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verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
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Abstract

In a world of constant digitalization where almost every device is connected
to the Internet, the data transferred between these devices and their servers
becomes crucial. In fact, consumers spend most of their time on their mobile
phones which raises the interest of advertisement and tracking providers.
They are focusing on understanding and analyzing the behavior of the
users in order to promote their products. For that reason, tracking and
advertisement frameworks have been developed, which track down the
user’s preferences and actions. This fact raises concerns about the kind
of data that is available to external providers, without that the user even
realizes it. The main purpose of this thesis is to detect and understand the
usage of such frameworks within mobile apps. Therefore, we investigate
Android and iOS apps by automatically analyzing their network traffic. For
our purposes, we collect the most downloaded apps from each category
from the Apple AppStore and the Google PlayStore. Our main work is
based on implementing a framework and developing five plugins that
enable the user to automatically analyze the collected network traffic of the
apps. Therefore, we collect the network traffic of the 440 apps by using a
SSL Proxy. By using these plugins, we automatically observe the usage of
unique device identifiers across multiple apps and different providers. Our
results show that about 80% of all apps from both platforms are using at
least one tracking or advertisement framework. Furthermore, we present
that on average more than 50% of all apps are using the same unique
device identifier in their network traffic, which enables advertisers to link
the collected data and derive accurate personas from it. Moreover, we
illustrate some security and privacy critical findings that are independent
from tracking or advertisement libraries.
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1 Introduction

Nowadays, we are living in a world of digitalization where almost every
product or service can be digitalized and be represented by an app. While
the usage of the apps is growing, the amount of apps in the app market
is also growing significantly. The consumers spend most of their time on
the phone in using apps [2] and therefore the advertisement providers are
focusing on understanding and analyzing the behavior of the users in order
to promote their products. For that reason, tracking and advertisement
frameworks have been developed, which track down the user’s preferences
and actions. Through them, the behavioral data about the users is transferred
over an Internet connection to the tracking providers. Thus, a huge amount
of data collection about each user is stored in remote servers and is used
afterwards for creating personalized advertisements that fit to each user’s
preferences. This fact raises concerns about the kind of data that is available
to external providers, without that the user even realizes it. That leads to
ethical and privacy related questions, that we need to ask ourselves. Are
we as users aware of all the information collected about us? Is private and
sensitive data also transferred to the external providers and what impact can
that have to our lives? In this master thesis, we analyze the usage of tracking
frameworks in 440 distinct apps, the usage of unique device identifiers that
are used for identifying a particular device to the advertisement providers
and the location of the destination of each network request that is sent from
the analyzed apps. We try to raise some security awareness of all the data
and information that we make available to third parties every time we are
using an app.

The following section gives a background from which the interest and
motivation of this master thesis has been evolved. Hence, it explains briefly
the different kind of threats that exist for smartphone users and its possible
implications.
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1 Introduction

1.1 Background and Motivation

Recent developments in the field of mobile security have led to a interest
in privacy. For instance, sensitive data can be leaked through malware or
in an indirect way via tracking and advertisement frameworks. As far as
malware is concerned, it refers to many categories of malicious programs
and depicts the same threat to a smartphone as it does to a computer. The
term Malware includes adware, spyware, trojan horses, viruses, worms,
keyloggers, ransomware and basically every application that might be
harmful. Many of them contemplate to obtain sensitive data in order to
use it for further attacks or for monetization. Hence, the unintentional or
intended leakage of sensitive data can be caused by malware or malicious
applications on the attacked device.

Nowadays, smartphones offer a variety of capabilities, such as location
service, email messaging and third-party applications. Thus, huge amount
of personal data is created and stored on each device. For instance, a regular
smartphone stores location traces, contacts, photos, personal documents,
call history, messages and much more [3]. Usually, this data serves a par-
ticular purpose, such as enhancing the user experience or offering various
functionalities to the user. However, in recent years the so-called personalized
advertising has been introduced. As a matter of fact, the more information
is known about a specific user, the more personalized the advertisement
becomes. Google describes it as a targeted advertising based on the interests
and demographic characteristics of users [4].

However, targeted advertisements enable advertisers to serve personalized
content that offers the highest possibility of a click. The more information
they know about a particular user, the better they know which product is
most likely to be bought by this user. Obviously, this is a conflict, since the
advertisers are very interested in all kind of information that a smartphone
can provide about the user. For that reason, common applications are used
for collecting behavioral and demographic data. Concerning privacy, it is
important to understand the implications that can occur when these data
is shared with third parties and also combined together in order to create
detailed user profiles. Common advertising frameworks not only provide
the advertisement itself, but they also obtain data from the device and
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transfer it to their tracking servers [6]. Furthermore, it is possible that the
app itself collects data which is then shared with so-called ad networks. This
enables them to serve personalized advertisements based on the previously
collected data. However, according to [5], such ad networks usually combine
the data and sell it to the highest bidder.

Furthermore, cyber-criminals may want to collect sensitive information
in order to commit identity theft or to steal money. Current smartphone
generations store a huge amount of personal data that can be stolen and
used for various kind of attacks. For this reason, it is advised to protect
the user’s device using a proper passcode. Another option that cyber-
criminals use is malware, which is a popular way, since users tend to protect
their smartphones less than they protect their computers [5]. Moreover,
because of the increasing popularity of mobile payment solutions, where
payment details are linked to a particular account, smartphones become a
valuable target for cyber-criminals. Furthermore, geo-tagged photos offer
the opportunity to determine where a particular user is working or when
she is at home.

Additionally, the location and the activity of a person is an important com-
ponent for law enforcement officers. Hence, persons of suspect who might
have committed a crime may reveal important investigative information via
their smartphones. Thus, the data stored on their device may be used in a
court of law. It has been confirmed that law enforcement uses smartphone
locations from carriers to create position traces [5]. Furthermore, the recent
dispute between Apple and the FBI depicts that law enforcement agencies
have even tried to break encrypted smartphones in order to gain evidence.
Moreover, they have sought help also from the manufacturers and have
proposed to implement backdoors in the encryption systems [7].

1.2 Privacy Concerns and Data Leakage

Considering the current development in the digital market, there is a proba-
bility that the usage of tracking and advertisement frameworks will increase.
In fact, the smartphone market growths steadily since 2006. More than 1

billion devices have been sold for the very first time in 2014 and the market
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will reach 3 billion by 2020 [8]. This shows, that every year more and more
people adopt to using smartphones. Moreover, this growth rate is backed by
the emerging markets, such as Asia and Africa. On the other side, there is
still a 25% share for feature phones in total mobile phone shipments, which
will shrink by around 12% every year till 2020 [8]. Hence, that indicates a
turn into fully adoption to smartphones in the next decade. Considering
these numbers, there is a major interest in gaining more insight into the
data that apps collect. The continuously increasing number of smartphone
users elevates the significance of this analysis.

However, there are several mobile applications which transfer unintend-
edly the users personal information to advertisement servers by just using
advertising frameworks [9]. Many developers are not aware of the privacy
implications that may occur, when including such libraries. Moreover, these
frameworks are usually compiled. Thus, it is not obvious for the developer
what data is processed inside the library. Common tracking and advertise-
ment frameworks use and transfer unique device identifiers such as the
Identifier for Vendors or the Advertisement Identifier for uniquely identifying
a person. Beside this, they transfer the location and other demographic
attributes for gaining a more deep insight into the user. Apart from that,
leak of sensitive data that is caused by permission violations is one of the
main threat posed by malicious apps [10].

Lots of people still do not pay attention to the protection and privacy of their
data. As a result, numerous of applications collect our data regarding the
interaction between the users and the applications. Besides, frameworks that
monitor the usage of the applications, the collection of technical information
about our devices and much more, promise a more personalized user
experience. But is this the real purpose of these applications or are they also
used as a way of tracking, observing, analyzing and collecting behavioral
data? The security and privacy is not obvious considering what happens
when these data leak or when they are used in an unintended way.
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1.3 Our Approach

The proposed framework and plugins in this thesis provide researchers and
ordinary users with the ability to analyze the network communication of
apps on their smartphones in an automated way. Its extendible architecture
administers an easy way to analyze applications in order to detect suspicious
behavior.

The main aspect covered by this master thesis is the ability to detect, monitor
and analyze the transmission of user sensitive data through advertisement
and tracking frameworks. Moreover, this thesis explores the big picture
behind such frameworks and investigates the potential impact and conse-
quences to the users when this tremendous amount of data from many apps
is linked together. The secondary aspect is to enable the user to understand
the transfer flow and to determine where the servers are located that process
the data.

Therefore, five independent plugins have been developed that cover the
usage of tracking frameworks and analyze such libraries. Furthermore, they
monitor and analyze the usage of unique device identifiers that are used for
linking the tracked data between multiple apps. In addition, another plugin
that analyzes the network destination of each request and resolves the geo
location. Furthermore, we implemented another plugin that visualizes the
network traffic with all its requests and responses.

Before describing the plugins, the following sections define the terminology
of advertising frameworks and the methodology of the proposed framework
and its plugins.

1.3.1 Tracking and Advertising Frameworks

In the last few years there has been growing interest in mobile advertising,
which made this ecosystem a powerful economic force. Furthermore, adver-
tisers serve targeted ads based on the user’s information collected by the
apps [11]. In order to understand how such libraries work and why it is in
their interest to collect data we have to discuss the different entities first.
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1 Introduction

As shown in Figure 1.1, such an ecosystem usually consists of Advertisers,
optional Agencies, Ad Networks and Users.

Ad NetworksAdvertisers Users

Agencies

Figure 1.1: Typical Advertising Ecosystem

Originally, the mobile advertising techniques have been evolved from the
methodologies that were used for web advertising. For instance, Advertisers,
such as Domino’s, SEGA or foursquare hire Agencies or provide directly Ad
Networks with their advertisements. The Agencies, such as McCann and
others distribute the ads to proper Ad Networks. This Ad Networks are
companies that serve advertisements to the apps. Thus, they host the ads
and provide an auction system to Agencies or Advertisers. In fact, such a
network tracks the users’ information in order to provide a personalized
space for advertisers. Hence, many advertisers can bid on a particular space
for an ad on a particular device and for an appropriate user profile. As a
matter of fact, the more information the ad network can collect about their
users, the more personalized the ads become. This technique has already
been described in a patent from Google in 2001 [12].

This thesis defines Tracking and Advertising Frameworks as frameworks or
libraries integrated in an app that collect personal, demographic, or technical
information about a user. Certainly, only if collecting these data is not the
main use case of the app itself.

1.3.2 Static and Dynamic Analysis

Before explaining the plugins, this section presents the methodology of the
framework’s architecture. As mentioned above, there are different kind of

6
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analyzing methods. The first technique is called Static Analysis and it is
based on the program code and its execution flow. It is performed on a
non-runtime environment whereby typically the program code is inspected
and all possible paths that can occur during runtime are modeled. This
draws attention to potential malicious behavior which typically is then
analyzed by automated tools or manually from a researcher.

The opposite approach, that is used in this master thesis, is called Dynamic
Analysis. It is executed during the runtime of an app and all necessary
information are monitored and tracked. One advantage of using dynamic
analysis is that the app is used like in a real world scenario. On the other
side, it is difficult to reach all possible program execution paths. However,
since a high code coverage was not necessary to find, understand and
to analyze potential tracking libraries, we concluded to perform dynamic
analysis.

Another dynamic approach is the Taint Analysis. In Taint Analysis the
potential malicious data flow of applications is analyzed and presented
to automated malware-detection tools or human analysts. It analyzes the
recognized data leak and decides whether the leak actually is a policy
violation or not. Thus, the sensitive data is tracked throughout the entire
app. In order to track the data it is required to modify it by adding a kind
of a tracking identifier. Hence, the tracked data can be distinguished from
the regular data. A particular starting point, for instance a library call that
provides the current location of the user, is needed for tracking a particular
data object. The taint analysis tracks this data object through the data flow
until it is used in a particular function that could leak it to an attacker,
such as a network request. Taint analysis allows a statical and dynamical
inspection of the app [13]. Though, dynamic app analysis requires many test
runs in order to reach a sufficient code coverage. Furthermore, according to
[13], current malware can automatically recognize dynamic monitors which
may lead to wrong results since the app can hide its malicious behavior.

As opposed to dynamic analysis, static analysis does not face these problems.
However, because of program abstraction it might be more imprecise. In
fact, because of the abstraction it is not possible evaluate every possible
path in the execution flow. The abstraction of runtime execution is even
more challenging for mobile apps since they are integrated in the operating
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system’s frameworks. Furthermore, apps use unpredictable callbacks or
delegates for interacting with frameworks. Thus, for predicting the control
flow, the entire lifecycle of an app, including GPS sensor input and user
interface interaction, must be modeled.

1.3.3 Plugins

This section describes briefly the implemented plugins that were integrated
into the proposed framework. First, we explain the Tracking Framework List
and the Tracking Framework Detail plugins that are intended to detect and
analyze tracking and advertisement frameworks within the apps. Then, we
describe the Device Identifier plugin that detects unique device identifiers
inside the network traffic and is able to link the usage of equal identifiers
across multiple apps. Lastly, we explain briefly the Location Destination and
Timeline plugins.

Tracking Framework List

The Tracking Framework List plugin analyzes a set of network dumps and
detects if tracking or advertising frameworks have been used. Since the tool
has only access to the network dump it detects libraries by checking the
hosts of each request. Hence, if the requests is in a set of known hosts of
tracking frameworks, it can be mapped and will be displayed as a positive
detection.

Furthermore, it gives a brief overview about the results of the analysis by
showing how many apps contained a tracking framework in percentage.
Therefore, it states how many tracking libraries have been found in total
within the analyzed apps.

In addition, it creates a ranking of the top 10 frameworks that were used in
the set of analyzed apps. Thus, it monitors how often a particular library
has been used in percentage of all apps that were analyzed. This enables the
user to quickly understand which tracking libraries have been used most.

8
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However, the main part is a detailed analysis of each application by moni-
toring how many hosts were actual tracking hosts within the network dump
of a particular app. Furthermore, it monitors how much traffic (in bytes and
percentage of the total traffic) has been sent to tracking servers. Furthermore,
it states all hosts to which data has been sent in a ranked table. This enables
the user to understand wether most of the traffic went to tracking hosts
or to other ones. Thus, suspicious behavior can be detected more easily.
Moreover, tracking hosts are highlighted in this table in order to see them
instantly.

Tracking Framework Detail

This plugin analyzes the network dumps and if a request to a tracking or
advertising host has been detected, it monitors the traffic that has been
sent and performs an analysis of the data which has been sent. The plugin
can detect 64 distinct tracking and advertising frameworks. Considering,
that understanding the encoded traffic of tracking frameworks requires
sophisticated manual analysis prior, the analyze method has only been
implemented for some frameworks. But, due to the extensible architecture
of the plugin, only one function must be implemented in order to fully inte-
grate the analysis of a particular framework into the proposed framework
of this thesis.

However, the plugin decodes and displays all the information that is sent
to the tracking servers. For instance, the advertising library Flurry sends a
unique device identifier, the device model, the screen height & width, the
app identifier, the total amount of memory, the disk size that is used, the
cpu load, the remaining battery of the device, the rough location where the
device is located, which buttons have been clicked inside the app and much
more.

Device Identifier

The plugin takes a set of network dumps from different apps and detects
unique device identifiers inside the traffic. The same unique identifier is an
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indicator for a potential tracking across different apps because the data can
be linked together on the servers. Thus, each request containing a particular
unique device identifier is monitored and a report is displayed that shows
all detected identifiers. Furthermore, it enables the user to see how many
apps used the same identifier. For instance, in the Games category on the
iOS platform 98 unique device identifiers could be found within 20 apps.
Moreover, 17 out of this 20 apps contained exactly the same unique device
identifier within their traffics. Furthermore, within this 20 apps 11 distinct
tracking and advertising frameworks used the exactly same identifier for
tracking the test device. This implies that not only these advertisers and
ad networks can link data from different apps together, but even these
companies could exchange the user’s information between each other.

Considering, this tremendous amount of data from different apps out of
different categories, such companies may be able to generate a highly
accurate profile about a person.

Location-Destination

This plugin enables the user to gain insight to which country the data of
an app is sent to. Thus, the country for each network request inside the
traffic is determined by using a reverse lookup of the requests IP address.
By analyzing an app that is supposed to serve a use case that is only needed
inside Austria, we observed that it sends data to four other countries.

Timeline

We started by manually investigating network requests and figured out
that a plugin is needed that displays this flow of requests and responses.
Therefore, the Timeline plugin has been developed. It enables the researcher
to monitor the network requests and the corresponding responses. It dis-
plays each request as a card on the left side with the related response on
the right side. In order to enable the user to get a fast overview over the
entire traffic we only display the host, the request method, a subset of the
traffic’s body and the HTTP response code. For further information about a
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particular request or response the details with all fields of the HTTP traffic
can be shown. Secondarily, the plugin also shows the origin of the host by
displaying a small country flag right next to it.

However, with this plugin it was easy to find potential attack vectors in API
protocols. For instance, a widely used app on the iOS platform has sent the
username and the password in plaintext over HTTP. This could be easily
spotted by using the aforementioned plugin.
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2 Related Work

Most research conducted on this topic focuses on Android devices and only
few of them analyze the network traffic for tracking libraries. Hence, the
contribution of this master thesis is an overall analysis across 440 Android
and iOS apps focusing on security and privacy leakage of sensitive data
through the network traffic. Moreover, most of the related papers use static,
dynamic or taint analysis. Researchers have been studying this topic using
different approaches which are presented in this section.

Before explaining the analyzing techniques, we categorize the related work
by the different types of methodology. Considering Static Analysis, there are
several solutions that have been proposed. For instance, M. Grace et al. have
checked 100,000 Android apps for advertisement or tracking libraries in
[9]. On the side of Dynamic Analysis researchers have been studying on the
topic of sensitive data leakage and malware for several years in [10], [14],
[11], [15] and [16]. Moreover, on the side of Dynamic Taint Analysis solutions
that are integrated into the apps or the operating system and therefore need
access to the code and the devices, are proposed in [13] and [17]. Lastly,
the main topic of this thesis but with different approaches is discussed in
papers [11] and [9].

To begin with static analysis and in terms of quantity, a large study about
the usage of ad tracking frameworks in Android apps has been conducted
by Grace et al [9]. They analyzed 100,000 apps from the official Android
Market and concluded that at least one advertisement or tracking framework
is embedded in more than 52% of the analyzed apps. Furthermore, they
identified 100 representative ad libraries and developed a system that uses
static analysis to categorize the danger of each framework. Basically, they
scan the sampled libraries’ sampled byte-code for dangerous API calls. After
that, for each found call they slice backwards through the code searching
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for potential entry points. Their results show that most of the advertisement
frameworks collect private information, such as call logs, phone numbers,
browser bookmarks, or even the list of installed apps on the device. More-
over, they also found some frameworks that used Reflection to directly fetch
and run code from remote servers.

Based on static analysis, the authors in [13] propose a static taint-analysis
tool called FlowDroid. As they state, important data is either leaked by ac-
cident from careless developers or by malicious apps which exploit given
permissions to copy data intentionally. According to Arzt [13] existing static
analysis can show high number of false positives. FlowDroid is based on
novel on-demand algorithms that yield high precision while maintaining
acceptable performance [13] et al. It is developed for Android and analyzes
the byte-code and configuration files of the app in order to find potential
privacy leaks. According to the authors, FlowDroid is the first static taint-
analysis that is fully sensitive for the context, flow, field and objects. It is
designed to minimize the number of missed leaks by fully handling the
entire Android lifecycle and tracking all callbacks and user interface inter-
actions within the app. It can be used for securing and analyzing in-house
developed Android apps as well as a tool for helping security researchers
to inspect potential malicious Android apps. They released FlowDroid under
open-source to provide it to the research community. Furthermore, they
introduce DroidBench, an open-source micro-benchmark suite for evalu-
ating the effectiveness and accuracy of Android based taint-analyses’. It
is designed to provide a comparison for existing static taint-analysis tools.
FlowDroid achieved 93% recall and 86% precision, which outperforms com-
mercial tools, such as IBM AppScan Source and Fortify SCA [13]. It has
found leaks in 500 apps from Google Play Store and in around 1,000 known
malware apps from the VirusShare project.

Tracking libraries cannot only be detected with static analysis, but also using
dynamic analysis, which is presented in the next papers. Chen et al [11]
and the authors investigate the risk of privacy leakage through analytics
services on mobile devices. They demonstrate how to extract individual
profiles and usage information from external Google Mobile App Analytics
and Flurry. Furthermore, they demonstrate how to attack such services by
injecting arbitrary usage data into the analytics and advertisement services.
Thus, the advertisements provided by the adversary and served to the
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users, are manipulated. As they state, analytic libraries and advertisement
libraries collect usage information and user related attributes and send them
to an aggregation server. Global unique identifiers that are available on
mobile devices, such as the iOS Advertisement Identifier and Google’s Android
Advertisement ID, allow analytics services to connect data collected from
different mobile applications to the same individuals. By using these data,
the advertisement service can derive personas and categorize individuals.
In that way, they can provide personalized advertisements.

The proposed model in [14] considers that malware often connects to remote
servers in order to leak private information or is remotely controlled by
some servers in order to get commands from them. They divided their
framework into two phases. In the first they analyze the network traffic of
known Android malware. They distinguish between malware and normal
traffic. Using the difference in the traffic they can separate the malware
traffic from the normal traffic by finding a list of features. This list considers
”Average Packet Size”, ”Average Number of Bytes Sent per Second”, and much
more. In the second phase, they build a classifier based on decision trees
since it is easy to interpret and classify new examples quickly. Using this
rule-based classifier they derive three risk levels. According to these risk
levels and the number of features they found in the traffic, they categorize
each application according to its risk level. They consider 27 malware
examples that have been obtained from the Android Malware Genome
Project whereby only 13 malicious servers were online. Furthermore, the
authors assume malicious behavior by looking at particular features in the
traffic. According to their results, malware traffic can be distinguished from
normal traffic by observing these features.

Another approach for finding data leakages has been conducted from Felt
et al. in 2011. Although, they have also identified tracking libraries within
the apps, they have given a different name to it. In particular, researchers
from the University of California analyzed 46 pieces of malware, across
iOS, Android and Symbian, in 2011. They found out that 61% of them
collected user information and 52% were used for sending premium-rate
text messages [10]. They used known malware collected from public anti-
virus databases and discovered that many of them have used root exploits
for gaining access to system functionality and data. Furthermore, they
categorized the malware regarding three distinct threat types, which are
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Malware, Personal Spyware and Grayware. In fact, their description of the
latter is basically the same what we call Advertisement & Tracking Libraries
nowadays and is also related to this thesis. Although this paper is relatively
old, it points out the early stages of malware and describes the beginning of
information tracking for advertisement and marketing purposes.

According to the authors in [10], there are several reasons why malware
exists. They focus on some of them in detail, such as selling and stealing
user information. Apps provide access to a large amount of information
about their users by using the underlying functionality of the operating
system. Sensitive data, such as geographical location, contacts, browser
history and in particular cases unique device identifiers. According to the
authors, 28 out of the 46 apps have collected these kind of information. They
also mention that advertising or marketing companies might be interested
in these data for using them for defining user profiles. Another scenario they
mention is the theft of user credentials. Nowadays, people use smartphones
for sensitive tasks, such as banking, shopping and more. Revealing such
credentials can be a reasonable target of malicious apps. As of 2008, bank
account credentials and credit card numbers have been worth $10 to $1,000

respectively $0.10 to $25 [10]. Furthermore, having installed malware on
a user’s device can enable attackers to initiate calls or text messages to
premium rate numbers. Such actions can cost several dollars per message.
However, in the 1990’s such methods were used by desktop malware for
financial gain and has now also been adopted to mobile apps [10].

On the side of manually performed dynamic analysis the paper of Schrit-
twieser [15] studies the authentication schemes of popular messaging clients
on Android and iOS. All of these apps are based on an authentication
scheme that uses the user’s phone number for registration and a code via
text messages for verification. The paper evaluates the security of mobile
messaging apps and focuses on potential abuses in real-world scenarios,
such as account hijacking, sender spoofing, message manipulation, unre-
quested messages, enumeration of existing users and the modification of
status messages. In total, 9 apps have been analyzed. However, the probably
most well-known apps of the analysis were WhatsApp, Viber and Tango.
They found out that WhatsApp generated the verification code on the client
side at that time. Thus, it is easy to hijack an account by intercepting the
code when it is sent to the server instead of getting the code from the text
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message. When verifying this account, which is identified by the phone
number, through the aforementioned code the attacker can authenticate
an account successfully without being in possession of the actual phone
number. Other apps, such as Tango do not require a phone number verifica-
tion if the number has not been registered already. This allows an attacker
to impersonate a user respectively his phone number. Other apps in the
analysis do not have a verification at all. For instance, in one analyzed app,
the phone number is linked to an account by just entering it [15].

The authors also describe the enumeration of existing accounts. Most ana-
lyzed apps offer the ability to automatically import the user’s address book.
In fact, all contacts are compared to already registered phone numbers on
the server. Thus, the server returns a subset containing only the available
users identified by their phone numbers. This functionality allows the iden-
tification of active phone numbers. In the paper they analyze all possible
phone numbers of the southern part of the city of San Diego, California.
There was no limitation in place, only a minimal slowdown of server re-
sponse times. After 2.5 hours they obtained 21.095 valid phone numbers
including their status messages [15].

The field of dynamic analysis has also been explored from Enck et al. and
been extended by using a taint analysis for Android devices. Current smart-
phone operating systems provide control for permissions, which enable
apps to access user related information, device information, data from sen-
sors and much more. However, they do not provide insight into how private
information is used by the apps. Therefore, in the paper [17] Enck et al. intro-
duces TaintDroid, an Android extension which is capable of simultaneously
tracking the flow of multiple sensitive data sources. It considers third-party
apps as untrusted and therefore monitors and alerts the user in real-time
whenever an app is trying to access or manipulate the users’ private data.
According to the authors, the main idea was to detect whenever sensitive
data leaves the operating system in order to conduct further analysis on this
particular app. Although this approach is not new, they have accomplished
an appropriate balance between accuracy and performance. In addition, the
authors’ experiments have shown a performance overhead of 14% while
running TaintDroid. Their evaluation was based on 30 randomly selected
apps in which they found 58 instances of potential misuse of the users’
private information. Moreover, 15 out of the 30 apps have reported the users’
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location to remote advertisement servers. The latter mentioned aspect is
also covered in this thesis. In contrast to the paper, the captured network
traffic is used for determining which data is sent. Hence, the analysis is not
carried out on the device itself.

The authors in [16] introduce a different approach for privacy leakage
detection based on models that analyze the users’ intentions. In contrast
to the proposed methodology of this thesis, they propose an automated
app analysis and check if the data sent via network traffic is a privacy
leak or an intended and expected behavior of the user. They motivate
their approach with the fact that privacy leakage by mobile apps is a
subject that needs reconsideration. For instance, the user’s location can
either be sent for a legitimate use case or can be unintentionally leaked.
Thus, transmitting sensitive data per se, does not necessarily indicate a
privacy leakage. They distinguish between user-intended data transmission and
unintended data transmission. For instance, they presume that before sending
a text message the user should click on the touchscreen and therefore this
transmission is considered as legitimate and intended. Moreover, they point
out that usually when the user’s location is sent to a server, interesting
contents tailored to the location are returned. This kind of pattern complies
to the user’s intention and should not be treated as a privacy leakage. On
contrary, private data transferred without the user’s interaction or when
it is irrelevant to the core functionality of the app, is considered as an
unintended data transmission. As a result, the latter mentioned scenario
happens in a stealthy manner.

However, due to the complex relation between data leakage and user inten-
tion it is almost impossible to have an automated analysis. Therefore, they
provide a human analyst with an automated tool to have all the contextual
information in which the potential data leakage happens. As a consequence,
they have developed AppIntent, which tracks user interaction inputs and
sensitive data transmissions for showing context information of the network
transfer in form of a sequence of user interface manipulations. They have
analyzed 750 reported malicious apps and 1,000 free apps from the Google
Play Store. Based on this, they present two case studies from their analysis
which show one app with user-intended transmission and one without
user’s intention. In the latter, a malicious app stealthily sends the user’s
location to third-party servers [16].
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Compared to this thesis the authors have chosen a similar approach but
they have used an automated instead of a manual process for collecting
the app’s network traffic. Moreover, their focus had been on data leakages
and not the effects and influences of accessing sensitive user data across
multiple apps.
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3 Background Knowledge

For understanding the methodology and evaluation a particular terminology
is used, which requires some background knowledge. Therefore, this chapter
gives a brief overview about methodology, tools and principles that are used
in this thesis. However, researchers and analysts who are well versed in the
field of IT-Security and specifically in mobile platforms and possible attack
scenarios may skip this chapter.

This chapter is separated into three parts. In the first part security related
background knowledge is explained. The methodology in this thesis refers to
these principles and methods. Secondly, privacy topics are presented, which
are used in the evaluation and in the results chapters. Lastly, the different
app distribution techniques on iOS and Android are briefly described.

3.1 SSL Proxy

In general, a proxy is used for routing network traffic through a particular
point. This point is usually a server or device that receives the traffic and
forwards it to its final destination. However, the SSL Proxy is a specific
structure, which acts like an additional end-point for both sides. For the
client, the SSL Proxy operates like a server. Therefore, it connects and au-
thenticates to the real remote server, which is the expected final destination
of the request. Then, it generates a new certificate and replaces the original
public key with a known one. Moreover, the original issuer of the certificate
is replaced by its own certificate authority. Hence, it is necessary to trust this
root certificate on the client. This usually happens by adding the certificate
to the client’s trust store or trusted certificates. When the client accepts
the injected certificate, it sends a shared key, which is encrypted by using
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the certificates public key, to the server. Because of the aforementioned
replacement of the actual encryption key, the SSL Proxy can decrypt the
shared key and is able to eavesdrop the communication [18].

In figure 3.1 the different states are shown and afterwards it is explained
how a SSL Proxy is used for eavesdropping a HTTPS secured connection.

Client SSL Proxy Server

1 Connect

2 Connected

3 Init Handshake

6 Complete
Handshake

7 Request

4 Init Handshake

5 Certificate

8 Request

Figure 3.1: SSL Proxy with certificate replacement [1]

Initially, in state 1 the client connects to the server via ”HTTP CONNECT”.
Secondly, the SSL Proxy returns ”HTTP 200: OK” in state 2, which informs
the client that the connection has been successfully established. Afterwards,
in the third step (3), the client initiates the SSL handshake and assumes it is
connected to the remote server. However, it is connecting to the proxy. Then,
it is using the Server Name Indication (SNI) to express the hostname to which
it is trying to connect. In state 4, the proxy connects to the actual remote
server by initiating an SSL handshake. It establishes an SSL connection
by using the aforementioned SNI that has been obtained from the client.
Afterwards, in step 5, the server checks the transmitted SNI and returns a
matching SSL certificate. The certificate contains the Common Name (CN),
which is crucial for the SSL Proxy for generating the replacement certificate.
In the next step (6), the replacement certificate is created by the proxy.
Then, the SSL handshake phase is terminated that has been initiated by
the client in step 3. In fact, the SSL connection through the proxy has now
been established and the client is ready for communicating with the remote
server. Thus, in step 7, the client sends the request to the remote server
over the proxy like a regular transmission. Last of all, the proxy forwards
the clients request from state 7 to the server by using the SSL connection
preluded in step 4. [1]
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3.2 Certificate Pinning

Transport Layer Security (TLS) has been introduced to secure protocols in
the application layer. Furthermore, it is used for securing virtual private
networks (VPN). However, a critical point in establishing a secure connection
is the authentication and the key exchange. This is usually performed by
using X.509 certificates. An attacker could inject her certificate, which would
enable a Man in the Middle Attack, described in Section 3.3. Hence, an
attacker can eavesdrop, intercept and also insert traffic in the network
communication. This hinders confidentiality and integrity and therefore,
leverages the purpose of TLS [19]. In order to establish the required trust
in the exchanged certificate, Public Key Infrastructures, so called PKIs, are
used. Therefore, a certificate authority (CA) is considered as trusted and
all certificates issued by this authority are also trusted. The client validates
the received certificate by validating the so called chain of trust. Thereby,
signed certificates are traced back, up to a trusted CA. In the Internet, this
method is the common standard and is widely considered as secure [19].

The security relies on the trust established with a certificate authority. One of
the purposes for introducing TLS with certificates from PKIs was to encrypt
the communication and therefore, to prevent Man in the Middle Attacks. Every
trusted Certificate Authority can issue trusted certificates for any domain
name. The security can be thwarted accidentally or intentionally from a
trusted CA by replacing a valid certificate with a malicious one [19].

For this reason, Certificate Pinning has been developed. The client verifies
the authenticity of the server’s public key by pinning a trusted and known
certificate. Therefore, the client must know the associated host and the pin.
This requires information about the certificate and the host on the client.
Thus, existing applications must be modified and extended to be capable of
this action. However, a client can detect any change of the hosts certificate
or public key and deny the connection [19].

23



3 Background Knowledge

3.3 Man in the Middle Attack

In general, a Man in the Middle Attack (or MITM attack for short) can be
conducted in various situations. In fact, the official definition in the RFC2828

is the following: ”A form of active wiretapping attack in which the attacker
intercepts and selectively modifies communicated data in order to masquerade as
one or more of the entities involved in a communication association” [20]. Thus,
the communication between two parties is targeted. Hence, client-server
communication are also affected by this kind of attack. According to [21],
SSL/TLS authentication is performed by the user and usually done in a
poorly or naive way. Another critical point is the aforementioned SSL Proxy,
described in section 3.1. For these reasons, a MITM attack is considered as a
realistic attack scenario in the context of this thesis. However, we focus on
attacks within SSL secured communications and declare other MITM attack
scenarios as out of scope for this section.

TLS has been introduced for protecting client-server applications from Man
in the Middle Attacks. However, one key factor of the systems’ security is
the authentication and the key exchange. This is usually performed by
using X.509 certificates. Considering a vulnerability in the key exchange,
opens an attack vector for a third party. This attacker would not only be
able to eavesdrop the communication between the client and the server,
but it would also be able to intercept and insert traffic. Hence, an altered
SSL certificate could be injected, like it is described in section 3.1. In fact,
the attacker would act like a person in the middle that can decrypt and
eavesdrop the communication between two parties. This is why it is called
Man in the Middle Attack. [19]

Figure 3.2 illustrates a Man in the Middle Attack. Basically, an attacker was
injected between the client and the server and is able to eavesdrop the
communication.

In a typical example for a MITM attack, the attacker injects itself between the
client and the server in a way that allows to communicate separately to both
parties. In fact, neither the user on the client, nor the server is aware of the
third party in the middle. SSL encrypted network traffic can be decrypted
by the attacker and re-encrypted, using a known public key, for the other
party. For instance, assume that a user tries to login into her bank account.
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Client

Attacker

Server
Regular Communication 

Figure 3.2: Man in the Middle Attack

Then the attacker can grab the password or the security token in order to
authenticate himself and impersonate the user. [21]

3.4 Unique Device Identifiers

Service providers and app developers need to uniquely identify a device
for legitimate reasons. However, for advertisement providers it is necessary
to uniquely track devices, which in fact, belong to a particular user. This
implies that identifying a device also would mean to identify a user. In fact,
advertisement libraries need these identifiers to track the users’ behaviors
for providing them with more personalized advertisements. The so-called
UDID on iOS, made it possible to link collected data from multiple apps.
In other words, advertisement companies could generate a profile about
the user and his or her habits across different apps. This practice raised
some privacy concerns in the past, because they are considered as a more
personal information than, for instance, cookies [22]. Both major mobile
platforms, iOS and Android, offer such a unique device identifier.

As privacy concerns raised, Apple deprecated the access to the devices iden-
tifier with the release of iOS7 in 2013. Basically, they replaced it with two
different identifiers: the Identifier for Vendor and the Advertising Identi-
fier. The former identifier is the same for apps that were distributed and
uploaded to the AppStore from the same vendor [23]. The identifier remains
the same while the app is installed on the device. It is only deleted, when the
user has removed all apps from the same vendor from the device. Moreover,
when such an app is reinstalled, the identifier for vendors changes. [23]
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The second identifier, which has been introduced on iOS as a replacement
for the UDID, is the Advertising Identifier. It is unique to the device and
available to all apps that use iAd for advertising [24]. Unlike the Identifier
for Vendor, the same id is returned to all apps even from different vendors.
However, it can change when the user resets the device or it can be reset
manually by the user in the settings of the phone. The intention behind this
was to limit advertisement tracking for the user. [25]

Google uses a similar approach on Android. Although there is still the
Android ID, which is a unique identifier generated at the first startup of the
device, they enforce the app developers, who deploy user tracking to use
the so-called Advertising ID. Unlike in iOS, the former mentioned unique
device identifier can still be used. [26][27]

3.5 Permission System on Android and iOS

Both platforms, iOS and Android, are based on a permission system for
granting access to device functions and user information. In general, both
provide apps with an extensive API that covers access to settings, user data
and hardware, such as gyroscopical sensors or GPS. On Android, access
is granted on an install-time basis. Thus, once the user has downloaded
the app and accepted the permissions, the app can access all the requested
functionality. In Android 6.0, permissions that are requested while the
app is running, have been introduced. At the time of writing only 2.3%
of all android devices used Android 6.0 [28]. Hence, the wide-spread and
primarily used install-time approach will be exposed in this section.

According to [29], the Android SDK provides 235 possible permissions in
total. However, per default, apps are running in a low-privileged process
and can only access their own files. Moreover, each application is deployed
on its own virtual machine. The permissions are categorized into Normal,
Dangerous and Signature/System. The first describes functionality that cannot
harm the user. For instance, SET WALLPAPER is such a normal-permission.
Dangerous permissions contain potential harmful functions, such as ac-
cessing sensitive user data, or sending text messages. The last category
(SignatureSystem) controls access to the most harmful API calls. In fact, it
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includes functionality, which is related to the operating system itself, such
as deleting or installing apps. However, these permissions are only granted
to apps that were signed with the manufacturer’s certificate. These apps are
usually pre-installed on the device. In general, some API calls are protected
by permissions. For instance, whenever an app tries to access the user’s
contacts, it must have the READ CONTACTS permission allowed.

By comparison, Apple’s iOS uses in-app permissions, ever since they have
introduced their permission system. The apps are isolated, which prevents
them from accessing files from other apps. Moreover, unauthorized changes
to the device and the operating system settings are prevented. A randomly
generated and unique home directory is created for every installed appli-
cation. Within this directory, all the files of the app can be saved. The un-
derlying API calls restrict access to the app by using particular permissions
for certain functions. Moreover, the permissions are based on entitlements,
which are set in the app’s provisioning profile. Restricted functionality that
is enabled in this area and has been approved by the user can be accessed by
the app during runtime. Furthermore, these entitlements cannot be modified
because they have been signed by the developer’s certificate which is issued
by Apple. [30]

Unlike older Android versions, the iOS user has the ability not only to
accept all permissions at install-time, but also to accept single permissions
at runtime whenever the functionality is accessed by the app. Furthermore,
given permissions can also be revoked later on, under the settings of the
operating system. This approach gives to the user full control over apps
permissions.

3.6 Apple App Store

The App Store from Apple has been evolved from the iTunes Music Store,
which has been initially launched in 2003. Although, the App Store is based
on the same principle, it distributes mobile apps for iOS and not music, as
iTunes does. It allows users to browse and search for apps in the Apple
ecosystem. In fact, it provides more than 1.5 million apps and has reached
the 100 billion downloads mark in 2015 [31][32].
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Apple uses a manual review process for approving or rejecting apps. The
reviewers mainly look for stability, user interface inconsistencies and usage
of undocumented API calls [33]. Furthermore, malware will be rejected
because of Apple’s approval guidelines. Thus, going unnoticed through this
process can be challenging for developers of malicious apps. After approval,
the app gets signed by Apple and is executable on any iOS device. One
drawback of this approach is the time, since an app review usually lasts
about one week and can be shortened by asking for an expedite review
[33]. However, this is only allowed in case of time critical issues. In order to
communicate all limitations and review rules, a comprehensive document
called review-guidelines has been published by Apple for all iOS developers
in 2010.

3.7 Google Play Store

The Play Store, also known as Google Play, was previously named Android
Market. It follows the same principle as Apple’s App Store for distributing
apps developed for Android. It has been launched in 2012 and in 2015, there
were already over 1.43 million published apps [31].

Google introduced the so-called Google Bouncer that checks submitted apps
for potential viruses. It automatically analyzes, detects and removes malware
from the store [34]. Interestingly, from 2011 to 2013 the number of malicious
apps increased by 388%, whereby the percentage of the removed apps
decreased from 60% to 23% in the same period of time [35]. However, the
approval process is based on automated checks and apps that violate the
store guidelines are removed.
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The base framework is the underlying foundation for the developed plugins
described in chapter 5. It is based on the Play Framework1 which is an open-
source framework for web applications written in Java and Scala. It uses
the MVC-Pattern2 and provides several components for rapid prototyping,
such as RESTful webservices and Object-Relation mappers. Thus, it has been
used for this thesis in order to provide a fast and stable foundation in which
the plugins for the analysis have been integrated. Java is used for the main
part of the framework which includes the entire business logic described in
Section 4.2 whereby the frontend part, using the Play template engine, is
written in Scala. This part is describes in Section 4.1.

However, the framework is intended to upload, process and analyze network
traffic dumps from Burp Suite. This tool is used for collecting the network
traffic and is briefly described in Section 6.2.1. In fact, the proposed frame-
work is written in a generic way for an easy extension for other network
traffic capture formats, such as Wireshark3. Therefore, only a parser for this
has to be developed.

In order to understand the main functionality provided to the user we will
describe the frontend part in the next section.

1www.playframework.com
2The Model-View-Controller pattern is an architectural pattern in software design. It

divides an application into separate layers for storing, processing and displaying informa-
tion.

3https://www.wireshark.org
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4.1 Web Frontend of the Core Framework

The core framework uses Scala HTML for presenting the user interface. Since
the usability of the web application is not a topic of this thesis, we will just
briefly describe the main functionality. Figure 4.1 shows the home page
that lists the uploaded network dumps and provides the functionality for
uploading, analyzing and the selection of plugins.

However, the user can select one or all network dumps from the list shown
in the center of Figure 4.1. After selecting, the analysis can be started by
pressing the Analyze button. Then, the selected plugins perform their analy-
sis on the aforementioned dumps. In order to insert collected network traffic
into the underlying Elastic Search database, which is described in Section 4.3,
the web application offers an upload method that can be triggered by click-
ing Upload new dump. The user can enter the App Name, Version, Platform,
Category and if the app is a free or a paid version.
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Figure 4.1: Screenshot of the web frontend of the core framework

4.2 Framework Architecture

The framework is split up into 5 different parts, which are Controllers,
Model, Plugins, Util and Views. This structure is also shown in Figure 4.2.
The purpose of the controllers package is to provide a central point for
interaction between the views and the actual implementation. Furthermore,
the upload of data dumps and the plugin registration is handled in there.

The core framework is implemented using a RESTful webservice for pro-
viding an interface between the user interface and the actual plugins. In
particular, Play uses a routes-file that specifies the API. Basically, it is the
entry point for network requests in the web application. The responsibility
of the controllers is to handle the requests and return the expected views
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ControllersPlugins Views

Util Model

Network Request

Figure 4.2: Structure Overview of the Core Framework

or data. The controller part, that is also shown in the figure 4.3, can be
structured into the following pieces.

Controllers

Application
Controller

File
Controller

Plugin
Controller

Ajax
Controller

Figure 4.3: Controllers in the Core Framework

ApplicationController It handles all application related requests and is used
as the main interface for the web application. It only consists of GET-
Requests and provides the browser with the necessary HTML user
interface for working with the application. It provides the /overview
API, which displays the overview of all collected apps that are in the
database. Furthermore, it offers an /upload functionality that shows
the upload form for collecting new network dumps. This has been
implemented in order to upload new network traffic dumps to the
server and establish a set of apps that can be analyzed. Moreover,
under /dump/show a specific network dump for a given identifier can
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be shown. In addition, it offers a /search functionality for finding
particular network dumps that contain a specified query string. How-
ever, the main purpose of the ApplicationController is to provide the
/dumps/analyze method. This takes a given set of network dumps
as a parameter and invokes the analysis method of the plugins on this
set. The enable and disable functionality of a plugin is handled by the
PluginController.

FileController The second controller is responsible for managing the net-
work dumps. Furthermore, it interacts with the Elastic Search database,
described in section 4.3. The FileController provides the
/file/uploadFiles functionality, which is the business logic be-
hind the /upload form described in the controller above. It han-
dles the incoming requests, which contain the network dumps and
meta data, such as App Name, Platform and Category. Then, it stores
everything into the database. By now, the controller only supports
dumps exported by BurpSuite. However, this can be extended eas-
ily in the future. Furthermore, it offers /file/deleteDump and
/file/deleteDumps functionality, which are responsible for delet-
ing a particular network dump or respectively a set of dumps.

PluginController Thirdly, the PluginController enables the user to activate
or deactivate a particular plugin. It provides the functions
/plugin/enable and /plugin/disable. The user can enable or
disable plugins in a checkbox before invoking the actual analyze
functionality, described in the ApplicationController. Due to the fact
that this thesis is based on several plugins that are integrated in the
core framework, the PluginController enables the user to activate or
deactivate particular analyzing methods. For instance, by controlling
which plugin is enabled, the user can change the focus from privacy
analysis to data leakage detection and much more.

AjaxController Lastly, the AjaxController only provides the /ajax/getLocation
function. This method is used in some plugins for resolving an IP
address regarding the geographical location of the network request.
Often it is interesting to know the country of the host. Thus, this
method has been implemented. However, a geographical search based
on lookup servers that are able to resolve most IP addresses, may be
time consuming. Hence, this functionality has been provided using
Ajax technology.
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The plugins controlled by the PluginController perform their analysis on the
data within the uploaded network dump. Each dump contains the traffic
from one session of an app. All this data is stored in the underlying database.
The next section describes briefly the basics of Elastic Search that is used in
the proposed framework as data storage.

4.3 Elastic Search

The proposed framework uses Elastic Search as data storage. Due to its high
flexibility and out-of-the-box functionality it was suitable for this case of
application. In order to understand the concepts behind Elastic Search, this
section gives a brief introduction.

Elastic Search is basically a search engine based on a database. It has been
published in 2010 by Shay Banon and became one of the most downloaded
open source projects within a few years [36]. It uses so-called Indices, which
basically represents a particular part in the file system where cohesive data
is stored. An Index is like a database in a SQL server. The search engine
reads and stores data or entire documents in the selected index. In fact,
Elastic Search uses the Apache Lucene library for accessing and storing data
in an index.

In addition to indices it offers so-called Documents that include one or
more fields. Data is stored as a document, which can be described as an
entity that is used for representing the data. The search engine uses these
documents for searching. As mentioned before, each document consists of
fields, whereby each field has a name and a value. Furthermore, the value
itself can also be an array of one or more fields. For instance, a document
can be a JSON object that is passed to the index and stored there.

Another term is the Mapping. Every document is analyzed before storing
and it can be specified what should happen with the data, such as removing
HTML tags, before the document is stored. In addition, Elastic Search can
automatically detect the type of the field based on its value.

Each document has also a specified Type, which is like a table in SQL. This
allows to store different kind of documents with different structures.
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Another important feature of Elastic Search are Nodes. Based on Lucene
it is implemented in a highly scalable way. A single server or instance is
called a node. For this thesis a single-server node was sufficient but it can
also be extended with more nodes which is called a cluster then.

Such a Cluster is a set of independent nodes that work together. The load
and requests are managed and divided to all nodes in the cluster. Another
advantage is that some nodes can be maintained while the entire system
works as expected. Elastic Search can store more data than a single server
could do.

This is achieved by using so-called Shards. For the user it appears as a huge
single index but in fact the data is split up into shards that can be spread
over all available nodes. All of this is handled automatically by Elastic
Search.

Because of this distributed system, they introduced Replicas, which are
are small parts of the shard that are copied and distributed over all nodes.
For instance, if the node with the shard is switched off, Elastic Search can
recover all data and information from the other nodes. [36]

In the proposed framework integrates Elastic Search via the provided REST
API. Basically, JSON encoded HTTP requests are sent to a particular index
endpoint of the API. Therefore, a document is sent to a particular index.
For instance, in this thesis one index is used for all the data dumps that
were collected. For retrieving data from the API, the so-called Query DSL
Language has been introduced by Elastic Search. It enables the user to send
simple or complex queries for requesting documents from one index. For
more information on Query DSL, please read the documentation in [37].

The network dumps that are stored in Elastic Search are collected separately
with Burp Suite, which is described in detail in section 6.2.1.
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We started by investigating the network traffic sent by mobile applications
on iOS and Android. During these observations we encountered several
significant issues that we analyzed manually. Thus, we developed automated
plugins for the prior implemented core framework in order to automate
our analysis. Due to the extendable architecture of the proposed framework,
we were able to extend it at any direction that our observations pointed
out. Basically, the input for every plugin is the captured network traffic. It
is dumped by using Burp Suite, which is described further in Section 6.2
Experimental Setup.

Our main focus was to develop plugins that help security researchers and
regular users to easily understand and evaluate what happens with their
data when it leaves their devices. Thus, we have developed the following
plugins: Analysis of Tracking Frameworks, Detailes Analysis of Tracking Frame-
works, Usage of Unique Device Identifiers, Network Destination Location and
Request-Response Timeline Visualization.

Hence, four out of five plugins focus on the topic of what happens when the
data is sent via Internet to unknown servers. One plugin has been developed
in order to visualize the timeline of HTTP requests and responses. This
enables the user to skim through the network dumps easily and also enables
her to manually analyze the sent traffic.

The findings in the manual analysis, which has been conducted by us
prior writing this thesis, as also the recent concerns about the Safe Harbor
agreement between the U.S. and the European Union, motivated us to
analyze the data for privacy related issues. The other four plugins cover the
topics of tracking and advertisement frameworks, usage of so-called unique
device identifiers and analysis of the network destination locations.
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This chapter is split up into five sections whereby the first four cover the
aforementioned topics and the last section describes the timeline visualiza-
tion plugin.

5.1 Analysis of Tracking Frameworks

One of the key findings in the manual network traffic analysis that has
been conducted prior writing this thesis, was the usage of tracking and
advertisement frameworks within the traffic. A sheer amount of network
requests were targeted to tracking servers, not to legitimate webservices
that serve the actual purpose of that app. For this reason, it was required to
gain more insight and give a fast overview about all the metrics necessary
for security researchers in order to understand and evaluate the network
traffic for the usage of tracking libraries. Thus, we implemented this plugin
that analyzes all network requests and categorizes them according to wether
it was a tracking host or not. It further helps the user to quickly check the
percentage of used frameworks, and much more.

However, from all the analyzed data a brief overview is created, which
indicates how many apps have been used in at least one tracking library
and how many have been found in total. The plugin also analyzes on which
operating system the app was running so that the user can compare different
platforms. A brief overview of this plugin is illustrated in the following
Figure 5.1.

In order to create the aforementioned summary and for analyzing the
network dumps, the plugin uses the Framework Manager for loading the
registered frameworks and making use of them. We developed this generic
framework manager in order to enable developers to easily extend these
plugins. The structure of this is illustrated in Figure 5.2.

Currently, the plugins can detect 64 known and widely used tracking and
advertisement frameworks. All of them transfer data to their hosts. However,
the framework classes are registered by the manager automatically through
Java Reflections. In this way the plugin can be easily extended by creating
a new class in the right package and inheriting from BaseFramework. Then,
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5.1 Analysis of Tracking Frameworks

Figure 5.1: Screenshot of the tracking framework plugins overview

the next time the application is executed, the plugin can detect the newly
added tracking framework and use it within its analysis.

Base
Framework

Framework
Manager

Different
Plugins Framework 1 Framework 2 …

registers Framework
Type

has

uses

Figure 5.2: Structure of the Framework Manager and its Frameworks

The plugin analyzes the network dump of every selected app. For each
detected framework or library it monitors the traffic that has been sent to
their hosts. After finishing the analysis, the plugin shows the top 10 libraries
within all selected mobile apps ranked by their usage. In fact, the detection
is based on a host comparison. Therefore, the plugin checks the host of
every outgoing network request within the captured traffic and compares it
with the known tracking hosts of all registered libraries. The frameworks
are provided by the aforementioned Framework Manager and every library
can contain multiple hosts. Whenever a match is detected, this request and
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all its data is treated as a potential finding. For instance, a sample output
for the top 20 Android apps in the Games category is shown in Figure 5.3.

Figure 5.3: Screenshot of the top 10 framework analysis created by this plugin.

In addition, it provides information regarding the usage of each app. As
already mentioned, this plugin works on per app basis. Thus, every app
that has been selected by the user in the frontend of the core framework,
is analyzed individually. The aforementioned overview and the top-ten
statistics combine these results. The main purpose of this plugin is to easily
understand and analyze if a particular app is suspicious or not. Furthermore,
the number of frameworks and the percentage of data that is sent to tracking
hosts, can be used as an indicator for evaluation.

However, the plugin summarizes how much traffic in bytes has been sent
to each host, including the servers from the tracking and advertisement
libraries. An example from the Android Games category is shown in Fig-
ure 5.4. The app sends 95% of its traffic to potential tracking hosts.
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Figure 5.4: Screenshot of a detailed analysis of a particular app by this plugin
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5.2 Detailed Analysis of Tracking Libraries

The manual analysis which has been conducted prior writing this thesis,
has shown that tracking frameworks or libraries send user specific data to
their hosts in order to gain more information and insight into their users.
Hence, the network communication between the app and the tracking hosts
is analyzed within this plugin. The plugin also monitors if sensitive and
privacy related data, such as the device name or uniquely identifiable device
information, is sent by tracking or advertisement libraries. Especially in the
latter case, it can be crucial because the advertisers can connect user-specific
data throughout other apps. Furthermore, many advertisers obtain sensitive
user information in order to create a more transparent persona for serving
better personalized advertisements. Consequently, it is possible in that way
to create better targeted campaigns as part of their business.

Unfortunately, each library transmits data in a different way. Therefore, we
implemented an automatic decoding and analyzing function for selected
libraries. This plugin has been developed in order to analyze and under-
stand the data that such libraries really send to their servers. It is based on
the framework classes and the Framework Manager described in the previous
section and shown in Figure 5.2. Hence, it uses the same classes as the pre-
vious plugin but extends them with an analyze functionality. Whenever this
method is implemented in the framework class, it automatically analyzes
the network dump and presents the result to the user. It was not in the
scope of this thesis to implement the analyze function for every detected
framework since it requires a manual analysis in order to understand the
library. Thus, in order to verify the validity of the plugin, we implemented
the analyze method for selected libraries, based on their occurrence in the
manually performed analysis, that has been conducted prior writing this
thesis.

Each recorded framework is implemented in a separate class. Therefore,
it contains information about the library and it optionally implements the
analyze method. We generated a class for every detected library. Thus,
the framework classes are loaded via Java Reflection and can be extended
for new frameworks during runtime. Every framework class inherits from
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the so-called Base Framework, which is initially described in Figure 5.2 and
outlined further in Figure 5.5.

Base
Framework

Framework 1 Framework 2 Framework n

Name: Flurry
Type: Tracking
Hosts: flurry.com
Analyze: {…}

Name: Crashlytics
Type: Both
Hosts: crashlytics.com
Analyze: -

Name: …
Type: …
Hosts: …
Analyze: …

Figure 5.5: Structure of the framework classes

In fact, each framework is identified by several properties, such as Name,
Type, Hosts and URL. For instance, in Figure 5.5 two distinct tracking
frameworks are illustrated. The Framework 1 implements the analyze func-
tionality, whereby Framework 2 does not. Considering that both libraries
are detected by the plugin, the network dump affecting Framework 1 is
analyzed in detail and presented to the user. Considering the large number
of detected libraries, not all frameworks implement this analyze method.
However, it is easy to extend this work to all the available libraries.

The screenshot, shown in Figure 5.6 gives a brief overview about how many
and which frameworks have been detected by the plugin. Therefore, the
diagram illustrates the findings and enables the user to show the name
of the detected library. Below the diagram the name of the application is
displayed. Furthermore, it enables the user to investigate the data which
has been sent by a particular library.

One challenge in implementing the analyze functionality was to understand
and decode the traffic. Therefore, a manual process was necessary to under-
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Figure 5.6: Screenshot of the Detailed Analysis of Tracking Frameworks plugin.

stand and decode the mostly obfuscated data. We overcame it by analyzing
the body of the network request. We were able to determine particular pat-
terns such as bit masks or semicolon separated values. The next screenshot,
shown in Figure 5.7, shows the decoded network traffic, which has been
sent from a tracking library to its host.
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Figure 5.7: Screenshot of the decoded and analyzed data which has been sent from a
tracking framework to its host.

5.3 Usage of Unique Device Identifiers

Most mobile apps utilize tracking or advertisement libraries. In fact, common
libraries provide a benefit to the developer, by either monitoring the usage
statistics of the app or by providing more personalized advertisement to the
user. According to wide-spread advertisements and placement providers,
they can increase the sales of an app by including their libraries into it
[38][39]. Our analysis has shown that these providers might achieve this
by collecting personalized data about the user in order to provide more
accurate advertisements.

During our manual analysis prior writing this thesis, we constructed a
hypothesis how advertisement providers could possibly link data sets from
different apps together. Furthermore, linked data from different apps can
improve the personalization significantly and major advertisement providers
claim to be able to interconnect the gathered information [40]. Moreover,
Flurry1, one of these tracking and advertisements providers, keeps track of
1.4 billion devices across 540,000 apps [40]. This is one third of the entire
app activity.

The main problem resulting from this functionality is that this sheer amount
of data might be sensitive. Hence, it might have privacy and security impli-
cations. In fact, not only the age and the gender of a person can be derived,

1http://www.flurry.com
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but distinct personas can be created from this data [40]. All this data and
information about the user is identified by a single unique identifier. Hence,
we developed this plugin in order to analyze the monitored network traffic
and we searched for this identifier inside the network dump.

First, we created a plugin that enables the user to understand how many
unique device identifiers have been found inside the analyzed network traf-
fic. Considering that these unique identifiers are sent to the tracking servers,
it enables them to bind all the data to one particular entity. Furthermore,
we distinguish between linked and unlinked identifiers. A unique identifier
that is accessed from at least two different tracking libraries is considered
as linked. This implies that the same identifier is used by more than one
provider. In fact, it enables them to connect the data, exchange it with other
providers and generate a more accurate persona.

However, the so-called Advertising Identifier introduced by Apple and Google
was intended to prevent the linking between different providers and apps.
Our plugin enables the user to detect if her personal unique identifier is
tracked by multiple frameworks or multiple apps. Hence, it analyzes if
the tracked information about the user is linked together and how many
providers can enrich this persona with additional data.

Figure 5.8: Screenshot of Device Identifier plugin which scans for Unique Device Identifiers,
so-called UDIDs.

Furthermore, the plugin shows the exact identifier that has been detected
and displays a statistic about the number of requests in which this identifier
occurred and within which frameworks and apps it has been found. In the
conducted manually analysis prior writing this thesis we gained evidence
that every tracking framework tries to uniquely identify a particular user.
Thus, it is important to analyse the usage of the device identifiers. The fol-
lowing screenshot shown in Figure 5.9, displays the aforementioned statistic.
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It presents the detected device identifier in the first row. Furthermore, it
states how often this identifier occurred in different network requests. In
order to understand which frameworks and apps used this particular iden-
tifier, the frameworks are shown as red labels and the apps as blue labels
below the device identifier. The number on the right side states how many
distinct apps used the exactly same identifier for transferring data.

Figure 5.9: Sample statistic of the usage of device identifiers carried out by the analysis of
the Device Identifier plugin.

In fact, the plugin has been developed to check wether the same unique de-
vice identifiers are used by frameworks across multiple apps. Furthermore,
it points out that advertisement providers are able to exchange personal
data in order to generate more accurate personas. Figure 5.10 depicts the
structure. For instance, Provider A collects data from App 1, 2 and 3. Provider
B is only integrated in App 1 and 2. All the data which is gathered by the
providers is linked to the same unique device identifier. Hence, the providers
are able to exchange the connected data among themselves. Thus, Provider B
can get the personalized data from App 3 although it is not integrated in
this app.

From a technical perspective, the plugin analyzes each request inside the
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Figure 5.10: Structure that is used by providers and possible impacts of linked unique
device identifiers.

network dump and checks with Regular Expressions if a device identifier
pattern has been found. After that, it revises if the request was targeted
to a tracking provider by integrating the functionality of the Analysis of
Tracking Frameworks plugin, described in Section 5.1. If both match, the
plugin considers the data included in this request as uniquely identifiable
and tracked. This automatic analysis is performed for every network dump
of the chosen apps. Thus, the plugin accumulates the data and detects if
the same device identifier is used in different apps. In that way, it enables
the user to understand which data, collected from different apps, might be
linked together on the provider’s side.

The plugin only checks for unencrypted, unhashed and unobfuscated iden-
tifiers inside the SSL encrypted network traffic. We decided, that monitoring
the usage of obfuscated identifiers was considered out of scope and is open
for future work. However, the main purpose of this plugin was to detect
standard identifiers and to analyse if the providers are theoretically able to
link the transferred data from different apps.
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5.4 Network Destination Location

Most applications communicate with servers via the Internet for transferring
data. In our manual analysis prior writing this thesis we found out that
many servers are hosted in the United States. This implies that also the
tracked data is stored there. Thus, this plugin considers the importance of
the final destination of network requests. Moreover, privacy laws differ in
many countries. Therefore, it becomes more and more important where, in
particular in which country, the data is stored. The geographical location
of the host address of each request is analyzed in this plugin. In order to
give a brief overview about the variant locations, the data is visualized on a
world map by using the Google Maps library. This is shown in Figure 5.11.
Basically, the more requests are sent to a particular country, the more colorful
the country becomes on the map. Hence, this option enables the user to
easily identify which app should be analyzed further based on the number
of requests per country.

However, we cannot determine what happens with the data after it has been
delivered to the server. This aspect is considered as out of scope for this
plugin.

Technically, the plugin uses a local webservice that is based on the Free-
GeoIP2 project in order to resolve the IP addresses. The project is inside the
framework folder and is used as an API for querying countries based on
hosts. The plugin implements the LocationLookup class, which opens a HTTP
connection to the locally running GeoIP server. After that, it forwards the
host’s IP address to the LocationLookup and resolves the country location.
In order to increase its performance, the plugin uses a memory cache for
temporarily storing already checked IP addresses. Considering, that almost
every network dump contains hundreds of requests to the same tracking
host, the caching was a necessary step. Before the GeoIP server is queried,
the network destination plugin checks the cache if it already contains the
requested address.

In addition, the plugin caches the results. Whenever a particular network
dump has been analyzed, the results are stored in an in-memory cache

2Locally deployed GeoIP Server used for resolving IP addresses: http://freegeoip.net
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Figure 5.11: Screenshot of the plugin’s results for a single analyzed application.

for further requests. Moreover, it caches the results of a network dump
and not of the entire analysis. Thus, it is possible to run the plugin with
more than one selected application. Hence, when the user analyzes one of
these applications alone, the result will be instantly available because of the
previous caching.

Furthermore, the LocationLookup has been extended for AJAX requests in
order to be used in the Timeline plugin described in the next Section 5.5.
The main purpose of the mentioned plugin was not to detect the origin of
the tracking host but during our work we figured out that the information
can be very useful for researchers. Thus, we enabled the user to understand
in which country a particular network requests terminates. Hence, it is
possible to monitor exactly which data has been sent to which country.
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5.5 Request-Response Timeline Visualization

During our manual analysis prior writing this thesis, we have recognized
that it is important to understand the network communication flow in order
to evaluate what an app is doing. Based on this we developed the timeline
plugin with this in mind. It visualizes in detail the network requests and
responses from the captured traffic and it gives a brief overview about the
content of a request. Furthermore, it includes the type and the location
of the host and the HTTP parameters. By using this plugin some serious
security flaws could be detected. In fact, examples of sensitive data leaks
that were monitored by this plugin are presented in the results chapter of
this thesis.

The timeline plugin presents the flow of network requests and responses
of the analyzed application. Moreover, it uses the aforementioned AJAX
extension of the Network Destination Location plugin described in the above
Section 5.4 for displaying the country where the request has been sent to.
This is shown in Figure 5.12.

In addition, the plugin enables the user to see the details of each request.
This information includes all parameters and the entire body of the network
request. This functionality is shown in Figure 5.13. The screenshot shows
the host, all HTTP parameters and the HTTP body at the bottom of the
screen.
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Figure 5.12: Screenshot of the Timeline Visualization Plugin which presents the network
flow of the analyzed app.
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Figure 5.13: Screenshot of the details of a network request within the Timeline Visualization
plugin.

53





6 Evaluation

To increase the reliability of the analysis a representative number of apps
was necessary for a significant evaluation. Thus, we have analyzed the top
10 apps from each category of Apple’s AppStore and Google’s Play Store.
In fact, due to the compelling results within the games category, we have
selected the top 20 apps from this category for discussing them in this
chapter. Furthermore, we describe in detail in this chapter the methodology
and experimental setup of this evaluation.

The primary goal of this thesis was to understand the usage of tracking
frameworks within numerous of mobile apps. Therefore, we have imple-
mented plugins in order to automatically detect the usage of tracking
libraries and to gain insight from the data they are sending to their hosts.
One of our findings is the highly usage of unique device identifiers, which
enables the providers to identify each particular device among others. Fur-
thermore, the proposed plugins enable the user to understand which and
how many tracking frameworks are used by each app, if the data from
different apps and providers can be linked together, as also to observe to
which destination is the data sent and where are the servers located. Lastly,
the plugins enable the user to understand the request-response flow and to
gain knowledge about the kind of data that is actually sent. The apps that
we have analyzed, were collected from the iOS platform and the Android
platform.

The structure of this chapter is as follows. In section 6.1 and 6.2, we describe
the methodology and the experimental setup. After that, we present the
evaluation goals in Section 6.3.
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6.1 Methodology

For the evaluation, 440 distinct apps out of 25 categories on Android and
iOS were selected. The apps have been chosen based on their ranking on the
AppStore and the Play Store. On iOS as well as on Android some categories
have been excluded due to the fact that they do not contain regular apps,
such as books and widgets. In fact, on iOS the following categories have
been excluded from the analysis: Books, Catalogues, Magazines and Newspapers.
On Android Android Wear, Books & Reference, Comics, Google Cast, Libraries &
Demos, Live Wallpapers, Personalization and Widgets have been excluded. In
addition to the aforementioned categories also the Family category has been
excluded because it is just a collection of apps from other categories. From
each category on both stores 10 apps were collected. However, the categories
and number of analyzed apps inside these categories are presented in
Table 6.1. In the Games category on both platforms 20 apps have been
analyzed because of compelling results, which are presented in Chapter 7.

However, some apps used certificate pinning, which is described in Chap-
ter 3. Due to this limitation, which thwarted us from capturing its network
traffic, and apps that solely operated offline were regarded as out of scope.

For simplicity and comparability the following 5 Play Store categories were
merged into related AppStore categories:

Music & Audio was merged into the AppStore category Music.
Photography was merged into the AppStore category Photo & Video.
Social was merged into the AppStore category Social Networking.
Travel & Local was merged into the AppStore category Travel.
Tools was merged into the AppStore category Utilities.

Lastly, five interesting aspects, that are related to this thesis, regarding
the data within the captured network traffic were identified. The generic
core framework, described in Chapter 4, was used for extending it with
plugins that analyze and visualize these aspects. This section describes the
five evaluation scenarios briefly, which have been applied to the captured
network traffic of the beforehand collected apps.
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Apple AppStore (iOS) Google Play Store (Android)
Category Number of Apps Category Number of Apps
Business 10 Business 10

Education 10 Communication 10

Entertainment 10 Education 10

Finance 10 Entertainment 10

Food & Drink 10 Finance 10

Games 20 Games 20

Health & Fitness 10 Health & Fitness 10

Kids 10 Lifestyle 10

Lifestyle 10 Media & Video 10

Medical 10 Medical 10

Music 10 Music & Audio 10

Navigation 10 Photography 10

News 10 Productivity 10

Photo & Video 10 Shopping 10

Productivity 10 Social 10

Reference 10 Sports 10

Shopping 10 Tools 10

Social Networking 10 Transportation 10

Sports 10 Travel & Local 10

Travel 10 Weather 10

Utilities 10

Weather 10

Total 230 Apps 210 Apps

Table 6.1: Categories and number of analysed apps from both app stores
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6.2 Experimental Setup

In order to get a representative analysis of mobile apps we decided to
conduct this analysis on iOS and Android. We excluded Microsofts Windows
Phone operating system from this analysis because of their market share
below 1% [41]. In our opinion this number is to less significant in order to
conduct an impactful analysis. However, for conducting this analysis on the
other two platforms, we used two mobile devices to collect the necessary
network traffic. The first is an iPod Touch 5

th generation running iOS 9.2 and
the second is a Nexus 5 running Android 6.0.1. At the time of writing this
both devices ran the newest available version of their operating systems.

We collected the required network traffic by using an SSL Proxy within
between the monitored devices and the webservices of the analyzed appli-
cations. Further information on what a SSL Proxy is and how it works is
described in Section 3.1. For collecting the network traffic we were using
Burp Suite, which is described in the next section 6.2.1.

6.2.1 Burp Suite

Burp Suite has been developed by PortSwigger1 and provides security
researchers and analysts with a powerful tool to conduct security testing
by monitoring the network traffic. Thus it has been used for collecting the
network dumps in order to provide an input for the proposed framework.
The only function we used was the so-called Burp Suite Proxy, since it was
necessary to dump the network traffic for further analysis. [42]

However, Burp Suite offers more components, which are independent from
the proposed framework but may be useful for analysts. Hence, they are
explained briefly in the following paragraph. [42]

Proxy The proxy enables to intercept and modify HTTP traffic passing
through Burp Suite. Moreover, after injecting a self-signed certificate
on the test device it is possible to monitor SSL secured connections. In

1www.portswigger.net
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Figure 6.1: Screenshot of active Burp Suite Proxy

addition, particular requests can be sent to other tools in the suite for
further analysis.

Spider This tool is based on a crawler that automatically follows links
and submits forms. Furthermore, it provides a detailed map of all
discovered content. Like in the aforementioned Proxy, it is possible to
forward results to other tools.

Scanner This vulnerability scanner is intended for web applications and
scans agains all top 10 OWASP2 vulnerabilities, such as cross-site
scripting and SQL injection [43][44]. Moreover, it provides easy-to-use
penetration testing, which can be used for quick analysis.

Intruder The intruder provides customized brute-force attacks for exploiting
authentication and session handling mechanisms. Arbitrary payloads

2www.owasp.org
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can be injected and the results of each requests are reported.
Repeater The so-called replay attacks are covered with this tool. It enables

the user to resubmit the same request again.
Sequencer The sequencer analyzes the amount of randomness in session

identifiers or tokens.

6.3 Evaluation Goals

The proposed framework and the implemented plugins were developed for
understanding which kind of data is sent and tracked within the network
traffic of mobile apps. Therefore, we have developed the Analysis of Tracking
Frameworks and the Detailed Analysis of Tracking Libraries plugins in order to
understand which tracking libraries are used within the collected apps and
what kind of data they track. Furthermore, the proposed and implemented
Unique Device Identifier plugin is intended to give insight on how tracking
providers use unique device identifiers for identifying the collected data. The
Location Destination plugin is used for understanding where the destination
servers are located in order to understand the privacy implications of hosted
data in other countries. Lastly, the Timeline plugin has been implemented
in order to enable the user to conduct a detailed analysis of the traffic and
its request-response timeline. The aforementioned plugins are described in
Chapter 5 and their results are presented in Chapter 7.

The main purpose of this thesis was to evaluate and understand the usage of
tracking libraries within mobile apps on the iOS and the Android platform.
Furthermore, another primary goal was to identify unique device identifiers
and their usage across multiple apps in the network traffic of the collected
apps. The next section presents the evaluation goals for the usage of tracking
frameworks within the mobile apps. After that, we describe the detection of
unique device identifiers within the collected apps and its limitations.
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6.3.1 Detection of Tracking Frameworks

The main purpose of this thesis is to identify the usage of tracking frame-
works on mobile platforms. Therefore, we analyzed the existing frameworks
by checking which connections are opened by apps on iOS and on An-
droid. We achieved this by creating a rule matching to our framework. The
proposed framework and its plugins can detect known tracking and adver-
tisement libraries. Known-Frameworks are defined as frameworks that are
implemented within the frameworks plugin and are identified by at least
one host. We have obtained the frameworks and the known hosts by using
a manual analysis of the first 40 network dumps from the games category.
In order to detect the tracking providers we have introduced a hosts file,
which is shown in Figure 6.2, that generates the output and logs if a frame-
work has been matched with the given host. Thus, we have controlled our
matching algorithm by manually verifying the detected frameworks for the
first 40 apps. Furthermore, also the non-matching hosts are tracked in order
to identify and evaluate potential tracking hosts for the future. Thus, the
framework and its plugins detect all ascertained tracking and advertisement
providers identified by their manually collected hosts.

Figure 6.2: Screenshot of the Host Detection and Verification Output

Considering, that the algorithm matches the detected host with the de-
posited host in the plugin implementation, we conclude that the algorithm
is reliable. Due to the fact, that we detect tracking and advertisement frame-
works by matching the host of the network request, there are no false
positives in our results.

However, our proposed framework can only detect known frameworks
which were implemented within the plugins. In-house tracking or propri-
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etary tracking libraries are not covered in the implementation and thus they
are not part of this thesis. Another limitation is that the matching is bound
to a particular host. If the provider changes the host, then the corresponding
request will not be detected as a tracking request anymore.

6.3.2 UDID Detection

Another interesting aspect is the usage of unique device identifiers, the
so-called UDIDs, within mobile apps. We have encountered this during our
manual analysis prior writing this thesis. We were able to find a possible
correlation between so called Unique Device Identifiers across multiple apps.
Thus, we have implemented a plugin that analyzes this behavior automat-
ically and detects if the providers are able to use the same identifier on
different mobile apps or not.

The plugin uses a Regular Expression for detecting unique device identifiers.
The identifiers are based on 32 characters using a particular pattern. The
pattern approach has been chosen because of the standardized represen-
tation of these identifiers. Since we are only analyzing detected identifiers
that are matching the aforementioned pattern, there are no false-positives
in our results.

However, some limitations of this methodology is the ability of the providers
to structure their identifier on a different way or obfuscate the obtained
device identifier before sending it to their servers. Moreover, identifiers that
are encoded on a different way cannot be observed by using this approach.
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In this chapter we present the results of our analysis of the apps men-
tioned in Section 6.1. The results are structured according to the evaluation
scenarios defined in Section 6.3. All results have been obtained by using
the automated analysis of the plugins described in Chapter 5. We have
combined the independent results of different plugins in order to create
connected results.

This chapter is structured as follows: In Section Framework Usage in An-
alyzed Apps we describe the combined results of the plugins Analysis of
Tracking Frameworks and Detailed Analysis of Tracking Libraries. Both plugins
are described in Section 5.1 and 5.2. After that, we present in Section 7.2
the Usage of Unique Device Identifiers and in Section 7.3 the findings of the
Network Destination Location plugin. As mentioned in Chapter 5, we have
elaborated all the results we observed in the Timeline plugin. In Section 7.4,
we demonstrate and discuss the most interesting and representative findings
of the Timeline plugin. The last section of this chapter describes the usage
of Certificate Pinning that we were able to observe during our collection
phase.

As briefly described above, this chapter presents the results and findings
from the implemented plugins. We decided to include the discussion about
the findings in the corresponding sections after presenting the results objec-
tively.

7.1 Framework Usage in Analyzed Apps

This section covers the results of the Analysis of Tracking Frameworks plugin
and the Detailed Analysis of Tracking Libraries plugin. Furthermore, we have
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analyzed the apps of every AppStore/PlayStore category independently
and we present our findings in this section. In total we have analyzed 440

apps from 25 distinct categories. Therefore, 230 of them were on iOS and
210 on Android. This is due to the fact that Apple’s AppStore offered more
categories than Google’s PlayStore. For our purposes, we have dumped the
top ten apps from each category except the games category. Due to our
significant findings we have recorded twice as much apps from the games
category, than from the other categories.

The first part of our results is presented in Table 7.1. The first column
illustrates the categories that were analyzed. The second and third column
states the number of apps, which were dumped inside each category. We
have captured the traffic of the top ten or top twenty apps of each category.

The other columns show the number of tracking frameworks found inside
the apps of each category. More particularly, they illustrate how many
tracking libraries were found in total in each category and how many of
them were distinct. Hence, we distinguish between the total number of
frameworks found and the number of unique frameworks per category.
This enabled us to compare the categories with each other. Furthermore,
the table shows the findings per platform. Thus, we were able to compare
the iOS and Android platform with each other with respect to how many
different tracking frameworks were found on each platform. For example, in
the first category Business 10 iOS and 10 Android apps have been analyzed.
Within these 10 iOS apps our plugins have detected 15 tracking frameworks
in total, whereby 9 of them were distinct. This means inside 10 apps we
have detected 9 different tracking libraries. However, on Android we have
detected 19 in total and 8 of them were distinct. Lastly, we present in the
last row at the bottom of the table, the number of total tracking frameworks
found inside all categories.

In addition, our analysis has also covered the occurrence of the tracking
frameworks inside the apps. Therefore, we have selected all the apps from a
particular category and from one platform and we have used the two afore-
mentioned plugins for our purposes. Therefore, we were able to monitor in
how many apps from our input we could detect at least one tracking library
inside the network traffic. This number is particularly interesting because it
has enabled us to understand how prevalent such libraries are.
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# of Apps Tracking Frameworks found
Category iOS Android iOS Distinct Android Distinct
Business 10 10 15 9 19 8
Education 10 10 20 8 14 4
Entertainment 10 10 38 21 31 17
Finance 10 10 14 9 12 5
Food & Drink 10 - 14 8 - -
Games 20 20 124 38 98 36
Health & Fitness 10 10 18 9 25 10
Kids 10 - 21 15 - -
Lifestyle 10 10 18 8 16 9
Medical 10 10 10 6 20 10
Music 10 10 34 16 24 11
Navigation 10 - 14 11 - -
News 10 - 13 5 - -
Photo & Video 10 10 20 11 27 10
Productivity 10 10 15 9 23 12
Reference 10 - 31 15 - -
Shopping 10 10 24 12 21 9
Social Networking 10 10 20 8 31 9
Sports 10 10 14 9 13 6
Travel 10 10 7 4 17 8
Utilities 10 10 25 15 24 11
Weather 10 10 27 12 19 7
Communication - 10 - - 14 8
Media & Video - 10 - - 12 6
Transportation - 10 - - 6 5
Total 230 210 536 466

Table 7.1: Total and Distinct Tracking Frameworks found inside Apps’ Network Traffic
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The result of this analysis is shown in Table 7.2. Like in the previous table,
the first columns show the analyzed categories and the number of analyzed
apps per platform. The fourth column shows the number of iOS apps in
which at least one tracking framework was detected. The fifth column
shows the percentage of iOS apps, which contained at least one tracking
library. The next two columns show the same figures but for the Android
platform. The last column shows in percentage the difference of detected
tracking frameworks between the two platforms iOS and Android. Thus,
we were able to compare both platforms with each other for every category.
Furthermore, at the bottom of the table in the last row we present the average
number of apps per platform containing at least one tracking library and
the average difference of detected tracking frameworks between iOS and
Android.

Let us consider the following example: In the second category Education we
were able to detect 8 apps that used at least one tracking framework on iOS.
These form the 80% of all the analyzed apps inside this category. On the
Android platforms the plugins detected 9 frameworks, which represent 90%
of all apps. This is a difference of 10% between iOS and Android.

Discussion. The results presented in Table 7.1 and Table 7.2 show the
number of tracking frameworks that we were able to detect on iOS and on
Android. In fact, we were only able to detect the ones, which have been
registered within the plugins. However, this limitation is described in the
implementation of the plugin in Section 5.2.

We were able to detect in total 124 tracking frameworks within the Games
category on the iOS platform, whereby 38 out of these 124 frameworks
were distinct. We show, that our plugins have detected 38 distinct tracking
frameworks within only 20 iOS apps. This number is almost twice the
number of the total apps. Statistically, every app is using approximately two
tracking libraries. Moreover, Table 7.2 shows the number of apps, which are
using at least one tracking framework. Interestingly, 10 out of 10 apps in
this category are using at least one tracking library, which is 100% of all
apps on the iOS platform in this category. Considering the aforementioned
number of distinct frameworks that we have detected in those 20 apps, we
conclude that some apps are using multiple frameworks for the same or
for different purposes. Furthermore, we have recognized that many apps
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# of Apps Containing FWs
Category iOS Andr. iOS Android Diff
Business 10 10 8 80% 8 80% 0%
Education 10 10 8 80% 9 90% -10%
Entertainment 10 10 9 90% 7 70% 20%
Finance 10 10 7 70% 7 70% 0%
Food & Drink 10 - 7 70% - - -
Games 20 20 20 100% 19 95% 5%
Health & Fitness 10 10 7 70% 8 80 -10%
Kids 10 - 9 90% - - -
Lifestyle 10 10 7 70% 7 70% 0%
Medical 10 10 5 50% 8 80% -30%
Music 10 10 10 100% 10 100% 0%
Navigation 10 - 6 60% - - -
News 10 - 8 80% - - -
Photo & Video 10 10 9 90% 9 90% 0%
Productivity 10 10 9 90% 9 90% 0%
Reference 10 - 10 100% - - -
Shopping 10 10 9 90% 9 90% 0%
Social Networking 10 10 8 80% 10 100% -20%
Sports 10 10 8 80% 8 80% 0%
Travel 10 10 5 50% 8 80% -30%
Utilities 10 10 5 50% 9 90% -40%
Weather 10 10 8 80% 10 100% -20%
Communication - 10 - - 9 90% -
Media & Video - 10 - - 9 90% -
Transportation - 10 - - 3 30% -
Total 230 210 78% 83% -8%

Table 7.2: Number of Apps containing at least one Tracking Framework
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are using multiple advertisement libraries in order to display the most
profitable advertisement from them. Hence, the data from one app can be
sent to multiple providers. The numbers also show that every analyzed app
in the games category is tracked. Initially, we have started analyzing 10

apps from that section but then we detected that every app is using at least
one tracking framework, so we have extended our analysis for the top 20

apps of this section. Impressively, on iOS there was not even one app in this
category that did not use a tracking or an advertisement library.

On Android we were able to confirm the numbers from the iOS platform.
There we were able to identify 98 frameworks in total in the games category,
whereby only 36 of them were distinct. Furthermore, on Android our
plugins have detected that 19 out of 20 apps are using at least one tracking
framework. This is 95% of all Android apps in this category.

The games category was an extraordinary example because even if we have
used the local app stores, most of the apps in this category were developed
by professional game development studios. This category is certainly one
with the most revenue in the stores. Hence, this category is of major interest
for the companies. Thus, the tracking and analytics might be very important
in order to increase the conversion rate and the revenue per user.

Interestingly, we were able to observe that there is not a single category
without the usage of a tracking or an advertisement framework. The results
clearly show that tracking is very common in mobile app development.
Table 7.1 illustrates that although there are differences in the categories,
there is no category without tracking. Obviously, entertainment, games,
music and reference categories are of great interest for the vendors. In those
categories we were able to find more than 30 tracking libraries, whereby
the peak was in the games category with 124 frameworks on iOS and 98 on
Android.

The results in Table 7.2 also show that there is a very high amount of apps,
with at least one tracking framework. On iOS we were able to observe
that 100% of the analyzed apps in the categories of games, music and
reference have used the aforementioned type of frameworks. In comparison,
to Android the categories music, social networking and weather have a
framework usage per app of 100%. Considering the categories with a usage
of more than 70%, on iOS only four categories are below of this level and
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on Android only one single category. In the transportation category on
the Android platform, 3 out of 10 apps have used at least one tracking
framework. Hence, this is only 30% of the total apps within this category.
This is an outliner among our data and can be described because of the apps
in this category are selected from the local Austrian app store. Apps that
are related to transportation are only usable in a local or nationwide scope.
Thus, there is no major interest in this category. The same rule applies to the
same category on the iOS platform; it is the so-called navigation category.
There we were able to observe a usage of 60%, which is more than on
Android but still below the average on the iOS platform.

Basically, the numbers we observed on iOS are similar to the ones on
Android. The only category with a significant difference of 40% is the
utilities category. On iOS we were able to detect in the utilities category,
that 50% of the apps are using at least one tracking framework, whereby on
Android 90% of the apps utilized at least one.

Our results show that the difference between iOS and Android is only 5%
on average. Table 7.2 illustrates that on average 78% of the apps across all
categories are using at least one tracking library, whereby on the Android
platform 83% are using at least one framework. The numbers show that the
usage is almost the same on both platforms. Hence, we have observed that
there is a focus on particular categories but not on platforms. Considering
both platforms, our analysis has also evidenced that there are no significant
differences in the categories, except of three statistical outliners.

Considering these results, certainly there is a massive interest in collecting
information about the devices and its users’. The collected data from just a
single app is statistically unappealing for the tracking providers. Thus, it
is important for tracking and advertisement providers to collect the data
from multiple apps. According to the results shown in Table 7.1, there are
much more detected frameworks in each category than distinct ones. This
implies that one or more tracking libraries are used multiple times across
different apps in the same category. Hence, the providers gather data from
the same user by using different apps. However, the data is uncritical as
long as it cannot be connected across the multiple apps. In fact, this forms a
critical question in our thesis. For that reason, we have developed the Usage
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of Unique Device Identifiers described in Section 5.3. The results from this
plugin and the answer to our question is described in the next Section 7.2.

7.2 Usage of Unique Device Identifiers

During our analysis we have realized how important unique device iden-
tifiers are for advertisement providers. These identifiers are also known
as UDIDs. In fact, these identifiers transform arbitrary data to something
meaningful. The results of our Usage of Unique Device Identifiers plugin are
presented in this section and interpreted in the discussion paragraph at the
bottom of this section. The results include the analysis of 440 apps in total,
whereby 230 were analyzed on iOS and 210 on Android. The differences
among the number of apps result from different categories in the devices’
app stores. As described in Section 6.1, we have merged categories together
across the different stores wherever it was possible.

The results of this plugin serves two purposes. The first is to detect how
many unique device identifiers have been used in the iOS and Android
apps in each category. Secondly, considering that such identifiers enable
to uniquely link data together that has been sent to third-party servers, it
is particularly interesting to observe if the same identifier has been used
in multiple apps. This might enable advertisers to link data together from
different apps, within multiple categories.

Table 7.3 shows the analyzed categories and the number of monitored apps
inside each category. Moreover, the table shows how many apps from each
platform have been analyzed in every category. The last two columns show
how many unique identifiers of the analyzed apps have been found within
the network traffic. We distinguish between detected identifiers on iOS and
on Android in order to be able to compare the results between the two
different platforms. For example, in the third category Entertainment we have
analyzed 10 apps from iOS and 10 from Android. Within the network traffic
of the iOS apps in this category we have detected 28 unique identifiers. On
Android we have detected 20 unique identifiers.
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# of Apps UDIDs Found
Category iOS Android iOS Android
Business 10 10 16 19
Education 10 10 39 9
Entertainment 10 10 28 20
Finance 10 10 11 14
Food & Drink 10 - 18 -
Games 20 20 98 45
Health & Fitness 10 10 20 20
Kids 10 - 21 -
Lifestyle 10 10 29 14
Medical 10 10 19 20
Music 10 10 35 17
Navigation 10 - 28 -
News 10 - 14 -
Photo & Video 10 10 52 11
Productivity 10 10 20 13
Reference 10 - 24 -
Shopping 10 10 30 24
Social Networking 10 10 19 25
Sports 10 10 24 8
Travel 10 10 39 19
Utilities 10 10 24 4
Weather 10 10 22 5
Communication - 10 - 13
Media & Video - 10 - 15
Transportation - 10 - 1
Total 230 210

Table 7.3: Unique Device Identifiers found in each Category

71



7 Results

After having detected how many unique device identifiers have been used,
we have used the Usage of Unique Device Identifiers plugin for analyzing and
detecting how often the same identifier was used within multiple apps.
In fact, we have tracked if the same unique identifier occurred multiple
times in one or more different apps, by analyzing the network traffic of each
app. These results are illustrated in Table 7.4. Like in the previous table,
the first column shows the different categories from the app stores. The
third and fourth column describes how many iOS and Android apps have
been analyzed within each category. The other columns show the number
of apps, which have used the same UDID. For example, we analyzed 10

iOS and 10 Android apps from the Finance category by using our plugin.
As illustrated in Table 7.3, we have detected 11 UDIDs on iOS and 14 on
Android. One out of this 11 detected identifiers on iOS have been used in 6

apps. Hence, 60% of the apps analyzed in this category tracked data with
the same identifier. This implies that this data can be linked together on the
servers. On Android at least one shared identifier was used in 4 different
apps.

In case of multiple matches, we have also included more than one identifier
in our results. If we were able to find more identifiers that we have used
in multiple apps, we reported this in the next column. In fact, in some
categories we were able to detect 4 different identifiers that were used in at
least 2 different apps. Due to space limitations we only show the first two
matches in Table 7.4. The full table, including all results, is available in the
Appendix.

Discussion. Our results in Table 7.3 show that there is a massive use of
unique device identifiers inside the network traffic. The numbers we found
correlate with the findings described in Section 7.1. In the games category
we were able to detect the most usage of UDIDs on iOS. Although we have
analyzed 20 apps in this category, the results show relatively high numbers
with 98 detected device identifiers within 20 apps. However, on Android
we have observed only 45 identifiers. In many categories we have detected
significantly less UDIDs on Android than on iOS. For example, in the Photo
& Video category we have monitored 52 identifiers on iOS and only 11 on
Android. Furthermore, in the Weather category we have detected 5 UDIDs
on Android, but 22 on iOS. Considering the results illustrated in Table 7.3,
where the usage of frameworks was similar on iOS and on Android, we
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# of Apps Same UDID used by # of Apps
Category iOS Andr. iOS Android
Business 10 10 5 50% - - 4 40% 2 20%
Education 10 10 7 70% - - 4 40% - -
Entertainment 10 10 7 70% - - 6 60% - -
Finance 10 10 6 60% - - 4 40% - -
Food & Drink 10 - 5 50% - - - - - -
Games 20 20 17 85% 3 15% 18 90% 2 10%
Health & Fitn. 10 10 6 60% 2 20% 7 70% - -
Kids 10 - 8 80% 3 30% - - - -
Lifestyle 10 10 5 50% - - 6 60% - -
Medical 10 10 3 30% - - 4 40% - -
Music 10 10 7 70% - - 5 50% - -
Navigation 10 - 4 40% - - - - - -
News 10 - 5 50% - - - - - -
Photo & Video 10 10 7 70% - - 6 60% - -
Productivity 10 10 5 50% 3 30% 5 50% - -
Reference 10 - 5 50% - - - - - -
Shopping 10 10 8 80% - - 8 80% - -
Social Netw. 10 10 8 80% - - 9 90% - -
Sports 10 10 5 50% - - 2 20% - -
Travel 10 10 4 40% - - 5 50% - -
Utilities 10 10 5 50% - - 5 50% - -
Weather 10 10 6 60% 2 20% 3 30% - -
Communication - 10 - - - - 4 40% - -
Media & Video - 10 - - - - 2 20% - -
Transportation - 10 - - - - 1 10% - -
Total 230 210 59% 23% 50% 15%

Table 7.4: Same UDID used by more than one App
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assume that the tracking and advertisement providers might have an easier
access to unique identifiers on Android than on iOS. This shows that it
is easier to derive a unique device identifier on Android than on iOS. As
a result, the providers tend to use the same identifier. In fact, this might
be critical because it enables the providers to link the gathered data from
multiple apps to one particular entity. In other words, the more data they
collect, the more accurate the persona becomes.

Table 7.4 shows the number of apps which have used the exactly same
identifier within their network request. This outcome is very significant, due
to the fact that it enables tracking providers to connect data from different
apps to one particular entity. Hence, the accuracy of the described entity
increases with the collected data. If it is possible to derive unique identifiably
numbers, such as the social insurance number or names from this entity, it is
also then possible to identify a particular person. However, the providers use
these entities to derive personas which describe a particular group of users
with the same character and background. For instance, Google Firebase and
Doubleclick provide to the app developers information about the location,
the gender, the age and the interests of their users. The interests are accurate
and narrow down special activities of the users. An example of tracked
interests that Firebase provides is shown in Figure 7.1.

Moreover, we have identified that in most categories more than 50% of
all apps within this category, are using the exactly same device identifier.
Considering that most people do not own multiple mobile phones, this
device identifier can also be seen as a personal identifier. Thus, it identifies
the individual person and not just a device. Furthermore, due to device
backups in the cloud we still have the same identifier even when we buy
a new device. Furthermore, like in the previous results, we have clearly
identified a peak in the games category, where we were able to detect 4

distinct UDIDs that have been used by multiple apps on iOS and 3 distinct
identifiers on the Android platform. In addition, the numbers among iOS
and Android correlate, so there are not significant outliners between the
platforms. In the education, entertainment, games, kids, music, photo &
video, shopping and social networking categories on iOS we were able to
identify significant numbers of 70% and more. This means that 70% of all
apps in this category are sharing at least one unique identifier for identifying
this device. On contrary, on the Android platform, we have detected the
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categories games, shopping and social networking with a usage of 70% and
more. The average percentage on iOS was 59% and on Android 50%. Thus,
both platforms are affected in almost the same way.

In the games category our combined results illustrate that on iOS 85% and
on Android 90% of all apps in this category are using the same unique
identifier. Hence, it is possible to connect the data from almost all analyzed
games with each other. Moreover, in the games category we were able
to observe 4 different identifiers that were used within at least 2 distinct
apps. For instance, on iOS 17 apps have used the same identifier. We
have also detected another identifier, which was exactly the same within
3 distinct apps. Moreover, we detected another two identifiers that were
also used in two different apps. Thus, we were able to prove that not only
the advertisement identifier is used from multiple providers, but there
are also other device identifiers which are unique and are also used by
the providers. Considering, that these identifiers have been used within
different apps, it enables the companies which are providing these tracking
and advertisement libraries, to connect data from multiple apps.

However, the contextual information about a particular user becomes more
accurate if the collected data came from different categories. Our results
demonstrate that these tracking frameworks are collecting data from all
categories and are able to link these data together. For instance, the behavior
of a user playing a particular game is not very critical. But whenever
there is data collected from different contexts, the persona becomes more
transparent. Thus, when the aforementioned behavioral data is linked with
shopping preferences from a shopping app and furthermore, if it is also
connected to the person’s spending attitude or travel preferences from a
travel app, the person becomes less abstract. All this information can draw
a pretty accurate persona. Basically, the only missing part is an identifiable
attribute in order to derive a real person. In fact, many apps ask for the
user’s email address, name or physical address. In that way, they are able to
uniquely identify a person and based on the collected data, they can extract
all the information about the person’s job, salary, friends, preferences and
much more.
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Figure 7.1: Screenshot of the users tracked interests in Google Firebase Analytics

7.3 Network Requests’ Destinations

With different privacy laws in place, it became important to understand
where the data is transferred to. Since most apps use third party libraries for
tracking, analytics or as advertisement providers, the data is not kept at the
device anymore. We found out that most tracking libraries are developed
by companies in the US and therefore, the tracked data is stored there. We
implemented the Network Destination Location plugin in order to understand
and monitor where the data is sent to. As explained in Section 5.4 the
plugin analyzes every outgoing request from the client and tracks the host’s
destination via IP lookup. Thus, we were able to understand how many
requests from each app were sent to particular countries.
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The results of this plugin are shown in Table 7.5. The table illustrates only
the two countries with the most requests. For all the other countries and
for any further details the full table is attached in the Appendix. More
specifically, the table shows the analyzed categories in the first column. The
second and third column states the number of apps that we have analyzed.
We have used the aforementioned Network Location Destination plugin for
collecting the results shown in the other columns. The Table in Figure 7.5
uses two separate columns per platform. The first column of each platform
is for the United States and the second for Austria. Therefore, we used the
short codes of each country for identifying them. Hence, US stands for
United States and AT for Austria. Both countries are shown in this table,
since they were first and second in our results. In total, all apps analyzed,
have sent the most requests to the US and the second most ones to Austria.
Furthermore, we illustrate the total number of apps, which have sent most
of their requests to this particular country in the last row of the table.

For example, in the Business category we have analyzed 10 iOS and 10 An-
droid apps. The next column indicates that 6 out of those 10 iOS apps have
sent the vast majority of their requests to hosts located in the United States.
This is indicated by the short code US in the table header. Furthermore, 2

out of those 10 apps have sent most of their requests to Austrian servers.
The 2 other apps, which are left out of 10, have used one server in Germany
and one in France. However, this is not shown in Table 7.5 because of limited
space, but it is shown in the entire table in the Appendix. Moreover, 7 out of
10 Android apps have also used servers located in the US as their primary
destination for their network requests. One app has used a host that was
located in Austria, as shown in the Android columns.

Discussion The results presented in Table 7.5 clearly show that in total the
most requests end in the United States. Thus, most data is transferred to
the US which might have privacy implications because of different privacy
laws. Furthermore, we have detected that the second most sent requests
are targeting to Austrian servers. We have found out that this is because of
the local app stores. All mobile app stores use local rankings in order to
provide the most interesting apps to their users. Thus, our analysis covered
the top apps from the Austrian stores. Hence, many local apps request
resources from servers inside Austria, such as the public transportation
apps. Furthermore, our hypothesis was verified via the news category on
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# of Apps Major Hosts
iOS Adroid

Category iOS Andr. US AT US AT
Business 10 10 6 2 7 1

Education 10 10 3 1 8 1

Entertainment 10 10 8 - 6 -
Finance 10 10 5 2 3 4

Food & Drink 10 - 6 2 - -
Games 20 20 18 - 20 -
Health & Fitn. 10 10 5 - 8 -
Kids 10 - 8 - - -
Lifestyle 10 10 5 2 5 2

Medical 10 10 4 - 9 -
Music 10 10 5 - 7 1

Navigation 10 - 4 4 - -
News 10 - 1 7 - -
Photo & Video 10 10 8 - 9 -
Productivity 10 10 5 - 7 -
Reference 10 - 10 - - -
Shopping 10 10 7 1 6 1

Social Netw. 10 10 7 - 7 -
Sports 10 10 4 2 2 3

Travel 10 10 3 2 5 3

Utilities 10 10 5 2 5 1

Weather 10 10 4 4 7 2

Communication - 10 - - 6 1

Media & Video - 10 - - 5 1

Transportation - 10 - - 3 4

Total 230 210 131 31 135 25

Table 7.5: Number of Apps that have sent the most requests to Hosts in the mentioned
Countries

78



7.4 Results from the Timeline Plugin

iOS, where 70% of the analyzed apps have transmitted the most data to
servers in Austria.

Interestingly, on Android all apps in the games section have used servers
located in the US as their primary destination, as also almost all games on
iOS. Moreover, 100% of all apps in the reference category have used servers
in the US as their primary source, which is because of the translation apps
in this category. Since the primary translation language is English, the apps
in the reference category are using servers in the US.

Furthermore, in the productivity category on Android we were able to detect
3 apps which have used Chinese servers as their primary destination, which
is not something uncommon. However, one particular app has served a very
specific purpose that should normally not require any Internet connection.
However, the app has sent massive data to servers located in China. Thus,
we have investigated and analyzed the app further by using the Timeline
plugin, which is described in the next Section.

7.4 Results from the Timeline Plugin

Beside the aforementioned plugins, we have also developed another plugin
that visualizes the captured traffic in an intuitive way. The plugin uses
a timeline structure for displaying each request and the corresponding
response from the server. This enables the user to analyze the data flow in
detail. We used this plugin to analyze apps with suspicious behavior, such
as apps sending massive data to foreign hosts or using multiple tracking
libraries. Thus, we developed the Timeline plugin and used it for manually
analyzing these apps.

Basically, the Timeline plugin was the first plugin we have developed. It was
our starting point in order to gain insight in what actually happens in the
network traffic of the apps. By using this plugin we figured out that the hosts’
location might be interesting. Thus, we developed the Network Destination
Location plugin described in Section 5.4 and the results are presented in the
previous Section 7.3. After that, we realized that the majority of the traffic
within some apps is sent to tracking or to advertisement hosts. Therefore,
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we implemented the Tracking Frameworks plugins described in Section 5.1
and 5.2. Furthermore, we were able to detect the so-called unique device
identifiers inside the body of the network requests and implemented the
UDID plugin described in Section 5.3. In fact, the results from the Timeline
plugin were the starting point for the other analysis and results.

7.4.1 Tracked Data

One of our findings based on the Timeline plugin, is that information about
the devices and their users’ is sent to tracking servers. One example for such
a tracking framework is Flurry1. This analytics and advertisement library
collects extensive data about the device. It tracks device information such as
memory usage, cpu usage, battery status and every button that was pressed
by the user inside the app. The results from the timeline plugin for a specific
request to Flurry is shown in Figure 7.2. In the beginning of every request
it sends the user ID that it has assigned to this particular device. Then,
it sends information about which app is tracked and the aforementioned
information about the device and the user. Furthermore, we found out that
it also sends the user’s time zone.

Discussion. We analyzed selected apps individually by using the Timeline
plugin. In the Food & Drink category we have detected one app that uses
the tracking framework Flurry extensively. The framework tracks the device
information, such as the screen height and width, the devices architecture,
the processor, the exact device model, the memory usage before a view is
presented and the memory usage afterwards. Furthermore, our analysis has
shown that it tracks the battery level for every state of the user interface
transition and for the CPU usage as well. In addition, we observed that
this particular app tracks every button that has been clicked by the user.
Hence, every path the a user takes through the app is tracked for unknown
purposes on their servers. The app is intended for presenting cooking
recipes to the user. However, the company which has developed this app,
monitors every clicked recipe and even also the touches inside the recipe.

1http://www.flurry.com
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7.4 Results from the Timeline Plugin

Figure 7.2: Screenshot of the output of the Timeline plugin showing a request sent to Flurry

When analyzing such apps we were also able to detect every information
that the client sends to the backend servers. Thus, in some apps we observed
the transmission of the users’ password in plaintext, which is described in
the next section.

7.4.2 Plaintext Passwords

During our analysis we encountered some apps that send the users’ pass-
word in plaintext. In fact, we were able to find apps that send the plaintext
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password via an unencrypted connection. This enables the attacker to easily
read the users’ credentials by facilitating a Man-in-the-Middle attack. For ex-
ample, a job platform app on Android from a major Austrian career service
sends the users’ credentials in plaintext via HTTP. Basically, the request looks
like http://api.obfuscated.at/login?key=user@test.at&secret=
geheim1234. In order not to facilitate potential attacks we obfuscated the
URL and we decided not to name the app in this thesis. Furthermore, we
have contacted the company and explained them the vulnerability in their
API.

Discussion. We analyzed the aforementioned app and discovered that the
username and the users’ password is unencrypted in plaintext via HTTP.
Considering that most users use the same password for multiple services,
this opens a critical vector for attackers. We were able to extract the email
address and the password just by employing a Man-in-the-Middle attack
on the device under test. In open WiFi networks, such as many coffee
shops offer, it is feasible to excerpt the users’ passwords. Furthermore,
public Internet networks, which are offered on almost every airport in the
world, can enable the same attack scenario. In fact, it is crucial to encrypt the
connection between the client and the server using a standardized procedure
when dealing with users’ credentials.

However, other providers try to obfuscate their data in order to make it
more difficult to decode the data. Our analyzis has shown that obfuscation
is not the same as security. It just increases the steps needed to retrieve
the critical data but does provide any security at all. For this reason, we is
illustrate this with an example in the next section.

7.4.3 Proprietary Format & Obfuscated Data

During our analysis with the Timeline plugin, which is described in Sec-
tion 5.5, we spotted some apps that sent obfuscated data to their servers.
After a detailed analysis, we have discovered that some of them have used
proprietary binary formats for transferring data. Interestingly, an Android
app that installs a service in the background running with administrator
rights, sends most of its data to China. Furthermore, the data is obfuscated

82



7.4 Results from the Timeline Plugin

by using a proprietary binary format. In fact, we do not know what exactly
is sent to the Chinese servers. Moreover, the app is asking for GPS location
permission when it has been installed. One example for such an propri-
etary encoded data that is transferred to Chinese servers is illustrated in
Figure 7.3.

There are also tracking frameworks that use proprietary encoding for trans-
mitting their data. One example is the Crashlytics iOS SDK. We discovered
that this crash tracking service uses a custom encoded and compressed
binary with their proprietary vnd.crashlytics.ios.events type.

Figure 7.3: Screenshot of a proprietary encoded request body sent to Chinese servers.

Discussion. As the time of writing, this app that we mentioned above had
50 to 100 million installs on Android. Consequently, there is an interest in
understanding what such apps really send to their servers.

The aforementioned example requires the following permissions upon
installation: Device & app history, Identity, Contacts, Location, SMS, Phone,
Photos/Media/Files, Storage, Camera, Wifi connection information, Device ID &
call information, Download files without notification, force stop other apps, update
component usage statistics, retrieve running apps, modify secure system settings,
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read Home settings and shortcuts, write Home settings and shortcuts, receive data
from Internet, view network connections, send sticky broadcast, change network
connectivity, connect and disconnect from Wi-Fi, disable your screen lock, full
network access, close other apps, read terms you added to the dictionary, run at
startup, draw over other apps, control vibration, prevent device from sleeping,
modify system settings, add words to user-defined dictionary, install shortcuts and
uninstall shortcuts.

Obviously, the app asks for many permissions on the Android system. Our
main purpose with the Timeline plugin was to give users and researchers
the ability to easily understand what an app does. By using the Location
Destination plugin we were able to discover that the traffic is sent to China.
Then, we used the Timeline plugin to analyze the network requests and
responses in detail. As a consequence, we identified the requests sent to
China and analyzed them. Hence, we were able to uncover the proprietary
encoded data in the requests. This is critical, because the users or researchers
cannot understand without further analysis what the app sends to their
servers.

Next steps are to download the APK of the app, decompile it and to
understand how it encodes the data. However, we will mention this finding
and leave it open for future work, since the purpose of this thesis is the
autonomous detection of potential security risks.

7.4.4 Unprotected Personal Data

Another interesting finding was an app that was connecting to a shared
Dropbox folder and downloaded all resources from there. In fact, the app
has used this hidden remote folder as its backend. Hence, it is possible to
download, upload or even manipulate the assets of the app. Furthermore,
the developer of this app used this Dropbox folder for his private and
personal files. Thus, we were able to download them and gain insight into
his life. For example some personal calendars downloaded from this Dropbox
folder are shown in Figure 7.4

Discussion. We downloaded the files from the folder and discovered some
personal files including calendars containing sensitive information about
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Figure 7.4: Screenshot of an app requesting assets from an unprotected source on Dropbox.

planned vacation in Greece and information about his salary. Hence, we
would have been able to compromise those files and manipulate them to
whatever we want. Security and privacy in the Internet are serious topics that
require extensive knowledge about all stakeholders and the environment in
which a system is used.

7.5 Usage of Certificate Pinning

Basically, by using Certificate Pinning, the client verifies the authenticity of
the server’s public key by pinning a trusted and known certificate. This is
described further in Section 3.2. We have defined apps that used certificate
pinning as out of scope for this thesis, since the main purpose of this
thesis was to automatically analyze the network traffic. Hence, this is not
possible with apps that facilitate certificate pinning. However, we were able
to observe that the same apps from the exactly same company implement
certificate pinning on one platform but not on the other. For instance, the
Facebook Pages app implements certificate pinning on iOS but not on
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Android, whereby the Facebook Messenger app uses certificate pinning on
both platforms.

Discussion. In fact, we did not find this result not in our analysis phase but
while we were capturing the network traffic of all apps. We observed that
some apps were not able to connect to their servers while the connection
through our SSL proxy was established. Basically, these apps used pinned
certificates in order to establish the trust with their servers. Since we have
injected a trusted but self signed certificate the apps have refused to con-
nect. During our collecting phase we only detected a few apps that have
used certificate pinning. However, the aforementioned difference within the
Facebook apps might be because of different release cycles on the iOS and
on the Android platform.
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While this thesis has discovered and demonstrated significant privacy impli-
cations of deployed tracking frameworks and security issues in mobile apps,
the results described in Chapter 7 point to several interesting directions for
future work. This chapter presents some of these directions.

8.1 Apps implementing Certificate Pinning

The web application developed for this thesis, automatically analyzes cap-
tured network dumps, whereby these network dumps must be captured
by using Burp Suite as an SSL proxy between the mobile device and their
servers. Hence, certificate pinning prevents the client from communicating
with their servers because of our deployed SSL proxy. Thus, we defined
apps with certificate pinning as out of scope for this thesis and omitted them
in our capturing phase.

Extending the analysis and its results with captured traffic from apps that
facilitate certificate pinning, is definitely interesting and can outpoint the
results from this master thesis.

8.2 Offline Apps

Mobile apps that solely operate offline are rare but still exist. The same as
described in the previous section applies for apps without any network
traffic. This thesis is based on the analysis of the captured network traffic.
Thus, apps without network transmission have been considered as out of
scope of this thesis.
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8.3 Analyze Methods for other Tracking Libraries

The automated analysis of the tracking and advertisement frameworks
includes an automatic analysis of the network traffic sent to their hosts. This
is implemented in Detailed Analysis of Tracking Libraries plugin described
in Section 5.2. Considering the amount of 64 tracking libraries that our
plugins can detect we have not implemented the analyze method for all the
supported frameworks. Thus, the plugin can be extended for supporting
further tracking frameworks in order to provide an automated decoding of
the content.

For instance, the crash debugging and tracking framework Crashlytics uses
a custom encoded binary for transmitting the tracked data to their servers.
They use a content type named Application/vnd.crashlytics.ios.events. This is
a proprietary format that Crashlytics has defined. Since it was not obvious
how to decode the binary, we have defined this proprietary format as out of
scope for this thesis. However, we consider decoding custom binaries as a
direction as possible future basis for work.

8.4 In-House Tracking

This thesis focused on tracking libraries that were offered as a service or
product from tracking and advertisement providers. During our analysis
we also found tracking requests that were targeted to in-house servers from
particular apps. Big companies, such as Amazon or Uber are implementing
their own tracking mechanisms in order to keep the data in-house. The
tracked data from in-house solutions is definitely worth to be considered.
Hence, we propose this as a direction for future work. This thesis primary
goal was the automated analysis which cannot be applied to in-house
solutions.
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8.5 Increased Sample Size

8.5 Increased Sample Size

Another possible direction for future work is the sample size. We collected
the network traffic from the first 10 or 20 apps from each category on the
Android PlayStore and the iOS AppStore. Thus, we gathered 440 apps in
total, which was our sample size. By increasing the amount of tracked apps
the results can become more representative. Hence, we propose this for
future work. Furthermore, considering the implications of the ranking based
on the user’s AppStore region we also propose to evaluate the results from
different AppStore and PlayStore regions to compare with our results.
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We have argued that most mobile applications track sensitive information
about their users and send them to tracking servers. Moreover, we have
developed a framework and five plugins in order to evaluate and to confirm
our hypothesis. For this reason, we collected the network traffic of 440

apps from the iOS and the Android platform and with the results of the
automated analysis of our plugins we were able to validate our assumptions.
In particular, we were able to prove that most apps on the market facilitate
tracking or advertisement frameworks and furthermore, many of them use
the exactly same unique device identifier for transferring their data. This
enables the providers to connect the data from different apps together and
to create accurate personas. Moreover, the shared identifier enables different
providers to exchange their data, which implies that it is possible to derive
real entities from the data. This has serious impact on the privacy of each
user.

This thesis confirms previous findings and contributes to the understanding
of security and privacy in mobile apps. Our results have shown that tracking
enables advertisers to personalize their advertisements in a way that can
have an impact to our society. When the advertisement providers know
about our personal preferences, details about our job and income, or where
we are living, just by tracking behavioral data from the mobile apps we use
every day. Moreover, the results we were able to obtain from the automated
analysis of the network dumps and the manual inspection with the Timeline
plugin have shown a lack of security awareness from the developers side
and a missing privacy awareness from the users side.

Most people are not aware of the amount of data that is being tracked
by the apps we are using every day. Especially our findings in the Games
category regarding the number of tracking frameworks and the usage of
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unique device identifiers, were immensely significant. Every single app in
this category contained at least one tracking framework. Moreover, most
mobile applications have used more than one tracking library. In fact, our
results in the Games category show that more than 85% of the apps in this
category were using the exactly same unique device identifier within their
traffic. Hence, like aforementioned, they are able to connect the collected
data and define persons.

George Orwell said in his book ”If you want to keep a secret, you must also hide
it from yourself.” [45]. Our analysis has shown that nowadays it is not about
the data we actively expose to others, it is more the data that is tracked from
our behavior that matters. In 2014, Flurry one of the market leaders in mobile
app tracking, has been acquired by Yahoo for 200 Million US Dollars, which
shows how important and worthy tracking data companies have become.
Companies and tracking providers have already realized that behavioral
data is valuable. On the other hand, we as users, should also realize that,
most of the time when we are using a free service from a company, we are
actually the products and not the service. For that reason, data really do
matter.
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[15] S. Schrittwieser, P. Frühwirt, P. Kieseberg, M. Leithner, M. Mulazzani,
M. Huber, and E. Weippl, “Guess who’s texting you? evaluating the
security of smartphone messaging applications,” Proceedings of the 19th
annual symposium on network and distributed system security, p. 9, 2012.

[16] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and S. Wang, “AppIntent :
Analyzing Sensitive Data Transmission in Android for Privacy Leakage
Detection,” CCS ’13 Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pp. 1043–1054, 2013.

[17] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones,” Osdi ’10, vol. 49, pp. 1–6, 2010.

[18] Juniper Networks, “SSL Proxy Overview,” 2012.

[19] E. De La Hoz, G. Cochrane, J. M. Moreira-Lemus, R. Paez-Reyes,
I. Marsa-Maestre, and B. Alarcos, “Detecting and defeating advanced
man-in-the-middle attacks against TLS,” International Conference on
Cyber Conflict, CYCON, pp. 209–221, 2014.

[20] R. Shirey, “Internet Security Glossary,” Rfc 2828, pp. 1–212, 2000.

[21] R. Oppliger, R. Hauser, and D. Basin, “SSL/TLS session-aware user
authentication - Or how to effectively thwart the man-in-the-middle,”
Computer Communications, vol. 29, no. 12, pp. 2238–2246, 2006.

[22] FPF Application Privacy, “Device Identifiers,” 2012.

94



Bibliography

[23] Apple, “UIDevice Class Reference: Identifier For Vendor.”

[24] AVG, “Apple iOS 7 puts an end to unique device IDs,” 2013.

[25] Apple, “ASIdentifierManager Class Reference: Advertising Identifier,”
2016.

[26] G. Sterling, “Google Replacing ”Android ID” with ”Advertising ID”
similar to Apple’s IDFA,” 2013.

[27] Google Services, “Settings Secure: Android Identifier,” 2016.

[28] Google, “Platform Versions,” 2016.

[29] Pew Research, “Android apps now ask for over 200 kinds of permis-
sions,” 2015.

[30] S. J. Tipton, D. J. White Ii, C. Sershon, and Y. B. Choi, “iOS Security
and Privacy: Authentication Methods, Permissions, and Potential Pit-
falls with Touch ID,” International Journal of Computer and Information
Technology, vol. 03, no. 03, pp. 2279–764, 2014.

[31] S. Ranger, “iOS versus Android. Apple App Store versus Google Play:
Here comes the next battle in the app wars — ZDNet,” 2015.

[32] N. Ingraham, “Apple’s App Store has passed 100 billion app down-
loads,” 2015.

[33] N. Seriot, “iPhone privacy,” Black Hat DC, p. 30, 2010.

[34] D. Kaplan, “Google using custom malware scanner for Android apps,”
SC Magazine, 2012.

[35] Industrial Safety and Security Source, “Chemical Safety Incidents
Google Play Malicious Apps Up 400%,” 2014.
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Category iOS Android iOS Android

Business 10 10 16 19 5 50% - - - - - - 4 40% 2 20% 2 20% 2 20%
Education 10 10 39 9 7 70% 2 20% - - - - 4 40% - - - - - -
Entertainment 10 10 28 20 7 70% - - - - - - 6 60% - - - - - -
Finance 10 10 11 14 6 60% - - - - - - 4 40% - - - - - -
Food	&	Drink 10 - 18 - 5 50% - - - - - - - - - - - - -
Games 20 20 98 45 17 85% 3 15% 2 10% 2 10% 18 90% 2 10% 2 10%
Heatlh	&	Fitness 10 10 20 20 6 60% 2 20% 2 20% 2 20% 7 70% - - - - - -
Kids 10 - 21 - 8 80% 3 30% 2 20% - - - - - - -
Lifestyle 10 10 29 14 5 50% - - - - - - 6 60% - - - - - -
Medical 10 10 19 20 3 30% - - - - - - 4 40% - - - - - -
Music 10 10 35 17 7 70% - - - - - - 5 50% - - - - - -
Navigation 10 - 28 - 4 40% - - - - - - - - - - - - -
News 10 - 14 - 5 50% - - - - - - - - - - - - -
Photo	&	Video 10 10 52 11 7 70% - - - - - - 6 60% - - - - - -
Productivity 10 10 20 13 5 50% 3 30% 2 20% 5 50% - - - - - -
Reference 10 - 24 5 50% - - - - - - - - - - - - -
Shopping 10 10 30 24 8 80% - - - - - - 8 80% - - - - - -
Social	Networking 10 10 19 25 8 80% - - - - - - 9 90% - - - - - -
Sports 10 10 24 8 5 50% - - - - - - 2 20% - - - - - -
Travel 10 10 39 19 4 40% - - - - - - 5 50% - - - - - -
Utilities 10 10 24 4 5 50% - - - - - - 5 50% - - - - - -
Weather 10 10 22 5 6 60% 2 20% 2 20% 3 30% - - - - - -
Communication - 10 - 13 - - - - - - - - 4 40% - - - - - -
Media	&	Video - 10 - 15 - - - - - - - - 2 20% - - - - - -
Transportation - 10 - 1 - - - - - - - - 1 10% - - - - - -

230 210 59% 23% 18% 15% 50% 15% 15% 20%

#	of	Apps

iOS Android

Unique	Identifiers	
found Same	ID	used	by	#	of	apps	(out	of	#	of	Apps)

Results



Category iOS Android US AT NL DE IE FR PL CZ CN DK HR CA GB US AT NL DE IE CZ HR CN SE CA BG GB

Business 10 10 6 2 1 1 7 1 1 1

Education 10 10 3 1 1 4 1 8 1 1

Entertainment 10 10 8 1 1 6 3 1

Finance 10 10 5 2 1 2 3 4 1 1 1

Food	&	Drink 10 - 6 2 1 1

Games 20 20 18 1 1 20

Heatlh	&	Fitness 10 10 5 4 1 8 2

Kids 10 - 8 1 1

Lifestyle 10 10 5 2 1 1 1 5 2 2 1

Medical 10 10 4 1 5 9 1

Music 10 10 5 4 1 7 1 1 1

Navigation 10 - 4 4 1 1

News 10 - 1 7 1 1

Photo	&	Video 10 10 8 1 1 9 1

Productivity 10 10 5 1 3 1 7 3

Reference 10 - 10

Shopping 10 10 7 1 1 1 6 1 1 1 1

Social	Networking 10 10 7 1 2 7 1 2

Sports 10 10 4 2 1 1 1 1 2 3 1 1 2 1

Travel 10 10 3 2 4 1 5 3 2

Utilities 10 10 5 2 1 1 1 5 1 4

Weather 10 10 4 4 1 1 7 2 1

Communication - 10 6 1 1 1 1

Media	&	Video - 10 5 1 1 1 2

Transportation - 10 3 4 3

230 210 131 31 17 24 15 3 1 1 1 1 1 1 3 135 25 10 14 14 2 1 5 1 1 1 1

#	of	Apps

#	of	Apps	which	send	the	majority	of	their	Network	Requests	to	Hosts	in	this	Country

iOS Android


