover density values corresponding to 4 % steps
are more represented than others. This is explained by (Sannier et al., 2015):

“For estimating the tree crown cover, for each of the 25 sampling points it
was interpreted if the point is located above a tree crown. Further, for each of
the sampling units, a reliability estimate was assigned by the interpreter. The
[validation] tool also provided the possibility to record a tree cover density
value directly, which explains why validation density values are mostly, but
not always in 4 % steps.” (Sannier et al., 2015).

Finally, the updated and extracted plot data is randomly divided in training
areas and validation areas. Considering the accuracy assessment 15 % (regarding
tree cover density classification with Non-Forest areas) or 20 % (regarding all
classifications within forest areas) are extracted and excluded from the training
process. It should be noted that the validation samples cannot be considered as
fully independent, since they are gathered within the same framework and have
to deal with the same interpretation error.

On the contrary, the forest type training plots are influenced by several different
plot conditions as detected after the visual inspection of the plot data. One
difficult case occurs for example if two thirds of the plot is covered with dense
coniferous trees and the rest is covered with grassland mixing with the forest type
signature. Combining the spectral signature of grassland and coniferous may
cause a misclassification as broadleaved forest. Another case shown in figure 4.2d
represents a coniferous forest type with low density. The underlying land cover
influences the spectral signature, but still represents the proper class. The last
case represented in figure 4.2b shows a plot fully covered by trees representing
an almost pure signature for the forest type. This plot types are better suitable
regarding a forest type estimation.

Under these circumstances it needs to be considered to exclude Non-Forest pixels
from the trainings data to achieve more accurate forest type classification results.
Usually researches in remote sensing avoid this issue by selecting homogeneous
training observations or field plots. Theoretically, quantitative methods can be
applied to identify heterogeneous plots for example those who exceed a hetero-
geneity threshold but in practice it has been proven to be extremely difficult to
achieve desired results (Ohmann et al., 2014).

Alternatively, four options are tested within this thesis, to provide representative
training data sets. The first option includes the identification of homogeneous
training areas through visual interpretation. Consequently, homogeneous plots
are identified by reviewing the plots in the JR validation tool using reference
data listed in chapter 4.2. Since this involves a lot of human work and reduces
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Figure 6.10.: Tree Cover Density training sample distribution

Figure 6.11.: Tree Cover Density training samples distribution within the Corine Land Cover
forest mask
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Figure 6.12.: Forest Type training sample distribution, where forest type (all) includes all training
samples, forest type (tcd) includes trainings samples extracted with the TCD forest
mask, forest type (corine) includes trainings samples extracted with the Corine forest
mask and forest type (full) includes trainings samples covered to 90 % with trees.

the amount of plots for training immensely a second method is tested including
pixel extraction through a given forest mask. The second method extracts all
20 by 20 m pixels from the 100 by 100 m plots which do not overlap with the
forest mask derived from the 2012 product. This process provides an increased
automation degree but allows more inhomogeneous training samples resulting
from different acquisitions dates between mask and image data. Considering
the tree cover density product derived forest mask represents a tree non-tree
mask instead of a forest mask a further approach is tested. Within this approach
training samples are extracted with a forest mask derived from 2012 Corine Land
Cover. The advantage of the Corine Land Cover frost mask is that wooded land
and reforestations are included within the forest mask, which is not the case with
the HRL Tree Cover Density product.

As a result four different trainings data sets are created. Figure 6.12 represents the
class distribution within those training samples showing balanced data sets. The
number of plots decreases from 1108 to 521, after plots located in cloud or shadow
areas are excluded. Moreover, 20 % of the plots are excluded due to accuracy
assessment purposes. The first data set (Forest Type (all)) includes all 521 plots
spatially well distributed over the whole test site. After 20 % of the plots are
excluded, 417 are left regarding the training process. The second trainings data set
(Forest Type (tcd)) is based on the first data set and changes each plot size based
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on the derived TCD mask. Within the training samples the plot areas are pruned
with the forest mask resulting in plot areas only covering tree pixels reducing
the plots size. This approach decreases the sample size to 377, eliminating forest
labelled samples that are not overlapping with the tree cover density product of
2012. The third trainings data set (Forest Type (corine)) includes only plots within
the Corine Land Cover forest mask resulting in 290 training samples. Those plots
are fully located within forest areas including stocked areas and reforestations.
The fourth trainings data set (Forest Type (full)) includes only plots which are
90 % covered by forest areas decreasing the trainings sample size to 160. Those
number of those plots can be considered as pure.

6.2.1. TCD Reflectance Spectra Analysis

The major advantage using signature analysis is to investigate the basic spectral
properties regarding different tree cover density values, which are related to the
chlorophyll content. Within the SENTINEL scenes the spectral reflectance of tree
cover density values are measured in 10 different bands. Since the classifiers
only use spectral information, the spectral resolution refers to the ability to
separate classes based on their spectral signature, setting the upper limit for the
classification (Radoux et al., 2016).

Correlation analysis and linear regression analysis are used to estimate the
relationship between tree cover density values and reflectance values of each
individual band. Accordingly, the mean reflectance value is calculated for each
TCD plot in each spectral band. Afterwards, the training areas are plotted against
the reflectance values as represented with scattergrams in figure 6.13 and fig-
ure 6.14. Those represent the relationship between tree cover density values and
reflectance values in each MSI sensor band. The tree cover density samples are
plotted against reflectance in band 2 (blue), 3 (green), 4 (red), 5 (red-edge), 6

(red-edge), 7 (red-edge), 8 (NIR), 8a (NIR), 11 (SWIR) and 12 (SWIR) represented
in figure 6.13 (a),(b),(c),(d),(e),(f) and figure 6.14 (a),(b),(c),(d), respectively.

The bands within the visible region of the spectrum show a decline in reflectance
with increasing tree cover density values (figure 6.13a, 6.13b, 6.13c, 6.13d).
The blue (B2) and red (B4) reflectance is weaker correlated to the tree cover
density than the green part (B3) of the visible spectrum. The low R2 values (see
table 6.2 and 6.3) in the visible and NIR bands can be explained by the spectral
characteristics of different tree species masking the spectral response on tree
cover density. Pure broadleaved forest plots show higher reflectance values than
mixed or coniferous forest plots. In the visible region the reflectance ranges 0 and
20 %.
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Table 6.2.: Regression statistics regarding all TCD training samples
bands R R2 RMSE slope offset p-value
B2 -0,26 0,07 0,04 -0,04 4,81 5,6032e-14

B3 -0,37 0,14 0,04 -0,06 7,81 8,3030e-28

B4 -0,36 0,13 0,05 -0,07 7,40 4,9978e-27

B5 -0,44 0,19 0,05 -0,09 12,45 9,7564e-40

B6 -0,21 0,04 0,07 -0,06 24,68 8,9661e-10

B7 -0,13 0,02 0,08 -0,04 25,44 2,6301e-04

B8 -0,14 0,02 0,08 -0,05 29,65 3,9263e-05

B8a -0,13 0,02 0,09 -0,04 31,10 1,0827e-04

B11 -0,45 0,20 0,06 -0,12 23,11 9,8730e-42

B12 -0,46 0,21 0,05 -0,10 14,40 2,6068e-43

Table 6.3.: Regression statistics regarding TCD training samples within forest areas
bands R R2 RMSE slope offset p-value
B2 -0,49 0,24 0,01 -0,03 3,49 8,5825e-15

B3 -0,60 0,36 0,02 -0,04 6,14 1,3188e-22

B4 -0,59 0,35 0,02 -0,04 5,30 3,1481e-22

B5 -0,63 0,39 0,02 -0,06 10,35 7,7134e-25

B6 -0,21 0,04 0,06 -0,04 23,35 0,0023

B7 -0,09 0,01 0,07 -0,02 26,57 0,0015

B8 -0,09 0,01 0,08 -0,02 27,82 7,3970e-05

B8a -0,08 0,01 0,08 -0,02 29,07 1,407e-04

B11 -0,46 0,22 0,05 -0,08 19,67 3,8097e-13

B12 -0,57 0,33 0,03 -0,07 11,37 1,9964e-20

The first red-edge Band B5 shows similar characteristics than the visible channels
while the other red-edge bands share characteristic with the NIR channels of the
spectrum (see table 6.2 and 6.3). However, in the NIR and the red-edge part
of the spectrum only a weak relationship can be observed regarding the tree
cover density data with R2 values reaching from 0,02 to 0,04 (figure 6.13e, 6.13f,
6.14a, 6.14b and table 6.2). In comparison to the bands in the visible region of
the spectrum the R and R2 (see table 6.2 and 6.3) in red-edge and NIR are lower
indicating that reflectance differences regarding the tree species are larger.

Furthermore, due to the chlorophyll sensitivity of the NIR region the offset values
are higher. Concerning, all bands from the visible, red-edge and the NIR region
the slope is near to zero, implying that within those spectral regions tree cover
density values are more difficult to differentiate. Moreover, nearly no difference
between band 7, 8 and 8a is observed. In this context it should be considered that
a dependency between the tree cover density and the reflectance values could be
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overlapped by the different forest types broadleaved or coniferous. As table 6.2
shows B6 is the optimal band in the NIR region for capturing the tree cover
density differences based on the trainings data set.

In the SWIR wavelength the training samples show the highest R and R2 values
throughout all bands, indicating a stronger relationship between reflectance
values and tree cover density values (figure 6.14c, 6.14d and table 6.2 ). The high
slope values show that the differences between the tree cover density values are
quite higher than in all other bands. Moreover, the RMSE values are lower in the
SWIR region than in the NIR region but still higher than in the visible wavelength,
indicating that the correlation is influenced by the residuals. Furthermore, it
should be noted that the R2 shows the second best result, although the RMSE
is quite high. With a R2 of 0.33 and high RMSE values no high classification
accuracy would be expected.

Regarding all different bands the R2 values are quite low ranging from 0.02 to
0.21 indicating the relationship between the TCD and the reflectance variables is
weak. Further, it should be noted that low tree cover density reflectance values
are influenced by the underlying land cover. In most cases the underlying land
cover is meadow, which has relative high reflectance values compared to forests.
Nevertheless, the RMSE, which measures the average deviation from the tree
cover density reflectance values, is quite low for all bands ranging from 0.04

to 0.08. This reinforces the assumption that the spectral signature differences
regarding the tree cover density values are influenced by the different forest
types. The correlation patterns are similar for all bands due to a weak negative
correlation between the two parameters reflectance and tree cover density. Band
12, corresponding to the SWIR reflectance, is the band showing the strongest
correlation with tree cover density, but the with an quite high RMSE value,
indicating that no high classification accuracy can be expected. Higher accuracies
are expected from bands with high R2 and low RMSE values, for example B3 and
B5. Bands 7, 8, 8a and 6 show weaker correlations and higher RMSE values.

Generally, some individual points are detected that fall outside the overall pattern
of the scatter plot. Those outliers might have an influence on correlation but not on
the classification using the random forest algorithm. However, the huge variations
in the class zero (No-Trees) can be explained by the large class definition. Class
zero includes several different landscape objects with different spectral attributes
like trees, meadows, water bodies, urban areas and many more. The spectral
variability (see table 6.2 and 6.3) regarding this class is bigger than with all other
classes distorting the evaluation.

In order to evaluate the relationship between tree cover density and reflectance
values without the distortion of non-tree samples, the regression is demonstrated
regarding training samples only within the forest areas. Consequently, all training
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samples outside the forest mask are excluded. Figure 6.15 and figure 6.16 show
the results of the new approach. Removing the non-tree plots from the analysis
shows a slight strengthening of the negative relationship in all bands. Under
these circumstances the slope of each regression decreases.

As shown in table 6.3 the R and R2 values rise by removing trainings samples
outside the forest areas, implying a stronger correlation without those plots.
However, nearly no change in the corresponding slope value can be observed
after the sample removal. The low p - values in table 6.2 and table 6.3 imply that
all spectral bands significantly correlate (p < 0.05).
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(a) B2 (b) B3

(c) B4 (d) B5

(e) B6 (f) B7

Figure 6.13.: Scatter plots of all TCD training samples and each SENTINEL band. B2 - B7
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(a) B8 (b) B8a

(c) B11 (d) B12

Figure 6.14.: Scatter plots of all TCD training samples and each SENTINEL band. B8 - B12
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(a) B2 (b) B3

(c) B4 (d) B5

(e) B6 (f) B7

Figure 6.15.: Scatter plots of TCD training samples within forest areas and each SENTINEL band.
B2 - B7
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(a) B8 (b) B8a

(c) B11 (d) B12

Figure 6.16.: Scatter plots of TCD training samples within forest areas and each SENTINEL band.
B8 - B12

6.2.2. FTY Separability and Signature Analysis

The potential of forest type discrimination of the Sentinel-2 bands is analysed
by signature evaluations and separability using the Jefferies-Matusita separa-
bility metric and feature space representations. The separability evaluation is
performed twice. In the analyses both, each individual MSI band and selected
band combinations are considered. As table 6.4 shows B4 in the visible region
of the spectrum, B8a in the red-edge / NIR region and B11 in the SWIR region
achieved the best separation results regarding all three forest types throughout
all individual bands provided by the MSI sensor. Therefore B11, B8a and B4 are
chosen in figure 6.17 for further analysis.

Figure 6.17 shows the differences between the forest type classes within different
tree cover density groups regarding three selected feature spaces of band B4, B8a
and B11. In this figure the ellipses are generated with a standard deviation of
one, representing the mean reflectance values and the variance throughout the
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Figure 6.17.: Forest Type and Density feature space comparison
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Table 6.4.: Separability analysis regarding each individual band with Jefferies-Matusita distance
measure

Sentinel-2 Band Spectral Region Average Minimum

B2 Blue 209 116

B3 Green 208 155

B4 Red 250 128

B5 red-edge 255 182

B6 red-edge 370 231

B7 red-edge 374 207

B8 NIR 353 202

B8a red-edge 382 213

B11 SWIR 407 308

B12 SWIR 327 211

training samples merged based on their forest type and tree cover density class
membership. Higher density values result in smaller ellipses, considering that less
training samples are available with higher density values. The underlying land
cover types make the discrimination of the forest types with lower density values
more challenging. Accordingly, the separation of broadleaved and coniferous
tress is not always unambiguous. The same is true for the mixed class, sharing
reflectance characteristics from both coniferous and broadleaved forests. The
training set with plots fully located within forest area and covered to 90 % with
trees, gathered through visual inspection (explained in chapter 6.2), is found
to be better suited regarding the forest type discrimination, but it should be
noted that with this training set only 200 training and 40 validation plots are left
representing those conditions. Nevertheless, those plots more suitable regarding
the forest type discrimination, due to the minimization of the negative influence
of other land cover types on the signatures.
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Legend:
O Broadleaved Forest
O Coniferous Forest
O Mixed Forest
+ Mean

(a) Feature space: x-axis: B11 (SWIR),
y-axis: B5 (RED-EDGE)

(b) Feature space: x-axis: B11 (SWIR),
y-axis: B6 (RED-EDGE)

(c) Feature space: x-axis: B11 (SWIR),
y-axis: B7 (RED-EDGE)

(d) Feature space: x-axis: B11 (SWIR),
y-axis: B8a (RED-EDGE)

Figure 6.18.: Sentinel-2A feature spaces with FTY trainings data (full trainings data set) consider-
ing B11 combined with B5, B6, B7 and B8a.
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Legend:
O Broadleaved Forest
O Coniferous Forest
O Mixed Forest
+ Mean

(a) Feature space: x-axis: B8 (NIR),
y-axis: B5 (RED-EDGE)

(b) Feature space: x-axis: B8 (NIR),
y-axis: B6 (RED-EDGE)

(c) Feature space: x-axis: B8 (NIR),
y-axis: B7 (RED-EDGE)

(d) Feature space: x-axis: B8 (NIR),
y-axis: B8a (RED-EDGE)

Figure 6.19.: Sentinel-2A feature spaces with FTY trainings data (full trainings data set) consider-
ing B8 combined with B5, B6, B7 and B8a.
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Legend:
O Broadleaved Forest
O Coniferous Forest
O Mixed Forest
+ Mean

(a) Feature space: x-axis: B4 (RED),
y-axis: B5 (RED-EDGE)

(b) Feature space: x-axis: B4 (RED),
y-axis: B6 (RED-EDGE)

(c) Feature space: x-axis: B4 (RED),
y-axis: B7 (RED-EDGE)

(d) Feature space: x-axis: B4 (RED),
y-axis: B8a (RED-EDGE)

Figure 6.20.: Sentinel-2A feature spaces with FTY trainings data (full trainings data set) consider-
ing B4 combined with B5, B6, B7 and B8a.
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Since Sentinel-2A is supported with four new bands in the red-edge region
located in the spectral region between RED and NIR, particular intention is given
to the benefit of those new bands regarding forest type separation. In accordance
to the separability evaluation the bands B8a and B11 and the full trainings data set
are considered since they show significant better results represented in figure 6.17.
As mentioned in chapter 6.2 the full trainings data set consist only of plots fully
located within forest areas covered to 90 % with trees, derived through visual
interpretation.

The first red-edge band B4 is located close to the red region of the spectrum
whereas the other three bands B5, B6 and B7 correlating strongly with the NIR
band (see figure 6.20). Comparing the new red edge bands with B8 corresponding
to the NIR wavelength, indicates that no addition information can be obtained
using those bands in combination regarding the forest type discrimination (see
figure 6.19).

Figure 6.18 shows the forest type separation differences between the red-edge
bands plotted against B11. Between B7 and B8a nearly no difference can be ob-
served in combination with B11, both providing the same information regarding
the forest type discrimination as shown in figure 6.18c and 6.18d. Between B6

and B7 a small difference can be observed, as shown in figure 6.18b and 6.18c,
since the bands are located farther away in the spectrum. B5 which is located near
to the red wavelength region provides different information. The best separation
between the forest types broadleaved forest and coniferous forest can be achieved
with B7 in combination with B11 (see figure 6.18 and table 6.4).

As shown in figure 6.20 the B5 correlates strong with B4 due to their relative
near location in the spectrum consequently, the forest types are worse separable
wit B5 than with the other red-edge bands. The best separation can be achieved
again with B7 in combination with B4. These results are also substantiated by the
separability analysis of each individual band represented in table 6.4 showing
higher separability values.

The results are similar to a study presented by Radoux et al. (2016) comparing
the separability for the land cover classes broadleaved, needle leafed forest
and grassland/pasture among others. Their study shows that several spectral
bands can be used to discriminate broadleaved forest and grasslands or pastures.
Radoux et al. (2016) state that most efficient bands are Green and first red-edge
band (B5). Regarding the discrimination of different forest types the SWIR bands
are considered as useful whereas B12 can be rated better than B11. Further, the
authors point out that Within all infra-red bands the smaller B8a band is better
regarding discrimination forest types than the wide infra-red band B8 (Radoux
et al., 2016).
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Table 6.5.: Separability analysis regarding different band combinations with Jefferies-Matusita
distance measure

Abbreviation Band Combination Average Minimum
all all bands 814 686

wb all bands without B2 786 669

wbg all bands without B2 and B3 737 578

2L B5, B6, B7, B8a, B11, B12 700 545

3L B4, B5, B7, B8a, B11, B12 719 570

4L B4, B5, B6, B8a, B11, B12 713 571

5L B5, B6, B12 588 462

6L B4, B8a, B11 600 467

7L B3, B5, B6, B8a, B11, B12 710 577

The separability is assessed using Jefferies-Matusita calculating the separability
regarding different band combinations to determine which set of bands is the
most useful within the classification process. Table 6.5 contains the average
divergence and the minimum divergence for each band combination set. The
distance measure ranges from zero to a maximum of 1414. The higher the value
the better the signatures are separable in the bands being chosen. A calculated
Jeffries-Matusita distance of zero indicates that the signatures are inseparable
(Appiah et al., 2015).

As mentioned above and represented in figure 6.18, 6.20 and 6.19 some bands
contain redundant informations regarding forest type differentiation for example
B4 and B5 in the red region, B6 and B7 in the red-edge region as well as B8 and
B8a. Accordingly, several band combinations are tested by removing redundant
bands. First, all bands are tested achieving a result of 803 as shown in table 6.5.
As the visible region is highly influenced by errors in the atmospheric correction
process it has been decided to discard the blue band from the classification
process. Furthermore, it is tested if removing both blue and green have a severe
impact on the separability resulting in even worse measures. Accordingly, the
band combination L7 is tested including the green band, achieving a measure
of 705. In addition L2 evaluates the impact on the separability discarding all
visible bands but including the first red-edge band. Again no improvement can
be achieved. The band combinations L3 and L6 are tested in respect to the forest
type feature space evaluation containing bands with high individual separability
measures. One combination provided with 6 bands, two in each spectral region
and the other combination with 3 bands only containing those bands which
achieve the best results. Same for the combinations L4 and L5 in respect to the
tree cover density correlation evaluation.

It follows that the best average separability can be achieved by using all bands, in-
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Table 6.6.: Separability measure with all bands
Signature Name Coniferous Mixed Broadleaved
Coniferous Forest 0 725 1030

Mixed Forest 725 0 689

Broadleaved Forest 1030 689 0

dicating that no band can be eliminated without losing any information. Table 6.6
shows the separability regarding all different classes with all bands in combina-
tion. As expected coniferous forest and broadleaved forest are better separable
from each other than with the mixed forest class. The minimum separability is
achieved between mixed forest and broadleaved forest sharing similar spectral
characteristics. Considering these findings confusions between broadleaved forest
and mixed forest pixels in the classification results can be expected.

6.3. Classification Process

Regarding the classification and the prediction process the two classifiers random
forest and k Nearest Neighbours are chosen and will be explained in detailed in
the following sections. To estimate the impact of the different parameters on the
classification accuracy various parameter values based on literature recommenda-
tions are applied on the 100 m spatial resolution mosaic. Within the continuous
TCD prediction regression analysis are obtained regarding all parameters tested,
examining the product accuracy with determination coefficients and regression
coefficients. Therefore, both data sets, including Non-Forest areas or not, are
used. As far as the FTY classification is concerned the categorical classification
products are evaluated with overall accuracies and kappa values calculated from
confusion matrices. Both trainings data sets include plots, which are located
within a derived 2012 Corine Land Cover forest mask. Further, it needs to be
mentioned that several aggregation rules, have been applied within the validation
process, which need to be considered before accessing the accuracy regarding
the forest type product. Those aggregation rules need to be considered due to
the forest definition given by the FAO. In contrast to the forest type product
no aggregation rules where applied regarding the tree cover density product
throughout the validation process. According to the tree cover density layer
description no specific definitions are given.
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Table 6.7.: Random forest parameter tests using TCD samples. Default values for each parameter:
t = 100, n =

p
N, s = 10, d = 5; where N is the number of training samples

trees (t) R R2 RMSE slope offset
50 0.8053 0.6485 17.7883 0.6187 15.9838

100 0.8066 0.6506 17.7347 0.6179 16.3818

300 0.8040 0.6464 17.8406 0.6073 17.3040

500 0.8012 0.6420 17.9528 0.6056 17.3897

700 0.7984 0.6375 18.0656 0.6030 17.4114

nodes (n) R R2 RMSE slope offset
5 0.7990 0.6384 18.0417 0.6109 16.8875

20 0.7838 0.6143 18.6330 0.6221 16.7066

40 0.7838 0.6143 18.6330 0.6221 16.7066

60 0.7838 0.6143 18.6330 0.6221 16.7066

samples (s) R R2 RMSE slope offset
2 0.8041 0.6466 17.8374 0.6129 17.2107

4 0.7603 0.5781 17.1025 0.6789 15.4893

5 0.7896 0.6235 18.4114 0.5968 18.0867

10 0.8066 0.6506 17.7347 0.6179 16.3818

depth (d) R R2 RMSE slope offset
3 0.7913 0.6261 18.3462 0.5887 17.9372

5 0.8066 0.6506 17.7347 0.6179 16.3818

10 0.7850 0.6162 18.5882 0.6103 16.9500

30 0.7846 0.6156 18.6036 0.6083 16.4960
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Table 6.8.: Random forest parameter tests using FTY samples. Default values for each parameter:
t = 100, n =

p
N, s = 10, d = 5; where N is the number of training samples

trees (t) Overall Accuracy Kappa
50 0,595238 0,347051

100 0.6071 0.3671

300 0.6071 0.3671

500 0.6071 0.3671

700 0.607143 0.365239

nodes (n) Overall Accuracy Kappa
5 0.6071 0.3671

10 0.6071 0.3671

20 0.6071 0.3671

30 0.6071 0.3671

40 0.6071 0.3671

samples (s) Overall Accuracy Kappa
2 0,619048 0,385038

4 0,619048 0,385038

5 0,607143 0,365239

10 0,607143 0,365239

20 0,607143 0,365239

depth (d)
3 0,547619 0,269398

5 0,607143 0,365239

10 0,583333 0,336792

20 0,535714 0,265141

30 0,571429 0,316765
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6.3.1. Random Forest Classifier

The random forest algorithm first proposed by BREIMAN 2001 belongs along
with other boosting and bagging methods as well as classification trees in general
to the ensemble learning methods, which generate many classifiers and aggregate
their results to calculate their response (Liaw and Wiener, 2002; Horning et al.,
2010; T. Li et al., 2016). The random forest algorithm learns the relationship
between predictor and response data and can handle continuous, categorical and
binary data sets (Ali et al., 2012; Horning et al., 2010; Grinand et al., 2013)

Since the random forest algorithm generates multiple decision trees it is necessary
to explain how the decision tree algorithm works to generate one single tree.
Decision trees use a set of binary rules to evaluate the target class. However,
two types of trees are differentiated, classification trees for categorical data sets
and regression trees for continuous data sets (Horning et al., 2010). ”The tree is
a set of binary decisions and terminal nodes connected by branches”(Horning
et al., 2010). The binary decision tree uses ’greater or less than’ rules at each node
to decide for a class label. In other words the feature space is partitioned into
n dimensional rectangles depending on the number of bands available. Those
rectangles are rarely effective to partition the feature space and tend to over-fit
the training data, in cases where the tree grows too large and the nodes represent
only small subsets of the training data. To achieve better results and reduce
over-fitting effect trees can be pruned, by removing nodes that are linked to noise
in the training data (Horning et al., 2010).

As mentioned above the random forest algorithm generates multiple decision
trees with random drawn subsets, instead of using all variables from the available
data. The subsets are drawn with replacement, meaning that one sample can
be selected several times, while others may not be selected at all (Belgiu and
Drăguţ, 2016; Ali et al., 2012). Regarding each random sample a classification or
regression tree is grown to the largest possible extent without pruning. At each
node a random sample of predictor variable is extracted, among those the best
split is chosen. To predict new data the prediction among all trees are aggregated
using majority votes regarding the classification trees and the average for the
regression trees (Liaw and Wiener, 2002; Ali et al., 2012). The class with the
maximum vote over all decision trees is the one selected for the output product.
Generally two thirds of the samples are used for training and one third for errors
estimation calculating the out-of-bag (OOB) error (Belgiu and Drăguţ, 2016; Ali
et al., 2012; Horning et al., 2010). In comparison to decision tree algorithms
over-fitting is less of an issue, due to two steps of random selection used by
the random forest algorithm. First each tree is trained with a randomly drawn
subset. Second a splitting variable is chosen at each node from randomly selected
attributes (T. Li et al., 2016). Using the randomly selected variables for splitting
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the nodes results in a smaller correlation between the different trees, but also
results in less predictive power. Accordingly, the number of nodes used, needs to
be tested for each classification process individually (Horning et al., 2010).

The random forest algorithm offers a good prediction performance and is com-
putationally effective but sensitive to the sample design. Colditz (2015) tested the
impact on several sampling designs on decision tree algorithms and recommends
the area-proportional allocation to achieve the best classification results, because
classes occupying larger areas need more training samples. Mellor et al. (2015)
and Ali et al. (2012) found out that the random forest algorithm is less sensitive
to outlier training samples or noisy data. Furthermore, Dalponte et al. (2013)
proposed that the algorithm fails to cope with imbalanced training data tending
to favour the most representative class at the expense of the minority class. Thus,
at each sample selection at each node during the tree construction fewer samples
of the minority class are chosen. Also the size of the trainings data has an impact
on the classification accuracy. Colditz (2015) recommend a sample size of 0,25 %
of the whole study area.

Horning et al. (2010) pointed out the limitations using the random forest algo-
rithm especially with regression models. The algorithm cannot predict values
beyond the range of the response values in the data. It is important that each
training subset covers the entire range of response values. Another issue is the
algorithms tendency to overestimate the low values and underestimate the high
values, because the response value of all trees is calculate by the average of all
single trees.

Belgiu and Drăguţ (2016) point out that the trainings samples need to fulfil
following requirements: ”

1. training and validation data must be statistically independent
2. training samples must be class balanced
3. training samples must be representative of the target classes
4. and the training sample needs to be large enough to accommodate the increasing

number of data dimensions.” (Belgiu and Drăguţ, 2016)

The training samples regarding the tree cover density prediction fulfil most of
the requirements mentioned by Belgiu and Drăguţ (2016), but the given training
data set is imbalanced. As mentioned in chapter 6.2 there is a huge amount of
Non- Forest training areas available within the original data set but less for high
tree cover density values as shown in figure 6.10. The exclusion of Non-Forest
samples using the Corine Land Cover forest mask shows a more balanced data
set (see figure 6.11). Turning to the forest type training samples figure 6.12 again
shows more balanced trainings data sets.
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One of the major advantages of the random forest algorithm is that only a small
amount of parameters need to be set (Liaw and Wiener, 2002). To estimate the
impact of the different parameters on the forest type classification accuracy
various values based on literature recommendations are applied on the 100 m
spatial resolution mosaic. The amount of trees calculated, the nodes, the samples
and the maximum depth of the trees are evaluated in combination with the
default values of the Oreo Toolbox. Although a range of parameter values are
tested including values suggested by literature to find the best parameter for
classification it is possible that the parameter selected are still arbitrary regarding
completely different trainings data sets.

The first parameter is the number of decision trees generated (tree parameter
[t]). Belgiu and Drăguţ (2016) states that the selection of a large number of trees
result in higher accuracies and less over-fitting but increases the prediction time
linearly. Table 6.7 presenting the tree cover density results shows that increasing
the number of trees increases R2 minimally till reaching the turning point at 500

trees. In general, it seems that the number of trees has no severe impact on the
correlation between the predicted values and observed tree cover density values.
The RMSE is stable regarding all different tree parameter values. The offset
value shows more fluctuations than other coefficients.Further, forest type results
represented in table 6.8 show no difference in the overall accuracies between
higher tree values.
Since the algorithm is robust against over fitting the amount of calculated trees
can be as large as possible. However, it needs to be considered that a large number
of trees increase computation time (Belgiu and Drăguţ, 2016). Belgiu and Drăguţ
(2016) also mention that the majority of studies propose a tree parameter of 500,
since the error stabilize at this point.

The second parameter is the number of variables to be selected for splitting (node
parameter [n]), which influences the correlation between trees and the predictive
power and is set to the square root of the number of input variable by default
(Belgiu and Drăguţ, 2016). Increasing the node parameter has no effect on the R2

values within the tree cover density prediction. Setting the node parameter to 5

achieved a slight higher R2 value. In general, it seems that the node parameter
has no significant impact on any of the regression coefficients. Further, the forest
type results represented in table 6.8 show no difference between the amount
of node at all. Even Belgiu and Drăguţ (2016) mention that the classification
accuracy is less sensitive to the amount of trees calculated than to the amount of
variable randomly chosen for gathering the best split at each node. Regarding
the node parameter it also needs to be considered that a higher number of
nodes will increase the computation time since the algorithm needs to calculate
the information gain for each variable at each node (Belgiu and Drăguţ, 2016;
Horning et al., 2010).
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Nevertheless, with the statistics for the tree cover density classification presented
in table 6.7 and the forest type classification in table 6.8 no significant difference
between accuracy of the node and the tree parameter can be observed.

As third parameter the minimum number of samples in each node can be chosen
(samples parameter [s]). If the number of sample in the node is smaller than
this parameter the node will not be split. The Orfeo toolbox recommend a small
percentage of the total data (ORFEO Toolbox, 2016b). Table 6.7 referring to the
tree cover density prediction does not show a trend between different sample
parameter as both the R2 and the regression coefficients seems to vary arbitrary.
The different R2 value suggest to use the default sample size of 10. The results
of the confusion matrices in table 6.8 show that the sample parameter also has
almost no impact on the overall accuracy and kappa values. Choosing a lower
sample value as recommend by the Orfeo toolbox results in slightly higher overall
accuracy and kappa values, therefore the node parameter is set to 4 regarding
further classification.

The last parameter which can be chosen by the user is the depth of the trees
showing more significant fluctuations in the overall accuracy and kappa statistics
(table 6.8) similar as the R2 and regression coefficients (table 6.7). Therefore, the
impact of the depth parameter on the correlation and accuracy is quite higher
than the previous parameter. As the node value decreases the accuracy and the
R2 values increases till reaching the turning point at 5.

In general the R2 value and the regression coefficients similar to the overall
accuracy and kappa values are less sensitive to the amount of trees and the size of
the randomly selected subset of features at each tree node than to the minimum
number of sample in each node and the depth of the trees.

6.3.2. K - Nearest Neighbours Classifier

The k Nearest Neighbours (kNN) classifier is a non-parametric classification
method based on similarity functions, this means no assumption regarding the
underlying data distribution are made. It uses a similarity measure to find the
nearest neighbours among the training samples. Within the kNN classifier no
generalization on the trainings-data is performed. This means the decisions are
based on the entire training data set or a subset. The classifier works equally well
with arbitrary number of classes (Hassanat et al., 2014; Blanzieri and Melgani,
2008; Baffetta et al., 2012; Thessler et al., 2008; Gjertsen, 2007).

The prediction class is assigned among the training points with the most common
amongst its k nearest neighbours measured by a distance function. This means
that the similarity depends on a specific distance measure, while the number of
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Table 6.9.: K Nearest Neighbours parameter tests with TCD training samples
k R R2 RMSE slope offset
1 0.5781 0.3342 24.48 0.6255 13.90

5 0.7652 0.5924 17.19 0.6378 19.45

10 0.7797 0.6079 16.48 0.6785 17.67

20 0.7643 0.5912 17.60 0.6396 20.04

30 0.7623 0.5818 19.24 0.6152 21.88

40 0.7487 0.5556 20.02 0.3346 37.18

the most similar neighbours considered are depending on the k value, which is
an integer chosen by the user. Finally, the pixel is classified by the majority of vote
of its neighbours regarding the classification process. However, regarding the
regression process the average is calculated instead of a majority vote including
all considered neighbours (Hassanat et al., 2014; Thessler et al., 2008; Gjertsen,
2007; Thessler et al., 2008).

Usually the k value is chosen empirically depending on the target of the study.
Another approach includes testing and evaluating several different k values on
the data. High k values decrease the over-fitting problem by reducing the overall
noise, so the classifier is less affected by a single change of data point. With k
increasing to infinity every plots is considered as nearest neighbour. Accordingly,
the classification output is represented by one class depending on the total
majority. Nevertheless, if the k value is chosen to small the classifier is more
sensitive to outliers and tends to over-fit the data (Hassanat et al., 2014; Gjertsen,
2007; Thessler et al., 2008).

However, the algorithm has some limitations such as the time complexity, which
is linear to the number of training samples. The performance also depends on
the k value, using high k values is more time consuming, because more features
are considered. Another drawback is that the algorithm can only predict inside
the range of trainings samples (Hassanat et al., 2014; Gjertsen, 2007).

The advantage of the kNN method is that it does not require learning, works well
in low dimensions and it estimates all variables simultaneously (Hassanat et al.,
2014; Gjertsen, 2007; Baffetta et al., 2012). ”Another advantage is that the method
better preserves the relationship or covariance structure between variables than
methods where predictions are made separately for each variable” (Gjertsen,
2007).

The k - Nearest Neighbours algorithm can only be influenced through one
parameter the k - value, which defines how many neighbours are taken in
consideration. To estimate the impact of k value on the TCD prediction accuracy,
different parameters based on literature recommendations are applied on the 100
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Table 6.10.: K Nearest Neighbours parameter tests with FTY training samples
k- value Overall Accuracy Kappa
1 0.5538 0.2439

5 0.6043 0.2954

10 0.6127 0.3223

20 0.6528 0.3937

30 0.6378 0.3621

40 0.6226 0.3338

m spatial resolution mosaic. Within the training process with the knn classifier the
training samples are composed of centred and reduced pixel values by computing
the global mean and standard deviation for each band (ORFEO Toolbox, 2016a).

Although, (Hassanat et al., 2014; Gjertsen, 2007; Baffetta et al., 2012) achieves
good classification result with low k values, the best forest type classification
result in this case is achieved with a k-value of 20 (table 6.10). Significantly worse
results are achieved only considering less than 5 neighbours. Even Hassanat et al.
(2014) point out that at k = 1, the boundaries are over fitted and the accuracy
reaches a minima. Further, the k value of 20 is used regarding all further forest
type classification tests.

Results in table 6.9 show that the predicted tree cover density values are signifi-
cantly and positively correlated with the reference samples. Setting the k value
to 10 achieves the highest R2 values and regression coefficients. As the k value
decreases or increases the correlation get weaker.

6.3.3. Band Combinations Experiments

Furthermore, the impact of different band combinations on the classification
accuracies are investigated with 100 m spatial resolution images and both clas-
sifiers. Results of the regression analysis in table 6.11 show that the association
between the predicted products and the reference data are significant across all
band combinations, suggesting that all bands are reliable measures to predict
tree cover density with the random forest classifier. However, the prediction
with the combination of all available Sentinel-2 bands with surface information
has a significant stronger association with the tree cover density reference data
using the random forest classifier than the other band combination. Both the
determination and the regression coefficients show that the prediction result is
significant associated with the reference data. All band combinations except for
4L and 4LD reached moderate good accuracy results (R2 > 0.50). Further, the
impact of adding a digital elevation model (10 m ground resolution) as additional
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Table 6.11.: Random forest (t = 100, n = 5, s = 10, d = 5 ) band combination tests using TCD
samples. Band combination abbreviations can be found in table 6.5

band combinations R R2 RMSE slope offset
all 0.6553 0.8034 16.95 0.6028 21.2685

all + DEM 0.7534 0.5675 17.3148 0.6822 15.34

wb 0.7559 0.5713 17.2390 0.6739 15.70

wb + DEM 0.7490 0.5660 18.1439 0.6203 16.93

4L 0.7248 0.5253 18.1403 0.4759 22.05

4L + DEM 0.6608 0.4667 19.7612 0.3122 33.52

5L 0.6537 0.4375 24.9900 0.3223 7.58

5L + DEM 0.6043 0.3651 26.4300 0.2334 14.21

7L 0.7686 0.5907 16.8448 0.7332 14.05

7L + DEM 0.7620 0.5806 17.0512 0.7100 13.83

Table 6.12.: K Nearest Neighbours (k = 10) band combination tests using TCD samples. Band
combination abbreviations can be found in table 6.5
band combinations R R2 RMSE slope offset
all 0.7797 0.6079 16.4870 0.6785 17.67

all + DEM 0.7958 0.6333 15.9435 0.7249 15.02

wb 0.7766 0.6030 16.5890 0.6707 18.14

wb + DEM 0.7898 0.6238 16.1486 0.7184 15.18

4L 0.6871 0.4721 19.1297 0.5723 32.17

4L + DEM 0.7459 0.5564 17.5369 0.6729 22.49

5L 0.5637 0.3178 27.3900 0.3394 12.17

5L + DEM 0.7119 0.5068 23.2900 0.4187 9.700

7L 0.7786 0.6062 16.5233 0.7368 14.49

7L + DEM 0.8021 0.6461 14.7331 0.7785 11.43
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Table 6.13.: Random forest (t = 300, n = 20, s = 5) band combination tests using FTY samples.
Band combination abbreviations can be found in table 6.5

band combinations Overall Accuracy Kappa
all 0,7119 0,3827

all + DEM 0,6852 0,4328

wb 0,6852 0,4263

wb + DEM 0,6733 0,4172

3L 0,7028 0,4642

3L + DEM 0,6852 0,4263

6L 0.6528 0.3791

6L + DEM 0.6453 0.3146

7L 0,6943 0,4434

7L + DEM 0,6852 0,4328

band is investigated and the results obtained appear in table 6.11. Both R2 values
and regression coefficients show that including a digital elevation model does not
improve the correlation between the predicted and the reference values using the
random forest classifier. On the contrary the knn classifier shows improvement
including the digital elevation model. It should be considered that the difference
between the band combinations with digital elevation model and those without
are not stable throughout all band combinations tested. Sometimes significant
differences can be noticed while others only show slightly differences.

In table 6.13 and table 6.14 the band combination experiments with the both
classifiers are presented regarding the forest type classification. The random
forest classifier again works slightly better including all bands available with
surface information. In contrast to the random forest classifier the knn classifier
works slightly better with a band combination choosing only two band of each
spectral region (3LD). Thus taking all bands result in a over representation of
the NIR/red-edge region of the spectrum with 5 bands available. Nevertheless,
all band combinations reached moderate good accuracy results (OA > 0.60)
regarding both classifiers. Conversely to the random forest classifier the overall
accuracies obtained in each experiment are significant better with the additional
band containing attitudinal information. Surprisingly, excluding the blue band
which contains the most artefacts after the atmospheric correction does not
achieved better result than taking all bands.
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Table 6.14.: KNN (k = 20) band combination tests using FTY samples. Band combination abbrevi-
ations can be found in table 6.5

band combinations Overall Accuracy Kappa
all 0,6528 0,3937

all + DEM 0,6733 0,4125

wb 0,6528 0,3937

wb + DEM 0,6852 0,4328

3L 0,6384 0,3583

3L + DEM 0,6943 0,4562

6L 0.6128 0.3146

6L + DEM 0.6294 0.3791

7L 0,6384 0,3607

7L + DEM 0,6852 0,4434
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7.1. Tree Cover Density

7.1.1. TCD product based on Forest samples

The accuracy assessment regarding the tree cover density product without forest
mask is conducted in two levels. First, regression and correlation analysis are
used to evaluate the correlation between reference data and map values. Ideally
the regression coefficients slope and offset should not vary significant from 1

and 0, respectively. Second, the density values are aggregated creating ranged
attributes for confusion error matrices and kappa statistics calculations to access
the thematic accuracy and better understand classification error causes. Conse-
quently, the tree cover density values are grouped in 20 % steps to create fewer
classes for the confusion matrix computation.

The analysis of the scatter plots in figure 7.1 and figure 7.2 show a strong
relationship between validation data and the classification result. However, there
seems to be a general trend to systematically underestimate the actual tree
cover density values. Figure 7.2 represents the classification result regarding
the random forest classifier with the best result of all band combinations and
shows that the map density values appear to underestimate actual tree cover
density values. The high tree cover density values are underestimated, due to
the aggregation effect within the training process, whereas the low tree cover
density values are overestimated, considering the effect of mixing signatures
due to different underlying land cover types. Figure 7.1 similar shows a strong
relationship between validation and map data and an underestimation of the tree
cover density values.

Table 7.1 represents the results of the regression analysis regarding four band
combinations at 100 and 20 m resolution. The determination coefficient R2 ranges
from 0.74 to 0.80 over the different band combinations tested, meaning that the
model accuracy is accurate. Furthermore, table 7.1 shows that regression and
determination coefficients based on the classified 20 m product aggregated to
100 m do not vary markedly from the classified 100 m product. The differences
between both products are significantly higher regarding the random forest
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Table 7.1.: Comparison between 100 m and 20 m products regarding the TCD results with 95

validation samples.
100 m product 20 m product

band R R2 RMSE slope offset R R2 RMSE slope offset
knn classifier

7LD 0.8021 0.6461 14.73 0.7785 11.43 0.8101 0.6563 15.44 0.6438 21.52

allD 0.7958 0.6333 15.94 0.7249 15.02 0.7904 0.6247 16.13 0.5973 22.02

wbD 0.7898 0.6238 16.15 0.7184 15.18 0.7900 0.6240 16.14 0.5975 21.98

4LD 0.7459 0.5564 17.54 0.6729 22.49 0.7467 0.5576 17.51 0.5379 33.13

random forest classifier
all 0.6553 0.8034 16.95 0.6028 21.27 0.8185 0.6699 15.12 0.6166 20.26

7L 0.7686 0.5907 16.84 0.7332 14.05 0.8107 0.6573 15.41 0.6457 19.79

wb 0.7559 0.5713 17.24 0.6739 15.70 0.8137 0.6621 15.51 0.5904 22.54

4L 0.7248 0.5253 18.14 0.4759 22.05 0.7043 0.4960 18.69 0.3003 34.39

Figure 7.1.: Scatter plot presenting predicted results with the random forest classifier with 7LD
band combination based on the 20 m resolution image data
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Figure 7.2.: Scatter plot presenting predicted results with the knn classifier and all bands based
on the 20 m resolution image data
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classier, except when including all bands. The regression analysis of the classified
20 m product also indicates that the band combination with all bands works better
with the random forest classifier and the combination 7LD works best with the
knn classifier achieving the highest R2 values and regression coefficients. Overall,
there is general trend that the tree cover density classification underestimates
or overestimates the actual tree cover density values, despite the relationship
between map and reference data is strong for example where R2 is close to 0.60.
This has been expected, since regression model prediction tends to overestimate
the low values and under estimate the high values due to the average calculation
within the training process (Horning et al., 2010). In the case of the tree cover
density prediction with the random forest classifier more low tree cover density
trainings samples are observed within the trainings data set than samples with
high tree cover density values. Consequently, there is a possibility that after the
random selection of subsets for each decision tree that the maximum range does
not reach the higher density values.

As far as the thematic accuracy is concerned it is difficult to get a clear idea of
the actual quality of the of the TCD product prediction without knowing where
misclassification are present. Accordingly, the density values are aggregated in
10 % intervals and confusion matrices are calculated. Additionally confusion
matrices with 20 % intervals are generated to get a general idea for a better
understanding of the classification error causes. Figure 7.3 shows the distribution
of the correctly classified elements in the confusion matrix as function of the
tree cover density in 10 % intervals to estimate where the classification errors
are higher. As the tree cover density increases, the number of right classified
values increases, concerning the knn classifier. Similar but slightly better result are
represented in figure 7.4 based on the random forest classifier, showing a wider
range of right classified density values. In general it seems that the classification
of lower density values is more complicated due to the underlying land cover
and mixing spectral signatures than the higher density values. Furthermore, it is
important to note that the low right classified frequency regarding the class with
100 % tree cover density can be explained by a low frequency of 100 % values
in the classification result due to the general underestimation of TCD values.
Table 7.2 representing the confusion matrix for the random forest classifier in
combination with all bands, shows that the lower density values are more often
underestimated than the higher values.
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Figure 7.3.: Distribution of right classified values in function of TCD regarding the knn classified
product based on the 7LD band combination.

Table 7.2.: TCD Error Matrix: Random forest classifier applied on all bands.

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 2 0 0 0 0 2 1

21-40% 18 4 0 0 0 22 0.7804

41-60% 10 4 9 8 2 33 0.7073

61-80% 0 5 4 15 9 33 0.7464

81-100% 0 0 0 1 4 5 0.9875

Total 30 13 13 24 15 95

Prodcuer
Accuracy 0.0666 0.3076 0.6923 0.6250 0.2666 0.35789
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Figure 7.4.: Distribution of right classified values in function of TCD regarding the random forest
classified product based on all bands.
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Table 7.3.: TCD prediction results comparison before and after calibration.
before calibration after calibration

band R R2 RMSE slope offset R R2 RMSE slope offset
knn classifier

7LD 0.757 0.573 21.60 0.407 10.56 0.757 0.573 21.60 0.789 6.01

allD 0.771 0.592 21.36 0.465 10.42 0.771 0.592 21.36 0.785 5.05

wbD 0.758 0.574 21.58 0.453 10.35 0.758 0.574 21.58 0.779 5.86

4LD 0.753 0.568 21.75 0.443 10.33 0.753 0.568 21.75 0.777 5.79

random forest classifier
all 0.821 0.675 18.86 0.487 9.95 0.821 0.675 18.86 0.800 5.51

7L 0.789 0.622 20.33 0.499 9.84 0.789 0.622 20.33 0.754 6.09

wb 0.788 0.621 20.37 0.520 10.08 0.788 0.621 20.37 0.760 6.41

4L 0.779 0.607 20.74 0.506 10.01 0.779 0.607 20.74 0.772 6.03

7.1.2. TCD product based on Forest and Non-Forest samples

To compare the tree cover density prediction results with the Copernicus HRL
Layer also Non-Forest samples need to be included into the classification process.
Consequently, a training set including all available samples from the interpre-
tation process is used within the training process. The accuracy assessment
regarding tree cover density product without forest mask is also conducted in
two levels. First, regression and correlation analysis to evaluate the correlation be-
tween reference and map values are used. Second, the density values are grouped
creating binary attributes for confusion error matrices and kappa statistics cal-
culations to access the thematic accuracy. Since the weights cannot be included
into the scatter plot analysis the second validation procedure is needed. Two
different thresholds are suggested by Sannier et al. (2015) and applied forming
two strata, with each containing forest or non-forest pixels. The first threshold
groups all values from 0 to 9 and from 10 to 100, corresponding to the FAO forest
definition. The second threshold groups values from 0 to 29 and from 30 to 100

corresponding to the evaluation approach suggested by Sannier et al. (2015).

Detailed regression coefficients like slope and intercept obtained from regression
analysis without forest mask using all available trainings samples appear in
table 7.3. The regression coefficients do not vary considerably with the different
band combinations tested. Nevertheless, the best results with both classifiers are
obtained with the band combination including all available bands containing
surface information (excluding B1 (aerosol), B9 (water vapour) and B10 (cirrus)).
Furthermore, the regression slopes are consistently below 0.6, where 1 would
be the ideal slope value. Further, the underestimation of the actual tree cover
density values appear higher when the Non-Forest class is included in the classi-
fication process. Although the relationship between classification product and
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the reference data seems similar strong compared to the classification approach
with the Corine Land Cover forest mask, with an R2 value close to 0.6. Such a
strong underestimation has not been expected, but can be explained by the huge
amount of non-tree training samples in relation to the tree training samples.

Figure 7.5a shows the statistics based on the best random forest classification
result and figure 7.5b based on the best knn classification result. Both demonstrate
in detail how the map density values underestimate actual TCD values and show-
ing a large concentrations of values close to 0 due to the over representation of the
No-Tree class in the training samples. Under these circumstances a calibration of
the tree cover density products is considered. Therefore, the classification product
is calibrated using fitting parameters creating classification products covering the
full TCD range (0 - 100 %). Accordingly, the training samples are plotted against
the 100 m classification result to obtain the regression coefficients slope and offset
(scatter plots and fitting parameters for each classification result are provided in
annex C). Afterwards, following formula is applied to the corresponding 20 m
resolution product, where Acal stand for after calibration and BCal stands for
before calibration:

Classi f ication(ACal) =
Classi f ication(BCal)� o f f set

slope
(7.1)

The same approach is applied to all different tree cover density classification with
20 m resolution with the corresponding fitting parameters. The corresponding
scatter plots and values for the slope and offset parameter are provided in the
annex part C.

The results represented in table 7.3 show that the regression coefficients slope
and offset are generally relatively lower regarding the classifications without
calibration than after the calibration process, whereas the coefficient R, R2 and
RMSE do not vary at all. This can be explained by the formula 7.1 applied on the
classification product, which works as a system displacement, only transforming
the points on the diagonal without changing the correlation between the data.
However, it is important to note that this calibration approach changes the
classification result and the validation is not independent any more.
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(a) Scatter plot before calibration with
random forest classifier and all bands.

(b) Scatter plot before calibration with knn
classifier and all bands.

(c) Scatter plot after calibration with
random forest classifier and all bands.

(d) Scatter plot after calibration with knn
classifier and all bands.

Figure 7.5.: Scatter plots of TCD prediction results before and after calibration.

As far as the thematic accuracy is concerned it is difficult to get a a clear idea
of the actual quality of the of the TCD product prediction without the weights.
Consequently, the density values are regrouped according to the thresholds
>= 10% and >= 30% in non-tree and tree classes and confusion matrices are
calculated. Following formula is adopted with modified inputs from Gallaun
et al. (2015) and used to calculate the weighted confusion matrices where N is the
number of validation samples, p the probability and w is the estimation weight, i
indicates the row and j the column of the matrix:

cpij = (
1
N
) ⇤ Â

xe(i.j)

1
w

(7.2)

To calculate the proportions of area for each cell of the error matrix (pij) formula
7.2 is applied. The overall accuracy (OA) 7.3 and the error of omission (EO) 7.5
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and commission (EC) 7.4 are calculated as suggested by Gallaun et al. (2015) and
listed below:

OA =
j

Â
j=1

cpjj (7.3)

dECj = 1 �
bpjj

Âj
i=1 cpij

(7.4)

dEOi = 1 �
bpii

Âi
j=1 cpij

(7.5)

Table 7.1 represents the results of the overall accuracies. From the statistics
it can be depicted that calculating the error matrix with cumulated inclusion
probabilities achieves significant higher results than not considering the weights.
Furthermore, there seems to be only slight differences between the different
band combinations, indicating that the classifiers are not that sensible to the
band combinations. Regarding the not weighted overall accuracies there seem
to be no difference between the different tree cover density thresholds. On the
other hand regarding the weighted overall accuracies the differences between
the tree cover density thresholds are significant higher. However, one problem
with this approach is that it fails to take the limited usage of the validation points
into account. It is important to note that the weights are calculated based on
different European strata including over 12.000 points spread across the whole
European country. Sannier et al. (2015) also mentions that the weights need to be
recalculated if sample points are removed. The impact of removing only a small
number of points might be minimal considering that over 12.000 sample points
are interpreted.

Difficulties arise, however, when an attempt is made to compare the Coperni-
cus HRL 2012 Tree Cover Density product with the current classification, thus
different strata are evaluated within the Copernicus product. To compare both
products the stratification weights within the Copernicus HRL validation points
are used within the confusion matrix calculation. A serious weakness regard-
ing this approach is that the subset used within the current tree cover density
evaluation comprises only parts of the evaluation strata listed in table 7.5. Data
from this table can be compared with caution with the data in table 7.4 regarding
the weighted results which show the overall accuracies for the current tree cover
density classification are equal or slightly better. There are no significant differ-
ences between the HRL Layer and the current classification results, considering
the classification error based on the visual interpretation error. Furthermore, the
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Table 7.4.: TCD overall accuracy - no-tree / tree product without forest mask.
number of samples = 152 not weighted weighted

CL parameter BC tcd <= 10 tcd <=30 tcd <=10 tcd <=30

knn k = 10 allD 0.82 0.82 0.90 0.84

knn k = 10 7LD 0.84 0.82 0.90 0.83

knn k = 10 wbD 0.82 0.82 0.90 0.83

knn k = 10 4LD 0.83 0.81 0.90 0.82

rf d = 5, n = 5

s = 3, t = 100

all 0.85 0.85 0.92 0.84

rf d = 5, n = 5

s = 3, t = 100

7L 0.84 0.84 0.93 0.85

rf d = 5, n = 5

s = 3, t = 100

wb 0.86 0.86 0.93 0.85

rf d = 5, n = 5

s = 3, t = 100

4L 0.86 0.84 0.93 0.84

Table 7.5.: Comparison with Copernicus HRL 2012 TCD product.
Regression Analysis Overall Accuracy

Stratum R2 slope offset tcd <10 % tcd <30 %
AT + CH + LI 0.7881 0.8822 0.2581 0.90 0.94

DE 0.7834 0.8589 0.5783 0.88 0.92

FR 0.6975 0.7864 0.2325 0.83 0.90

HU 0.7601 0.6861 0.6408 0.87 0.93

IT 0.6758 0.8789 4.2312 0.85 0.89

data from this table can be compared with the data in table 7.3 which shows
that R2 values for the current classification are higher than for the Copernicus
product but on the other hand the slope values are higher for the Copernicus HRL
product, which indicates that the high tree cover density values in the current
classification are still underestimated (also see figure 7.6).
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Figure 7.6.: Mapping product comparison regarding the tree cover density.
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Table 7.6.: FTY Overall Accuracies 20 m product comparison between weighted and not weighted
overall accuracies

100 m product 20 m product

classifier parameter bands training
samples

OA
not weighted

OA
not weighted

OA
weighted

knn

k = 20

3LD all 0.6943 0.7308 0.7739

knn 7LD all 0.6852 0.7115 0.8062

knn wbD all 0.6852 0,7308 0.8128

knn allD all 0.6733 0.7308 0.8309

knn
k = 20

3LD full 0.6554 0.6750 0.7464

knn 3LD tcd 0.7054 0.7340 0.7937

knn 3LD corine 0.7143 0.7361 0.8418

classifier parameter bands training
samples

OA
not weighted

OA
not weighted

OA
weighted

rf d = 5

n =
p

N
s = 3

t = 100

all all 0.7119 0.7308 0.8044

rf 3L all 0.7028 0.7308 0.7727

rf 7L all 0.6943 0.7308 0.7760

rf wb all 0.6852 0.7404 0.8163

rf d = 5, s = 3

n =
p

N
t = 100

all full 0.6876 0.7250 0.7790

rf all tcd 0.7241 0.7447 0.7790

rf all corine 0.7389 0.7500 0.8967

7.2. Forest Type

The accuracies of forest type classification are assessed on the basis of confusion
error matrices and error matrices based on inclusion probabilities to quantify the
agreement between target pixel predictions and observations from the reference
plots. Regarding the 20 m classification product four different trainings data sets
are tested and evaluated to take into account input data limitations. Furthermore,
four band combinations are tested with two spatial resolutions to estimate the
influence of the aggregation effect.

In table 7.6, the results obtained with both classifiers and different trainings
data sets are demonstrated. The highest overall accuracies are obtained with
the random forest classifier using all available MSI sensor bands. The accuracy
assessment is based on the classification product with 20 m ground resolution,
which is aggregated to 100 by 100 m pixels using the majority vote. The classifica-
tion results based on the 20 m mosaic performed slightly better than the results
based on the 100 m product comparing the overall accuracies calculated without
weights. Due to the aggregation effect the pixel show less outliers and variations
within forest areas. The results in table 7.6 show that the overall performance of
both classifiers does not show evident improvement compared to each other. In
some cases the random forest algorithm works slightly better achieving higher
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Table 7.7.: Best FTY results regarding both classifiers based on the 20 m product. Comparison
between user and producer accuracies.

CL BC TS N OA P-B P-C P-M U-B U-C U-M
rf all all 104 0,73 0.87 0,78 0,33 0,76 0,81 0,47

rf all tcd 94 0,75 0,83 0,90 0,44 0,72 0,87 0,61

rf all full 40 0,73 1 0,88 0,36 0,60 0,83 0,71

rf all corine 72 0,74 0,91 0,77 0,50 0,56 0,89 0,91

knn 3LD all 104 0,73 0,94 0.76 0,24 0,72 0,82 0,50

knn 3LD tcd 94 0,73 0,88 0,80 0,42 0,76 0,83 0,53

knn 3LD full 40 0,68 0.78 0.88 0,36 0,50 0,83 0.63

knn 3LD corine 72 0,75 0.91 0,81 0,50 0,70 0,78 0,77

P = producer, U = user, B = broadleaved, C = coniferous, M = mixed.

overall accuracies.

Considering the four band combination experiments, the classification based
on all bands shows slightly better results in both cases. In comparison to the
100 m resolution results the knn classifier performs better with the 3LD band
combination, indicating that the difference is not significant and both band
combinations are useful. Other band combinations perform as well except for the
band combination with all bands without the blue band, implying that the blue
band contains valuable information regarding the forest type discrimination.

The random forest algorithm provides higher producer accuracies regarding the
broadleaved class than the knn classifier. The ’tcd’ and ’corine’ trainings data
sets improve the overall accuracies of the both classifiers. Regarding the random
forest producer accuracies both improved the broadleaved and the coniferous
forest class. In combination with the knn classifier both show lower producer
accuracies for broadleaved forest but higher results regarding coniferous and
mixed forests. The classification results produced with the ’corine’ trainings data
set achieved the highest overall and producer accuracies with both classifiers with
one exception. The k nearest neighbour producer accuracies regarding coniferous
and broadleaved forests is significant lower than the classified product produced
with ’all’ trainings sample set. The highest random forest user accuracies for
broadleaved and coniferous forest are achieved with ’full’ trainings samples,
whereas regarding mixed forests with the ’corine’ data set. Broadleaved and conif-
erous reached the highest producer accuracy of 95 % and 88 % with the different
trainings data set and the random forest classifier. In general for broadleaved
forests accuracies higher than 78 % regarding both classifiers and all trainings
data sources are achieved. The classification of coniferous forests also reached
good accuracies over 76 %. The mixed forest class shows the lowest accuracies,
with a maximum producer’s accuracy of only 33 % considering the random forest
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Table 7.8.: Confusion matrix: Random forest classifier trained with the ’corine’ data set and
applied on all bands.

Broadleaved Coniferous Mixed Total User Accuracy
Broadleaved 19 3 5 27 0.704

Coniferous 2 25 5 32 0.781

Mixed 0 3 10 13 0.769

Total 21 31 20 72

Producer Accuracy 0.905 0.806 0.5 0.750

Table 7.9.: Confusion matrix: knn classifier trained with the ’corine’ data set and applied on the
3LD band mosaic.

Broadleaved Coniferous Mixed Total User Accuracy
Broadleaved 19 6 9 34 0.559

Coniferous 2 24 1 27 0.889

Mixed 0 1 10 11 0.909

Total 21 31 20 72

Producer Accuracy 0.905 0.774 0.5 0.736

algorithm and 24 % regarding the knn algorithm.

Difficulties arise, however, when an attempt is made to compare the analysis
of the results for FTY classification with different trainings data set, due to the
different validation set sizes represented by the column N in table 7.7. It is worth
noting that the validation samples of the ’full’ training data set with 40 samples
are low.

Regarding the confusion matrices in figure 7.8 and 7.9, both show that the main
issue of the confusion between the forest types seems to be caused by the mixed
class which is particular difficult to differentiate from the others, even with the
additional red edge bands providing information on the vegetation status. The
confusion matrices for each classification product differentiating between the
band combinations and trainings data sets are provided in annex part A.

To estimate the thematic accuracy the unequal sampling intensity appearing
through the stratified systematic sampling approach has to be considered by
applying a weight factor to each sample unit. The results obtained with the
estimation weights are presented in table 7.6 and show higher accuracies re-
garding all experiments if weights are considered within the confusion matrix
computation process, regarding both classifiers random forest and knn.

The quantitative classification accuracy assessment has shown the same results
with visual observation shown in figure 7.7. In the borders of forest regions forest
is always classified as mixed due to small proportions of other vegetation types.
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7. Accuracy Assessment

It is noticeable that in areas, where mixed forest is dominated by one forest
type (broadleaved or coniferous) which is homogeneously distributed over the
trainings sample a confusion between mixed and broadleaved/coniferous forest
is caused. Furthermore, in region with low tree cover densities the forest types are
difficult to estimate due to the effect of the underlying land cover and coniferous
forest pixels are misclassified as broadleaved forest.
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Figure 7.7.: Mapping product comparison regarding forest types.
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8. Conclusion

This thesis introduces a methodological framework regarding forest type and
tree cover density classification methods using SENTINEL-2A data and already
available trainings data collected through visual image interpretation carried out
in the frame of the EEAVAL project. The HR Layer validation plots are reused as
training samples within the classification process. The results confirm that the
those plots have the potential for mapping tree cover density values in large areas
with an acceptable accuracy, while the produced forest type classifications reach
moderate accuracies.

The proposed method avoids the time-consuming efforts to collect training areas
within each satellite image reaching a higher automation degree. The training
plots are available at European scale. Regarding the tree cover density classifi-
cation no further preparation has been needed. In contrary, the heterogeneous
forest type training samples appear to be a major problem regarding the training
process. As mentioned above the trainings data initially has been collected for
product validation reasons. Consequently, many plots are sampled within areas
difficult to map for example forest borders. Accordingly, mixed land cover types,
influencing plot signatures, bias the training process. To overcome these problem
only trainings samples within forest areas are considered, extracting the training
samples as well as the classification results with a forest mask derived from the
Corine Land Cover 2012 product.

To estimate tree cover density and forest type classes over large areas a subset
reaching from east France to west Hungary is chosen depending on the availability
of the SENTINEL-2A scenes. With only SENTINEL-2a in the orbit at this point
in time it has been difficult to acquire enough cloud free images, so only mono-
temporal images could be used. The usage of time series could increase the
accuracy significantly, fully exploiting the potential of the SENTINEL-2a sensor
data.

The SENTINEL-2A image preprocessing has been accomplished with the new
introduced SENTINEL processor Sen2Cor. The results of the Sen2Cor atmospheric
correction approach is compared with two other sensors, (MODIS on board the
AQUA/TERRA satellite and OLI on board the LANDSAT 8 satellite) to check the
consistency. The results regarding the mean spectral value comparison between
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the three sensors indicate that the Sen2Cor processor works consistent, except
with granules without dark dense vegetation pixels or with haze consistency.

As mentioned above clouds are a major problem regarding mapping approaches
in general based on satellite images. Accordingly, this study provides an illustra-
tion of fully automatic generated cloud masks produced by the Sen2Cor processor.
Several different cloud masks available within different product levels are pre-
sented and visually inspected. The illustration shows that the clouds borders are
under-represented in all products available and partially clouds are still miss-
ing. Consequently, the different cloud masks have been combined and manually
reviewed to exploit the full potential of each mask.

The tree cover density classification with all available training samples and
without mask restrictions shows a general trend to underestimate the actual
tree cover density values resulting in low accuracies. To adjust the classification
product the training samples are plotted against the predicted values to estimate
the impact of the underestimation, caused by large over-representations of the
lower tree cover density value and aggregation effects within the training process.
The regression coefficients are applied to the classified product to stretch the
tree cover density values reaching the acquired range (0 - 100). This method of
analysis has a number of limitations since the classification results are no longer
independent, thus the impact of the coefficient need to be considered within the
validation process. Perhaps the most serious disadvantage of this method is that
the classification accuracies are no longer consistently comparable with other
products. Nevertheless, the fitting approach performed in order to achieve better
user accuracies.

As an alternative the training data and the classification results are extracted with
a forest mask only considering sample points within forest areas. On one hand
this approach results in less training and validation plots, but on the other hand
the overrepresented non-forest class is removed. The results produced with this
approach suggest that the impact of the non-forest class on the underestimation
is significant high. Results regarding both approaches show nearly the same R2

values but stronger differences in the regression coefficients slope and offset.
Using the forest mask approach still results in an underestimated prediction of
tree cover density values, however, the impact is lower.

The forest type classification shows significant lower classification accuracies
compared to the results of other studies using medium resolution satellite images
(Dorren et al., 2003; Xiao et al., 2002; X. Zhu and Liu, 2014; Dalponte et al., 2013;
Laurin et al., 2016). The random forest classifier using all available Sentinel-
bands with surface information (excluding B1 (aerosols), B9 (water vapour)
and B10 (cirrus)) achieved the highest overall accuracy in combination with
the ’corine’ training data set considering the weights. In contrast to the not
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weighted confusion matrices, weighted error matrices are calculated based on the
inclusion probabilities. Furthermore, the tested random forest classifier attained
slightly higher classification accuracies, than the knn classifier considering both,
weighted and not weighted overall accuracies. The aggregation effect shows a
slight improvement regarding the forest type classification results. It appears that
after a visual product inspection the random forest classifier using all available
bands, identifies fewer coniferous forest pixels than the knn classifier. On the
contrary, the knn classification result shows some more ’salt and pepper’ effects
than the random forest classification. Considering the results of other studies
(Dorren et al., 2003; Xiao et al., 2002; X. Zhu and Liu, 2014; Dalponte et al.,
2013; Laurin et al., 2016) these accuracies might not be satisfactory for further
applications, but this approach allows large area forest mapping with moderate
accuracies.

Furthermore, no significant difference is found between the several band combina-
tion experiments including FTY and TCD results with on exception. Considering
band combinations including only three promising bands significant lower accu-
racies are achieved. Moreover, the findings suggest that the knn classifier works
better including a digital elevation model, whereas the random forest algorithm
combined with topographic information may not necessarily helps to largely im-
prove the tree cover density classification accuracy. Perhaps an improvement can
be achieved by including topographic variables derived from the digital elevation
model such as slope information. The potential of the new introduced red-edge
band has been evaluated with signature and regression analysis, indicating that
some red-edge bands include similar information regarding both, forest type and
tree cover density plots. Nevertheless, using all band achieved better results, than
excluding one or more of the redundant red-edge bands. It has been expected that
the red-edge band help to differentiate between tree cover areas and agricultural
land like arable land with annual crops, pastures and herbaceous vegetation
associations. After the visual inspection of the product misclassification of arable
lands are observed, depending on the underlying SENTINEL-2A scene. In that
regard it needs to be considered that the classification accuracy is related to
the association between spectral signatures and particular vegetation types, and
consequently depends on the atmospheric correction accuracy. Since Sen2Cor
fails to process granules without dense dark vegetation pixels those granules
distort the training process and lead to misclassification.

The most important limitation lies in the fact that the accuracy of the classification
based on point sampling is closely linked to the quality of the sampling design.
Since the sampling points are created for validation purposes a random sampling
approach has been used with additional points in critical areas. Nevertheless,
regarding forest mapping aims only using homogeneous training plots could
achieve better results. The actual tree cover density R2 values might be higher
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than the calculated values due to the over representation of problematic areas in
the sampling approach. Further work needs to be done finding approaches to
calculate actual R2 with uneven inclusion probabilities.

In conclusion it can be stated the proposed methodological framework presents
acceptable efficiency for the monitoring of forest attributes over large areas with
reasonable accuracy. The framework is generic and can be applied on other scenes
with different acquisition dates as long as survey points are available. The forest
mapping methods applied in the 20 m resolution SENTINEL-2a image data
demonstrate the relevance of SENTINEL-2 data providing information on both
forest type and tree cover density. Nevertheless, there is still a need for developing
classification processes with increased automation degree, with the potential in
combining remotely sensed data correction and classification methods within one
software package compatible with SENTINEL-2A data formats.

Finally, a number of important limitations need to be considered. First, the
training samples are mainly gathered for validation purposes, thus more samples
are allocated within problematic areas and less samples represent homogeneous
forest areas. Furthermore, the atmospheric correction with Sen2Cor processor
(version 2.2.1) has some difficulties with granules without dense dark vegetation
pixels and haze. Nevertheless, it should be considered that Sen2Cor is still in
his early tuning phases, and next versions will bring enhancements. Finally, the
validation samples are not fully independent, since they are gathered within the
same framework as the training samples and therefore have to deal with the same
interpretation error.

Further work needs to be done to investigate whether there are still possibilities
to improve the performance of forest type and tree cover density classification
by including topographic variables derived from the digital elevation model
such as slope information. Furthermore, time series of Sentinel-2 data should be
considered in order to increase the classification accuracy. Multi-temporal images
provide phenological information of forest, which can improve the discrimination
of forest types sharing similar spectral characteristics (X. Zhu and Liu, 2014).
Moreover, it needs to be investigated if the accuracies might be improved by a sub
sampling approaches to reduce the number of samples within critical areas.
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Table A.1.: Confusion matrix - classifier: knn, training samples: all, band combination: 3LD
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 43 5 12 60 0.717

Coniferous 2 28 4 34 0.824

Mixed 1 4 5 10 0.5
Total 46 37 21 104 0

Producer Accuracy 0.935 0.757 0.238 0 0.731

Table A.2.: Confusion matrix - classifier: knn, training samples: full, band combination: 3LD
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 7 1 6 14 0.5
Coniferous 0 15 3 18 0.833

Mixed 2 1 5 8 0.625

Total 9 17 14 40 0

Producer Accuracy 0.778 0.882 0.357 0 0.675

Table A.3.: Confusion matrix - classifier: knn, training samples: tcd, band combination: 3LD
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 35 1 10 46 0.761

Coniferous 1 24 4 29 0.828

Mixed 4 5 10 19 0.526

Total 40 30 24 94 0

Producer Accuracy 0.875 0.8 0.417 0 0.734

Table A.4.: Confusion matrix - classifier: knn, training samples: corine, band combination: 3LD
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 19 3 5 27 0.704

Coniferous 2 25 5 32 0.781

Mixed 0 3 10 13 0.769

Total 21 31 20 72 0

Producer Accuracy 0.905 0.806 0.5 0 0.750

Table A.5.: Confusion matrix - classifier: rf, training samples: all, band combination: all
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 40 5 8 53 0.755

Coniferous 1 29 6 36 0.806

Mixed 5 3 7 15 0.467

Total 46 37 21 104 0

Producer Accuracy 0.87 0.784 0.333 0 0.731
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Table A.6.: Confusion matrix - classifier: rf, training samples: full, band combination: all
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 9 0 6 15 0.6
Coniferous 0 15 3 18 0.833

Mixed 0 2 5 7 0.714

Total 9 17 14 40 0

Producer Accuracy 1 0.882 0.357 0 0.725

Table A.7.: Confusion matrix - classifier: rf, training samples: tcd, band combination: all
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 33 1 12 46 0.717

Coniferous 2 26 2 30 0.867

Mixed 5 2 11 18 0.611

Total 40 29 25 94 0

Producer Accuracy 0.825 0.897 0.44 0 0.745

Table A.8.: Confusion matrix - classifier: rf, training samples: corine, band combination: all
Broadleaved Coniferous Mixed Total User Accuracy

Broadleaved 19 6 9 34 0.559

Coniferous 2 24 1 27 0.889

Mixed 0 1 10 11 0.909

Total 21 31 20 72 0

Producer Accuracy 0.905 0.774 0.5 0 0.736

Table A.9.: Error matrix based on inclusion probabilities - classifier: knn, training samples: all,
band combination: 3LD

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.382 0.005 0.0866 0.474 0.193

Coniferous 0.0225 0.308 0.0662 0.397 0.224

Mixed 0.000649 0.0457 0.083 0.129 0.358

Total 0.405 0.359 0.236 1 0

Omission Error 0.0571 0.141 0.648 0 0.773
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Table A.10.: Error matrix based on inclusion probabilities - classifier: knn, training samples: full,
band combination: 3LD

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.197 0.00315 0.0254 0.226 0.126

Coniferous 0 0.337 0.185 0.522 0.354

Mixed 0.0373 0.00315 0.212 0.253 0.16

Total 0.235 0.343 0.422 1 0

Omission Error 0.159 0.0184 0.497 0 0.746

Table A.11.: Error matrix based on inclusion probabilities - classifier: knn, training samples: tcd,
band combination: 3LD

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.408 0.00086 0.0828 0.492 0.17

Coniferous 0.00086 0.238 0.0562 0.295 0.194

Mixed 0.0282 0.0374 0.148 0.213 0.308

Total 0.437 0.276 0.287 1 0

Omission Error 0.0665 0.139 0.485 0 0.794

Table A.12.: Error matrix based on inclusion probabilities - classifier: knn, training samples: corine,
band combination: 3LD

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.335 0.00347 0.0397 0.378 0.114

Coniferous 0.00335 0.327 0.00844 0.339 0.0348

Mixed 0 0.103 0.18 0.283 0.365

Total 0.339 0.434 0.228 1 0

Omission Error 0.00989 0.246 0.211 0 0.842

Table A.13.: Error matrix based on inclusion probabilities - classifier: rf, training samples: all,
band combination: all

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.334 0.00403 0.0765 0.415 0.194

Coniferous 0.000649 0.334 0.023 0.358 0.0662

Mixed 0.0706 0.0209 0.136 0.228 0.402

Total 0.405 0.359 0.236 1 0

Omission Error 0.176 0.0694 0.422 0 0.804
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Table A.14.: Error matrix based on inclusion probabilities - classifier: rf, training samples: all,
band combination: all

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.235 0 0.0254 0.26 0.0977

Coniferous 0 0.332 0.185 0.517 0.357

Mixed 0 0.011 0.212 0.223 0.0494

Total 0.235 0.343 0.422 1 0

Omission Error 0 0.0321 0.497 0 0.779

Table A.15.: Error matrix based on inclusion probabilities - classifier: rf, training samples: tcd,
band combination: all

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.38 0.00086 0.0743 0.455 0.165

Coniferous 0.00199 0.269 0.00172 0.272 0.0136

Mixed 0.0559 0.00301 0.214 0.273 0.216

Total 0.437 0.273 0.29 1 0

Omission Error 0.132 0.0142 0.262 0 0.862

Table A.16.: Error matrix based on inclusion probabilities - classifier: rf, training samples: corine,
band combination: all

Broadleaved Coniferous Mixed Total Commission Error
Broadleaved 0.336 0.00661 0.0715 0.414 0.189

Coniferous 0.00242 0.398 0.00138 0.402 0.00945

Mixed 0 0.0287 0.155 0.183 0.156

Total 0.339 0.434 0.228 1 0

Omission Error 0.00716 0.0814 0.32 0 0.889
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Table B.1.: TCD Confusion Matrix: knn classifier, band combination 4LD

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 1 0 0 0 0 1 1

21-40% 16 1 0 0 0 17 0.80

41-60% 12 5 3 4 1 25 0.73

61-80% 1 7 9 16 7 40 0.66

81-100% 0 0 1 4 7 12 0.94

Total 30 13 13 24 15 95

Producer
Accuracy 0.03 0.08 0.23 0.67 0.47 0.29

Table B.2.: TCD Confusion Matrix: knn classifier, band combination 7LD

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 3 0 0 0 0 3 1

21-40% 16 3 1 1 0 21 0.78

41-60% 11 5 4 4 1 25 0.74

61-80% 0 5 8 17 9 39 0.69

81-100% 0 0 0 2 5 7 0.97

Total 30 13 13 24 15 95

Producer
Accuracy 0.1 0.23 0.31 0.71 0.33 0.33684

Table B.3.: TCD Confusion Matrix: knn classifier, band combination allD

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 3 0 0 0 0 3 1

21-40% 13 3 1 2 0 19 0.80

41-60% 11 5 6 5 1 28 0.73

61-80% 0 5 7 18 13 43 0.64

81-100% 0 0 0 1 1 2 0.07

Total 27 13 14 26 15 95

Producer
Accuracy 0.11 0.23 0.43 0.69 0.07 0.32632
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Table B.4.: TCD Confusion Matrix: knn classifier, band combination wbD

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 3 0 0 0 0 3 1

21-40% 16 3 1 2 0 22 0.77

41-60% 11 5 5 5 1 27 0.73

61-80% 0 5 7 16 13 41 0.65

81-100% 0 0 0 1 1 2 0.99

Total 30 13 13 24 15 95

Producer
Accuracy 0.1 0.23 0.38 0.67 0.07 0.29474

Table B.5.: TCD Confusion Matrix: random forest classifier, band combination 4L

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 1 0 0 0 0 1 1

21-40% 13 3 0 0 0 16 0.84

41-60% 13 9 10 18 9 59 0.40

61-80% 0 3 3 6 6 18 0.83

81-100% 0 0 0 0 1 1 1

Total 27 15 13 24 16 95

Producer
Accuracy 0.04 0.20 0.77 0.25 0.06 0.22105

Table B.6.: TCD Confusion Matrix: random forest classifier, band combination 7L

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 3 0 0 0 0 3 1

21-40% 17 4 0 0 0 21 0.79

41-60% 10 4 8 8 2 32 0.70

61-80% 0 5 5 14 7 31 0.76

81-100% 0 0 0 2 6 8 0.98

Total 30 13 13 24 15 95

Producer
Accuracy 0.1 0.31 0.62 0.58 0.4 0.36842
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Table B.7.: TCD Confusion Matrix: random forest classifier, band combination all

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 2 0 0 0 0 2 1

21-40% 18 4 0 0 0 22 0.78

41-60% 10 4 9 8 2 33 0.71

61-80% 0 5 4 15 9 33 0.75

81-100% 0 0 0 1 4 5 0.99

Total 30 13 13 24 15 95

Producer
Accuracy 0.07 0.31 0.69 0.63 0.27 0.35789

Table B.8.: TCD Confusion Matrix: random forest classifier, band combination wb

TCD 1-20% 21-40% 41-60% 61-80% 81-100% Total User
Accuracy

1-20% 2 0 0 0 0 2 1

21-40% 19 4 0 0 0 23 0.77

41-60% 9 4 10 9 2 34 0.71

61-80% 0 5 3 14 8 30 0.77

81-100% 0 0 0 1 5 6 0.99

Total 30 13 13 24 15 95

Producer
Accuracy 0.07 0.31 0.77 0.58 0.33 0.36842
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(a) CL: knn, BC: 7LD, before calibration (b) CL: knn, BC: 7LD, after calibration

(c) CL: knn, BC: allD, before calibration (d) CL: knn, BC: allD, after calibration

(e) CL: knn, BC: wbD, before calibration (f) CL: knn, BC: wbD, after calibration

Figure C.1.: Scatter plot of predicted and trainings TCD data based on the 100 m mosaic.
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(a) CL: knn, BC: 4LD, before calibration (b) CL: knn, BC: 4LD, after calibration

(c) CL: rf, BC: 7L, before calibration (d) CL: rf, BC: 7L, after calibration

(e) CL: rf, BC: all, before calibration (f) CL: rf, BC: all, after calibration

Figure C.2.: Scatter plot of predicted and trainings TCD data based on the 100 m mosaic.

119



Appendix C.

(a) CL: rf, BC: wb, before calibration (b) CL: rf, BC: wb, after calibration

(c) CL: rf, BC: 4L, before calibration (d) CL: rf, BC: 4L, after calibration

Figure C.3.: Scatter plot of predicted and trainings TCD data based on the 100 m mosaic.
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