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Abstract
The typical options and guarantees which are usually embedded in life
insurance contracts are all intrinsically tied to them. Generally speaking, it
is thus not possible to evaluate them on their own but one has to consider
the difference resulting from a model incorporating them and one which
does not.

The aim of this thesis is to fill gaps between theory and practice by collecting
and presenting important aspects of life insurance modeling as well as
practical aspects which often do not enter academic works in a most tangible
way.

The thesis begins with background information on actuarial practice and
an illustration of the present value of future cash flows. It continues with
the commonly used simply-stochastic framework before introducing two
certainty equivalence models which are contained within the framework
and wide spread in practice. Finally a poly-stochastic framework with multi-
dimensional time-inhomogeneous continuous affine processes is considered.
Models of this framework can allow for dependencies between policy holder
behavior and the interest rate while still being rather tractable.
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1. Introduction
Life insurance policies are financial contracts which stipulate payments be-
tween the policy holder1 and the insurer. Characteristically these payments
are subject to the state of the insured and they are settled at various dates.
The evaluation of initially fixed premiums and benefits is thus already a
complex matter because the biometric uncertainty necessitates an expected
value concept and the time lags require a present value principle, both
of which need to be modeled and calibrated. Insurance policies, however,
consist of more than just fixed premiums and benefits. The insurer has costs,
is reinsured, and in excess of the appointed benefits, the insurer usually
grants the insured certain options and guarantees.

1.1. Objects of Study Source: [DA13]

Embedded options are thereby certified rights of the policyholder to re-
quest certain unilateral contract amendments. Embedded guarantees, on
the contrary, are bilateral agreements which fix matters for both sides. Thus,
options rather make fixed quantities float while guarantees rather fix float-
ing ones. Because of the lopsidedness, the value of an option is always
non-negative for a rational policy holder whereas the value of a guarantee
is not necessarily capped at zero.

Prominent examples are a guaranteed life table, a guaranteed interest rate,
a guarantee to participate in the insurers profits, the option to surrender at
a guaranteed repurchase value, or the possibility to waive future premiums
at the cost of ex ante specified benefit reductions.

Even though these rights are de jure part of the contract and the notion of
each of these rights indeed alters the value of the contracts, their effects
have not been quantified for a long time because they can affect all future
contractual payment amounts as well as the valuation basis. Hence, they
influence every single aspect of the expected present value calculation and
add thus a lot of complexity to the models. In the recent decades, however,
not only the urge for accuracy but also the available computational tools
as well as the field of actuarial modeling itself have evolved so that the
determination has now become obligatory.

1For simplicity we assume that the policy holder is also the insured and the beneficiary.
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1. Introduction

Solvency II, the International Financial Reporting Standards 4 Phase II and
the Market Consistent Embedded Value are prominent examples of risk
based regimes which use a market consistent approach to derive capital
requirements and business ratios. Within all of them, best estimate frame-
works cannot stop at basic reserves but have to consider built-in options
and guarantees just as well. The details, however, are far from being carved
in stone. Solvency II, for example, provides standard procedures but encour-
ages insurers to develop internal models to optimize the accuracy. While
the market value of the assets can be obtained fairly easily using standard
methods (mark-to-market or mark-to-model) the evaluation of the liabilities
turns out to be a more delicate task. In the absence of a liquid market, a
mark-to-market approach lacks any basis. On the other hand the presence of
multifarious embedded options and guarantees makes insurance contracts
complex financial derivatives. Thus mark-to-model procedures have to be
elaborate tailor-made solutions.

Figure 1.1.: Solvency II Balance Sheet where options and guarantees are part of the Best
Estimate. Taken from [MO14].
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1. Introduction

1.2. Background on Actuarial Practice [Nor02, p. 10ff]

Embedded options and guarantees cannot be considered on their own for
they are intrinsically tied to actuarial and accounting practices. Hence, we
provide a brief introduction into those practices and we illustrate the evalua-
tion of initially fixed payments before addressing options and guarantees.

1.2.1. Equivalence Principle
Before the first policy is written, the insurance company has to specify most
contract terms as a tariff. This includes the risks insured, the respective
biometric states, a set of biometric probabilities, admissible payment patterns
as well as a discount factor and some cost factors. The factors are known
as valuation basis of first order. They are deliberately estimated (i.e. with
safety loadings) and then locked (guaranteed).

When a policy is finally written, either the benefit payments or the premium
payments are set accordingly to an admissible payment pattern. Subse-
quently, the other side is calculated by making use of its payment pattern
and the equivalence principle which demands that under the valuation
basis of first order the expected present value of all benefits has to equal the
expected present value of the respective premium components.

1.2.2. Costs
Cost structures vary quite a lot between different companies. For the given
purpose,however, it is sufficient to differ expected costs, calculated costs
and cost premiums of which the latter two are used for tariffing:

• The expected costs are the ones which the insurer actually expects to pay.
• Because the insurer typically gives a guarantee not to raise the cost

premium during the term of the contract even though inflation is
uncertain; because many costs are hard to itemize on a contract-level;
and because not all premiums are paid due to death, surrender or
waiver of premiums; the insurer has to add safety loadings. The result
is called calculated costs.
• To not make the insured pay a different sum each month and to be

able to let the insured have a limited premium payment period, the
calculated costs and the cost premiums can differ as long as they satisfy
the equivalence principle and follow an admissible payment pattern.

3



1. Introduction

1.2.3. Reserves
Until the first payment, the equivalence principle thus ensures that the
contract has a value of zero under the given valuation basis (probabilities,
discount, calculated cost factors) meaning that the expected present value
(EPV) of all future cash inflows is the negative of the EPV of all future cash
outflows.

As time goes by, this equivalence usually breaks so that one side now owes
the other. The first reason for this is that the expected premiums and the
expected benefits are not exactly lined up in time which means that one of
them is losing volume faster than the other. Endowment benefits are e.g.
financed during the whole premium payment period but they are not paid
out until the contract matures. Premium payments are often constant over
time while mortality is increasing and costs need to be covered even if the
premium payment period has already ended.

Therefore the prospective statutory book value reserve is introduced as the
difference in the expected present values of future cash inflows and future
cash outflows under the valuation basis of first order.

The question who owes whom and to what extent can also be answered in a
retrospective way by taking a look at past and present payments the way
bank accounts are treated. Under the valuation basis of first order the pro-
and retrospective reserves give the same results due to the equivalence
principle which was used to determine the premiums.

1.2.4. Valuation Basis
The importance of the valuation basis of first order stems from its legal
character because the profit participation, surrender values and multiple
other conversion rights are deducted from it.

However, the guaranteed discount factors and the estimated probabilities
contain biases - volitionally due to the principle of precaution and inadver-
tently due to errors of estimation. Furthermore certain payment amounts
are only steady over time as long as no embedded option or guarantee is
exercised. From a best estimate (Solvency II) or fair value (IFRS) perspective,
the contracts are thus evaluated under valuation bases of second order. This

4



1. Introduction

certainly involves best estimate rates without safety loadings, the prevailing
interest rate from the market, and extended state spaces in order to model
policy holder behavior such as surrender or waiver of premiums but it also
involves stressed bases for variation analysis.

Because each of these changes might alter the expected present value,
the resulting best estimate reserves usually differ from the statutory book
value reserves. Furthermore, the prospective reserve no longer equals the
retrospective reserve because now the retrospective reserve corresponds to
the amount which the insured has actually contributed while the prospective
reserve indicates the expected amount needed to settle the contract.

Especially for the prospective reserves, the choice of the right valuation
basis is still troubling the industry which is why the whole section (3.2) is
devoted to that question.

1.2.5. Profit Participations Sources: [Nor02, p. 14 ff.], [DA13, p. 51].

For the future development of the biometrics and the financial markets
are unknown while the valuation basis of first order is guaranteed, the
competent supervisory authorities have obliged insurers to use a set of
conservative assumptions involving disadvantageous transition rates as well
as a low guaranteed interest rate as a valuation basis of first order. As e.g.
enacted by the Austrian Financial Market Authority (FMA), this interest
rate must not exceed a certain maximum interest rate ordinance, which is a
historically averaged value of Austrian bond prices with a haircut of 40%
[FMA03].

These acts of caution are expected to result in high profits for the insurer.
According to the Verordnung BGBl. II Nr. 292/2015 every Austrian insurer
thus has to return at least 85% of its profits as a bonus after legal reserves
were set aside. However, the bonuses do not have to be paid out immediately.
Instead, the major part is often set aside to establish provisions which are
allocated to the insured’s profit accounts two years later. There, they are
accumulated alongside the reserves until the contracts end. Hence, every
potential (referring to the biometrics) benefit payment in our models is going
to trigger a random (referring to the amount) potential profit participation
payment.

5



1. Introduction

1.2.6. Instants vs. Periods
Actuaries, just like accountants, work with periods instead of instants and
they assume that endowment benefits and premiums happen right after
an evaluation date while all other benefits happen right before it. This
distinction is important because the reserves represent only the expected
present value of future payments. This definition causes several minor
complications and confusions to addressees who are not familiar with the
actuarial notation.

Examples: In the actuarial representation the first premium, which is paid in
advance, and a death benefit within the first year, which is payed in arrears,
share the same index because they belong to the same period even though
they occur a whole year apart from each other. On the other hand a death
benefit and an endowment benefit which occur within an infinitesimal short
period do not share the same index because the endowment benefit is seen
as an in-advance payment of the following period. Thus a death benefit with
index i needs to be discounted i+1 times while an endowment benefit with
index i only needs to be discounted i times. Furthermore the last reserve
of a mixed life insurance policy, right before the contract ends, does not
contain any death benefits but only endowment benefits even though both
are assumed to be paid within an infinitesimally short time interval.

For a portfolio manager who is often interested in the development of the
liabilities this is not at all self-explanatory and the answer to the question
How much are we going to need in k years? should clearly in- or exclude
liabilities which will be due in k years.

Because of this and because index shifts are error prone we chose to consider
instants instead of periods. In a first step this results in incomplete reserves,
which we call volumes, where all current payments are excluded. By adding
the respective current payments the volumes become reserves. This means
we have substituted the concept of payments in advance and payments in
arrears by an in/exclusion concept.

6



1. Introduction

1.3. Illustration of a policy’s Best Estimate

Let us now start by considering a simplified mixed life insurance contract.

Component 1: Contract Functions and their Payment Matrix
Within a discrete-time setup each policy can be stripped into single potential
(referring to the biometric probability) payments. If the potential payment
amounts are deterministic (referring to the amounts, not the biometrics)
they can very well be depicted in an indexed way as a two-dimensional
payment matrix. We therefore let the first dimension denote time and the
second dimension shall denote the index of a predefined exhaustive list of
payment purposes. These payment vectors over time are often called contract
functions (CoFs). Most of them are subject to the form of contract and are
thus known from the beginning. The columns for the profit participation in
case of (i.c.o.) death, endowment, or surrender, however, do often depend
upon the insurers future prosperity and hence they need to be modeled first.
Neglecting costs and reinsurance, the list of CoFs for a mixed life insurance
contract might thus, initially, look like this:

RPr ... risk premium, SPr ... savings premium,

DB ... death benefit, DP ... prof. part. i.c.o. death,
EB ... endowment benefit, EP ... prof. part. i.c.o. endowment,
SB ... surrender benefit, SP ... prof. part. i.c.o. surrender.

t RPr SPr DB EB SB DP EP SP
0 -17,66 -1.042,34 - - - 0,00 10,00 0,00

1 -18,20 -1.041,80 20.000,00 - 1.020,86 ? ? ?
2 -21,79 -1.038,21 20.000,00 - 2.072,83 ? ? ?
3 -25,09 -1.034,91 20.000,00 - 3.154,44 ? ? ?
...

...
...

...
...

...
...

...
...

13 -78,50 - 981,49 20.000,00 - 15.930,78 ? ? ?
14 -80,56 - 979,43 20.000,00 - 17.439,61 ? ? ?
15 - - 20.000,00 20.000,00 19.000,00 ? ? ?

Table 1.1.: Deterministic CoFs of the second tariff from the results of chapter 3.
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1. Introduction

Component 2: Biometrics & Cash Flows

In life insurance, all payments are subject to biometric state transitions of
the insured. This is almost always directly accounted for in the models.
This means that the states and the transitions are modeled explicitly. The
component thus needs a set of states, called the biometric state space, and a
set of associated transition probabilities2.

!0 �0 %0

!... �... %...

!n �n %n

Figure 1.2.: States & transitions.

Figure 1.2 shows a standard state
space and its possible transitions for
the instants zero to n. The structure
is very simple because no state can
be reentered and all transitions share
the same state of departure. This
might not be desirable if e.g. inva-
lidity needs to be incorporated but it
is the standard state space for mixed
life insurance contracts in practice.

Henceforth, the contract functions need to be allocated to the transitions.
Relating to the mixed life insurance with CoFs from above and the states
active!, dead �, and surrendered%, we have the special situation where
all transitions share the same state of departure so that we can identify each
transition with its destination. Thus the allocation should look like this

{!, � ,%} =̂ { {RPr, SPre, EB, EP}, {DB, DP}, {SB, SP} }.

Subsequently the respective payments of each state at each time are weighted
by the probabilities by which the states are reached to become (expected)
cash flows.

Remark: If the state space is too small (like in the Statutory Book Value
Model introduced in section 3.1 which does not consider surrender) the
respective payments can simply not be incorporated in this way.

2Surviving one year is also seen as a transition, namely from alive at t to alive at t+1.

8



1. Introduction

Component 3: Interest, Discount & Present Values
For the value of money changes over time, payments which happen at
different times cannot be compared or aggregated without scaling them first.
This is called discounting if future values are considered, and compounding
if past payments are under consideration. The weighted results are called
present values.

For the time being, we make due with a deterministic interest rate curve
which we take as given. If the interest rate is always positive, the cumulative
discount factors become smaller the further the payment occurs in the future.
For a typical mixed life insurance policy where the expected premiums
happen earlier than the respective expected benefits, this means that the
sum of all nominal benefit amounts can exceed those of the premiums while
their expected present values are the same.

1.3.1. Expected Present Value
Assuming independence between the components, the valuation of each
payment can now be described as the determination of a cuboid’s volume.
To see this, denote the expected amount which is paid if a certain biometric
event occurs at a certain time in the first dimension. Now let the second
dimension refer to the expected likelihood of the respective biometric
triggering event and use the third dimension to describe the expected
present value of a payment of one Euro payed at the respective future
instant (discount factor). The expected present value of each payment can
thus be seen as a cuboid’s volume and the value of a contract as the sum of
all payment volumes. This is illustrated in figure (1.3).

1.3.2. Problem Statement
The main task now lies in the determination of the probability- and dis-
count factors (the rates) as well as the determination of the bonus amounts
stemming from accumulated profit participations. Furthermore one is often
interested in confidence intervals and dependencies between the compo-
nents.

The value of future options and guarantees is finally obtained as the differ-
ence between the result of a model incorporating them less the result of a
model which does not.

9



1. Introduction

Figure 1.3.: Volumes of a simplified mixed life insurance policy on an annual grid. For
simplicity the discount and the probabilities are shown time-invariant and
without a scale. 10



1. Introduction

1.4. Ambitions & Motivation
Models are always simplifications of the real world. Their assumptions are
intended to filter out all the inaccessible, irrelevant, or unprocessible pieces
of information in order to create an idealized world in which the necessary
conclusions can be drawn most reliably. In addition a model should always
be as transparent as possible so that everyone working with it or its results
can be aware of its limits. This is of utmost importance because models
are often needed the most during or right after structural breaks which,
unfortunately, is exactly when time is a scarce good and model assumptions
are likely to be violated.

Once the assumptions are made, the objects and their relations within the
idealized world are fully specified. The algorithms that are applicable within
this world are thus not part of the model. They are seen as algorithmically
defined implications drawn from the model. As long as the algorithms are
correct, the results do hardly/not depend on the algorithms whereas they
do depend on the assumptions. The distinction is therefore crucial to differ
modeling risk from implementation risk.

We thus formulated three ambitions of which the first two ambitions com-
prehensibility and practicability are deemed to be indispensable hygiene
factors while sufficiency is considered the target.

1.4.1. Comprehensibility
There is quite a set of addressees (members of the board, financial market su-
pervision, actuaries, accountants, risk managers, investors, policy holders,...)
who might all be interested in the results. Due to their different backgrounds,
however, they are used to different models and representations. The reserves
we found were determined by using

• a time-discrete or a time-continuous model,
• working in a pro- or retrospective way,
• within a full or arbitrarily simplified state space,
• which processed probabilities or intensities
• for which different calibration procedures were used.
• Some in/excluded costs, profit participations, taxes or reinsurance,
• some incorporated/neglected policyholder behavior, etc.

11



1. Introduction

Building a bridge of understanding between them by presenting a modular,
easy to understand framework thus became the first ambition. For this we
split up the reserve models into the three components (payments, biometrics,
and discount - as already illustrated in section 1.3) and show how each
component can be modeled within the same Markovian framework as a

1. deterministic,
2. certainty-equivalence,

3. simply-stochastic,
4. or poly-stochastic

model component. The first three cases are treated in discrete- and the latter
is treated in continuous-time.

Simply-stochastic components neglect input uncertainties. The only devia-
tion from their expected values are due to idiosyncratic risks3. A tangible
example for this class of models is the model of a fair dice where the prob-
abilities are known but the result is stochastic unless the dice is thrown
infinitely many times in which case the model deteriorates to its certainty
equivalence core where all sides appear simultaneously with a weight of
1/6. Even though this is a deterministic result, this is not the result of a
deterministic component which would result in a single value. Referring to
the dice model this could be any side of the dice. In terms of complexity,
the certainty equivalence case is thus in between the deterministic and the
simply stochastic approach. Within poly-stochastic components some input
parameters are already random variables themselves.

1.4.2. Practicability

Bearing in mind that many insurance companies have millions of contracts,
the second ambition concerned the practicability. Working on a single-
contract-level, analytic expressions would be of great help but - as will be
discussed in subsection (3.2.1) - analytic expressions for the profit participa-
tion are nowhere in sight. Thus, a sophisticated simulation sounds like a
nice solution but that is not feasible on a contract level. Therefore either the
number of contracts, the number of paths, or both need to be reduced.

3Assuming that the parameters are 100% correct and that one runs a given number
of simulations, the only risk that is left is whether the received set of realizations is
representative. This risk is also known as stochastic or binomial risk.

12



1. Introduction

The number of contracts is usually reduced by data clustering algorithms4.
They result in model points which are a set of (artificial) sample contracts
that should represent the portfolio as well as possible. Unfortunately, it is
very hard to tell whether the resulting fit is suitable for all aspects under
concern without another model. Hence, model points are deemed to be a
makeshift solution and will not be discussed here.

The alternative is to reduce the number of paths. This can be done in a
gentle way by using variance reduction methods like the antithetic variates
method, but it can also be done in a radical way by only considering the
certainty equivalence path.

• The first option works like a catalyst, speeding up the simulation with
very little side effects5. Nevertheless, thousands of paths for several
different base scenarios for millions of contracts where each path can
be up to ninety years long stays a mammoth task even without nested
simulations which become more and more popular6.

• Considering the certainty equivalence core means two things. Firstly,
that one uses deterministic model parameters and therefore neglects
the uncertainty of the model’s parameters as well as their dependen-
cies and secondly, that one assumes to have an infinitely big portfolio.
If some components are furthermore modeled as deterministic compo-
nents, then even the respective time values are no longer determinable.

Due to its simplicity the second approach has been the standard for decades
now and it will thus be the starting point of this thesis.

4See e.g. the book of Frees, Derrig, and Meyers [Fre+14]
5See e.g. the book of Albrecher, Runggaldier, and Schachermayer [HRS00].
6See e.g. the working paper of Bauer, Bergmann, and Reuss [BBR10].
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1. Introduction

1.4.3. Sufficiency

Figure 1.4.: Structure of the EIOPA Standard Formula for life insurance from [EIO14].

The third ambition was to provide a framework that can be used for all the
risk based regimes mentioned in section (1.1). This means that the concept
must be capable of evaluating life insurance policies taking into account

• market risk,
• policy holder behaviour,

• biometric risk,
• and risk of inflation

in order to provide the necessary tool to treat embedded derivatives like

• a guaranteed interest rate,
• a surrender option,
• a guaranteed life table,

• a right to participate in profits,
• a waiver of premium feature,
• or a guaranteed cost premium

separately as well as (partially) conjointly.

14



2. Simply-Stochastic Framework
In this chapter we are interested in a class of models where the stochastic
present value of all future cash flows is of the following form

iV[t] := ∑
u∈T
u>t

∑
j,k∈S

stochastic
discount︷ ︸︸ ︷
v[t, u] 1{Xu−1= j

Xu = k

∣∣∣∣Xt=i
}

︸ ︷︷ ︸
biometric
indicator

stochastic
payment︷ ︸︸ ︷
ajk[u] (2.1)

where T = {0, . . . , n} denotes the remaining term of the contract, t ∈ T
the observation date, i, j, k∈S biometric states, and each of the three inde-
pendent model components is driven by one or more1 simply-stochastic2

processes.

For the discount and the biometrics we are going to restrict all processes to
Markov chains because the general setup does not provide enough structure
for practical use. For the payment amounts, however, a distinction of cases
is required. While most of them (e.g. fixed premiums and benefits) are
deterministic anyway and some (e.g. costs under stochastic inflation) can
conveniently be modeled by Markov chains, others (e.g. the profit partic-
ipations) are accumulated over time which makes them path dependent.
As soon as the discount is no longer deterministic, these payment amounts
thus need to be derived through a Monte Carlo simulation which is not
within the scope of this thesis.

For it is not obvious from the formula (2.1), we want to emphasize that
within a pure Markovian setting all three model components can be modeled
in the same way as a one-dimensional random walk over a discretized plane.
The following section on Markov chains is thus relevant for all three model
components.

1Each model component might consist of several independent components itself. Death,
surrender, and waiver could for example form three separate biometric components but
they could also be modeled as a single component.

2This means that each path is stochastic (unless the reachable part of the state space is
a one-element set) but the transition probabilities are still deterministic.
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2. Simply-Stochastic Framework

2.1. Markov Chains Source: [SDS09 ].

Definition 2.1 (Stochastic Process)

Let (Ω,F , P) denote a Kolmogorov probability space consisting of a sample
space Ω, a σ-algebra F and a probability measure P. Let furthermore S denote
a non-void finite state space with n elements, T=[s, . . . , u] an interval on N0,
and let {Xt}t∈T be a collection of S-valued random variables. Then {Xt}t∈T
is called a time-discrete stochastic process with finite state space S.

Figure 2.1.: Potential paths of a time-discrete stochastic process with finite state space.

Graphic (2.1) illustrates the potential set of paths such a process might be
able to use to get to state k∈S at time u∈T given that it started in state i∈S
at time s∈T. The main problem here is to quantify the probability by which
this happens. Usually one assumes to know the transition probabilities
between two time-adjacent states because they are the easiest quantities to
estimate. In this general setting, however, each of those transition probabili-
ties might be path-dependent meaning that this information might not exist
as a scalar value. This is because the probability is simply different if the
path history is not the same. We thus restrict ourselves to Markov chains
where the history is irrelevant.

16



2. Simply-Stochastic Framework

Definition 2.2 (Markov Chain)

A time-discrete stochastic process {Xt}t∈T mapping from Ω to S is called
a Markov chain if for all n∈N, t0 < t2 < · · · < tn ∈ T, and i0, . . . , in ∈ S
with

P[Xt0 = i0, . . . , Xtn−1 = in−1] > 0

it holds that

P[Xtn = in|Xt0 = i0, . . . , Xtn−1 = in−1] = P[Xtn = in|Xtn−1 = in−1]. (2.2)

Definition 2.3 (Conditional Transition Probabilities)

For a Markov chain {Xt}t∈T, two instants s≤ t ∈ T, and two states i, j ∈ S
of which the first must not be impossible to reach i.e. P[Xs = i] > 0 the
conditional transition probability from state i to state j within the time interval
(s, t] is denoted by

pij[s, t] := P[Xt = j|Xs = i]. (2.3)

For P[Xs = i] = 0 we define pij[s, s] := pij[s, s + 1] := δij where δij denotes
the Kronecker delta.

Definition 2.4 (Family of Transition Matrices)

For a Markov chain {Xt}t∈T with finite state space S the set of all conditional
transition probabilities between two instants s≤ t∈T can be written in matrix
form as

P[s, t] = {pij[s, t]}i,j∈S (2.4)

forming the family of transition matrices.
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2. Simply-Stochastic Framework

Lemma 2.1 (Chapman-Kolmogorov)

Let {Xt}t∈T denote a Markov chain and {P[s, t]}s≤t∈T its family of transition
matrices. Then for all s ≤ t ≤ u ∈ T and for all i, j, k ∈ S for which
P[Xs= i]>0, the Chapman-Kolmogorov equation states

P[s, u] = P[s, t]P[t, u],

pik[s, u] = ∑
j∈S

pij[s, t]pjk[t, u].
(2.5)

Proof 2.1

Let S∗= {j∈S | P[Xt= j|Xs= i] > 0} denote the states which can be reached
at time t if starting from state i at time s. Using the law of total probability,
we can write

pik[s, u] = P[Xu = k|Xs = i]

= ∑
j∈S∗

P[Xu = k, |Xs = i, Xt = j]P[Xt = j|Xs = i]

= ∑
j∈S

pij[s, t]pjk[t, u].

(2.6)

Remark: The Chapman-Kolmogorv equation shows how to construct path
probabilities from time-step probabilities in a recursive way.

Lemma 2.2 (Summary on Transition Matrices)

The transition matrices of a Markov chain satisfy the following conditions for
all s< t<u∈T

• pij[s, t] ≥ 0 ∀i, j∈S,

• ∑
j∈S

pij[s, t] = 1 ∀i∈S,

• P[s, s] is the identity matrix,

• P[s, u] = P[s, t]P[t, u].

Proof 2.2

The first three conditions follow from the definition of the conditional probabil-
ities while the last one is equation 2.5.
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2. Simply-Stochastic Framework

Lemma 2.3 (Markov Chains & Transitions Matrices)

A stochastic process {Xt}t∈T is a Markov chain if and only if ∀n ∈ N ,
states i0, . . . , in ∈ S and instants t0 < · · · < tn ∈ T the transition matrices
{P[s, t]}s≤t∈T satisfy

P[Xt0 = i0, . . . , Xtn = in] = P[Xt0 = i0]
n

∏
k=1

pik−1ik [tk−1, tk]. (2.7)

Proof 2.3

The implication of the Markov property follows from the definition of the con-
ditional probabilities because the possibility to separate the probability of a path
into the product of single step probabilities shows the Markovian no-memory
property. The second implication is a repeated application of the Chapman-
Kolmogorov equation.

In order to be able to use this powerful concept for the biometric devel-
opment as well as for the development of the interest rate, inflation, and
other independent influences simultaneously, the following lemma is a very
important result.

Lemma 2.4 (Product of Independent Markov Chains)

Let {Xt}t∈T and {Yt}t∈T denote two independent Markov chains.
Then {(Xt, Yt)}t∈T is a Markov chain with state space S=SX×SY and tran-
sition matrix

P[s, t] =
{

p(i,j)(k,l)[s, t]
}
(i,j)(k,l)∈S

=
{

pX
ik[s, t]pY

jl [s, t]
}
(i,j)(k,l)∈S

, s ≤ t∈T.
(2.8)

Proof 2.4

The proof follows directly from the independence of the probabilities:

P
[
Xtn = in, Ytn = jn

∣∣Xtn−1 , . . . , Xt0 , Ytn−1 , . . . , Yt0

]
=P [Xtn = in|. . .]P [Ytn = jn|. . .]

=P
[
Xtn = in

∣∣Xtn−1 , Ytn−1

]
P
[
Ytn = jn

∣∣Xtn−1 , Ytn−1

]
=P

[
Xtn = in, Ytn = jn

∣∣Xtn−1 , Ytn−1

] (2.9)
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2. Simply-Stochastic Framework

2.2. Markovian Components

In this section we are interested in the independent Markovian components
from formula (2.1), their common structure, and how they interact.

2.2.1. Component 1: Payments

Definition 2.5 (Markovian Contract Functions - CoFs)

Let u ∈ T = {0, . . . , n} denote an instant during the remaining term of the
contract under consideration and let B denote a finite set of payment pur-
poses3. For each payment purpose b ∈ B let SZb denote the finite state space
of a Markov chain (Zb

u)u∈T driving the potential (according to the biometrics)
random (according to Zb

u) payment amount ab[u, Zb
u]. Then for each b∈B(

ab[u, Zb
u]
)

u∈T

is called a Markovian contract function.

Remark: Assuming that the state space SZb contains only a single state, the
surface collapses and becomes a path. As a consequence the stochastics
vanish and the payments become deterministic.

Remark: For there are many ways the connection between the values of Zb

and the Markovian CoF can be modeled, we cannot list them all but we
want to illustrate a driving random walk nether the less: The Markov chain
could e.g. be used to simply distort a given deterministic course by adding
noise. In this case each state is a value around the neutral element which
is added or multiplied onto the value from the deterministic course. The
disretized plane on which the random walk is performed could then be
formed by the possible distortion factors over time.

Remark: Within a stochastic setting, the terms ’payoffs’ and ’contingent
claims’ are very common as well. In all cases, the inherent uncertainty
exclusively refers to the amount that is payed but not to the biometric
probability by which it is payed.

3E.g. premium components, benefits, costs, etc.
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2. Simply-Stochastic Framework

2.2.2. Component 2: Biometrics

Definition 2.6 (Grouped CoFs)

Let SX denote the finite state space of the biometric Markov chain X and
j, k∈SX two states thereof. Then for each transition ξ =(j 7→k) the sum of all
CoFs belonging to ξ i.e.(

ajk[u, Zu]
)

u∈T := ∑
b∼=ξ

(
ab[u, Zb

u]
)

u∈T

where Zu denotes the vector (Zb
u)b∈B, is called a grouped CoF .

Remark: The aggregation of the CoFs by the biometric transitions does
mainly serve a less loaded notation because in practice the reduction in
computational effort does not justify the loss in granularity.

Definition 2.7 (Stochastic Cash Flows)

Let (Xu)u∈T denote the Markov chain modeling the biometric state of the in-
sured and let i, j, k ∈ SX denote three of its biometric states. Let furthermore
0≤ tX, tZ≤u−1<u∈T denote some points in time. Then

iajk [tX, tZ, u] := E
[
1{Xu−1=j, Xu=k} ajk[u, Zu]

∣∣∣XtX= i, ZtZ

]
(2.10)

denotes the random payments that are due if the insured switches from state
j to state k during (u−1, u] given that she is in state i at time tX and the
economic situation at time tZ is known.

Remark: Here the discretized plane on which the biometric random walk is
performed is formed by the grouped CoFs.

Remark: There are two common choices for tX. For tX=0 the stochastic
cash flow is called unconditional cash flow while for tX=u−1 the cash flow
is called conditional cash flow. The conditional perspective is commonly
used when single contracts are considered because a single contract cannot
die fractionally. Portfolios, however, are rather displayed unconditionally
because this perspective accounts for the dilution of the portfolio due to
surrender and death. An exception to this is the Statutory Book Value model
which also displays portfolios conditionally.
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2. Simply-Stochastic Framework

2.2.3. Component 3: Interest / Discount

Definition 2.8 (Markovian Interest Rates)

Let {Yt}t∈T denote a Markov chain with state space SY and let {ri[t]}i∈SY , t∈T
denote a deterministic two-dimensional function. Then we model the stochastic
short rate rt as a random walk on this surface i.e.

rt := rYt [t] = ∑
j∈SY

rj[t]1Yt=j. (2.11)

Definition 2.9 (Stochastic Discount)

Let P(t, u) denote the price at time t of a risk-free bond paying one unit at time
u. Then the stochastic discount is defined as

v[tY, t, u] := E [P(t, u)|YtY ] = E

[
t

∏
u=s+1

1
1 + ru

∣∣∣∣∣YtY

]
, ∀t ≤ u∈T.

(2.12)

Remark: The discount is closely related to the survival probability. Both are
usually driven indirectly because the discount is driven by the short rate
while the survival probability is usually driven by the mortality. The main
difference is the link function which is one over (1 + r) for the discount
but (1− q) for the survival. In both cases the multi-annual values are the
product of the single-annual values.

Definition 2.10 (Stochastic Present Value)

With the notation introduced above, the random present value of all cash flows
between t+1 and n shall now be defined as

iV [tX, tY, tZ, t] = ∑
u∈T
u>t

∑
j,k∈SX

v[tY, t, u] iajk[tX, tZ, u]. (2.13)
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2. Simply-Stochastic Framework

2.2.4. Expected Values

Definition 2.11 (Prospective Contract Volume)

The prospective contract volume is defined as the expected present value of all
future cash flows

iV [tX, tY, tZ, t] := E [ iV [tX, tY, tZ, t]] . (2.14)

In order to have a less loaded notation we drop tX, tY, tZ from now on.

Lemma 2.5 (Prospective Contract Volume)

Assuming independence between our three components and using the Chapman-
Kolmogorov equation from lemma (2.1) as well as the product property from
lemma (2.4), it holds that the prospective contract volume is

iV[t] =∑
u∈T
t<u

E [v[t, u]]

(
∑

j,k∈S
pij[t, u−1] pjk[u−1, u]E

[
ajk[u, Zu]

])
.

(2.15)

Definition 2.12 (Prospective Reserve)

The prospective reserve is finally obtained by adding the respective current
current cash flows

iRes[t] = iV [t] + ∑
i,j∈S

1incl. aij[t]. (2.16)

Lemma 2.6 (Thiele’s Difference Equation for the Prospective Contract Volume)

Using the Chapman-Kolmogorov equation from lemma (2.1) to split up the
discount and the probabilities into their annual factors, the prospective contract
volume can be developed recursively:

iV[t] = E [v[t, t + 1]] ∑
j∈S

pij[t, t + 1]
(

jV[s, t + 1] + E
[
aij[t + 1, Zt+1]

])
(2.17)

Eq. (2.17) is often called the fundament of modern life insurance mathematics.
Having it at hand, the evolution of the reserve is calculated very efficiently.
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3. Certainty Equivalence Models
In this chapter we introduce two simple models which are contained within
the simply stochastic framework. Both have deterministic payment- and
discounting components as well as certainty-equivalence biometrics. The
first model is the Statutory Book Value (BV) model, according to which
the contract’s legal parameters are defined. Subsequently several aspects of
market consistent actuarial valuation are discussed before presenting and
extending the Market Value (MV) model of Haas and Ladreiter in section
(3.3) which is still a very simple valuation model.

3.1. The Statutory Book Value Model
Sources: [Bow+86; Sch06]. The statutory Book Value model (BV) is a very
old and simple model with a highly efficient algorithm which does not
work with cash flows, but calculates the expected present values directly
via a commutation table. The model has been introduced when computing
power was more or less equal to mental power and so the algebra had to
be designed in a very resource friendly way - especially for calculating
the reserve for the whole portfolio of policies. Unfortunately the resulting
formulary is so rigid that even a change within a single benefit vector can
yield to changes within the formulary. Therefore we only define the model
and exemplify the algorithm on the basis of two simple contracts.

The Model

!t

�t+1

qt+1

!t+1

�t+2

qt+2

!t+2

p t+2

p t+
1

Figure 3.1.: States & transitions.

Only the biometric state space is not degener-
ated and consists of the set {alive!, dead �}.
The transitions are fully specified by a mortal-
ity table (q̄x)x=0,...,ω which provides the annual
conditional mortality probabilities up to an ul-
timate age of ω ≈ 130. The discounting is done
using a constant guaranteed interest rate r. Fu-
ture profit participations are not modeled so
that all payments under consideration are de-
terministic.
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3. Certainty Equivalence Models

Algorithm Part I: Commutation Tables
Using this information, the first step is to calculate so called commutation
tables for each combination of guaranteed interest rate and mortality table
within the portfolio. Because it is unusual to use this model with instants
instead of periods, the resulting deviations are highlighted in red.

qx := q̄x−1, q0 = 0 first order mortality table

v :=
1

1 + r̄
annual discount factor

l0 := 100.000 population of newborns

lx := (1− qx−1+1)lx−1 expected x∈ [1, ω]year olds

Dx := lx vx discounted number of people alive

Nx := Dx + Dx+1 + . . . + Dω reverse cumulative sum of Dx

dx := qx lx−1, d0 = 0 expected deaths within (x−1, x]

Cx := dx vx+1−1 discounted number of deaths

Mx := Cx+1 + Cx+1+1 + . . . + Cω+1 reverse cumulative sum of Cx+1

Rx := Mx + Mx+1 + . . . + Mω reverse cumulative sum of Mx

Algorithm Part II: Expected Present Values
In a second step the expected present value functions of each tariff are
expressed in terms of the commutation tables and the age x of the insured.

We therefore consider two widely used mixed life insurance tariffs. Both
tariffs shall pay an endowment benefit of 1 if the insured survives until
the contract ends after n≤ω−x∈N years. If the insured dies during the
term of contract the first tariff shall pay a benefit of 1 at the end of the same
year while the death benefit of the second tariff shall be a stepwise function
with k ≤ n steps of equal height which occur within the first k years of the
contract.
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3. Certainty Equivalence Models

In order to determine the net premium, the expected present value (EPV) of
all future benefits needs to be divided by the premium annuity which is the
EPV of a premium of 1. Assuming a premium payment period of m years
this results in the following formulary for the first tariff.

Ex+t:n−t =
Dx+n

Dx+t
EPV of the endowment benefit

Ax+t:n−t =
Mx+t −Mx+n

Dx+t
EPV of the death benefits

AEx+t:n−t = Ax+t:n−t + Ex+t:n−t EPV of all benefits

äx+t:m−t =
Nx+t − Nx+m

Dx+t
premium annuity

P =
AEx:n

äx:m
premium amount

(3.1)

For the second Tariff the definition of Ax+t:n−t has to be changed to

Ax+t:n−t =

Rx+t−Rx+max{t,k}
k + min{t,k}

k Mx −Mx+n

Dx
. (3.2)

Subsequently the statutory book value net reserve is calculated as the
present values of future liabilities less future premiums

Rest = AEx+t:n−t − äx+t:m−t P. (3.3)

Remark: The resulting development of the reserve is thus conditioned on
the survival of the insured which will not be the case in all other models.

Costs & Profits
Once the cost factors are set, the costs are treated analogically. The profit
account is not modeled into the future.
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3. Certainty Equivalence Models

3.2. Market Consistent Actuarial Valuation

According to Wüthrich, Bühlmann, and Furrer, market-consistent actuarial
valuation is the answer to the question of how actuarial methods need to be
changed in order to give values for insurance policies as if a market existed
for them1. Baur gives a consistent, yet more technical, definition. According
to her, a market consistent approach rests upon the fundamental theorems
of asset pricing and risk-neutral valuation2.

This definition thus starts off with a complete and arbitrage-free market. In
such a market, each tradeable item (and every item that can be constructed
from tradeable items by an admissible trading strategy) has a unique price
and there is no free lunch with vanishing risk. The two fundamental the-
orems of asset pricing say, that such a market exists if and only if there
exists a unique equivalent martingale measure Q under which the expected
present value of every actively traded item equals its current market price.
The existence of Q is furthermore linked to the non-existence of arbitrage
and the uniqueness of Q to the uniqueness of the market prices3.

Unfortunately, when pricing insurance contracts, the assumption of a com-
plete market is not valid initially. This is because insurance policies them-
selves are not traded and some of their risk factors - like the biometric
behavior - are not hedgeable as long as one cannot trade in them4.

Therefore, there have been attempts to introduce derivatives with various
biometric underlyings into the financial market. These securitizations have
worked well for CAT mortality bonds while longevity bonds did not sell
well due to their long term character and the resulting unpredictability5.
Hence, there can still be no replicating trading strategy which determines
the price of a typical life insurance policy uniquely.

There is, however, the possibility to turn things around by explicitly declar-
ing one of the equivalent martingale measures the market consistent one.

1See e.g. [WBF08].
2See e.g. [Bau09].
3See e.g. [MB00], [Bjö09] or [Bau09].
4See e.g. [LNP16].
5See e.g. [CBD08].
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3. Certainty Equivalence Models

Selection criteria therefore might be derived from best estimate assumptions,
assumptions leading to risk-minimizing trading strategies, or other suitable
utility concepts.

We emphasize that one is not free to choose at this point for it is the market
that has to choose. In the absence of a real market, one is, however, free to
argue what such a market might look like and the aforementioned concepts
are possible implications of such considerations. A certain quantum of
arbitrariness is thus in the nature of things and as a consequence, every
choice requires a solid and persuasive reasoning6.

3.2.1. Component 1: Payments
For deterministic payment amounts there is no need to model them for the
only uncertainties concern the other two model components. Contingent
claims, however, depend upon a specified stochastic event and are thus
derivatives. If the random sources behind them are driving tradeable assets,
we can thus use the theory of financial derivatives7 in order to price the
claims in terms of these assets. Otherwise the market is not complete and
situational solutions are required.

Example: The profit participation presents a very common yet very complex
contingent claim. This is because, firstly, it depends upon the insurers
profits which themselves depend upon the financial market, the biometrics,
cost development, etc. Secondly, this guarantee is strongly asymmetric
because losses are not shared. Thirdly, these profits are then subject to local
accounting standards and management rules which distort them. Fourthly,
these profits are subsequently accumulated and compounded until the
contract ends. This interferes with the future profits of the insurer and once
again depends upon the mortality and the policy holder behavior. Finally,
these cash flows must then be discounted and aggregated to arrive at the
desired expected present value. Especially because of the local accounting
rules and the management decisions, a closed form expression is nowhere
in sight and a sophisticated simulation seems to be indispensable.

6See e.g. [Bau09].
7See e.g. [Bjö09].
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3. Certainty Equivalence Models

3.2.2. Component 2: Biometrics
Since there is no way to buy mortality, a mark-to-market approach lacks
any basis. For longevity bonds are not (yet) publicly traded, there is also
no way to price mortality in terms of other assets. The common market
consistent approach is thus to exchange the initial mortality table by a
historically-estimated mortality table plus a risk margin for this is what a
rational counterparty would presumably do as well.

Concerning policy holder behavior like surrender or forms of partial re-
demption like the waiver of premiums option, Milbrodt writes in [MS97]

According to Cantelli’s theorem, in a multiple decrement model,
the cause of decrement ”withdrawal” (cancellation) may be ne-
glected without affecting premiums and reserves, if the with-
drawal benefit equals the reserve.

For the withdrawal benefits are usually even lower than the reserve and
because the BV model belongs to a system where precaution trumps best
estimates, this is the main reason why the BV model can make due with the
two biometric states active and dead. This, however, is not market consistent
because the statement does only hold true in combination with the valuation
basis of first order which, itself, is not market consistent. Once again there
is no market where one can buy surrender. There are, however, two well
known mark-to-model approaches which give significantly different results.

• Real-World Policyholder: The assumption is that the policyholder’s
behavior can be historically estimated. The biometric state space is
thus extended, the transition probabilities are historically estimated
and a risk-margin is added.

• Rational Policyholder: The assumption is that the policyholders trigger
the option whenever it is best for them. This results in an optimal
stopping problem.

While the second approach seems to be superior, many practitioners prefer
the first option because policy holders have proven to not trigger the option
then - but when they need the money which is not within the scope of the
model. Furthermore it requires nested simulations to determine the optimal
stopping time which increases the complexity of the model significantly.
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3. Certainty Equivalence Models

3.2.3. Component 3: Interest & Discount

The statutory book value model uses the valuation basis of first order and
thus a constant, guaranteed interest rate for all compounding purposes. The
discount in this model is thus completely blind for changes at the financial
markets. This is clearly not market consistent.

Another common mistake is to extrapolate the history and add a risk margin
arguing that one cannot invest in a risk-free interest rate. This is plain wrong
for there are enough traded items one can use to price in terms of them. But
because the source of risk-free interest is indeed not that tangible in practice,
we want to provide a short comment. There are many ways interest rates
can be derived and quoted. While different quotations are convertible into
each other (see appendix A), different derivations (e.g. from interest rate
swaps, bond prices, etc.) usually lead to different results. This ambiguity is
commonly solved by an arbitrage argument, saying that the derived interest
rates are composed of a risky and a risk-free component whereby only the
risk-free component is the same for all the rates. If the derived bond-rate
is thus different from the derived swap-rate then this is because the two
assets have different risk margins. In Econometrics these risk margins are
called the market price of risk while in mathematics one is talking about
the Girsanov kernel between the real world measure and the risk-neutral
measure.

Remark: Within a deterministic setting, the discount is a deterministic
function of two points in time and the respective compounding factor
for the same interval is simply a different quotation. Within a stochastic
setting, however, the two concepts diverge because their relation is not linear.
Denoting a stochastic zero-coupon-bond price by P(s, t) then by Jensen’s
inequality we know that

1 = E

[
P(s, t)
P(s, t)

]
6= E [P(s, t)]E

[
1

P(s, t)

]
> 1.

It is thus important to state whether the expected return or the expected
discount is modeled and in which quotation. The first case leads to classic
interest rate theory (see e.g. [MB00]) while the latter case leads to the theory
of deflators (introduced by Duffie in [Duf96], see also [WBF08]) which, in
economic theory, is also known as the theory of state price densities.
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3. Certainty Equivalence Models

3.3. The Market Value Model Source: [HL12].

The MV-model proposed by Haas and Ladreiter is a true generalization8

of the BV-model for the purpose of simple risk management. It uses de-
terministic best estimate input data which is a valuation basis of second
order. By varying the valuation basis, this model can already be used to do a
simple case study. However, in order to comply with the Solvency II single-
factor-insurance stress test which is part of the core module of the stress
test framework 2014 (see [IA14, ch 1.8]), a possibility to determine the time
values of all asymmetric components (like the future profit participation)
needs to be supplemented.
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Figure 3.2.: States & transitions.

With regard to the BV model, the constant
guaranteed interest rate is replaced by the
prevailing forward rate, the actually observed
mortalities are used instead of the loaded
ones, and the model’s state space is extended
to include surrender, which affects the results
significantly. In addition the profit account is
projected into the future which provides the
basis for a prospective profit reserve which
is defined in analogy to the benefit reserves
as the expected present value of future profit
payments to the insured.

Because the premiums and all benefits are subject to the form of contract,
which is specified accordingly to the BV-model they are considered to
be fixed input values here. For the valuation basis has changed but the
premiums have not, the equivalence principle does not hold under the
MV-model any longer.

Due to the non-constancy of the new interest rate, the set of (mortality × in-
terest) combinations refines to a level where the creation of the commuation-
tables can not be justified any longer. On the plus side a vector based input
regime can now be chosen for benefits, making the same formulary appli-
cable to a whole range of tariffs. A progressive death benefit can thus be
handled without alterations. It is simply a parametric change.

8Given the right input, it reproduces the results from the BV-model.
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3. Certainty Equivalence Models

Input
The model needs the following input data

• premium and benefit amounts {{π!t , b!t }, {b�t }, {b%t }}t∈[0,...,n],

• a second order life table [q∗t ]t∈{0,...,100},

• a surrender table [s∗t ]t∈{0,...,60},

• and the prevailing forward rate [F∗t ]t∈{0,...,60}.

The indexations of the original rates are connected as shown in figure 3.3.

Figure 3.3.: Timelines of the input rates.

Determination of the Rates
Because the contract details are already defined by the statutory book value
model and the reserves are defined as the present value of future cash flows,
the contract’s past is irrelevant for the MV model. Thus the input vectors are
firstly trimmed to the remaining term of contract which is shown as the last
interval in figure (3.3). Because society is seen as the basic population for
the mortality table estimation while the surrender probabilities are usually
deducted from the insurers own portfolio of contracts, the input-mortalities
are then diluted by the surrender probabilities. Thus the following vectors
are calculated for the remaining term of contract n0=n−t0 for t∈{0, ..., n0}
and t∗= t0+t:

st := 1{t 6=0}s
∗
t∗−1 qt := 1{t 6=0}q

∗
x+t∗−1(1−st) pt :=1−qt−st (3.4)

p0:t−1 := 1{t−1>0}
t−1

∏
k=0

pk Ft := 1{t 6=0}F
∗
t−1 vt :=

t

∏
k=0

1
1 + Fk

(3.5)
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Expected Present Values (EPVs)
The expected present values are finally calculated as

At:n0−t :=
n0

∑
u=t+1

vu p0:u−1 qu b�[u],

St:n0−t :=
n0

∑
u=t+1

vu p0:u−1 su b%[u],

Et:n0−t :=
n0

∑
u=t

vu p0:u−1 pu b![u],

ät:n0−t P :=
n0

∑
u=t

vu p0:u−1 pu π![u],

(3.6)

Res[t] = At:n0−t + Et:n0−t + St:n0−t − P ät:n0−t .

Remark: By writing out the formulas from the BV-model it becomes clear
that they yield the same results if the same input is used.

Costs & Profits
Costs are treated analogically meaning that an inflow vector (cost premium)
and an outflow vector (costs) need to be provided which are then treated
like premiums and benefits.

In order to determine the necessary reserves for future profit participation
to the insured, the profit account (PA) from the statutory book value model
is projected into the future as respective payment amounts. We assume that
the insurer shares 85% of the excess returns on the mathematical reserve,
the full compounding on the PA and an additional interest-independent
contribution which motivates the following equation

PAt+1 :=

excess return on profit base︷ ︸︸ ︷
(max{0, 85%(Ft − r)})PBt+1 + (1 + Ft) PAt︸ ︷︷ ︸

compounded profit account

+

additional contribution︷︸︸︷
ACt , (3.7)

where r denotes the guaranteed interest rate and PB denotes the profit-base
which typically is something like the book value reserve from the previous
year. It is important to notice that the profit account defines additional
payment amounts which - in analogy - need to be probability weighted,
discounted and aggregated in order to result in a prospective reserve.
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3.4. Extending the MV-Methodology

The MV model allows for several implications not mentioned in [HL12].

3.4.1. Expected Cash Flows

Cash flow representations are the standard in financial mathematics. In
insurance mathematics, however, they were given scant attention until the
last decade. In the BV-model from section (3.1), for example, the cash flows
are well hidden deep within the formulary. They are not even interim
results.

The basic idea is to separate the determination of the EPVs into a CF
determination and a CF valuation step where the determination shall contain
the insurance mathematics, while the valuation should make do with finance
mathematics. The knowledge about the tariffs is thus encapsulated, while
the freedom to model the financial valuation remains. To achieve this,
we slightly generalize the notation from the previous section towards the
notation used in chapter (2) so that we can write the formulas (3.6) in a
single formula.

Let thus S := {!,%, �} denote the biometric state space and T := {0, . . . , n}
the remaining term of the contract. Furthermore, for j∈S and u∈T

a
!j[u] := 1{j=!}

(
b![u]− π![u]

)
+ 1{j=%}b

%[u] + 1{j=�}b
�[u]

shall denote the payments corresponding to the transition (! 7→ j) and

p
!j[u− 1, u] := 1{j=!}pu + 1{j=%}su + 1{j=�}qu

shall denote the respective transition probabilities in an indexed form. The
volume, i.e. the reserve less current payments, can then be written as

V[t] :=Res[t]− b![t] + π![t]

= ∑
u∈T
u>t

v[t, u] ∑
j∈S

p
!!

[t, u−1]p
!j[u−1, u]a

!j[u].
(3.8)
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Splitting up the discount and the endowment probabilities into their annual
effects we get

V[t]=∑
u∈T
u>t

∑
j∈S

discount and survival until the transition︷ ︸︸ ︷(
u−1

∏
k=t+1

v[k−1, k]p
!!

[k−1, k]

)
v[u−1, u] p

!j[u−1, u]︸ ︷︷ ︸
conditional transition

amount︷ ︸︸ ︷
a
!j[u] ,

(3.9)
where the mortality- and interest-effects until the transition are separated
from the ones of the transition itself. For u= t+1 the product is empty and
defined as 1 whereas for t=n the sum is empty and defined as 0.

For the discount is deterministic in the MV model, it is independent from
the biometrics. Hence, their annual effects can be separated so that we can
write

V[t]=∑
u∈T
u>t

∑
j∈S

(
u

∏
k=t+1

v[k−1, k]

) uCF︷ ︸︸ ︷(
u−1

∏
k=t+1

p
!!

[k−1, k]

)
p
!j[u−1, u] a

!j[u]︸ ︷︷ ︸
cCF

,

(3.10)
where the conditional- and the unconditional cash flows as well as the
separation of cash-flow-determination and cash-flow-valuation (present
value calculation) are visible.

3.4.2. Thiele’s Recursion [Nor02, p. 52]

Regarding equation (3.8), it is easy to see that the discount factor between t
and t+1 is applied to every summand and can thus be factored out of the
summation. Except for the death- and the surrender benefit at time t + 1,
the same thing holds true for the first endowment probability. We can thus
write

V[t]=v[t, t+1]

(
∑
j∈S

p
!j[t, t+1] aij[t+1] + p

!!
[t, t+1]V[t+1]

)
(3.11)

which is Thiele’s famous difference equation. Because V[t] is defined as
the reserve at time t without current payments, V[n] is zero. This adds a
terminal condition.

Using Thiele’s backward recursion, the whole development of the reserve
can be computed very efficiently.
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3.4.3. Balancesheet Interpolation No Sources.
So far we calculated values for the main renewal dates of a contract. In order
to arrive at balance sheet values we have to interpolate either the results or
the input. Given that Solvency II requires results derived from shocked rates
we abandon the common practice of interpolating the results and develop
our own interpolation scheme fot the rates instead.

Figure 3.4.: Interpolation scheme with main renewal dates T and balance sheet dates B.

We assume to be given a set of annual conditional probabilities (p, q, s)
with p+q+s = 1. For any λ∈ (0, 1] we are now looking for a set of (0, λ]-
and (λ, 1]-annual conditional probabilities (pλ, qλ, sλ, p1−λ, q1−λ, s1−λ) such
that the process with the added times B1, ..., Bn is a Markov process whose
transition probabilities between T0, ..., Tn coincide with those of the original
process. This motivates the following restrictions

[R1] pλ p1−λ = p,
[R2] qλ + pλq1−λ = q,
[R3] sλ + pλs1−λ = s,

[R4.1] pλ + qλ + sλ = 1,
[R4.2] p1−λ + q1−λ + s1−λ = 1.

(3.12)

Missing at least one restriction we chose a geometric interpolation for p

[R0] pλ = pλ (3.13)

which is a quite natural choice and transforms the set of restrictions [R1]
to [R4] into a system of linear equations. Solving equations [R0] to [R3] we
get

p1−λ = p1−λ q1−λ =
q− qλ

pλ
s1−λ =

s− sλ

pλ
. (3.14)
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Inserting the results in [R4.2] we see that it depends linearly on [R4.1]

p1−λ + q1−λ + s1−λ = 1

p1−λ +
q− qλ

pλ
+

s− sλ

pλ
= 1

pλ + qλ + sλ = p + q + s = 1

(3.15)

From an algebraic perspective we are thus missing a sixth equation, while
semantically we have not specified how the annual mortality- (or surrender-)
probability is distributed on the two intervals. The last restriction thus has to
guarantee that the mass is evenly distributed and that neither the mortality
nor the surrender can become negative on one interval. By choosing

[R5]
qλ

1− pλ
=

q1−λ

1− p1−λ
(3.16)

the ratio of the mortality over the overall dilution is fixed which guarantees
the desired properties. The full system of linear equations now reads

pλ qλ sλ p1−λ q1−λ s1−λ

[R0] 1 = pλ

[R1] 1 = p1−λ

[R2] 1 pλ = q

[R3] 1 pλ = s

[R4] 1 1 1 = 1

[R5] 1−p1−λ 1−pλ = 0

and results in the quite nice solution

pλ = pλ, p1−λ = p1−λ,

qλ =
1− pλ

1− p
q, q1−λ =

1− p1−λ

1− p
q,

sλ = 1− pλ − qλ, s1−λ = 1− p1−λ − q1−λ.

(3.17)
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3.4.4. Waiver of Premiums Model Extension No Sources.

The waiver of premium option entitles the policy holder to terminate the
premium payments prematurely at the cost of reduced future benefits. More
precisely, if a policy holder decides to trigger the option, the contract is
converted into a single-premium contract which is financed by the current
first order reserve less potential conversion costs.

Assumptions:

• The new contract shall again be subject to the original first order valu-
ation basis.

• The probabilities (q![t])t∈T by which the policy holders trigger the
option shall be independent of all previously defined components,
they shall be known and there shall be no way to resume the premium
payments.

• Concerning the reduction pattern, we assume that all future benefits
are reduced by a single factor R[t] if the option is triggered at time t.

We are now interested in measuring the impact of this option on the cash
flows and the reserves of an extended MV model. However, as the contract
does not terminate upon a waiver of premium, the option adds new branches
to the state-tree at every node from which it can be exercised. This is
illustrated in figure (3.5). The number of states which have to be considered
thus becomes quadratic in time, instead of linear. This is bad news for
insurance contracts have long coverage periods and the actuarial analysis is
more and more heading towards monthly data instead of annual data.

However, considering a waiver of premium as a partial surrender, it is not
clear why the problem should be much harder and indeed it is not. This
is shown by deriving an algorithm which solves the problem within linear
time.

To the authors knowledge the following approach is new.
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3. Certainty Equivalence Models

We start by analyzing the first new branch from figure (3.5) which results
from the possibility to waive all premiums after the next main renewal
date. According to our assumptions the contract is converted by taking the
current BV reserve to finance a new single premium contract with the same
payment pattern and the same valuation basis of first order but a lower sum
insured.

Convention: The artificial premium is considered to be payed at the end of
the previous period9.

Reduction Factor
To determine the factor by which the benefits need to be reduced, we take a
look at the original BV reserve ResBV

t+1 which is the expected present value
of all future cash flows within the scope of the BV model before the option
is triggered. Because the premiums are negative, the expected present value
of the original benefits needs to be scaled down by a reduction factor Rt+1
in order to make the following formula work. If there are conversion costs
CCt+1 the new benefits are reduced even further.

ResBV
t+1 : = EPVBV

t+1[benefits, premiums, expenses]

= Rt+1 EPVBV
t+1[benefits, expenses] + CCt+1 =: Res!t+1 + CCt+1

(3.18)

Because the EPV is a linear functional, the reduction factor can be dragged
inside the EPV where it can be interpreted as a benefit reduction factor. This
argument does still hold true if different reduction factors shall be used
for different payment purposes because the EPV can be separated before
dragging the factors inside10.

9There are two reasons for this. Firstly, there is no actual cash flow at t+1 and so we
do not want to model one and secondly, the new BV reserve at t+1 would otherwise be
zero due to the definition of the reserve.

10Different reduction factors for payments which occur at different times, however, are
not within the scope of this approach.
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The reduction factors for waiving at u∈ [1, n] is thus

Ru :=
ResBV

u − CCu

EPVBV
u [benefits, expenses]

. (3.19)

Remark: The reduction factor can be interpreted as the percentage of the
future part of the contract that has already been bought less conversion
costs.

The Quadratic Algorithm
Because of the assumed independence of the MV-biometrics we can either
extend the biometric MV Markov chain directly or we can leave the biometric
state space unchanged and define an additional Markov chain with state
space S! := {!,!} and transition probabilities (q![t])t∈T instead and deem
their product to be the extended biometric Markov chain.

Additionally to the already defined allocated contract functions a
!j[u] we

define the allocated contract functions without premium payments by

ã
!j[u] := 1{j=!}b

![u] + 1{j=%}b
%[u] + 1{j=�}b

�[u]

. The extended MV volume can now be written as (compare with eq. 3.8)

V[t] := ∑
u∈T
u>t

∑
j∈S

v[t, u]p
!!

[t, u−1]p
!j[u−1, u]p![t, u−1]a

!j[u] +

∑
u∈T
u>t

∑
j∈S

u−t

∑
k=1

v[t, u]p
!!

[t, u−1]p
!j[u−1, u]p![t, t+k−1]q![t+k]Rt+k ã

!j[u]

(3.20)

which is simply the sum of all discounted, probability-weighted allocated
contract functions from the nodes in figure (3.5). Unfortunately this naive
straight-forward algorithm is quadratic which makes it useless in practice.

Pitfall
For the following flaw has been suggested several times by different parties
in practice, we explicitly want to expose a fallacy here. Trying to solve
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the runtime problems by considering a linear combination of the different
reduced reserves weighted by the probabilities by which the insureds trigger
the option at the respective points in time fails for

V[u] 6=
(

p![t, u−1] +
u−t

∑
k=1

p![t, t+k−1]q![t+k]Rt+k

)
VMV

u (3.21)

This is because ã
!j[u] 6= a

!j[u] and because each reserve contains payments
from different points in time. While the first problem could be solved by a
distinction of cases, the latter turns out to be trouble because the probability
of not having triggered the option p![t, u−1] is always time dependent. So
applying a single factor to a reserve cannot work.

Linear Algorithm
Taking a closer look at the new terms in equation (3.20), we see that the idea
of a linear combination does actually work if it is applied to the cash flows
instead of the reserves and if premiums are distinguished from benefits and
costs. While premiums are only subject to the soujourn probabilities, the
benefits and the costs are subject to the following weights w[t, t] = 1 and

w[t, u] := p![t, u] +
u−t−1

∑
k=0

p![t, t+k]q![t+k]Rt+k for u > t

which appear to be a cumulative sum. Hence, all we need is a recursion for
w[t] which is given by

w[t, t] = 1
w[t, u] = w[t, u−1]− p![t, u−1]q![u−1](1− Ru−1).

(3.22)

The volume V[t] can now be written as

∑
u∈T
u>t

∑
j∈S

v[t, u]p
!!

[t, u−1]
(

p
!!

[u−1, u]p![t, u]π![u]+p
!j[u−1, u]w[t, u]ã

!j[u]
)

.

(3.23)

42



4. Poly-Stochastic Framework
Sources: [Kol10, p. 10ff], [Jon93], [Buc11, p. 1ff] and [Nor02, p. 68ff].

In the previous chapter on certainty equivalent models we assumed to be
dealing with an infinite set of identical contracts by which the biometric
Markov chain degenerated. For the other components were even modeled
in a deterministic way, we exclusively dealt with expected values and there
was nothing to say about higher moments or dependencies.

The real world, however, is neither entirely predictable nor entirely indepen-
dent and so we are very interested in possible deviations and dependencies
of and between the components.

While some parts of this problem could already be tackled within the more
general simply-stochastic framework from chapter (2)

• e.g. by omitting the ’infinite set of contracts’ assumption one would
gain the opportunity to measure the biometric idiosyncratic risks
• or by modeling the interest rate as a Markov chain one could quantify

the financial idiosyncratic risk;

the dependencies between the components as well as the input uncertainties
would always remain unexplained in this framework. This is bad news
because unlike the biometric idiosyncratic risk which is an unsystematic
risk (meaning it is hedged away by the large portfolio an insurer usually
has), input uncertainties like a possible bias in the mortality probabilities
pose a systematic risk to which particular attention should be devoted to.

We are therefore interested in a new class of models where all input rates
can be driven by stochastic processes. Besides the possibility to model
confidence bands and time values, this approach also grants the appealing
possibility to model dependencies between the rates.
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4.1. Framework Draft

S0[0] S...[0] S|J|[0]

S0[0+] S...[0+] S|J|[0+]

S0[...] S...[...] S|J|[...]

Figure 4.1.: States and transitions of
a continuous, decrement
Markov chain.

We let the state of the insured be modeled
by a continuous-time, decrement Markov
chain

Z = (Z[t])t∈[t0,n], Z[0] = S0[0]

which is still operating on a finite state
space J but which shall now be driven by
stochastic intensities instead of determin-
istic probabilities. We therefore consider
the short rate r(t) and the g non-zero tran-
sition intensities

µi,j(t) : i, j ∈ J, t ∈ [t0, n]

on a continuous state space as an affine transformation

Y(t) = c(t) + Γ(t)X(t)

of a d-dimensional continuous affine processes X with admissible functions
c : R+ → Rg and Γ : R+ → Rg×d. This means that the distribution of Z is
specified by the transition rates, conditional on X.

Due to the continuity we also redefine the payments by the process B =
(B(t))t∈[t0,n] which accumulates all payments up to time t. The payments at
time t are assumed to be of the following form

dB(t)=∑
i∈J

1Z(t)=i bi(t) dt + ∑
i 6=j∈J

bij(t) dNij(t) ∈ R

for deterministic payment intensity functions bi for the cases of sojourn,
deterministic lump sum payment functions bij for each possible transition,
and the process Nij(t) which is counting the transitions of Z from state i to
j such that

Nij(t)−
t∫

0

1Z(s−)=i µij(s) ds

is a martingale, conditional on X. We thus assume that premiums and an-
nuities are payed continuously while the benefits are payed as lump sums
immediately upon the triggering event.
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4.2. Filtrations and a new Dimension

For the transition intensities can now be driven by stochastic processes,
we are working with an evaluation input as depicted in figure 4.2. A nice
feature of this approach is that arbitrary affine processes can be chosen for
every intensity rate as well as for the short rate. Even dependencies between
them can be modeled (See e.g. [Buc13]).

Figure 4.2.: Stochastic intensities, each modeled as a Hull-White processes
dµ(t) = [θ(t)− aµ(t)]dt + σdW(t). The mean reversion parameters θ(t)
are derived from the MV-model results. The other parameters are
aµ = 2, σµ = 0.0003, aη = 10, ση = 0.03, ar = 1.8, σr = 0.01. Each rate was
simulated 10.000 times and then plotted in 3D to visualize the frequencies.

In the simply stochastic approach we assumed that we do not know the
future development of Z, say after t0, meaning that we do not know how the
insured will move between the states and when. We were thus working with
the filtration FZ[t0]. On the other hand, we assumed to know the future
transition probabilities and the interest rate, so there was no need to define
a σ-algebra describing the evolution of knowledge about the transition
probabilities or the interest rate. This is different now. Hence, denote by
FY the filtration generated by the intensities of the transition rates and
the interest rate and by F = FZ ∨ FY the joint filtration of Z and the
intensities.

To illustrate the new dimension, we take a look at the expected transition
probability pij(s, t) for the state space J={!,�}, with i=!, j= � and think

45



4. Poly-Stochastic Framework

of it as the volume between s and t of the ridge depicted in figure (4.2)
under ’mortality’ which is a double integral.

The stochastic transition probability pX
ij (s, t) on the other hand is a simple

integral just like the expected intensity, but over the other dimension, re-
spectively. It is thus the average cross-section area of the respective part of
the ridge and not a path like the expected intensity. The connection between
them is

pij(s, t) = P [Z(t) = j|Z(s) = i]

= E
[
1Z(t)=j

∣∣∣FX(s), Z(s) = i
]

= E
[
E
[
1Z(t)=j

∣∣∣FX(∞), Z(s) = i
]∣∣∣FX(s)

]
= E

[
P
[

Z(t) = j
∣∣∣FX(∞), Z(s) = i

]∣∣∣FX(s)
]
= E

[
pX

ij (s, t)
∣∣∣FX(s)

]
.

Furthermore consider the expected loss as the difference in the expected
present values of future liabilities arising from conditioning on the two
different states of knowledge where we can now (at time t0) separate the
risk which looms at time T > t0 (first line) into an unsystematic (second
line) and a systematic component (third line) in which we are interested:

L[T] = E[PV[t0]|F [T]]−E[PV[t0]|F [t0]]

= E[PV[t0]|F [T]]−E[PV[t0]|FZ[t0] ∨ FY[T]]

+ E[PV[t0]|FZ[t0] ∨ FY[T]]−E[PV[t0]|F [t0]].

(4.1)
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4.3. Markov Chains & Processes

Affine processes are Markov processes. We are therefore investigating a few
important characteristics of this superset before dealing with the specialties
of affine processes themselves.

Let (Ω,F , P) denote a Kolmogorov probability space consisting of a sample
space Ω, a σ-algebra F and a probability measure P.

Definition 4.1 (Stochastic process)

A stochastic process is a family of random variables {Xt : t ∈ T} mapping
into a measurable state space (J,J ) where T is a totally ordered index set

Xt : (Ω,F , P)→ (J,J ), ω 7→ Xt(ω).

Definition 4.2 (Markov Property)

An adapted J-valued stochastic process X is said to possess the Markov prop-
erty if, for each A ∈ J and each s < t ∈ T

P[Xt ∈ A|Fs] = P[Xt ∈ A|Xs].

This means the conditional probability of a future event depends exclusively
on the current1 state and it is irrelevant how the process reached its current
state. The Markov property is thus also known as the no memory property.

In the previous chapters we have used a discrete-time Markov process and
its conditional transition probabilities to model the state of the insured.
Now we are going to use a continuous-time Markov chain Z and an affine
multidimensional Markov processes Y to model the transition intensities
(and the short rate).

In the case of a Markov chain with a finite state space, the transition proba-
bilities can be written in matrix form for every admissible interval.

1More precisely: the time the conditioning refers to, which might as well be in the
future.
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Definition 4.3 (Conditional transition matrix)

The conditional transition matrix is defined by

P(s, t) := (pij(s, t))i,j=1,...,|J|,

pij(s, t) := P[Z(t)= j | Z(s)= i], s≤ t and i, j∈J.
(4.2)

Lemma 4.1 (Chapman-Kolmogorov)

For all s≤ t≤u∈R+, i, j, k∈J and P[Z(s)= i]>0 the Chapman-Kolmogorov
equation states

P(s, u) = P(s, t) · P(t, u),

pik(s, u) = ∑
j∈S

pij(s, t)pjk(t, u). (4.3)

Regarding the Chapman-Kolmogorov equation in terms of the states, it
points out how to deal with recombining trees in discrete-time like in figure
4.1. Regarding it in terms of the time instants, it adumbrates why a discrete
distribution of Z can be fully specified by the conditional probabilities.

However, the intensities and the short rate are modeled in continuous time
and there is no smallest time interval. Thus, a smoothness assumption has
to be made before their distributions can be characterized. We thus assume
that the following transition intensities exist and are continuous.

Definition 4.4 (Transition intensities)

Λ(t) :=

 µ11(t) ... µ1n(t)
... . . . ...

µn1(t) ... µnn(t)

 ,

µij(t) := lim
∆t↓0

pij(t, t + ∆t)− 1i=j

∆t
for all i, j ∈ J, t ∈ [0, n].

(4.4)

A comprehensible connection between intensities and probabilities can be
established by taking a look at the derivatives of pij(s, t) which results in
the Kolmogorov differential equation.
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Derivation 4.1 (Kolmogorov differential equation)

d
dt

pij(s, t) = lim
∆t↓0

1
∆t
(

pij(s, t + ∆t)− pij(s, t)
)

4.3
= lim

∆t↓0

1
∆t

(
∑
k∈J

pik(s, t)pkj(t, t + ∆t)− pij(s, t)

)

= lim
∆t↓0 ∑

k∈J
pik(s, t)

pkj(t, t + ∆t)− 1k=j

∆t
.

(4.5)

Inserting the definition (4.4) completes the derivation of the forward case.

Lemma 4.2 (Kolmogorov differential equations)

• The forward case d
dt

P(s, t) = P(s, t)Λ(t),

d
dt

pij(s, t) = ∑
k∈J

pik(s, t)µkj(t).
(4.6)

• The backward case is derived analogously resulting in

d
ds

P(s, t) = −Λ(s)P(s, t),

d
ds

pij(s, t) = −∑
k∈J

µik(s)pkj(s, t).
(4.7)

This provides the necessary tools to formulate the residence probability in
terms of the intensities

pii(s, t) := P

 ⋂
ξ∈[s,t]∩Q

{Zξ = i|Zs = i}

 = e
− ∑

k 6=i

t∫
s

µik(τ)dτ

.
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Furthermore the set of differential equations can be rewritten as an equiva-
lent set of integral equations.

Derivation 4.2 (Probabilities are Intensity-Integrals)

Starting from the Kolmogorov backwards equation
d
ds

pij(s, t) = −µii(s)pij(s, t)−∑
k 6=i

µik(s)pkj(s, t),

the first step is to multiply both sides with the integration factor e−
∫ t

s µii , move
the µii term to the left, and apply the rule of integrating by parts reversely.
This results in

ds

(
e−
∫ t

s µii pij(s, t)
)
= −∑

k 6=i
e−
∫ t

s µii µik(s)pkj(s, t)ds.

The next step is to integrate both sides over (s, t]

1i=j − e−
∫ t

s µii pij(s, t) = −
∫ t

s
∑
k 6=i

e−
∫ t

τ µii µik(τ)pkj(τ, t)dτ.

Removing the integration factor e
∫ t

s µii and rearranging terms results in

pij(s, t) = 1i=je
∫ t

s µii +
∫ t

s
∑
k 6=i

e
∫ τ

s µii µik(τ)pkj(τ, t)dτ.

Using the residence probabilities completes the derivation of the backward case.
An analogous procedure applied to the forward Kolmogorov equation results
in the respective forward integral equation.

Theorem 4.1 (Probabilities are Intensity-Integrals)

• The forward case

pij(s, t) = 1i=j pii(s, t) +
∫ t

s
∑
k 6=j

pik(s, τ)µkj(τ)pjj(τ, t)dτ

• The backward case

pij(s, t) = 1i=j pii(s, t) +
∫ t

s
∑
k 6=i

pii(s, τ)µik(τ)pkj(τ, t)dτ.

Even though this is not the way to actually calculate the probabilities (at
least not if one of the rates is stochastic), this result is still important because
it establishes a very comprehensible connection between intensities and
probabilities.
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4.4. Affine Processes Sources: time-homogeneous: [Fil09]
inhomogeneous: [Buc11; Buc12; Buc13]

Consider the class of d-dimensional, adapted, processes X : Ω×R+ → X ,

dX(t) := δ(t, X(t))dt + ρ(t, X(t))dW(t), X(0) := x ∈ X (4.8)

on the filtered probability space (Ω,F , (F (t))t∈R, P) which,

for measurable
functions

δ : R+×X → R,

ρ : R+×X → Rd×d,
(4.10)

where the drift vector δ and
the diffusion matrix ρρᵀ are
locally Lipschitz continuous,

is driven by the filtration generating d-dimensional Wiener process W and
mapping into the canonical state space

X :=Rm
+×Rn, d = m+n, I :={1, ..., m}, J :={m + 1, ..., d}. (4.11)

Moreover assume that X exists for all start values x∈X at any time t≥0.

Definition 4.5 (Affine process)

The process X, introduced above, is called affine if there exist C- and Cd-valued
functions φ and ψ with jointly continuous derivatives allowing for an expo-
nentially affine representation of the Ft-conditional characteristic function of
X(T) i.e.

E
[
ezᵀX(T)

∣∣∣F (t)] = eφ(t,T,z)+ψ(t,T,z)ᵀX(t) (4.12)

for all x∈X , 0≤ t≤T, and z∈ iRd.

As shown in [Fil09, p. 144] for the time-homogeneous case and in [Buc11] for
the time-inhomogeneous case, affine drift and diffusion parameter functions
of the form

δ(t, x) = δ0(t) +
d

∑
i=1

δi(t)xi = δ(t) +D(t)x,

ρ(t, x)ρ0(t, x)ᵀ = ρ(t) +
d

∑
i=1

ρi(t)xi,

(4.13)

where the vector functions δ0(t) and δi(t) : R+→Rd and the matrix func-
tions ρ0(t) and ρi(t) : R+ → Rd×d are all assumed to be bounded and
piecewise continuous, are a necessary condition for X to be affine.

51



4. Poly-Stochastic Framework

Furthermore, sufficient conditions can be given. For time-inhomogeneous
affine processes this is proven in [Buc11, sec. 2.2]. A comprehensible illus-
tration is found in [Buc12, p. 6].

Theorem 4.2 (Admissibility Conditions)

The stochastic process X, as introduced in 4.8 is affine iff δ(t, x) and ρ(t, x)
are affine of the form 4.13 with admissible parameters in the following sense:

δ0(t) ∈ Rm
+×Rn, [δi(t)]k ≥ 0, i∈ I, k∈ I\{i}, [D(t)]I J = 0,

(4.14)
ρ0(t), ρi(t) are symmetric and positive semi-definite, i ∈ I,

[ρ0(t)]I I = 0,
ρj(t) = 0, j∈ J,

[ρ0(t)]I J = 0,
[ρi(t)]k· = 0, i∈ I, k∈ I\{i},

(4.15)

for all t ∈ R+.

Theorem 4.2 thus provides not only sufficient conditions, but an explicit
construction for affine processes. The following theorem 4.3 ensures that the
characteristic function of an affine process is always, at least numerically,
manageable.

Theorem 4.3 (Appendant Riccati Equations)

If the conditions of theorem 4.2 are met, the functions φ(t, T, z) and ψ(t, T, z)
from equation 4.12 solve the Riccati equations,

∂

∂t
φ(t, T, z) = −1

2
[ψ(t, T, z)]ᵀJ [ρ0(t)]J J [ψ(t, T, z)]J − δ0(t)ᵀψ(t, T, z),

φ(T, T, z) = 0,

∂

∂t
[ψ(t, T, z)]i = −

1
2

ψ(t, T, z)ᵀ[ρi(t)]ψ(t, T, z)− δi(t)ᵀψ(t, T, z), i ∈ I,

∂

∂t
[ψ(t, T, z)]J = −[D(t)]ᵀJ J [ψ(t, T, z)]J ,

ψ(T, T, z) = z,
(4.16)

and there exists a unique solution t 7→ (φ(t, T, z), ψ(t, T, z)) : R+ → C− ×
Cm
− × iRn for all z ∈ Cm

− × iRn and T > 0.
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Affine processes allow for admissible affine transformations without loosing
the affinity property (see e.g. [Buc12]).

Lemma 4.3 (Affine transformation)

For p ≥ 1, a component-by-component integrable vector function c : R+ →
Rp, and an everywhere-injective matrix function Γ : R+ → Rp×d, where
every component of the latter two is bounded, with limits everywhere, and
discontinuous in at most finitely many points, the affine transformation

Y(t) := c(t) + Γ(t)X(t) (4.17)

passes the affinity property of X on to Y.

Notation 4.1 (Column sums)

Let the column sums of Γ be denoted by the vector function γ(t) = 1ᵀΓ(t).

The definition and the characterization of affine processes required the use
of the characteristic function which means that z was restricted to imaginary
values in the affine transformation formula 4.12. However, when pricing
becomes an issue, one has to deal with real z as well, leading to the moment
generating function which does not always exist.

Theorem 4.4 (Existence of the Moment Generating Function)

If there exist a solution to the Riccati equations 4.16 for an affine process X,
u ∈ Rd, and T > 0 in u ∈ [0, T] and either of the following holds,

1. eφ(t,T,u)+ψ(t,T,u)ᵀX(t) is uniformly bounded on [0, T],

2. E
[∫ T

0 e2φ(t,T,u)+2ψ(t,T,u)ᵀX(t)(ψ(t, T, u)ᵀρ(t, X(t)))2dt
]
< ∞,

then the affine transformation formula 4.12 holds for u, for all t ∈ [0, T].
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Theorem 4.5 (Basic Pricing Theorem)

Let X, Y be affine processes in the canonical state space as defined above and
assume that either of the following is the case

1. n = 0 and γi ≥ 0 for i = 1, ..., d,
2. there exists a combination of functions (φ, ψ) solving

∂

∂t
φ(t, T) = −1

2
[ψ(t, T)]ᵀJ [ρ0(t)]J J [ψ(t, T)]J − δ0(t)ᵀψ(t, T)+1ᵀc(t),

φ(T, T) = 0,

∂

∂t
[ψ(t, T)]i = −

1
2

ψ(t, T)ᵀρi(t)ψ(t, T)− δi(t)ᵀψ(t, T)+[γ(t)]i, i ∈ I,

∂

∂t
[ψ(t, T)]J = −[D(t)]ᵀJ J [ψ(t, T)]J+[γ(t)]J ,

ψ(T, T) = 0,
(4.18)

in a way that t 7→ e−
∫ t

0 1
ᵀY(s)ds+φ(t,T)+ψ(t,T)ᵀX(t) is a martingale.

Then
E
[
e
∫ T

t 1ᵀY(s)ds
∣∣∣F (t)] = eφ(t,T)+ψ(t,T)ᵀX(t) (4.19)

where φ, ψ are given by the equations 4.18.

As already pointed out by Buchardt the simple choice of

X(t) = (r(t), µ(t)) , c ≡ 0 and Γ ∈
{[

1 0
0 0
]
,
[

0 0
0 1
]
,
[

1 0
0 1

]}
(4.20)

under a risk-neutral measure leads to bond prices, survival probabilities
and the price of a pure endowment contract when inserted in equation 4.19.
The two rates can therein be dependent. If they are not, the discounting and
the surviving part can be separated i.e.

φ(t, T) = φr(t, T) + φµ(t, T), (4.21)
ψ(t, T) = ψr(t, T) + ψµ(t, T). (4.22)
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If the policy includes a benefit upon death the basic pricing formula is not
sufficient. One is then encountering the expected value of the partial deriva-
tive of the term structure which can be handled by solving an additional
system of differential equations.
Theorem 4.6 (Extended Pricing Theorem)

For k ∈ {1, .., p}, u ∈ [t, T], under the conditions of Theorem 4.5, and the
additional condition of

t 7→ e−
∫ T

t 1ᵀY(s)ds+φ(t,T)+ψ(t,T)X(t) (Ak(t, T, u) + Bk(t, T, u)ᵀX(t))
being a martingale, it holds that

E
[
e−
∫ T

t 1ᵀY(s)ds[Y(u)]k
∣∣∣F (t)]

=eφ(t,T)+ψ(t,T)ᵀX(t) (Ak(t, T, u) + Bk(t, T, u)ᵀX(t))
(4.23)

where (φ, ψ) solves the equations 4.18 and (Ak, Bk) solves the following sys-
tem of linear differential equations

∂

∂t
Ak(t, T, u) = −[ψ(t, T)]ᵀJ [ρ0(t)]J J [Bk(t, T, u)]J − δ0(t)ᵀBk(t, T, u),

Ak(u, T, u) = [c(u)]k,
∂

∂t
[Bk(t, T, u)]i = −ψ(t, T)ᵀ[ρi(t)]Bk(t, T, u)− δi(t)ᵀBk(t, T, u), i ∈ I,

∂

∂t
[Bk(t, T, u)]J = −[D(t)]ᵀJ J [Bk(t, T, u)]J ,

Bk(T, T) = eᵀk Γ(u).
(4.24)

In combination with the linearity of the expectation the following result
follows immediately

E
[
e−
∫ T

t 1ᵀY(s)ds([Y(u)]k + [Y(v)]l)
∣∣∣F (t)] = E

[
e−
∫ T

t 1ᵀY(s)ds[Y(u)]k
∣∣∣F (t)]

+ E
[
e−
∫ T

t 1ᵀY(s)ds[Y(v)]l
∣∣∣F (t)] .

(4.25)

As soon as invalidity becomes an issue one is likely to stumble upon the
second derivative as well. As the number of differential equation-systems
increases exponentially with the order of differentiation we note that these
terms are still manageable but refer the interested reader to [Buc12].
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4.5. Examples of affine processes Source: [Buc11]

Let us start by considering a very simple affine processes for the mortality
intensity of somebody being x-years old. Probably the simplest thing to do
is adding an FY-adapted Wiener process (W(t))t∈R+

to the deterministic
intensity µ◦(t) i.e.

µx(t) = µ◦x(t) + σW(t). (4.26)

For t ≤ u ≤ n and (x + t) ≤ (x + n) and conditional upon FY(u) this results
in the (n− t)-year survival probability of an (x + t)-year old of

n−t px+t = E
[
E
[
1{Tx≥n}

∣∣∣Tx ≥ t, FY(∞)
]∣∣∣Tx ≥ t, FY(u)

]
= E

[
e−
∫ n

t µx(s)ds
∣∣∣FY(u)

]
= e−

∫ n
t µ◦x(s)ds−

∫ u
t σW(s)ds E

[
e−
∫ n

u σW(s)ds
∣∣∣FY(u)

]
= e−

∫ n
t µ◦x(s)ds−

∫ u
t σW(s)ds−(n−u)σW(u)+ σ2(n−u)3

6

(4.27)

4.5.1. Vasiček Model Source: [MB00, p. 58f]

Let us now consider the standard Vasiček model for the short rate which
uses an Ornstein-Uhlenbeck process with constant, positive coefficients
i.e.

drt = k(θ − rt)dt + σdWt for k, θ, σ ≥ 0. (4.28)

Due to its mean reversion term (θ − rt) its paths do not stray as much and
stay closer to the expectation. Once again, however, the diffusion coefficient
does not depend on rt and so the volatility cannot diminish as rt goes to
zero. Thus, the process allows for negative values with positive probability.
By integrating equation (4.28), the intensity is explicitly found for each s ≤ t
to be

r(t) = r(s)e−k(t−s) + θ
(

1− e−k(t−s)
)
+ σ

t∫
s

e−k(t−u)dW(u). (4.29)
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Recognizing rt|Fs to be Gaussian, the first moments are easily derived as

E[rt|Fs] = r(s)e−k(t−s) + θ
(

1− e−k(t−s)
)

,

Var[rt|Fs] =
σ2

2k

(
1− e−2k(t−s)

)
.

(4.30)

The bond price is given by

P(t, T) = eA(t,T)−B(t,T)r(t),

A(t, T) =
(

θ − σ2

2k2

)
(B(t, T)− (T − t))− σ2

4k
B(t, T)2,

B(t, T) =
1
k

(
1− e−k(T−t)

)
.

(4.31)

4.5.2. Hull-White Model Sources: [Boh11, p. 26ff], [YYT08]

Considering the following extension of the Vasiček model where θ is re-
placed by a time-inhomogeneous mean reversion parameter θt, results in the
well known Hull-White model which thereby allows for an incorporation of
the initial forward rate. The differential equation now reads

drt = k(θt − rt)dt + σdWt (4.32)

and has the following solution

r(t) = r(s)e−k(t−s) + k
t∫

s

θ(u)e−k(t−u)du + σ

t∫
s

e−k(t−u)dW(u). (4.33)

The first moments are

E [r(t)|F(s)] = r(s)e−k(t−s) + k
t∫

s

θ(u)e−k(t−u)du,

V [r(t)|F(s)] = σ2

2k

(
1− e−2k(t−s)

)
.

(4.34)
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The bond prices are now given by

P(t, T) = Ā(t, T)e−r(t)B(t,T),

Ā(t, T) = e
−k

T∫
t

θ(u)B(u,T)du
A(t, T)

(4.35)

with A(t, T) and B(t, T) as in the Vasiček model with θ = 0. In order to
calibrate θt to the current interest rate it needs to chosen as

θ(t) = f M(0, t) +
1
λ

∂ f M

∂T
(0, t) +

σ2

2λ2

(
1− e−2λt

)
. (4.36)

where f M denotes the given interest rate from the market. In doing so the
bond prices from the model satisfy

P(t, T) = e−r(t)B(t,T) PM(0, T)
PM(0, t)

eB(t,T) f M(0,t)− σ2
4k (1−e−2kt)B2(t,T) (4.37)

where PM denote currently observable bond prices from the market.

4.6. Categorization Sources: [DS00], [MB00, p. 53ff]

First of all, affine models are usually classified by their number of random
sources which are called factors. One-factor models are further separated
into Gaussian and square root processes while multi-Factor models can
contain both.

Another way to classify affine models is to separate endogenous models
from exogenous ones. If the bond prices P(0, T) are rather output than
input because the model is specified internally by a small set of parameters,
the model is said to be an endogenous model. These models are nice ad
hoc solutions because they often allow for closed form solutions, even for
many derivatives. On the other hand they lack the necessary flexibility
when it comes to calibrating the model to the initial zero-coupon curve
T → PM(0, T) from the market so that not all curves are attainable. The prob-
lem can be tackled by using exogenous models with time-inhomogeneous
parameters along with numerical methods.
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4.6.1. Endogenous One-Factor Models
X is said to be a Gaussian affine process or an Ornstein-Uhlenbeck process
if it satisfies the SDE

dX(t) = (α + βX(t))dt + ΣdW∗t

for α ∈ Rn, β, Σ ∈ Rn×n and an n-dimensional Wiener process. In this case
the diffusion coefficient does not contain X which is why the volatility
does not diminish if the process tends toward zero and so the process can
become negative as well. This problem has been addressed by Cox, Ingersoll
and Ross (CIR). Within a CIR model the process is assumed to satisfy the
dynamics

dX(t) = (α + βX(t))dt + Σ
√

X(t)dW∗t

where 2αβ ≥ σ2 needs to be chosen to guarantee a strictly positive rate and
the components of dW∗ need to be independent to not get in trouble with
the affinity property. Famous endogenous one-factor short rate models are
e.g.

Merton 1973 drt = adt + σdW∗t .

Vasiček 1977 drt = (θ − αrt)dt + σdWt

⇐⇒ drt = a(b− rt)dt + σdWt.

Rendleman-Bartter 1980 drt = θrt dt + σrt dWt.

Cox-Ingersoll-Ross (CIR) 1985 drt = (θ − αrt) dt +
√

rt σ dWt

⇐⇒ drt = a(b− rt) dt +
√

rt σ dWt.

4.6.2. Exogenous One-Factor Models
By allowing the parameters to be functions of time the necessary modeling
freedom can be bought at the cost of adding a potentially infinite number
of new parameters to the model. Famous examples are

Ho-Lee 1986 drt = θt dt + σ dWt.
Hull-White 1990 drt = (θt − αrt) dt + σt dWt.
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The Hull-White model is often called ’extended Vasiček model’ and it is not
always used with a time-inhomogeneous diffusion coefficient (DC). This is
because an exact calibration to market bond prices is desirable, while an
exact calibration to the volatility term structure can be dangerous - especially
in less liquid markets. Furthermore the implied future volatility structures
of the model deviate from typical market shapes.

4.6.3. Multi-Factor Models
The most famous multi-factor models are three factor models which consist
of three processes. In [Dai98], Qiang Dai categorizes them in four families
according to the number of factors appearing in the DC. The first and the last
families are special cases. The first family A0(3) results in homoskedastic
state variables for none of the factors appear in the DC and the last family
A3(3) consists of correlated square-root diffusion models, so no factor can
be modeled as a Gaussian process anymore. The second family A1(3) is a
heteroskedastic set of models, where one of the factors affects the DC. A
famous example is the BDFS-model where

drt = κ(θt − rt)dt +
√

vtdWr
t is the short rate process,

dθt= α(θ̄ − θt)dt + ζdWθ
t is the drift process, and

dvt= µ(v̄− vt)dt + η
√

vtdWv
t is the volatility process.

(4.38)

For details see e.g. [Bal+96]. The class contains furthermore all models
which allow for the following representation

dr(t) = κvr(v̄− v(t))dt + κ(θ(t)− r(t))dt +
√

αr + v(t)dWr(t),

dθ(t) = ν(θ̄ − θ(t))dt +
√

ζ2 + βθv(t)dWθ(t),

dv(t) = µ(v̄− v(t))dt + η
√

v(t)dWv(t).
(4.39)

In the A2(3) family there may be feedback between θ and v and both may
affect the drift and the DC of the short rate:
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dr(t) = κrv(v̄− v(t))dt + κ(r̄ + θ(t)− r(t))dt

+ σrvη
√

v(t)dW1(t) + σrτζ
√

θ(t)dW2(t) +
√

αr + βθθ(t)v(t)dW3(t),

dθ(t) = ν(θ̄ − θ(t))dt + κθv(v̄− v(t))dt + ζ
√

θ(t)dW2(t),

dv(t) = µ(v̄− v(t))dt + κvθ(θ̄ − θ(t))dt + η
√

v(t)dW1(t).
(4.40)

Famous members of the A2(3) family are
Longstaff-Schwartz 1992 drt = (µX + θY)dt + σt

√
YdW3,t,

dXt = (at − bXt) dt +
√

Xt ct dW1,t,
dYt = (dt − eYt) dt +

√
Yt ft dW2,t.

Chen model 1996 drt = (θt − αt) dt +
√

rt σt dW3,t,
dαt = (ζt − αt) dt +

√
αt σt dW1,t,

dσt = (βt − σt) dt +
√

σt ηt dW2,t.

4.6.4. Criticism
Affine models are a quite tractable way to model the stochastic environment
but endogenous models clearly lack the possibility for a proper calibration.
Their simple structure makes due with a very small set of parameters by
which it stints itself to an extent where the freedom for calibration is not
sufficient. In [MB00, p. XX] the use of time-inhomogeneous diffusion coeffi-
cients is promoted and corroborated by the argument that the calibration to
bond prices from the market can be made perfect, and the remaining model
parameters can be used to calibrate the volatility structures if it is appropri-
ate. However, the evolution of the term structure in one-factor models is still
subject to only a single stochastic factor, namely the short-rate. This can be
a dangerous assumption. In risk management multi-factor models are there-
fore often preferred for the resulting scenarios are said to be more consistent
with the observed market behavior. Multi-factor models are nevertheless not
the answer to everything. Even though Dai establishes a connection between
the three factor-models and the factor loadings from a principal component
analysis in [Dai98] which eases some interpretations, they continue to be
way more complex and less intuitive than their predecessors and they are
still not able to reflect every desirable behavior.
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4. Poly-Stochastic Framework

4.7. Buchardt’s Life Model Sources: [Buc13]

In his paper, Kristian Buchardt takes a look at a mixed life insurance contract
similar to the one treated in (section 3.3 - The Market Value Model on page
31) but with continuous premium payments and with immediate payments
upon the event of death and surrender. In figure (4.7) the respective tree
structure is illustrated together with the tree structure of his invalidity
model for which we refer the interested reader to his paper.
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Figure 4.3.: Buchardt’s mixed life insurance and recombining invalidity model.

Denoting the sum of all past and present payments by B(t) the payments at
time t can be written as

dB(t) = be(t)1Z(t)=0 dt︸ ︷︷ ︸
premiums

+ bd(t) dN01(t)︸ ︷︷ ︸
death benefit

+U(t) dN02(t)︸ ︷︷ ︸
surrender benefit

.

The mortality rate µ(t), is assumed to be continuous but still deterministic.
Now the main difference is made by using a stochastic force of interest
r(t) and a stochastic surrender intensity η(t) which offers the possibility to
model a dependency between these two. The two stochastic intensities are
modeled as components of the p = 2-dimensional process Y which is an
affine transformation (as in equation 4.17) of the d=2-dimensional process
X satisfying

Y(t) :=

r(t) = X1(t)

η(t) = η0(t)X2(t)
⇒ c(t) = 0, Γ(t) =

(
1 0

0 η0(t)

)
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dX(t) :=

(b1(t)− β1X1(t)) dt + σ1

(√
1− ρ2dW1(t) + ρ

√
X2(t)dW2(t)

)
(b2 − β2X2(t)) dt + σ2

√
X2(t)dW2(t) .

This means the interest rate is assumed to behave like a mix of a Hull-White
extension of a Vasicek process and a Heston process and it can thus become
negative as well. The surrender rate is modeled by relative deviations from
an estimated surrender rate η0(t) where the deviations are modeled as a
CIR-process ensuring non-negativity. The state space X is thus R×R+

which means d=m+n=1+1, I={1}, J={2}, the drift is given by

δ0(t) =
(

b1(t)
b2

)
δ1(t) =

(
−β1

0

)
δ2(t) =

(
0
−β2

)
,

and the diffusion coefficient satisfies

ρ(t, X(t)) =

(
σ1
√

1− ρ2 σ1ρ
√

X2(t)

0 σ2
√

X2(t)

)
.

Taking a look at

ρ(t, X(t))ρ(t, X(t))ᵀ =

(
σ2

1 (1− ρ2) + σ2
1 ρ2X2(t) σ1σ2ρX2(t)

σ1σ2ρX2(t) σ2
2 X2(t)

)

reveals the models affinity in X. Splitting it up into a linear combination of
its X components finally unsheathes the diffusion parameters

ρ0(t) =

(
σ2

1 (1− ρ2) 0

0 0

)
, ρ1(t) =

(
0 0

0 0

)
, ρ2(t) =

(
σ2

1 ρ2 σ1σ2ρ

σ1σ2ρ σ2
2

)
,

requested by the differential equations 4.19 and 4.23.

In his setup the reserve is simply called the present value. It can now be
written as

PV(t) =
∫ T

t
e−
∫ s

t r(τ)dτdB(s).
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Since the interest rate and the surrender rate are now stochastic, the present
value is a random variable. The expected present value is calculated by

EPV(t) = E [PV(t)|F (t)]

= E
[
E
[

PV(t)
∣∣∣FX(∞), Z(t) = 0

]∣∣∣F (t)]
= E

[
E

[∫ T

t
e−
∫ s

t r(τ)dτdB(s)
∣∣∣∣FX(∞), Z(t) = 0

]∣∣∣∣F (t)]
= E

[
E

[∫ T

t
e−
∫ s

t r(τ)dτ(1Z(s)=0be(s) ds + bd(s) dN01(s) + U(t) dN02(s))
∣∣∣∣...]∣∣∣∣...]

= E

[∫ T

t
e−
∫ s

t r(τ)+µ(τ)+η(τ)dτ(be(s) + µ(s)bd(s) + η(s)U(s))ds
∣∣∣∣F (t)]

=
∫ T

t
e−
∫ s

t µ(τ)dτ
(

E
[
e−
∫ s

t r(τ)+η(τ)dτ
∣∣∣F (t)] (be(s) + µ(s)bd(s))

+E
[
e−
∫ s

t r(τ)+η(τ)dτη(s)
∣∣∣F (t)]U(s)

)
ds.

Using the theorems 4.5 and 4.6 the expected values can be calculated (at
least numerically) by solving two appendant systems of ODEs (for every
supporting point of the numerical integral) resulting in

EPV(t) =
∫ T

t
e−
∫ s

t µ(τ)dτ+φ(t,s)+ψ(t,s)ᵀX(t)

( be(s) + µ(s)bd(s) + (Aη(t, s, s) + Bη(t, s, s)ᵀX(t))U(s) ) ds.
(4.41)

Unfortunately the calculation of the profit reserve in the previously intro-
duced setup is forlorn hope due to the path dependance. Even for a simple
pure endowment policy, it makes one deal with the term

E
[
e−
∫ n

t r(τ)+µ(τ)dτ(b
!
(n)+b¦(n))

∣∣∣F (t)]
db¦(t) = max{r(t),r̄}b¦(t)dt

(4.42)

which can not be solved explicitly. The use of a simulation technique seems
to be inevitable at this point.
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5. Results
Let us consider the two widely used mixed life insurance tariffs from section
(3.1). This means that the risks insured are death as well as endowment. Both
contracts shall pay the nominal amount in case of endowment at the end of
coverage. While the first tariff shall pay the nominal amount also in case of
death, the second policy shall only pay 1/m of the nominal amount, where
m denotes the number of premiums payed up to the year of death. The
guaranteed interest rate shall be 2% and the guaranteed mortality table shall
be as denoted in column q∗(x) in table (5.1). After the first year, the insured
shall be granted the right to surrender at 95% of the previous statutory book
value reserve and should participate in 85% of the insurers profits.

We assume that a 40 year old person has concluded a policy with a nominal
amount of 20.000 in each of them and that both policies have a covered
period of 15 years. The premiums are agreed to be payed annually in
advance throughout the covered period while the benefits should be payed
in arrears. We summarized the data as the green values in table (5.2) and
(5.3), respectively.

Table (5.1) shows the development of the mathematical statutory book
value reserve at the main renewal dates of the policies and the derivation
according to the algorithm from section (3.1). This means that surrender
and waiver are not considered here.

As can be seen from column ’E’ and ’A’, the developments of the present
values for endowment are the same while the present values for death are
lower for the second policy. For the annuity ’ä’ only depends upon the
guaranteed interest rate and the mortality table it is also the same. The
only difference in the premium is thus a lower risk premium within the
second policy. Because both policies save up to the same nominal amount,
their development is very similar non the less. The difference is caused by
the time-inhomogeneous mortality table in combination with a constant
premium which implicitly builds and reverses a risk reserve.
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5. Results

x q*(x) v(x) l(x) D(x) N(x) d(x) C(x) M(x) R(x)

40 0,08039% 45,28904% 98.308 44.523 1.258.455 79 36 18.627 712.506 
41 0,09094% 44,40102% 98.218 43.610 1.213.932 89 40 18.587 693.879 
42 0,09371% 43,53041% 98.126 42.715 1.170.322 92 40 18.547 675.292 

43 0,11221% 42,67688% 98.016 41.830 1.127.608 110 47 18.500 656.745 
44 0,12920% 41,84007% 97.889 40.957 1.085.777 127 53 18.447 638.245 
45 0,13043% 41,01968% 97.762 40.102 1.044.820 128 52 18.395 619.798 

46 0,16538% 40,21537% 97.600 39.250 1.004.719 162 65 18.330 601.403 
47 0,16333% 39,42684% 97.441 38.418 965.469 159 63 18.267 583.073 
48 0,19578% 38,65376% 97.250 37.591 927.051 191 74 18.193 564.806 
49 0,20333% 37,89584% 97.052 36.779 889.460 198 75 18.118 546.613 
50 0,26044% 37,15279% 96.799 35.964 852.681 253 94 18.024 528.495 
51 0,29216% 36,42430% 96.517 35.155 816.718 283 103 17.921 510.471 
52 0,29873% 35,71010% 96.228 34.363 781.562 288 103 17.818 492.549 
53 0,29453% 35,00990% 95.945 33.590 747.199 283 99 17.719 474.731 
54 0,40430% 34,32343% 95.557 32.798 713.609 388 133 17.586 457.012 

55 0,41490% 33,65042% 95.160 32.022 680.810 396 133 17.453 439.426 

E A AE ä P Res E A AE ä P Res
14.384,57 527,51 14.912,08 12,97 1.149,37 0,00 2010 14.384,57 338,16 14.722,73 12,97 1.134,77 0,00 

14.685,61 520,35 15.205,96 12,22 1.155,21 2011 14.685,61 344,03 15.029,64 12,22 1.157,31 
14.993,38 512,50 15.505,87 11,46 2.334,12 2012 14.993,38 348,73 15.342,11 11,46 2.337,61 
15.310,42 500,87 15.811,29 10,68 3.534,68 2013 15.310,42 351,61 15.662,04 10,68 3.541,31 
15.636,83 485,67 16.122,51 9,89 4.758,03 2014 15.636,83 352,21 15.989,05 9,89 4.768,88 
15.970,40 469,91 16.440,31 9,08 6.007,29 2015 15.970,40 351,02 16.321,42 9,08 6.020,88 
16.316,80 446,97 16.763,77 8,25 7.278,75 2016 16.316,80 345,38 16.662,17 8,25 7.297,60 

16.670,36 423,94 17.094,30 7,41 8.578,02 2017 16.670,36 337,59 17.007,95 7,41 8.599,82 
17.037,12 394,03 17.431,15 6,55 9.902,17 2018 17.037,12 324,10 17.361,22 6,55 9.927,83 
17.413,27 361,98 17.775,25 5,67 11.254,78 2019 17.413,27 306,80 17.720,07 5,67 11.282,40 
17.807,91 317,96 18.125,88 4,78 12.633,04 2020 17.807,91 278,94 18.086,85 4,78 12.663,77 
18.217,30 266,67 18.483,96 3,87 14.040,64 2021 18.217,30 242,38 18.459,67 3,87 14.072,77 
18.637,32 212,89 18.850,21 2,93 15.480,31 2022 18.637,32 200,02 18.837,34 2,93 15.510,23 

19.066,22 158,71 19.224,93 1,98 16.953,29 2023 19.066,22 153,42 19.219,65 1,98 16.976,85 
19.526,49 81,35 19.607,84 1,00 18.458,48 2024 19.526,49 81,35 19.607,84 1,00 18.473,07 
20.000,00 0,00 20.000,00 0,00 20.000,00 2025 20.000,00 0,00 20.000,00 0,00 20.000,00 

Tariff 1

Commutation Table

Tariff 2

Statutory Book Value Model

Table 5.1.: Commutation table and present values according to the statutory book value
model for both contracts derived by the algorithm from section (3.1).
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Interest
ultimo age t* D E P-01 S-01 q*x-1 k1px gR term code value

2010 40 0 0 0 1 0 0,000% 100,00% 0,00% Start of coverage t0 2010
2011 41 1 20000 0 1 0 0,091% 100,00% 2,00% Balance year tt 2016
2012 42 2 20000 0 1 1 0,094% 99,91% 2,00% End of coverage tn 2025
2013 43 3 20000 0 1 1 0,112% 99,82% 2,00%
2014 44 4 20000 0 1 1 0,129% 99,70% 2,00% Face value FV 20000
2015 45 5 20000 0 1 1 0,130% 99,57% 2,00% Profit Account PA 600
2016 46 6 20000 0 1 1 0,165% 99,44% 2,00%
2017 47 7 20000 0 1 1 0,163% 99,28% 2,00% Age x 40
2018 48 8 20000 0 1 1 0,196% 99,12% 2,00% Period of coverage n 15
2019 49 9 20000 0 1 1 0,203% 98,92% 2,00% Premium payment period m 15
2020 50 10 20000 0 1 1 0,260% 98,72% 2,00%
2021 51 11 20000 0 1 1 0,292% 98,47% 2,00% Surrender charge SurrPenalty 95%
2022 52 12 20000 0 1 1 0,299% 98,18% 2,00% Sharing rule ShareRule 85%
2023 53 13 20000 0 1 1 0,295% 97,88% 2,00% GuaranteedReturn gR 2,00%
2024 54 14 20000 0 1 1 0,404% 97,60% 2,00% Profit rate ProfitRate 3,00%
2025 55 15 20000 20000 0 1 0,415% 97,20% 2,00% Added profit AddedProfit 0,33%

cPV cNetRes
ultimo age t* D E D E Annuity-terms P P cNetRes

2010 40 0 0,00 0,00 527,51 14.384,57 1 -1149,37 -13.762,72 0,00                  
2011 41 1 18,19 0,00 520,35 14.685,61 0,979500573 -1149,37 -12.901,38 1.155,21          
2012 42 2 18,74 0,00 512,50 14.993,38 0,959394815 -1149,37 -12.022,39 2.334,12          
2013 43 3 22,44 0,00 500,87 15.310,42 0,93952773 -1149,37 -11.127,25 3.534,68          
2014 44 4 25,84 0,00 485,67 15.636,83 0,919915559 -1149,37 -10.215,11 4.758,03          
2015 45 5 26,09 0,00 469,91 15.970,40 0,900701638 -1149,37 -9.283,66 6.007,29          
2016 46 6 33,08 0,00 446,97 16.316,80 0,881580426 -1149,37 -8.335,65 7.278,75          
2017 47 7 32,67 0,00 423,94 16.670,36 0,862882923 -1149,37 -7.366,91 8.578,02          
2018 48 8 39,16 0,00 394,03 17.037,12 0,844307397 -1149,37 -6.379,62 9.902,17          
2019 49 9 40,67 0,00 361,98 17.413,27 0,826069286 -1149,37 -5.371,11 11.254,78        
2020 50 10 52,09 0,00 317,96 17.807,91 0,807762585 -1149,37 -4.343,47 12.633,04        
2021 51 11 58,43 0,00 266,67 18.217,30 0,789610428 -1149,37 -3.293,96 14.040,64        
2022 52 12 59,75 0,00 212,89 18.637,32 0,77181528 -1149,37 -2.220,54 15.480,31        
2023 53 13 58,91 0,00 158,71 19.066,22 0,754452974 -1149,37 -1.122,27 16.953,29        
2024 54 14 80,86 0,00 81,35 19.526,49 0,736669337 -1149,37 0,00 18.458,48        
2025 55 15 82,98 19917,02 0,00 0,00 0 0,00 0,00 20.000,00        

Benefits (BFT),   Mortality (qx),   Guaranteed Return (gR)
Tariff 1: Recursive Stautory Book Value Model

Input and easily deduced values
Single values

cCFs cPVs

BFTs P!

Premium determination

Table 5.2.: Statutory book values for the first contract derived by the conditional version of
the algorithm from section (3.4).

The same results can be obtained by using a conditional version of the
extended market value algorithm from section (3.4). This is shown in tables
(5.2) and (5.3), respectively.

On top it shows the input benefits (BFTs) for death (D) and endowment (E),
boolean values where premiums (P-01) and surrender possibilities (S-01)
shall be scheduled, the mortality table as well as the sojourn probabilities,
the guaranteed interest rate and finally some single values. At the bottom it
shows conditional cash flows, conditional present values and the conditional
net reserves.
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Interest
ultimo age t* D E P-01 S-01 q*x-1 k1px gR term code value

2010 40 0 0 0 1 0 0,000% 100,00% 0,00% Start of coverage t0 2010
2011 41 1 1333 0 1 0 0,091% 100,00% 2,00% Balance year tt 2016
2012 42 2 2667 0 1 1 0,094% 99,91% 2,00% End of coverage tn 2025
2013 43 3 4000 0 1 1 0,112% 99,82% 2,00%
2014 44 4 5333 0 1 1 0,129% 99,70% 2,00% Face value FV 20000
2015 45 5 6667 0 1 1 0,130% 99,57% 2,00% Profit Account PA 600
2016 46 6 8000 0 1 1 0,165% 99,44% 2,00%
2017 47 7 9333 0 1 1 0,163% 99,28% 2,00% Age x 40
2018 48 8 10667 0 1 1 0,196% 99,12% 2,00% Period of coverage n 15
2019 49 9 12000 0 1 1 0,203% 98,92% 2,00% Premium payment period m 15
2020 50 10 13333 0 1 1 0,260% 98,72% 2,00%
2021 51 11 14667 0 1 1 0,292% 98,47% 2,00% Surrender charge SurrPenalty 95%
2022 52 12 16000 0 1 1 0,299% 98,18% 2,00% Sharing rule ShareRule 85%
2023 53 13 17333 0 1 1 0,295% 97,88% 2,00% GuaranteedReturn gR 2,00%
2024 54 14 18667 0 1 1 0,404% 97,60% 2,00% Profit rate ProfitRate 3,00%
2025 55 15 20000 20000 0 1 0,415% 97,20% 2,00% Added profit AddedProfit 0,33%

cPV cNetRes
ultimo age t* D E D E Annuity-terms P P cNetRes

2010 40 0 0,00 0,00 338,16 14.384,57 1 -1134,77 -13.587,96 0,00                   
2011 41 1 1,21 0,00 344,03 14.685,61 0,979500573 -1134,77 -12.737,56 1.157,31           
2012 42 2 2,50 0,00 348,73 14.993,38 0,959394815 -1134,77 -11.869,73 2.337,61           
2013 43 3 4,49 0,00 351,61 15.310,42 0,93952773 -1134,77 -10.985,95 3.541,31           
2014 44 4 6,89 0,00 352,21 15.636,83 0,919915559 -1134,77 -10.085,40 4.768,88           
2015 45 5 8,70 0,00 351,02 15.970,40 0,900701638 -1134,77 -9.165,77 6.020,88           
2016 46 6 13,23 0,00 345,38 16.316,80 0,881580426 -1134,77 -8.229,80 7.297,60           
2017 47 7 15,24 0,00 337,59 16.670,36 0,862882923 -1134,77 -7.273,36 8.599,82           
2018 48 8 20,88 0,00 324,10 17.037,12 0,844307397 -1134,77 -6.298,61 9.927,83           
2019 49 9 24,40 0,00 306,80 17.413,27 0,826069286 -1134,77 -5.302,90 11.282,40         
2020 50 10 34,73 0,00 278,94 17.807,91 0,807762585 -1134,77 -4.288,32 12.663,77         
2021 51 11 42,85 0,00 242,38 18.217,30 0,789610428 -1134,77 -3.252,13 14.072,77         
2022 52 12 47,80 0,00 200,02 18.637,32 0,77181528 -1134,77 -2.192,34 15.510,23         
2023 53 13 51,05 0,00 153,42 19.066,22 0,754452974 -1134,77 -1.108,02 16.976,85         
2024 54 14 75,47 0,00 81,35 19.526,49 0,736669337 -1134,77 0,00 18.473,07         
2025 55 15 82,98 19917,02 0,00 0,00 0 0,00 0,00 20.000,00         

cCFs cPVs Premium determination

BFTs P! Single values

Benefits (BFT),   Mortality (qx),   Guaranteed Return (gR)
Tariff 2: Recursive Stautory Book Value Model

Input and easily deduced values

Table 5.3.: Statutory book values for the second contract derived by the conditional version
of the algorithm from section (3.4).

The main advantage of this algorithm is that the cash flows are now explicitly
part of the calculation. An interesting thing to observe is that the cash flows
of the final year add up to the reserve because the final reserve does not
contain any death benefit. This is a spurious relation stemming from the
fact that the endowment benefit equals the death benefit in our examples.

Within the statutory book value model the profit participation is not mod-
eled into the future. According to the data, however, both policies already
participated in 600 up to the current balance sheet date.
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qx factor = 60%

sx factor = 100%

gR? = 0

BFT
ultimo age t S st* q*x-1 qx px k1px Spot Forward Excess Return kDisc
2010 40
2011 41
2012 42
2013 43
2014 44
2015 45
2016 46 0 6.914,81       0,000% 0,000% 0,000% 100,000% 100,000% 0,000% 0,000% 0,000% 1,0000
2017 47 1 8.149,12       6,396% 0,098% 0,092% 93,512% 100,000% 0,386% 1,945% 0,000% 0,9809
2018 48 2 9.407,06       5,603% 0,117% 0,111% 94,286% 93,512% 0,492% 1,024% 0,000% 0,9710
2019 49 3 10.692,04     5,197% 0,122% 0,116% 94,687% 88,169% 0,658% 1,660% 0,000% 0,9551
2020 50 4 12.001,39     4,249% 0,156% 0,150% 95,601% 83,485% 0,876% 2,415% 0,415% 0,9326
2021 51 5 13.338,61     3,547% 0,175% 0,169% 96,284% 79,813% 1,117% 3,066% 1,066% 0,9049
2022 52 6 14.706,29     2,942% 0,179% 0,174% 96,884% 76,847% 1,354% 3,512% 1,512% 0,8742
2023 53 7 16.105,63     2,179% 0,177% 0,173% 97,648% 74,452% 1,567% 3,722% 1,722% 0,8428
2024 54 8 17.535,55     2,179% 0,243% 0,237% 97,584% 72,701% 1,763% 3,944% 1,944% 0,8108
2025 55 9 19.000,00     2,179% 0,249% 0,244% 97,577% 70,945% 1,763% 1,763% 0,000% 0,7968

uNetRes
ultimo age t D E S P D E S P sum
2010 40
2011 41
2012 42
2013 43
2014 44
2015 45
2016 46 0 -                 -                 -              1.149,37 -   205,91    11.031,40     3.166,63     6.722,93 -                6.531,63        
2017 47 1 18,35            -                 521,22       1.074,80 -   191,57    11.245,95     2.707,00     5.778,89 -                7.290,83        
2018 48 2 20,74            -                 492,88       1.013,38 -   172,79    11.361,08     2.241,83     4.824,66 -                7.937,64        
2019 49 3 20,39            -                 489,93       959,55 -      155,26    11.549,64     1.789,11     3.945,20 -                8.589,27        
2020 50 4 24,98            -                 425,72       917,34 -      134,03    11.828,60     1.406,60     3.123,14 -                9.328,75        
2021 51 5 26,99            -                 377,61       883,25 -      111,15    12.191,25     1.072,11     2.335,64 -                10.155,62      
2022 52 6 26,74            -                 332,48       855,73 -      88,31      12.619,42     777,28        1.561,94 -                11.067,35      
2023 53 7 25,74            -                 261,28       835,60 -      65,86      13.089,09     544,93        784,47 -                   12.079,80      
2024 54 8 34,50            -                 277,79       815,41 -      33,95      13.605,34     288,63        -                           13.112,51      
2025 55 9 34,55            13.845,20     293,72       -              -           -                 -               -                           13.845,20      

uProRes
ultimo age t Added Excess Terminal Account D E S cProRes
2016 46 0 0,00 0,00 600,00 0,00 0,00 0,00 1.769,98 
2017 47 1 66,00 72,79 750,46 0,69 0,00 48,00 1.755,72 
2018 48 2 66,00 85,78 909,92 0,94 0,00 47,68 1.725,07 
2019 49 3 66,00 0,00 991,02 1,01 0,00 45,41 1.707,28 
2020 50 4 66,00 39,73 1.120,69 1,40 0,00 39,75 1.707,36 
2021 51 5 66,00 114,45 1.335,50 1,80 0,00 37,81 1.720,10 
2022 52 6 66,00 180,47 1.628,87 2,18 0,00 36,83 1.741,51 
2023 53 7 66,00 226,56 1.982,05 2,55 0,00 32,16 1.771,62 
2024 54 8 66,00 280,15 2.406,38 4,15 0,00 38,12 1.799,22 
2025 55 9 66,00 0,00 66,00 2.580,80 4,46 1.786,59 39,90 1.786,59 

history irrelevant

P! Interest

unconditional Cash Flows unconditional Volumes

history irrelevant history irrelevant

Benefits,   Mortality,   Surrender (st),   Spotrate

Profit-Account uCFs

Tariff 1: Unconditional Market Value Model with 2. Order Input

Additional input and easily deduced values

Table 5.4.: Best estimate values for the first contract derived by the algorithm from sec. (3.4)
without interpolation and waiver of premiums.

In tables (5.4) and (5.5), respectively, the same contracts are now evaluated
unconditionally under a valuation basis of second order. This means that
benefits and premiums are deemed to be fixed input values, the mortality
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5. Results

qx factor = 60%

sx factor = 100%

gR? = 0

BFT
ultimo age t S st* q*x-1 qx px k1px Spot Forward Excess Return kDisc
2010 40
2011 41
2012 42
2013 43
2014 44
2015 45
2016 46 0 6.932,72       0,000% 0,000% 0,000% 100,000% 100,000% 0,000% 0,000% 0,000% 1,0000
2017 47 1 8.169,83       6,396% 0,098% 0,092% 93,512% 100,000% 0,386% 0,386% 0,000% 0,9962
2018 48 2 9.431,44       5,603% 0,117% 0,111% 94,286% 93,512% 0,492% 0,598% 0,000% 0,9902
2019 49 3 10.718,28     5,197% 0,122% 0,116% 94,687% 88,169% 0,658% 0,991% 0,000% 0,9805
2020 50 4 12.030,58     4,249% 0,156% 0,150% 95,601% 83,485% 0,876% 1,533% 0,000% 0,9657
2021 51 5 13.369,13     3,547% 0,175% 0,169% 96,284% 79,813% 1,117% 2,087% 0,087% 0,9460
2022 52 6 14.734,72     2,942% 0,179% 0,174% 96,884% 76,847% 1,354% 2,547% 0,547% 0,9225
2023 53 7 16.128,01     2,179% 0,177% 0,173% 97,648% 74,452% 1,567% 2,854% 0,854% 0,8969
2024 54 8 17.549,42     2,179% 0,243% 0,237% 97,584% 72,701% 1,763% 3,146% 1,146% 0,8695
2025 55 9 19.000,00     2,179% 0,249% 0,244% 97,577% 70,945% 1,763% 1,763% 0,000% 0,8545

uNetRes
ultimo age t D E S P D E S P sum
2010 40
2011 41
2012 42
2013 43
2014 44
2015 45
2016 46 0 -                 -                 -              1.134,77 -   163,55    11.830,15     3.296,25      6.895,58 -                7.259,60        
2017 47 1 8,56              -                 522,54       1.061,15 -   155,62    11.875,81     2.786,43      5.861,05 -                7.895,67        
2018 48 2 11,06            -                 494,16       1.000,52 -   145,49    11.946,84     2.308,94      4.895,58 -                8.505,17        
2019 49 3 12,24            -                 491,13       947,36 -      134,70    12.065,21     1.840,69      3.996,73 -                9.096,51        
2020 50 4 16,66            -                 426,76       905,69 -      120,11    12.250,15     1.442,15      3.152,30 -                9.754,41        
2021 51 5 19,79            -                 378,47       872,04 -      102,82    12.505,79     1.093,77      2.346,05 -                10.484,29      
2022 52 6 21,39            -                 333,13       844,86 -      84,05      12.824,35     788,50         1.560,94 -                11.291,09      
2023 53 7 22,31            -                 261,65       824,99 -      64,14      13.190,42     549,36         780,51 -                   12.198,41      
2024 54 8 32,20            -                 278,01       805,06 -      33,95      13.605,34     288,63         -                           13.122,86      
2025 55 9 34,55            13.845,20     293,72       -              -           -                 -                -                           13.845,20      

uProRes
ultimo age t Added Excess Terminal Account D E S cProRes
2016 46 0 0,00 0,00 600,00 0,00 0,00 0,00 1.349,63 
2017 47 1 30,80 72,98 706,09 0,65 0,00 45,16 1.309,03 
2018 48 2 35,20 86,00 831,51 0,86 0,00 43,57 1.272,43 
2019 49 3 39,60 0,00 879,35 0,90 0,00 40,29 1.243,85 
2020 50 4 44,00 0,00 936,83 1,17 0,00 33,23 1.228,51 
2021 51 5 48,40 9,34 1.014,12 1,37 0,00 28,71 1.224,07 
2022 52 6 52,80 65,47 1.158,23 1,55 0,00 26,19 1.227,52 
2023 53 7 57,20 112,65 1.361,14 1,75 0,00 22,08 1.238,72 
2024 54 8 61,60 165,32 1.630,87 2,81 0,00 25,84 1.249,04 
2025 55 9 66,00 0,00 66,00 1.791,62 3,10 1.240,27 27,70 1.240,27 

Additional input and easily deduced values

history irrelevant

P! Interest

history irrelevant history irrelevant

Tariff 2: Unconditional Market Value Model with 2. Order Input
Benefits,   Mortality,   Surrender (st),   Spotrate

Profit-Account uCFs

unconditional Cash Flows unconditional Volumes

Table 5.5.: Best estimate values for the second contract derived by the algorithm from sec.
(3.4) without interpolation and waiver of premiums.

is reduced by 60%, mortality and sojourn are diluted by surrender, the
guaranteed interest rate is replaced by a market spot rate and the profit
account is modeled into the future according to equation (3.7) in order to
determine the prospective profit reserve as well.
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5. Results

Due to the unconditional representation the cash flows, present values and
reserves are now per contract which is in the portfolio at the balance sheet
date no matter which year it belongs to. In the conditional representation
the development showed the values per contract that is in the portfolio at
the beginning of the respective year. The book value perspective is thus
rather the insured’s point of view while the unconditional perspective is
more natural from an insurers point of view.

In our examples the market values at the current balance sheet date are
higher than the book values. While the different effects coincidentally annihi-
late each other within the mathematical net reserve this is not the case when
it comes to the value for the profit participation. In case of the net reserve
this mainly roots in the spot rate being below the guaranteed interest rate
while the introduction of surrender leads to easing surrender profits. The
profit participation, however, has three different issues. Firstly, it is fed by
additional and terminal bonuses which are interest-independent discounts.
Secondly, within the first two years the profit rate is already fixed at 3%
so excess return on the statutory book value reserve needs to be granted.
Thirdly, further excess return has to be granted once the forward rate ex-
ceeds the guaranteed interest rate. All of this accumulates to an amount
that cannot be compensated by the respective discounting effects. This is a
very good example why the prospective perspective needs to be considered
instead of the retrospective one when it comes to best estimates.

In table (5.6) we consider the last certainty equivalence model where we in-
cluded the possibility to waive future premiums starting from the year 2017.
Using the results from the statutory book value model we first calculated
the reduction factors R which denote how much of the contract is left if the
option is triggered at this point in time. We then calculate the reduction
factor W which denotes the factor by which the benefits need to be reduced
given the waiver probabilities and the reduction factors R. We then applied
W to the benefit cash flows and no-waiver probabilities to the premiums to
incorporate the option to the algorithm. For this approach is new, we also
depicted the interim results of the naive algorithm in tables (5.7) to (5.10).
The results are of course the same but it is a more tangible representation.
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5. Results

qx factor = 60%

sx factor = 100%

wx factor = 100%

gR? = 0
ultimo age t waiver table waiver P! k(1-waiver) R W
2010 40
2011 41
2012 42
2013 43
2014 44
2015 45
2016 46 0 0,00% 0,00% 100,00% 43,80% 100,00%
2017 47 1 3,00% 3,00% 100,00% 50,56% 100,00%
2018 48 2 2,50% 2,50% 97,00% 57,18% 98,52%
2019 49 3 2,00% 2,00% 94,58% 63,67% 97,48%
2020 50 4 1,70% 1,70% 92,68% 70,02% 96,79%
2021 51 5 1,40% 1,40% 91,11% 76,24% 96,32%
2022 52 6 1,00% 1,00% 89,83% 82,34% 96,02%
2023 53 7 0,80% 0,80% 88,93% 88,33% 95,86%
2024 54 8 0,70% 0,70% 88,22% 94,21% 95,77%

2025 55 9 -                     -                87,61% 100,00% 95,74%

uNetRes
ultimo age t D E S P D E S P sum
2010 40
2011 41
2012 42
2013 43
2014 44
2015 45
2016 46 0 -                     -                -                    1.134,77 -    157,82    11.326,00     3.207,57     6.320,35 -     7.236,28        
2017 47 1 8,56                  -                522,54             1.029,32 -    149,87    11.369,72     2.697,41     5.315,43 -     7.872,26        
2018 48 2 10,90                -                486,83             946,24 -       139,87    11.437,72     2.226,72     4.400,99 -     8.457,09        
2019 49 3 11,93                -                478,74             878,05 -       129,33    11.551,05     1.770,03     3.566,54 -     9.005,82        
2020 50 4 16,12                -                413,07             825,16 -       115,19    11.728,11     1.384,10     2.796,06 -     9.606,19        
2021 51 5 19,06                -                364,54             783,37 -       98,53      11.972,85     1.048,44     2.071,03 -     10.265,42      
2022 52 6 20,54                -                319,86             751,37 -       80,50      12.277,84     755,29        1.372,42 -     10.989,85      
2023 53 7 21,38                -                250,81             727,83 -       61,42      12.628,30     526,04        683,76 -        11.804,17      
2024 54 8 30,84                -                266,26             705,27 -       32,51      13.025,54     276,33        -                12.629,11      
2025 55 9 33,08                13.255,18    281,20             -               -           -                 -               -                13.255,18      

uProRes
ultimo age t Added Excess Terminal Account D E S cProRes
2016 46 0 0,00 0,00 600,00 0,00 0,00 0,00 1.303,36 
2017 47 1 29,88 72,98 705,17 0,65 0,00 45,10 1.262,64 
2018 48 2 33,29 84,72 827,40 0,86 0,00 43,35 1.225,98 
2019 49 3 36,70 0,00 872,30 0,89 0,00 39,97 1.197,27 
2020 50 4 40,09 0,00 925,76 1,16 0,00 32,84 1.181,63 
2021 51 5 43,48 9,00 997,55 1,35 0,00 28,24 1.176,70 
2022 52 6 46,96 62,87 1.132,79 1,51 0,00 25,61 1.179,55 
2023 53 7 50,46 107,98 1.323,56 1,70 0,00 21,47 1.190,04 
2024 54 8 53,96 158,33 1.577,49 2,72 0,00 24,99 1.199,77 
2025 55 9 57,82 0,00 57,82 1.720,94 2,97 1.191,34 26,60 1.191,34 

unconditional Cash Flows unconditional Volumes

Profit-Account uCFs

Benefits,   Mortality,   Surrender (st),   Waiver,   Spotrate
Additional input and easily deduced values

history irrelevant history irrelevant

Tarif 2: Unconditional Market Value Model with 2. Order Input

history irrelevant history irrelevant

P! Reduction Factors

Table 5.6.: Best estimate values for the second contract derived by the algorithm from sec.
(3.4) without interpolation but with waiver of premiums.

The values are slightly lower with the option in our example. This, however,
is not an intrinsic property of the waiver option because the reduction
factors are based on book values while the net reserve here is subject to
the valuation basis of second order. A tangible counter-example is a pure
risk policy which usually has a negative best estimate because the expected
premiums exceed the expected benefits under a best estimate valuation
basis.
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5. Results

No Waiver Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at

2012 2013 2014 2015 2016 2017 2018 2019 2020

ultimo age t*
2016 46 6 8000
2017 47 7 9333 4087,76
2018 48 8 10667 4671,72 5393,44

2019 49 9 12000 5255,69 6067,62 6862,08
2020 50 10 13333 5839,65 6741,80 7624,53 8489,35
2021 51 11 14667 6423,62 7415,98 8386,98 9338,29 10269,07
2022 52 12 16000 7007,58 8090,16 9149,44 10187,22 11202,63 12197,64
2023 53 13 17333 7591,55 8764,34 9911,89 11036,16 12136,18 13214,11 14271,87
2024 54 14 18667 8175,51 9438,52 10674,34 11885,10 13069,73 14230,58 15369,70 16488,40
2025 55 15 20000 8759,48 10112,70 11436,79 12734,03 14003,28 15247,05 16467,54 17666,15 18842,53

No Waiver Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at

2012 2013 2014 2015 2016 2017 2018 2019 2020

ultimo age t*
2016 46 6 0
2017 47 7 0 0,00
2018 48 8 0 0,00 0,00
2019 49 9 0 0,00 0,00 0,00
2020 50 10 0 0,00 0,00 0,00 0,00
2021 51 11 0 0,00 0,00 0,00 0,00 0,00

2022 52 12 0 0,00 0,00 0,00 0,00 0,00 0,00
2023 53 13 0 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2024 54 14 0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2025 55 15 20000 8759,48 10112,70 11436,79 12734,03 14003,28 15247,05 16467,54 17666,15 18842,53

No Waiver Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at
2012 2013 2014 2015 2016 2017 2018 2019 2020

ultimo age t*

2016 46 6 6.932,72     

2017 47 7 8.169,83     3578,17

2018 48 8 9.431,44     4130,73 4768,87
2019 49 9 10.718,28   4694,33 5419,54 6129,14
2020 50 10 12.030,58   5269,08 6083,08 6879,56 7659,89
2021 51 11 13.369,13   5855,33 6759,90 7645,00 8512,15 9360,59
2022 52 12 14.734,72   6453,42 7450,39 8425,90 9381,62 10316,72 11233,05
2023 53 13 16.128,01   7063,65 8154,89 9222,64 10268,73 11292,25 12295,23 13279,43
2024 54 14 17.549,42   7686,19 8873,60 10035,46 11173,74 12287,47 13378,84 14449,79 15501,53
2025 55 15 19.000,00   8321,51 9607,07 10864,96 12097,33 13303,12 14484,69 15644,16 16782,84 17900,41

No Waiver Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at

2012 2013 2014 2015 2016 2017 2018 2019 2020

ultimo age t*
2016 46 6 -1134,77
2017 47 7 -1134,77 0,00
2018 48 8 -1134,77 0,00 0,00
2019 49 9 -1134,77 0,00 0,00 0,00
2020 50 10 -1134,77 0,00 0,00 0,00 0,00
2021 51 11 -1134,77 0,00 0,00 0,00 0,00 0,00
2022 52 12 -1134,77 0,00 0,00 0,00 0,00 0,00 0,00
2023 53 13 -1134,77 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2024 54 14 -1134,77 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
2025 55 15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Reduced - Death - Benefits

Reduced - Endowment - Benefits

Reduced - Surrender - Benefits

Reduced - Premiums

Table 5.7.: Best estimate values for the second contract derived by the naive waiver-
algorithm from sec. (3.4) without interpolation part 1/4.
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5. Results

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at

Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020

ultimo age t*
2016 46 6 100,00%
2017 47 7 100,00% 100,00%
2018 48 8 99,90% 99,90% 99,90%
2019 49 9 99,78% 99,78% 99,78% 99,78%
2020 50 10 99,66% 99,66% 99,66% 99,66% 99,66%
2021 51 11 99,51% 99,51% 99,51% 99,51% 99,51% 99,51%
2022 52 12 99,33% 99,33% 99,33% 99,33% 99,33% 99,33% 99,33%
2023 53 13 99,15% 99,15% 99,15% 99,15% 99,15% 99,15% 99,15% 99,15%
2024 54 14 98,98% 98,98% 98,98% 98,98% 98,98% 98,98% 98,98% 98,98% 98,98%
2025 55 15 98,74% 98,74% 98,74% 98,74% 98,74% 98,74% 98,74% 98,74% 98,74% 98,74%

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at

Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020

ultimo age t*
2016 46 6 100,00%
2017 47 7 100,00% 100,00%
2018 48 8 93,60% 93,60% 93,60%
2019 49 9 88,36% 88,36% 88,36% 88,36%
2020 50 10 83,77% 83,77% 83,77% 83,77% 83,77%
2021 51 11 80,21% 80,21% 80,21% 80,21% 80,21% 80,21%
2022 52 12 77,36% 77,36% 77,36% 77,36% 77,36% 77,36% 77,36%
2023 53 13 75,09% 75,09% 75,09% 75,09% 75,09% 75,09% 75,09% 75,09%
2024 54 14 73,45% 73,45% 73,45% 73,45% 73,45% 73,45% 73,45% 73,45% 73,45%
2025 55 15 71,85% 71,85% 71,85% 71,85% 71,85% 71,85% 71,85% 71,85% 71,85% 71,85%

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020

ultimo age t*

2016 46 6 100,00%
2017 47 7 100,00% 100,00%
2018 48 8 97,00% 100,00% 100,00%
2019 49 9 94,58% 100,00% 100,00% 97,00%
2020 50 10 92,68% 100,00% 100,00% 97,00% 94,58%
2021 51 11 91,11% 100,00% 100,00% 97,00% 94,58% 92,68%
2022 52 12 89,83% 100,00% 100,00% 97,00% 94,58% 92,68% 91,11%
2023 53 13 88,93% 100,00% 100,00% 97,00% 94,58% 92,68% 91,11% 89,83%
2024 54 14 88,22% 100,00% 100,00% 97,00% 94,58% 92,68% 91,11% 89,83% 88,93%
2025 55 15 87,61% 100,00% 100,00% 97,00% 94,58% 92,68% 91,11% 89,83% 88,93% 88,22%

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at W
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 as sum

ultimo age t*
2016 46 6 100,00% 100,000%
2017 47 7 100,00% 0,00% 100,000%
2018 48 8 97,00% 0,00% 1,52% 98,517%
2019 49 9 94,58% 0,00% 1,52% 1,39% 97,479%
2020 50 10 92,68% 0,00% 1,52% 1,39% 1,20% 96,791%
2021 51 11 91,11% 0,00% 1,52% 1,39% 1,20% 1,10% 96,319%
2022 52 12 89,83% 0,00% 1,52% 1,39% 1,20% 1,10% 0,97% 96,016%
2023 53 13 88,93% 0,00% 1,52% 1,39% 1,20% 1,10% 0,97% 0,74% 95,857%
2024 54 14 88,22% 0,00% 1,52% 1,39% 1,20% 1,10% 0,97% 0,74% 0,63% 95,774%
2025 55 15 87,61% 0,00% 1,52% 1,39% 1,20% 1,10% 0,97% 0,74% 0,63% 0,58% 95,738%

Unconditional - Surrender - Effects (k-1px)

Unconditional - Waiver - Effects (k-1px)

Unconditional - Waiver - Effects (k-1px)*pf*R

Unconditional - Mortality - Effects (k-1px)

Table 5.8.: Best estimate values for the second contract derived by the naive waiver-
algorithm from sec. (3.4) without interpolation part 2/4.
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5. Results

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Diff. to
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 MV CFs

ultimo age t*
2016 46 6 -                
2017 47 7 8,56              -         -           
2018 48 8 10,73           -         0,17        0,16-         
2019 49 9 11,57           -         0,19        0,17        0,31-         
2020 50 10 15,44           -         0,25        0,23        0,20        0,53-         
2021 51 11 18,03           -         0,30        0,27        0,24        0,22        0,73-         
2022 52 12 19,22           -         0,32        0,30        0,26        0,24        0,21        0,85-         
2023 53 13 19,84           -         0,34        0,31        0,27        0,25        0,22        0,17        0,92-         
2024 54 14 28,41           -         0,49        0,45        0,39        0,36        0,31        0,24        0,20      1,36-         
2025 55 15 30,27           -         0,52        0,48        0,42        0,38        0,34        0,26        0,22      0,20      1,47-         

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Diff. to
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 MV CFs

ultimo age t*
2016 46 6 -                
2017 47 7 -                -         -           
2018 48 8 -                -         -           -           
2019 49 9 -                -         -           -          -           
2020 50 10 -                -         -           -          -           -           
2021 51 11 -                -         -           -          -           -          -           
2022 52 12 -                -         -           -          -           -          -           -           
2023 53 13 -                -         -           -          -           -          -           -          -           
2024 54 14 -                -         -           -          -           -          -           -          -         -           
2025 55 15 12.129,09    -         210,02    191,99   166,74    152,74   134,63    102,41   87,01    80,55    590,02-     

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Diff. to
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 MV CFs

ultimo age t*

2016 46 6 -                
2017 47 7 522,54         -         -           
2018 48 8 479,33         -         7,50        7,33-         
2019 49 9 464,48         -         7,45        6,81        12,38-       
2020 50 10 395,53         -         6,47        5,92        5,14        13,69-       
2021 51 11 344,82         -         5,74        5,25        4,56        4,18        13,93-       
2022 52 12 299,26         -         5,05        4,62        4,01        3,68        3,24        13,27-       
2023 53 13 232,69         -         3,97        3,63        3,15        2,89        2,54        1,94        10,84-       
2024 54 14 245,27         -         4,22        3,86        3,35        3,07        2,70        2,06        1,75      11,75-       
2025 55 15 257,31         -         4,46        4,07        3,54        3,24        2,86        2,17        1,85      1,71      12,52-       

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Diff. to
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 MV CFs

ultimo age t*
2016 46 6 1.134,77 -     -           
2017 47 7 1.029,32 -     -         31,83       
2018 48 8 946,24 -        -         -           54,28       
2019 49 9 878,05 -        -         -           -          69,31       
2020 50 10 825,16 -        -         -           -          -           80,54       
2021 51 11 783,37 -        -         -           -          -           -          88,67       
2022 52 12 751,37 -        -         -           -          -           -          -           93,49       
2023 53 13 727,83 -        -         -           -          -           -          -           -          97,16       
2024 54 14 705,27 -        -         -           -          -           -          -           -          -         99,79       
2025 55 15 -                -         -           -          -           -          -           -          -         -         -           

Unconditional - Endowment - Cash - Flows

Unconditional - Surrender - Cash - Flows

Unconditional - Premium - Cash - Flows

Unconditional - Death - Cash - Flows

Table 5.9.: Best estimate values for the second contract derived by the naive waiver-
algorithm from sec. (3.4) without interpolation part 3/4.
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5. Results

Death

Reserve Total
No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at = Reserve

Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 row sum

ultimo age t*
2016 46 6 148,55          -         2,35         2,00        1,59        1,28        0,95        0,57        0,36       0,17       157,82        7.236,28       
2017 47 7 140,56          -         2,36         2,01        1,60        1,28        0,95        0,58        0,36       0,17       149,87        7.872,26       
2018 48 8 130,68          -         2,21         2,02        1,61        1,29        0,96        0,58        0,37       0,17       139,87        8.457,09       
2019 49 9 120,40          -         2,04         1,87        1,62        1,30        0,96        0,58        0,37       0,18       129,33        9.005,82       
2020 50 10 106,81          -         1,82         1,67        1,45        1,32        0,98        0,59        0,37       0,18       115,19        9.606,19       
2021 51 11 91,00            -         1,56         1,43        1,24        1,13        1,00        0,61        0,38       0,18       98,53          10.265,42     
2022 52 12 74,11            -         1,27         1,17        1,01        0,93        0,82        0,62        0,39       0,19       80,50          10.989,85     
2023 53 13 56,38            -         0,97         0,89        0,77        0,71        0,62        0,47        0,40       0,19       61,42          11.804,17     
2024 54 14 29,74            -         0,52         0,47        0,41        0,37        0,33        0,25        0,21       0,20       32,51          12.629,11     
2025 55 15 -                 -         -            -           -           -           -           -           -         -         -               13.255,18     

Endowment
Reserve

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at =
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 row sum

ultimo age t*
2016 46 6 10.363,80     -         179,45     164,05    142,47    130,51    115,03    87,50      74,35     68,83     11.326,00     
2017 47 7 10.403,81     -         180,14     164,68    143,02    131,01    115,48    87,84      74,63     69,10     11.369,72     
2018 48 8 10.466,03     -         181,22     165,67    143,88    131,80    116,17    88,37      75,08     69,51     11.437,72     
2019 49 9 10.569,73     -         183,02     167,31    145,30    133,10    117,32    89,24      75,82     70,20     11.551,05     
2020 50 10 10.731,75     -         185,82     169,87    147,53    135,14    119,12    90,61      76,99     71,27     11.728,11     
2021 51 11 10.955,70     -         189,70     173,42    150,61    137,96    121,60    92,50      78,59     72,76     11.972,85     
2022 52 12 11.234,78     -         194,53     177,84    154,45    141,48    124,70    94,86      80,59     74,61     12.277,84     
2023 53 13 11.555,47     -         200,09     182,91    158,85    145,52    128,26    97,56      82,90     76,74     12.628,30     
2024 54 14 11.918,96     -         206,38     188,67    163,85    150,09    132,30    100,63    85,50     79,16     13.025,54     
2025 55 15 -                 -         -            -           -           -           -           -           -         -         13.255,18     

Surrender
Reserve

No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at =
Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 row sum

ultimo age t*

2016 46 6 3.076,67       -         42,11       31,71      21,74      15,36      10,06      5,38        3,10       1,46       3.207,57     
2017 47 7 2.566,00       -         42,27       31,83      21,82      15,42      10,10      5,40        3,11       1,47       2.697,41     
2018 48 8 2.102,01       -         35,02       32,02      21,95      15,52      10,16      5,43        3,13       1,47       2.226,72     
2019 49 9 1.658,36       -         27,92       25,53      22,17      15,67      10,26      5,49        3,16       1,49       1.770,03     
2020 50 10 1.288,24       -         21,88       20,00      17,37      15,91      10,42      5,57        3,21       1,51       1.384,10     
2021 51 11 970,30          -         16,59       15,17      13,17      12,07      10,64      5,69        3,27       1,54       1.048,44     
2022 52 12 695,76          -         11,96       10,93      9,50        8,70        7,67        5,83        3,36       1,58       755,29        
2023 53 13 482,93          -         8,33         7,62        6,62        6,06        5,34        4,06        3,45       1,63       526,04        
2024 54 14 252,85          -         4,38         4,00        3,48        3,18        2,81        2,13        1,81       1,68       276,33        
2025 55 15 -                 -         -            -           -           -           -           -           -         -         -               

Premium
No Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Waiver at Reserve

Waiver 2012 2013 2014 2015 2016 2017 2018 2019 2020 =
row sum

ultimo age t*
2016 46 6 6.320,35 -      -         -            -           -           -           -           -           -         -         7.455,12-       
2017 47 7 5.315,43 -      -         -            -           -           -           -           -           -         -         6.344,75-       
2018 48 8 4.400,99 -      -         -            -           -           -           -           -           -         -         5.347,22-       
2019 49 9 3.566,54 -      -         -            -           -           -           -           -           -         -         4.444,59-       
2020 50 10 2.796,06 -      -         -            -           -           -           -           -           -         -         3.621,21-       
2021 51 11 2.071,03 -      -         -            -           -           -           -           -           -         -         2.854,40-       
2022 52 12 1.372,42 -      -         -            -           -           -           -           -           -         -         2.123,79-       
2023 53 13 683,76 -         -         -            -           -           -           -           -           -         -         1.411,59-       
2024 54 14 -                 -         -            -           -           -           -           -           -         -         705,27-          
2025 55 15 -                 -         -            -           -           -           -           -           -         -         -                

Unconditional - Endowment - Volumes

Unconditional - Surrender - Volumes

Unconditional - Premium - Volumes

Unconditional - Death - Volumes

Table 5.10.: Best estimate values for the second contract derived by the naive waiver-
algorithm from sec. (3.4) without interpolation part 4/4.
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5. Results

5.1. Affine Models

Let us now consider the second contract but without the waiver-option and
in a time-continuous framework where the premiums shall be payed as
a continuous payment stream and the surrender and death benefits shall
be payed immediately upon the respective events. While the endowment
benefit is still the same lump sum payment at the end, the annual premium
payments are now replaced by a constant premium intensity, and the death-
as well as the surrender benefits are now continuously increasing claims.

Before we let the transition intensities be driven by affine processes we
take a look at the results of a time-continuous model with deterministic
intensities.

In order to have a little validation we do not use the pricing formulas from
the affine framework but we proceed accordingly to ([Nor02, p. 79ff]) where
Thiele’s differential equation is applied directly and we provide the resulting
probabilities to allow for a comparison with the time-discrete models. We
then compare these results to those of the affine approach from section (4.4)
with zero volatility.

For the deterministic mortality intensities µ◦(t) we take the parameters from
([Kol10, p. 18 ff]) and apply the same idea to come up with deterministic
surrender intensities η◦(t) ourselves. The explicit choice is

µ◦(t) := Exp[−9.13275 + 8.09438 ∗ 10−2 ∗ t− 1.10180 ∗ 10−5 ∗ t2],

η◦(t) := Exp[−5 + 0.2 ∗ (t + 10)− 0.01 ∗ (t + 5)2 − 0.001 ∗ (t + 0)3].
(5.1)

For the deterministic force of interest r◦(t) we take the EIOPA risk free spot
rate as of October 31, 2016 and convert it into intensities accordingly to
appendix (A). The reserve is finally derived by solving Thiele’s differential
equation

Res′t = (r◦t + µ◦x+t + η◦t ) Rest − µ◦x+t dBFTt − η◦t sBFTt + pBFT,
Resn = eBFT,

(5.2)

where dBFT denotes the death benefit, sBFT denotes the surrender benefit,
pBFT denotes the premium intensity, and eBFT denotes the endowment
benefit.
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Figure 5.1.: Deterministic intensities used as input for the time-continuous model.
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Figure 5.2.: Deterministic spot rates, derived intensities and coinciding accumulated interest
rates thereof.
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For the Kolmogorov backwards equation is a special case of Thiele’s dif-
ferential equation we could use it to determine the resulting bond prices
and probabilities by simply setting the irrelevant benefits and intensities
to zero and the endowment benefit to one. But because we are using this
approach for the reserves anyway we take the opportunity to add another
redundancy and use equations (5.3) instead.

P(0, t) := e
−

t∫
0

r◦(u)du

p00(0, t) := e
−

t∫
0

µ◦(x+u)+η◦(u)du

p01(0, t) := e
−

t∫
0

µ◦(x+u)+η◦(u)du
t∫

t−1

e
−

u∫
t−1

µ◦(x+ξ)+η◦(ξ)dξ

µ◦(x + u)du

p02(0, t) := e
−

t∫
0

µ◦(x+u)+η◦(u)du
t∫

t−1

e
−

u∫
t−1

µ◦(x+ξ)+η◦(ξ)dξ

η◦(x + u)du

(5.3)

Year Bond Prices Sojourn Death Surrender Mathematical
t P(0,t) p00(0,t) p01(0,t) p02(0,t) Reserve
0 1,000            100,00% 0,00% 0,00% 867,37             
1 1,003            95,75% 0,28% 3,98% 2.036,88          
2 1,005            91,36% 0,56% 8,08% 3.209,93          
3 1,007            86,97% 0,86% 12,18% 4.387,79          
4 1,006            82,71% 1,16% 16,13% 5.572,34          
5 1,004            78,75% 1,47% 19,78% 6.768,23          
6 1,000            75,20% 1,80% 23,01% 7.981,32          
7 0,992            72,14% 2,13% 25,73% 9.218,89          
8 0,983            69,62% 2,48% 27,90% 10.481,90        
9 0,971            67,62% 2,85% 29,54% 11.771,90        
10 0,960            66,07% 3,23% 30,70% 13.071,60        
11 0,946            64,90% 3,64% 31,46% 14.413,60        
12 0,931            64,00% 4,08% 31,92% 15.794,70        
13 0,916            63,28% 4,55% 32,18% 17.196,80        
14 0,903            62,64% 5,05% 32,31% 18.602,60        
15 0,890            62,04% 5,58% 32,37% 20.000,00        

Probabilities
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 0,200

 0,400
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 1,000
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Development of Bond Prices and 
Probabilities

P(0,t) p00(0,t) p01(0,t) p02(0,t)

Table 5.11.: Bond Prices and Probabilities derived from the deterministic intensities.
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5. Results

5.1.1. Buchardt’s Model

Having built the continuous reference model according to Norberg’s lecture
we are now interested in the results from Buchardt’s model introduced in
section (4.7).

We recall that the mortality is modeled by the deterministic intensity
µ◦(x + t) while the force of interest r(t) and the surrender intensity η(t) are
modeled by the two-dimensional process Y which is given by

Y(t) :=

r(t) = X1(t),

η(t) = η◦(t) X2(t)
(5.4)

with

dX(t) :=

(b1(t)− β1X1(t)) dt + σ1

(√
1− ρ2dW1(t) + ρ

√
X2(t)dW2(t)

)
,

(b2 − β2X2(t)) dt + σ2
√

X2(t)dW2(t).
(5.5)

We chose the parameters to be

b1(t) := r◦(t) β1 := −1 σ1 := 0.05 ρ := 0.45
b2 := 1 β2 := −1 σ2 := 0.20

(5.6)

While these parameter choices are more or less arbitrary, the choices for
X(n) must follow from solving

X′1(t) := b1(t) −X1(t), X1(t0) := 0,

X′2(t) := b2 −X2(t), X2(t0) := 0,
(5.7)

for every t0 ∈ [0, n] which e.g. for t0 = 0 results in X(n) = {0.014087, 1}.

Using an annual grid to approximate the integral in equation (4.41), we
find the affine factors to take the values depicted in figures (5.12) and (5.13),
respectively.
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ϕ ψ1 ψ2 A B1 B2
0. 0. 0. 0. 0. 0.0387742

- 0.01403 - 0.63212 - 0.02549 0.0267914 0. 0.015592
- 0.04569 - 0.86466 - 0.035639 0.0390304 0. 0.00610896
- 0.08590 - 0.95021 - 0.03956 0.0442425 0. 0.00231812
- 0.12997 - 0.98168 - 0.04102 0.045389 0. 0.000846837
- 0.17508 - 0.99326 - 0.041555 0.0436409 0. 0.000296044
- 0.21923 - 0.99752 - 0.041735 0.0396176 0. 0.000098446
- 0.26094 - 0.99908 - 0.041793 0.0339145 0. 0.0000309547
- 0.29895 - 0.99966 - 0.041811 0.02726 0. 9.14798× 10- 6

- 0.33249 - 0.99987 - 0.041817 0.0204633 0. 2.52454× 10- 6

- 0.36085 - 0.99995 - 0.041818 0.0142636 0. 6.47111× 10- 7

- 0.38490 - 0.99998 - 0.041818 0.00917735 0. 1.53324× 10- 7

- 0.40635 - 0.99999 - 0.041818 0.00541812 0. 3.33645× 10- 8

- 0.42584 - 0.99999 - 0.041818 0.00291758 0. 6.62574× 10- 9

- 0.44343 - 0.99999 - 0.041818 0.00142441 0. 1.33955× 10- 9

- 0.45911 - 1. - 0.041818 0.000626726 0. 2.07768× 10- 10

Table 5.12.: Affine factors for σ1 = 0.00, σ2 = 0.00, ρ = 0.00.

Using the results with zero volatility from figure (5.12) in equation (4.41),
we find that we get the same results as with Thiele’s differential equation
(5.2) if we only consider the endowment benefit in both of them. In order to
get the same results for all benefits we would have to use a finer grid for the
integral in equation (4.41). Like this the annual grid results in Res0 = 732.06
instead of Res0 = 867.37.

ϕ ψ1 ψ2 A B1 B2
0. 0. 0. 0. 0. 0.0387742

- 0.0138451 - 0.632121 - 0.0254344 0.0267746 0. 0.0155568
- 0.044781 - 0.864665 - 0.0354289 0.0389684 0. 0.00606601
- 0.0838652 - 0.950213 - 0.0392251 0.04414 0. 0.00228854
- 0.126607 - 0.981684 - 0.0406145 0.0452644 0. 0.00083091
- 0.170297 - 0.993262 - 0.0411016 0.0435121 0. 0.000288674
- 0.213006 - 0.997521 - 0.0412638 0.0394985 0. 0.0000954081
- 0.253268 - 0.999088 - 0.0413146 0.0338137 0. 0.0000298209
- 0.289863 - 0.999665 - 0.0413293 0.0271814 0. 8.76295× 10- 6

- 0.322019 - 0.999877 - 0.0413332 0.0204066 0. 2.40561× 10- 6

- 0.349031 - 0.999955 - 0.0413341 0.0142259 0. 6.13449× 10- 7

- 0.371764 - 0.999983 - 0.0413343 0.00915415 0. 1.44865× 10- 7

- 0.391923 - 0.999994 - 0.0413343 0.00540494 0. 3.14202× 10- 8

- 0.410135 - 0.999998 - 0.0413343 0.00291069 0. 6.18864× 10- 9

- 0.426464 - 0.999999 - 0.0413342 0.00142112 0. 1.24493× 10- 9

- 0.44089 - 1. - 0.0413342 0.000625299 0. 1.89288× 10- 10

Table 5.13.: Affine factors for σ1 = 0.05, σ2 = 0.20, ρ = 0.45.
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Out of curiosity we found that one can also get a pretty good approximation
by shifting the death- and surrender benefits by 0.35 years back instead of
refining the grid in this particular situation. The resulting reserve values
with volatility are presented in table (5.14).

Deterministic Stochastic Absolute Relative
Mathematical Mathematical Difference Difference

Reserve Reserve
867,37                 994,78                 127,42 15%

2.036,88              2.162,29              125,41 6%
3.209,93              3.335,15              125,22 4%
4.387,79              4.513,89              126,10 3%
5.572,34              5.699,14              126,80 2%
6.768,23              6.894,34              126,11 2%
7.981,32              8.104,07              122,75 2%
9.218,89              9.334,75              115,86 1%

10.481,90            10.586,70            104,80 1%
11.771,90            11.862,00            90,10 1%
13.071,60            13.143,10            71,50 1%
14.413,60            14.468,60            55,00 0%
15.794,70            15.837,40            42,70 0%
17.196,80            17.240,30            43,50 0%
18.602,60            18.664,10            61,50 0%
20.000,00            20.000,00            0,00 0%

Table 5.14.: Development of the reserve for σ1 = 0.05, σ2 = 0.20, ρ = 0.45.
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6. Discussion

Book Value Model
Despite its crudeness, the statutory book value model is the most important
model in life insurance business because all contract details like premiums,
benefits, but also options and guarantees are defined accordingly to its
values. Moreover, it is used for drawing up a balance sheet accordingly to
the local accounting standards which makes it a crucial part within every
simulation of future profit participation.

In a risk management context, however, it simply is a blunt tool. Although,
due to the principle of precaution1, the statutory book value model usually
leads to quite risk averse policy parameters when the policy is issued, the
economic situation can change dramatically during the term of contract
turning an initially good portfolio into a toxic one. The model is then
completely blind for the market situation. This means it does not only
ignore future systematic risks but also systematic risks which have already
realized since the policy was written.

Nonetheless, it has proven quite sufficient concerning idiosyncratic risks
in the context of mortality. This is due to the large number of contracts and
the independence between the events of death, which make the law of large
numbers applicable. This, however, does not hold true when it comes to
investment risk. Even though there are many investment possibilities as
well, they are highly correlated and therefore the risk does not diminish in
the same way. Hence market risks are not hedged away to the same extend
and should therefore be modeled in a more sophisticated way.

The book value algorithm with its commutation tables on the other hand
can be deemed a pure anachronism. The same goes for the implementation
approach targeting reserve problems directly (without cash flows as interim
results) by implementing separate expected present value functions for each
tariff and for different purposes. The notion of a framework covering far

1It usually contains a deluge of loading parameters in the domains of costs, interest,
mortality, profits, reinsurance, etc. to cushion all kinds of risks.
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more in a single implementation while still being resource-friendly simply
places a ban on it.

Extended Market Value Model
The market value model introduced in section (3.3) with its extensions from
section (3.4) already deals with many of the statutory book value model’s
flaws. It calculates the prospective reserves using the prevailing interest rate
from the market instead of the guaranteed interest rate, it uses unloaded
parameters, it includes policy holder behavior like surrender and waiver
of premiums and it determines the prospective profit reserve which is a
pretty good approximation of the inner value of the profit participation
guarantee.

It is still blind for future systematic and idiosyncratic risks but it considers
the systematic risks which realized since the policies were issued and it
can very successfully be used as a data clustering algorithm to support
sophisticated Monte Carlo simulations in order to determine the inner value
as well as the time value of the profit participation.

Affine Models
Poly-stochastic models with multidimensional time-inhomogeneous con-
tinuous affine processes as driving sources are rather new and so many
questions will have to be answered before actuaries will add them to their
standard repertoire but they already look very promising for the purpose
of evaluating model assumptions in less sophisticated models because they
allow for an astonishing modeling flexibility without Monte Carlo simula-
tions.

Nonetheless they are way more complex than their certainty equivalence
counterparts. This makes them harder to explain and thus harder to justify
in front of the board. Furthermore it is questionable whether the approach
will soon be applicable to whole portfolios because they do not allow for
a direct modeling of management rules which is not only criticized by the
board but also by the supervisory authorities.
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Appendix A.

Interest Rates [Bjö09], [MB00], [Cuc06],and [Fil09].

For t ≤ T ≤ S ∈ R+ let τ(T, S) denote the time between T and S and let
P(t, T) denote the value of a risk-free zero coupon bond at time t, which
pays 1 at time T. It can thus be seen as a cash transport factor from time T
back to time t applied to a nominal amount of 1. To ease the comparability
of the following rates, the corresponding expression has been added to each
interest rate definition.

Definition A.1 (The simply compounded Spot Rate or Yield Curve )

Fs(t; T) := 1
τ(t,T)

(
1

P(t,T) − 1
)

⇐⇒ P(t, T) = 1
1+τ(t,T)Fs(t;T)

Definition A.2 (The simply compounded Forward Rate )

Fs(t; T, S) := 1
τ(T,S)

(
P(t,T)
P(t,S) − 1

)
⇐⇒ P(t, S) = P(t,T)

1+τ(T,S)Fs(t;T,S)

Definition A.3 (The annually-compounded Forward Rate )

Fa(t; T, S) :=
(

P(t,T)
P(t,S)

)1/τ(T,S)
− 1 ⇐⇒ P(t, S) = P(t,T)

(1+Fa(t;T,S))τ(T,S)

Definition A.4 (The continuously-compounded Forward Rate )

Fc(t; T, S) := ln P(t,T)−ln P(t,S)
τ(T,S) ⇐⇒ P(t, S) = P(t, T)e−τ(T,S)Fc(t;T,S)

year k Fc(0, k) Fc(0, k− 1, k) Fc(0, k− 2, k)

1 3.0
2 4.0 5.0
3 4.6 5.8 5.4
4 5.0 6.2 6.0
5 5.3 6.5 6.35

Table A.1.: Numeric example for Spot and Forward Rates.
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Infinitesimally Valid Interest Rates

In the sequel we are, however, exclusively using short-term interest rates.
They are a theoretical concept and thus not directly observable.

Definition A.5 ( Instantaneous Forward Rate )

f (t, T) : = lim
S↓T

Fs(t; T, S) = lim
S↓T
− 1

P(t, S)
P(t, S)− P(t, T)

τ(S− T)

= −∂ ln P(t, T)
∂T

P(t, T) = e
−

T∫
t

f (t,u)du

Definition A.6 ( Short Rate )

r(t) := lim
T↓t

f (t, T)

Here the bond price P(t, T) can not be stated immediately. Assuming that t
is the current time, all interest rates defined above are time t-measurable.
This means they are stochastic as soon as t is replaced by t∗ ∈ (t, ∞). While
the forward rate as a function of T is known at t, the short rate is only
known in a single point at time t.
Lemma A.1

Consider the short rate rt to be an adapted process and Ft to be the filtration
which is generated by it. Hence, using an arbitrage argument, the price of a
zero coupon bond satisfies

P(t, T) = EQ
[

exp
{(
−
∫ T

t
rsds

)}∣∣∣∣Ft

]
.

Thus, the bond prices are fixed once the short rate has been specified under a
risk neutral measure Q. This is not true under the real world measure ([Bjö09]
page 365)!
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We can now define a stochastic compounding factor and a stochastic dis-
count factor, which evolve accordingly to the short rate.

Definition A.7 (Bank Account)

Let the bank account be defined as the adapted process which satisfies

B(0) := 1 and dB(t) := r(t)B(t)dt (A.1)

⇒ B(t) = e
∫ t

0 r(s)ds ∀t ∈ [0, T]. (A.2)

Definition A.8 (Stochastic Discount Factor)

The stochastic discount factor is the value at time t of receiving one Euro at
time T. It is thus defined by

D(t, T) :=
B(t)
B(T)

= e−
∫ T

t r(s)ds.

There is a close relation between compounding, discounting and the bond
price.

Definition A.9 (Arbitrage-free family of bond prices)

A family of bond prices {P(t, T) : t ≤ T ≤ T∗} relative to the short rate r is
called arbitrage free if

• P(T, T) = 1 for all T∈ [0, T∗] and
• it exists an equivalent probability measure Q∗ such that the discounted

bond price
P̃(t, T) = D(0, t)P(t, T) =

P(t, T)
B(t)

is a martingale under Q∗ i.e. measurable, with bounded expectation and

P̃(t, T) = EQ∗ [P̃(T, T)|Ft] ∀t ≤ T.
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Appendix A. Interest Rates

Lemma A.2 (Bond Prices and Discount Factors)

An arbitrage-free bond price is the expectation of the corresponding discount
factor taken under the martingale measure Q∗:

P(t, T) =
EQ∗ [D(0, T)|Ft]

D(0, t)
(A.3)

= e
∫ t

0 r(s)dsEQ∗ [e−
∫ T

0 r(s)ds|Ft] (A.4)

= EQ∗ [e−
∫ T

t r(s)ds|Ft] (A.5)

= EQ∗ [D(t, T)|Ft]. (A.6)
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