

Abstract

Alzheimer’s diseases, stroke and multiple sclerosis are a few examples for nervous diseases.

They can be investigated with the help of diffusion tensor imaging (DTI). This technique

represents the diffusion process of molecules which can be visualized via fiber objects

which stand for the direction of the diffusion. The doctor can investigate the fibers as

broken or missing fibers are an evidence for a nervous disease.

Within the framework functional magnetic resonance imaging (fMRI) data are used and

visualized. The calculation of the fibers is done by existing software packages. The main

focus is on the realization within the gaming engine. This work is a proof of concept and

represents the first step into a new research area in which the scientific data is connected

to a gaming application. The purpose of this is accomplish evaluation of scientific data

via easy tools.

The main idea of this project is to develop a software environment which visualizes DTI

fibers using the Unreal Engine 4. The Unreal Engine symbols one of the high performance

open source gaming engines which can operate with a virtual reality headset. It is also

the case that the fibers should be visible on a normal PC monitor and on an Oculus Rift

virtual reality headset. Using the Oculus Rift stands for working with the state of the

art headset at the start date of this thesis. The control of the program should be done

by the Leap Motion gesture control but as well using mouse and keyboard. One of the

best ways to a use a widely-used consumer motion controller represents the Leap Motion

controller.

Moreover the pros and cons of a visualization using a VR headset for an user are tested.

It is the same case for using the Leap Motion as a control.

Keywords: Unreal Engine 4, diffusion tensor imaging, Leap Motion, Oculus Rift, fiber

tracking

Kurzfassung

Alzheimer, Schlaganfälle und Multiple Sklerose sind nur einige Vertreter von vielen Ner-

venkrankheiten. Sie können mittels Diffusions-Tensor-Bildgebung (DTI) untersucht wer-

den, Diese Technik stellt den Diffufsionsprozess von Molekülen dar, der nun mittels Trak-

tografie als Fasern, welche die Diffusionsrichtung repräsentieren, dargestellt werden kann.

Ärzte können diese Fasern untersuchen und durchgebrochene oder fehlende können als

ein Indiz für eine Nervenerkrankung ansehen.

Im Rahmen dieser Arbeiten werden Funktionelle Magnetresonanztomographie (fMRI)

Daten verwendet und grafisch dargestellt. Die Berechnung der Fasern wird durch beste-

hende Softwarelösungen realisiert. Dadurch soll der Hauptfokus auf die Realisierung in-

nerhalb der Spieleumgebung liegen. Diese Arbeit stellt eine Machbarkeitsstudie und den

ersten Schritt in ein neues Forschungsgebiet, welches Forschungsdaten mit Spieleanwen-

dungen verbindet. Somit wird erhofft dass man mittels einfacher Werkzeuge die Auswer-

tung von wissenschaftlichen Daten erreicht werden kann.

Die Idee hinter diesem Projekt ist die Erstellung einer Softwareumgebung welche DTI

Fasern mittels der Unreal Engine 4 darstellen kann. Die Unreal Engine 4 repräsentiert

eine Hochleistungs-Spiele-Engine welche Open Source ist und mit Virtual Reality umge-

hen kann. Weiters sollen die Fasern neben dem normalen PC Monitor auch mittels einer

Oculus Rift Virtual Reality Headset betrachtet werden können.Die Oculus Rift stellte

zu Beginn dieser Arbeit das Stand der Technik im Bereich von Virtual Reality Headset

dar. Die Steuerung des Programms soll mittels einer Gestensteuerung geschehen oder

wahlweise per Maus und Tastatur. Eine der besten Wege um eine weitverbreitete End-

verbraucherlösung für Gestensteuerung zu benutzen stellt die Leap Motion dar und wird

deshalb auch hier verwendet.

Außerdem wird getestet ob die Visualisierung mittels eines VR headset für die Benutzer

von Vor- oder Nachteil ist. Gleiches gilt auch für Steuerung mittels der Leap Motion

Gestensteuerung.

Schlüßelwörter: Unreal Engine 4, Diffusions-Tensor-Bildgebung, Leap Motion, Oculus

Rift, Traktografie

Contents

1. Introduction and problem 1

1.1. Motivation . 1

1.2. Background . 1

1.2.1. Basic principle . 2

1.2.2. Fiber tracking . 3

1.3. Goal . 3

2. Methods 4

2.1. Data acquisition . 4

2.2. Reconstruction software . 4

2.2.1. Brain . 5

2.3. Unreal 4.10.2 . 5

2.4. Rendering objects . 7

2.5. Main program . 10

2.5.1. StartUp program . 10

2.6. Menus . 10

2.6.1. Shaders . 13

2.7. Output devices . 15

2.7.1. Oculus Rift . 16

2.7.2. PC display . 17

2.8. Input devices . 17

2.8.1. Leap Motion . 17

2.8.2. Mouse and keyboard . 20

3. Results 21

3.1. Start up program . 21

3.2. Menus . 21

3.2.1. Splash Screen . 21

3.2.2. Main menu . 22

3.2.3. Color Picker . 23

3.3. Brain and fibres . 23

3.4. Performance . 24

4. Discussion 27

4.1. DSI Studio . 27

4.1.1. Surface data . 27

4.2. MeshLab . 27

i

4.3. Unreal Engine . 28

4.3.1. Oculus Rift integration . 28

4.3.2. Leap Motion integration . 29

4.3.3. Menus and mouse pointer . 29

4.3.4. Color Picker and file handling . 30

4.4. Artifacts . 30

4.4.1. Jitter . 30

4.4.2. Overlaying fibers . 31

4.5. Performance . 32

4.5.1. FPS . 32

4.5.2. CPU and RAM . 33

4.6. Conclusion . 33

4.7. Further research . 34

A. Manual I

A.1. DSI Studio . I

A.2. Neighbourhood . IX

A.3. MeshLab . X

A.4. Main program . XII

ii

1. Introduction and problem

1.1. Motivation

Many nervous system diseases like Alzheimer’s disease, stroke or multiple sclerosis can

be investigated with the help of diffusion tensor images (DTI). It allows representing the

diffusion process of molecules and it shows the results as fiber objects. For an example

the detection of a stroke is described in [21] and the investigation of a rehabilitations

technique via DTI is done by [17]. The desired brain areas have minutes after a the event

a lower diffusion coefficient comparing to healthy areas. This can be explained through

the canceled sodium-potassium pumps that allows extracellular liquid to pour into the

cell. DTI can also be used for an early discovery of multiple sklerosis [4] and for the

evaluation of brain damage [14]. Finally, the last big research area of DTI is the analysis

and detection of Alzheimer’s disease. The paper [12] describes the detection and [1] used

the technology to understand the disease better. In both cases the fractional anisotropy

is decreasing and the diffusivity is increasing. This mechanism yields to a change of the

measured signals.

All these articles are just few examples for using the DTI technology at everyday clinical

practice and it can be done with nearly every new magnetic resonance tomography. To

sum up it is a practicable non-invasive diagnostic system with an enormous research

potential. This thesis is a small part of it and can make the handling with these diseases

easier.

The main purpose of this work is to develop a framework which allows analyzing DTI fibers

using an Oculus Rift VR headset. It should evaluate the usage of the Unreal Engine and

the Oculus for functional magnetic resonance imaging (fMRI) data. It ought also to give

a statement about the usability of a Leap Motion gesture controller at this particular

problem.

The virtual reality headset could help doctors with the interpretation of the fibers. People

get a better feeling for the structure of the brain and the 3D elements maximizes the

immersion. Using the Oculus Rift and the Leap Motion is a cheap method to analyze

fMRI data via a standard PC without any special software and hardware.

1.2. Background

Diffusion tensor imaging (DTI) [7] is the most used variant of diffusion-weighted magnetic

resonance imaging (DW-MRI). It measures the diffusion movement of water molecules

1

with the help of magnetic resonance tomography (MRI) and displays them graphically [23].

The contrast of the image is generated by only using a pulsed-field-gradient, like the

classical MRI, and it is not necessary to inject a contrast medium. DTI also determines

the anisotropy of the diffusion and assigns it as a tensor to every voxel of the images.

1.2.1. Basic principle

The basic principle is based on the first Fick’s law. It describes the relationship between

the flux J and the concentration gradient ∇c.

J = −D∇c (1)

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2)

In this formula D is the diffusion tensor in an anisotropic medium. It is the case that the

MRI measures the self diffusion of water also called Brownian motion. The movement is

initialized by thermal energy. Technically spoken the diffusion is not applicably because

there is no free diffusion of water molecules. So the tensor is called apparent diffusion

coefficient (ADC) and it depends not only from the direction but also from the diffusion

length.

If there is no diffusion the change in nuclear magnetization over time will be given by the

classical Bloch equation. M represents the magnetization and T1 and T2 the relaxation

times.

dM

dt
= γ (M ×B)− Mx

~i+My
~j

T2
− (Mz −M0)~k

T1
(3)

The result of this equation by given diffusion in the medium yields to the Stejskal-Tanner-

equation [18] and for a detailed explanation derivation look at the PHD thesis of Ferran

Prados Carrasco [2].

A(g) = A0e
−bgTDg (4)

2

Here symbols A(g) the signal strength of a gradient field in the desired direction g. A0

describes the strength at an unweighted measurement and b summarizes different measure-

ment parameters. The positive semi-defined quadratic diffusion tensor D assigns every

direction g an ADC. D can be estimated after a measurement using the least squares

method.

1.2.2. Fiber tracking

DTI gives information about connectivity and organization of white matter fibers and the

3D pictures are developed based on tensors from voxels. It is an method which describes

the nature of diffusion in a given volume and fiber direction is the main eigenvector.

Furthermore the fiber goes in direction of the largest diffusion coefficient.

This method allows distinction between normal and damaged areas because water molecul-

es move parallel to normal fibers and the movement is perpendicular around damaged

areas. This means a find of damaged areas after a stroke can be done easily because the

fibers are broken at the damaged areas.

1.3. Goal

The purpose of this thesis is to develop a software package with a gaming engine to

visualize DTI data by a virtual reality headset and control it using a motion controller.

Based on previous research which was done during the master practice before this thesis a

stereoscopic visualization could improve the clarity of the calculated fibers. The purpose

of using a gaming engine in this case the Unreal Engine 4 is that the software package

can run on a standard PC without any special software. The chosen VR headset is the

Oculus Rift because it is a common consumer headset and the Leap Motion represents a

cheap widely used motion controller. The next reason for a decision for it is that the Leap

Motion provides a decent amount of pre-configured gestures. It is just a proof of concept

and the first step into a new research area.

There are three main questions to answer:

1. Is it possible to visualize DTI data in the Unreal Engine?

2. How is the performance and the usability of the Oculus Rift?

3. Is a control using the Leap Motion profitable and intuitive?

3

2. Methods

The following paragraphs will explain the software packages and the needed steps. All

pros and cons of these are described in the discussion part in detail.

2.1. Data acquisition

Figure 1 shows the pre-processing sequence of the 3D visualization. The DICOM (Digital

Imaging and Communications in Medicine) files [10] are created via a diffusion magnetic

resonance tomography. This was done by a MRI using an EPI (echo planar imaging)

sequence.

Figure 1: Using DICOM files DSI Studion reconstructs the fibers and the voxels of the
brain. The fibers are ready to use in the Unreal Engine but the voxel data has
to be converted to surface data. A self programmed CUDA package calculates
the surface pixel and MeshLab generates the normals of the surface. Now the
brain is also ready to use.

2.2. Reconstruction software

The fibres are generated via DSI Studio [24] (Fang-Cheng, University of Pittsburgh, U.S.)

which calculates the fibres with the deterministic diffusion fiber tracking algorithm [23]

from the DICOM files. There are many parameters values like the number of the extracted

fibers or an addable atlas to render the cortex regions. All standard parameters are

described in the manual (section A.1).

After the reconstruction of the fibres and generating the brain volume, it is possible to

save the data in different file formats. For this project the data are saved as textfiles and

4

the fiber data is ready to render in the Unreal engine 4, but the brain volume has to be

processed further more.

2.2.1. Brain

Get surface pixel A CUDA(Compute Unified Device Architecture) [11] (Nvidia Corpo-

ration, Santa Clara, California, U.S.) program was written to convert the voxel volume

data to mesh data. All functions are taken from [22]. It deletes all of the voxel which are

not on the surface of the volume and saves the remaining data in a structured textfile.

Figure 2: 6-neighborhood of a voxel in the 3D space. Every pixel shares a surface with
the blue pixel in the center is a neighbor of the blue one.

For converting the volume data to mesh data, the algorithm looks at the 6-neighborhood

of each voxel like shown in figure 2. If the actual voxel has all neighbors the voxel will be

inside of the volume and it is deleted. If one or more neighbors are missing the voxel will

be on the surface and it will not be deleted.

Get surface properties (Triangulation) After calculating the surface pixel, the textfile

is loaded into Meshlab [3] (Istituto di Scienza e Tecnologie dell’Informazione & National

Research Council, Italy) where the mesh data is converted into an obj.-file. The conversion

is done with the poisson surface reconstruction algorithm [8]. An obj.-file [13] is used

because it contains besides the pixel values also information about the triangulation of

the surface which is needed to render it in the game engine.

2.3. Unreal 4.10.2

The Unreal Engine 4 is a game engine developed by Epic Games (Cary, North Carolina,

U.S.). It can be used for free and includes a wide spectrum of plugins like Oculus Rift and

Leap Motion plugin. It is possible to write code in C++ or in a graphical programming

language, called blueprint. The blueprint mode is just a frontend which uses C++ code

5

and to program an application the developer has to connect different blocks with each

other. Every block is a graphical object for a special C++ code. The main concept of

programming C++ in the engine was taken from [16] and of blueprints from [15]. Pros

and cons are discussed in the discussion part.

The main procedure of the developed program can be seen in figure 3. It is not necessary to

check if the Leap Motion is connected using a program function because the desired plugin

detects the controller at runtime and starts the hardware at any time automatically.

After starting the Unreal Engine a function checks if the Oculus Rift is connected correctly.

If so the program will be rendered on the VR headset and otherwise it will be rendered on

the normal PC display. The whole procedure is described in chapter 2.7. A splash screen

(2.6) is be shown after a health warning on the screen for 12s and in the background the

properties from the configuration files are loaded into variables. It is also the case that the

program loads the data of the fibers and the brain. After that the objects will be rendered

on the screen which is described in the next paragraph and the software is waiting for

an user input via the Leap Motion or the keyboard and mouse. There are different user

inputs like opening a menu, taking a screenshot, translation and rotation of the objects.

The input methods can be found in 2.8.

6

Figure 3: Main procedure of the Unreal program.

2.4. Rendering objects

Every object has to have a point of center, a shape and a shader. The center specifies the

location of the object and the shape is a wire frame of the element. Moreover the shader

describes a surface over the wire frame with different properties like color and roughness.

The next two paragraphs describe the algorithms to render the brain and the fibers in the

Unreal Engine.

Brain The first step of the render algorithm for the brain surface is to load the data from

the .obj file [20]. The file includes the triangles of the surface and the vertexes of these

geometrical shapes. Unreal Engine 4 does not support direct input of data at runtime

via blueprints and so it is useful to write a little C++ function for doing that. This is

7

important because otherwise the data had to be loaded before the program is compiled

and the user had to compile the Unreal program whenever new datasets should to be

loaded. For further information look at the following paragraph in 2.6.

After loading the triangles they are added to a new mesh and having done that the

properties (shader, location,...) of the mesh are set to the desired values. For later

manipulations (translation, rotation) of the brain it is important to calculate the point of

mass. For doing that the coordinates of the vertexes are summed up and divided by their

count.

Fibers The algorithm to render the fibers is more complicated and needs more steps as

seen in figure 5. First of all the data is loaded from the text file. Secondly a new mesh

is created and the first 2 points are added to the mesh. These points are the start and

the end point of the mesh. Then the direction of the tangent in the start and end point

are calculated using the precursor respectively successor point. This means that direction

vector from the point before the start and the direction from the end to the point after this

one is figured out. The precursor and the successor are displayed as red dots in figure 5.

If there is no data point before the start or after the end the direction vector from start

to end point or vice versa is used as the tangent. So the spline mesh gets a curve form.

After that a cylindrical shape is pulled over the mesh to get the appearance of a fiber.

Every element get its shader and certain color assigned. These steps are repeated for all

points. At the end all meshes are combined to one big array of meshes so that the second

mesh is attached to the first and so on.

Figure 4 shows the cylindrical shape with the standard Unreal Engine shader. This can

be stretched and follow the path of the mesh.

Figure 4: Cylindrical shape of a fiber mesh.

The colors of the different meshes describe a gradient from the start to the end color.

These steps are repeated for every fiber, so every filament is a single object and can be

manipulated later.

8

Figure 5: Render algorithm for one fiber. After loading the data the points are added
in pairs to new meshes. Then the meshes are interpolated and a cylindrical
shape with a certain shader is pulled over. After setting the color the meshes
are combined to one. The last step is to render the fiber.

9

2.5. Main program

The main program consists of two parts. First the start up program, written in C#, and

secondly the Unreal Engine program.

2.5.1. StartUp program

The purpose of the software is to read the configuration files and to manipulate them

before using the VR headset. After that the program starts the Unreal program.

Configuration files There are two different files, ColorProp.ini and MenuConfig.ini

to load and save different properties. The first includes the RGB color code in a normalized

way of the fiber start, fiber end, brain and the background (figure 6b). MenuConfig.ini

saves the absolute file paths of the fiber data and the .obj file of the brain. It is shown in

figure 6a and the value true represents if the fibers respectively the brain is rendered.

(a) MenuConfig.ini (b) ColorProp.ini

Figure 6: Example configuration files.

2.6. Menus

It is possible to implement menu widgets in the Unreal Engine but the 2D menu has to

be contained in a 3D object. This leads to a three dimensional look and it is necessary

to display it on the Oculus Rift. First of all a normal 2D menu widget is created and

all functions like a click event are implemented in the background code of the widget.

Secondly the widget is attached to an empty actor and thirdly the actor is spawned in the

desired level in front of the camera. The empty actor with the attached menu widget is

shown in figure 7. It is important that the normal of the object is parallel to the viewing

direction to face the menu in front of the user.

10

Figure 7: Menu widget with the empty actor to spawn it as a 3D object.

Pointer A menu also needs a pointer like a mouse pointer on the desktop. A 3D pointer

is required for the output on the Oculus Rift. For realizing that a sphere is spawned

in front of the camera between the surface of the menu and the camera as displayed if

figure 8. A ray is generated from the middle of the camera through the sphere and to the

menu. After that the hit point on the menu widget is read out and an algorithm calculates

which object on the menu was hit. If a button was hit the button color would change and

if the tap gesture happens the click event of the desired button will be triggered.

Figure 8: The ray runs from the camera through the pointer and hits the menu.

Loading and saving of properties At the start of the Unreal Engine program the color

properties are loaded from the configuration file and if the user changes the values they

will be saved. There is no blueprint object which realizes this and so the loading and

saving procedure has to be written in C++. It is possible to develop own blueprint object

by the following code line in the header file of a BlueprintFunctionLibrary.

11

1 UFUNCTION (BlueprintCallable , Category = ”M y U t i l i t i e s ”)

2 s t a t i c bool FileSaveString (FString SaveText , FString FileName) ;

The standard C++ header files of Unreal does not include any IO functionality and so it is

necessary to include the DesktopPlatformModule.h and IDesktopPlatform.h from the

Unreal C++ libraries. These two header files include the IO functionality. The following

code snippet shows the implementation of a file save object.

1 #inc lude ” U t i l i t i e s . h”

2 #inc lude ”Developer / DesktopPlatform / Publ ic /DesktopPlatformModule . h”

3 #inc lude ”Developer / DesktopPlatform / Publ ic / IDesktopPlatform . h”

4

5

6 bool UUtilities : : FileSaveString (FString SaveText , FString FileName)

7 {
8 re turn FFileHelper : : SaveStringToFile (SaveText , ∗ (FPaths : : GameDir () +

9 FileName)) ;

10 }

Figure 9 shows the compiled save file object as a blueprint element. It is possible to insert

the text which should be saved at the Save Text input parameter and File Name defines

the filename where the text is saved to. The Return Value delivers a boolean value of

achievement.

Figure 9: A self programmed blueprint object which saves a text to a chosen file.

Be aware of different data types in the Unreal Engine. The data types are not the standard

C++ data types and for more information look at 1.

Splash screen This menu should be rendered when the software starts. It is painted for

12s and shows the instruction manual of the Leap Motion gestures to the user. The Unreal

Engine also loads the properties from the configuration files. All gestures are animated

and this is made by the animation editor. The gaming engine also tries to load the Oculus

Rift camera. If the VR headset is not connected or the stereo output does not work the

output device will be changed automatically to the pc display.

1https://docs.unrealengine.com/latest/INT/Programming/Introduction/

12

https://docs.unrealengine.com/latest/INT/Programming/Introduction/

Main menu All parameters like background color, color of the brain and so on can be

changed at runtime. The main menu provides this ability to the user. Moreover the user

can operate using the 3D pointer which was mentioned previously and all parameters are

loaded or saved like described in the above paragraph. To change the values of the colors

an object to manipulate is necessary.

Color picker It is a dynamic menu which gets desired color from the main menu and the

color can be manipulated by the different RGB channels. It is necessary to operate with

it through the Leap Motion and so the interface has to be as simple as possible. After

closing the menu it sends the adjusted color back to the main menu.

2.6.1. Shaders

In Unreal Engine 4 it is possible to create shaders in a graphical interface like the blueprint

interface or code like with the HLSL (High Level Shading Language) compiler. All shaders

are developed in the visual environment and they also should be adjustable at runtime.

This is made by transfer parameters. So it is possible to create an instance of the material

and change the value of the variable at runtime.

Brain The brain shader should look like glass with refraction and reflections. All param-

eters like refraction coefficient, base color and so on are changeable during the runtime.

So the main menu can adjust the color of the brain. If the shader is used within another

instance the refraction and reflection to create different looks can be changed in the code

without changing the main shader. To create a glass shader it is necessary to change the

blend mode to translucent so that the Unreal Engine creates a transparent material.

13

Figure 10: The parameter base color changes the main color of the glass. Roughness
represents the roughness of the glass. Is the roughness low the material is
smooth. Opacity gives information about the opacity. Is the opacity 1 the
material is intransparent and if it is 0 the material is invisible. Refraction

changes the level of refraction of the material. Refraction Front represents
the refraction coefficent of the environment and Refraction Sides the coeffi-
cent of the material.

Figure 10 shows the glass shader which is used for the brain material. base color is used

to change the main color of the material and can be changed by the user within the main

menu. Roughness is set to 0 and Opacity to 0.5. The Refraction of glass equals 1.4 to

1.5 according to physics. It is set to 1.4 at this project.

Fibers The fiber shader should be a smooth material like plastic. For doing this it

is necessary to use the opaque blend mode to create an intransparent material and the

shading model is changed to clear coat so that the material is shiny.

14

Figure 11: base color changes the main color and Metallic gives information about the
color of the reflected color. Roughness represents the roughness of the material.
Is the roughness low the material is smooth. Ambient Occlusion represents
the ability of light the environment around the material via the reflected light.

For the fiber material the parameters in figure 11 are set to the following values. The

base color could also be adjusted at runtime and the Roughness is set to the constant

value of 100. Through this the material gets a natural touch and Ambient Occlusion is

set to 0 because if the value is higher the fibers will light the environment and the inner

surface of the brain will also be lighted with the same color. It would not be possible to

see through the brain surface if the surface had lighted up too strong.

Instances Figure 12 shows the creation of material of fibers. This dynamic instance can

be adjusted at any time.

2.7. Output devices

The Unreal Engine tries to start the stereo mode during showing the loading screen but

if the start of this mode does not work the program will automatically change to the 2D

15

Figure 12: To create an instance of a material it is necessary to create it using the block
Create Dynamic Material Instance and after that the parameters of the
shaders can be changed by Set Parameter Value. The block Get Current

Color is just to get the color which is set at the main menu.

pc display mode.

2.7.1. Oculus Rift

The Oculus Rift [19] (Oculus VR, Menlo Park, California, U.S.) is a VR headset and there

are 3 different versions available at the moment. For this project just the Development

Kit 1 and 2 were used and tested with the project. All uses of Oculus Rift in this thesis

include both versions.

The minimum system requirements are displayed in table 1. For the Oculus DK1 it is

just possible to use the SDK 0.8 and for the DK2 both SDK are capable.

Table 1: Minimum system requirements

SDK CPU GPU RAM

Oculus SDK 0.8 Beta 2.5+ GHz processor GTX 600 / AMD HD 7000 4GB
Oculus SDK 1.0+ Intel i5-4590 GTX 970 / AMD R9 290 8GB

The use of the Oculus Rift is really simple. The only important thing is to activate the

Oculus plug in in the Unreal Engine as shown in section 13.

16

Figure 13: Pugins Editor in Unreal Engine 4. It can be reached by Edit → Plugins.

To start the stereo mode it is necessary to add the Execute Console Command for example

in the level blueprint and execute the command stereo on. To prevent jitter effects it is

necessary to add a post process volume over the viewed objects and set the anti aliasing

method to none. Setting the motion blur to 0 can also help.

2.7.2. PC display

If the Oculus Rift is not or not correctly connected the software will load the 2D camera

and will project it on the pc display. All menus and properties are the same and work as

displayed with the VR headset.

2.8. Input devices

2.8.1. Leap Motion

The Leap Motion [9] (Leap Motion, Inc, San Francisco, California, U.S.) is a motion

sensor which recognizes hand and finger gestures. Unreal Engine 4 includes by default

a plugin for the leap motion and it does not matter which SDK of the Leap Motion is

installed. There are few gestures learned by default and the device differs between right

and left hand. All gestures are explained in table 2.

17

Table 2: All learned gestures of a leap motion.

Circle A single finger tracing a circle
Swipe A long, linear movement of a finger

Key tap A tapping movement by a finger as if tapping a keyboard key
Screen Tap A tapping movement by the finger as if tapping a vertical computer screen

Grab Grab indicates how close a hand is to being a fist
Pinch Pinch indicates whether one finger is touching another, on a scale of zero to one.

It is also possible to get single information about every finger and bone. The values in

table 2 are taken from the official documentation 2 3.

For a better usability the movement of the hand has to be relative to the camera so that

for an example a forward movement of the hand in positive z direction does not lead to a

movement on the screen in x direction.

Figure 14: The 3D coordinate system used by the Leap motion and the positive z-
axis points from the monitor to the user. [Taken from https://developer.

leapmotion.com/documentation/csharp/devguide/Leap_Overview.html]

First the software gets the current position of the hand. Secondly it gets the position of

the camera and transforms the position of (0,0,0) to the camera space. The position of

the hand is also converted to the camera space and after that the transformed position of

(0,0,0) is subtracted from the position of the hand. At the end the vector is rotated with

the rotation of the camera, so the resulting vector describes the movement of the hand

relative to the camera.

Gestures If a gesture is recognized by the leap motion an event will be triggered and

the program will execute the code in the event. Figure 15 shows the right hand movement

and it will be triggered if any movement of the right is recognized. It does not matter if

2https://developer.leapmotion.com/features
3https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Gestures.html

18

https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html
https://developer.leapmotion.com/features
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Gestures.html

the hand is grabbed, pinched or opened the event will trigger. The following if condition

checks if the hand is grabbed and so the event can be used for a grabbed right hand

movement.

Figure 15: Event of the right hand movement with following if condition.

For different interaction with the software different gestures are used. In figure 16 all used

gesture are listed.

Figure 16: Grab the right hand and move it in x, y and z direction to move the brain
relative to the camera. Grab the left hand and move it in x, y and z direction to
rotate the brain along the desired axis. Make a circle gesture with a minimum
diameter of 5 cm to open the main menu. Tap the right trigger finger to the
monitor or the keyboard to click a button. Grab the right hand over a slider
and move along the x-axis to change value of the slider. Move the open right
hand to affect the menu pointer.

19

2.8.2. Mouse and keyboard

The whole software can also be controlled by mouse and keyboard like described in fig-

ure 17. It does not matter if the Leap Motion is connected or not because the mouse and

keyboard will also work.

Figure 17: W, A, S, and D move the camera to left and right respectively in or against the
viewing direction. Press F to make a screenshot and M to open the menu. By
pressing the left mouse button and moving the mouse it is possible to rotate
the camera.

20

3. Results

The result part discusses the main software package. DSI Studio and MeshLab were not

developed exclusively for this thesis and so these programs are not a part of the result

section. The CUDA program is developed for this but it only got a command line output.

How the programs will work is described in the manual as appendix.

3.1. Start up program

The C# program in figure 18 chooses the files and starts the Unreal Engine program after

pressing the Start button.

Figure 18: A little C# program to choose the brain surface .obj file and the .txt file of
the fiber data.

3.2. Menus

All screenshots are made with the implemented screenshot hotkey F.

3.2.1. Splash Screen

The loading screen gives information about the control using the Leap Motion. All hand

objects of figure 19 are animated and they represent the gestures.

21

Figure 19: The loading screen shows the gestures and during this some actions are per-
formed.

3.2.2. Main menu

If the 3D pointer is over a button it will be colored in red to symbol that a tap gesture

is available. After a tap on the desired button from figure 20 the color picker is opened

or the changed colors are saved in the configuration file. The information button opens

the loading screen to help the user with the control gestures. Right of the color buttons

rectangles are painted which show the current color of the object. The tap gesture at the

bottom left corner is also animated.

Figure 20: The main menu is opened via a circle gesture or the hotkey M.

22

3.2.3. Color Picker

The color picker in figure 21 changes the RGB values of the desired color. After tapping

the OK button the values are send back to the main menu.

Figure 21: The color picker is opened when an user wants to change a color from the main
menu. The sliders can be adjusted when a grab gesture of the right hand is
performed.

3.3. Brain and fibres

It is the same dataset of fMRI data at any subfigure of 22 but with different colors, amount

of fibers and viewing positions. Figure 22a shows the brain with 100 green and ocher fibers

from behind the brain. The second picture (figure 22b) shows the same configuration but

with red and blue fibers. Figure 22c shows the same configuarion as in figure 22b but

from the inside. It is clear to see that the start color of the fibers is red and the end color

blue. The last screenshot (figure 22d) represent the configuration with 1000 fibers.

23

(a) 100 fibers (b) 100 fibers

(c) 100 fibers from inside the brain. (d) 1000 fibers

Figure 22: Some pictures of different colors, viewing positions and amount of fibers.

3.4. Performance

All following diagrams were measured on an Intel i7-5820k, 16GB DDR4 RAM and a

Nvidia GTX 980 Ti. The used Oculus Rift was a Development Kit 2 and the differences

of the headsets are described in the chapter 4.3.1.

Figure 23 symbols the relationship between amount of fibers and frames per second. The

interpolation curve describes a rational function.

24

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Fibers (a.u.)

F
ra

m
es

p
er

se
co

n
d

(f
p
s)

Fibers vs. FPS

Measured data
Interpolated data

Figure 23: Relation between amount of fibers and frames per second.

Figure 24 describes the usage of the CPU in % at different amounts of fibers. All measured

data characterize a logistic function.

0 50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

12

14

Fibers (a.u.)

C
P

U
u
sa

ge
(%

)

Fibers vs. CPU usage

Measured data
Interpolated data

Figure 24: Relation between amount of fibers and usage of the CPU.

25

At last the dependency of the RAM usage is painted in figure 25. The best fitting curve

is a function to the power of three.

0 50 100 150 200 250 300 350 400 450 500
0

500

1,000

1,500

2,000

2,500

Fibers (a.u.)

R
A

M
u
sa

ge
(M

B
)

Fibers vs. RAM usage

Measured data
Interpolated data

Figure 25: Relation between amount of fibers and usage of the RAM.

26

4. Discussion

4.1. DSI Studio

To create fibers out of DICOM files there are different software packages like Freesurfer [5]

available on the market but only DSI Studio could read out the b values correctly. A

b value which is used in equation 4 is a combination of gradient strength and pulse

duration.

The next advantages are the graphical user interface and the good usability. It is also the

case that DSI Studio is a free software and it is compatible with Windows. The manual 4

explains the analyzing steps really simple. The only disadvantage is that the calculated

brain volume is only exportable as volume data. For triangulation which is necessary for

rendering the brain in the Unreal Engine the data have to be surface data.

4.1.1. Surface data

Because of the reason from above the volume data have to be converted to surface data.

This conversion takes about 15 minutes using 8 parallel threads on the CPU. So it is a

good idea to run the program on the graphics card. Via CUDA (Compute Unified Device

Architecture) it is possible to reduce the calculation time to under a minute with same

results.

4.2. MeshLab

To do the triangulation it is necessary to use MeshLab. The reasons to use MeshLab are

on the one hand it delivers tested and robust results. The next is that the software has

got many different adjustable parameters to improve the outcome and it saves the data

to .obj files. These files include the pixel data of the surface as well as the normals and

the indexes of the triangles. All of these parameters are required to render 3D objects in

the Unreal Engine.

4http://dsi-studio.labsolver.org/Manual

27

http://dsi-studio.labsolver.org/Manual

4.3. Unreal Engine

The Unreal Engine delivers many adjustable parameters and free plugins. Furthermore

the documentation is very detailed and helps a beginner to learn the characteristics of a

gaming engine.

By comparison to Unity (Unity Technologies, San Francisco, California, U.S.) which is also

a popular free gaming engine Unreal Engine features a better integration of the Oculus

Rift and the Leap Motion. It is also the case that the graphical programming interface

Blueprint lightens the beginning of programming. Moreover Unity is only program in C#

or JavaScript thus code based development. The product of Epic games is more powerful

and by the use of C++ it is more adjustable.

The Unity engine does not support the integration of VR headsets and the Leap Motion

at the beginning of the project and so it was obviously to use the Unreal Engine 4. Un-

fortunately the Unreal Engine has some special characteristics and these lead to different

problems during implementation. The next paragraphs will discuss the problems.

4.3.1. Oculus Rift integration

It is very easy to include the Oculus Rift into Unreal Engine 4 and all versions of the

VR headset are compatible. On the other side all versions are slightly different. After

developing with the DK2 and testing with it. It turned out that not all functions work

the same on DK1 and DK2.

The first difference affects the center of the camera. The 2 VR headsets got 2 different

middle points and so there is no general solution to find this point. It is also the case that

the firmware 1.0 and 0.8 beta are different. The firmwares calculate the normal on the

camera differently and they also have various minimum system requirements.

Through the miss of the motion tracking at the DK1 the control and the game design is

a disparate to the DK2. For an example the movement via the motion tracking in the 3D

space is more intuitive and has to be adjusted for the DK1.

The last difference is the resolution and the framerate of the two headsets. DK1 only

uses a resolution of 1280x720 and the DK2 1920x1080. This means it is necessary to

optimize the program to 720p resolution and not to 1080p. On the one hand it raises the

performance but on the other hand it lowers the field of view. The bottom line is that

the reduction of the resolution reduces the usability.

At the end it is important to mention that the project runs with both versions and it is

a matter of taste which headset delivers better results. The DK1 has a poorer resolution

28

and the movement is less intuitive but on the other hand the jitter effect (chapter 4.4.1)

does not occur.

4.3.2. Leap Motion integration

The integration of the Leap Motion is more complicated than the implementation of the

Oculus Rift. There is a whole development kit of the functions for the Leap Motion but

only for C++ or C#. The only way to use it in the graphical development environment

is to write own blueprint functions and events.

The next big problem is the recognizability of the gesture. All in all the false positive and

false negative rate is really high and make a handling exhausting. It is also the case that

the reaction time is to high to use it in real time and so the feedback is very laggy.

Finally the amount of gestures is manageable and so it is hard to find different gestures for

different actions. False recognized gestures make the control also worse. For an example

the software could hardly differ between a grab and a pinch or between a screen tap and

a key tap. It is not recommended to use a screen tap and a key tap gesture for different

actions. The only solution would be to learn new gestures and overwrite the firmware.

This was too much work for this project and so it was necessary to use the standard

gestures.

4.3.3. Menus and mouse pointer

There are two reasons why every 2D menu has to be included into a 3D object. The first

one is that if the menu is a 2D object the Oculus has problems to render it. The object

smears over the display and the user could not see anything. The second reason is the

that the 3D mouse pointer needs a 3D object to interact with it.

If the mouse pointer is just the normal 2D mouse pointer it will also be rendered only on

one of the two displays of the Oculus Rift. The pointer interacts with the Oculus Rift like

with 2 normal PC monitors which are extended. So the user would move the pointer from

one to the other display but without any connection between the location of the pointer

which is rendered on the headset and the location at the virtual space of the program.

It is also the case that the depth information is not available using a 2D pointer. If the

menu is not in the same depth as the pointer the usability of the pointer will not be given.

To create a ray cast like described in section 2.6 the object has to be a 3D object.

29

4.3.4. Color Picker and file handling

Another challenge is to implement a color picker because the picker has to be controllable

using the Leap Motion. So the design has to be as simple as possible. This is also the

reason why the project has a start up program. The Unreal Engine project is a standalone

software but it has no plugin for a file opener. It is also not possible to create a file opener

which is usable via gestures because the interface would be to filigree to use it with the

Leap Motion.

Figure 26: The left picture shows the first design and the right one the final design of the
color picker.

Figure 26 shows two different designs of the color picker. At the left one all numeric values

are changeable and the user could choose a color by clicking into the circle or changing

the values. This design is very easy if the user has a mouse and a keyboard but it will be

impossible to use via the Leap Motion. This is one example how the input device modifies

the design of the software package.

4.4. Artifacts

4.4.1. Jitter

If the amount of fibers is to high the framerate will drop and jitters will appear. The

reason is that the firmware of the Oculus Rift tries to interpolate the position of the

objects during a change of the viewing angle. It is the case that the Oculus runs on a

static value of FPS for an example at the DK2 it is 75Hz to reduce flicker artifacts. If the

change appears but the program delivers a framerate which is lower than the framerate of

the headset it will calculate the new position of the object and will render it. This would

30

be nice if the end position of the object is the same as the calculated but if the positions

are not the same the object will jump from the calculation location to the real location.

Figure 27 symbols the jitter effect at 3 frames. The unwanted movement to the right

and then to the left is the jitter effect. This phenomena appears more frequent when the

amount of fibers is too high for the performance of the PC and the native framerate of the

headset is higher. So the jitter effect appears more likely on the DK2 as on the DK1.

Figure 27: The upper series of frames describes the calculation frames and the bottom
frames are the output frames. In the first frame the blue object will move to
the right. It is rendered at the old position. Frame 2 is the calculated frame of
the Oculus. The framerate is lower than the native framerate of the Oculus.
The headset calculates the position of the object (red square) and this object is
rendered. The original location is the blue square and the object has to move
to the left in the next frame. At frame 3 the original position is rendered on
the headset.

4.4.2. Overlaying fibers

The fiber in the red circle of figure 28 should be yellow but it has violet segments. At

the same position as the yellow there is a violet fiber but this one is little bit closer to

the camera and so the engine renders the violet fiber. For the interpretation of the fibers

these artifacts do not matter and so it is not so important to solve this problem at this

time.

A solution would be an algorithm which looks at the neighbor segment and color it the

same way. The algorithm would use the neighbor and would decide which segment of the

two is more likely the same color as the neighbor.

31

Figure 28: The whole fiber under the red circle should be yellow and not include violet
segments.

4.5. Performance

The performance is indirect proportional to the count of fibers more fibers lead to poorer

performance every fiber is a single object with single segments and every segment symbols

a mesh which is rendered separately at runtime. It is also the case that all objects are

spawned at runtime and the are dynamic. This means the objects are not pre rendered

and so the light, colors and so on are calculated at runtime.

The reason behind this solution is that the program can be extended easily. For an example

the program can be extended so that the user can select single fibers to manipulate them

or to choose a typically area at runtime to render just this area.

4.5.1. FPS

The frames per seconds can drop under 30 and the user feels it laggy. The development

system was a high end PC but the framerate dropped to about 30fps by 500 fibers and

to 50-60fps by 100 fibers as it can be seen in figure 23. Normally 50-60fps would be no

problem for the user but through the jitter effects the frame drop is noticeable.

The reduction of quality or the resolution does not affect the FPS. A solution would

be the limitation of the field of view or the render distance. Next it would be a good

idea to not paint objects which are hidden behind other objects. The cylindrical shape

32

which is used to render the fibers could also be optimized. The count of facets could

be decremented without a quality lost. Finally a big optimization of the quality settings

could also improve the count of the FPS.

4.5.2. CPU and RAM

The usage of the CPU as seen in picture 24 describes a logistic function and runs to a

maximum value of about 13%. This limit is not the maximum usage of one kernel of the

PC and this means that the CPU does not limit the program. The whole program uses

all kernels and distribute it over all equally. That means a more powerful CPU does not

increase the FPS count.

Figure 25 shows the trend of the RAM usage over the amount of fibers. The fitting

curve describes a function to the power of 3. This result satisfies the calculated memory

requirements of O(n3).

4.6. Conclusion

The software solution delivers robust 3D data of the DTI fibers and is simple to use. All

parameters are intuitive to change and it gives the user a good view inside the brain. The

user gets a overview and can detect failures in the fibers.

Figure 22 shows four adjustments and its obvious to see that the user can get a feeling

for the fibers. This means the user get an overview where a single fiber starts and where

its ends because of the different colors. The next point is that the software gives an

operator the feeling of being inside of the brain and it also delivers a good overview of

the brain when zoomed out. All color properties are saved and this contributes a lot to

the usability.

The disadvantages are the artifacts and that the program is very computationally in-

tensive. So it is just usable on a highend PC and this means the hardware is expensive.

Another problem is the loss of orientation of the user and the missing connectivity between

the fibers and the different parts of the cortex.

Concluding the thesis contributes an easily extendable platform for visualizing diffusion

tensor images and can be executed on standard PCs without any special software pack-

ages.

33

4.7. Further research

The first point is to improve the performance of the software, so the jitter and stutter

effect will not occur. This could be done by different quality settings of the engine or

outsourcing of calculations on a second graphics card for example.

The second step could be implement an atlas to get the connections between the fibers

and the cortex areas. This should be simple because every fiber is a single object and so

it would be possible to allocate these to the atlas. Having done that the user could decide

which area is important and turn off the others.

Thirdly an improvement of the gesture control could be done. One option would be

learning new gestures to the Leap Motion or using another gesture controller like the

Microsoft Kinect.

The last idea would be implement an orientation system which guides the user through

the brain. So the user would not loose the orientation.

34

References

[1] Julio Acosta-Cabronero and Peter J Nestor. Diffusion tensor imaging in alzheimer’s

disease: insights into the limbic-diencephalic network and methodological considera-

tions. Frontiers in aging neuroscience, 6:266, 2014.

[2] Ferran Prados Carrasco. Visualization and processing of diffusion tensor mri. Uni-

versitat de Girona, 2012.

[3] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.

Meshlab: an open-source mesh processing tool. 2008.

[4] Olivier Commowick, Pierre Fillard, Olivier Clatz, and Simon K Warfield. Detection

of dti white matter abnormalities in multiple sclerosis patients. Medical image com-

puting and computer-assisted intervention : MICCAI ... International Conference

on Medical Image Computing and Computer-Assisted Intervention, 11(Pt 1):975–82,

2008.

[5] Bruce Fischl. Freesurfer. 2012.

[6] Epic Games. Unreal engine 4 official website, 2016. https://www.unrealengine.

com/.

[7] Derek Jones. Diffusion MRI : theory, methods, and application. Oxford University

Press, Oxford New York, 2010.

[8] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-

tion. 2008.

[9] Leap Motion. Leap motion official website, 2016. https://www.leapmotion.com/.

[10] National Electrical Manufacturers Association (NEMA). Dicom, digital imaging and

communications in medicine, 2016. http://medical.nema.org/standard.html.

[11] Nvidia. Cuda project official website, 2016. http://www.nvidia.com/object/cuda_

home_new.html.

[12] Kenichi Oishi, Michelle M Mielke, Marilyn Albert, Constantine G Lyketsos, and

Susumu Mori. Dti analyses and clinical applications in alzheimer’s disease. Journal

of Alzheimer’s disease : JAD, 26 Suppl 3:287–96, 2011.

[13] Keith Rule. 3D Graphics File Formats: A Programmer’s Reference. Addison-Wesley

(C), 1996.

35

https://www.unrealengine.com/
https://www.unrealengine.com/
https://www.leapmotion.com/
http://medical.nema.org/standard.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

[14] Emilia Sbardella, Francesca Tona, Nikolaos Petsas, and Patrizia Pantano. Dti mea-

surements in multiple sclerosis: Evaluation of brain damage and clinical implications.

Multiple sclerosis international, 2013:671730, 2013.

[15] Brenden Sewell. Blueprints Visual Scripting for Unreal Engine : build professional

3D games with Unreal Engine 4’s Visual Scripting system. Packt Publishing, Birm-

ingham, UK, 2015.

[16] William Sherif. Learning C++ by creating games with UE4 : learn C++ programming

with a fun, real-world application that allows you to create your own games. Packt

Publishing, Birmingham, UK, 2015.

[17] Jie Song, Brittany M Young, Zack Nigogosyan, Leo M Walton, Veena A Nair, Scott W

Grogan, Mitchell E Tyler, Dorothy Farrar-Edwards, Kristin E Caldera, Justin A

Sattin, Justin C Williams, and Vivek Prabhakaran. Characterizing relationships

of dti, fmri, and motor recovery in stroke rehabilitation utilizing brain-computer

interface technology. Frontiers in neuroengineering, 7:31, 2014.

[18] E.O. Stejskal and J.E. Tanner. Spin diffusion measurements: Spin echoes in the pres-

ence of a time-dependent field gradient. The Journal of Chemical Physics, 42(1):288–

292, 1965.

[19] Oculus VR. Oculus rift official website, 2016. https://www.oculus.com/.

[20] Wavefront. Obj definition, 2016. http://www.martinreddy.net/gfx/3d/OBJ.spec.

[21] D J Werring, A T Toosy, C A Clark, G J Parker, G J Barker, D H Miller, and

A J Thompson. Diffusion tensor imaging can detect and quantify corticospinal

tract degeneration after stroke. Journal of neurology, neurosurgery, and psychia-

try, 69(2):269–72, Aug 2000.

[22] Nicholas Wilt. A Comprehensive Guide to GPU programming. Pearson Education,

2013.

[23] Fang-Cheng Yeh, Timothy D. Verstynen, Yibao Wang, Juan C. Fernández-Miranda,

and Wen-Yih Isaac Tseng. Deterministic diffusion fiber tracking improved by quan-

titative anisotropy. 2013.

[24] Fang-Cheng Yeh, Van Jay Wedeen, and Wen-Yih Isaac Tseng. Generalized -sampling

imaging. 2010.

36

https://www.oculus.com/
http://www.martinreddy.net/gfx/3d/OBJ.spec

A. Manual

A.1. DSI Studio

It can be downloaded from the official website 5.

1. Click on the Open Source Images button to open the desired DICOM files.

Figure 29: First step: open the DICOM files.

5http://dsi-studio.labsolver.org/

I

http://dsi-studio.labsolver.org/

2. Check the btable data and if necessary load an external btable.

Figure 30: Second step: Check the btable.

II

3. Press the Reconstruction button and select the earlier created src-file.

Figure 31: Third step: Check the btable.

III

4. Adjust the threshold, dilation and so on when necessary.

Figure 32: Fourth step: adjust different values.

IV

5. Click on select reconstruction method and select DTI. After that press Run re-

construction.

Figure 33: Fifth step: run reconstruction.

V

6. A fib file is created and now press on the Fiber tracking button. Select the created

file.

Figure 34: Sixth step: open the fib file.

VI

7. Adjust the fiber tracking values on the right side of the window 35 like number of

fibers.

Figure 35: Seventh step: adjust parameters.

VII

8. Run the tracking by clicking on Run tracking at the bottom right hand corner.

Figure 36: Eight step: run tracking.

9. Generate the brain volume by clicking at the top left hand corner on the brain icon.

Figure 37: Ninth step: generate the brain volume.

VIII

10. Save the data if the reconstruction looks fine by clicking on the save buttons. Save

the data always as txt-files.

(a) Save fibers (b) Save brain

Figure 38: Tenth step: save the generated data.

A.2. Neighbourhood

To convert the brain voxel to surface data start the console program CUDA Neighbor.exe

with the following syntax.

CUDA Neighbor.exe -i [input file] -o [output file]

-i [input file] represents the absolute or relative path to the brain voxel file

-o [output file] represents the absolute or relative path to the surface file

1 Microsoft Windows [Version 6.3.9600]
2 (c) 2013 Microsoft Corporation. All rights reserved.
3

4 C:\ CUDA_Neighbor.exe -i whole_brain.txt -o surface.txt
5 Device Number: 0
6 Device name: GeForce GT 750M
7 Memory Clock Rate (KHz): 2500000
8 Memory Bus Width (bits): 128
9 Peak Memory Bandwidth (GB/s): 80.000000

10

11 Reading data ...
12 Reading done!
13 Calculating surface ...
14 100 % [==]
15 Calculating done!
16 Writing output file ...
17 Writing output file done!
18 41447 points in 75.098 seconds

IX

A.3. MeshLab

1. Load the surface data by clicking on File->Import Mesh and change the separator

to SPACE.

(a) Import the data. (b) Change to SPACE.

Figure 39: First step: import the surface data.

2. Click on Filters->Sampling->Poisson-disk Sampling to upsample the data. A

good value for the samples is about 250000 and for MonteCarlo OverSampling

200. The item Base Mesh Subsampling has to be checked.

(a) Choose disk sampling.
(b) Change the parameters

like above.

Figure 40: Second step: perform an upsampling.

X

3. Calculate the normals by clicking Filters->Point Set->Compute normals for

point sets. Change Neighbour num to 1000.

(a) Choose the point compute nor-
mals.

(b) Change the parameters
like above.

Figure 41: Third step: calculate the normals.

4. Reconstruct the surface by Filters-> Point Set-> Surface Reconstruction:

Poisson. A gods approach is to change Octree Depth to 6, Solver Divide to 6,

Samples per Node to 1 and Surface offsetting to 1.

(a) Choose the point compute nor-
mals.

(b) Change the parameters
like above.

Figure 42: Fourth step: reconstruct the surface.

5. If the result is good enough, save the surface as a .obj-file by File -> Export Mesh.

XI

A.4. Main program

1. Check the right folder structure. The main folder should include the realDTI-

Launcher.exe which represents the launcher for the Unreal program. The folder

realDTI ought contain the two property files MenuConfig.ini and ColorProp.ini.

(a) Content of the main folder. (b) Content of the folder realDTI.

Figure 43: Check the correct folder structure.

2. Plug in the Oculus Rift and the Leap Motion. The utility tool of the Oculus has to

find it and if not press Service → Stop Runtime. Having done that press Service

→ Start Runtime. Now it is possible to test the headset by pressing Advanced →
Show Performance HUD. These steps are only effective within the 0.8 SDK. The

problem should not be present at 1.0+.

Figure 44: Test the Oculus if it works correctly under SDK 0.8.

3. Start the start up program realDTILaucher.exe and set the paths to the fibers

text file and to the .obj brain file.

Figure 45: First step: set the paths to the property files.

XII

4. After that click the Start button and the Unreal program will start automatically.

Having done that the program can be controlled with the Leap Motion like described

in figure 16 or with the mouse and the keyboard (figure 17).

Figure 46: Second step: the brain and fibers are rendered and the Unreal program waits
for user inputs

XIII

	Introduction and problem
	Motivation
	Background
	Basic principle
	Fiber tracking

	Goal

	Methods
	Data acquisition
	Reconstruction software
	Brain

	Unreal 4.10.2
	Rendering objects
	Main program
	StartUp program

	Menus
	Shaders

	Output devices
	Oculus Rift
	PC display

	Input devices
	Leap Motion
	Mouse and keyboard

	Results
	Start up program
	Menus
	Splash Screen
	Main menu
	Color Picker

	Brain and fibres
	Performance

	Discussion
	DSI Studio
	Surface data

	MeshLab
	Unreal Engine
	Oculus Rift integration
	Leap Motion integration
	Menus and mouse pointer
	Color Picker and file handling

	Artifacts
	Jitter
	Overlaying fibers

	Performance
	FPS
	CPU and RAM

	Conclusion
	Further research

	Manual
	DSI Studio
	Neighbourhood
	MeshLab
	Main program

