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Schätzung von Gangparametern aus EEG-Quelloszillationen

Zusammenfassung

Ziel: Unter Anwendung eines Modells der kortikalen Repräsentation von aufrechtem Gang

sollte während dem Gehen ausgehend von nichtinvasiven EEG-Messungen der Gangzus-

tand (Gehen/Stehen) sowie die Gangfrequenz ermittelt werden. Das betre�ende Gang-

modell wurde bisher anhand von Analysen von über Gangzyklen gemitteltem EEG, das

während roboterunterstütztem Gang aufgezeichnet wurde, dokumentiert. Diese Arbeit

übersetzt das Modell für die direkte Anwendung in online-Experimenten.

Methoden: Der Gangzustand wird im kortikalen Quellraum aus Wavelet-Amplituden

im µ- undβ-Frequenzbereich berechnet, die Gangfrequenz aus denselben im unteren γ-

Bereich berechnet. Ein Verfahren zur Entfernung von Bewegungsartefakten wurde für

den Einsatz in Online-Versuchen modi�ziert.

Ergebnisse: Simulationen mit Daten von roboterunterstütztem Gang brachten gute

Ergebnisse für beide Parameter. In Online-Experimenten am Laufband war die Variabil-

ität zwischen Versuchspersonen höher; folglich waren die Ergebnisse weniger zuverlässig.

Schlussfolgerung: Es wurde gezeigt, dass Gangparameter in Echtzeit aus dem EEG

geschätzt werden können, sofern diese stark genug ausgeprägt sind. Die Ausprägung der

zugrunde liegenden Muster variiert beim Gehen am Laufband stark zwischen einzelnen

Versuchspersonen.

Schlüsselwörter: EEG Quelllokalisation, Gang, neuronale Oszillationen, Zeit-Frequenz-

Analyse, Online-Signalverarbeitung

Estimation of Gait Parameters from EEG Source Oscillations

Abstract

Objective: A model of the cortical representation of upright gait was employed to es-

timate the gate state (walking/standing) and gait cadence (stepping frequency) on the

basis of non-invasive EEG recordings. The gait model was previously documented in

o�ine analyses of mean gait cycles in robot-assisted gait.

Methods: The gait state is computed in the cortical source space from Wavelet ampli-

tudes in the µ and β frequency bands; the gait cadence is estimated from low γ Wavelet

amplitudes. A movement artifact correction method was adapted for online use.

Results: Simulations on Lokomat data yielded reliable results in both the state identi�-

cation and the cadence estimation. In online experiments, there was a higher inter-subject

variability and lower reliability of the results. Online performance correlated with pat-

terns found in o�ine analyses.

Conclusion: The feasibility of estimating gait parameters from EEG in real time was

demonstrated in cases where the underlying patterns where strong enough. During tread-

mill walking, the strength of these patterns varied strongly between subjects.

Key words: EEG source localization, gait, neural oscillations, Time-frequency analysis,

online signal processing
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Abbreviations

EEG Electroencephalogram

ECoG Electrocorticogram

ERD/S Event-Related Desynchronization/Synchronization

dB Decibel

GPM Gait Phase related Modulations

WT Wavelet Transform

FIR Finite Impulse Response

LSL Lab Streaming Layer

sLDA shrinkage Linear Discriminant Analysis

wMNE weighted Minimum Norm Estimates

sLORETA standardized Low REsolution brain Electromagnetic TomogrAphy

BEM Boundary Element Method

MRI Magnet Resonance Imaging

PSCA Principal Spectral Component Analysis

MSE Mean Squared Error

SNR Signal to Noise Ratio

ROI Region Of Interest

4



Part of this thesis was presented at the 2016 IEEE International Conference on Systems,

Man and Cybernetics (SMC) ([21]).
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1 Introduction

Motor impairments after stroke inhibit a�ected persons in the performance of basic ac-

tivities, potentially restricting their daily life. Losing the ability to move freely in one's

environment gravely limits one's independence and can have wide-reaching consequences.

Rehabilitation should help to limit the burden of long-term impairment and facilitate a

large degree of independence. Understanding the underlying cortical processes in healthy

persons as well as persons a�ected by stroke may be a key contributor to the development

of e�cient novel rehabilitation methods.

In the past, a variety of movement studies employing non-invasive electroencephalogra-

phy (EEG) and invasive electrocorticography (ECoG) to examine electrocortical activity

documented a decrease in µ (8-13 Hz) and β (13-30 Hz) oscillations ([1], [2], [3], [4],

[5], [6]), as well as an increase in high γ (75-100 Hz) amplitudes ([7]) with respect to a

non-movement reference period. The local decrease or increase in neural oscillations of a

speci�c frequency band is a consequence of changes in synchrony of underlying popula-

tions of neurons. These changes in synchrony relative to a de�ned pre-movement baseline

are termed Event-Related Desynchronization (ERD) and Event-Related Synchronization

(ERS), respectively ([1], [2]).

The cited studies focused on isolated isometric or repetitive movements. A major step on

the journey to creating meaningful models of movements to bene�t rehabilitation appli-

cations as well as the general understanding of the cortical involvement in the facilitation

of gait is to move on to more functional types of movements.

In recent years, several studies ([8], [9], [10], [11]) have studied temporal dynamics of

EEG signals - in addition to the sustained e�ects of ERD/S described above - during

continuous walking. Contrary to methods like functional Magnet Resonance Imaging,

which is extremely sensitive to movement artifacts, and thus only allows for simple, easily

controllable isolated movements, EEG is applicable in a mobile setup. Furthermore, EEG

has an advantage over methods based on metabolic processes such as functional Near-

Infrared Spectroscopy, in that it provides good temporal resolution with regard to the

brain activity, making it an apt tool to study movement-related time-varying cortical

processes.

[8] investigated EEG during active and passive robot-assisted walking using Independent

Component Analysis and equivalent current dipole mapping, and found decreased ampli-

tudes in µ (8-12 Hz) and β (18-21 Hz) oscillations as well as modulations according to the

gait phase in the low γ (25-40 Hz) frequency range in central midline areas during active

walking.

A similar superposition of these e�ects was identi�ed in [9] during active robot-assisted
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gait using Inverse Source Localization ([12], [13], [14], [15]) based on realistic head models

with a distributed source model. The relative power decrease in µ (10-12 Hz) and β (18-

30 Hz) rhythms on the one hand, and low γ (24-40 Hz) modulations on the other were

presented as two di�erent aspects of the walking movement.

1.1 The Gait Model

This thesis aims at quantifying properties of walking movement represented in cortical

activity in real time, building upon the two-element model put forth by [9]:

There, a time-frequency decomposition was performed on the signals of mean gait cycles

(gait cycle: interval between two consecutive right heel strikes) in source space. For every

mean gait cycle, the relative power was computed, with respect to signals recorded during

standing.

ERD re�ects a state of cortical excitability in the respective brain areas - in the case of

walking: the sensorimotor areas of the neocortex attributed to the legs and feet. Thus,

the resulting measurable power decrease in µ and β rhythms can be used as an indicator

for a movement state.

Figure 1 illustrates the relative power (in dB) during a mean gait cycle of an exemplary

subject (all following illustrative �gures show reproduced results). This represents the

e�ect of ERD during movement. The left plot depicts the power spectrum over time, in

the left and right paracentral areas. The abscissa denotes the subject speci�c duration

of a mean gait cycle (in this case: 2.078 seconds). The right plot shows the mean power

spectrum. The desired features are identi�ed by two distinct negative peaks in the mean

power spectrum, in µ and β bands, respectively, whereas peak frequencies and width of

the peaks vary between subjects. As demonstrated in the time-frequency plot, the power

decrease is sustained throughout the gait cycle. The frequency bands suggested by [9] are

highlighted in gray in both plots of �gure 1.

On the other hand, amplitude modulations found in the low γ (24-40 Hz) ([8],[9]) as well

as high γ (70-90 Hz) [11] (with the high γ modulations' phase inverted with respect to

the low γ modulation) oscillations re�ect the dynamic aspect of the movement. [9] coined

the term Gait Phase related Modulations (GPM) for this property.

Figure 2(a) depicts the mean gait cycle modulation pattern exhibited in one subject across

the frequency spectrum. This pattern was obtained by removing the temporal mean from

the relative power.
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(a) Time-frequency plot
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Figure 1: Relative power during a mean gait cycle in sensorimotor feet areas
(single subject). (a) Relative power spectrum over the duration of one gait cycle,
(b) mean relative power spectrum. ERD is expressed in the power decrease in µ
and β bands marked in gray.

To quantify the modulating e�ects across the frequency spectrum, [9] introduced the Gait

Phase Modulation (GPM) measure, a complex number indicating to which degree the

amplitude of a carrier frequency is modulated according to the gait cadence:

GPM(f) =
2√

2 · σA(f)N
·
N−1∑
n=0

A(n, f) · e−2πi 2n
N (1)

with f and n the respective frequency and time indices, A the magnitude of the time-

frequency decomposition, N the number of samples in the cycle, and σA(f) the standard

deviation of A. In case of perfect sinusoidal modulation with the step frequency, the

magnitude of the measure is 1.

The magnitude of the GPM measure across the frequency spectrum for the presented

subject is displayed in �gure 2(b).

Although there is partial overlap in spatial location and frequency range of the β power

decrease and the low γ modulation, these two phenomena are interpreted to stem from

di�erent cortical networks ([9], [16], [17]).

[18] generalized the model to characterize rhythmic movements of both extremities, study-

ing source oscillations during periodic �nger movements. The equivalent of GPM was

called Movement Phase-related Amplitudes.

In [19], the GPM property was used to reconstruct gait cycle patterns (frequency and

phase) from EEG using a Laplace derivation of the Cz position. This was the �rst instance

where the explained model was applied to single-trial data. In a di�erent approach, µ and

β power levels were used to identify changes in walking speed during treadmill walking

([20]).
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(a) Time-frequency plot of modulation
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Figure 2: Modulation pattern in a mean gait cycle (single subject). (a) Zero-
mean relative power during average gait cycle, (b) Magnitude of the GPM mea-
sure across the frequency spectrum.

1.2 Objective

This thesis represents an attempt at evaluating the model put forth by [9] online. To

this end, an online estimation framework was designed to provide real-time feedback of

gait parameters during treadmill walking, employing a two-stage approach: In the �rst

stage, the movement state (movement or stationary) is determined by means of a binary

classi�cation of features based on ERD. If a movement state is detected, the gait cadence

is estimated using a simple frequency estimation algorithm.

This algorithm looks for the dominant frequency in the Wavelet amplitudes within the

low γ frequency band (24-38 Hz), which is marked by the gray outlined box in �gure 3(a).

The mean time course in this frequency band as well as the corresponding amplitude

spectrum are presented in �gure 3.
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Figure 3: Modulation in the low γ frequency band (single subject). (a) Time
course, contrasted by the time course during standing in red. (b) Amplitude
spectrum (WT). The green line marks the median cadence inferred from heel
contact measurements.
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1.3 Development Process

The development process encompassed two main phases, as illustrated in �gure 4: In the

�rst phase, the online data processing and parameter estimation methods were set up.

This drafted framework was tested on an o�ine data set of robot-assisted walking. When

promising results were obtained on these data, the framework was implemented for direct

online use and applied in three pilot experiments.

The results of phase 1 were presented at the 2016 IEEE International Conference on Sys-

tems, Man, and Cybernetics (SMC) ([21]).

After an evaluation of the online results and post-experiment analyses of the recorded

EEG, the framework was revised. The revision encompassed parameter adjustments fol-

lowing insights gained from the obtained results of the pilot experiments. Furthermore,

an online artifact correction method was implemented.

The revised processing was evaluated on the o�ine data set, and the pilot recordings.

Finally, three additional online experiments were conducted.

O�ine

model

O�ine

simulations

(1)

Online

experiments

(1)

Phase 1

Revision

O�ine

simulations

(2)

Online

experiments

(2)

Phase 2

Figure 4: Sketch of the development process.

To my knowledge, this is the �rst instance where the proposed characterization of gait is

applied for online estimation.

2 Methods

2.1 Gait Parameters

Two sets of features were identi�ed to characterize the gait movement, based on the model

put forth in [9], the �rst of which is used to identify the movement state, and the second

to characterize a dynamic component of the movement, i.e. the gait cadence.

Determination of the movement state is treated as a binary classi�cation problem, based

on features re�ecting the e�ect of ERD. Said features deviate from the classical de�nition

of ERD, which is computed relatively to a de�ned reference period before each trial [2].

Being based on continuous walking, the experimental setup does not allow for this.
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The gait cadence is estimated by computing the (low-frequent) spectrum of the mod-

ulating frequency band, and investigating it for its dominant frequency.

Methods were drafted to extract and process features from live EEG in segments of

�ve seconds at a time. This time window was selected in order to provide feedback at

acceptable time intervals, while including several modulation periods.

As sketched in �gure 4, before online testing of the designed signal processing frame-

work, its function was validated on an o�ine data set of 10 healthy subjects walking with

the assistance of a Lokomat (Hocoma, Switzerland) robotic gait orthosis. The system was

subsequently adapted to actual online use, and applied in online treadmill experiments

with three subjects.

After three measurements, the system was subjected to a major revision, including an

artifact removal method. The revised processing was again tested on the Lokomat data

as well as the data collected in the �rst three treadmill experiments, before additional

experiments were conducted.

2.2 Evaluation of Methods on O�ine Data

EEG recorded in 10 healthy subjects during walking guided by a Lokomat was chosen

as a basis for the development of the signal processing framework, because the patterns

from which the features of interest were derived were previously identi�ed in gait cycle

averages of the data [9].

Analyses based on the same data set were �rst published in [8].

In the original experiment, subjects were walking at constant speed, which was determined

for each subject according to their respective leg length, varying between 1.8 and 2.2 kph.

Participants were instructed to walk naturally without resisting the Lokomat. Originally,

three conditions were performed: Active walking (actively supporting the movement tra-

jectory dictated by the Lokomat), passive walking and standing while actively supporting

one's body weight. Here, passive walking runs were not included.

EEG recordings were taken at 120 sensor sites using 4 BrainAmp (Brainproducts, Ger-

many) ampli�ers. The electrode layout followed the 5% international 10/20 EEG system

(EasyCap, Germany) [22]. Ground and reference were placed on the right and left mas-

toids, respectively. All electrode impedances were made sure to be lower than 10 kΩ.

The true stepping pattern was recorded by means of electro-mechanical pressure sensors

�xed to the heels.

Raw data was sampled at 2.5 kHz, subjected to zerophase FIR (Finite Impulse Response)
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1 Hz high pass and 200 Hz low pass �lters and downsampled to 500 Hz.

The EEG signals were re-referenced to the common average. Channels either superceding

1 mV in amplitude at any time point or with a variance higher than �ve times the median

variance of all channels.

Signal processing and computations were conducted in Matlab (Mathworks, Inc., Nat-

ick, USA). After preprocessing, EEG was cut into non-overlapping segments of 5 seconds.

If any sample of a segment superceded a threshold of 200 µV , the segment was omitted.

2.2.1 Online Treadmill Experiments

In the online experiments, healthy subjects were walking on a treadmill at low speeds

and were instructed to move in a regular periodic manner, keeping the stride length as

constant as possible. Furthermore, they were asked to keep their gaze straight ahead and

to keep head and shoulder movements to a minimum to limit movement-related artifacts

in the EEG.

EEG was recorded with a 64 channel eegoTMsports system (ANT Neuro, Enschede,

Netherlands) at a sampling frequency of 500 Hz. Electrode impedances were less than 20

kΩ. All electrodes including ground and reference electrodes are integrated in the EEG

cap. The ground and reference were located at Fpz and CPz, respectively. Four electro-

mechanical pressure sensors (two sensors per foot) were attached to the subjects' heels

and balls of the feet, respectively, to record the gait pattern for post-experiment analyses.

An overview of the experimental setup is presented in �gure 5.

Figure 5: Experimental setup in treadmill experiments. The EEG setup was
mobile (EEG cap with integrated electrodes, lightweight ampli�er in backpack)
and connected to a computer via USB. Pressure sensor signals were transmitted
to the ampli�er via a custom "trigger box".
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Both the EEG and pressure sensor signals were streamed over the network via the Lab

Streaming Layer (LSL) [23] framework. Both streams were recorded for use in later of-

�ine analyses and troubleshooting purposes. Live EEG was received by Matlab through

an LSL inlet, bu�ered, and then processed in non-overlapping segments of 5 seconds at

a time. The core signal processing was identical to the processing applied to the o�ine

data. The preprocessing, on the other hand, had to be applied to each trial segment

separately. Raw EEG was subjected to a high-pass �lter (4th order Butterworth �lter)

with a cut-o� frequency of 1 Hz. Filter states were saved by the �lter object, to avoid

swing-in e�ects.

After the revision of the system, modi�cations had to be made to reduce computation

time, because the new processing could not be conducted within one trial length. To

achieve real-time performance, the EEG signals were downsampled (refer to section 2.4

for details).

Channels with high variances were rejected according to the same criteria as for the o�ine

data, and the same amplitude threshold of 200µV was employed.

The inverse model (see section 2.3) required a noise covariance matrix computed from

resting EEG. As in the Lokomat experiments, the non-movement state was de�ned as

upright standing. To this end, a standing period was recorded at the beginning of each

experiment. After the revision of the system (phase 2), the same recordings were also

used to compute a quasi baseline for trials (see below for details).

Afterwards, training data of the two classes "walking" and "standing" were collected to

train the shrinkage Linear Discriminant Analysis (sLDA) classi�er. Eventually, evaluation

runs with online classi�cation of the gait state as well as estimation of the gait cadence

were performed.

Variance based channel rejection was performed according to variances computed from

the training runs.

For the �rst three subjects (phase 1), the treadmill speed remained unchanged throughout

the experiment, while in the later experiments (phase 2), di�erent speeds were explored.

2.3 Inverse Source Localization

Features were computed in the cortical source space. To this end, inverse source local-

ization was performed to compute sources of cortical activity from non-invasive EEG

measurements.

The extracellular potential �eld measured at EEG electrode locations is essentially said to

result from the collective activity of neurons propagated through the so-called volume con-

ductor, i.e. the media surrounding the brain such as the skull and scalp of the head. The
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neuronal activity is constituted by a dipole (a source and a sink) of electric current within

any neuron experiencing a post-synaptic potential [24]. Inverse source imaging models

the causal relationship between neuronal source currents and scalp potentials picked up

by EEG sensors as an inverse problem, with the �rst being the unknown cause and the

latter the measured e�ect.

Inverse source localization was performed with Brainstorm (Tadel et al. 2011), which

is documented and freely available for download online under the GNU general public

license (http://neuroimage.usc.edu/brainstorm) [25].

The ill-posed inverse problem was modeled by means of a distributed source model, re-

stricting the source space to the cortical surface and the orientation of source dipoles to

be perpendicular to the surface.

Source maps were computed using wMNE (weighted Minimum Norm Estimates) ([26])

regularization, and normalized according to sLORETA (Standardized LOw Resolution

brain Electromagnetic TomogrAphy) [27].

Forward models were based on realistic head models, computed as layered symmetric

Boundary Element Method (BEM) models [28]. To this end, structural T1 MRI scans

were recorded with a 3.0 T (Tim Trio/Skyra, Siemens, Erlangen, Germany) scanner and

processed using the FreeSurfer analysis suite ([29], [30]), which is documented and freely

available for download online (http://surfer.nmr.mgh.harvard.edu/). The forward BEM

models themselves were computed in Brainstorm via OpenMEEG [31] [32]. OpenMEEG

models four layers, representing the scalp, the inner and outer skull and the cortex.

The resulting inverse model represents a linear mapping from the source space to the

sensor space.

The features of interest are expected to be localized in paracentral regions of the cor-

tex, which are ascribed to sensorimotor representation of the lower extremities, and thus

were computed from a subset of source vertices in these areas, as de�ned by the Desikan-

Killiany atlas.

2.4 Signal Processing and Feature Extraction

2.4.1 Time-Frequency Analysis

EEG segments of 5 seconds were subjected toWavelet decomposition using Morlet Wavelets

[33]. The temporal resolution was set to 5 seconds (full width half maximum) at the

mother wavelet's center frequency of 1 Hz.

To avoid the in�uence of edge e�ects on the feature computation, the time-frequency de-
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composition is truncated on both edges in the time dimension.

After the revision, the transformation to the cortical source space took place after the

Wavelet transform to reduce computational e�ort. The time-frequency decomposited sig-

nals were mapped as complex signals, and the magnitude subsequently computed in the

source space.

2.4.2 Feature Extraction (Phase 1)

The feature compuation of phase 1 is illustrated in �gure 6.

The input block labeled "Wavelet amplitude" represents the amplitude time courses of

the Wavelet transformed signals in source space (averaged across the region of interest),

i.e. one time course for each frequency within the de�ned range (8-40 Hz, in 2 Hz steps).

The classi�cation of the gait state was performed on logarithmic band amplitude features

computed from the Wavelet amplitudes in µ (10-12 Hz) and β (22-26 Hz) frequency bands

(averaged across the respective frequency bands). The logarithm serves to shape the fea-

ture distributions into a more suitable form for the classi�er, since LDA classi�ers work

best on normally distributed data.

For the frequency estimation, the frequency band containing the GPM according to [9]

(24-38 Hz) was - after deduction of the temporal mean and averaging across the low γ

frequency band - again subjected to Wavelet decomposition in the range of 0.1 to 3 Hz,

averaged across the temporal dimension, and investigated for its maximum amplitude.

The described process is sketched in �gure 6.

Wavelet

amplitude
(source space, ROI)

meant

gait

state

µ

β

log

log

sLDA
gait

state

- low γ WT
0.1:0.1:3 Hz

meant
argmax

f
fest

Figure 6: Feature computation (before revision). ROI: region of interest, meant:
temporal mean, µ, β, low γ: extraction of frequency bands and mean over respec-
tive bands, sLDA: shrinkage LDA classi�er, WT : Wavelet transform. argmaxf :
�nd frequency corresponding to maximum.

2.4.3 Feature Extraction (Phase 2)

During the revision, an online artifact correction method was implemented, which is de-

scribed in section 2.5. The artifact correction method necessitated the computation of

the features from the relative Wavelet power (relative to a non-movement baseline) in dB,

rather than the Wavelet amplitude.

The standing period recorded to whiten the inverse model's lead �eld matrix was utilized
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to serve as this (quasi) baseline. Moreover, the Wavelet decomposition now had to be

conducted over a larger frequency range of 2-100 Hz, and in the whole source space.

Because of the increased compuational load, EEG was downsampled to 250 Hz in the

preprocessing stage. After the time-frequency decomposition, the Wavelet transformed

time courses were downsampled further, by a factor of 4, resulting in a �nal sample rate of

62.5 Hz. This is su�cient for the remaining computations, because the �rst set of features

(µ and β band power) does not rely on temporal variation, but rather a sustained power

level, and the Gait-Phase related Modulations naturally are low frequent.

The frequency bands for the gait state classi�cation features were expanded to better

cover the negative spectral peaks in a broader range of subjects. µ features were now

computed from the frequencies 8-12 Hz, while the β range was extended in both direc-

tions to 18-30 Hz.

The actual feature computation almost stayed the same as before, with one exception:

the logarithmization to reshape the feature distribution for the sLDA classi�er was not

necessary anymore, because the relative power in dB was already logarithmic.

The revised processing is depicted in �gure 7.

Rel. Wavelet

power
(source space, ROI)

meant

gait

state

µ

β

sLDA
gait

state

- low γ WT
0.1:0.1:3 Hz

meant
argmax

f
fest

Figure 7: Feature computation (after revision). ROI: region of interest, log:
base 10 logarithm, meant: temporal mean, µ, β, low γ: extraction of frequency
bands and mean over respective bands, sLDA: shrinkage LDA classi�er, WT :
Wavelet transform. argmaxf : �nd frequency corresponding to maximum.

2.5 Artifact Treatment

EEG recorded during movement is highly prone to contamination by movement artifacts.

To limit the adverse e�ects on the features, a number of measures were taken.

Subjects were instructed to avoid excess movement, most importantly of the head and

shoulders, to limit the e�ect of artifacts on the EEG signals. However, due to the nature

of gait experiments, a certain amount of artifact contamination cannot be avoided.

Trials with strong transient artifacts were discarded via a threshold of 200µV .

16



Ocular artifacts such as eye blinks are considerably slower than alpha rhythms, and there-

fore outside of the frequency range used for feature computation. A similar argument can

be made for power line artifacts, which occur above the highest frequency of interest for

the modulations (38 Hz).

[11] proposed a method to remove movement artifacts, based on Principal Component

Analysis in the spectral domain (PSCA). It exploits the fact that muscular artifacts tend

to be stronger than EEG and spread over both a broad frequency and spatial range. The

time-frequency composed source space signals are subjected to PSCA, and then projected

back, discarding the component belonging to the largest eigenvalue of the covariance ma-

trix.

The rejected component was demonstrated to be plausibly consistent with properties as-

sociated with movement artifacts - it is spectrally broad-banded and strongest around

dorsolateral regions. The features of interest, on the other hand, are all band-limited and

spatially con�ned.

This method was adapted to make it �t for online use, and implemented during the

revision. This required major changes to the �rst draft of the system, where the features

where computed only in relevant frequency bands and in source vertices contained in the

region of interest.

In order to capture the properties of the artifacts, data is required across a broad frequency

spectrum (2-100 Hz) and in the whole source space.

3 Results

3.1 Phase 1

3.1.1 O�ine Simulations

Gait State

The performance of the gait state classi�cation was evaluated by means of a 10×10 fold

cross-validation. The obtained results are summarized in �gure 8.

There is a mismatch in the number of trials per class, as well as di�erent amounts of

data per subjects. Therefore, a minimum accuracy threshold for better-than-random per-

formance was computed for each subject, with a con�dence limit of 0.05.

Accuracies above 83% were achieved, all of them well above the respective thresholds,

which range from 55.19% to 66.68%.

Because of the mismatch in trials, the �gure is complemented by the sensitivity (true

positive rate, i.e. the accuracy of the class "walk") and the speci�city (true negative rate,
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i.e. the accuracy of the class "stand"). The sensitivity is above 90% for all but one subject

and notably higher than the speci�city for all subjects.

One subject's speci�city does not exceed the threshold, indicating a high false positive

rate.
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Figure 8: Accuracy, sensitivity and speci�city for the 10 subjects in phase 1 of
the o�ine simulation. The dashed line marks subjects' signi�cance thresholds.

To provide some background to these results, the classi�cation features of the trial seg-

ments are illustrated in �gure 9 by means of scatter plots in the two-dimensional feature

space. Visual inspection of the plots reveals that the features are in fact distributed

di�erently for the two classes in all subjects, with considerable variation in the actual

distribution between subjects.

In subject 1, a considerable portion of the features of the stationary condition overlap with

the features of the walking condition, which accounts for the poor speci�city achieved by

this subject.

To statistically establish the di�erence in the distributions, Wilcoxon ranksum tests with

a signi�cance level of 0.05 were performed on the sets of µ and β band features. Both sets

of features are signi�cantly di�erently distributed in the two conditions. Table 1 lists the

corresponding p-values.
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Figure 9: Distribution of logarithmic amplitude features in the two-dimensional
feature space (o�ine simulation, phase 1).
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subject p-value (µ) p-value (β)
1 8.62 · 10−6 3.75 · 10−26

2 3.70 · 10−53 4.17 · 10−7

3 1.22 · 10−6 9.82 · 10−6

4 4.28 · 10−7 3.06 · 10−28

5 2.44 · 10−31 3.08 · 10−39

6 2.31 · 10−19 1.58 · 10−5

7 8.63 · 10−22 2.32 · 10−43

8 3.65 · 10−33 2.71 · 10−14

9 2.35 · 10−16 3.58 · 10−44

10 7.57 · 10−25 1.95 · 10−37

Table 1: p-values according to ranksum tests on logarithmic amplitude features
of the two classes (o�ine simulation, phase 1).

Gait Cadence

The distributions of cadence estimates are illustrated as histograms in �gure 10. Because

of the di�erent amounts of data per subject and condition, the histograms are normalized

by the respective numbers of trials.

The top panels depict the distributions for walking trials, with the median estimate

marked in black and a green line at the median true cadence, which was determined

from the step intervals de�ned by the pressure sensor measurements. The bottom panels

show the distributions for standing trials; these were computed as a control condition to

a�rm that the identi�ed modulation frequency is in fact only present in the movement

condition and thus a characteristic of the movement dynamics.

For seven subjects, the estimates of walking trials are distributed around the respective

median true cadences, i.e. the median estimate lies within one frequency bin around the

median true cadence. The best results are obtained in subjects which exhibit strong and

highly symmetrical modulation patterns in mean gait cycles (mean patterns are included

in the appendix).

The estimates of standing trials show a tendency towards the lower half of the spectrum.

To some extent, this property can also be observed in the estimates of walking trials of

subjects who do not perform well.

To quantify these di�erences in distributions between the two conditions, error values

were computed as the squared deviation of estimates from the "true" cadence within each

trial. The true cadence of a trial was determined from the median of step intervals within

the respective trial window. For standing trials, the median true cadence was used.

Wilcoxon ranksum tests (signi�cance level: 0.05) revealed signi�cantly di�erent error dis-

tributions in 7 subjects. The ranksum test failures correspond to the subjects with the

least accurate estimation results.
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Figure 10: Frequency estimation results of the o�ine simulation (phase 1). Top
panels: Histogram of estimated cadencences for walking trials, weighted by the
number of trials. Green lines mark the median true cadences inferred from pres-
sure sensors. Bottom panels: Estimates for standing trials (control condition).
Median estimates are accentuated in black.
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The p-values, as well as the mean squared error (MSE) values for both conditions are

provided in table 2. The MSE values are normalized by the respective numbers of trials

for reasons of comparability. For all but one subject, the MSE is higher in the standing

condition.

subject p-value MSE (walk) MSE (stand)

1 0.0958 0.0016 0.0023

2 0.4592 0.0016 0.0035

3 7.34 · 10−9 0.0032 0.0050

4 8.98 · 10−14 0.0012 0.0059

5 2.62 · 10−14 0.0011 0.0034

6 0.5746 0.0035 0.0059

7 4.29 · 10−3 0.0033 0.0017

8 2.62 · 10−15 0.0011 0.0027

9 7.23 · 10−5 0.0009 0.0024

10 3.42 · 10−11 0.0014 0.0025

Table 2: p-values resulting from ranksum tests performed on the distributions
of the squared deviations from the median cadence, and mean squared errors for
both conditions. MSE values are normalized by numbers of trials. Bold numbers
mark non-signi�cant di�erences.

3.1.2 Online Treadmill Experiments

Figure 11 depicts the results of a 10×10 fold cross-validation of the gait state classi�cation

on the signals recorded in the �rst three treadmill experiments.

Subject 1 achieved comparable accuracy to the Lokomat subjects. While subject 3 still

performed decidedly better than chance, subject 2's accuracy is barely 5% above the

threshold. In all three subjects, the sensitivity and speci�city are within a ±5% margin

of the respective accuracies.
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Figure 11: Accuracy, sensitivity and speci�city for the 3 subjects in the �rst phase
of online experiments. The dashed line marks subjects' signi�cance thresholds.

Figure 12 depicts the logarithmic amplitudes features in the feature space. The feature

distributions of the two conditions are distinct in subject 1 and - albeit to a lesser degree

- subject 3. In subject 3, the distributions di�er in variance, but strongly overlap.
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Figure 12: Distribution of logarithmic amplitude features in the two-dimensional
feature space (online experiments, phase 1). Individual runs are identi�ed by
di�erent markers: Dots mark training runs, circles and squares mark evaluation
runs.

According to Wilcoxon ranksum tests performed on the classi�cation features, there is a

signi�cant di�erence between the two conditions in both sets of features for subjects 1

and 3, and in the β band features for subject 2. The p-values are provided in table 3.

Gait Cadence

The estimation results are summarized in the form of weighted histograms in �gure 13,

in the same manner as the results of the o�ine simulation. Subject 1 shows a gross es-

timation bias towards a lower frequency, greatly overshadowing the correct estimates. In
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subject p-value (µ) p-value (β)
1 1.80 · 10−10 4.55 · 10−15

2 0.5745 7.74 · 10−3

3 4.93 · 10−10 9.81 · 10−11

Table 3: p-values according to ranksum tests on logarithmic amplitude features
of the two conditions (online experiments, phase 1). The bold number marks a
non-signi�cant di�erence.

subjects 2 and 3, the median estimate underestimates the cadence by approximately 0.4

Hz. The variance is high, especially in subject 2. Furthermore, the same trend towards

the lower end of the spectrum, which was noted above, can be observed in estimates of

the standing condition, as well as the walking condition for subjects 2 and 3.
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Figure 13: Frequency estimation results of pilot online experiments. Top panels:
Histogram of estimated cadencences for walking trials, weighted by the number
of trials. Green lines mark the median true cadences. Bottom panels: Estimates
for standing trials (control condition). Median estimates are acccentuated in
black.

As a consequence, the squared deviations from the mean cadences are similarly distributed

in both conditions in the latter 2 subjects, and the corresponding ranksum tests fail. In

subject 1, the error distributions are signi�cantly di�erent.

Table 4 shows the p-values and MSEs. All MSEs are higher than in the o�ine simulations.

subject p-value MSE (walk) MSE (stand)
1 1.01 · 10−2 0.0067 0.0096
2 0.5395 0.0094 0.0108
3 0.6610 0.0094 0.0066

Table 4: p-values resulting from ranksum tests performed on the distributions
of the squared deviations from the median cadence, and mean squared errors for
both conditions (online experiments, phase 1). MSE values are normalized by
the numbers of trials. Bold numbers mark non-signi�cant di�erences.
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3.2 Phase 2

3.2.1 O�ine Simulation

Gait State

All subjects achieved an accuracy greater than 85%, with all but two higher than 90%.

The sensitivity is higher than the overall accuracy for all subjects. For subjects 1, 3 and

8 the speci�city has improved by approximately 10% and more, compared to phase 1. All

values are above the signi�cance thresholds.

Cross-validated accuracies, sensitivities and speci�cities are depicted in �gure 14.
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Figure 14: Accuracy, sensitivity and speci�city for the 10 subjects in phase 2 of
the o�ine simulation. The dashed line marks subjects' signi�cance thresholds.

Figure 15 depicts the µ and β band power features in the feature space. Compared to the

logarithmic amplitude features used in phase 1 (�gure 9), the distributions are slightly

rotated, and in some subjects, the separability has improved, but the shape of the distri-

butions did not change fundamentally.

For subject 1 and 4, the µ band features are not signi�cantly di�erent. There is, however,

a signi�cant di�erence in the β band features in both cases. This is in accord with the

feature distributions shown in �gure 15(a) and 15(d), respectively. Table 5 provides the

corresponding p-values.
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Figure 15: Distribution of band power features in the two-dimensional feature
space (o�ine simulation, phase 2).
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subject p-value (µ) p-value (β)
1 0.0632 1.23 · 10−35

2 6.15 · 10−52 1.73 · 10−41

3 1.07 · 10−4 1.19 · 10−17

4 0.4534 5.67 · 10−25

5 5.09 · 10−22 1.18 · 10−30

6 1.06 · 10−19 1.60 · 10−19

7 3.98 · 10−23 2.07 · 10−44

8 1.02 · 10−20 2.14 · 10−42

9 1.26 · 10−4 8.23 · 10−41

10 1.03 · 10−20 2.01 · 10−32

Table 5: p-values according to ranksum test of power features of the two classes
(o�ine simulation, phase 2). Bold numbers mark non-signi�cant di�erences.

Estimation of the Gait Cadence

Histograms of the cadence estimates for both conditions are depicted in �gure 16. For

�ve subjects, the revised methods improved the estimation result. All median estimates

of the walking condition are now within one frequency bin of the median true cadence. In

some cases, the variance is still rather high. These cases correspond to weak or irregular

modulation patterns in mean gait cycles. Estimates of standing trials are more �atly

distributed than before.

Concerning the MSEs, there is little change compared to phase 1. In the three subjects

with non-signi�cant di�erences in the error distributions in phase 1, the di�erence remains

non-signi�cant. In addition, subject 7's walking error distribution is not signi�cantly

di�erent from the standing error distribution, which can be attributed to a shift in the

distribution of standing trial estimates.

subject p-value MSE (walk) MSE (stand)
1 0.4194 0.0015 0.0021
2 0.1415 0.0011 0.0030
3 6.19 · 10−7 0.0029 0.0042
4 5.60 · 10−8 0.0012 0.0057
5 3.75 · 10−12 0.0011 0.0024
6 0.2839 0.0030 0.0052
7 0.2843 0.0024 0.0016
8 5.12 · 10−8 0.0012 0.0021
9 1.97 · 10−2 0.0012 0.0027
10 4.48 · 10−13 0.0009 0.0028

Table 6: p-values resulting from ranksum tests performed on the distributions
of the squared deviations from the median cadence, and mean squared errors for
both conditions (o�ine simulation, phase 2). MSE values are normalized by the
numbers of trials. Bold p-values mark non-signi�cant di�erences.
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Figure 16: Frequency estimation results of o�ine simulation (phase 2). Top
panels: Histogram of estimated cadencences for walking trials, weighted by the
number of trials. Green lines mark the median true cadences. Bottom panels:
Estimates for standing trials (control condition). Median estimates are accentu-
ated in black.

28



3.2.2 Re-Evaluation of Treadmill Pilots and Further Online Experiments

Gait State

Figure 17 depicts the cross-validated results of the gait state classi�cation using the re-

vised processing for the three subjects introduced in section 3.1.2 and three additional

subjects. The �gure is complemented by the same performance metrics for just the train-

ing data, in square markers. The corresponding signi�cance thresholds for the training

data are presented in gray.

Subjects 3, 5 and 6 perform more than 10% worse in the cross-validated classi�cation

of all recorded data, than if only the training runs are used. In the case of subjects 5

and 6, the overall accuracies fall below the signi�cance thresholds. Therefore, the accura-

cies, sensitivities and speci�cities obtained from a cross-validation of the training data are

added to �gure 17 in square markers. The disparity of the two signi�cance thresholds for

subject 5 is due to a higher mismatch between walking and standing trials in the whole

data set, in contrast to the training data.
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Figure 17: Accuracy, sensitivity and speci�city for the re-evaluation of the �rst
3 treadmill subjects and the online experiments of the latter three subjects. The
dashed black line marks subjects' signi�cance thresholds. Square markers depict
the respective values when excluding the evaluation runs, with the dashed grey
line the corresponding threshold.

The power features of the �rst three subjects are illustrated in feature space in �gure 18.

Evidently, the separability of the distributions has improved for subject 1, which accounts

for an embellishment of the performance measures. Subject 2's distributions have shifted,

but still overlap strongly. The standing features are more spread, which leads to the

slight embellishment of the accuracy. Contrarily, subject 3 performed worse than before.

Inspection of �gure 18(c) suggests that this is a consequence of a downward shift of the

walking distribution relative to the standing distribution.
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Figure 18: Distribution of band power features in the two-dimensional feature
space (re-evaluation of online subjects 1-3). Runs are identi�ed by di�erent
markers: Dots mark training runs, circles and squares mark evaluation runs.

Figure 19 displays the features of subjects 4, 5 and 6. For subjects 5 and 6, there is a crass

change in the distributions between training runs and evaluation runs. To clearly depict

these data, the band power features of the training runs are shown in the top panels, and

those of all runs in the bottom panels.

−6 −3 0
−3

0

3

µ power in dB

β
p

o
w

e
r 

in
 d

B

walk

stand

(a) Subject 4: Training runs

−6 −3 0
−3

0

3

µ power in dB

β
p

o
w

e
r 

in
 d

B

walk

stand

(b) Subject 5: Training runs

−6 −3 0
−3

0

3

µ power in dB

β
p

o
w

e
r 

in
 d

B
walk

stand

(c) Subject 6: Training runs

−6 −3 0
−3

0

3

µ power in dB

β
p

o
w

e
r 

in
 d

B

walk

stand

(d) Subject 4: All runs

−6 −3 0
−3

0

3

µ power in dB

β
p

o
w

e
r 

in
 d

B

walk

stand

(e) Subject 5: All runs

−6 −3 0
−3

0

3

µ power in dB

β
p

o
w

e
r 

in
 d

B

walk

stand

(f) Subject 6: All runs

Figure 19: Distribution of band power features in feature space (online exper-
iments, subjects 4-6). (a)-(c) Training runs only, (d)-(f) all runs. Runs are
identi�ed by di�erent markers: Dots mark training runs, circles, squares and
diamonds mark evaluation runs.

According to Wilcoxon ranksum tests, in subjects 1, 2 and 4, there is a signi�cant di�er-

ence in both band power features. In subjects 3 and 6, there is a signi�cant di�erence in

one feature (subject 3: β, subject 6: µ).
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Because of the feature distribution shift between training and evaluation runs in some

subjects, ranksum tests were additionally performed on the training data, for compari-

son. In all but one of those cases, the di�erence is signi�cant in the training data.

The p-values are listed in table 7, with the p-values for training runs in brackets.

subject p-value (µ) p-value (β)
1 7.58 · 10−13 7.60 · 10−21

2 1.70 · 10−3 2.54 · 10−3

3 1.07 · 10−4 0.4803 (3.20 · 10−5)
4 6.79 · 10−13 2.45 · 10−4

5 0.5287 (0.4144) 0.0649 (4.38 · 10−7)
6 0.2062 (1.05 · 10−2) 3.50 · 10−3

Table 7: p-values according to ranksum test of power features of the two con-
ditions (treadmill experiments, phase 2). Bold numbers mark non-signi�cant
di�erences. (in brackets: p-values for training data)

µ and β Power in Average Gait Cycle

Figures 20 and 21 depict the relative power in the region of interest during a mean gait

cycle, for subjects 1-3 and subjects 4-6, respectively. Top panels show time-frequency

plots and bottom panels the power spectra. For reasons of comparability, all colorscales

and axes in the mean gait cycle plots are set to the same scales as in the corresponding

plots in �gures 1 and 2.

The strength and frequency locations of the spectral µ and β peaks provide possible ex-

planations for the classi�cation performance of the subjects. In the case of subject 1,

both frequency peaks are covered well enough by the frequency bands used for feature

computation. Subject 2's µ peak is very narrow, and the β peak very weak and located a

little below the de�ned β band. In subject 3, the µ peak is almost negligible, while the β

power decrease is not sustained throughout the (mean) gait cycle. This may result from

an overlap with the GPM in this frequency band.

Subject 4 exhibits pronounced sustained power decrease in both the µ and β band. Sub-

jects 5 and 6, on the other hand, show very weak patterns. In addition, subject 6 shows

an unusual power increase in the upper half of the β band.
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(c) Relative power time-frequency
plot (in dB)
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Figure 20: Relative power during a mean gait cycle in ROI (treadmill experi-
ments, subjects 1, 2, 3). The grey outlined boxes in (a)-(c) and grey shadowed
areas in (d)-(f) mark the frequency bands chosen for feature computation.
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Figure 21: Relative power during a mean gait cycle in ROI (treadmill experi-
ments, subjects 4, 5, 6). The grey outlined boxes in (a)-(c) and grey shadowed
areas in (d)-(f) mark the frequency bands chosen for feature computation.
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Estimation of the Gait Cadence

Figure 22 depicts histograms of the cadence estimates for subjects 1, 2 and 3.

Compared to phase 1 (see �gure 13), the results have improved. While the estimates are

still not satisfactory, the estimation bias of subject 1 has decreased, and for subjects 2

and 3, the median estimate is within 2 frequency bins of the median true cadence, and

the variance has decreased.
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Figure 22: Frequency estimation results of simulations of the revised system
(subjects 1, 2, 3). Top panel: Histogram of estimated cadencences for walking
trials, weighted by the number of trials. Green lines mark the true cadences
as measured by sensors. Bottom panel: Estimates for standing trials (control
condition). Median estimates are accentuated in black.

Figure 23 shows the histograms for subjects 4, 5 and 6. For each of these subjects,

the treadmill speed was varied between two speeds. The estimates corresponding to the

respective lower speeds are depicted in the top panels.

For subjects 4 and 5, the median estimate of the walking condition is within one bin of

the median true cadence. However, there is a high degree of randomness, especially in

speed 1 of subject 4. Curiously, he standing estimates of subjects 4 and 5 are not �atly

distributed, but rather trend towards a dominant frequency. In the case of subject 6, all

conditions result in a similar distribution, which is centered around 0.5 Hz.

According to ranksum tests, the squared errors of all subjects but the �rst one are not

signi�cantly di�erent in walking and standing conditions.

The MSE of the walking condition is lower than that of the standing condition in all cases

except two: subjects 4 and 6, both in the faster walking condition.
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Figure 23: Frequency estimation results of online experiment (subjects 4, 5, 6).
Top and middle panels: Weighted histogram of estimated cadences for speed 1
and 2, resp. Green lines mark the true cadences as measured by sensors. Bottom
panels: Estimates for standing trials (control condition). Median estimates are
accentuated in black.

speed 1 speed 2
subject p-value MSE (walk) MSE (stand) p-value MSE (walk) MSE (stand)

1 1.09 · 10−3 0.0044 0.0081 - - -
2 0.8183 0.0054 0.0057 - - -
3 0.2114 0.0052 0.0055 - - -
4 0.1327 0.0037 0.0051 0.3924 0.0121 0.0052
5 0.8132 0.0031 0.0049 0.9827 0.0025 0.0053
6 0.9821 0.0084 0.0099 0.2280 0.0156 0.0149

Table 8: p-values resulting from ranksum tests performed on the distributions
of the squared deviations from the median cadence (online experiments, phase
1). MSE values are normalized by the numbers of trials. Bold p-values mark
non-signi�cant di�erences.
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Modulation Pattern in Average Gait Cycle

Figure 24 illustrates the modulation patterns in a mean gait cycle for the �rst three sub-

jects. The leftmost panels depict the time-frequency plot of the relative power in a mean

gait cycle, with the temporal mean removed. The second column shows the magnitude of

the GPM measure across the frequency spectrum. The right plots display the time course

and the low-frequent amplitude spectrum of the low γ frequency band marked in the left

plots.

The time signal and the amplitude spectrum of the frequency band with the highest GPM

peak is added to the respective plots, identi�ed by dashed black lines - with the exception

of subject 1, where adjustig the frequency band does not produce di�erent results. Es-

timation results in case of subject-speci�c frequency bands according to GPM peaks are

presented in the appendix.
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(k) Modulation time
course (subject 3)
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Figure 24: Modulation pattern in a mean gait cycle (subjects 1-3). Top: Mean-
free time-frequency representation of average gait cycles, middle: time courses
within the frequency band 24-38 Hz, bottom: amplitude spectra of the modula-
tion time courses (blue signals in (d)-(f)).
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Subject 1 exhibits a strong modulation pattern between approximately 20 and 50 Hz, as

well as the converse modulation in high γ frequencies documented in [11] and [18]. How-

ever, the pattern is highly asymmetric, which accounts for the most prevalent frequency

in the modulation band being lower than the cadence.

In subject 2, the pattern is less pronounced and more noisy. According to �gure 24(e)

and (f), the modulation is more present in a slightly higher frequency band.

In subject 3, the modulation pattern is pronounced, but slightly skewed, and extends

from low frequencies to just above 40 Hz. The converse pattern in higher frequencies is

weaker than the low γ modulation, and located around 50 Hz.
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Figure 25: Modulation patterns in a mean gait cycle (subject 4). Left: Mean-free
time-frequency representation of average gait cycles, middle: time courses within
the frequency band 24-38 Hz, right: amplitude spectra of the modulation time
courses (blue signals in (b),(e)).

Figure 25 illustrates the modulation patterns in subject 4 during walking at two di�erent

speeds, 2 kph and 3 kph. While in the slower condition, a weak but discernible modulation

pattern is exhibited, accompanied by a converse modulation in a narrow band centered

around 50 Hz, the faster condition does not show convincing patterns.

The modulation around 50 Hz is also dominant in subjects 5 and 6, at both speeds, as

can be seen in �gure 26 and 27. For subjects 5 and 6, the experiment was performed at

the treadmill speeds 1.5 kph, and 2 kph.

In the slower condition of subject 5, the low γ modulation is disturbed by "noise", but
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Figure 26: Modulation patterns in a mean gait cycle (subject 5). Left: Mean-free
time-frequency representation of average gait cycles, middle: time courses within
the frequency band 24-38 Hz, right: amplitude spectra of the modulation time
courses (blue signals in (b),(e)).

(a) Time-frequency plot
(1.5 kph)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Frequency in Hz

|G
P

M
|

(b) GPM (1.5 kph)

0 0.5 1 1.5
−1

−0.5

0

0.5

1

Time in s

P
ow

er
 in

 d
B

 

 

walk
stand
w. 46−54Hz

(c) Modulation time
course (1.5 kph)

0 1 2 3
0

0.1

0.2

0.3

Frequency in Hz

M
ag

ni
tu

de

 

 

24−38 Hz
46−54Hz

(d) Spectrum (1.5 kph)

(e) Time-frequency plot (2
kph)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Frequency in Hz

|G
P

M
|

(f) GPM (2 kph)

0 0.5 1
−1

−0.5

0

0.5

1

Time in s

P
ow

er
 in

 d
B

 

 

walk
stand
w. 46−54Hz

(g) Modulation time
course (2 kph)

0 1 2 3
0

0.1

0.2

0.3

Frequency in Hz

M
ag

ni
tu

de

 

 

24−38 Hz
46−54Hz

(h) Spectrum (2 kph)

Figure 27: Modulation patterns in a mean gait cycle (subject 6). Left: Mean-free
time-frequency representation of average gait cycles, middle: time courses within
the frequency band 24-38 Hz, right: amplitude spectra of the modulation time
courses (blue signals in (b),(e)).

detectable. In the faster condition, on the other hand, it is almost non-existent. The

same can be said for the slower condition of subject 6, while in the faster condition, the
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modulation is smoother, but somewhat irregular.

4 Discussion

The main objective of this thesis - implementing a framework to estimate the gait state

and the gait cadence from EEG in an online setup - was achieved. The developed pa-

rameter estimation process was validated on EEG recorded during Lokomat walking, and

applied in online treadmill experiments. The framework produces real-time output every

�ve seconds.

The length of trial segments was generously set to said �ve seconds to allow for some av-

eraging, in order to combat the low SNR (Signal to Noise Ratio). Depending on treadmill

speed and stride length, one trial segment contains approximately 2 to 3.5 gait cycles, i.e.

4 to 7 modulation periods. In principle, the design of the system would permit the use

of overlapping segments to produce more frequent output; however, this was eventually

rejected because of the computational e�ort of the processing.

In phase 1, an e�ort was made to design a skinny system, avoiding any unnecessary

or ine�cient computations. All computations were performed only on the amount of data

necessary for feature computation, i.e. the frequencies within the chosen µ, β and low γ

frequency bands and the source vertices included in the region of interest.

The implementation of the PSCA artifact correction method necessitated rigorous changes.

To capture the characteristics of the artifactual component to remove, a su�ciently large

frequency and spatial range has to be covered. Therefore, all steps up to the computation

of the relative power spectrum had to be conducted using the whole source space. The

chosen frequency range was 2-100 Hz.

The time-frequency decomposition was then performed in the signi�cantly smaller chan-

nel space rather than in the source space, and transformed to the source space as complex

signals, before computing the magnitude.

In addition, the raw EEG signals were downsampled to half the sample rate (250 Hz).

After the computation of the Wavelet decomposition (for which a minimum sample rate

of 200 Hz was necessary), the signals were further downsampled by a factor of 4 (61.5

Hz). The highest frequency of interest at this point is, by de�nition, 3 Hz, since this was

set as the upper boundary of the modulation frequency estimation, and the features for

the gait state identi�cation do not contain temporal information.

Although the results of the o�ine simulation presented here were computed with a sam-

ple rate of 500 Hz, the downsampling procedure was tested on these data. No distorting

impact on the results was found.
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4.1 O�ine Simulation vs. Online Experiments

The results of the o�ine simulations performed on data recorded during Lokomat walking

in 10 subjects demonstrate the plausibility of estimating parameters identi�ed by the gait

model put forth in [9] in real time. Performance in the online treadmill experiments was

less robust - both the gait state classi�cation and cadence estimation were rather volatile

in the 6 subjects. The inter-subject variability was greater than in the Lokomat data set.

Several important points must be taken into account when comparing the results. First of

all, the online experiments were performed with di�erent EEG recording equipment and,

more importantly, using a more sparse sensor setup (64 electrodes instead of 120). On

the other hand, the mobile eegoTMsports setup (used in the treadmill experiments) may

be less prone to cable swing artifacts, since all electrodes are integrated in the EEG cap

and connected to the ampli�er, which is carried in a light backpack, via one single cable

harness.

For performance reasons, the cortical source space was downsampled to 5000 source ver-

tices for the online experiments - a third of the vertices used in the o�ine simulations.

Furthermore, there are some inherent di�erences between robot-assisted walking and walk-

ing on a treadmill without guidance.

4.1.1 Robot-Assisted Gait vs. Treadmill Walking

Although a Lokomat aims at producing a natural walking movement, [34] and [35] found

signi�cant di�erences in electromyographic and kinematic measurements between free

treadmill walking and Lokomat assisted walking.

A treadmill places less restrictions on the subject than a gait orthosis like a Lokomat. The

Lokomat provides body weight support, which limits movements of the core and torso,

thus reducing the amount of artifacts produced by swaying. Furthermore, the movement

sequence of the legs is dictated by the Lokomat to a large degree, with little possibility

to deviate from the programmed gait rhythm. This certainly leads to less variability in

the gait cadence, and potentially a more stable pattern throughout the experiment. In

unguided treadmill walking, on the other hand, the only real constraint is the speed of

the treadmill. The subject is not kept from e.g. swaying, changing the stride length or

walking in an asymmetrical way.

Analysis of the step durations revealed that in the treadmill subjects, the variance is

1.2-29.9 times larger than in the Lokomat subjects. Two main contributions to the high

variance are drifts in the stepping patterns and di�erences in the stepping frequency in

separate runs (at the same treadmill speed) resulting from di�erences in stride length.
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This is hard to control for, and may constitute a problem for the frequency estimation,

since a skewed or irrelgular modulation pattern will likely not be recognized.

4.2 Classi�cation of the Gait State

In the o�ine simulation on recordings from Lokomat experiments, all subjects performed

well in the state discrimination stage. The results presented above were computed with

preset frequency bands for the µ and β features. For some subjects, the accuracy could

be slightly embellished by adjusting these bands according to individual ERD peaks.

For some subjects, most notably subject 1, the sensitivity and the speci�city diverge

considerably. The feature distributions depicted in �gure 15 suggest that this happens

because a considerable part of the standing distribution overlaps with the walking fea-

tures, which is more clustered.

In the online treadmill experiments, only two subjects achieved accuracies above 80%,

for the second of which the speci�city barely superceded 70%. For the other four sub-

jects, the power spectrum of mean gait cycles revealed that the power decrease during

movement was weak. In addition, for some of the subjects, the spectral peaks were not

aptly covered by the generic frequency bands.

As stated in the introduction, the β power decrease and the low γ modulation tend to

overlap in the frequency dimension. In [18], the sum e�ect found in the signals (in the

relevant frequencies) is presented as an oscillation with the modulating frequency, and a

negative o�set. In the subjects used for the o�ine simulation, the negative o�set resulting

from the suppression of β oscillations is large enough not to be disturbed by the modu-

lation. However, the presence of the modulation can be obsserved in subject 5, 8 and 10

(see �gures 32, 35 and 37 in the appendix). In subjects 5 and 10, the spectral overlap is

only partial, and thus the e�ect is mainly cosmetic. Subject 8's β peak, however, is broad

and shallow; the whole modulation is visible.

Averaging across the temporal dimension should get rid of the in�uence of the modulation

on β features. However, if the modulation pattern is not symmetrical - which is the case

for some online subjects -, the β features may be weakened.

In addition to this, in three of the online subjects, the power features changed signi�cantly

(p < 10−7) between training runs and evaluation runs.

For subjects 1 and 2, accuracies were improved by the revision of the framework. Subject

3, on the other hand, performed worse after the revision. Inspection of the feature dis-

tribution in �gures 12(c) suggests that the discrimination of the gait states was based on

artifacts rather than on ERD, since the amplitudes in the walking condition are higher

than in the standing condition. In comparison, according to 18(c), the distribution of
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the walking condition was shifted downwards, mainly in the β dimension, indicating a

reduction of artifactual contributions.

4.3 Cadence Estimation from Gait Phase Related Modulations

Evidently, the quality of the estimation results is heavily correlated with the pronounced-

ness and symmetry of the mean gait cycle patterns, which were published in [9]. Said

patterns were reproduced and are documented in the appendix for the 10 subjects in-

cluded in the o�ine simulation.

In the case of subjects 2 and 9 of the Lokomat data set, there are distortions in the mean

gait cycle patterns. Closer examination leads to the conclusion that the PSCA did not

fully remove these artifactual distortions. To which extent this is also taking the same

e�ect on the patterns in single trials remains unclear.

In phase 2, 8 of 10 median estimates are located at the nearest frequency bin to the

median true cadence, and in all cases within ± 1 bin. In 6 subjects, the distribution of

squared errors is signi�cantly di�erent between walking and standing.

The online results from the treadmill experiments performed worse in comparison. Over-

all, there is a high degree of randomness. Modulation patterns were, insofar as they were

distinguishable, weak, and sometimes located (partly) outside of the selected frequency

band.

For subjects 4, 5 and 6, the estimates for the standing condition curiously exhibited

a distribution around a peak frequency, instead of a rather �at spectrum. The results are

especially bad in subject 6, where all three conditions yielded the same outcome. The

search for possible reasons was inconclusive.

To some extent, the system was expected to perform less robustly during treadmill walk-

ing, because of the reasons stated above. To recap, the EEG is likely more polluted by

movement artifacts, and, on the other hand, the modulation pattern can be expected to

be less stable and pronounced.

The issue of movement artifacts was addressed by measures to minimize them in the �rst

place, as well as with an adapted version of the correction method introduced in [11].

Interestingly, 4 subjects exhibited a pronounced modulation in a frequency band of ap-

proximately 10 Hz around 50 Hz. In subjects where a modulation pattern was distin-

guishable in the low gamma band, this modulation is phase shifted in relation to the low

gamma modulation, much like the (broader) high gamma modulations documented in [11]

and [18]. This modulation has not been documented before in this form. However, even
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though it seems to be more suited for the frequency estimation than the low γ modulation

feature in this pool of subjects, this would be problematic, because power line artifacts

are located in this frequency band.

4.4 Artifact Treatment

In experiments involving movement, it is crucial to address the problematic of movement

artifacts in an appropriate manner. As a preventive measure to keep the disturbing in-

�uences low, subjects were instructed to avoid movements which are non-essential to the

walking movement itself, especially head movements.

Since movement artifacts disproportionately a�ect EEG signals recorded near neck mus-

cles, computing the features from an anatomical region of interest helps reduce the dam-

aging in�uence, since these EEG signals contribute little to the source signals in the

paracentral ROI (compared to other cortical regions), which is distant from the neck.

When strong transient artifacts occur, which elevate the measured signals above a thresh-

old of 200µV , a�ected trials are rejected.

[11] dealt with artifacts inevitably produced by the walking movement by applying PSCA

to source space signals, and discarding the component pertaining to the largest eigenvalue

of the covariance matrix in the inverse operation. This method was adapted for online

use.

In order not to blindly discard signal components, the PSCA was only applied to a trial

if the largest eigenvalue was more than �ve times as high as the second largest one (rule

of thumb).

In subject 3 of the online experiments, the EEG was heavily polluted by artifacts. Re-

ferring to �gure 18(c), the separation of feature distributions by the classi�er seems to

be artifact-based, since the amplitude of walking trials tends to be higher than that of

standing trials, which contradicts the core property of ERD. In comparison, in phase 2

the walking distribution was shifted. This could indicate the removal of artifacts from the

signals.

To some extent, the downward shift in the distribution of walking features is also observ-

able in several of the other subjects (of both data sets).

4.5 Conclusion

According to a simpli�ed gait model consisting of two elements - namely the gait state

and the gait cadence -, features were de�ned identifying said elements. From the de�ned

features, the gait state and cadence were estimated from live EEG and output in real time
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(in �ve-second intervals).

The presented framework was tested on o�ine EEG recordings from a Lokomat walking

experiment, and applied in online treadmill experiments. Furthermore, an online artifact

correction method was implemented.

The results of development phase 1 were successfully submitted to the 2016 IEEE Inter-

national Conference on Systems, Man, and Cybernetics (SMC) ([21]).

While there is still work to be done to improve the estimation performance, the basic

framework was successfully set up, and shown to work in real time, as desired.

Moving on from this point, there are several issues worth exploring more extensively.

First of all, the results of o�ine simulations on data from Lokomat-assisted gait and on-

line treadmill experiments posed questions concerning the comparability of robot-assisted

walking and treadmill walking. These open questions may well be consequential for the

estimation performance, since deviations in the cortical representation of gait between

the two modalities may necessitate an adaptation of the parameter model. To date, I am

not aware of publications comparing those two conditions with respect to cortical activ-

ity. Experiments speci�cally targeted at a comprehensive comparison of the two walking

modalities may provide some resolve to these issues.

Concerning the estimation framework more directly, it may be advisable to work with

subject-speci�c frequency bands for the feature computation. This could be done either

performing a pre-screening EEG measurement of subjects or possibly using the training

data to compute spectral pro�les from mean gait cycle patterns. In the latter case, it

would be advisable to �ll the inevitable waiting period with some useful activity, to keep

the subject alert.

In this thesis, there was some (limited) experimentation with walking speeds. Although

no conclusive in�uences on the patterns were found, further investigation might yield

valuable insights.

Finally, an in-depth investigation on the e�cacy of the PSCA artifact removal method

with respect to online EEG would be in order.
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5 Appendix

5.1 Mean Gait Cycle Patterns of Lokomat Dataset

(a) Power over time (b) Mean-free power over time
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Figure 28: Mean gait cycle patterns of subject 1 (O�ine simulation)
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Figure 29: Mean gait cycle patterns of subject 2 (O�ine simulation)
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Figure 30: Mean gait cycle patterns of subject 3 (O�ine simulation)

48



(a) Power over time (b) Mean-free power over time

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Time in s

P
ow

er
 in

 d
B

 

 

walk
stand

(c) Modulation time course

20 40 60 80 100
−10

−5

0

5

Frequency in Hz

P
ow

er
 in

 d
B

(d) Power spectrum

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Frequency in Hz

|G
P

M
|

(e) GPM spectrum

0 1 2 3
0

0.1

0.2

0.3

Frequency in Hz

M
ag

ni
tu

de

(f) Modulation amplitdue spec-

trum

Figure 31: Mean gait cycle patterns of subject 4 (O�ine simulation)
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Figure 32: Mean gait cycle patterns of subject 5 (O�ine simulation)
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Figure 33: Mean gait cycle patterns of subject 6 (O�ine simulation)
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Figure 34: Mean gait cycle patterns of subject 7 (O�ine simulation)
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Figure 35: Mean gait cycle patterns of subject 8 (O�ine simulation)
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Figure 36: Mean gait cycle patterns of subject 9 (O�ine simulation)
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Figure 37: Mean gait cycle patterns of subject 10 (O�ine simulation)

5.2 Gait Cadence Estimation with Subject-Speci�c Frequency

Bands

For subject 1, adjusting the modulation frequency band has no e�ect.

The following �gures are structured as follows:

(a) panels: Frequency estimation results, presented as in section 3.

(b) panels: TF plots of zero-mean relative power. Subject-speci�c modulation bands are

marked by gray boxes.

(c) panels: GPM measure (magnitude) across frequency spectrum. Modulation bands are

marked by gray shadowed areas.

Modulation frequency bands and treadmill speeds are speci�ed in the captions.
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Figure 38: Cadence estimation results with subject-speci�c modulation frequency band
(subject 2). f = 36-42 Hz. Treadmill speed: 2.4 kph
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Figure 39: Cadence estimation results with subject-speci�c modulation frequency band
(subject 3). f = 14-20 Hz. Treadmill speed: 2.4 kph
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Figure 40: Cadence estimation results with subject-speci�c modulation frequency band
(subject 4). f = 46-54 Hz. Treadmill speed: 2kph (top), 3kph (middle)
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Figure 41: Cadence estimation results with subject-speci�c modulation frequency band
(subject 5). f = 50-56 Hz. Treadmill speed: 1.5kph (top), 2kph (middle)
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Figure 42: Cadence estimation results with subject-speci�c modulation frequency band
(subject 6). f = 46-54 Hz. Treadmill speed: 1.5kph (top), 2kph (middle)
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