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Abstract

Time-varying networks open up the possibility to explore dynamical systems
with respect to their temporal dimension in a more precise way. One class
of these systems that is particularly interesting are networks of human
interactions. They are characterized by the complex bursty patterns of
human behavior. The recent introduction of the activity-driven time-varying
network framework led to an increased effort to model such social systems
more accurately. However, all of these approaches rely solely on intrinsic
activity patterns of individuals and disregard possible external influences
entirely. In this thesis we propose an activity-driven network model by
introducing a peer influence mechanism into the network dynamics. Thus,
we allow for individuals to motivate their neighbors in the social network
to become active as well. We examine the ramifications of this mechanism
on the topological and activity-related properties of synthetically generated
networks and reveal its complex influence on the dynamics. Furthermore,
our results indicate a positive effect on the emerging activity patterns.

Keywords: activity-driven model, time-varying networks, peer influence,
user activity, network science
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1. Introduction

1.1. Background

Plenty of problems that arise in the real world can be solved by first ab-
stracting them in a more general form and solving them by using already
established and well-known tools afterwards.

One famous example for this process is attributed to the Swiss mathemati-
cian Leonhard Euler. The city Königsberg (now called Kaliningrad) was split
into four parts in the 18

th century, due to the pathway of the river Pregel.
These four areas of the city were connected by seven bridges. The residents
of Königsberg had an ongoing challenge to find a way through the city that
crosses each bridge exactly once and ends once more at the starting point of
the tour. This is known as the Königsberg bridge problem [Pao11; Coo12].
Euler tackled this challenge by eliminating irrelevant details (e.g., the length
of the brides, or the size of the areas) and abstracting the problem to its
essence. The regions of the city became points and the bridges between
two areas became line segments that connect the corresponding points.
This abstracted topological view on the problem allowed Euler to solve
the Königsberg problem and show that, in fact, no such tour through the
city (also known as an Eulerian cycle) exists. For such a tour to be possible
requires the number of bridges that are accessible in each region to be even,
which is not the case for the Königsberg problem, where the number is odd
in each region.

This particular way of abstracting real world objects and their connections
into points and lines and applying mathematical methods and reasoning
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1. Introduction

to it laid the foundation for the mathematical field of graph theory. Results
developed in this area are applied today to countless problems, from finding
efficient ways to manufacture circuit boards [Coo12], to calculating fast
routes for the data packets that are sent over the internet [WW99]. Graph
theory also spawned the field of networks science [New10], which deals
with large real-world systems that can be modeled as graphs.

For instance, large infrastructure networks, such as power grids can be
well described by graphs. They relate parts of the infrastructure, like
power stations or transformers, that are connected to each other via power
lines [WS98].

Another field that benefits from graph theory as well is sociology, and in
particular social network analysis, which investigates the complex behavior
of people and groups in the context of social interactions [New10]. Socio-
logical studies are often performed with a small number of participants,
since the collection of the required data is time consuming and usually
done manually using methods like questionnaires, interviews, or by simply
observing the people that are part of the study [WF94].

1.2. The Web as a Living Lab

However, ever since the emergence of the web, people are able to interact
with each other more easily. Websites like online social networks (e.g.,
Facebook, Twitter, Reddit,. . . ), or collaboration forums (e.g., StackOverflow)
seem to be very popular. Most of these websites are ranked on top positions
on Alexas’ list of top 500 visited websites globally [Inc17]. Wellman et al.
[Wel+01] showed that these websites (and the internet in general) does not
increase or decrease the social capital of people (i.e., their relationships with
friends and family, or their commitment to participate in organizations), but
supplements it by providing easier ways to organize and plan real-world
activities in an online setting.

This availability of large amounts of data that is generated on these websites

2



1. Introduction

can also be beneficial in the context of social network analysis. For example,
StackExchange, a website that maintains a variety of communities in which
users can ask and answer questions on different topics (e.g., StackOverflow
for programming related questions), provides an easy access1 to their data
(e.g., questions, answers, users,. . . ). This data is used in many studies on
a wide range of topics (e.g., [Dan+13; Wal+16; Has+16]). A large mobile
phone calls data set is used in a variety of papers [Onn+07; KPV14; Mur+15;
LSK15] as well. It was collected by an European mobile phone provider with
approximately 20% market share and consists of over 630 million logged
phone calls between more than six million people. Another interesting data
set was used in the study by Sekara, Stopczynski, and Lehmann [SSL16],
in which they propose a framework to describe gatherings of people and
their (temporal) properties. The data set consists of data from various
sources for 1,000 people that was collected over a period of 36 months
with a high temporal resolution (i.e., in five minute intervals). The data
set contains information about the phone calls, text messages, social media
activity, geolocation, and the proximity to other study participants for every
subject.

1.3. Temporal Data

All of these large data sets share a crucial feature: they all include temporal
information. Every post, tweet, phone call, or text message has a timestamp
attached to it. This allows to pin these activities to users at specific points in
time and to infer a chronological order between them.

However, not all studies include this additional information into their
work. The reasons for this can vary. For instance, some use-cases only
require quantitative information (i.e., how often something happens between
two objects) and not exactly when it did (e.g., [Kum+07; Bag08]). This
corresponds to the elimination of irrelevant details in the abstraction of a
problem.

1https://data.stackexchange.com/
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1. Introduction

Another reason is that graphs by them self are not able to include the
temporal information, since they only represent static relationships between
objects. However, there exists an extension that provides the possibility to
integrate the time information when required. This type of graphs are called
temporal or time-varying networks [HS12; Hol15] and extent graphs in a way
that relationships between objects become time dependent. This basically
means that the connection between objects is only present at certain points
in time, which leads to a more realistic, but also more complex abstraction.

An area that definitively requires the incorporation of time information
is the modeling of human behavioral patterns. It has been shown that
activities performed by people (e.g., the writing of e-mails, text messages,
tweets,. . . ) are not randomly distributed in time, but follow certain patterns
instead [Bar05]. Human activity can typically be described as bursty. For
instance, it is evident that people tend to write multiple e-mails in a relatively
short period of time. This high activity phase is then generally followed by
longer periods of inactivity, in which, for example, no e-mails are written at
all.

The best way to describe these patterns is by using a probability distribution
for the intervals between two consecutive activities (i.e., the inter-event time
distribution). The distribution is characterized by its high probabilities for
short inter-event times and its long tail that allows for the longer phases
with no activity. Most of the time a power-law distribution of the form
p(τ) ∼ τ−γ is used.

1.4. Motivation

Inter-event time distributions are also relevant in the context of time-varying
networks. For instance, Lambiotte, Tabourier, and Delvenne [LTD13] study
the effects of the inter-event time distribution of link activations on dynamic
spreading processes in temporal networks.

The framework proposed by Perra et al. [Per+12a] shifts the focus from the
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1. Introduction

activation of the connections to the activations of the objects. It is based on
the simple idea that each entity in the network can become active based on
an inherent activity potential and subsequently connects to others in each
time step. Therefore, it can, for example, be used to model the activity of
users in a social network. However, this model has some disadvantages, due
to its simplicity and unrealistic assumptions. For example, it is not able to
reproduce inter-event time distributions of the activations and topological
properties in the network that can be observed in many real-world networks.
Nevertheless, there are applications for this basic framework in many dif-
ferent fields (e.g., [RFP14; RPP16]), and various extensions to it, which are
addressing the already mentioned issues (e.g., [LSK15; MSP15; MSP16]).

This simple framework is the foundation on which this thesis is build as well.
All models that originated from the original paper by Perra et al. [Per+12a]
so far are based on the idea that entities can only become active due to
their intrinsic activity potential. However, in the real world people are often
heavily influenced by their peers and friends [Wal+16]. They are not doing
things solely because of their own determination to do so, but also because
their friends are doing it and the with it associated peer pressure. Therefore,
in the context of social and collaboration networks is it feasible that more
active users have a positive influence on their peers and possibly motivate
them to become active as well.

The goal of our work is it to define a model based on the activity-driven
time-varying network framework, which is able to include peer influence
effects in the activation process of entities, and to study the implications of
this mechanism on the network in general.

1.5. Thesis Outline

The content of this document is structured as follows. Chapter 2 starts with
basic graph-theoretic definitions (section 2.1) and a detailed introduction
into the topics of social and temporal networks (section 2.2 and section 2.3,
respectively). Additionally, an overview of important generative network
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models and their properties is given in section 2.4. Section 2.5 discusses
related work in the context of user behavioral models. It provides a possible
explanation for the origin of bursty human behavior with the queuing
model, and provides an overview of activity models that are based on
time-varying networks, with focus on work based on the activity-driven
temporal network framework. The last section (section 2.6) of this chapter
is related to peer influence, its ramifications, and applications in different
fields.

In chapter 3 the proposed time-varying peer influence network model is
discussed in great detail. First, the model and the ideas on which it is based
are outlined in section 3.1. The extension that incorporates peer influence
effects into the underlying model and the motivation behind it is described
in section 3.2.

Chapter 4 contains the evaluation and analysis of the proposed model on
synthetic networks. This includes, for example, the examination of ramifica-
tions of the peer influence model on topological properties. Furthermore,
the effects on the overall activity in general, and with respect to different
peer influence scenarios, is discussed as well in this chapter.

The last chapter of this document (chapter 5) concludes the work by summa-
rizing the results and discussing possible limitations. Furthermore, different
applications and possible extensions for the peer influence model are pre-
sented.

6



2. Related Work

2.1. Graph Theory Basics

In this section some graph theory related notation is defined, which is used
during this thesis. It is for the most part based on [TS92] and [Die12].

A graph is a mathematical construct that can be used to model and explore
the relationship between objects. More formally, a graph is an ordered pair
of finite sets G = (V, E), whereas V denotes the set of vertices (i.e., the
objects) and E ⊆ [V]2 the set of edges (i.e., the relationships between the
objects). It is common to write V(G) and E(G) to refer to the set of vertices
and the set of edges respectively, that are associated with a graph G.

An edge {v1, v2} ∈ E(G) is an unordered pair of two vertices. Therefore,
there is no distinction between the two edges {v1, v2} and {v2, v1}. A graph
with this property is called undirected. However, it is also possible to define
edges as ordered pairs, such that each edge has a defined start and endpoint.
Such a graph is called directed.

An edge of the form {vi, vi} ∈ E(G) is called a self-loop of the vertex vi.
Furthermore, it is possible that two distinct vertices are joined by multiple
edges. Such edges are referred to as parallel edges. A graph that has no
parallel edges and no self-loops is called simple. Figure 2.1 depicts an
example for a simple graph and for a graph with parallel edges and a
self-loop vertex.

It is also possible to assign each edge in a graph a real number, that adds

7



2. Related Work

(a) An undirected simple graph. (b) An undirected graph with a self-
loop and parallel edges.

Figure 2.1.: Graphical representation of two graphs with different properties. The vertices
are represented by red dots and the edges are the line segments connecting
them.

additional information to it [Cor+09]. This number is usually called weight
and is determined by the function w : E(G) → R. This type of graph is
called weighted graph. However, all further mentions and definitions for
graphs are referring to undirected simple graphs, unless stated otherwise.

It is possible to perform operations on graphs. For instance, the union
of two graphs G1 = (V1, E1) and G2 = (V2, E2) results in a graph G =
(V1 ∪V2, E1 ∪ E2). Other binary operations, such as the intersection of two
graphs, can be done analogously. Unary operations on graphs are possible
as well (e.g., the removal of vertices or edges).

The order of a graph is the number of its vertices (i.e., the cardinality of the
vertex set) and is denoted as n = |V(G)|, whereas the cardinality of the
edge set is usually denoted as m = |E(G)|. The neighborhood of a vertex vi
is defined as N(vi) = {vj ∈ V(G) : {vi, vj} ∈ E(G)}. It is the set of vertices
that are adjacent to the vertex vi. The cardinality of this set is called the
degree of the vertex and is denoted as d(vi) = |N(vi)|. A vertex without any
neighbors (i.e., with a degree of zero) is called isolated.

It is often very useful to measure degree properties for a graph. For ex-
ample, the minimum degree δ(G) = min{d(vi) : vi ∈ V(G)}, the max-
imal degree ∆(G) = max{d(vi) : vi ∈ V(G)}, or the average degree

8
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d(G) = 1
n ∑vi∈V(G) d(vi). An alternative way for the calculation of the aver-

age degree is d(G) = 2m
n . This works since each edge is counted twice in

the summation of the vertex degrees in the original formula. These global
measures can be used to gain insight into a graph’s basic structure.

Another global property related to the degree is the degree distribution
p [Bar16] of a graph. It yields the probability that a randomly selected
vertex has a degree of k. Since it is a probability distribution ∑∞

k=0 p(k) = 1
must hold. The degree distribution for a given graph can be calculated by
p(k) = |{v∈V(G) : d(v)=k}|

n , for all possible values for k (i.e., by calculating the
normalized degree histogram).

A path on a graph can be defined as a finite sequence of vertices v1, v2, . . . , vk,
such that between any consecutive pair of vertices exists an edge. Further-
more, all edges between the vertices and the vertices itself must be distinct.
The first and the last vertices in the sequence are called the end vertices or
terminal vertices of the path.

The path length is the number of edges on the path. Two vertices are con-
nected if it is possible to find a path with these two vertices as end points. A
vertex is, by definition, connected to itself. If there exists a path between all
pairs of vertices, then the graph is called connected. It is always possible to
partition the vertex and edge set of a disconnected graph in such a way, that
there are no edges between vertices in different partitions. These partitions
are called the components of the graph.

The clustering coefficient of a vertex is a measure for the cliquishness of its
neighborhood, and was introduced by Watts and Strogatz [WS98]. A clique
in a graph is a subset of vertices, such that there exists an edge between
every pair of vertices in this set. The clustering coefficient C(vi) is defined
as the fraction of all possible edges between the neighbors of the vertex vi.
There exists at most (d(vi)

2 ) = d(vi)(d(vi)−1)
2 edges between the vertices in the

neighborhood. Therefore, the clustering coefficient can be calculated by

9
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C(vi) =
2 |{{vj, vk} ∈ E(G) : vj ∈ N(vi) ∧ vk ∈ N(vi)}|

d(vi)(d(vi)− 1)
. (2.1)

This is, of course, a local property of one vertex and is therefore some-
times called local clustering coefficient. Figure 2.2 shows some examples for
neighborhoods with local different clustering coefficients.

It is also often useful to consider the average local clustering coefficient
C = 1

n ∑v(i)∈V(G) C(vi) of a graph. However, there is another definition of
a global clustering coefficient, which is often called transitivity [Boc+06]. It is
defined as ratio of triangles (i.e., cliques consisting of exactly three vertices)
to the number connected triples in the graph, i.e.,

T =
3× # of triangles

# of connected triples of vertices
. (2.2)

A connected triple is made up of three vertices as well, but does only have
two edges between them. Hence, a triangle consists of exactly three triples.
The global clustering coefficient is a measure for the extent of transitive
connections in a graph (i.e., if there is an edge between vertices A and B,
and between B and C, how likely is it that there is also an edge between A
and C). The two global clustering measures are, however, not equivalent
to each other and may yield very different values [New10] for the same
graph. The definition of the local clustering clustering coefficient introduces
a bias towards vertices with smaller degree, due to smaller values in the
denominator. Therefore, the value for the average local clustering coefficient
is possibly larger than the global clustering coefficient for the same graph,
if the number of low-degree vertices is sufficiently large.

10
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C(red) = 0

(a) In this example none
of the four neighbors
shares an edge with
any other neighbor of
the red vertex. There-
fore, the clustering co-
efficient of the red ver-
tex is 0

6 = 0.

C(red) = 0.5

(b) In this case, half of
the possible edges be-
tween the neighbors
are present. The clus-
tering coefficient of
the red vertex is 3

6 =
1
2 .

C(red) = 1

(c) The neighbors of the
red vertex form a
clique. Hence, the clus-
tering coefficient of
the red vertex is 6

6 = 1.

Figure 2.2.: Examples for the local clustering coefficient of a vertex with a small neigh-
borhood. The blue vertices are the neighbors of the red vertex. The possible
number of edges between the four neighbors is (4

2) = 6.

2.2. Social Networks

It is a common practice to use graphs to model the complex systems that
arise in the real world. For example, the web can be represented as a graph,
where vertices correspond to websites and edges to the hyperlinks that
connect them. However, when modeling these large networks, it is common
to use a terminology that is slightly different than the one used in the
mathematical field of graph theory [Bar16]. In the context of networks
vertices and edges are usually called nodes and links respectively.

Social networks [New10] are another type of network that can benefit
from the usage of graph theory methods. The study of these networks
is considered to be a part of the field of sociology and researchers may
also use slightly different terminology for the vertices and edges in their
work. Nodes (or vertices) often represent people in social networks and
are sometimes referred to as actors. However, it is also possible that they
depict other entities, such as departments, companies, or countries (i.e.,
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larger groups of people). The links (or edges) between these entities can
denote, depending of the context, different things as well, and are sometimes
referred to as ties. For example, links between persons can show social
relationships (e.g., friendships), collaborations in projects (e.g., co-authorship
of scientific papers), or other social interactions. Links between companies
could represent trading relationships or the like.

Social networks are often only mentioned in relation to large online com-
munities, such as Facebook or Twitter, but there is no necessity that a social
network must exist in an online form. For instance, the network of acquain-
tances or friends in a school is considered a social network as well. Figure 2.3
shows a famous example of a small real-world social network.

Figure 2.3.: Zachary’s karate club network [Zac77] is a social network that shows the
relationship between 34 members of an university-based karate club in the
US in the early 1970’s. There exists an edge between two members if there
were social interactions outside of the normal club activities between them (i.e.,
two members are considered friends). The graph shows a separation into two
communities (red and blue nodes). This was caused by a dispute between the
members of the club that was focused around two key persons.

Two fundamental terms in the field of social network analysis are dyads
and triads [WF94]. These two concepts describe the relationship between

12
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multiple actors. Dyads denote the linkage between pairs of actors and are
used to study pairwise relationships in social networks. A triad on the other
hand describes triples of actors and the ties between them. This concept is
especially important for the question of transitivity of certain relationships.
For instance, “is the friend of my friend also my friend?”. The transitivity
of trust, especially in the context of cryptography, is an interesting issue as
well [CH97].

Another important concept is the strength of ties, which was introduced
by Granovetter [Gra73]. The strength of a tie is influenced by factors like
the time that two actors spend together, or the intimacy between them.
Depending on the strength, a tie can either be strong, weak, or absent.
Absent does not only include non-existing ties, but also ties with a strength
that is below a certain threshold. This concept of strong and weak ties can
be used to explain the formation of triads. If there already exists a strong
tie between the two actors A and B, and between B and C, then there exists
at least a weak tie between A and C. This is true, due to the opportunities
for the formation of a tie between A and C, that will result from a common
strong tie to the actor B. Furthermore, the spreading of information in social
networks can be explained more accurately by taking the strength of ties
into account. Weak ties can help the flow of information by acting as bridges
between sparsely connected parts of the network.

A property that many real-world social networks share are community
structures [GN02]. Communities are groups of actors that are more connected
to actors in the same group, than to actors in different ones. This basically
means that in networks with community structures exist subsets of densely
linked nodes and very few link links between the subsets. The network
shown in figure 2.3 has two known communities highlighted by different
node colors in the graph.

The detection of community structures in networks is an important research
topic, since the identified communities may correspond to actual social
groupings. For example, the detected communities in a social network that
models the friendship between students may represent the real correspond-
ing social groups (i.e., the circles of friends). There is a variety of different
methods and approaches to perform this task. Examples are algorithms
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based on hierarchical clustering, or edge betweenness (i.e., the number of
shortest paths going through an edge) [For10].

However, it is often not feasible to study the network and its structure
on a full global scale, due to processing limitations. One alternative way
is to consider single actors and their immediate neighborhood instead.
These small sub-networks are called egocentric or personal networks [New10].
Usually some number of these egocentric networks is sampled from the
entire network and is examined for their local properties, such as the degree
distribution or the local clustering coefficients.

Another attribute that many social networks share is that they are scale-free
networks [Bar16]. Formally, a network is a scale-free network if its degree
distribution is a power-law (i.e., p(k) ∼ k−γ, where γ is the parameter of
the distribution that denotes the degree exponent). The value for γ for most
real-world (social) networks is in the range between 2 and 3. A consequence
of the power-law is that the distribution of the degrees is right-skewed
and long-tailed. This means that there is a large number of nodes in the
network that have only a few links (i.e., a small degree) but there is also the
chance that there exists a few nodes with a very high degree. Such nodes are
usually called hubs and may correspond in the context of social networks to
very influential actors that can play an important role in the network.

A property that social networks often show as well, is the presence of the
small-world effect. The characteristic of small-world networks [Wat99] is that
even if the network is very large and sparsely connected, the average shortest
path length is usually very small. For example, the famous experiment by
Travers and Milgram [TM69] showed that it is possible to send a letter to a
target by a chain of about six people on average, where each person in the
chain is only allowed to forward the letter to acquaintances. However, even
tough there are some issues with the experimental setup of this study (e.g.,
a sample selection biases, or the sample size [Sch09]), there is additional
work in this area that supports the original findings. For example, Leskovec
and Horvitz [LH08] study of an online social network with 180 million
nodes and 1.3 billion edges showed that the average path length in this
network is 6.6, which is only slightly larger than in the original work.
Nonetheless, they showed that there exits paths up to a length of 29 as
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well. A network with the small-world characteristic does usually exhibit
two important properties. First, the average shortest path length is small
and only grows logarithmically with the size of the network, and second,
it is highly clustered. Note that the small-world effect does not only occur
in social networks but also in many other real-world networks as well.
Examples are the US power grid network or the collaboration network of
actors in movies [WS98].

2.3. Time-varying Networks

This section contains an overview on the concept of time-varying net-
works [HS12; Hol15]. Since this type of network is used in many different
scientific fields it also has a variety of names. For example, temporal net-
works, dynamic networks, evolving graphs, or the name that is mainly used
in this thesis, time-varying networks.

As already mentioned in the section about social networks, the structure, or
topology, of networks can be used to understand dynamic processes and
their underlying behavior. However, there are many dynamical processes
that are modeled using static networks in which links are not active all
the time. One example would be a communication network, such as the
network of phone calls between people. Another example would be a
social or collaboration network, where actors do not interact constantly
but in irregular intervals. These link activations at certain times can be
very important to explain the dynamic process and are simply lost when
approximated by a static graph.

The idea of time-varying networks is to introduce another dimension (i.e.,
time) to the network and move the information of when something happens
from the dynamic process to the network itself. As a general rule, a time-
varying network is applicable when the structure (i.e., the topology) of the
system and the temporal process are connected to each other. This means
that the time scale on which the network itself evolves should be similar to
the time scale of the dynamic process that takes place on it. For example,
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a time-varying network is not a suitable model for the internet, since the
infrastructure (i.e., the topology) changes very slowly in comparison to the
transmission of the packages that are routed through the network (i.e., the
dynamic process).

The underlying concept of time-varying networks is called contacts and can
be seen as interactions between two nodes at a certain time. The duration of
the interaction is negligible and thus assumed to be instantaneous. This is
true at least in context of this thesis, however, it is also possible to include
the duration of interactions if necessary. Contacts can be interpreted as an
extension of links in static networks. The unordered pair {vi, vj} becomes
an ordered triple (vi, vj, t). The order is in this case important, since the
third object in the triple must refer to the time of interaction t between the
nodes vi and vj.

The usage of static networks in models for dynamic processes, which repre-
sent some time-dependent sequences of contacts between pairs of nodes,
often results in a loss of information. This sacrificed accurateness can pos-
sibly be avoided by using time-varying networks instead. However, these
temporal networks also introduce more complexity to the model, and one
have to weight the gain in information versus the additional modeling effort.
For example, the case in which the information on how often something be-
tween two actors happened is way more important than when exactly it did,
is a strong indicator for the preferred application of weighted graphs over
their temporal counterpart (see figure 2.4a for an illustration of a weighted
graph).

However, a simple graph without weights can also be used to approximate
the interaction sequence of a time-varying network [Hol13]. The idea is to
calculate a total weight for each pair of nodes in the network. If the weight
exceeds a certain threshold Ω ∈ R+

0 then there will be an edge between
the two nodes in the static approximation. Each contact between the pair
in the sequence of contacts C contributes to the total weight. However,
contributions to the total decay exponentially with time. Hence, the total
weight wi,j between two nodes vi and vj is wi,j = ∑(vi,vj,t)∈C exp(− t/τ),
where τ is an additional parameter that controls the exponential decay. For
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a static approximation, which should contain an edge if there was at least
one contact between the two nodes, the threshold can be set to Ω = 0.
Networks that are generated using this approach are called exponential-
threshold networks.

There are many different possibilities to represent a temporal network
without the loss of information as well. The simplest way to to this is by
using the actual contact sequences. A contact sequence is basically a list that
contains all the contact triples. This is a very raw form data (i.e., in essence
a spreadsheet with three columns) and is therefore very easy to parse, and
to use in algorithms. However, the sequence is not very well suited for the
analysis of the underlying dynamic process by humans, due to the lack of
illustrations.

Another way to represent time-varying networks are graph sequences. The
idea behind them is to generate a static graph that contains all contacts
between nodes in a given time window. This method has the advantage
that all tools that work for static graphs can also be applied to each of the
graphs in the sequence. The problem with this representation is that the
time resolution should be selected carefully to avoid the creation of graphs
with no, or only a few, edges for most time steps. Figure 2.4b depicts an
example of a graph sequence for a time-varying network with four nodes.

There exists more visual-focused representation methods as well. One ex-
ample would be the assignment of the series of contact timestamps between
two nodes to the corresponding link in the static network (see figure 2.4c for
an example). This allows the usage of the variety of graph layout algorithms
to visualize the network, but does not work very well for large networks due
to the lack of space for the timestamps on the links and the large numbers
of nodes.

A different idea for the visualization of a time-varying networks are contact
timelines. The interactions between nodes (i.e., the tuple of nodes that are
interacting with each other) are placed on one axis and the time is placed
on the other one. A marker is set for each pair that interacts with each
other at a certain time. This allows for the visual detection of interaction
patterns. However, similar to the last representation method, this one is only
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reasonable for small networks as well. Figure 2.4d shows an example for
this type of representation.

It is also noteworthy that most of the introduced measures for networks do
not apply for temporal networks. They must be redefined or extended. For
example, the concept of degree distributions does not exists in the context
of time-varying networks. But there are new measures like the inter-contact
time distributions, which describes the frequency of contacts between either a
specific pair, or any two nodes. Paths cannot be used in temporal networks
as well, and are replaced by measures like latency (i.e., how long since the
last contact between two nodes) or temporal distance (i.e., how long does it
take to get from one node to another while taking the contacts into account).
There is also the idea, and many approaches, to extend community detection
mechanisms for the usage in time-varying networks by running community
detection algorithms for a static approximation of a network at time t and
then refine the result by including community information from previous
time steps.

2.4. Generative Network Models

This section contains descriptions of different generative network models,
which can be used to build graphs with certain characteristics. They are
often a useful tool when studying real-world networks (e.g., social networks)
to gain a deeper understanding on the processes that creates them.

2.4.1. The Erdős-Rényi Model

The Erdős–Rényi (ER) model [ER59; New10] was in its first form described
by the two famous mathematicians Paul Erdős and Alfréd Rényi in 1959.
The model generates a random graph with n nodes and m links by choosing
one of the ((

n
2)
m ) possible graphs of this size with equal probability at random.

It is sometimes also denoted as the G(n, m) model.
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1 2

3 4

(a) Static approximation of
the contact sequence as a
weighted graph. The width
of the lines between the
nodes represents the weight
(i.e., the total number of
interactions between pairs of
nodes).

t = 0

1 2

3 4

t = 1

1 2

3 4

t = 2

1 2

3 4

(b) Visualization of the graph sequence repre-
sentation of the three time steps of a time-
varying network. There exists an edge at the
graph at time t, if there was a contact be-
tween the two nodes at this time step.

1 2

3 4

0, 1, 2

0, 2 1

0

(c) Visualization of C as a graph
that contains an edge be-
tween two nodes if there was
at least one contact between
them. Furthermore, the edges
are annotated with a time
series of time steps that in-
dicate when the interactions
took place.

(1, 2)

(1, 4)

(2, 4)

(3, 4)

t0 1 2

(d) Visualization of the contact sequence as a
timeline of contacts. The vertical axis shows
the interactions that happened between the
nodes in the network and the horizontal axis
shows the three time steps. There is a marker
(depicted as a black rectangle) if there was a
contact between the pair at a given time t.

Figure 2.4.: (b)–(d) show different possible representations for the contact sequence C =
(1, 2, 0), (1, 4, 0), (3, 4, 0), (1, 2, 1), (2, 4, 1), (1, 2, 2), (1, 4, 2), and (a) shows a static
network of the same contact sequence, where the number of contacts between
two nodes is reflected by the edge weights.
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The basic idea behind this model is that large and complex networks often
seem random and can be examined by using random graphs and statistical
methods [AB02]. Therefore, this very simple, yet powerful, model can be
utilized to explore effects that take place in real-world systems.

There is another very similar model, the G(n, p) model, in which the number
of links is not fixed beforehand. The link quantity is determined by p, the
probability of the presence of a link between any pair of nodes in the
network. Hence, the edges of a random network are determined by flipping
a biased coin for each of the (n

2) possible edges.

The probability for an arbitrary network with exactly m links under the
G(n, p) model is pm(1− p)(

n
2)−m. Therefore, the probability that the model

will generate a network with m links is P[m] = ((
n
2)
m )pm(1− p)(

n
2)−m (i.e.,

the probability of such a network times the number of possible networks).
This corresponds to the binomial distribution B((n

2), p). Hence, the expected
value for the number of links is

E[m] =
(n

2)

∑
m=0

mP[m] =

(
n
2

)
p. (2.3)

The expected value for the average degree c of a network generated with this
model is deduced in equation (2.4). The probability that an arbitrary node
has a degree of exactly k is given by p(k) = (n−1

k )pk(1− p)n−1−k (i.e., k of its
possible n− 1 links must exist and there are (n−1

k ) possible combinations for
the k links). Therefore, the degree distribution of this model is a binomial
distribution as well. However, it is also possible to approximate the degree
distribution with a Poisson distribution p(k) = exp(−c) ck

k! for large values
of n.

c = E[d(G)] =
(n

2)

∑
m=0

2m
n

P[m] =
2
n

(n
2)

∑
m=0

mP[m] =
2
n

(
n
2

)
p = (n− 1)p (2.4)
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A nice property of the Erdős–Rényi model is that it can be used to study
the formation of giant components. The giant component of a network
is a component that contains a large fraction of the nodes. Others have
adopted this model to study dynamic processes on it. For example, Wang
et al. [Wan+03] are using it to study the spreading of viruses in networks,
and Crucitti, Latora, and Marchiori [CLM04] for their research on cascading
failures. Hence, even such a simple model can be applied to study phe-
nomenons that are part of many real-world networks. Furthermore, it can
be used to replicate the small average shortest path length, which grows
logarithmically with the size of the network, and can also observed in many
real-world networks.

However, there are quite a few problems with this model as well. The
degrees in real-world networks are usually not binomial (or Poisson) dis-
tributed, but follow a power-law distribution. Other examples for shortcom-
ings of the model are the inability to generate community structures and
hubs.

2.4.2. The Barabási-Albert Model

One model that addresses the problem of missing power-law degree dis-
tributions is the Barabási-Albert (BA) model [AB02]. The model is named
after its creators Réka Albert and Albert-László Barabási. It tries to emulate
the dynamic process that is responsible for the creation of scale-free degree
distributions and yields the generated network as result.

One of the main differences to the ER model is that the size of the network
is not fixed. The model starts with a small number of nodes and adds new
ones to the network over time. A newly added node forms links with already
existing nodes. What nodes are selected depends on how important they
are. The more important a node is, the more likely it is that the new nodes
form connections with it. This process is called preferential attachment. It can,
for example, be used to explain the evolution of the online encyclopedia
Wikipedia [Cal+06]. Eisenberg and Levanon [EL03] showed that preferential
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attachment is the mechanism behind the evolution of protein networks.
Furthermore, new websites on the World-Wide-Web follow the same pattern,
by linking already popular website more often [BA99].

More formally, the model starts with a small number m0 of nodes and the
following two steps are executed in every iteration:

1. Add a new node to the network.
2. Choose m ≤ m0 already existing nodes at random proportional to

their degree and form a link between them and the newly added node.

Therefore, the degree of a node is a measure of its popularity and an existing
node vi will be selected with a probability Π(vi) = d(vi)/∑j d(vj). The process
yields a network that consists of m0 + t nodes and mt links after t time
steps.

It can be shown using different methods (e.g., continuum theory, master
equations, or numerically), that the node degrees follow a power-law dis-
tribution with a degree exponent of γ = 3. Furthermore, asymptotically
does γ not depend on m, the number of links that are generated in each
iteration. The degree distribution is also (asymptotically) independent of the
time, and therefore on the size of the network. This property of the model
reflects the fact that there exists real-world networks of different sizes with
power-law degree distributions.

However, like the ER model, the BA model has its shortcomings as well. For
example, the average path length of generated networks does not comply
with real-world networks. Another property that cannot be reproduced
by this model are the community structures and the with it associated
high clustering coefficient that many real-world networks (especially social
networks) have [RH11].

Another interesting question regarding the Barabási-Albert model is if both
mechanisms, the network growth and the preferential attachment, are nec-
essary to produce scale-free networks. The result of numerical simulations
and formal tests of the model with one of the two mechanisms disabled
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shows that both are indeed required. Missing preferential attachment results
in exponentially distributed node degrees, and while the absence of the
network growth mechanism leads to a power-law degree distribution in the
beginning, a shift to a normal distribution occurs over time [AB02]. This
indicates that, in fact, both mechanisms are required to yield networks with
the scale-free property.

2.4.3. Watts-Strogatz Model

The model proposed by Watts and Strogatz [WS98] is able to produce
networks with the small-world property. The goal of it is to be as simple
as possible while being able to replicate the effect [Wat04]. This is done
by starting with a ring lattice graph with n nodes. In such a graph are the
nodes arranged uniformly on a ring and are connected to their k nearest
neighbors on it. This very regular graph has a high average local clustering
coefficient and a high average shortest distance between any pair of nodes
that grows linearly with the size of the network. Therefore, it does not have
the properties of small-world networks yet.

However, a simple rewiring process can introduce the small-world effect
by changing the endpoints of some randomly selected edges. This rewiring
process depends on the parameter p ∈ [0, 1], which determines the proba-
bility for an edge to be rewired. Note that this parameter is also sometimes
refereed to as β, since the model is known as Watts’ beta model as well.

The rewiring process itself is very simple. Each edge is rewired with proba-
bility p. The new endpoint of an edge is selected uniformly at random, but
self-loops and parallel edges cannot be introduced in the network.

A rewiring probability of p = 1 changes the endpoint of every edge and
produces a random network with properties similar to a network generated
with the Erdős-Rényi model. It exhibits a small average shortest path length,
but also a small average local clustering coefficient.
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However, networks generated with values for the rewiring probability in
the range 0 < p < 1 can show the small-world property. The effect of the
rewiring process on the average path length in the network is substantial. It
drops immediately to a low value even if only a few edges get rewired. The
rewiring essentially produces shortcuts in the network by connecting nodes
that are usually far apart, which decreases the average distance between
any two nodes dramatically while keeping the average local clustering
high. Therefore, the model is able generate networks with small-world
properties.

Nevertheless, if values of p gets too large, the average local clustering
coefficient decreases significantly and the generated network resembles
more and more a random network. Figure 2.5 illustrates the transformation
of the network for increasing values of the rewiring probability.

Figure 2.5.: Depiction of networks generated with the Watts-Strogatz model with an in-
creasing value for p. The initial ring lattice network consists of n = 20 nodes
each with degree k = 4. Note that to ensure that the generated network stays
connected n and k should be selected in such a way that n� k� ln(n)� 1,
which is not the case for this toy example. Figure borrowed from [WS98].

2.5. User Activity Models

The modeling of the activity of users in complex systems (e.g., in social
networks) can be a challenging task. Usually the specific activities, such
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as writing of e-mails, posts on Facebook, or tweets, are not of particular
interest. More relevant is how these events or activities are laid out in time
and what the distribution of intervals between two consecutive events is
(i.e., the inter-event time distribution).

More formally, the sequence of timestamps of events for user i is written as
ti,0, ti,1, ti,2, . . . with ti,j ∈ N0, which is ordered in the sense that if ti,l ≥ ti,k
then l ≥ k and vice versa. The inter-event times for the user i are defined as
τi,j = ti,j − ti,j−1, for j = 1, 2, . . . and their distribution is denoted as ϕi.

There are various models that try to capture the patterns of human activities
based on different approaches and some are discussed in this section.

2.5.1. Stochastic Models

One of the simplest methods to model user activity is by using a Poisson
process to describe the inter-activity times [Bar05; Váz+06; ML16]. This
stochastic process is defined by the event rate λ, which states how often an
event should occur in a given time window. Two important properties of the
Poisson process are that the inter-activity times are exponentially distributed
and independent of each other. This leads to the effect that events take place
in regular intervals (i.e., at the given rate) and that it is almost impossible to
have long periods of time between to consecutive activities.

However, it has been shown, that human activity patterns (e.g., email com-
munication) cannot be modeled very accurately by a Poisson process due to
its assumptions [Bar05]. Most activities are executed in bursts, followed by
longer periods of inactivity. For example, a person may have a dedicated
time in the day for answering emails. This behavior can be much better
explained by a power-law distribution of the inter-activity times, since its
long tail allows for longer periods of inactivity.

There are, however, approaches that try to tackle this problem by using
extensions of Poisson processes. For example, Malmgren et al. [Mal+08] use a
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mixture of homogeneous and non-homogeneous Poisson processes to model
user e-mail activity more precisely. The rate of a non-homogeneous Poisson
process does depend on the time, whereas the rate of a homogeneous
process is constant.

An approach that does not only generate power-law distributed inter-event
times, but also captures other patterns of human behavior, such as periodic
spikes (e.g., higher activity every 24 hours) or a bimodal distribution of
inter-event times (e.g., phases of high activity that are separated by phases
of rest) was proposed by Ferraz Costa et al. [Fer+15]. Their Rest-Sleep-and-
Comment (rsc) model is based on the idea that a user can be in one of
multiple states. In the active state, a user generates events with a certain
probability at a given rate, which depends on how much time has passed
since the last event. The rest and sleep states are used to model the inactivity
of a user. The difference between the two states is that the rest state produces
null-events (i.e., it only increments the time) at a certain rate, whereas the
sleep state is used to increment the time only once, but by a larger extent.
An active user can become inactive (i.e., go to the rest state) or stay active.
A user in the rest state can either become active, stay inactive, or go to the
sleep state. The user cannot stay in the sleep state, only go into the rest state
again. The state transition probabilities are parameters of the model. This
model was the foundation for a classifier, that is able to detect whether an
activity sequence was generated by a bot or by a human with very high
accuracy.

Another possibility to model the user activity in social networks is by using
coupled Hidden Markov Models (chmm’s) [Rag+13]. The Markov model
has two hidden states that describe the user activity (active or inactive) and
yields inter-activity times with respect to the current state. The chmm model
takes the social network influence of other users into account as well, by
explicitly coupling the stochastic processes of groups of people. This is done
by letting the transition probabilities between the states of the hmm for a
single user be dependent on the activity of other users, that are in the circle
of friends of the user (i.e., neighbors in the social network). If the activity
of the neighbors exceeds a certain threshold the probability for a user to
become active gets larger. The evaluation of this approach shows that this
model is able to learn the complex human activity patterns and allows for
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highly accurate predictions.

2.5.2. Queuing Models

One approach, which successfully generates human activity patterns that
follow a power-law distribution, are queuing models [Váz+06]. The idea
behind them is to think of a user as a queue that is constantly filled with
new tasks (e.g., answer an e-mail, go shopping, do the dishes,. . . ). Each task
takes a certain amount of time to finish and is prioritized by the user on
arrival. Furthermore, the queue is usually bounded in size, since people
typically can only keep track of a certain amount of tasks at a time. At each
time step the user selects the task with the highest priority from the queue
and executes it.

It can be shown that the time it takes for a task to be handled (i.e., the
waiting time) follows a power-law distribution. There is evidence that the
waiting-time distribution of the queuing model is responsible for the inter-
activity time power-law distribution of a specific activity. This can possibly
be explained by the observation that people tend to group tasks in categories
and reinserting them into the queue with a lower priority after they are
done. For example, a person does not keep track of every unanswered email
in the queue, but has an “answer email” task that contains all emails that
need to be replied-to. Therefore, this may lead to the answering of multiple
emails in a short period of time, followed by a longer period of no email
correspondence, due to the presence of other tasks with higher priority.

2.5.3. Time-varying Network Models

The prior discussed user activity models are designed to solely describe the
activity profile of a single person, or require at least a separate stochastic pro-
cess for each one. However, there are models that allow for the description
of the activities for multiple people at once using time-varying networks.
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The difference between models for temporal networks and static network
models (as described in section 2.4) is, that the latter are purely connectivity
driven [Per+12a]. This means that they are designed to generate specific
topological properties in the networks (e.g., the formation of community
structures, or short average path lengths), but do not consider the dynamic
processes, which are responsible for these structures.

One of the simplest methods to generate a time-varying network of user
activity was proposed by Holme [Hol13]. The idea is to generate a static
network and assign each link a (possibly empty) set of timestamps, that rep-
resents the contact sequence between the two nodes. To archive this, the first
step is to generate a static network using the configuration model [New10].
This model assigns a number, drawn from a probability distribution (e.g.,
a power-law distribution), to each node in the network. This number rep-
resents the number of “half edges” of the node. These “half edges” can
be seen as dangling edges that will be connected at random to other “half
edges” of different nodes. Therefore, this number corresponds to the degree
of the node. Self-loops and parallel edges are avoided during the matching
process to generate a simple static network. Next, each link in network is
assigned a time window at random, in which contacts are possible (i.e., the
activity interval). In the last step of this approach, a time series of events is
generated by drawing inter-event times from a power-law distribution. This
time series is then split into parts and mapped onto the activity windows of
the nodes, thus, generating the contact sequences.

A different approach by Perra et al. [Per+12a] is based on the idea of activity
potentials. Each node vi in the network of size n is assigned a quantity called
the activity potential xi, which denotes the probability that the node will
be active in a time window ∆t. The activity potential for a user in real-
world network can be determined by calculating the ratio of the number of
interactions of this user to the total number of interactions in a time window.
Measuring the activity potentials of multiple users usually yields long-tailed
distributions of the quantity, which corresponds to typical heterogeneous
human activity patterns [Váz+06; Jo+12]. Furthermore, the size of the time
window, which is used to estimate the probabilities, seems not to effect the
resulting distribution in a significant way.
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The first step of this activity-driven model is to initialize each node in the
network by assigning it an activity/firing rate ai = ηxi, where the activity
potential is drawn from a suitable probability distribution f (x) and η is a
rescaling factor that is chosen in such a way that the expected number of
active nodes in the time window is ηE[x]n. The range of possible activity
potential values is xi ∈ [ε, 1]. This lower bound ε of the activity potential is
necessary to avoid possible divergences of the distribution for values that
are very close to zero [CSN09].

The time-varying network can be generated after this short initial setup
phase by repeating the following instructions for each time step t:

1. Create a new network Gt, that contains all n nodes but has no links
yet.

2. Every node vi becomes active with probability ai∆t. Active nodes
choose m distinct other nodes uniformly at random and form links
with them.

3. Increment the current time t→ t + ∆t.

Therefore, in this model the time-varying networks are represented as
sequences of graphs (see section 2.3), which are called instantaneous networks
in the context of this model.

The cardinality of the edge set at time t is given by |Et| = mηE[x]n, since
every active node creates exactly m links. Therefore, the average degree of
the instantaneous network at time t is

d(Gt) =
2|Et|

n
=

2mηE[x]n
n

= 2mηE[x]. (2.5)

The probability for a node to become active does not change over time and
is, therefore, also independent of previous activities. This resembles the
problem already encountered with models based on Poisson processes. The
inter-event times for a node vi will eventually be exponential distributed
ϕi(τ) = ai exp(−aiτ) [MSP16]. Additionally, the model lacks of realism in
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the sense that every node selects its neighbors in each iteration uniformly at
random, which leads to networks with a random structure. Typically users
are prone to repeat previous communication [KPV14].

Nevertheless, this model possesses a few considerable advantages. First,
and most important, it produces not only activities for a single user, but
generates snapshots of the total user activities in the network in each time
window. Furthermore, it is a very simple model. It only requires a few
parameters and the activity potential distribution governs the dynamical
behavior in the network.

Moreover, this model can be used to explain the formation heterogeneous
structures (i.e., hubs) in networks over longer periods of time. This is done
by examining the integrated network GT =

⋃T
t=0 Gt, which is defined as the

union of all instantaneous networks up to the time stamp T (see figure 2.6 for
an example). It can be shown that the degree distribution of this integrated
network has the form pT(k) ∼ f (k/Tmη). Therefore, it is up to a rescaling
factor the same as the activity potential distribution. Hence, the model is
able to generate scale-free networks by drawing the activity potentials from
a power-law distribution. The resulting hubs are not caused by preferential
attachment like in other models, but due to the heterogeneous activity
profiles of the nodes. The rescaling factor emerges from the fact that the
model does not capture all features of real-world networks. For instance,
memory effects are not present that would allow links, which were formed
in earlier instantaneous networks, to be formed later again with higher
probability.

Regardless of its simplicity, this activity-driven model can help to under-
stand topological patterns and the dynamics of systems (e.g., epidemic
spreading processes). Starnini and Pastor-Satorras [SP13], for example,
study the topological properties of this model in a more formal way by
mapping it onto a hidden variables network model. The idea behind hidden
variables models is that the probability of the formation of a link between
two nodes depends on some underlying characteristic of the nodes (i.e., the
hidden variables). In this case, the hidden variable is the activity potential. A
network that was generated using this model solely depends on probability
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t = 0 t = 1 t = 2 integrated
network

Figure 2.6.: Illustration for the formation of the integrated network for a small example
with n = 12 nodes. The first three graphs show the instantaneous networks for
the time steps t = 0, t = 1, and t = 2. In each time step a few nodes get active
(green nodes) and establish links to m = 1 other nodes. The forth graph shows
the integrated network up to T = 2. It contains all links that were established
in the instantaneous networks. Parallel links are not allowed (i.e., a link is only
added once to the integrated network even if it is present in multiple time
steps).

distributions that are related to the hidden variables. Therefore, topolog-
ical properties also depend on these probability distributions and can be
expressed with respect to them. The properties of the degree distribution of
the integrated network could be verified using this more formal approach.
In addition, they showed that the clustering coefficient of the network is
rather small and comparable to the clustering coefficient of random net-
works. They also propose to use the hidden-variable approach to study
possible extensions of the model, which is, for example, done for the nopad

model [MSP15], which is briefly discussed later in this section.

The activity-driven model is also a fundamental framework for many other
studies that use it as start point for their work. For example, Perra et al.
[Per+12b] use this model to study random walks on temporal networks, and
Rizzo, Pedalino, and Porfiri [RPP16] are applying it for their research on the
spreading of the infectious Ebola disease in Liberia. Another paper by Rizzo,
Frasca, and Porfiri [RFP14] uses the activity-driven network framework to
study how an epidemic affects the behavior of persons. They showed that a
reduction of the activity potential of persons, due to the fact that they are
already ill or because they are trying to protect them self from the disease,
may help the slow down the spreading process. A paper on a similar topic
by Liu et al. [Liu+14] proposes a framework to develop strategies on how
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to contain the spreading of diseases. Mistry et al. [Mis+15] use the model
to explore the spreading of opinions in social networks. They showed that
activists are able to spread messages across the population more effectively
and can help to reduce the cost of campaigns.

On the other hand, others try to improve the model and make it more
realistic by introducing additional mechanisms. Laurent, Saramäki, and
Karsai [LSK15] add additional social mechanisms (e.g., memory) to the
model to allow for the formation of communities in the integrated network.
This model is explained in great detail in section 3.1, since it is used as
a foundation for our work presented in this thesis. Another extension by
Moinet, Starnini, and Pastor-Satorras [MSP15; MSP16] solves the problem of
inaccurate inter-events times by making the activity potential of each node
time dependent. This model is known as the non-poissonian activity-driven
(nopad) model and can generate inter-event time distributions that can also
be observed in real-world networks.

Wang et al. [Wan+16] proposed the Activity-Security-Trust (ast) model,
which not only considers activity as the explicit driving force behind dy-
namic processes, but also incorporates the implicit factors security and trust.
Trust can be interpreted as the belief in honesty or fairness between two
nodes and influences the possible link formation between them. The second
mechanism, the security level, is like the activity potential a property of
each node that determines how well a node is prepared against possible
attacks. It can be seen as the probability of a node to accept the interaction
initiated by another one.

Sunny, Kotnis, and Kuri [SKK15] add link lifetimes to the activity-driven
framework. Every time a link is formed it is assigned a lifetime, that is
drawn at random from a probability distribution. This link may then be
part of multiple consecutive instantaneous networks and is only removed
after its lifetime has decayed, in contrast to the simple activity-driven model,
where links are meant to be instantaneous and are deleted after every time
step. The authors use this new introduced mechanism to study how well
link lifetimes are suited to model disease spreading processes.

While Laurent, Saramäki, and Karsai [LSK15] examine the local effects that
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are responsible for the formation of complex network structures using the
activity-driven framework, takes Alessandretti et al. [Ale+17] work also the
global effects for the formation of links into account. Each node in the model
is not only assigned an activity potential, but also an attractiveness quantity,
which determines how popular a node is. Nodes that are more popular
get selected more often from active node, which basically corresponds
to a preferential attachment process. They not only show in their work
that activity and the attractiveness are correlated in real-world social and
collaboration networks, but also that this influences dynamical processes on
the network in a significant way.

2.6. Peer Influence

Peer influence or peer pressure plays an important role in the field of
sociology and psychology. There are a lot of studies that investigate how
peer influence affects the behavior of people in different settings. This is not
only done for real-world social networks (e.g., a social network of students
in a school), but also for online social and collaboration networks, such as
Facebook or StackOverflow.

These studies often investigate peer effects for harmful behavior like smok-
ing or drinking1 [Sim+01; PTR05]. Krasnova et al. [Kra+08] showed that
peer pressure is an important factor for adolescents to participate in online
social networks, and Huang et al. [Hua+14] concluded in their work that
being exposed to pictures of drinking and smoking friends on social media
websites may lead to an adaption of these behaviors.

However, peer influence is not necessarily a bad thing. For example, Smith
and Fowler [SF84] showed that the introduction of peer monitors in a
kindergarten classroom decreased non-participation and disruptive behavior
of the other children. Another example is the study conducted by Christakis
and Fowler [CF08]. They examined a relatively large social network of

1https://xkcd.com/1534/
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approximately 12,000 people over more than 30 years and evaluated the
spreading of smoking in the network. The results of this study not only
showed that the number of smokers declined over the years, but also that
clusters of smokers in the network seem to disappear at roughly the same
time. This indicates that people, which quit smoking may trigger a cascading
cessation effect in their social circle. For instance, they showed that in their
data set the smoking cessation of a spouse reduces the probability for the
other one to smoke by 67%.

Peer influence plays an important role in opinion dynamics models as
well. The formation and diffusion of opinions in complex networks is
examined in these models. Opinions can be trivial things like taste in food
and entertainment, or more sophisticated issues like political views, and are
usually heavily influenced by others [AO11].

One popular use case for these types of models are voter models, which try
to maximize the number of voters for a political party in an election (i.e., the
opinion) with a minimum amount of cost that is associated with winning
voters over. For instance, the voter model by Masuda [Mas15] considers
two different types of voters, the partisan voters (often also referred to as
zealots), which do not change their opinion, and independent voters, which
can. An independent voter adapts a political view proportionally to the
presence of this view in its neighborhood and with respect to zealots that
influence him or her. It can be used to determine the optimal set of nodes in
the network of independent voters, that should be controlled and influenced
by zealots of one party to obtain the maximum number of voters.

In another work by Estrada and Vargas-Estrada [EV13] is the effect of peer
influence on reaching consensus in social groups examined. They model
the influence between two user as their social distance, which is a function
of the length of the shortest path between them in the social network. This
allows for a node to receive indirect peer pressure from other nodes that
are not directly connected to it (i.e., do not share an edge) as well. They
showed that this indirect peer influence is not only important for reaching
consensus in social groups, but also for social group leaders to emerge,
which affects the opinions in the entire network and helps to reduce the
time until consensus is reached.
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Another interesting application for the usage of peer influence are network
models that incorporate peer effects that influence the activity of nodes. For
instance, Walk et al. [Wal+16] proposed a model that helps to study how
the activity in large collaboration and social networks develops over longer
time spans and what effects the micro-behavior of users (i.e., their intrinsic
activity and the influence on their neighbors) has on the macro-behavior
of the system. The macro-behavior of the system can be interpreted as
the overall activity in the network. This helps to understand how some
systems can archive a state in which they can become self-sustaining, in the
sense that no external influences or stimuli are needed to keep the network
permanently active, while others become non-active very quickly, even after
lots of activity in the early stages of the network.

Their model is based on the idea that each user has an intrinsic activity,
which declines over time. This can be interpreted as the growing loss of
interest of users in the system. But there is also an opposite force, the peer
influence of others, that motivates the user to contribute.

More formally, the model is defined as a dynamic process that takes place
on a network, were users are represented as nodes and there exists a link
between two users if they interacted or collaborated at some point. Fur-
thermore, every user vi is assigned a positive real-valued variable ai, which
represents the activity of the user. The dynamic process is then defined by
the following system of coupled non-linear differential equations:

dai

dt
= f (ai)︸ ︷︷ ︸

activity decay

+ ∑
j∈N(vi)

g(aj)︸ ︷︷ ︸
peer influence

for i = 1, 2, . . . , n (2.6)

The first part of the right hand side of the equation represents the intrinsic
activity decay of a user, and the function f defines how fast the loss of
activity should occur. In their work a linear function f (ai) = −λai is used,
where λ > 0 denotes the rate on which the activity decays. This leads to
an exponential decay of the user activity. The second part of the equation
denotes the positive peer influence of the users neighbors. This is based on
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the idea that active neighbors may also increase the activity of a user, due
to a boost in their motivation to participate in the network. The function
g determines the level of positive peer influence of a neighbor, and is
selected to be the algebraic sigmoid function g(ai) = qai/

√
a2

c a2
j . This function

introduces two additional parameter to the model, ac > 0 controls what
level of activity of a neighbor is required such that it influences a user in
a significant way, and q > 0 determines the maximum amount of peer
influence activity that a neighbor can transfer to another user.

In their work they perform a linear stability analysis on the system of
differential equations and show that the stability of the system is determined
by the relation between the activity dynamics ratio λ

µ (with µ = q
ac

) and the
topological structure of the network. This means to prevent the network
from becoming or staying inactive, there must either be constant external
influences to keep the activity up or the system needs to become unstable.
This can be done, for example, by changing the network structure (e.g.,
removing links) or by manipulating the three model parameter.

Furthermore, they apply their activity dynamics model to some real-world
data sets. For instance, different instances of StackExchange collaboration
networks and various wikis. This is done by first estimating the ratio λ

µ

from the activity in the data sets, and then simulating the activity in the
networks. However, due to some limitations and approximations in the
parameter estimation is a highly accurate prediction of the activity not
possible. Nevertheless, the model is able to predict trends in the activity of
an empirical network by simulating its activity dynamics quite well and,
therefore, provide additional confidence in the validity of the model.

Additionally, two stability measures for social or collaboration networks are
introduced in their work. First, the system mass is defined as the inverse
of the normalized standard deviation of the activity dynamics ratio, and
indicates the robustness of a system with respect to change of the activity
dynamics parameter. The second measure is called activity momentum and
is defined as product of the system mass and the over some time span
averaged last observed activity in the network, and is an improved indicator
for the robustness. For instance, a system with a large activity momentum
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value handles the sudden inactivity of a considerable number of users
better, since it can retain most of its activity. Therefore, much more “force”
is needed to render a network with high activity momentum inactive.

Another interesting question in the context of peer influence effects in
networks was raised in the work of Aral, Muchnik, and Sundararajan
[AMS09]. They suggested that the behavior of a user in a network may
not be entirely driven by the influence of its peers, but can be explained
in large parts by homophily. Homophily (also known as assortativity or
assortative mixing) is the effect that users tend to interact with other users
that are similar to them self. They examined a temporal network of instant-
message communication between users and studied how the adaption of
a new feature in the messaging application could be explained. The idea
behind their work is that users may not adapt the feature shortly after their
friends because of peer influence, but do it simply because they behave
similar to them anyway. For instance, users that have the property of being
early-adopters are more likely to be friends with early-adopters as well, and
therefore, start using the feature at about the same time. They proposed
a statistical framework that is able to distinguish between peer influence
and homophily, and showed that other methods overestimate the share
of influenced adaption by a factor of four to eight, and that at least half
of the adaption in their instant-messaging data set was introduced by
homophily.
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The by us proposed user activity model with peer influence effects is
described in detail in this chapter. It is yet another extension of the activity-
driven network framework by Perra et al. [Per+12a], that was discussed
in section 2.5.3. However, it is not directly based on it, but on the work of
Laurent, Saramäki, and Karsai [LSK15], which relies on the activity-driven
framework as well. This underlying model, which is explained in the first
section of this chapter, allows for the formation of community structures
and the development of strong and weak ties in the network. These two
properties are crucial conditions for the occurrence of peer influenced
activity. The additionally introduced mechanisms, which allow for peer
influenced activity to actually happen in the network, are then discussed in
section 3.2 of this chapter.

3.1. The Underlying Model

3.1.1. Description

Since this community-oriented model [LSK15] is based on the activity-
driven framework by Perra et al. [Per+12a], an activity potential ai = ηxi,
which is drawn from a suitable distribution, is assigned to each of the n
nodes. To reflect the heterogeneous activity patterns of people, a power-
law distribution f (x) ∼ x−γ is selected. The exponent for the activity
potential distribution is fixed to γ = 2.7, which is a value that is similar to
the exponent observed in real world communication networks. The lower
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bound for the activity potential is set to ε = 10−3, and the time rescaling
parameter is fixed to η = 1, so that ai = xi ∈ [ε, 1]. Furthermore, for the
sake of simplicity, and without loss of generality, we fix the size of the time
window ∆t and the number of generated links at each activation m to the
value 1 as well.

The dynamic element of the model is basically identical to the activity-
driven framework. A node becomes active in every time window with
probability equal to its activity potential and selects other nodes to inter-
act with. However, the intention of this model is it to produce adjustable
community structures and weight-topological correlations in the integrated
network. This can ultimately be archived by changing the way the commu-
nication partners are selected once a node becomes active. More specifically,
to archive these more realistic topological properties, the following two
additional social mechanisms are introduced:

1. Memory effects
2. Closure processes

Memory Effects The first mechanism introduces memory to the nodes, in
the sense that nodes remember all previous interactions with other nodes.
This idea was adapted from the work of Karsai, Perra, and Vespignani
[KPV14], and enables the formation of strong ties (i.e., interactions that
are repeated often) and weak ties (i.e., interactions that area repeated in-
frequently) between the nodes. This heterogeneity of tie strengths is an
important role for processes that take place in many real world networks.
For instance, they showed in their original paper that strong ties are able to
slow down the spreading of rumors in networks of social interactions (e.g.,
a network of phone calls). This counter intuitive result can be explained by
the observation that most activity is concentrated and contained in strongly
tied groups, which inhibits a fast spreading of the rumor into other parts of
the network.

The memory of a node is represented by a weighted egocentric network
that includes all other nodes, which were already part of one or more

39



3. Model

i

j

k

l

w i,j
=

3

wi,k = 5

w
i,l =

2

Figure 3.1.: Egocentric network of the node vi (red node) and its neighbors vj, vk, and vl
(blue nodes). The link-reinforcement increment in this example is set to δ = 1.
This means that the weights exactly correspond to the number of previous
interactions between the nodes.

interactions in the past. These previous communication partners are also
called neighbors. The weight represents the number of previous interactions
scaled by the link-reinforcement constant δ. More specifically, the weight
is set to 1 for the first contact, and incremented by δ for every additional
contact. Figure 3.1 shows an exemplary egocentric network of the node vi
and its neighbors.

A node’s choice between forming a new tie and reinforcing an existing one
depends on the number of its neighbors. This corresponds to the obser-
vations in social interaction dynamics, where actors tend to communicate
almost exclusively within their social cycle, which has a limited size, due
to cognitive capacities of the actors [Dun92]. Let ki = d(vi) be the degree
of the node vi in its egocentric network. The probability for a node to form
a new tie is given by p(ki) = c/(ki + c), and the probability to reinforce an
already established tie is p̄(ki) = 1− p(ki) = ki/(ki + c), where the constant c
determines the memory strength of an actor (cf. figure 3.2 for details). There-
fore, the probability for the formation of a new tie decays very fast with
increasing size of the egocentric network. The memory strength constant is
fixed to c = 1 in the context of our work.
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If an active node decides to reinforce an existing tie, the neighbor is selected
at random with respect to its tie strength (i.e., the number of previous
interactions). Therefore, the probability for node vj to be selected as com-
munication partner by node vi is given by pi,j = wi,j/∑k∈N(vi)

wi,k, where wi,j
denotes the tie strength between node vi and vj in the egocentric network of
vi. This reinforcement process allows for the introduction of dependencies
between successive interactions of node pairs, and replaces the approach of
the original activity-driven framework in which communication partners
are selected uniformly at random.

Figure 3.2.: Plots of the function that determines the probability for the formation of a
new tie based on the degree of a node p(k) for different values of the memory
strength c. This constant can be used to model different types of users. Larger
values may correspond to social explorers, that are more prone to form new ties,
and smaller values are related to social keepers, which communicate almost
exclusively to peers in their social circle [Mir+13].

Closure Processes The second mechanism introduces two different closure
processes to the model. The first one, cyclic closure, assures the formation
of triangles (i.e., cliques between three nodes), which were linked to the
formation of community structures networks by Bianconi et al. [Bia+14].
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They showed that this mechanism is sufficient to generate networks with
complex topological structures (e.g., long-tailed degree distributions), in
which the strength of communities depends on the cyclic closure probability.
If a node wants to form a new tie, it tries to perform a cyclic closure
with probability p∆, by interacting with a randomly selected neighbor of a
neighbor.

The second closure process, focal closure, tries to emulate the social dynamic
that users tend to form ties with other users that are similar to them (e.g., if
they share common interests). This process is performed whenever a new
tie should be created with a probability of 1− p∆, or if there are no suitable
candidates for a cyclical closure available. This is, for instance, the case if
a node becomes active for the first time. The weight of a new tie is always
initialized to 1, regardless of the type of closure that was used to establish
the tie.

The actual implementation of these two closure mechanisms was adapted
from the work of Kumpula et al. [Kum+07], who used the same closure
mechanisms to study the formation of community structures in weighted
static networks. They model cyclic closure as a biased local search (cf. fig-
ure 3.3 for details) and focal closure as an unbiased global search, which
means selecting a new node uniformly at random from the entire net-
work. Furthermore, they introduced a node deletion mechanism, which was
adapted in this model as well.

Node Deletion Mechanism In the activity-driven framework, nodes live
forever and are, therefore, forever part of the network. However, in this
extended version of the model, nodes have an intrinsic probability pd to
be removed in every time step, which is the same for every node in the
network. This ensures that the network can reach a stable state, in which the
structural characteristics (e.g., the community structures) become invariant
in time. Every time a node is removed from the network, a new one joins
to keep the size of the network constant. The deletion probability of nodes
determines how fast the network reaches its equilibrium. A small value
for pd allows for nodes to stay a long time in the network and even nodes
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Figure 3.3.: This is an illustration of the cyclic closure mechanism of the model. The network
depicted in these figures is part of the union of all egocentric networks (i.e.,
the integrated network). (a) shows the active node in red. In the first step, this
node has to select one of his neighbors. This is done at random with respect
to the tie strengths. Therefore, the probabilities for the three neighbors to be
selected are 3/10, 5/10, and 2/10 respectively. In this example the neighbor with
the highest probability was selected, which is depicted in (b) (green node).
Since the selected neighbor has neighbors himself that do not share a link with
the active node yet, the cyclic closure can be completed. This is done once
more by selecting one of the candidates at random with respect to the weight
of the ties and creating a new tie with unit strength with probability p∆. (c)
shows they selected node (orange node) and the newly formed triangle in the
network.

with relatively small activity potential can become fully integrated in the
community structures. Therefore, it takes longer to reach the time invariant
state if the low activity nodes are not removed fast enough.

The expected time that a node will be part of the network can be determined
by viewing a node’s lifetime as a simple Bernoulli process. In each iteration
a biased coin is tossed for every node. The outcome of this Bernoulli random
experiment determines if the node stays in the network, or is replaced in the
next round. The probability for a node to be deleted after exactly x iterations
is P[x] = pd(1− pd)

x−1 = pd p̄x−1
d . Hence, the expected value for the lifetime

of a node is given by E[x] = ∑∞
x=1 xP[x] = ∑∞

x=1 xpd p̄x−1
d = pd ∑∞

x=1 xp̄x−1
d .

This sum is related to the sum of the geometric series ∑∞
x=0 rx = 1

1−r , for
|r| < 1, by being its first derivative1. Therefore, the expected value for the

1The first derivative of the sum of the geometric series is d ∑∞
x=0 rx

dr = ∑∞
x=0

drx

dr =

∑∞
x=1 xrx−1 =

d 1
1−r
dr = 1

(1−r)2 , for |r| < 1.
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lifetime of a node is E[x] = pd/(1− p̄d)
2 = 1/pd. This means that, for example,

nodes with a deletion probability of pd = 5e−5 will be on average deleted
after 20,000 iterations.

3.1.2. Properties

The properties of this model are examined by analyzing an extended version
of the integrated network. This is very similar to the basic framework, in
which the temporal network is represented as a sequence of graphs. These
graphs are denoted as instantaneous networks, and the union of these
networks up to a time step T is called the integrated network. This is also
true for this extension, however, the links in the integrated network have an
additional weight assigned to them, which corresponds to the tie strength
in the egocentric networks of the nodes. Another equivalent way to define
the integrated network is the union of all egocentric networks up to some
time step T.

These newly introduced mechanisms have interesting effects on how the
structures in the integrated network evolve over time. In the beginning, after
nodes formed their first ties, they start to close triangles and reinforce the ties
in their egocentric network. This means that strong community structures
are formed early in the process. However, after a while more and more weak
ties are introduced and fewer triangles are closed, so that the strength of
the communities declines and the network reaches its equilibrium state. As
mentioned earlier, the node deletion probability can be used to control the
time until the network converges, but it can also be used to tune the strength
of the communities and the average degree of the network. A smaller value
for pd decreased the average local clustering coefficient and increases the
average degree.

The cyclic closure probability p∆ and the reinforcement increment δ control
the formation of communities as well (see figure 3.4). Furthermore, like
the node deletion probability, the two parameter have an effect on the
average degree of the converged network. Higher values for the cyclic
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closure probability or the tie reinforcement increment result in a smaller
average degree. However, the two parameter do not influence the actual
(heterogeneous) distribution of the degrees in a significant way. The tie
strengths, which are power-law distributed, are not affected by p∆, and
larger values for δ only influence the length of the tail of the distribution.

Another characteristic of this model is the larger impact of the cyclic closure
probability on the emerging community structures compared to the tie
reinforcement increment. This is true since p∆ affects the number of triangles
directly, whereas δ is responsible for the creation of strong ties, which
increases the bias in the local search, and only assists in the process of
finding suitable nodes for the triangle formation. Additionally, the model is
able to produce higher-order correlations, that are observable in real-world
networks as well. For example, weight-topology correlations (i.e., stronger
ties within groups) are measurable and are dependent on p∆ and δ as well.

3.2. Peer Influence Extension

3.2.1. Idea and Incentive

So far, the activity in temporal networks was entirely determined by the
activity-potential distribution. Each node is assigned an intrinsic probability
to become active in each round, which is drawn from this distribution. The
assignment is done only once for every node when it is created, and does
not change afterwards. After that, a node can become active in an iteration
either by himself or by being contacted by another active node.

The process of becoming active on one’s own accord does not dependent on
whether or not the node was active in previous time steps. This corresponds
to a memory-less Poisson process and leads necessarily to exponentially dis-
tributed times between two consecutive activations of a node (i.e., inter-event
times). The significance of complex long-tailed inter-event time distributions
in human behavior was already discussed in section 2.5.
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(a) (b)

(d) (e) (f)

(c)

Figure 3.4.: Depiction of the influence of p∆ and δ on the resulting community structures
(image borrowed from [LSK15]). The networks in the first row (a)–(c) were
generated with a fixed value for the link reinforcement increment δ = 1 and
varying values for the cyclic closure probability (from left to right: p∆ = 0.5,
p∆ = 0.9, and p∆ = 0.995). This shows that p∆ directly influences the strength of
the communities. Furthermore, tie strength heterogeneities are observable, with
strong ties within communities (darker link color) and weak ties between them
(brighter link color).The second row (d)–(f) shows networks with a fixed cyclic
closure probability p∆ = 0.995 and different reinforcement constants (from left
to right: δ = 0, δ = 0.5, and δ = 1.5). This shows that a high probability for the
formation of triangles is not sufficient for the formation of communities. The
reinforcement process, which helps to develop strong ties, is required as well
and also affects the size of the communities.
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However, it is evident that activations caused by other nodes are not neces-
sarily independent of previous events, due to the memory effects introduced
in the model. For example, lets assume a node with very low activity poten-
tial is part of a group of high-activity nodes with already established strong
ties. The self-activation rate of the low-activity node will be quite low, with
a mean value and standard deviation of the inter-event times that is equal
to the inverse of its activity probability.

Nevertheless, the other nodes in the group will fairly often select the low-
active node as communication partner when they become active, due the
biased local search. This can, of course, alter the inter-event time distribu-
tions of nodes with a small activity potential in a significant way, compared
to the distributions that are generated by the activity-driven framework,
where the activation through other nodes happens completely at random.
This, in this case implicit, influence that nodes have on the activity of their
neighbors is an interesting effect and was a starting point for our thesis.
In this section, an extension of the prior discussed underlying model with
memory and closure effects is presented, which tries to model the influences
of peers in the local network in a more explicit way.

The ideas for our model were heavily influenced by the work of Walk et al.
[Wal+16]. They proposed a model that includes peer-influence effects and
examine its impact on the global activity in collaboration networks. A more
detailed description of their work is located in section 2.6. The gist of the
by us proposed extension to the community-oriented activity-driven model
is that a node cannot only become active on its own based on its activity
potential, but also by being motivated to become active by its neighbors,
that were active in the previous iteration.

Another way to look at it is that active nodes are able to influence their
neighbors to become active as well in the next round. Therefore, introducing
a more explicit peer influence mechanism to the model. This also means that
a node now can become active in three different ways. First, it can become
active by himself either due to its intrinsic fixed activity probability or due
to the influence of the nodes in its egocentric network, or it can become
active in a passive way by being contacted by another active node.
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3.2.2. Description

The peer influence that a node vi receives from its neighbors is denoted as
pi. Like the activity potential, pi is a probability for an activation as well, but
instead of being fixed, it may vary in each iteration based on the number of
active neighbors in the last round. Therefore, a more appropriate notation
is pi(t). To adjust how much peer influence a node can receive at most,
an upper bound q is defined, such that ∀t : 0 ≤ pi(t) ≤ q ≤ 1. It denotes
the maximal probability for an activation motivated by the neighbors of a
node.

Since the peer influence probability depends on the neighbors that were
active in the last round, the information of the last activations of the nodes
must be stored as well. This is done by extending the egocentric networks
to save the timestamp of the last activation for each node. The time of last
activation of vi is called ti and is updated independently of the type of
activation (i.e., due to self activation, or by being contacted by another active
node).

Furthermore, the peer influence probability should not only be dependent
on how many neighbors of a node were active in the round before, but
also on the strength of the ties between them. A neighbor that shares a
strong connection with a node should be more influential than, for example,
neighbors that were only recently introduced to the egocentric network. This
can easily be described by a weighted fraction of the last active neighbors.
However, to make the model more general and adaptable the following
version of the weighted fraction of active neighbors at time t− 1 is used, that
transforms the weights beforehand. Each weight in the egocentric networks
of vi is transformed and normalized by

w′i,j =
exp(βwi,j)

∑k∈N(vi)
exp(βwi,k)

, (3.1)

where β is a free parameter.
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This corresponds to applying the softmax or normalized exponential func-
tion [Bis06] to each weight. The softmax function is strongly related to the
Boltzmann distribution [LA87], which describes the probability for states
in a physical system (e.g., particles in a magnetic field) with respect to the
system’s temperature and the energy of its states. Low energy states have a
higher probability in the distribution, and as the temperature of the system
gets close to zero, the probability for the state with the lowest energy is
almost equal to one. Whereas, in a high temperature system all states are
nearly equiprobable.

The free parameter β in the softmax function is called inverse temperature
and replicates the behavior of physical systems. It is defined as the reciprocal
value of the temperature. This softmax function is used in many applications
in different fields besides physics as well. For instance, it is used in the
machine learning area of reinforcement learning, where the actions of agents
in some setting are selected with respect to the probabilities yielded by the
softmax function. Crites and Barto [CB98] apply this method to control
a group of elevators using multiple agents. It is also, for example, used
in the modeling of the decision making behavior of humans in economic
settings [Ray+08].

The usage of the softmax function in our model allows for different influence
scenarios. For example, a value of β = 0 (this would correspond to a very
high temperature) would scale every weight to the same value, which
means that every active neighbor influences a node equally, regardless
of the tie strength. However, it also possible to make β time-dependent
(i.e., β(t)), similar to a physical system that is cooling off or heating up.
For instance, for most of our experiments is the temperature at time t
set to the average weight in the integrated network GT = ∑t

i=0 Gi (i.e.,
β(t) = ( 1

m ∑(i,j)∈E(GT) wi,j)
−1). The normalized weights w′i,j are also part of

the extended egocentric network (c.f. figure 3.5) and must be updated at
the end of every iteration. The weighted fraction of active neighbors αi(t) of
node vi at time t− 1 is then given by
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Figure 3.5.: Extended egocentric network of the node vi (red node) and its neighbors
vj, vk, and vl (blue nodes). Each node stores additionally the point in time
on which it was last active. For instance, node vj was last active at t = 42.
Furthermore, the scaled and normalized weights w′i,j are part of the network.
For example, the scaled weight for the tie between vi and vj can be calculated
by w′i,j = exp(3)/exp(3) + exp(5) + exp(3) = 0.114. For the sake of simplicity is β = 1
in this example.

αi(t) =
∑j∈N(vi)

1{tj=t−1} exp(β(t)wi,j)

∑j∈N(vi)
exp(β(t)wi,j)

=
∑j∈N(vi)

1{tj=t−1}w′i,j
∑j∈N(vi)

w′i,j
, (3.2)

where 1{x} is the indicator function, which yields the value 1 every time the
predicate x is true, otherwise it is 0.

Next, the weighted fraction of prior active neighbors must be mapped
to a peer influence probability in the range [0, q] using a monotonically
increasing function. One possibility would be the usage of a linear function
g(α) = qα defined for values 0 ≤ α ≤ 1. However, this function seems to not
capture the peer influence mechanism very well. On one hand, an additional
active neighbor should not be heavily influential when there is already a
large portion of neighbors active. The peer influence should saturate after
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some fraction of active neighbors is reached. On the other hand, the peer
influence for a node should become noticeable after some threshold of active
neighbors is reached.

These requirements can be satisfied by using a sigmoid function. Similar
to [Wal+16], the following algebraic sigmoid function g is used to determine
the peer influence for the node vi:

pi(t) = g(αi(t)) =
αi(t)q√

α2
i (t) + θ2

, (3.3)

where the parameter q is the maximum peer influence, as discussed prior,
and θ > 0 denotes a critical threshold, which determines the required
(weighted) fraction of active neighbors to set the peer influence probability
close to its maximum. Therefore, active neighbors always affect the peer
influence probability, but only after a certain point in a significant way.
The satisfaction of the prior described requirements for the function can be
verified by examining its first derivative

dg
dα

=
qθ2

(θ2 + α2)
3/2

, (3.4)

which approaches zero very fast for values grater than q.

Sigmoid functions are usually defined for all real values, since they are
often used to rescale values to the range [−1, 1] or [0, 1]. However, in our
model only input values on the unit interval are relevant and, therefore, the
two parameter q and θ should be selected carefully to archive the desired
peer influence behavior. For instance, too large values for θ may obstruct
the peer influence mechanism critically, since the maximum influence may
never be reached, even if α = 1. Figure 3.6 shows the discussed sigmoid
function with different values for the critical threshold.
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Figure 3.6.: Depiction of the sigmoid function that is used to calculate the peer influence
probability pi of a node based on its (weighted) fraction of active neighbors
α for different values of the critical threshold θ. The maximum possible peer
influence probability in this example is fixed to q = 0.10. The critical threshold
determines how fast the maximum peer probability can be reached. Values
in the range between 5% and 20% seem to be a sound choice, since already a
small number of influential neighbors should suffice to have a notable effect on
a user.
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The self-activation mechanism for nodes must be adapted as well. The
simple biased coin flip becomes a more sophisticated two-step random
experiment. First, like in the base model, a biased coin is tossed to determine
if a node becomes active with probability that corresponds to its activity
potential. If this first random experiment fails, the node gets a second chance
to become active by himself. This is done by calculating the node’s peer
influence probability and tossing another biased coin. Therefore, the total
probability for a node vi to become active at time t can be expressed by

P[vi becomes active] = ai + (1− ai)pi. (3.5)

This concludes the definition of the extension for the community-oriented
activity-driven time-varying network model that introduces a new peer
influence mechanism. Table 3.1 contains an overview of all model parameter
and their origin. Note that many of them (e.g., ∆t, η, . . . ) have reasonable
default values assigned to them in the context of our work.
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parameter description

activity-driven framework

n The number of nodes in the network.
f (x) The probability distribution for the activity potentials

of the nodes. It yields a positive probability for values
in the range of [ε, 1].

ε The lower bound of the activity potential. It should be
0 < ε� 1.

∆t The length of the time window in each iteration.
η A rescaling factor for the activity potential to adjust

the average number of active nodes in each iteration.
m The number of contacts a node initiates, once it be-

come active.

community structure extension

p∆ The probability to form a triangle when establishing a
new tie.

pd The probability for node to get deleted in an iteration.
δ The constant value that is added to the tie strength

when it is reinforced.
c The memory constant, which influences the probabil-

ity to form a new tie.

peer influence extension

β Inverse temperature parameter for the softmax rescal-
ing of the weights. This parameter may also be time
dependent.

q The maximum possible peer influence probability that
a node can receive.

θ The critical threshold for the peer influence.

Table 3.1.: An overview of the parameter set of the proposed model.
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This chapter discusses the basic findings of the analysis of the by us pro-
posed peer influence model. All results were obtained from synthetic net-
works, with a fixed size of n = 5, 000 nodes, which were generated over
T = 75, 000 iterations. The properties that we present were obtained by
averaging the results of 40 independent runs, which is necessary due to the
stochastic nature of the model.

The model parameter responsible for the formation of the community
structures was set to p∆ = 0.90 for the triadic closure probability, δ = 1
for the link reinforcement constant, and pd = 5e−5 for the node deletion
probability for every experiment. Furthermore, the critical peer influence
threshold was fixed to θ = 0.10. This reflects the idea that only a relatively
small number of active neighbors is sufficient to affect the activity of a node
in a significant way.

The time-dependent topological properties of the integrated network, which
are discussed in section 4.1, are measured only for nodes that are part of
the temporal network. This means that nodes, which were removed earlier
due to the node deletion mechanism do not influence the properties of the
integrated network any more. Section 4.2 contains an overview of the overall
network activity with respect to different levels of peer influence. The effect
of the peer influence mechanism on the inter-event time distribution in
the network is examined in section 4.3. Furthermore, the distributions of
the node degrees and tie strengths (i.e., the link weights) derived from the
integrated networks are the subject of section 4.4. All these experiments are
performed for different values for the maximum peer influence probability
q.
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However, for the analysis performed in the last section of this chapter
(section 4.5) we use a fixed value for the peer influence level and discuss
how different values for β, the inverse temperature for the softmax weight
rescaling, change the peer influence effects in the network. The generated
temporal networks, which are used in the experiments of the first four
sections of this chapter, adopt the current average tie strength as temperature
for the softmax weight rescaling. Therefore, β is set to the to the reciprocal
value of average weight in the integrated network in each iteration after the
first one (i.e., β = 1 in the initial round to avoid division by zero, since no
ties have been formed yet).

4.1. Time-dependent Integrated Network
Properties

Not only the final integrated network of all 75,000 instantaneous networks
and its properties are of great interest, but also how they evolve during the
simulation. This time-dependent view on the network allows us to get a
deeper understanding on how the model shapes the communities and the
effects of the peer influence mechanism on these structures. The integrated
network is build in an iterative fashion to make these observations possible.
A snapshot of the integrated network is taken after the newly formed ties
are included and the weights of already established links are updated in
every time step. Measures like the average local clustering coefficient or the
average weight of the ties are calculated for each of the 75,000 integrated
network snapshots. This allows us to examine how the topology and other
measures change over time.

The first, and most interesting, measure that we investigate is the average
local clustering coefficient C(t). Figure 4.1 depicts the development of C(t)
over the course of the simulation for different levels of peer influence. The
graph of this function has a very distinctive pattern, which was already
explained in the original work by Laurent, Saramäki, and Karsai [LSK15].
The average clustering coefficient is very small in the first few hundred
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iterations, due to the sparsity of the integrated network. Almost all nodes
are disconnected and the number of triangles, which have already formed
is relatively small compared to the size of the network.

Figure 4.1.: The average local clustering coefficient C as a function of time for different
maximum peer influence probabilities q = 0, 0.01, 0.05, 0.1, 0.15.

However, figure 4.1 also shows that the clustering coefficient grows very
quickly until it reaches a maximum value after a short period of time. This
rapid increase is caused by the cyclic closure mechanism of the model.
Nodes that become active in this early stage first introduce some ties with
selected nodes following the focal closure mechanism. This does not increase
the average local clustering coefficient in a significant way, however, it
establishes the egocentric networks. After the first triangles are closed, the
first strong ties start to develop. These emerging strong ties amplify the
biased local search of the triadic closure mechanism and result, on one hand,
in more triangles, and on the other hand, in the reinforcement of already
established triangles and the associated strong ties. This leads to a higher
local clustering in the communities.

Nevertheless, weak ties are eventually introduced to the network by the
focal closure mechanism as well. They are rarely involved in the formation
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q 0.00 0.01 0.025 0.05 0.075 0.10 0.15

tmax 5,140 4,919 4,839 5,192 4,173 4,044 3,038

Cmax 0.5659 0.5689 0.5721 0.5773 0.5822 0.5895 0.5963

Table 4.1.: The maximum value for the local clustering coefficient Cmax = max C(t) and the
time to reach the maximum tmax = arg max C(t), for different values of q.

of new triangles, due to the bias towards strong ties, which contributes to
the decrease of the average local clustering coefficient until the network
reaches its stationary state.

The by us introduced peer influence mechanism seems to influence the
development of the local clustering in the beginning of the simulation
significantly. Figure 4.2a depicts the time-dependent average local clustering
coefficient in the initial phase of the simulation (i.e., for the first 10,000

iterations) for a range of possible values for q. It shows that the peak of
C is reached faster for networks in which nodes are able to motivate their
neighbors to a larger extent.

For instance, the network in which nodes are not able to influence their
neighbors reaches it peak value for C after approximately 5,000 iterations,
while the network with a maximum peer influence probability of q = 0.15
is more than 2,000 iterations faster. However, the effect only occurs for net-
works with q > 0.05 and the actual maximum value of the local clustering
coefficient only increases slightly for higher levels of peer influence (cf. ta-
ble 4.1 for the precise figures). Nevertheless, the proposed mechanism seems
to have a positive effect on the development of the topological structures in
the network by accelerating the process in the beginning.

The percentage of network activity, which is responsible for the reinforce-
ment of ties in each iteration r(t), highlights the observed behavior as well.
In the beginning most activity is spent on the formation of new ties, and
therefore building the topological structures of the network, but after a while
more and more activity is focused on reinforcing existing ties, which leads
to a drastic increase of r(t). This is also emphasized by the time required
to reach the point from which on more than half of the total activity is
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(a) (b)

Figure 4.2.: Segments in the evolution of the local clustering coefficient for different levels of
peer influence. (a) shows the clustering coefficient for the first 10,000 iterations
of the simulation, in which it reaches it maximum value and slowly starts to
decrease. (b) depicts the stationary values for C, which can be observed in the
last 5,000 iterations.

spend on reinforcement. This point is reached for the network with q = 0.15
after only 109 iterations. The network with no peer influence takes with
229 iterations about twice as long, indicating that peer influence may play
an important role in the first few iterations that shape the topology of the
network.

The share of reinforcement activity does converge to a value of over 90%
for all levels of peer influence after a short period of time, which highlights
the domination of the reinforcement process. Figure 4.3 shows the plots for
the percentage of reinforcement activity over time in the initial phase of the
simulation and over all 75,000 iterations. The plots of r(t) also reveal a link
between the extent of reinforcement that is happening and the degree of peer
influence. In the network with no peer influence effects is the proportion of
reinforced to created ties on average 0.8961. The value increases to 0.9550 in
the network with a maximum peer influence probability of 15%. This can
possibly be attributed to the overall increased activity within communities,
due to the peer influence effects, and the associated bias towards local
strong ties. With other words, the increased local activity overshadows
the introduction of random links by low-activity and/or poorly integrated
nodes.
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(a) (b)

Figure 4.3.: The percentage of reinforced ties r(t) = Er(t)/(Er(t) + Ec(t)) for different levels of
peer influence as a function of time, where Ec(t) and Er(t) are the number of
created ties and the number of reinforced ties in iteration t, respectively. (a)
shows the ratio over all 75,000 iterations and (b) highlights the behavior in the
beginning. Both functions were smoothed using the rolling mean method to
improve the quality of the plots.

The evolution of the average local clustering coefficient does depend on
the node deletion probability pd, since low-activity nodes, which are not
removed fast enough, introduce additional weak ties in the network [LSK15].
However, as clearly evident in figure 4.1, the level of peer influence does
influence the clustering, and therefore the community structures of the
network, as well. The more likely an activation due to peer influence gets,
the smaller the stationary value for C becomes. Figure 4.2b highlights this
effect well. This observation can possibly be explained in a similar way as
the effect caused by the deletion probability.

However, in the case of occurring peer influence, not the decelerated removal
of nodes is responsible for the smaller stationary value of C, but the overall
increase in the number of contacts between nodes. The peer influence mech-
anism increases the activity in the network, especially in already formed
communities (see section 4.2), since active nodes motivate their neighbors
to become active as well. The probability for the formation of a new tie is
inverse proportional to the size of a node’s egocentric network. Therefore,
an active node, which is already fully integrated in its community, will
reinforce one of its existing ties, or at least close a triangle, with high proba-
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bility. However, given enough tries, such a node will eventually introduce
new weak ties following the focal closure mechanism as well. Therefore, the
opportunities for the introduction of random links by active nodes increases,
which leads to a smaller average local clustering in general.

Two additional measures of the integrated network, the average node degree
and the average tie strength, were tracked over time for different magni-
tudes of peer influence as well. Figure 4.4 depicts the graphs for these
two network properties as function of time. Both measures show a similar
general behavior. The average degree and the average tie strength are not
independent of the maximum peer influence probability in the network
and do converge after the integrated network reaches its equilibrium. The
stationary values of both do increase with increasing values for q by about
the same order of magnitude, which is reasonable since both measures are
related to each other. The tie strength of a node can be seen as its weighted
degree.

(a) (b)

Figure 4.4.: Plots of (a) the average node degree d(GT) and (b) the average tie strength
〈w〉 in the network as a function of time for different maximum peer influence
probabilities q = 0, 0.01, 0.05, 0.1, 0.15.

However, the time it takes for them to converge differs. The average degree
takes longer to reach its stationary value. This can possibly be explained
by the small probability for the creation of new ties after the egocentric
networks have gained a certain size. Every new neighbor reduces the proba-
bility for the creation of a new tie in the future significantly. The average
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tie strength does not suffer from this problem, due to the fast development
of strong ties and the decreasing probability for the introduction of weak
ties.

The direct effect of the peer influence mechanism on the average degree
and average weight can probably be explained, similar to the effect on
average local clustering coefficient, by the additional activity in the temporal
network. Nodes are getting more opportunities to add additional neighbors
and to strengthen their ties until they get removed. Note that the slightly
different convergence behavior of the average tie strength for the high peer
influence probability q = 0.15 cannot be explained fully at this point. It
may be related to the by comparison significantly slower convergence of the
average degree, but it is ultimately left open for possible future studies.

4.2. Network Activity

One obvious implication of the proposed peer influence mechanism is an
increase in the activity in the network. Nodes can become active by them self
not only due to their intrinsic activity potential, but also by the influence of
their peers. The number of nodes that become active in iteration t entirely by
them self is denoted as Ea(t), and the number that becomes active motivated
by others is denoted as Ep(t). Therefore, the total number of activations per
iteration is E(t) = Ea(t) + Ep(t).

The number of peer influenced activations in a networks with q = 0 is
trivially Ep(t) = 0, and the number of self-activations can be approximated
by Ea(t) ≈ nE[ai]. For example, the approximated number of activations in
a network with no peer influence effects and the prior specified parameters
(γ = 2.7, ε = 0.001, and n = 5, 000) is Ea(t) ≈ 12.05, which matches the
observed figures. In fact, this number is roughly the same for all levels of
peer influence, since the process of node self-activation due to the intrinsic
activity potential is independent of the peer influence mechanism.

The total number of activations, and therefore the gain in activity due to
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Figure 4.5.: Time-dependent number of activations E(t) in the network for different levels
of peer influence q. The graphs were smoothed using the rolling mean method
to improve the visualization.

the peer influence, is depicted in figure 4.5. It shows that E(t) reaches its
stationary value quickly for smaller levels of peer influence. However, the
development of the total number of contacts per iteration is more complex
for networks with a higher degree of peer influence. The first phase can be
described as a rapid increase in the number of activations, which stops after
approximately 8,000 iterations. After that, the development of E(t) starts to
relax and slow down. The activity level even starts to decreases slightly in
the network with a maximum peer influence probability of q = 0.15. Finally,
the numbers slowly converge to their stationary values, which are reached
after about 40,000 iterations. This is also supported by the evolution of the
fraction of the peer influenced contacts per iterations i(t), which shows the
same general behavior (cf. figure 4.6).

The observed ramifications on the total activity in the network is possibly
related to the development of the community structures and its effects
on the peer influence mechanism. The stagnation (or even reduction) of
the activity begins after a maximum value for the average local clustering
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coefficient was reached (cf. figure 4.1), which is caused by the introduction
of weak ties. These new ties are possibly responsible for the merging of
communities in the network, which in turn reduces the effects of the peer
influence mechanism. Inactive nodes in these newly merged communities
may have a greater impact on the weighted fraction of active nodes that
is required for a significant influence on nodes. This is could especially be
true for weakly integrated nodes. However, a more detailed analysis has to
be performed in the future to determine and verify the true effects, which
are responsible for the observed behavior in the network activity for larger
magnitudes of peer influence.

(a) (b)

Figure 4.6.: Different views on the ramifications of the peer influence mechanism on the
activity in the network. (a) depicts the evolution of the fraction of peer influ-
enced activity i(t) = Ep(t)/E(t) over time for different levels of peer influence and
(b) shows the aggregated number of contacts ES(t) over all 75,000 iterations.
The i(t) graphs were smoothed using the rolling mean method to improve the
quality of the plot.

The effects of the peer influence mechanism on the activity within the time-
varying network can be observed in other ways as well. For instance, fig-
ure 4.6b depicts the cumulative number of contacts (i.e., ES(t) = ∑i≤t E(i)),
which highlights the quantity of additional activity that was caused by dif-
ferent degrees of peer influence over time. Another example for the impact
of the newly introduced mechanism is the change in the distributions of the
number activations in a given time interval. There is a shift in the bulk of
the distributions observable, which indicates an increased probability for
larger number of activations of a node.
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4.3. Inter-event Time Distributions

As already mentioned in the motivational section of this thesis (section 1.3)
and while discussing different ways to model user activity (section 2.5),
human activity patterns can be fairly complex. They can be described as
bursts followed by longer phases of inactivity and are usually character-
ized by the inter-event time distribution ϕ(τ), which should reflect these
requirements.

The inter-event times are defined, in the context of our model, as the time
between two consecutive activations of a node. The type of activation (i.e.,
activation due to peer influence, activity potential, or contact by another
active node) is not taken into account for the by us performed analysis. Each
node vi in the network has its own inter-event time distribution ϕi, which
depends on the node’s activity potential and on the influence of its peers.

However, to get a better overview on how the peer influence mechanism
changes the dynamics in the network in general, the union of the inter-event
time distributions of all nodes is examined. The sequence of inter-event times
is determined for every node, that was active between the beginning and the
end of the simulation, separately and then combined into one distribution.
This distribution can be seen as a mixture of distributions [Sei11] of nodes
that were at some time present in the network, i.e.,

ϕ(τ) = ∑
i

πi ϕi(τ), (4.1)

where πi denotes the mixing weights, which must be selected such that
∑i πi = 1 holds. Therefore, the mixing weights determine the relative impor-
tance of the individual distributions. For our experiments every distribution
is considered equally important and is assigned the same weight, such that
the summation constraint is fulfilled.

The burstiness of human behavior is difficult to describe and even more
difficult to quantify. It is usually determined by certain moments of the
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inter-event time distribution. For instance, the coefficient of variation [ML16]
is defined as the ratio between the standard deviation σ and the mean µ of
the inter-event time distribution, i.e., cv = σ/µ. It takes the value 0 when the
events are occurring at a fixed non-random rate. The coefficient of variation
is 1 for exponentially distributed inter-event times, which is the case for
events that are generated by a Poisson process, and cv can get arbitrarily
large for long-tailed distributions, such as power laws.

A normalized variant of the coefficient of variation was proposed by Goh
and Barabási [GB08], which is called burstiness parameter and is defined
as

B =
cv − 1
cv + 1

=
σ− µ

σ + µ
, (4.2)

and takes values in the range B ∈ [−1, 1]. The burstiness parameter is −1
for regularly occurring events, 0 for inter-event times that originated from a
Poisson process, and 1 for a distribution that was derived from an extremely
bursty sequence of events.

A nice property of this burstiness measure is that it can also be applied
to mixture distributions that contain the inter-event times of, for example,
people with different intrinsic activity levels. For instance, the inter-event
times of power-users that use a system heavily every day can be combined
with those of users that use it only irregularly and the burstiness parameter
is able to capture the level of burstiness, that is present in the usage of the
system, regardless. Therefore, it is also applicable for the inter-event time
distributions derived from the simulations of the peer influence model.

The burstiness parameter for generated networks with no peer influence
is approximately B = 0.19. The introduction of peer influence increases
this value, however, a drastic increase can only be observed for larger
values of the maximum peer influence probability q. Table 4.2 contains
the mean, standard derivation and burstiness parameter of the inter-event
time distribution for a maximum peer influence probability in the range
0 ≤ q ≤ 0.15.
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q 0.00 0.01 0.025 0.05 0.075 0.10 0.15

µ 198.71 184.59 164.26 132.80 102.43 76.28 37.23

σ 291.32 270.49 241.40 197.38 155.09 118.04 61.22

B 0.1890 0.1888 0.1902 0.1956 0.2045 0.2149 0.2437

Table 4.2.: Mean value, standard deviation and the resulting burstiness parameter of the
inter-event time distribution for different levels of peer influence.

This change in B indicates that the peer influence mechanism affects the
burstiness of the node activations. In a network with no peer influence
are two consecutive self-activations independent of each other. Therefore,
the activations happen at a certain rate that is proportional to the activity
potential of a node, which leads to exponentially distributed inter-event
times [MSP16]. This should results in a burstiness parameter that is close to
B = 0. However, this is not the case for the inter-event times that were gen-
erated with the proposed model, even though peer influence was disabled
(cf. table 4.2).

The observed value for B can possibly be explained by the memory effects,
which allow for reoccurring interactions within groups of nodes and by the
inclusion of passive activations due to other active nodes in the calculation
of the inter-event times. A node with a higher intrinsic activity potential will
select a node from its local group with high probability. Hence, this more
active node activates less active nodes regularly, which can lead to a more
bursty looking activity pattern of the other nodes, and explains (at least
partially) the burstiness value of B = 0.19. The peer influence mechanism
of this model should amplify this effect even more, since it increases the
activity within communities. Furthermore, the activation of nodes possibly
triggers cascading activations within the communities, which makes bursts
more likely as well.

One way to examine how the peer influence mechanism changes the inter-
node-activation times in the network is to inspect their distribution visually.
Figure 4.7 depicts the inter-event distributions for a variety of peer influence
levels. The plot shows the distribution on a log-log graph, where both axis
are scaled logarithmically. This highlights the possibilities for longer inter-
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Figure 4.7.: Log-log Plot of the inter-event time distribution for different maximum peer
influence probabilities q = 0, 0.01, 0.05, 0.1, 0.15.

Figure 4.8.: Plot of the bulk of the inter-event time distribution for small inter-event times
in the range 1 ≤ τ ≤ 10 and different levels of peer influence.
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event times between two consecutive activations well. The plot also shows
that the level of peer influence in the network changes the shape of the
distribution. Smaller inter-event times become more likely for higher levels
of peer influence, which can also be seen in the change of the distributions’
mean values (cf. table 4.2).

The average time between activations decreases from about 200 in a network
with no peer influence at all, to 38 in a network with q = 0.15. The changes
in the distributions are even more noticeable for inter-event times less than
ten time steps. Figure 4.8 depicts the distributions in this interval of τ. The
probability for two successive activations increases drastically from less than
2% to almost 22% over the range of possible values for q. This development
of the probabilities possibly explains the increase of the burstiness of the
distributions, since a larger number of events within a small time frame
becomes more probable due to the peer influence mechanism.

However, the tail of the inter-event time distribution changes for higher
levels of peer influence as well. Large inter-event times become more and
more unlikely for larger values of q, and the length of the tail decreases as
well. The values for the standard derivation of the distributions reflect this
behavior as well (cf. table 4.2). The standard derivation of the inter-event
times in the network with high peer influence effects is only about one
fifth of the standard derivation in the network without peer effects. This, of
course, prevents longer intervals of inactivity to a certain extend, which is
the second crucial requirement for realistic activity patterns.

4.4. Degree and Tie Strength Distributions

While section 4.1 examines the average degree and tie strength as functions
of time, are the distributions of these two properties the topic of discussion
in this section. Both distributions are obtained from the extended version of
the integrated network, which contains all nodes that were present in the
last iteration of the simulation. The degrees and tie strengths of nodes that
were deleted in previous iterations are not part of the results.
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The ramifications of the memory process and the closure mechanisms on
the distributions were already a subject in the original work by Laurent,
Saramäki, and Karsai [LSK15]. They showed that both the degrees and the
tie strengths are heterogeneously distributed. Furthermore, the shape of the
degree distribution is only slightly affected by the triadic closure probability
p∆ and the tie reinforcement increment δ. However, while not being affected
by p∆, the tie strength distribution does depend on the memory process of
the model. For instance, larger values for δ increase the length of the tail.

Nevertheless, a more important issue are the effects on the degree and tie
strength distributions caused by the proposed peer influence mechanism.
First and most important, the peer influence mechanism does not effect
the heterogeneous nature of both distributions, which is an often observed
property in many real world networks [AB02; KPV14]. The resulting possi-
bilities for nodes with higher degree indicate the presence of hubs, which
may play, depending on the context, various important roles in networks.
Figure 4.9 depicts the right-skewed degree distributions for networks with
different levels of peer influence. It shows that not only the average degree
in the network is directly affected by the peer influence process, but the
distribution itself as well. Nodes with small degrees become less proba-
ble, while higher degree nodes become more frequent with the increasing
magnitude of peer influence. Furthermore, the tail of the distribution does
not seem to be significantly affected by the process. The change in the
shape of the distribution is in line with the already observed increasing
average degree and can be explained by the same argument as well. The
boost in node activations caused by the influence of the neighbors leads to
more opportunities for the formation of new ties and consequently to larger
egocentric networks.

The memory process is primarily responsible for the heterogeneous tie
strength distribution and the introduction of the peer influence mechanism
does, in fact, not change the distribution in a significant way. Figure 4.10

shows the distributions for different values for the maximum peer influence
probability. One might expect that the increased activity within the temporal
network would extend the tail of the distribution in a significant way.
However, this is not the case, and a possible explanation for this effect
is related to the increased average size of the egocentric networks. More
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Figure 4.9.: Depiction of a degree distribution of the integrated network for different
maximum peer influence probabilities q = 0, 0.01, 0.05, 0.1, 0.15.

Figure 4.10.: Log-log plot of the distribution of the tie strengths (i.e., the link weights) in
the integrated network for different degrees of peer influence.
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neighbors imply a larger number of strong ties, which require frequent
contacts to develop. Therefore, the additional activations caused by the peer
influence mechanism are spent on the development of the additional strong
ties and not on reinforcing the existing ones, which would presumably
enlarge the tail. This would also explain the more frequent weights in
the lower double-digit region, which is a consequence of the on average
increased tie strength for networks with peer effects.

4.5. Tie Strength Rescaling Scenarios

Nodes are only able to influence their peers if they were active in the
previous iteration. The magnitude of influence does depend on the strength
of the ties between nodes. This is based on the idea that the activity of a
close friend should be more effective in motivating a person to become
active as well, than the activities of acquaintances.

The weights (i.e., the strength of the ties) are usually rescaled in such a way
that larger weights become even larger to amplify the importance of close
neighbors. This can be archived by using the softmax function, which also
allows to control the weight rescaling process even more using the inverse
temperature parameter β. This free parameter can vary in time as well
to allow for different rescaling characteristics depending on the progress
of the simulation. Furthermore, it also allows for various peer influence
scenarios, in which nodes get influenced to different extents, depending on
the situation.

This section highlights the ramification on the peer influence mechanism
for the following three different weight rescaling strategies. Note that the
results for the scenarios are obtained from synthetic networks with a fixed
maximum peer influence probability of q = 0.05. All other model parameter
are set to the same values that were already used in the other experiments.
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β(t) = 〈w〉(t)−1

The temperature for the softmax rescaling is set to the average tie strength in
the snapshot of integrated network at time t. This scenario is used in all other
previously discussed experiments in this chapter. Section 4.1 shows that the
average tie strength does increase over time until it reaches its stationary
value. Therefore, this effectively introduces a bias towards stronger ties in
the early stages of the simulation that decays over time. The activity of close
neighbors influences nodes to a greater extent in the beginning, which is
possibly beneficial for the formation of the community structures.

β(t) = 1
In this scenario the inverse temperature parameter is fixed to the constant
value 1 for each iteration. Therefore, the bias towards strong ties is overall
more prominent compared to the previous scenario, and does not change
during the entire simulation. This may lead to situations in which only a very
small number of neighbors do actually influence a node once they become
active, since weaker ties become so insignificant that they do not exercise
considerable influence anymore. Hence, only one of the highly influential
neighbors is possibly enough to influence a node at the maximum possible
level.

β(t) = 0
In the last scenario β is fixed to 0, which basically disables the softmax
weight rescaling entirely and assigns each tie the exact same weight. The
strength of the tie between any ordered pair of nodes (vi, vj) in the network
is rescaled to w′i,j = 1/|N(vi)|. This allows neighbors, which share a weak tie
with a node, to exercise the same degree of peer influence as strong tied
neighbors. Therefore, an on average larger number of active neighbors may
be required to reach the maximum possible magnitude of peer influence for
a node.

It seems reasonable to examine the change in the network activity for the
three different rescaling scenarios, since most of the explanations for the
effects observed in the other experiments are related to it. Figure 4.11 shows
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the number of interactions between nodes and the fraction of peer influenced
interactions as functions of time for the three different scenarios.

Compared to the rescaling scenario that adapts to the average tie strength in
the network, an overall decrease in the number of interactions is observable
in the β = 1 scenario. This behavior can be attributed to an excessive bias
towards strong ties. Nodes only become active by them self due to their
intrinsic activity potential or possibly if one or two of their strong tied
neighbors were active in the round before. This probably restricts cascading
activations within groups as well, since weakly tied nodes are not able to
propagate activations properly. The number of contacts and the fraction
of those activations that were caused by peer influence increase rapidly
in the first few hundred iterations in the β = 1 scenario, and decreases
slightly after they reached a maximum value. This small decrease is not
observable in the other two scenarios and can possibly be attributed to
the weight heterogeneities that start to emerge at this point in time in the
network, which constrains the peer influence mechanism in this scenario
even more.

(a) (b)

Figure 4.11.: Depiction of the influence on the activity over time for different values of β, the
inverse temperature for softmax rescaling. (a) shows the number of interactions
for each iteration E(t) and (b) depicts the fraction of activations that were
caused by the peer influence mechanism i(t). The graphs were smoothed
using the rolling mean method to improve the quality of the visualization.

The scenario that disables the softmax weight rescaling using β = 0, how-
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ever, does increase the number of contacts in the network in each iteration
drastically. The expected larger number of active neighbors, which is re-
quired to motivate a node seems to be archived fairly often. This can possibly
be attributed to the relatively low critical peer influence threshold θ = 0.10,
which should probably be adjusted for this rescaling scenario. Furthermore,
the network activity does not convergence in this scenario. One possible
explanation for the continuous increase in the number of contacts could be
attributed to self-enhancing cascading activation effects going through the
network. However, this requires additional investigation and is a possible
topic for future studies.
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In the final chapter of this thesis we not only present a review on the
achieved results, but also include a short summary of the preceding chap-
ters. Furthermore, we discuss possible limitations of the proposed peer
influence model and the methods that were used for its evaluation. Fi-
nally, we conclude the thesis with suggestions for possible future studies.
These suggestion include improvements for the model itself, and potential
interesting experiments on synthetic and real-world networks.

5.1. Recap

We started our work with a brief motivational section, which sequentially led
to the incentive for the proposal of an extension to the activity-driven time-
varying network framework [Per+12a], which incorporates peer influence
effects. The key idea behind the proposal is that people do not solely perform
actions based on their intrinsic motivation, but also because of the influence
of their peers. This idea stands in contrast to the activity-driven network
model, in which nodes can become active only by them self based on their
activity potential. Therefore, it provides an ideal foundation to implement a
model with a peer influence mechanism on top of it.

Moreover, preliminaries on the basic topics of graph theory, various types of
networks and related generative models, and time-varying networks were
discussed. These are essential for the subsequent definition and evaluation
of the proposed model. A detailed review on the activity-driven framework
itself, the properties of the temporal networks it generates, and on the latest
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related literature that either adapts or extents it, was performed as well.
Furthermore, an overview on sociological peer influence studies and net-
work models, which utilize different types of peer influence mechanisms, is
also an element of our work, to highlight the rationale behind the proposed
model even more.

The presence of peer influence effects requires social structures, such as tie
strength heterogeneities and community structures, to exist in the network,
and while the basic activity-driven framework is capable of generating
rich topological structures, it is not able to provide these preconditions. To
overcome this issue, an extension of the framework by Laurent, Saramäki,
and Karsai [LSK15] was utilized as actual foundation for the proposed
model. It introduces memory effects and closure processes to allow for
the formation of communities and weight-topological correlations in the
networks. The mechanisms and properties of this model were discussed
in detail as well, followed by the comprehensive definition of the peer
influence extension, which was heavily influenced by the work of Walk et al.
[Wal+16].

The actual specification of the peer influence mechanism resolves various
important issues, such as,

• how to quantify the influence of neighbors in the egocentric network
of a node,

• how to determine the relative influence of individual neighbors based
on the tie strengths, or

• what additional components must be included into the model to store
the for the peer influence mechanism relevant information.

After the model1 was fully specified, we evaluated it on synthetic networks.
This included an examination of the effects on the topological structures of
networks, which showed that the peer influence mechanism does accelerate
the formation of the community structures and influences their strength.
Additional investigations on the increased activity within the networks

1An open-source Python implementation of the proposed model can be found at
https://github.com/dumfug/PIModel.
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and its implications was conducted as well. They revealed not only the
complex behavior of the total number of activations per iteration over time
for larger magnitudes of peer influence, but also the impact on the activation
patterns of individual nodes. The distribution of time intervals between
two consecutive activations changed in a way that allows for increased
burstiness, which is a property that is observable in human activity patterns.
Finally, we performed an evaluation of three different scenarios that vary the
relative influence of the tie strengths between nodes and their effects on the
overall network activity. This revealed interesting consequences, especially
in the case in which the influence of nodes was set to be independent of
the actual tie strengths, which resulted in diverging levels of activity in the
network.

5.2. Limitations

One shortcoming, which affected all performed experiments, is the rela-
tively small size of the generated networks. The number of nodes in many
real-world networks can be multiple orders of magnitude larger. However,
to simulate temporal networks of this size efficiently, improvements in im-
plementation of the model must be made, which minimize the additional
overhead of the peer influence mechanism. Nevertheless, this would possibly
help to explain some observed effects better. For example, the temporarily
decrease in the network activity for higher levels of peer influence, which
could possibly be explained by the merging of communities in the network,
is probably more prominent in larger networks.

Simulations of the model with an increased number of nodes would also
allow to compare the properties of synthetically generated networks with
those of real-world data sets more easily, and therefore help to verify the
validity of the proposed model. This would not only be highly interesting
for topological features like clustering, but also for the inter-event time
distributions. The observed changes in the distributions do not fully capture
the discussed characteristics of human activity patterns, which are bursts
followed by longer intervals of inactivity. While the probability for short
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breaks between activations increased with additional peer influence, which
matches the first requirement, declined the length of the tail. This, again,
restricts the possibilities for longer intervals between bursts.

A possible explanation for this behavior is an imbalance of the peer influence
mechanism. On one hand, a level of peer influence that is set too low,
does not affect the activity in a significant way. On the other hand, the
process becomes too dominant for higher levels, and leads to bursts within
communities that are repeated over and over again. A potential solution
would be to restrict the peer influence process in a way that nodes cannot
be easily influenced multiple times within a short period of time (i.e., a cool-
down time for the effect). However, this requires additional investigations
on how these cascading peer influence effects actually work.

5.3. Future Work

The proposed peer influence model provides various opportunities for
possible extensions and experiments. The following examples should give
some thought-provoking impulses.

Dynamic Processes A common use case of time-varying networks is their
ability to study dynamic systems [Hol15] in great detail. Two common types
of these dynamic processes are epidemic models and opinion spreading
models. The first one deals with the spreading of diseases. It typically
consists of a set of states (e.g., susceptible, infected, recovered,. . . ), which
nodes can adopt, and transition rules between them. Such models can,
for example, be used to study disease containment strategies. Opinion
spreading models, on the other hand, deal with the spreading or adaption
of certain concepts (e.g., opinions, ideas, products,. . . ), which usually follow
different spreading mechanisms. The by us proposed model could possibly
be used as a framework to study such dynamic processes with respect to
peer influence effects.
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Negative Peer Influence Peer influence is always considered a positive
force in the current version of the proposed model, which affects the activity
level of nodes in a positive way. This type of peer influence could, for
example, be observable in the context of open-source software projects,
in which the activity of maintainers possibly increases the motivation of
others to contribute as well. However, the activity of people in some social
scenarios may lead to the opposite effect. For example, a large number
of malicious contributions (e.g., due to trolls) in online communities may
induce a decline in the overall interest in the website. This idea was already
pursued in the context of activity dynamics by Koncar et al. [Kon+17].
Therefore, it would also be feasible to introduce negative peer effects in our
model, which reduce the activity of nodes, and study its implications.

Peer Influence Mechanics The way the peer influence mechanism was
implemented in the proposed model was based on the work of Walk et al.
[Wal+16], and on the intuitive understanding of the concept. However, no
claim to completeness and correctness for the presented model is made.
There is always potential for improvement by the inclusion of new ideas,
or the removal of existing elements of the model. For example, the com-
plex softmax weight rescaling mechanism may be replaced with a simple
weighted fraction. This would remove one free parameter and possibly
improve the runtime performance. Another potential extension would be
the introduction of a critical peer influence threshold, which depends on the
size of the egocentric network of a node. This would allow for additional
peer influence scenarios, like a reduced influenceability of hubs.
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Power-law Probability Distribution

In this thesis we often refer to power-law probability distributions, especially
in the context of activity-driven models. However, for the sake of simplicity
the exact formula of the distribution is never explicitly stated. This appendix
contains the derivation for the exact density, distribution function, and
the mean value of the probability distribution. Additionally, it contains an
example and a short description of the inverse transform sampling method,
which is used in the implementation of the model. However, all this requires
a more formal definition of the distribution, so let X be a continuous random
variable with the probability density function f (x) ∼ x−γ, taking values in
the range X ∈ [ε, 1], with γ > 0 and 0 < ε ≤ 1.

A.1. Probability Density Function

The probability density function (pdf) of the power-law distributed random
variable X, which is defined above, is stated in a more detailed form in
equation (A.1).

f (x) =

{
cx−γ ε ≤ x ≤ 1
0 otherwise.

(A.1)

82



Appendix A. Power-law Probability Distribution

The factor c denotes a normalizing constant, which ensures that the function
fulfills the properties of a probability density function (i.e.,

∫ ∞
−∞ f (x)dx = 1).

To calculate the normalizing constant equation (A.1) must be solved for c,
i.e.,

∫ ∞

−∞
cx−γ dx = c

∫ 1

ε
x−γ dx = c

x1−γ

1− γ

∣∣∣∣1
ε

= c
1− ε1−γ

1− γ
= 1

⇔ c =
1− γ

1− ε1−γ
.

(A.2)

A.2. Cumulative Distribution Function

The cumulative distribution function (cdf) is used to calculate the probabil-
ity that a random variable with a probability distribution f takes a value
less than x, i.e.,

P[X ≤ x] = F(x) =
∫ x

−∞
f (t)dt. (A.3)

The derivation of the cumulative distribution function for the power-law
distribution defined above is done in equation (A.4). Note that this result
only holds for values of γ 6= 1.

F(x) =
∫ x

−∞
ct−γ dt = c

t1−γ

1− γ

∣∣∣∣x
ε

=
c

1− γ

(
x1−γ − ε1−γ

)
(A.4)

Due to the range of possible values that can be taken by the probability
density with positive probability, the cdf can be rewritten as a piece-wise
function, i.e.,
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F(x) =


0 x < ε

c
1−γ

(
x1−γ − ε1−γ

)
ε ≤ x < 1

1 x ≥ 1

(A.5)

A.3. Expected Value

The expected value of the random variable X, which was defined in the
beginning, is derived as follows,

E[X] =
∫ ∞

−∞
x f (x)dx =

∫ 1

ε
x f (x)dx = c

∫ 1

ε
xx−γ dx

= c
∫ 1

ε
x−γ+1 dx = c

x2−γ

2− γ

∣∣∣∣1
ε

=
c

2− γ

(
1− ε2−γ

) (A.6)

A.4. Example: γ = 2.5 and ε = 10−2

For this example, the exponent parameter of the distribution is set to γ =
2.5 and the lower bound is fixed to ε = 0.01. These parameter require a
normalizing constant of c = 1/666. Therefore, the density is f (x) = x−2.5/666

and has an expected value of 0.027. Figure A.1 and figure A.2 show the plots
for the probability distribution function and the cumulative distribution
function for this example, respectively.
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Figure A.1.: Log-log plot of the probability density function f (x) = x−2.5

666 taking values in
the range [0.01, 1].

Figure A.2.: Plot of the cumulative distribution function of the power-law distribution
described by the pdf f (x) = x−2.5

666 taking values in the range [0.01, 1].
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A.5. Inverse Transform Sampling

To generate samples from the prior defined power-law distribution, the
inverse transform sampling method is used in the context of this thesis. This
algorithm is based on the inversion principle [Dev86]. It states that if U is
an uniform random variable on the unit interval (i.e., U ∼ U (0, 1)), then
the random variable Y = F−1(U) has the probability distribution function F,
where F−1 is the inverse distribution function. The proof of this theorem is
very short (cf. equation (A.7)) and exploits the fact that P[U ≤ x] = x for a
random variable U ∼ U (0, 1).

P[Y ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F(x)] = F(x) (A.7)

The actual algorithm is very short and simple as well. To draw a sample
from a distribution with a cumulative distribution function F, execute the
following two steps:

1. Draw a number r uniformly at random from the unit interval [0, 1].
2. Calculate F−1(r) to obtain the sample.

However, the inverse transform sampling method requires the inverse of
the cumulative distribution function F−1. This can, for example, be done by
solving F(x) = y for x. The inverse cdf for the power-law distribution is

F−1(x) =
(x(1− γ)

c
+ ε1−γ

)1/(1− γ)

. (A.8)

See equation (A.9) for the derivation. Figure A.3 depicts an approximation
of a power-law distribution that was generated using the inverse transform
sampling algorithm.
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c
1− γ

(
x1−γ − ε1−γ

)
= y

x1−γ − ε1−γ =
y(1− γ)

c

x1−γ =
y(1− γ)

c
+ ε1−γ

x =
(y(1− γ)

c
+ ε1−γ

)1/(1− γ)

(A.9)

Figure A.3.: The estimated probability density function of f (x) = x−2.5

666 , taking values
in the range [0.01, 1] (i.e., the pdf from the example in appendix A.4). The
approximation is archived using n = 5, 000 samples, obtained using the inverse
transform sampling method.
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