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Abstract

We present a method for recovering both incident lighting and surface materials from
casually scanned geometry. By casual, we mean a rapid and potentially noisy scanning
procedure of unmodified and uninstrumented scenes with a commodity RGB-D sensor.
In other words, unlike reconstruction procedures which require careful preparations in a
laboratory environment, our method works with input that can be obtained by consumer
users. To ensure a robust procedure, we segment the reconstructed geometry into sur-
faces with homogeneous material properties and compute the radiance transfer on these
segments. With this input, we solve the inverse rendering problem of factorization into
lighting and material properties using an iterative optimization in spherical harmonics
form. This allows us to account for self-shadowing and recover specular properties of
Phong-like materials. The resulting data can be used to generate a wide range of mixed
reality applications, including the rendering of synthetic objects with matching lighting
into a given scene, but also re-rendering the scene (or a part of it) with new lighting. We
show the robustness of our approach with real and synthetic examples under a variety of
lighting conditions and compare them with ground truth data.
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Kurzfassung

Diese Arbeit präsentiert eine Methode die Beleuchtung und Material aus gescannter Ge-
ometrie zurückzurechnen. Die gescannten Daten können relativ fehlerbehaftet und ver-
rauscht sein wie das üblicherweise bei kommerziell erhältlichen RGB-D Sensoren und
Structure-From-Motion Systemen der Fall ist. Die Methode ist folglich nicht auf kalibri-
erte Beleuchtungssysteme oder sonstiges professionelles Equipment angewiesen und kann
von einem typischen Endverbraucher bedient werden. Die Methode segmentiert dazu
die rekonstruierte Geometrie in Teile die einheitliche Materialeigenschaften aufweisen und
berechnen die spezifische Lichtausstrahlung dieser Segmente. Diese Eingabedaten werden
dann mit einem Lineargleichungslöser iterativ in Spherical Harmonics basierende Beleuch-
tung und Phong-Material Eigenschaftsparameter zerlegt. Diese Herangehensweise erlaubt
es auch höher komplexe Licht-Transferfunktionen wie Selbstabschattung und Global Illu-
mination zu verarbeiten welche die Lösung im vergleich zu einfacheren lokalen Modellen
verbessern kann. Die Beleuchtungsattribute und errechneten Materialeigenschaften kön-
nen in weiterer Folge für das Einfügen von synthetischen Objekten oder das Neuzeichnen
der Szene(oder Teile davon) mit veränderter Beleuchtung verwendet werden. Die Robus-
theit des Ansatzes wird mit Hilfe von echten und synthetischen Tests in unterschiedlichen
Beleuchtungssituationen gezeigt und mit Ground-Truth Daten verglichen.
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1
Introduction

Recent advances in sensing technologies, in particular inexpensive RGB-D cameras, have
lowered the cost and effort for 3D scanning. Scanning detailed object geometry is now
possible in real time, providing essential input for many applications of Mixed Reality
(MR). Thus, we can safely say that geometric reconstruction is now sufficiently "casual"
for MR. However, photometric reconstruction proves to be more difficult. To determine
both material and illumination from the same set of input images, we must solve an ill-posed
inverse rendering problem. Just from an image, we can not be sure which combination of
light color and surface material caused a particular color observation in an image.

For this reason, most photometric reconstruction methods put additional constraints
on the input. These constraints make sense for professional studio work, but cannot be
afforded by casual users. For instance, consider the capabilities of a user wanting to play
a game or shop for furniture at home with MR:

• The user must be able to capture unmodified environments of up to room size.
Special setups, such as a green-screens, are not available.

• Capturing must work rapidly (under 5 minutes) and in one pass. The user cannot
be expected to work for a long time or repeat the capturing procedure.

• Input must be obtained from a single, inexpensive camera. We used a Kinect V1,
which is currently the most widespread and economical device for RGB-D sensing.
Such cameras set exposure and white-balancing automatically and do not even allow
to read out these settings.

• Multiple cameras cannot be used. A suitable rig for mounting the cameras or a
trigger for camera synchronization are not consumer items.

• Controlled camera motion cannot be used. Turntables and other capturing contrap-
tions are not consumer equipment. Even when operated by an experienced user,
data collected with a handheld camera will be corrupted by noise and cover the
scene with varying density.
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2 Chapter 1. Introduction

• Controlled lighting cannot be used. This rules out calibrated light stages. Moreover,
the restriction to a single capturing pass also rules out repeated capturing under
multiple (uncalibrated) illumination conditions.

The main contribution of our work is a method for obtaining estimations for illumination
and material using input from casual scanning. As we will point out in the discussion
of related work below, most existing methods are not suitable for such a scenario. We
demonstrate that even with the severe restrictions enumerated above, it is possible to
deliver high-quality results. We achieve this by first segmenting the reconstructed ge-
ometry into surfaces with homogeneous material properties and computing the radiance
transfer on these segments in spherical harmonics form. The inverse rendering problem is
solved with an iterative least squares optimization, recovering both incident lighting and
Phong-like materials with diffuse and specular properties.

We demonstrate the versatility of our approach with results across the whole spectrum
of photo-realistic MR applications, spanning from Augmented Reality (inserting virtual
objects into real scenes) to Augmented Virtuality (inserting scanned objects into virtual
scenes).



2
Related Work

A large body of work on coherent rendering for MR exists [17]. Here, we focus on meth-
ods which provide an estimate of the current lighting in the user’s environment, and on
methods which recover information about the material of the objects around the user.

2.1 Direct estimation of light

The seminal work of Debevec demonstrated how to make use of a light probe in order
to directly measure the incident light [4]. Light probes are placed inside an environment
and provide light measures as high-dynamic range images, which are subsequently used to
compute an environment map. Active light probes obtain the environment map directly.
A camera with fish-eye lens or an omni-directional camera is placed directly in the scene
to acquire images of all directions in one step [9, 15, 24]. Passive light probes make use of
a reflective object, commonly a sphere, which is placed within the scene and observed by
a camera [5].

While light probes deliver environment maps at full frame rates, they are invasive and
not suitable for casual use. If the lighting is assumed to be static, the environment map
can be acquired with an offline scanning pass. Meilland [22] introduced a dense real-time
3D tracking and mapping approach and uses an RGB-D camera to capture a 3D HDR
light field for reflection rendering of artificial objects into the video stream. It also detects
light sources for rendering reflective objects with shadows. However, obtaining a full
environment map with a handheld camera is significantly more work than just scanning
the relevant portion of the environment. Without an artificial light probe or a full, directly
scanned environment map, the incident light must be recovered by analyzing reflections
in the scene, as explained in the following.

3
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2.2 Light estimation from specular reflections

Specular reflections observed on a known object allow direct estimation of the incident
light from the reflected direction. This principle can not only be applied to a dedicated
light probe, but also to any specular object with known shape in the scene. For example,
Lagger and Fua [18] detect specular highlights on small moving objects, and Mashita et
al. [21] infer the real-world lighting by detecting specular highlights on planar objects.

Jachnik et al. [13] capture a 4D light field over a small planar surface, such as a
glossy book cover. They heuristically separate the observations into diffuse and specular
reflection by assuming that the diffuse reflection varies only with position, but not with
the viewing direction, while specular reflection varies only with viewing direction, but not
with position. Our work uses a similar factorization, but applied to a general scene with
arbitrary non-planar objects having unknown material properties. Unlike Jachnik et al.,
we do not know in advance which objects exhibit specularities, and we must also detect
self-shadowing effects.

2.3 Light estimation from diffuse reflections

A lack of specular objects can render the search for specular reflections unsuccessful.
Alternatively, one can attempt to estimate illumination from diffuse reflections. However,
recovering incident light from diffuse surfaces is a more difficult problem, since one must
separate the contributions of incoming light from many directions. A mathematically
consistent approach for computing diffuse light transport in an efficient manner is based on
spherical harmonics (SH). Ramamoorthi and Hanrahan [26] introduce a general framework
for spherical harmonics based lighting estimation. It is limited to convex single material
geometry, although they propose a more general method for recovering surface parameters
from textured geometry in a known lighting environment. This thesis extends the basic
principles with adding self shadow and material estimation within an unknown lighting
environment.

Gruber et al. [10] demonstrated that an SH framework is able to recover real-world
lighting in real time from an RGB-D camera. They reconstruct the scene from depth
images and solve for incident directional lighting in SH form from selected sample points
on the reconstructed surfaces. However, the sample points must have a good distribution of
surface normals. Since diffuse reflection aggregates light from all directions, shadows from
other objects in the scene must be computed for every sample point. With image-space
optimizations [11], their system can estimate both, dynamic incident light and shadows
cast from dynamic real objects, at 20 frames per second on a desktop GPU. However, the
lack of specular effects and the sparse sampling owed to the real-time constraints impose
restrictions on the visual quality.

Boom et al. [1] presented a system which estimates a single point light source from
arbitrary scene geometry. It uses RGB-D input to estimate a single light direction and
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2.4. Light estimation from shadows 5

color image-based object segmentation with no depth or other geometry information for
segmentation. They then try to find a light direction by a downhill simplex method to
minimize the error between the input image and the re-lit image. They assume a Lamber-
tian reflectance model; specularities and ambient lights are treated as noise. They render
synthetic objects into the scene casting shadows. The approach is based on segmenting the
image by color into superpixels, for which constant diffuse albedo is assumed. Knorr and
Kurz [16] estimate incident light from human faces. Their method uses offline machine
learning from a variety of faces under different illumination conditions. The online method
applies a face tracker and matches distinctive observations points of the detected face to
the training database to estimate the real-world light in SH. However, the accuracy of the
face tracking is a limiting factor on the quality of the recovered illumination. Moreover,
the method is limited to applications where a face is seen by the camera.

While previous work on light estimation from diffuse reflections either assumes a con-
stant albedo color over the entire scene or requires information about the lighting, our
method recovers unknown incident lighting together with unknown Phong-like material
properties.

2.4 Light estimation from shadows

Another method for estimating light sources is to observe the shadows in an image. The
method is based on full or partial knowledge of the shadow caster’s geometry and the cor-
rect classification and measurement of the shadow appearance in the image. For example,
Wang et al. [33] estimate multiple directional light sources based on critical boundaries
and shadow information while the shadow receiving object need to have the same homoge-
nous material. Ikeda et a. [12] estimate illumination from shadows of possible incomplete
object shapes captured by an RGB-D camera. However, the observed objects have to be
placed on a flat Lambertian reflective plane which receives all shadows. In addition, this
system is able to recover only white light and requires expensive computations.

2.5 Retinex-based Albedo estimation

Conventional Intrinsic Image Decomposition [32] [37] decomposes an image into its
reflectance and shading parts and creates a diffuse albedo representation, suitable for
relighting. The approach operates on 2D images with no information about geometric
features like shape and normals and is therefore not suitable to solve the ambiguity between
object color and lighting including self occlusion and light bleeding. Recent developments
[19] use depth data from a depth sensor to improve the results but they are not building
up a full light transfer function. Others [2] use full RGB-D data sets with impressive
results, but only produce a single shading color for decomposing the diffuse albedo, which
results in errors, if the scene is lit by multiple light colors.
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2.6 Material estimation

Separating light and material properties without any prior information is an ill-formed
problem, because the observed surface color depends on both, the surface materials and
the lighting. If we can make the simplifying assumption that surface material is diffuse
and constant over the entire scene, we can estimate the incident lighting by using a linear
solver based on color and geometry properties [10, 26, 27]. However, in realistic scenes,
surfaces have different material properties, leading to wrong illumination estimates, since
albedo color variations are incorrectly compensated by the incident lighting modification.
For example, a red surface may lead to a solution involving red light coming from the
direction of the plane normal.

In material estimation, a popular approach to resolve the ambiguity between lighting
and reflectance is to use changing lighting, for example, using a light stage [6]. Weber et
al. [35] reconstruct shape and illumination from an image stream, but require calibrated,
switchable light sources. With known lighting, inverse global illumination can accurate
recover materials [36].

Alternatively, objects can be moved relative to the light source. For example, a turning
plate can be used to rotate small objects relative to a static light source, allowing controlled
variation of the angle of incident light. Sato [28] calculates diffuse and specular properties
based on a per-frame input stream, but needs a known calibrated point light and a rotating
setup. Dong et al. [7] recover a highly detailed data-driven BRDF on the whole surface
by rotating the object relative to the lighting, but use convex objects shapes and ignore
inter-reflections and self-occlusions.

Li et al. [20] capture a scene of a moving human with multiple cameras under unknown,
static lighting in a green room. By tracking with a human shape as a prior, they can use
the motion of the human relative to the light sources to obtain multiple observations for
every surface point over time. They segment the body into uniform materials, for which
they recover a Phong BRDF. Our approach combines a similar material segmentation, but
uses radiance transfer functions [25] based on self-occlusion to determine materials with
only a single relationship between scene and lighting.
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3
Method

Our method simultaneously estimates incident lighting and Phong-like materials of the
objects in the scene. As input to this inverse rendering process, we require a mesh rep-
resenting the scene geometry and a set of keyframes, consisting of images of the scene
taken from various known view points. Both can be obtained with a handheld camera.
No other knowledge about the lighting or the object’s material is needed. Our method is
illustrated in Figure 3.1. Denoting vectors in lowercase boldface, matrices in uppercase
boldface, scalars in italics, and compound structures in uppercase italics, our method can
be outlined as follows:

1. Data association (section 3.1): Reconstruct a per-vertex lit texture f(vi) by as-
signing pixels from keyframes Kj to mesh vertices vi, and iteratively compensate for
relative exposure changes ej and errors in the camera position pos(Kj) and camera
orientation rot(Kj) associated with the keyframes Kj .

2. Material segmentation (section 3.2): Segment the mesh M = {vi} into patches
Mu ⊆M of vertices sharing the same material.

3. Inverse rendering (section 3.3): Iteratively determine the incident lighting i as
well as diffuse albedo color a and specular coefficients from f using the radiance
transfer of M .

4. Specular coefficients (section 3.4): Determine estimates for the diffuse part
wd(Mu) and the specular part ws(Mu) of the material for each segment Mu.

3.1 Data association

Dense reconstructions can not only be acquired with multi-camera setups [3], but, increas-
ingly, with dense simultaneous localization and mapping (SLAM). Kinect Fusion [23], a

7
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Figure 3.1: Process and Data Stages Overview.
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(a) Kinect Fusion (b) Iterative Vertex Coloring

Figure 3.2: Comparison of per vertex colors obtained from Kinect Fusion and our approach.

popular SLAM variant, turns RGB-D input into a volumetric model, from which a sur-
face mesh is extracted using isosurface raycasting. We rely on the implementation in the
Microsoft Kinect SDK 1 to obtain an initial mesh geometry. We regularize the mesh to
ensure distances between neighboring vertices are within a tight interval. Excessive detail
is removed by iterative edge collapses, followed by local Delauney re-triangulation. Ar-
eas with large triangles are refined using Catmull-Clark subdivision. After regularization,
normals must be re-estimated.

Since our method depends on the quality of the color information, we do not make
use of the color information from Kinect Fusion. Instead, we greedily select a minimal set
of keyframes Kj from the input sequence covering the entire scene, such that the camera
centers are spaced sufficiently far apart:

|pos(Ka)− pos(Kb)| ≥ c1 ∀a 6= b (3.1)

Initially, pixels from all keyframes are projected to the mesh vertices vi using the perspec-
tive projection defined by the keyframes camera pose and collected in a per-vertex surface
light field f̃(vi,Kj).

Before we can factor the observations into incident lighting and material properties,
we must refine the data association. We do this by estimating a lit-color texture f(vi)
from all corresponding samples f̃(vi,Kj). Using a robust estimator ρ, we can compute
f(vi) as follows:

f(vi) = arg min
y

ρ(1 · y − f̃(vi,Kj) · ej) (3.2)

The samples are corrected for different exposure between keyframes with per-keyframe
1https://dev.windows.com/en-us/kinect
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weights ej . In the first iteration, we assume ej = 1 ∀j. Given enough samples, it suffices
to use the median or even the mean for ρ.

In the initial estimation of f(vi), we only consider samples for which the angular
difference between projection direction and surface normal n(vi) exceeds a threshold:

vi − pos(Kj)
|vi − pos(Kj)| · n(vi) > c2 (3.3)

Moreover, vertices close to a geometric edge are initially not considered, because they
can cause color bleeding. This problem can be best inspected in the image space of the
keyframe Kj from which a sample f̃(vi,Kj) originates. For a sample from Kj correspond-
ing to a pixel position x, we trace rays through neighboring pixels and determine a set of
intersection points Ms on the mesh. If a point in Ms is too far from vi or the normals
deviate too much, we do not consider vi:

∃vs ∈Ms(vi) ∧ (|vs − vi| > c3 ∨ n(vs) · n(vi) > c4) (3.4)

For every pixel pix(Kj ,x) at location x in keyframe Kj , we obtain the corresponding
sample(f ,Kj ,x) by rendering the mesh and compute the pixel-wise ratio of the pixel and
the sample. We use the ratios to robustly estimate an exposure correction factor ej for
keyframe Kj with respect to the brightness represented by f .

ej = arg min
y

ρ
(
1 · y − pix(Kj ,x)

sample(f ,Kj ,x)

)
(3.5)

After updating f using the ej as weights (Equation 3.2), we correct for small errors in the
camera poses. We make small changes to the external camera parameters pos(Kj) and
rot(Kj), re-render the images, and search for a local minimum along the image gradient
using a Lucas-Kanade method.

We repeat the cycle consisting of exposure compensation and pose correction. In
later iterations, the restrictions on eligible vertices can be stepwise relaxed to incorporate
more data. The iteration terminates, if the overall error is small enough, or no more
improvements are achieved.

The result of the data association is demonstrated in Figure 3.2(b). Note that the image
reconstructed from the lit-color texture represent averaged colors and include averaged
camera-dependent lighting effects, such as specular highlights. We remove these artifacts
later, after estimating specular reflection properties (see section 3.4). For comparison,
Figure 3.2(a) shows the color reconstruction produced by Kinect Fusion, which heavily
suffer from color bleeding, unstable exposures and erroneous camera poses.
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(a) SDF Values (b) Segmented Mesh Parts

Figure 3.3: Mesh segmentation results based on Color, Normal Gradient and SDF data.

3.2 Material-based segmentation

To guide the inverse rendering, we compute a material prior by segmenting the mesh M
into disjoint clusters Mu, each consisting of vertices with a similar material. We begin
by analyzing the mesh connectivity and isolate unconnected surface components. For
every mesh component, we apply a density-based scan (DBSCAN), as proposed by Ester
et al. [8]. The algorithm searches for connected clusters of samples that have a certain
density with respect to a user-defined distance function dist. We used a distance function
that is a weighted combination of differences in the lit-color texture f̃ , the negative normal
gradient distance nngd(va,vb) and the shape diameter function sdf(vi).

dist(va,vb) = w1 · |f(va) − f(vb)| + w2 · nngd(va,vb) + w3 · (sdf(va) − sdf(vb)) (3.6)

The lit-color texture differences describe material discontinuities. We assume
low-frequency distance lighting, which does not produce hard shadows. Therefore,
high-frequency color changes can only result from surface texture.

The negative normal gradient distance describes how two nearby surface points are
oriented towards one another. If the surface to which the points belongs is planar or
convex, we heuristically assume that they belong to the same object. If their arrangement
is concave, we assume they may belong to two different objects touching each other. This
measure can be computed from the angle between the normal of the first surface point
and the vector to the second surface point:

nngd(va,vb) = max(0, cos−1((va − vb) · (n(va))− π

2 )) (3.7)

Reference:
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The shape diameter function models the local thickness of the object underneath a mesh
vertex. It has been shown to be a reliable indicator for detecting object parts [29]. We
sample it stochastically by shooting rays into the negative half-space underneath a vertex.

After clustering all mesh vertices, we merge small segments, which consist only of
a few points, with their best matching neighboring cluster. An example of the resulting
segmentation is shown Figure 3.3. Note that each segment combines surface points sharing
the same material.

3.3 Inverse rendering

In this section, we introduce an inverse rendering method to factor the lit-color texture
into incident lighting and albedo colors.

Let us first consider forward rendering using radiance transfer [31], which describes
how light is reflected at a surface point vi. We write illum(w) for the light intensity from
direction w. For a purely diffuse material and only directional illumination, the radiance
transfer t is essentially a sum over the illumination from all incoming directions, weighted
by a Lambertian term and the visibility visib, which tells us if the light in a given direction
w is occluded or not. We sample the visibility at each vertex by tracing rays into the scene,
including a few bounces. The result is scaled with the diffuse albedo color a:

t(vi, illum) = a(vi)
π

∑
w

visib(vi, w) · illum(w)max(n(vi) · w, 0) (3.8)

For the inverse rendering, we express both the radiance transfer and the incident lighting
in SH form. The radiance transfer becomes a matrix T = [ti,k] (see Figure 5.11(a) for
an example) storing the kth SH-coefficient at vertex vi in ti,k. The lit color f can be
determined from the dot product of the incident lighting i in SH form and the radiance
transfer.

f(vi) = a(vi)
∑

k

ti,k · ik (3.9)

Many real world environments contain area light sources, such as ceiling lights or windows,
which can be characterized as distant and low frequency. This has two important impli-
cations. First, distant lighting implies that color variations are related to surface texture.
If two diffuse surfaces face in the same direction, distant lighting has the same lighting
effect on them. Therefore, different lit colors can only result from different diffuse albedo
colors. Second, under low-frequency distant lighting and in the absence of occlusions,
high-frequency color changes can only result from albedo colors, because the lighting does
not produce hard shadows.

Taking these considerations into account, we could compute the incident lighting to-
gether with albedo colors using a non-linear solver in just one pass. However, we found
that this approach tends to deliver rather unstable estimates, especially on noisy input

Reference:

Shapira, Lior and Shamir, Ariel and Cohen-Or, Daniel (2008)Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter Function

Reference:

Sloan, Peter-Pike and Kautz, Jan and Snyder, John (2002)Precomputed Radiance Transfer for Real-time Rendering in Dynamic, Low-frequency Lighting Environments
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data. Instead, we solve the resulting linear equation system in the least squares sense [10]:

i = arg min
i
|f − a · 1T ·T · i|2 (3.10)

We iterate the linear solver and regularize it using the material-based segmentation. In the
first iteration, the diffuse albedo colors a are unknown and are initialized to a constant
setting (medium-intensity white). Consequently, the solver tries to derive all lit-colors
from colored lighting, which leads to an error proportional to the color intensity incorrectly
attributed to the lighting and not the albedo color.

The error can be estimated by comparing forward rendering and inverse rendering. We
re-evaluate Equation 3.9 with the newly found i and subtract the result from f to obtain
individual per-vertex differences ∆f(vi). The differences are averaged for all vertices in
one material segment Mu, yielding a per-segment error ∆fu.

∆fu = 1
|Mu|

∑
vi∈Mu

∆f(vi) (3.11)

The per-segment error is subtracted from all vertices in the segment and added to all
albedo colors in the segment:

vi ∈Mu → f(vi) = f(vi)−∆fu, a(vi) = a(vi) + ∆fu (3.12)

The iteration terminates, if all segment errors falls below a certain threshold. An example
of the resulting incident lighting is shown as an environment map in Figure 5.11(b)).

After convergence, we obtain an estimate of the incident illumination i, which is free
of bias from the albedo, and an average unlit albedo color a per material segment.

We can derive the high-frequency parts of the albedo color by dividing the remaining
lit-color texture f by the corresponding lighting effect. We obtain the lighting effect by
forward-rendering the scene once again (Equation 3.9) with i and the constant albedo color
used in the first iteration. The high-frequency part is added to the average per-segment
albedo color to obtain the complete albedo color.

Finally, we improve the radiance transfer by using the reconstructed albedo color.
With meaningful albedo colors, radiance transfer can take color bleeding into account.

3.4 Recovering specular coefficients

In order to recover specular material properties, we return to the original keyframes Kj .
Our method is able to detect all specular reflections, if a complete light field exist for each
point. However, in practice, we usually have only measurements from a fraction of all
possible light directions for each point. To compensate for this sparse information, we use
an approach similar to Jachnik et al. [14] and compute the specular values per material
segment, rather than per vertex.

Reference:

Gruber, Lukas and Richter-Trummer, Thomas and Schmalstieg, Dieter (2012)Real-time Photometric Registration from Arbitrary Geometry

Reference:

Jan Jachnik, Richard A. Newcombe, Andrew J. Davison (2012)Real-Time Surface Light-field Capture for Augmentation of Planar Specular Surfaces
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Figure 3.4: Recovered Specularities for a single input frame.

We use a Phong-like material, which assumes that the the observed lit colors f̃ are the
result of a weighted sum of diffuse and specular reflection. At a given vertex, the diffuse lit
color is given by f . The purely specular color fs can be determined for a given viewpoint
pos(Kj) by sampling i in the direction of the reflection, unless the reflected ray is blocked
by the scene. This leads to the following equation:

f̃(vi,Kj) = wd · f(vi) + ws · fs(vi,Kj) (3.13)

For every segmentMu, we build and solve an overdetermined linear equation system in two
unknowns wd(Mu) and ws(Mu) for all observations of a vertex vi ∈ Mu. We empirically
observed that wd corresponds well to subjective roughness of the surface material. More
importantly, equation 3.13 can be used directly in a shader. Figure 3.2(d) demonstrates
the resulting specularity map of a bowl of fruits.



4
Non-Iterative Reverse Lighting

As a comparison, we tried a non-linear Levenberg-Marquardt solver, to solve for material
segment colors and incident lighting directly by just a single iteration. To do that, we
reformulated the SH lighting formula.

If we allow only one material a′u per segment Mu and write a′(vi) = a′u iff vi ∈ Mu,
we can write an SH lighting equation as follows:

f(vi) = (
∑

k

ik · ti,k) · a′(vi) (4.1)

We can solve for both i and a′ in a non-linear manner using the Levenberg-Marquart
method:

argmin
i,a′

||(
∑

k

ik · ti,k) · a′(vi)− f(vi)||2 (4.2)

While generic tests gets solved accurately, noisy real life tests show that the solver is very
sensible to errors and tend to be less stable by creating results with high negative and
positive spherical function parameters. We use spherical segments, which are more stable,
because we can limit the coefficients to positive values but we need to apply a non linear
solver that is typically slower.

4.1 Spherical Segments

Using spherical harmonics to represent the lighting has the advantage of very fast calcu-
lation with acceptable results. However, they are not suited for solving high-frequency
lighting, because the minimum size of a light region is bound to the number of bands.
When using a high number of bands, spherical harmonics tend to create unpleasant arti-
facts like the Gibbs ringing.

If high-frequency lighting is desired, we replace the SH basis with a more suitable basis
with spherical support. We divide the spherical domain into a set of discrete segments,

15
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(a) (b) (c)

Figure 4.1: Comparison of discrete spherical segments with traditional spherical harmonics. (a)
Input lighting captured with a HDR digital camera. (b) Spherical harmonics representation. (c)
Spherical segment.

with as many basis function as segments. Each basis function is 1 inside area of support and
0 everywhere else. Solving the lighting with this set of functions is essentially equivalent
to defining a light point per segment and solving for the color of this point light.

Despite its simplicity, the spherical segment basis is very suitable for inverse rendering.
Radiance transfer can directly be built from per-segment visibility information. Unlike SH,
we can postulate a positive bound for the solution, because a segment cannot emit negative
light. This makes the optimization more stable on noisy input data.

Note that Wang et al. [34] deduce light directions from shadow information with a
similar approach, but only with a binary value per segment. On the downside, computation
times and memory consumption increase with the number of basis functions, in a way
comparable to SH. Because of their robustness, we find spherical segments preferable for
a basis function count above 50.

Figure 4.1 shows a comparison of a reverse rendering based on SH and based on a
spherical segments. Note how discrete segments are sharper and correlate more with the
input lighting.

4.2 Solving texture and lighting without segmentation

We can use the equation defined in equation 4.2 to recover lighting and diffuse albedo color
without creating any segments if we have very accurate input data. The solver solves for
an individual material per per vertex. In other words, there are as many segments as
registration points. In generic tests this produces acceptable results, however it gets less
stable with noisy input data. Further research needs to be done to stabilize this solution,

Reference:

Yang Wang and Dimitris Samaras  (2003)Estimation of multiple directional light sources for synthesis of augmented reality images
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(a) Solver Input (b) Used Lighting

(c) Recovered Albedo (d) Recovered Lighting

Figure 4.2: Albedo and lighting reconstruction with non-linear solver without segmentation using
discrete spherical light segments.

since it is very promising to deduce lighting and albedo colors from an arbitrary input
scene without any pre-processing steps like segmentation.

Figure 4.2 shows the result based on a synthetic image-based lit scene. The solver
is able to separate diffuse albedo and lighting accurately from solving colors from 4.2(a)
without any preprocessing like segmentation. The quality of the recovered albedo color
4.2(c) and the recovered lighting 4.2(d) is therefore not dependent on the accuracy of a
segmentation process. Due to the complexity of the solving process and the high memory
demand of the used non-linear solver the number of registration points has been limited,
which results in a lower number of vertices and a lower albedo texture resolution.





5
Results and Applications

Figure 5.1: Visual comparison between video frame and our rendering which uses our estimations.

Our reconstruction enables many different applications of Mixed Reality. For example,
Figure 5.7 shows a visually coherent rendering. The scene consists of a real action figure
(The Hulk), which we used to estimate the current lighting. In addition, we placed a
virtual characters (Stanford Bunny), which were rendered using our estimates. Note the
two windows in the top row, which The Hulk is facing and where most of the incident

19
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Figure 5.2: Mediated Reality. The fruits have been replaced by a dragon which has been rendered
using the light estimation demonstrated before.
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lighting is coming from. This has been correctly estimated and used to create the specular
reflections on the virtual characters.

Visually coherent rendering of virtual objects in the user’s real environment requires
a quick estimation, since, otherwise, the lighting may change during processing. Our
method scales with the number of vertices in the mesh. The fruit scene consists of an
instant geometric reconstruction of medium size received from the Kinect Fusion SDK.
Estimating all parameters for this scene took approximately 1-2 minutes on a mid-range
notebook computer.

For comparison, we also used a structure-from-motion system, which is able to create
a high quality 3D mesh reconstruction within a couple of minutes. We used this system
on the Hulk model to create a large 3D mesh consisting of 470K vertices. On this large
data set, our method ran for under 1 hour to derive all parameter.

Figure 5.1 demonstrates the quality of our reconstruction by visual comparison. It
shows renderings which use our light and reflection estimates, next to the corresponding
camera frame. While the rendering and the video frame share the same camera pose,
the renderings have been zoomed to improve the presentation. The sphere represents the
reconstructed lighting. Note the computer monitors in the front part of the scene, which
are the main source of light.

Figure 5.3 depicts a set of generic samples. All samples have been rendered with the
same HDR lighting probe. A Monte-Carlo ray-tracer was used, which produces noise that
depends on the number of casted rays. Note the noise artifacts in Sample 5.3(b) and in the
self-shadow area in sample 5.3(c). While geometry, quality and segment distribution vary
greatly, the recovered lighting is very similar and very close to the input lighting. Sample
5.3(a) and 5.3(b) have no ground plane, hence the solving process results in slightly blurred
light distribution below the horizon. Some noise artifacts are present in the recovered
albedo texture, including lighting artefacts due to different ray-tracer light distribution.

Figure 5.4 depicts a set of real life samples. In order to demonstrate the quality of our
method, we have reconstructed several different scenes under different light conditions. In
particular, we have scanned a fruit table shown in Figure 5.1 and 5.4(a), an action figure
shown in Figure 5.7 and 5.4(b) and a toy car shown in Figure 5.10 and 5.4(c). The action
figure is mostly diffusely reflecting, while the toy car and the fruits consist of diffusely and
specular reflective materials.

The fruits scene 5.4(a) was reconstructed directly from Kinect Fusion data using depth
and color frames. The action figure (Figure 5.4(b)) and the toy car (Figure 5.4(c)) was
reconstructed by Structure from Motion with a sparse set of photographs as input. The
toy car (Figure 5.4(c)) was not segmented improperly due to noisy input geometry. Note
that the ground plane has a small gap. However, all three samples, while significantly
different in material distribution, geometry and reconstruction quality, are successfully
deconstructed into its lighting and shading parts, with the same segmentation parameters
and solving thresholds.
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Figure 5.3: Generic samples.
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Figure 5.4: Set of real life samples.
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Stage Vertices SH (Dif) SH (Shad) SH (GI) Segmenting Solving Total (GI)
Ball 10371 0.029 0.780 10.669 0.048 6.333 17.050
Dragon 22982 0.099 4.260 76.990 0.113 10.090 87.193
Bunny 34817 0.100 3.140 22.410 0.145 10.970 33.525
Fruits 72119 0.212 7.550 112.603 0.314 15.993 128.910
Hulk 229059 0.656 32.887 470.782 1.109 48.341 520.232

Table 5.1: Processing time (in seconds) for all steps ordered by stage complexity.

Table 5.1 lists the processing time (in seconds) for all steps ordered by stage complexity.
Spherical Harmonics are calculated in three different ways. SH(Dif) only takes vertex
normals into account (no scene ray-casting necessary), hence only dependents on the
number of vertices. SH(Shad) checks for occlusion, hence the performance is depending
on the concavity of the scene. SH(GI) calculates a multi-bounce transfer function and is
therefore highly dependent on the scene concavity and complexity.
Figure 5.5 shows the results using different sets of light transfer functions applied on a sin-
gle material mesh. In addition, the error compared to the reference rendering is illustrated
using color coding. Figure 5.5(a) shows the reference scene, which has been rendered by
a multi-bounce ray-tracer and lit by an HDR environment map. Figure 5.5(b) uses a
light transfer function which is only taking local geometry information like normals into
account and cannot correctly separate albedo from lighting. The reconstructed albedo
color in Figure 5.5(b) contains artifacts from self-shadows and light bleeding, since this
information is not part of the transfer function used during reconstruction. Figure 5.5(c)
is taking self-shadow information into account. Because the light transfer function does
not include light/surface reflection, the error in the albedo reconstruction is high in con-
cave areas, where light bouncing and bleeding have a noticeable impact on lighting. The
recovered lighting shows less error than Figure 5.5(b), but still contains strong ringing and
blurred highlights. The albedo texture would lead to artifacts when used for relighting.
Figure 5.5(d) shows that GI has the least amount of error. Note that the reference was
conventionally ray-traced without lossy SH compression; we cannot expect to match it
exactly. We expect that using more SH bands would further reduce the error.

Figure 5.6 shows the results of solving a single material mesh (Figure 5.6(a)) and a
multi-material mesh (Figure 5.6(b)) without segmentation and compares it to the results
of segmented solving (Figure 5.6(c)) to illustrate the importance of segmentation. Un-
segmented solving explains albedo colors by varying the lighting results. The recovered
shading in Figure 5.6(b) contains green from top, red from left and blue from right as
present in the input mesh. The recovered lighting contains similar artifacts. Segmented
solving is able to separate the lighting from albedo very closely to the unsegmented solver
applied to a single material mesh. The recovered shading in Figure 5.6(c) shows a slight
offset to green, since this material is dominant. The recovered lighting gets white-balanced,
resulting in a reduced bias for the recovered SH lighting.
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Figure 5.5: Quality comparison based on the type of light transfer functions used for light
reconstruction.

Figure 5.7 shows an example for Differential Rendering. A generic mesh (Standford Bunny)
assigned with recovered material properties of one segment of the input geometry is in-
serted into the scene. The image on the left shows the original frame with known camera
pose. The image in the middle shows generic geometry, rendered together with the recov-
ered geometry and materials to support light inter-reflection. The image on the right shows
the generic mesh with ground shadow inserted into the original photograph. Recovered
geometry has been removed but is available for depth culling.

Since our method supports instant light estimation without any special laboratory
setup, it can also be applied to enable coherent lighting for Diminished or Mediated Reality
applications. Figure 5.2 shows an example in which we replace the fruits shown before
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Figure 5.6: Comparing reconstructions based on segmentation..
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Figure 5.7: Differential Rendering.

Figure 5.8: Differential Rendering. Image shows strong self shadow effects from recovered geom-
etry to virtual geometry and vice versa.
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with a virtual dragon. We use the same scene as in Figure 5.1, so the virtual dragon is
mainly lit by the computer monitors in front of the removed fruits.

Furthermore, our reconstruction of material parameters allows to relight 3D scans of
real objects. Thus, we can instantly add scanned real objects into virtual environments.
For example, Figure 5.10, left, shows our reconstruction of a toy car, which we subsequently
placed into a 3D video downloaded from a video website (Figure 5.10, right). In order to
coherently render the toy car within the 3D video, we estimate the lighting in every video
frame and apply it to the car.
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Figure 5.9: Interchanged Augmented Virtuality. Geometry reconstructed from a real scene shown
in Figure 5.8 gets inserted into another real scene matching the lighting. To support inter-reflections
like self-shadow the target geometry is rendered in addition.

Figure 5.10: Augmented Virtuality. (left) Input data and estimated albedo color and lighting.
(right) We place the scan inside a 360 video and relight the geometry using our material estimated
and an estimation of lighting in each video frame video.
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Input and Resulting Rendering

Initial Result

Result after 1. Iteration

Result after 5. Iteration

Result after 7. Iteration

Result after 33. Iteration

Figure 5.11: Reconstructing Light. (left) Recovered Albedo Color (middle) Recovered Lighting
(right) Geometry lit with recovered lighting.



6
Conclusion and future work

We have presented a method for obtaining estimations for illumination and material using
input from casual scanning and demonstrated that, even with the severe restrictions of
casual scanning, it is possible to deliver high-quality results. Moreover, we have demon-
strated the versatility of our approach with results across the whole spectrum of photo-
realistic MR applications, spanning from Augmented Reality (inserting virtual objects into
real scenes) to Augmented Virtuality (inserting scanned objects into virtual scenes).

While our method enables many applications, it suggests several directions for future
work based on the assumptions we have made. For example, we assume directional lighting
with only low- to mid-range frequencies and piecewise constant specularity, which limits
specular effects. Furthermore, since we assume a static scene, dynamic elements, such
as moving or deformable objects require a dynamic geometric reconstruction as well as
information about the light transfer for each point in time. Furthermore, we plan improved
color management using LAB instead of RGB color space as proposed by Sheng et al. [30].
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List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-
reviewed publications. For the sake of completeness of this Thesis, they are listed in
chronological order along with the respective abstracts.

A.1 2012

Real-time Photometric Registration from Arbitrary Geometry

Lukas Gruber, Thomas Richter-Trummer, Dieter Schmalstieg
In: International Symposium on Mixed and Augmented Reality (ISMAR), 5-8 Nov. 2012

Abstract: Visually coherent rendering for augmented reality is concerned with seam-
lessly blending the virtual world and the real world in real-time. One challenge in achieving
this is the correct handling of lighting. We are interested in applying real-world light to
virtual objects, and compute the interaction of light between virtual and real. This implies
the measurement of the real-world lighting, also known as photometric registration. So
far, photometric registration has mainly been done through capturing images with artifi-
cial light probes, such as mirror balls or planar markers, or by using high dynamic range
cameras with fish-eye lenses. In this paper, we present a novel non-invasive system, using
arbitrary scene geometry as a light probe for photometric registration, and a general AR
rendering pipeline supporting real-time global illumination techniques. Based on state
of the art real-time geometric reconstruction, we show how to robustly extract data for
photometric registration to compute a realistic representation of the real-world diffuse
lighting. Our approach estimates the light from observations of the reconstructed model
and is based on spherical harmonics, enabling plausible illumination such as soft shadows,
in a mixed virtual-real rendering pipeline.
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A.2 2016

Instant Mixed Reality Lighting from Casual Scanning

Thomas Richter-Trummer, Denis Kalkofen, Jinwoo Park, Dieter Schmalstieg
In: International Symposium on Mixed and Augmented Reality (ISMAR), 19-23 Sep. 2016

Abstract: We present a method for recovering both incident lighting and surface mate-
rials from casually scanned geometry. By casual, we mean a rapid and potentially noisy
scanning procedure of unmodified and uninstrumented scenes with a commodity RGB-D
sensor. In other words, unlike reconstruction procedures which require careful prepara-
tions in a laboratory environment, our method works with input that can be obtained by
consumer users. To ensure a robust procedure, we segment the reconstructed geometry
into surfaces with homogeneous material properties and compute the radiance transfer on
these segments. With this input, we solve the inverse rendering problem of factorization
into lighting and material properties using an iterative optimization in spherical harmon-
ics form. This allows us to account for self-shadowing and recover specular properties.
The resulting data can be used to generate a wide range of mixed reality applications,
including the rendering of synthetic objects with matching lighting into a given scene, but
also re-rendering the scene (or a part of it) with new lighting. We show the robustness of
our approach with real and synthetic examples under a variety of lighting conditions and
compare them with ground truth data.
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