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Kurzfassung 

Die numerische Simulation von Drucksondierungen (CPT) ist eine herausfordernde 

Fragestellung im Gebiet der Geotechnik. Die auftretenden großen Verschiebungen und 

Dehnungen erfordern zum einen ein entsprechendes physikalisches Modell und zum 

anderen ein geeignetes numerisches Lösungsverfahren. Forscher an der 

Polytechnischen Universität von Katalonien (UPC) und am International Center for 

Numerical Methods in Engineering (CIMNE) in Barcelona entwickelten den Particle 

Finite Element Method (PFEM) code G-PFEM, wodurch die numerische Simulation von 

Eindringvorgängen in voll gesättigten porösen Medien ermöglicht wird. 

Die Grundgleichungen werden mit Hilfe eines Updated Lagrangian Ansatzes formuliert. 

Die PFEM basiert auf wiederholter Neuvernetzung der kritischen Bereiche des 

Integrationsgebiets. Dem entstehenden, rechnerischen Mehraufwand wird durch 

Verwendung linearer Elemente entgegengewirkt. Letztere neigen zu volumetrischem 

Locking, wodurch eine stabilisierte, gemischte Formulierung des Problems erforderlich 

wird. 

Im Zuge der Arbeit wurden Nachrechnungen von in-situ Sondierungen durchgeführt, um 

den Einfluss von unterschiedlichen Randbedingungen, wie der Durchlässigkeit des 

Bodens oder der Eindringgeschwindigkeit der Sonde, auf den gemessenen 

Spitzendruck, die Mantelreibung und den Wasserdruck bei teildrainierten Verhältnissen 

zu untersuchen. Die Vergleichbarkeit der Ergebnisse ist gegeben. In Bezugnahme auf 

durchgeführte Modellversuche wurde das Verformungsverhalten von Schluffen bei 

Drucksondierungen analysiert, wobei die beobachteten lokalen Drainagevorgänge im 

Zuge der Simulation noch nicht im Detail nachgebildet werden konnten. 

  





Abstract 

The numerical simulation of cone penetration tests (CPT) is a challenging field in 

geotechnics. Both the underlying physical model and the numerical method need to be 

capable of taking into account large deformations and displacements within the problem 

domain. Researchers at the Polytechnic University of Catalonia (UPC) and the 

International Center for Numerical Methods in Engineering (CIMNE) have developed a 

Particle Finite Element Method (PFEM) code named G-PFEM which conducts fully 

coupled analysis of penetration problems in saturated porous media. 

An updated Lagrangian description is used in order to formulate the governing equations. 

The PFEM is based on frequent remeshing of critical regions of the problem domain 

adding additional computational cost to the solving process. Therefore, the use of linear 

elements in combination with a stabilized mixed formulation of the governing equations 

helps to reduce the computational effort and at the same time cope with the phenomenon 

of volumetric locking associated with linear elements. 

Recalculations of available CPTs were performed allowing the examination of the 

influence of changing boundary conditions, such as permeability of the soil or penetration 

velocity of the cone, on the measured tip resistance, sleeve friction and pore water 

pressure. It was found that the recalculation with G-PFEM provides comparable results 

for partially drained conditions. Furthermore, small scale experiments on the soil 

deformation of silts during CPTs were studied by numerical means whereby the resulting 

local drainage behaviour could not yet be reproduced in detail within the simulation. 
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1 Introduction 

The determination of soil properties is a central and challenging task in geotechnical 

engineering. Laboratory tests offer a wide range of investigation methods whereby 

removal, transport and installation of the soil sample can easily disturb the specimen and 

influence the test results. Therefore, in-situ testing becomes more and more important. 

Cone penetrations testing (CPT) represents one of those methods where a metal cone 

is pushed into the soil at a constant penetration rate while measuring the tip resistance 

and sleeve friction. Additional measurement of the pore water pressure can be included 

in a CPTu. The measured quantities allow determining the local stratigraphy, the ground 

water conditions and mechanical soil properties, indirectly via correlations. Thereby, the 

quality of the derived parameters depends strongly on the applicability of the available 

correlations. Reasonable results are provided for both the application under 

predominantly drained or undrained conditions whereas the behaviour under partial 

drainage is still a major issue in ongoing research. Numerical simulations of this kind of 

penetration problems can play an important role in investigating the partially drained 

behaviour of certain soils during CPT and, as a future goal, contribute to the validation 

and improvement of the proposed correlations. Moreover, such silty soils can be found 

in alpine basins in Austria and consequently its characterization is of substantial 

relevance. 

The present work involves numerical studies on CPTu based on a Particle Finite Element 

Method (PFEM) aiming to gain a better understanding of the coupled soil-water 

interaction during the penetration process. Initially, a brief overview on cone penetration 

testing is given before presenting the theoretical framework of the numerical method as 

well as an extension of the application in terms of considering anisotropic permeability. 

Eventually, numerical studies on the estimation of the hydraulic conductivity, a 

recalculation of an in-situ CPTu and investigations on the deformation behaviour of silts 

are presented. 
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2 Cone Penetration Tests 

Cone penetration testing is an in-situ soil investigation method where a metal cone is 

pushed into the soil at a constant penetration velocity. The cone is equipped with load 

cells enabling to measure the tip resistance q° and the sleeve friction f±. Furthermore, 

the conduction of a CPTu includes the measurement of pore water pressures at the u5, 

u? and u� positions through additional piezometers at the cone (see Fig. 1). 

 

Fig. 1 CPTu cone with piezometer positions (Lunne et al. 1997). 

Usually, the cone measures 10 cm² of base area (A°) which corresponds to a diameter 

of 3.57 cm. For some applications, the cone area can vary between 5 and 15 cm². The 

friction sleeve has a standard area of 150 cm² (A±) while the aperture angle α° at the 

cone tip equals 60°. The standard penetration velocity is 2 cm/s. Furthermore, the 

corrected tip resistance q´ results after subtracting a portion of the pore pressure at the 

shoulder position according to the net area ratio d2: 

�< = �. + (1 − d2)	�? ( 1 ) 

Empirical correlations allow the determination of soil parameters based on the measured 

quantities (Lunne et al. 1997): 

• Initial state parameter: γ, ψ, K>, OCR 

• Strength parameters: s¹, ϕn 

• Deformation characteristics: E, G, M 

• Flow characteristics: k, c½ 
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The interested reader is referred to Sachsenhofer (2012) for more information on the 

interpretation of CPTu measurements. 

However, the soil resistance and pore pressure during penetration are strongly 

dependent on the drainage conditions. Most of the proposed correlations are derived for 

either drained (sand) or undrained conditions (clay) making the interpretation for partially 

drained silts difficult (Lunne et al. 1997). 
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3 Theoretical background on G-PFEM 

The conduction of a cone penetration test causes large deformations and displacements 

of the penetrated soil. Thus, its simulation is a challenging field in numerical geotechnics 

since small strain theory does not provide reasonable results. In order to deal with this 

problem both the underlying physical model and the numerical method need to be 

capable of treating large deformations and displacements within the problem domain. 

Researchers at the Polytechnic University of Catalonia (UPC) and the International 

Center for Numerical Methods in Engineering (CIMNE) have developed a Particle Finite 

Element Method (PFEM) code named G-PFEM which enables fully coupled analysis of 

penetration problems in saturated porous media (Monforte et al. 2016, Monforte et al. 

2017). The application is implemented in the FEM framework Kratos (Dadvand et al. 

2010). 

3.1 Basics of Continuum Mechanics 

At first, some kinematic definitions are introduced based on Kelly (2012). Let � be the 

position of a material particle in an initial (or reference) configuration and � be its position 

in the current configuration after the body has undergone deformation (see Fig. 2). The 

change of position is described as a mapping between the two configurations  

� = «(�, �) ( 2 ) 

� = «¬5(�, �) ( 3 ) 

where Eq. (2) represents the Material or Lagrangian description (L.D.) and Eq. (3) stands 

for the Spatial or Eulerian description (E.D.). Furthermore, Fig. 2 shows the 

transformation of a line element d¿ from the reference to the current configuration giving 

dÀ = Á	d¿, with: 

@ = F�d�	« = ��
�� ( 4 ) 

The deformation gradient Á is a fundamental measure in continuum mechanics 

characterizing the stretching and rotation during the deformation of a body. It is therefore 

useful to decompose the deformation gradient into an orthogonal rotation-tensor Â and 

the symmetric stretching-tensors Ã or Ä yielding Á = Â	Ã (L.D.) or rather Á = Ä	Â (E.D.). 

Rigid body translation has no impact on the deformation gradient. In analogy to the 

mapping Å and Å¬5, the inverse Á¬5 must exist. 
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Fig. 2 Mapping of material vector �� from initial/reference to current configuration (Coussy 

2004). 

Additionally, the determinant J of the deformation gradient is introduced describing the 

volume change between the reference (dV) and the current configuration (dv): 

P = det	(@) 
�� = P	�` 

( 5 ) 

Since Á¬5 exists and negative volumes do not make physical sense, J > 0 is required. 

No volume change gives a value of J = 1. The deformation gradient Á can also be 

multiplicatively decomposed into a volumetric ÁÆ and deviatoric part ÁÇ whereby the 

condition det(ÁÇ) = 1 must hold. This results in: 

@ = @B	@A 

@B = PÈ ÉÊ 	Ë 
@A = P¬È ÉÊ 	@ 

( 6 ) 

With regard to the formulation of a constitutive relation between stress and strain, the 

Green-Lagrange strain tensor Ì is introduced as 

: = È
Í(@Î@ − M) = È

Í(8 − M) ( 7 ) 

with Ï being the Right Cauchy-Green strain tensor. According to Bathe (2014), Ï is 

rewritten in terms of the rotation and stretching tensors Â and Ã giving: 
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8 = (^Î	ZÎ)	(Z	^) = ^? ( 8 ) 

Thus, the Green-Lagrange strain tensor depends only on the stretching tensor Ã and is 

invariant under rigid body rotation and translation. Note that Ì can be expressed in terms 

of the displacement Ã(¿, t) = À(¿, t) − ¿ and contains the engineering small strain tensor 

��ÐÑ and the quadratic term ÈÍ(ÒÓÔÒÕÖ 	
ÒÓÔÒÕ× ): 

:{Ø = 1
2Ù

Ú]{ÚÛØ +
Ú]ØÚÛ{ +

Ú]ÜÚÛ{ 	
Ú]ÜÚÛØ Ý 

��{Ø = 1
2Ù

Ú]{ÚÛØ +
Ú]ØÚÛ{Ý 

( 9 ) 

However, the Green-Lagrange strain tensor is not the only strain measure. A more 

general form of the strain tensor both in Lagrangian (L.D.) and Eulerian (E.D.) description 

is given by (Altenbach 2015) 

G(2) = È
ÍÞ(^?2 − M) = È

ÍÞ(82 − M) 
e(2) = È

ÍÞ(M − b¬?2) = È
ÍÞ(M − g¬2) 

(L.D.) 

(E.D.) 
( 10 ) 

with the Left Cauchy-Green strain tensor ß = Ä? = Á	Áà. 

Setting	n = 1 the tensors â and ã result in the Green-Lagrange and Euler-Almansi strain 

tensors. Besides that, the case where n = 0 is of interest as it gives the logarithmic 

Hencky strain tensor ä or rather å: 

G(2æ>) = ln^ = È
Í ln 8 ≝ L 

e(2æ>) = lnb = È
Í ln g ≝ t 

(L.D.) 

(E.D.) 
( 11 ) 

This strain measure allows an additive decomposition of the tensor into a deviatoric and 

volumetric part, as for the small strain tensor ��. 
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3.2 Particle Finite Element Method 

An Updated Lagrangian formulation for the continuum equations is used where the last 

known configuration at time � serves as reference and thus changes with every time step 

Δ� while the current configuration at time � + Δ� is the unknown one. 

The basic idea is pointed out by considering the principle of virtual work at time � + Δ� 
where the internal work equals the external one for every admissible virtual displacement 

(Bathe 2014): 

è §	<4=<
	

é	êëìê
; �	<4=< 	� `	<4=< = c	<4=<  

( 12 ) 

Thereby, the internal work results as the integral of the Cauchy stress tensor §	<4=<  times 

the virtual strain tensor ; �	<4=<  over the unknown volume `	<4=< . With the current volume 

not being known Eq. (12) is rewritten in terms of a known reference configuration. 

Therefore, a new stress measure is introduced, in the form of the second Piola-Kirchhoff 

stress tensor: 

[ = J	@¬5	§	@¬Î ( 13 ) 

The virtual strain tensor is expressed as a virtual Green-Lagrange strain tensor and the  

integration can now be carried out on the known domain `	<  of the reference configuration 

at time � in order to solve for the unknown internal forces: 

è [<<4=<
	

é	ê
; :<<4=< 	� `	< = c	<4=<  

( 14 ) 

In a next step the focus lies on an effective numerical method for solving problems where 

large deformations and displacements of the domain are involved. 

The Particle Finite Element Method is based on a Particle Method meaning that the 

problem domain is represented by a sum of material particles carrying all the information. 

The position of the particles and so also the domain changes during the computation. In 

order to calculate the updated solution at time � + Δ� the particles at reference state � 
are treated as nodes and a FEM solves the governing equations. Required integration 

points are redefined with each remeshing step. The procedure is illustrated in Fig. 3 

describing the steps according to Oñate et al. (2011) for a coupled problem including a 

solid and a fluid domain: 
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• The starting point is a cloud of particles 1	2  at the last known reference configuration 

at time 6. Each particle can be identified as either a fluid, solid or boundary node and 

carries its state variables, such as displacements and pressures. 

• A crucial step is now defining the domain boundaries and so going from a cloud of 

points to a volume `	2 . Note that parts of the domain(s) can also be separated or re-

united. Techniques like the α-shape method are used for identifying the domain 

boundaries. The interested reader is therefore referred to Oñate et al. (2011). 

• Based on the defined volume a mesh U	2  is built, with the particles serving as nodes, 

in order to initiate the FEM solution procedure. At this point new nodes can be 

inserted or old ones removed depending on the local nodal density. In this way the 

quality of the mesh is corrected by avoiding on the one hand the generation of large 

elements in regions where the nodes moved far apart and on the other hand the 

generation of small elements in regions where the nodes are concentrated. The 

triangular meshing is based on a Delaunay tessellation (see Oñate et al. (2011) and 

Monforte et al. (2016)) which maximizes the angles of each element and so reduces 

element distortion. 

• New nodes and integration points inherit variables from the last known configuration 

whereby different interpolation methods can be applied. However, now the actual 

solving process using the FEM is carried out in order to solve the governing equations 

for the next updated configuration at time � + 1. Consequently, one obtains a new 

particle cloud 1	245  with an updated position of the particles and updated state 

variables. 

• The process starts again until the desired final time step is reached. 
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Fig. 3 Basic steps of PFEM going from a cloud of nodes (C) over the definition of a volume 

(V) to the generation of a mesh (M) (Oñate et al. 2011). 

The continuous remeshing of the domain leads to an increased computational effort. 

Counteractively, the use of low order elements, linear triangles in 2D and linear 

tetrahedrons in 3D, helps to reduce the computation costs but at the same time opens 

the door for locking phenomena in the FEM solution. Especially for applications in soil 

mechanics where nearly incompressible behaviour of the soil occurs, volumetric locking 

of linear elements is a frequent issue. In G-PFEM this is addressed by introducing a 

mixed, stabilized formulation of the underlying boundary value problem in order to keep 

the advantage of using linear elements. 

3.3 Boundary value problem 

According to the theory of Poromechanics the governing equations are formulated for a 

fully saturated porous media. The interested reader is referred to Larsson & Larsson 

(2002), Borja & Alarcón (1995) and Sun et al. (2013) for further reading. 
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3.3.1 Linear Momentum 

We consider a unit volume composed of a solid and fluid phase in the current 

configuration. The overall density is ρ = (1 − n)ρ± + n	ρî with n being the porosity and ρ± 
and ρî being the densities of the solid and fluid components, respectively. Thus, the quasi 

static equation for linear momentum is formulated in terms of partial stresses ï± and ïî 
for each phase separately according to Larsson & Larsson (2002): 

ð ⋅ §/ + ¥/(1 − 6)r + t/ = ò 

ð ⋅ §u + ¥u6	r + tu = ò 

t/ + tu = ò 

( 15 ) 

Thereby, the expressions å± and åî represent the contact forces between the two phases 

which cancel out in order to obtain equilibrium. Hence, the equations are combined giving 

the more general expression 

ð ⋅ § + g = ò ( 16 ) 

with the total Cauchy stress tensor ï = ï± + ïî and the body force vector ß = ρ	ó. 

In a next step, the effective stress principle is introduced. Therefore, the partial fluid 

stress tensor is rewritten as 

§u = 6	}Rô ( 17 ) 

where põ stands for the water pressure per unit volume. Consequently, the total stress 

tensor is decomposed into effective stresses of the soil skeleton and pore water pressure 

yielding: 

§ = §′ + }Rô 
§n = §/ + (1 − 5

2)§u 
( 18 ) 

3.3.2 Mass Balance 

Again, we consider a unit volume of mixture and formulate the Lagrangian mass balance 

(Borja & Alarcón 1995) for both components giving 



3 Theoretical background on G-PFEM   

  

Computational Geotechnics Group 11 

�
�� ÷¥u6ø + ð ⋅ ÷¥u6�uø = 0 

�
�� ÷¥/(1 − 6)ø + ð ⋅ (¥/(1 − 6)�/) = 0	

( 19 ) 

with the respective velocity vectors ù± and ùî of the two phases. At this point, the relative 

Darcian velocity ùÇ = n(ùî − ù±) is introduced and the equations are rewritten: 

6 �
�� ÷¥uø + ¥u �

�� (6) + ð ⋅ ú¥u(�A + 6�/)û = 0 

(1 − 6) �
�� (¥/) − ¥/ �

�� (6) + ð ⋅ ÷¥/(�/ − 6�/)ø = 0 

( 20 ) 

Now, the solid phase is assumed incompressible causing ρ± to be independent of time 

and space. Furthermore, the spatial variation of ρî is neglected. Eventually, dividing the 

equations by the respective phase densities ρî or rather ρ± and adding them up gives: 

6
¥u ¥au + ð ⋅ �A + ð ⋅ �/ = 0 ( 21 ) 

Referring to Sun et al. (2013), the fluid phase is assumed to have a linear elastic relation 

between the logarithmic volumetric strains and the pore pressure. Hence, the expression 

for the change of fluid density in time from Eq. (21) can be rewritten in terms of the water 

bulk modulus Kõ and the time derivative of põ: 

6
¥u ¥au = − 1

ΚR }aR ( 22 ) 

The flow of the pore fluid is described by Darcy’s law where ùÇ depends on the 

permeability of the porous medium ýþ times the hydraulic gradient: 

�A = −zD	(ð}R + ¥Rr) ( 23 ) 

Since (ðpõ + ρõó) has the unit Pa/m, ýþ must be given in terms of m²/(Pa*s) so that ùÇ 

results in m/s. Furthermore, Larsson & Larsson (2002) discuss that ýþ should be seen 

as a macroscopic quantity which depends on the soil deformation. The authors remark 

that ýþ in the current configuration relates to �þ> in the initial reference configuration via: 

zD = P¬5@	SD>	@< ( 24 ) 
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In this way, the rotation of the principle axes is taken into account which is especially 

important for the case of anisotropic permeability. 

3.3.3 Governing equations 

Finally, the governing equations according to Monforte et al. (2016) are given as: 

ð ⋅ § + g = ò 

− 1
ΚR }aR + ð ⋅ �/ + ð ⋅ �A = 0 

v6	Ω< 

v6	Ω< ( 25 ) 

The following initial and boundary conditions hold 

X(�, � = 0) = X> 

}R(�, � = 0) = }R> 

X(�, �) = X� 

§ ⋅ | = �̅ 
}R(�, �) = }̅R 

−| ⋅ �A = p̅ 

v6	Ω> 

v6	Ω> 

v6	ΓW 

v6	Γ<̅ 
v6	ΓD� 

v6	Γ� 

( 26 ) 

where the domain’s boundary ∂Ω is divided into the sub-boundaries Γ¹, Γ́ ̅, Γþ� and Γ� 
with the respective imposed displacement ��, traction �,̅ water pressure p�õ and flow g�. 
3.4 Stabilized mixed formulation 

Having in mind that the chosen FE space of piecewise linear shape functions will cause 

locking effects in the solution, a stabilized mixed formulation of the governing equations 

is introduced. The derived boundary value problem (section 3.3.3) is typically solved in 

terms of the displacement vector �(¿, t) and the pore pressure põ(¿, �). Monforte et al. 

(2016) presented and tested mixed formulations of the boundary value problem where 

additional degrees of freedom and corresponding constraining equations are introduced. 

For the present work, the focus lies on the mixed displacement-Jacobian-water pressure 

(�	-	J	-	põ) formulation (Monforte et al. 2016) with the Jacobian being the additional 

degree of freedom. Hence, Eq. (25) is extended to 
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ð ⋅ §̈ + g = ò 

P − � = 0 

− 1
ΚR }aR + ð ⋅ �/ + ð ⋅ �A = 0 

v6	Ω< 

v6	Ω< 

v6	Ω< 
( 27 ) 

where Θ stands for the nodal approximation of the volume change which must be equal 

to J = det	(Á) within the whole domain. According to the decomposition from Eq. (6), the 

assumed deformation gradient 

@E = (ΘÈ ÉÊ 	M)	(P¬È ÉÊ 	@) ( 28 ) 

can be formulated whereby the volumetric part is expressed by the additional degree of 

freedom Θ. Hence, the divergence of the Cauchy stress tensor is now applied on an 

assumed stress tensor ï̈ depending on Á	. 
The equation set is then written in its weak form by pre-multiplication of a weighting 

function and integration over the (current) domain Ω´ and boundary Γ yielding 

èð� ∶ §̈	�Ω<
	

�ê
= è� ∙ g	�Ω<

	

�ê
+ è� ∙ �̅	�Γ

	

ê�
 

( 29 ) 

è�(P − �) 	1P 	��<
	

�ê
= 0		

( 30 ) 

è�� ∙ �/ 	1P 	��<
	

�ê
+ è�� ∙ �A 	1P 	��<

	

�ê
− è�	 1R 	}aR 	1P 	��<

	

�ê
= è�	p̅	��

	

���
	

( 31 ) 

where η ∈ V, ζ ∈ G and q ∈ Q are the virtual displacements, virtual nodal Jacobians and 

virtual pressures given in the respective spaces V, G and Q. The stabilization of the 

problem is achieved by adding stabilizing terms to the weak formulation, more 

specifically to Eq. (30) and (31). The basic principles are pointed out according to 

Monforte et al. (2016). The interested reader is referred to the latter source for further 

information. 
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Firstly, the polynomial pressure projection (PPP) method is used adding the term 

è÷� − ��ø �/�£ (� − Θ�)	��<
	

�ê
= 0	 

( 32 ) 

to Eq. (30) with μ being the shear modulus of the material and α±� the stabilization 

parameter of the Jacobian. Note that α±� is an input value. 

Secondly, the mass balance Eq. (31) is stabilized with the fluid pressure Laplacian (FPL) 

method where the expression 

è τ	ð� ∙ zD ∙ ð}aR 1
P 	��<

	

�ê
= 0	 

( 33 ) 

is added to the weak form. The parameter τ depends on the element size, the bulk 

modulus and permeability tensor of the material and the time step (Preisig & Prévost 

2011). Additionally, τ is scaled by a user defined stabilization factor for the water 

pressure within G-PFEM.  

3.5 Finite Element discretization in G-PFEM 

Monforte et al. (2016) use linear, triangular elements in 2D. Consequently, the field 

variables �, Θ and põ can be approximated as 

Xi = VX	X� 

Θi = V	�� 

põi = V	��� 

( 34 ) 

with the linear global shape function vector � = �N5,N?,… 	 ,N ! and discrete nodal values 

vectors ��, �� and ��". Since � is a vectorial quantity the matrix �� = �N5#,N?#,… 	 ,N #! is 

introduced. The discrete, weak, stabilized formulation of the governing equations is 

extensively discussed in Monforte et al. (2016). 

So far, the problem has been formulated in the current configuration (using an Eulerian 

description). In order to integrate over a known domain, the quantities are transformed 

to the updated reference configuration at the last known time t. Generally, tensors and 

vectors can be transformed between Eulerian and Lagrangian description using push-
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forward or pull-back operations. Considering the Euler-Almansi $ and Green-Lagrange 

Ì strain tensors the two operations yield: 

k = @¬Î	:	@¬5 

: = @Î	k	@ 

(push-forward) 

(pull-back) 
( 35 ) 

Note that the operations are not unique and depend on covariant/contravariant 

components of the vector or tensor (Kelly 2012). 

The equations are solved using an implicit integration scheme in time. Therefore, the 

time derivative of the water pressure and the soil velocity vector are replaced by a 

forward finite difference formulation (Monforte et al. 2016, Monforte et al. 2017). 

3.6 Contact modelling 

The contact modelling between the deformable soil-water body and the penetrating, rigid 

cone is a central aspect in G-PFEM. With each time step a certain incremental 

displacement is imposed on the boundary nodes, corresponding to a Dirichlet boundary 

condition. More generally speaking, a constraint is applied to the system through the 

penalty method. 

The basic idea is explained according to Felippa (2004): For a linear system �	� = %, the 

arbitrary constraint u5 + 2	u? = 1 is assumed and rewritten as: 

�1			2			0			⋯ 			0! '�5⋮�2) = 1	 ( 36 ) 

Then, the equation is pre-multiplied by the transposed coefficient vector and a scaling 

factor w, also known as the penalty factor, giving: 

�
*+
++
,120⋮0-.
..
/ �1			2			0			⋯ 			0! '�5⋮�2) = �

*+
++
,120⋮0-.
..
/
	 

SDC2X = oDC2 

( 37 ) 

Finally, Eq. (37) is added to the original system. This results in a new linear system which 

incorporates the imposed constraining equation but depends on w: 
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(S + SDC2)	X = o + oDC2 ( 38 ) 

Felippa (2004) compares the application of a constraint to adding a rigid or rather very 

stiff element to the system. Rigidity requires � → ∞ and leads to an exact incorporation 

of the constraint but at the same time produces an ill-conditioned system of equations. 

Thus, it is evident that the penalty method is an approximate way to treat constraints, 

where a balance between accurate incorporation (increase of w) and solvability 

(decrease of w) needs to be found. However, the implementation is straightforward. 

3.7 Constitutive relation 

In order to model elasto-plastic behaviour for large strains it is common practice to 

decompose the deformation gradient into an elastic and plastic part giving Á = Á2	Áþ or 

rather Á	 = Á	2	Á	þ for the assumed deformation gradient. The soil is described by a 

Modified Cam Clay (MCC) model whereby the hyperelastic model by Houlsby is 

considered for the elastic regime (Monforte et al. 2016). 

In hyperelasticity a stored energy function Ψ must exist. Its partial derivative with respect 

to a strain measure results in the corresponding energy conjugate stress measure. Eq. 

(39) shows an example for the second Piola-Kirchhoff stress tensor and the Green-

Lagrange stain tensor. In this way, kinematic and force variables are connected giving a 

constitutive relation (Kelly 2012). 

[ = ÚΨ(:C)
Ú:C 	 ( 39 ) 

The adopted strain measure is the Hencky strain tensor å in E.D. with its elastic part 

å2 = 3 (ß4) ?⁄ . The latter is further decomposed into its volumetric and deviatoric parts åÆ2 
and åÇ2  which allows to formulate: 

�BC = M ∶ 	 t	C = ln(PC)	 
�AC = tAC = 5

?	ln(PC	¬? �⁄ gC) ( 40 ) 

Thus, the stress-strain relation follows in terms of effective Kirchhoff stress 6n = Jïn 
according to Monforte et al. (2016): 



3 Theoretical background on G-PFEM   

  

Computational Geotechnics Group 17 

mn = ¤nM + mA	 

¤n = −}> expÙ−�BC�∗ Ý ú1 + �
�∗ ∥ �AC ∥?û 

mA	 = 29F> + �	}>	expÙ−�BC�∗ Ý: �AC  

( 41 ) 

Thereby, p> is a reference pressure, G> stands for the constant part of the shear modulus 

and κ∗ = <
Èë4= is the modified swelling index which results from the swelling index κ and 

the initial void ratio e>. The parameter � > 0 defines the coupling between volumetric 

and deviatoric material behaviour. A value equal to zero means no coupling. 

Eventually, the plastic behaviour can be described by means of a yield surface 

l(mn) = Ù √3	P?U(θB)Ý
?
+ ¤n(¤n − }.) ( 42 ) 

formulated in terms of stress invariants of the Kirchhoff stress (¤n, J2, θL) and the 

appropriate hardening law 

}. = 	}h0	expÙ −��}¡∗ − �∗Ý ( 43 ) 

with the isotropic preconsolidation pressure p° or rather its refence value p°>, the slope 

of the critical state line M as a function of the Lode’s Angle θB and the modified 

compression index ¡∗ = D
ÈëE=. An associated flow rule is adopted (Monforte et al. 2016). 
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4 Anisotropic permeability in G-PFEM 

Natural soil deposits are often characterized by highly anisotropic hydraulic 

permeabilities. The resulting effect on the water flow, and consequently on the system 

behaviour, is crucial. Therefore, this feature has been included in G-PFEM allowing the 

definition of an anisotropic permeability tensor ýþ. The user can now specify the vertical 

and horizontal permeabilities (kþ,Æ, kþ,½) which are the components of the initial, diagonal 

tensor �þ>. The tensor in current configuration ýþ results according to Eq. (24) and thus 

rotates and scales with the deformed soil. 

4.1 Consolidation of an elastic finite soil layer 

In order to validate the modification of the code, the method is compared to the analytical 

solution for consolidation problems in multi-layered half space with anisotropic 

permeability by Chen (2004). 

The test case consists of a homogenous, fully saturated, elastic soil layer on a rigid, 

rough and impermeable bedding. The thickness of the layer equals H while the 

horizontal/radial extension is infinite and thus free drainage is assumed. The load q on 

the layer is circular with the radius a = H and a magnitude of 1 (see Fig. 4). 

a

H

q

z

r

 

Fig. 4 Model of axisymmetric elastic soil layer on rigid, rough and impermeable base. 

Based on given Kõ, Poisson’s ratio ν and permeability ratios  γ? = kþ,½ kþ,Æ⁄ , Chen (2004) 

provides dimensionless solutions for the surface subsidence and pore water pressures 

as functions of space and time. So, the dimensionless surface settlement μw(r, z, T) qa⁄  

at the centre point of the domain (r = z = 0), is expressed depending on the 

dimensionless time factor T = kÆμt a?⁄ , with £ being the material shear modulus. The 

dimensionless pore water pressure p q⁄  is given as a function of the normalized depth 
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z H⁄  at certain time steps T. In G-PFEM an axisymmetric model is built with a depth of 1 

m and a horizontal model size of 5 m. The soil and pore water is assumed to be 

weightless, whereas a load of 10 Pa is applied. Tab. 1 summarizes the used material 

parameters. 

Tab. 1 Input parameters for elastic soil layer in consolidation example. 

 

The calculations are performed for a range of �? = (0.01, 1, 10, 100). Fig. 5 shows the 

dimensionless settlement as a function of the time factor suggesting good qualitative 

behaviour of the numerical calculations (which are given as piecewise linear functions 

between the functional values at different time steps). In agreement with the analytical 

solution, the displacement increases by time, starting from an instantaneous settlement 

until reaching a final, consolidated level. Due to the imposed drainage boundary 

conditions, radial (horizontal) flow is predominant. Thus, the higher the horizontal 

permeability is, the faster the final settlement is reached. The G-PFEM calculations 

reproduce this pattern, whereby the amount of instantaneous and final settlement is 

lower by around 3 to 7 % compared to the analytical solution. 

 

Fig. 5 Comparison of normalized displacement at centre point (r = z = 0) versus time factor 

T for different permeability ratios γ? (Chen 2004). 
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The generated excess pore pressure is examined in Fig. 6 and the numerical results 

show good overall agreement with the analytical solution. Again, a high permeability ratio 

means faster drainage resulting in accelerated decay of the excess pore pressure. The 

pressure at the top of the soil layer is 0 since free drainage takes place. For small T, the 

pore pressure curves have a steep gradient at the surface which is followed by a peak. 

With increasing time the peak disappears and the pressure increases monotonically until 

reaching the maximum value at the impervious bottom. Eventually, the curve flattens out 

as the pore pressure decreases with time. 

 

Fig. 6 Comparison of normalized pore pressure p q⁄  versus dimensionless depth z H⁄  along 

the symmetry axis at given instances of time T (Chen 2004). 

4.2 Summary 

Introducing anisotropic permeability can be a useful extension of G-PFEM allowing to 

model natural soil deposits in a more realistic way. A first benchmark for an elastic soil 

layer provides promising results. 
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5 Numerical simulation of CPTu 

Equipped with the necessary numerical computation tool, the investigation of the soil 

behaviour during CPTs is the main subject of the following numerical examples. Initially, 

the ‘on-the-fly’ method by Chai et al. (2011), linking measured pore pressure to hydraulic 

conductivity of the soil, was investigated in order to get familiar with G-PFEM. 

Subsequently, a section of an actual CPTu sounding was recalculated and compared to 

the in-situ measurements. Based on this model further calculations were conducted 

considering varying penetration velocities and higher permeability allowing to investigate 

the soil behaviour for partial drainage around the cone. Finally, the deformation 

behaviour of silts during CPT was examined and compared to small scale experiments. 

5.1 Determination of hydraulic conductivity from CPTu 

The determination of the hydraulic conductivity k of a soil deposit is an important task in 

every geotechnical project as it represents a crucial parameter for analyzing the hydraulic 

behaviour. Therefore, Chai et al. (2011) presented an ‘on-the-fly’ method for estimating 

k from CPTu measurements without performing consolidation tests. The authors 

calibrated their semi-empirical approach based on a set of laboratory tests of Japanese 

Ariake clays and finally suggested a range of applicability for normally to slightly 

overconsolidated clays and loose sandy deposits. 

The goal of this study is to learn the way of modelling CPTu with G-PFEM and at the 

same time validate the proposed method. Initially, the basic ideas behind the ‘on-the-fly’ 

method are pointed out. 

5.1.1 ‘On-the-fly’ method 

The authors pick up the work of Elsworth & Lee (2005) considering the insertion of a 

cone in a soil body and introduce some modifications: Firstly, the displaced volume per 

time ΔVa  is assumed to be directly proportional to the resulting half-spherical water flow 

qî3Lõ giving 

Δ à = �u�yR 

π	Y?	] = 2π	Y?	�w 

( 44 ) 

with the cone radius R, the penetration velocity U and the water flow velocity vO at the 

cavity (radial distance R from the centre axis). The latter may be expressed by Darcy’s 

law as vO = k	iO where the hydraulic conductivity k has the unit m/s. 
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The second basic assumption involves the water pressure distribution around the cavity. 

The generated excess pore pressure ΔuO is maximal at the radial distance R from the 

centre axis and equal to zero at an infinite distance. This partially drained condition 

implies that the permeability of the soil is low enough to allow the generation of excess 

pore pressure but still high enough for the occurrence of ‘dynamic steady’ flow, as 

suggested by Chai et al. (2011). 

Darcy’s law is rewritten with the hydraulic gradient iO being a function of ΔuO, γõ and	R: 

�w = x Δ�w�R	Y ( 45 ) 

Combining Eq. (44) and Eq. (45) allows to express the hydraulic conductivity as 

x = ]	Y	�R2	Δ�w  ( 46 ) 

Finally, the dimensionless expressions for the tip resistance Q´ and the pore water 

pressure ratio BQ are introduced as 

�< = �< − ¦B>¦B>n  

�0 = Δ�w�< − ¦B> 

( 47 ) 

where q´ stands for the corrected tip resistance. At this point, the authors define the 

dimensionless hydraulic conductivity index: 

Q = 1
�0	�< ( 48 ) 

2	x	¦B>nY	�R	] = ¦B>nR�w	 ( 49 ) 

Note that for the elaborated case of partial drainage Eq. (48) is independent of the 

mechanical soil properties and the permeability is assumed isotropic for the derivation. 

Based on laboratory tests of Japanese clays, the authors corrected the relation for the 

range of BQ	Q´ > 0.45 by introducing the empirical correction factors α = 0.044 and	β =
4.91. This results in an updated version of Eq. (48): 
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Q = �
÷�0	�<øW 

( 50 ) 

Note that the used hydraulic conductivity represents k½. The proposed bi-linear relation 

by Chai et al. (2011) is illustrated in Fig. 7. 

 

Fig. 7 Proposed bi-linear Q − �0	�< relationship with modified data points from Elsworth & 

Lee (2007) taken from Chai et al. (2011). 

5.1.2 Numerical calculations 

A set of calculations is carried out in order to investigate the proposed relation. Thereby, 

the effects of changing penetration velocities and a variation of initial, vertical stress σÆ>n  

are of main interest.  

The problem domain is defined as a rectangular box with b = 0.45 m and h = 0.9 m and 

is axisymmetric with respect to the y-axis. The penetrating cone has a tip angle α° of 60° 

and a base radius R of 1.78 cm which corresponds to standard geometry. At time t = 0 

the cone is already located in the soil with its tip at a depth of h1 = 0.1 m. The domain’s 

lateral and lower boundaries are fixed in normal direction while water can drain freely 

except along the symmetry axis. The model is illustrated in Fig. 8 and serves as basis 

for all following calculations. 
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Fig. 8 Axisymmetric model of the domain. 

The soil is modelled using a MCC model (see Tab. 2) based on the test case from 

Monforte et al. (2016). Initially, constant and equal stress fields, both for the effective soil 

stresses and the pore water pressure, are assumed. Thereby, σÆ,´Lþn  and põ,´Lþ vary 

between 10, 50 and 100 kPa, resulting in the total vertical stress σÆ,´Lþ	 of 20, 100 and 

200 kPa. The penetrometer is pushed with two different penetration velocities (U5 = 2 

cm/s for case (a) and U? = 1 cm/s for case (b)) around 0.4 m into the soil while recording 

the pore pressure at the shoulder position u?. No friction along the cone is considered. 

Tab. 2 MCC input parameters for silty sand. 

 

HI 
[t/m³] 

H� 

[t/m³] 

Y∗ 
[-] 

Z∗ 
[-] 

«′ 
[°] 

[ 

[-] 

0 0 0.0685 0.0137 27 1.07 

      

\8Z 
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Gò 

[kPa] 

] 

[-] 

~^ò 
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z~,_I` (z~,t) 
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Sò 

[-] 

1 400 40 100 1*10-7 0.7 
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The excess pore pressure Δu? results after subtracting the constant initial pressure põ> 

and is plotted against the dimensionless depth in Fig. 9. Apart from two base cases with 

isotropic permeability and changing penetration velocities, a third case (c) was 

investigated considering anisotropic permeability. Thereby, the vertical one is reduced 

to kþ,Æ = 0.5 kþ,½	while kþ,½ = kþ,Ð±L. Each excess pore pressure curve appears to reach 

a stationary level after an initial build-up which is also expected for a constant initial 

stress field and weightless constituents. Note that oscillations increase at higher initial 

stress state. In order to get the computations running a stepwise decrease of the penalty 

weight with increasing initial stresses was necessary. This could however contribute to 

the intensified oscillatory behaviour. In Fig. 9 (b) a jump in Δu? is evident which has no 

physical meaning but is rather a numerical issue. 

 

Fig. 9 Computed excess pore pressure Δ�? versus normalized depth for varying penetration 

velocities, both isotropic and anisotropic permeabilities and changing initial stress 

conditions. 

Based on the Δu?-curves from Fig. 9, mean values of Δu? at different depths are 

calculated and summarized in Tab. 3. Thereby, the initial effective stresses and pore 

pressures of 10, 50 and 100 kPa correspond to overburden depths of 1, 5 and 10 m 

respectively. Eventually, the proposed ‘on-the-fly’ method is used allowing to estimate 

the hydraulic conductivity as a function of Δu?, σÆ>n , U, R, γõ and the correction factors α, 

β. The resulting values for BQ ∗ Q´ vary between 1.77 and 2.4 and are clearly larger than 

0.45. Hence, the semi-empirical approach according to Eq. (50) applies and the resulting 
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‘on-the-fly’ hydraulic conductivities are given in Tab. 3. It appears reasonable that cases 

(a) and (c) provide almost the same results since radial (or horizontal) flow is the 

dominating mode and the reduced vertical permeability has little impact. Case (b) gives 

almost identical excess pore pressures compared to cases (a) and (c), except for a depth 

of 10 m where the observed jump in the distribution has major influence. However, 

according to the proposed method, lower penetration velocities should result in lower 

Δu�? in order to obtain the same value for k. The back-calculated ‘on-the-fly’ conductivities 

vary between 2.1*10-8 and 1.6*10-7 m/s which gives an overall mean value of 5.8*10-8 

m/s, around 17 times lower than the input value of 1*10-6 m/s. 

Tab. 3 Mean excess pore pressure Δu�? and resulting ‘on-the-fly’ hydraulic conductivity kotf at 

different depths. 

 

Finally, the results are also illustrated in a double logarithmic Ka − BQ	Q´ plot next to the 

proposed bi-linear relation in Fig. 10. Thereby, the values for Ka are calculated based 

on the input hydraulic conductivity and plotted against the corresponding BQ	Q´. The 

cloud of points is located within reasonable range to the corrected branch of the bi-linear 

relation. Furthermore, the piecewise linear connection for each case shows a similar 

trend compared to the proposed solution. 

Values 

(at different depths) 

Case (a) 

U1, kp,iso 

Case (b) 

U2, kp,iso 

Case (c) 

U1, kp,v = 0.5*kp,h 

bX�c 

[kPa] 

1 m 22 24 23 

5 m 106 104 106 

10 m 202 177 205 

kotf 

[m/s] 

1 m 1.6*10-7 5.3*10-8 1.3*10-7 

5 m 3.9*10-8 2.1*10-8 3.9*10-8 

10 m 2.5*10-8 2.4*10-8 2.3*10-8 

mean 7.6*10-8 3.3*10-8 6.4*10-8 
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Fig. 10 Double logarithmic plot of resulting Δu�? in terms of Ka and BQQ´ for the cases (a) to (c) 

at depths of 1, 5 and 10 m. 

 

5.1.3 Summary 

For the examined cases, where a silty sand was considered, the ‘on-the-fly’ method 

estimates lower permeablities. However, the method appears to be useful for a first 

estimation of k, especially under partially drained conditions. The work so far showed 

that numerical simulation of CPTs provides comparable results, so further investigations 

can play an important role for determining the limits of applicability of the proposed 

relation, especially since mechanical soil properties play no role in the analytical 

derivation of the method. 
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5.2 Recalculation of in-situ CPTu 

In his Master’s thesis, Sachsenhofer (2012) discusses various in-situ CPTu tests and 

derives material parameters from the measurements. Based on both, the available soil 

parameters and the CPTu profiles in terms of tip resistance q°, sleeve friction f± and pore 

pressure at the shoulder position of the cone u?, the penetration process through a 

clayey to silty layer is simulated with G-PFEM. The soil parameters are averaged over a 

5 m thick layer situated a 13 to 18 m depth, while the in-situ water table is located at a 

depth of 3 m. The hydraulic conductivity is taken for ‘Salzburger Seeton’ and Poisson’s 

ratio is set to 0.3. The basic parameters are summarized in Tab. 4. 

Tab. 4 Input parameters for clayey to silty soil layer averaged over 5 m thick layer. 

 

Subsequently, the G-PFEM model is built based on Fig. 8: Thereby, the domain 

measures 1.1 m of height (with h1 and h2 being 0.1 or rather 1.0 m) times b equal to 0.5 

m. Again, the lateral and lower boundaries are fixed in normal direction and free drainage 

is assumed except along the symmetry axis. A standard cone is used with R equal to 

1.78 cm and α° of 60°. The vertical load on top of the domain σÆ,´Lþ	 is set to 230 kPa 

according to the overburden and water table position (σÆ,´Lþn  = 130 kPa, põ,´Lþ = 100 

kPa). The initial stress state is computed as a gravitational loading. The initial mesh size 

and adaptive refinement parameters are based on Monforte et al. (2016). 

5.2.1 Calculation 1: CPTu with rough and smooth cone 

The use of the MCC model requires the calculation of relevant model parameters based 

on the material parameters from Tab. 4. Thereby, the stiffness parameters λ∗, κ∗ and G> 

are calculated from E±, ν and σÆ>n  according to the theory of elasticity. K> and M depend 

on ϕn while the anisotropy ratio between vertical and horizontal permeability is assumed 

10. The base case considers a rough cone with a contact friction angle ϕ°L ´e°´ f ϕn 3⁄  

whereby an alternative calculation is performed with a smooth cone in order to 

investigate the difference. The resulting model parameters are summarized in Tab. 5. 

The calculations are carried out until a penetration depth of around 0.45 m is reached. 

Initially, the focus lies on assessing the quality of the computation with regard to the 

stabilization of the problem. Fig. 11 shows the contour plots for the computed nodal 
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Jacobian Θ (a) and the water pressure }R (b) around the rough cone at a penetration 

depth of around 22 cm. The spherical distributions are smooth and do not exhibit 

oscillatory behaviour, even for the almost incompressible system behaviour with the 

Jacobian ranging between 0.994 and 1.00054. 

Tab. 5 Calculation 1: MCC input parameters for clayey/silty soil layer. 

 

  

(a) (b) 

Fig. 11 Calculation 1 – rough cone: Contour plots of nodal Jacobian Θ [-] (a) and the water 

pressure põ [kPa] (b) at a penetration depth of around 22 cm. 

During the computation q°, f± and u5, u?, u� are recorded for each step and plotted 

against the dimensionless depth z/R (see Fig. 12). Apart from the oscillations of u?, the 

results show smooth behaviour. After an initial ‘transient phase’ the measured quantities 

seem to reach a stationary level where only a slight increase due to the gravitational 

initial stress field is observed. This applies also to the overall behaviour of u? where the 

measured total pore pressure oscillates around a stationary level. Note that the contact 

friction angle is gradually increased during the computation in order to minimize 

computational instability which explains the apparent longer ‘transient phase’ of f±. The 
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difference between a rough and smooth cone is small for the defined degree of contact 

friction. This is a helpful information with regard to further calculations since tangential 

contact forces on the interface due to friction require the introduction of a tangential 

penalty factor as an additional numerical parameter. 

 

Fig. 12 Calculation 1: CPTu log of recalculated in-situ test with smooth and rough cone. 

Since the available in-situ CPTu data does not provide comparable logs on this small 

scale the recalculation is validated by comparing the computed mean values to the 

measured in-situ values at a depth of 13 to 14 m (see Tab. 6). The computed mean and 

the measured in-situ values for the tip resistance and the sleeve friction show the same 

order of magnitude and therefore suggest good agreement. However, the computed pore 

water pressure is higher than the measured one, roughly by a factor of 10. So, the in-

situ hydraulic conditions appear not to be correctly captured within the model. 

Tab. 6 Calculation 1: Comparison of calculated and measured values for q°, f± and u?. 

 

Values G-PFEM rough cone 

(mean value) 

In-situ CPTu 

(measured order of magnitude) 

i^ [kPa] 635 800 

oI [kPa] 15 20 

Xc [kPa] 320 35 
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5.2.2 Calculation set 2: Impact of varying penetration velocity 

In order to gain a better understanding of the hydraulic behaviour during cone penetration 

tests the calculation is performed for different penetration velocities v°. The faster the 

cone is pushed into the soil the closer one gets to undrained loading conditions and thus 

higher pore pressures are expected to be generated. Interestingly, Fig. 13 shows no 

qualitative difference between the examined cases suggesting that the combination of 

(low) permeability and penetration velocities of 1 to 3 cm/s is creating almost undrained 

behaviour. The generated pore pressure is therefore treated as a maximum undrained 

pressure. 

 

Fig. 13 Calculation set 2: CPTu log for varying penetration velocities with rough cone. 

A similar value for the pore pressure can be found with the analytical approach by Burns 

& Mayne (1998). Thereby, the excess pore pressure is divided into a normal- and shear-

induced component. The former is derived from cavity-expansion theory while the latter 

relies on the MCC model. Thus, the undrained pore pressure at t = 0 yields 

�� = 43 j¦B>n U
2 kl1Y2 mno ln NO + ¦B>n j1 − kl1Y2 mno+ �> ( 51 ) 

with the plastic volumetric strain ratio Λ = 1 − C± C°⁄ , the rigidity index Iq = F �W⁄  and the 

initial water pressure uL. Λ, which depends on the swelling and compression indices, is 

typically 0.8 for natural clays (Burns & Mayne 1998). 
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For the present case, ur results in around 350 kPa showing the same order of magnitude 

as the computed mean values from Tab. 7. 

Tab. 7 Calculation set 2: Results of calculated values (q°, f±, u?) for varying penetration 

velocities. 

 

Moreover, Fig. 14 shows the Darcy flow for the three different test cases after roughly 22 

cm of penetration. No substantial differences are evident for the variation of penetration 

velocity, neither qualitatively nor quantitatively. The maximum flow is less than 0.0009 

m/s and the flow pattern appears to be independent of time since cones with different 

velocities reach the same penetration depth at different time instances. This makes 

sense for undrained conditions where the soil-water body behaves as a single phase 

medium and thus no relative flow occurs, in other words the Darcy flow is zero. 

   

(a) (b) (c) 

Fig. 14 Calculation set 2: Contour plots of the magnitude of Darcy flow [m/s] for penetration 

velocities of 1 cm/s (a), 2 cm/s (b) and 3 cm/s (c) at a penetration depth of 22 cm. 

  

G-PFEM 

(mean value) 

vc = 1 cm/s vc = 2 cm/s vc = 3 cm/s 

i^ [kPa] 610 635 620 

oI [kPa] 15 15 15 

Xc [kPa] 315 320 310 
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5.2.3 Calculation set 3: Partially drained conditions during CPT 

Subsequently, the main objective is to create partially drained conditions where local flow 

takes place but significant excess pore pressures are still generated. Therefore, 

increased isotropic permeability is assumed while the cone surface is set smooth in order 

to achieve more stability during the computation. The input parameters are summarized 

in Tab. 8. Again, the calculation is carried out for different penetration velocities v° of 1, 

2 and 3 cm/s. 

Tab. 8 Calculation set 3: MCC input parameters for clayey to silty layer. 

 

Compared to calculation set 2, the overall water pressure level is lower while the tip 

resistance increases (see Tab. 9). This appears reasonable for increased permeability 

and consequently increased drainage as more load is carried by the soil skeleton instead 

of having an undrained single-phase behaviour. Considering the displacement-controlled 

nature of CPT, higher tip resistances are a plausible consequence. Furthermore, partial 

drainage manifests in the form of observable differences in tip resistance and pore 

pressure for varying penetration velocities. 

Tab. 9 Comparison of calculated mean values of q° and u? of calculation sets 2 and 3 for 

varying penetration velocities. 
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Fig. 15 Calculation set 3: CPTu log for varying penetration velocities with smooth cone. 

The corresponding CPTu log is illustrated in Fig. 15 showing increased oscillations of 

the water pressure around the stationary level. Increased drainage results in increased 

volumetric deformation. This requires different stabilization of the problem compared to 

the almost undrained calculation set 2 in section 5.2.2. Fig. 16 shows smooth fields of 

the nodal Jacobians for all three penetration velocities after 22 cm of penetration. The 

highest velocity of 3 cm/s gives the least volume change as loading happens faster and 

less time for dissipation is available until reaching the given depth. 

   

(a) (b) (c) 

Fig. 16 Calculation set 3: Contour plots of nodal Jacobian Θ [-] for penetration velocities of 1 

cm/s (a), 2 cm/s (b) and 3 cm/s (c) at a penetration depth of 22 cm. 
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When looking at põ in Fig. 17, the same mechanism is observed as the fastest cone (c) 

builds up the highest pressures while slower loading (cases (a) and (b)) results in less 

excess pressure and more dissipation time until reaching 22 cm of depth. The pressure 

fields look smooth on a large scale, however, some local pressure fluctuations under the 

cone tip are observed, even more for cases (a) and (b).  

   

(a) (b) (c) 

Fig. 17 Calculation set 3: Contour plots of water pressure põ [kPa] for penetration velocities of 

1 cm/s (a), 2 cm/s (b) and 3 cm/s (c) at a penetration depth of 22 cm. 

In contrast to Fig. 14 in section 5.2.2, where almost no relative water flow is observable, 

a different flow pattern under partially drained conditions is illustrated in Fig. 18. Firstly, 

the order of magnitude is considerably higher compared to the almost undrained case 

(around 3 times) and secondly, clear differences for the variation of penetration velocity 

are evident. So consequently, slower penetration allows more dissipation and results in 

a smaller excess pore pressure ‘bulb’, or in other words, in a smaller region with flow. 

Increased velocity then gives higher water pressure and finally larger flow regions (see 

Fig. 18 (a) to (c)). 

So far, the effects of changing penetration velocities under partially drained conditions 

appear consistent regarding the interaction of volume change, water pressure and water 

flow. Also, an increase of tip resistance makes sense since the soil starts to behave as 

frictional material to some extend instead of having constant shear strength under 

undrained conditions. Following the logic so far, increased penetration velocity means 

rather undrained condition and thus lower tip resistance. However, in the present case 

the highest tip resistance results for the intermediate penetration velocity (see Tab. 9 

and Fig. 15). Numerical reasons behind this cannot be excluded at the moment and 

therefore additional computations are required. Anyway, deeper investigations on partial 
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drainage are the upcoming steps in order to understand how the total measured stresses 

at the cone tip change as excess pore pressure dissipates and at the same time further 

load is applied by pushing the cone further down. 

   

(a) (b) (c) 

Fig. 18 Calculation set 3: Contour plots of the magnitude of Darcy flow [m/s] for penetration 

velocities of 1 cm/s (a), 2 cm/s (b) and 3 cm/s (c) at a penetration depth of 22 cm. 

5.2.4 Summary 

The comparison between the calculated and in-situ CPTu data shows good agreement 

since the values for q° and f± have the same order of magnitude, u? is still significantly 

higher. Also, modelling a rough cone which adds an additional numerical parameter to 

the problem seems to provide reasonable results. However, the hydraulic conditions 

which are primarily controlled by the permeability tensor are the crucial ingredient. The 

calculation sets show that G-PFEM provides plausible results both under almost 

undrained and partially drained conditions. The application is a powerful tool for studying 

partial drainage during CPTu. 

Coming back to the initial recalculation of the in-situ CPTu, an increase of permeability 

led to reduced pore pressures whereby the in-situ measurement is still 5 to 6 times lower. 

Further investigations on the hydraulic behaviour of silts are the subject of the following 

section. 
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5.3 Behaviour of silts during CPTu 

Paniagua et al. (2013) conducted small scale experiments on Norwegian silts and 

investigated incremental volumetric and shear strains. They found that both a 

compaction bulb and an expanding region develop around the cone as pointed out in 

Fig. 19. In this way, short drainage paths are formed as the water flows from the 

compacting into the expanding region explaining the low pore pressures around the 

cone. 

 

Fig. 19 Incremental volumetric strain ΔϵÆL3 (a) and shear strain Δϵ±½2eq (b) around the cone 

between 56 and 61 mm of penetration (Paniagua et al. 2013). 

The mechanism of local drainage due to expansion and compaction is subject of the 

following section. Initially, the focus lies on investigating the soil behaviour in terms of 

incremental volumetric and shear strains. Eventually, the analysis of stress paths is 

expected to provide further information on the elasto-plastic response of the soil. 

Calculation set 3 with standard penetration velocity of 2 cm/s serves as basis for the 

following considerations. 

5.3.1 Deformation behaviour around the cone 

The incremental volumetric strain ΔϵÆL3 is calculated as post-processing from the nodal 

values of the Jacobian. Assuming the time instances t5 and t? with the respective 

volumes V5 and V?, the incremental volumetric strain can be expressed dependent of the 

determinant of the incremental deformation gradient Á5? , which maps a line element from 

configuration t5 to t?: 
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Δ�By� = V? − 5̀
5̀ = ?̀

5̀ − 1 = det @5? − 1 ( 52 ) 

A reference configuration t> is introduced allowing the formulation of the total 

deformation gradient and its determinant: 

@>? = ��5��> 	
��?��5 = @>5 	 @5?  

det @>? = det @>5 ∙ det @5?  

	P>? = 	P>5 ∙ 	P5?  

( 53 ) 

Hence, ΔϵÆL3 is expressed depending on the Jacobians 	J>5  and 	J>? : 

Δ�By� = 	P>?	P>5
− 1 ( 54 ) 

Also, the incremental shear strain Δϵ±½2eq is a post-processing result based on the 

stepwise output of the Green-Lagrange strain tensor. The latter can be additively 

decomposed for different time steps (Bathe 2014) which gives: 

:>? = :>5 + :>=  ( 55 ) 

Then, the principal strains Δϵ5, Δϵ? and Δϵ� are calculated for Ì>=  in order to obtain the 

incremental shear strain as computed in Paniagua et al. (2013): 

Δ�/iC�O = (2 3⁄ )5 ?⁄ �(Δ�5 − Δ�?)? + (Δ�? − Δ��)? + (Δ�� − Δ�5)?!5 ?⁄  ( 56 ) 

Note that in the mixed formulation the Jacobian is a nodal variable and thus 

approximated by piecewise linear functions while the Green-Lagrange strain is constant 

within an element. Consequently, the quality of ΔϵÆL3 is expected to be higher compared 

to Δϵ±½2eq. 
Referring to the work of Paniagua et al. (2013), ΔϵÆL3 and Δϵ±½2eq are calculated for a 

penetration increment of 5 mm starting at 3 different depths of 56 (a), 156 (b) and 256 

(c) mm for calculation set 3 with standard penetration velocity of 2 cm/s. The computed 

ΔϵÆL3 is illustrated in Fig. 20 (a), (b) and (c): As observed in the experiments (Fig. 19 (a)), 

a clear compaction bulb below the cone and an expanding region at the shaft are 

obtained. Additionally, there is some local volumetric expansion centrically below the 

compacting zone which is most clearly manifested in Fig. 20 (c). This corresponds 
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qualitatively to the observed experimental behaviour whereby the expanding zone is a 

local phenomenon and does not cover the whole compaction bulb as Fig. 19 (a) 

suggests. Furthermore, there are less compacted ‘lenses’ within the compaction bulb. 

 

(a) (b) (c) 

 

(d) (e) (f) 

Fig. 20 Incremental volumetric strain ΔϵÆL3 and shear strain Δϵ±½2eq for the penetration 

increments 56 to 61 mm (a) & (d), 156 to 161 mm (b) & (e) and 256 to 261 mm (c) & (f) 

for calculation set 3 (isotropic, reduced permeability and vc = 2 cm/s); volume increase 

is positive. 

At the same time, the validation of Δϵ±½2eq is not as clear. In contrast to Fig. 19 (b), no 

distinct shearing zone around the cone is evident. Some shearing is observable at a 

radial distance of around 0.15 m below the cone, approximately at the transition from the 

initial coarse mesh to the already refined/remeshed region. This pattern holds true for all 

three penetration increments and is illustrated in Fig. 20 (d), (e) and (f). The interpretation 
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of the computed Δϵ±½2eq is not obvious. Firstly, the shear strain measure is calculated 

based on the incremental Green-Lagrange strain tensor which might not correspond 

entirely to the derived strain measures from the experimental work. Secondly, the 

combination of the coarse mesh and the low order approximation of the strain quantities 

can also contribute to the difficulties in interpretation. Anyway, this issue requires 

additional work and therefore Δϵ±½2eq is not further considered. 

Hence, the focus lies on investigating the observed volume change, especially whether 

the volume expansion is due to unloading or dilation: Initially, the pore pressure 

distribution is considered after 56, 156 and 256 mm of penetration (see Fig. 21). On a 

larger scale, the distributions appear reasonable as the initial excess pore pressure bulb 

at the cone tip (Fig. 21 (a)) travels down while increasing radial flow along the shaft of 

the penetrometer develops with time (see Fig. 21 (b) and (c)). The previously mentioned 

zone with volumetric expansion below the tip is also apparent in Fig. 21 (b) and (c) in the 

form of reduced pore pressure below the initial state of around -100 kPa. The resulting 

gradient causes local inward flow. 

   

(a) (b) (c) 

Fig. 21 Contour plots of pore pressure distribution põ [kPa] around the cone after 56 mm (a), 

156 mm (b) and 256 mm (c) of penetration. 

Similar zones with reduced pore pressure and local inward flow can be found within the 

excess pore pressure bulb corresponding to the less compacted ‘lenses’ in the 

evaluation of ΔϵÆL3. The physical relevance of these local phenomena is questionable 

and can be interpreted as oscillations of the pressure field. Keeping this in mind, the 

incremental Jacobian ΔΘ and the incremental plastic shear strain are evaluated at a 

penetration depth of 156 mm. Fig. 22 (a) indicates a compression bulb (Θ s 1) containing 

expanding spheres (Θ > 1). The spherical pattern, although based on a piecewise 
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constant approximation, is also observable for the incremental plastic shear strain in Fig. 

22 (b). Thereby, volumetric expansion (Θ > 1) is associated with zero plastic shear strain 

suggesting that expansion is due to elastic unloading rather than dilation. Only along the 

friction sleeve volumetric expansion can be observed in combination with plastic shear 

strains. 

  

(a) (b) 

Fig. 22 Contour plots of incremental Jacobian ΔΘ (a) and incremental plastic shear strain (b) 

after 156 mm of penetration; ΔΘ > 1 equals volume expansion. 

Eventually, the nodal Jacobian is evaluated in Fig. 23. The physical interpretation, 

whereupon increased volume change along the shaft of the penetrometer goes hand in 

hand with the advanced consolidation process at larger depth (see trend in Fig. 23 (a) to 

(c)), appears reasonable. Moreover, the fields look smooth suggesting adequate 

stabilization of the problem. Monitoring the behaviour of Θ gains in importance as the 

focus shifts more and more towards a drained situation. Throughout the computation Θ 

is repeatedly mapped from the nodes to the integration points and back in order to 

achieve smoothing and convergence of the calculation. For undrained conditions, Θ is 

close to 1 within the whole domain so the mapping has less influence. Now for larger 

changes of Θ the influence of the mapping parameters should be kept in mind for future 

computations. 
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(a) (b) (c) 

Fig. 23 Contour plots of nodal Jacobian Θ [-] around the cone after 56 mm (a), 156 mm (b) and 

256 mm (c) of penetration; Θ > 1 equals volume expansion. 

5.3.2 Stress paths analysis 

In addition to investigating the deformation behaviour of the soil, stress path analyses 

are carried out. Usually, a stress path is recorded for a fixed integration point. Due to the 

frequent remeshing, a fixed stress point position is defined. At each time step the closest 

integration point is searched and the stress invariants are stored. A grid of stress points 

was defined prior to the computation which is oriented along three vertical axes; along 

the symmetry axis, close to the cone shoulder (R = 0.0178 m) at a radial distance of 0.02 

m and further away at 0.1 m from the symmetry axis. The stress points are situated at 

depths of up to 0.3 m below the starting position of the cone. The stress paths are 

illustrated in p-q diagrams in terms of both effective Kirchhoff or rather Cauchy stresses 

(6n = J	ïn and ïn respectively) and total Cauchy stresses ï. Showing both ïn and 6n helps 

to monitor the occurring volume change. The pore pressure at the integration point is 

obtained by interpolation using the element shape functions. However, caution with the 

interpretation of the resulting stress path is advised since firstly the resolution of the 

stress field based on a piecewise constant approximation is not very accurate and 

secondly the continuous change of integration points can lead to considerable jumps. 

At first, the stress paths for the points P01 (0, -0.2) and P02 (0, -0.3) located on the 

centre axis below the cone are examined in Fig. 24 and Fig. 25: Initially, elastic unloading 

and reloading takes place until the yield surface is reached (0 – A). This goes hand in 

hand with a decrease and increase of the pore pressure. Then, undrained elasto-plastic 

loading takes place before eventually reaching the CS-line at point (B) while pore 

pressure is continuously built up with an increasing gradient. As expected for undrained 
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behaviour, no differences between ïn and 6n are evident so far. Subsequently, stress 

redistribution at CS occurs and the stress paths climb up the CS-line. Additional excess 

pore pressure builds up whereby the gradient starts to reduce (after passing B). Before 

the cone reaches the stress point the stress path for P01 (Fig. 24) exhibits short 

unloading behaviour due to increased isochoric loading. At this point ïn and 6n start to 

differ slightly suggesting the onset of drainage and thus volumetric deformation. This is 

followed by deviatoric elasto-plastic loading and finally oscillations take over as CS is 

reached again at the final cone position.  

 

Fig. 24 Stress path for point P01 (0, -0.2): elastic unloading and loading (0 – A); undrained 

loading until CS (A – B); stress redistribution at CS and unloading before cone arrives 

at stress point (B – C). 

Different behaviour is observed for the stress path at the deeper position P02 (Fig. 25). 

Similarly to P01, the stress paths climb up the CS-line after point B and the water 

pressure curve starts to flatten out. However, a sudden jump is observed due to a change 

of the stress point to the integration point of a neighbouring element. Fig. 26 shows the 

stress invariants P and J? at the penetration depth of 0.28 m where a spherical pattern of 

the stress state is evident below the cone. At this point, the closest integration point to 

the P02 position is about to jump from a stress state on the CS-line to a stress state with 

increased volumetric and reduced deviatoric stresses explaining the observed behaviour 

in the stress path. 

The initial unloading in the stress path appears to explain the incremental volumetric 
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Fig. 25 Stress path for point P02 (0, -0.3): elastic unloading and loading (0 – A); undrained 

loading until CS (A – B); stress redistribution at CS with jump of stress point before cone 

arrives at stress point (B – C). 

expansion and the resulting inward flow below the cone. Comparable behaviour is also 

found during pile installation. Sheng et al. (2005) showed in a numerical analysis of pile 

installation that volumetric expansion occurs at a distance of 3 to 5 times the pile 

diameter centrically below the tip which fits the observations made here qualitatively. 

Also, experiments by Dijkstra et al. (n.d.) on displacement piles confirm this deformation 

behaviour. 

  

(a) (b) 

Fig. 26 Stress invariants P [kPa] (a) and J? [kPa] (b) at the penetration depth of 0.28 m. 
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An additional stress path for the point P19 (0.02, -0.2) at the side of the cone is shown 

in Fig. 27: Initially, elastic unloading is observed, however to a lesser extend compared 

to stress points P01 and P02. This makes sense since the expanding region is located 

centrically below the cone and thus the effect decreases with increasing radial distance 

from the centre axis. Then, undrained elasto-plastic loading takes place until reaching 

CS at point A. Again, a phase of stress redistribution follows and the stress path moves 

along the CS-line. The effective Kirchhoff and Cauchy stresses begin to show some 

differences. Again, a loop caused by increased volumetric loading followed by reaching 

the CS-line again is evident. Eventually, the stress path reaches point B as the shoulder 

of the cone has arrived and the water pressure reaches a maximum value of around 220 

kPa after continuous built up. Both the stress paths and the water pressure start to 

oscillate. Subsequently, the cone moves on and unloading starts whereby section B to 

C, representing around 5 mm of penetration, is dominated by oscillations which makes 

the interpretation difficult. The pore pressure reduces significantly within this short period. 

Elastic unloading takes place afterwards until reaching the yield surface at point D while 

the pore pressure decreases more slowly. Finally, dilation takes place due to further 

unloading and the yield surface shrinks again. The computation stops at point D. It 

appears that the main effects of the cone passing by are captured within the time span 

of the computation and the future decay of pore pressure can be seen as a consolidation 

process. The observed dilation along the cone corresponds to the incremental volumetric 

expansion at the cone sleeve. 

5.3.3 Summary 

During the numerical study, the deformation behaviour of silts found by Paniagua et al. 

(2013) could not be reproduced with respect to the local drainage from compacting into 

expanding zones around the cone. Using the MCC model for normally consolidated soils 

results in noticeable dilation at the friction sleeve and local elastic unloading below a 

compacting region around the cone. However, the analysis of deformation and stress 

path behaviour helps to gain a better understanding on the process of CPT. 
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Fig. 27 Stress path for point P19 (0.02, -0.2): undrained loading until CS (0 – A); stress 

redistribution at CS (A – B); stress oscillation as cone shoulder passes by (B – C); elastic 

unloading (C – D); elasto-plastic unloading causing dilation (D – E). 
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6 Conclusion & Outlook 

Thanks to the advanced G-PFEM application, numerical simulation of CPT appears to 

be a promising tool for the evaluation of CPT correlations. The fully coupled analysis 

allows to investigate partially drained conditions and gain better understanding of the 

soil-water interaction which has significant impact on the measured quantities. 

In the present work, an ‘on-the-fly’ method for estimating the hydraulic conductivity based 

on the measured pore pressure was examined. Thereby, the semi-empirical approach 

requires partial drainage for the development of ‘dynamic steady’ flow and thus appears 

to be applicable for a first estimation of the permeability in silty soils. A more extended 

numerical study, by means of additional variation of soil permeability and mechanical soil 

properties, is expected to help defining the range of applicability. 

The focus of the work was on the recalculation of an in-situ sounding which initially 

resulted in undrained system behaviour. Apart from the pore pressure, the measured 

and calculated tip resistance and sleeve friction showed a comparable order of 

magnitude between analysis and test. The effect of a rough compared to a smooth cone 

is neglectable for the assumed degree of friction between cone and soil. Further 

calculations with increased permeability led to reduced pore pressures and increased tip 

resistance fitting the in-situ measurement even better. Moreover, changing penetration 

velocities become evident under partially drained conditions. 

Small scale experiments showed that local drainage takes place during CPT in silts as 

the water flows from compacting into expanding regions around the cone. This behaviour 

could not be entirely reproduced by means of numerical simulations. In fact, dilation was 

observable only along the shaft of the penetrometer. Local elastic unloading occurred 

below the compaction bulb at the cone tip, leading to volume increase and consequently 

local flow. The unloading below the penetrating body accords to observations during pile 

installations. 

From the current point of view, future work involves more in-depth analysis of the 

numerical stabilization and mapping, with regard to changing drainage conditions. Other 

than that, the implementation of a constitutive law that accounts for the macroscopic 

structure of the material would be a reasonable next step. 
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